ML19332B241

From kanterella
Revision as of 12:01, 18 February 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Evaluation of Transient Behavior & Small RCS Breaks in 177 Fuel Assembly Plant, Vol 1,Section 6.0,Suppl 2 to 790507 Rept.Related Correspondence
ML19332B241
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 05/12/1979
From:
BABCOCK & WILCOX CO.
To:
Shared Package
ML19332B231 List:
References
ISSUANCES-SP, NUDOCS 8009260335
Download: ML19332B241 (22)


Text

.

Docket No. 50-289 9 (Restart)

Licensee's Exhibit No.

g

octWD M QEPRRP.SI%NDENCR 7 USMPC -%

, SEP 19 M P b 7 tytte of WW II 4, Br 4'

tu -

"Small Break in the Pressurizer (PORV) with No Auxiliary Feedwater and Single Failure of the ECCS with Realistic Decay Heat," Supplement 2 to the May 7, 1979 Small Break Analyses (May 12, 1979) l 1

1 9 c99 a

v

. . s

" EVALUATION OF TRANSIENT 3EHAVIOR AND S2d.ALL REACTOR COOLANT SYSTEli BREAKS IN THE 177 FUEL ASSEldBLY PIANT"

. VOLUME 1 SECTION 6.0 - SUPPLEMENT 2 MAY 12, 1979 I

"SMALL BRIAK IN THE PPISSt RIZER (PORV) WITH NO AUXILIARY TEEDWATER A'O SINGLE FAILURE OF THE ECCS WITH REALISTIC DECAY HEAT" e

r 9

e s

MN*-* '*9 % wt -

_ _ - 179 _ _

. , ,,w,_ ,

.e ,

. 1

. P Small Break in the Pressuri:er (PORV With No Auxiliary Feedwater and a Single Failure of the ECCS

~Jith Realistic Decav Heat

1. Introduction The evaluation of small breaks in the pressurizer in Chapter 6.2.3 of the main h

report covered the following two cases: ,

. g.

1. Loss of main feedwater resulting in a stuck open PORV, no lors of offsite power, and one HPI train available for emergency core cooling.
2. Stuck open PORY vith loss of offsite power and one HPI train. i This supplement provides the additional analysis of a small break of 'the PORV without feedvater availability and a single failure.in the e=ergency core cool- *

-ing system with realistic decay heat. For this assunpcion, the b7 fuel assembly lowered-loop plants fall into two categories: *

1. Oconee will have one HPI pump injecting through one train for 10 minutes and two EPI pumps injecting through two trains thereafter.
2. All others vill have one HPI pump injecting through one train for 10 minutes and one HPI pump injecting through two trains thereafter.

This evaluation is based on the flow equivalent to one HPI pump. Consideraticn of the results for Oconee is given in Section 4.

The evaluation shows no core uncover and no cladding temperature excursion. By the and of the analysis long term cooling has been established via HPI injec-tioti and the criteria of 10 CFR 50.46 are met.

i .

E e

4

. e l

I i -

...:~~~~' ~

. . . . . . z .2. _ ~ --- ~ ~ - p

- . t. ,

i .  ;

6 .

)

2. Method of Analvsis The analysis sechod used for the evaluation is that described in Chapter 5 of reference 4, BAW-10104, Rev. 3, "3&W's ECCS Evaluation Model," along with the model modifications of reference 5. , As dictated by reference 6, the Bernculli correlation was used for subcooled flow rather than the =odified Zaloudek cor-relatica as proposed in reference 5. The following conditions and system re-sponses were assumed during the transient.
a. The reactor is operating at 102 of a steady-state power level of 2772 MRt.

Decay heat is based on 1.0 times the 1971 ANS 5.1 standard for infinite re-actor operation (realistic decay heat). **

b. The leak occurs instantaneously, and a discharge coefficient of 1.0 is -

used for the entire analysis. Bernoulli's equation was used for the sub-

. cooled portion of the transient, while Moody's correlation was used in the two-phase portion. l l

c. No offsite power is available.

j

d. The reactor trips on low pressure (1900 psig).

I

e. The safety rods begin entering the core after a 0.5 second delay from the time the reactor trip signal is reached.
f. The RC pumps trip and coastdown coincident with reactor tr'ip.

3 One complete train of the emergency safeguards system fails to operate, leaving two CFIs and only one RPI and one LPI system available for pumped injection to sitigate the consequences of the LOCA.

h. The auxiliary feedwater (FU) system is assumed not to be available during r the transient.

I 1. The ESFAS crip, including signal errors, occurs at a RC pressure of 1415 l

4

, psia, i

i k

  • i :

l l -

1 . .

4 6 gg e k an e ** a ** -

'--,-***A***

g ** ,

E

%.)

i . .

l

3. Results Figures 2 through 15 show the' evolution of several key reactor coolant systen variables for this event. The CRAFT 2 noding diagram for this analysis is pre-seated in Figure 1. The following table presents key results of the analysis:

Secuence of events _

Time, s Break occurs (1.05 in. @ top of pres- 0.0 surizer equal to a PORY break)

Reactor trip 58.0 Loss of offsite power, RC pumps coast- 58.0 down occurs Main feedwater coastdown ends 72.0 HPI injection starts 210.0

  • Natural circulation essentially lost 1690.0

, Maximum repressurization reached -1590 psia @ 4630 sec Long term cooling established s4700 Minimum core mixture level 16.9 ft 6 2290 sec  !

Peak cladding temperature

-720F (initial value)

The RCS depressurizes with the initiation of the break as shown in Figure 2.

)

Since the break is in the steam space of the pressurizer, the RCS depressurizes rapidly to the ESFAS setpoint, thus initiating the HPI injection. At 1000 t'conds into the transient, the 1CS repressurized because the pressurizer goes solid as shown in Figure 3. As shown in Figure 4,,the SG secondary side liquid volume goes dry (approximately 950 see) just prior to the pressurizer going solid. The reduced primary to secondary heat transfer also precipitates r

the increase in RCS pressure. The pressure continues to increase until the RCS net volume balance is net at 4700 seconds. ihisnet volume balance is i

j the difference between the ITPI volume injected, leak volume, core boil-off l.

I i e e

==== - -. m3 . .

G._.- L_.......

  • l - _ - . .

h l

, volume, and steam condensation by che HPI. Also, at this ti:ne, the HPI in-l jection rate exceeds the core boil-off rate. Thereafter, system pressurs will I

decrease proportional with decay power, thus firmly establishing long ters cooling. Core covery is assured, thereby assuring no increase in cladding temperature. Thus, criteria of 10 CFR 50.46 is satisfied without the use of auxiliary feedvater or an additional HPI train.

~

4

'e e

  • O, e

e G

4 e

4 l.

e. e l

, i j . I i

l I.

. j

' ~

__ ~ -_ a - - ___ _

~"~*"""*I"

. _ _ _ _ _ _ ,,e,,,,e,.

l v

e + .

l

4. Small 3reak in Oconee Pressurizer Steam Space Without Feeduster The discussion of system response in sections 2 and 3 was based on one operating RPI pump. Even with a single active failure, Oconee will have two pumps avail-t able within 10 ninutes following ESTAS actuation. The Oconee HPI pumps are approximately 10% lower in capacity than the generic HPI capacity used in sec-tions 2 and 3. For the first 250 seconds up to ESFAS action system responsa vill be identical. Following that, for 10 minutes, the Oconee systa= liquid inventory will lag the generic calculation slightly (-4 effect - 70 fc3 at 950 seconds). At 950 seconds Oconee will establish two HPI pu=ps or about l 180% of the injection used in the generic evaluation. Therefore, Oconee will achieve long tem ecoling much earlier than the generic evaluation and the

~ remainder of that evaluation will bound the results for Ocones. .

8 D

D 1

r 1

i '

i i

1 l

l

' l

...-....--.4,.*_-. . - . .

1 s .

._).

l'.

Figure System Noding

.-.o .

g ...____;._____ .,- ,

g

.t q) el f

h g .i a = .

.. . _ g T

-) . r 11#

. t',,nJ ,,,

~ - ~~ -

4 as S .

is ,

0

= *h .

g_ si >

m Ru

<< cc <

. ==

a) 6

. i i

9 . .

& $g =. -

mm e-j ,, l &

=

t. l -

e I' r <G @ .

- - , i. ,

o

~

.O .

=

e -

g "

e (ts) ~

st.cr

- Er --. -

, = d m m

v n*d  %. _ n3 v pa

@ u.u .. a r.. - r

. , , ca -

c.,

W m t . , .

g - - c.-

e . t...a

..s.

r..a, s

v.. ..

. e. .

~~

Fede h . Tlentif f estf ee. .

?sth No. . .

O. Ydenefffes-d.ee

. .-it . - - . -

. . . . .._ =

    • *- 7
  • 1 . Downsamer . 142 - . Care
  • 2 Imvsr 71anaz , .

3,4,18.19. Int; Les ?!pt=g 3.23,40s42 Eat Lag. Op;er -

3 Core -

4,14 Ese Les Pipi=g 4.11

  • Sc Tubes 3.15 sc & C;per Eend 7,22 - -

SC Lower 2 2d 6.16 Stea= cenera:ar Tubes .- 8 Care 1 7; ass 7.17 Saccadary. 5 . 3.13.24 Cold Leg 71;1==

3,18 SC Lwer Head 10.14.25 7ss:ps 9.11.19 Cold Les Fi;1:3 21,12.13.11.25.07 Cold Le: 71;i=g

.10.12. 3 Cold Lag 71;1:: 17,31 Downcezar 1FI r 13 Upper Dcvecamer .23 .

21 , Pressurimer ., 28.23 .3

  • Upper Oevuce=ar .

22 contai::=ent _.

30 .. --

' ~ ~

Trassuri:er ~

.23 typer Fle=:ma 32 -

Yest valv.

. 24 s 2S 54 UFf4r Head 33.3% .$.c. . teals & Za:urs F.s'.3 8.. -- 35,36 "

Eri ' -- . . .

37 Costala=est spr:7s 41,43 S G upper geas {

.=n

= _._.

  • .'e

, m

e

~_

g f . .S g

. -a

==

  • . g

. . ..S O

g CO 4 .

g e

.gs be 3 .

a

=

e

  • d e N O

l*

a. . .

.. c. x g

b.

N- LAJ O

8 O 2.".. -- -

> 4

~

. l "*

. .. g.

. b.

  • 3 n.4 g

.a.

. Cf3 4

z C

o

. a.

M 6e g g

. . 4 t.: J ,

f c 1 5- C l s .

cr g c,

~

  • l  !  !

I

= a 5 E a

. a. g.

g'

~

l s r ~;

~

- .: 2 -

j C.g DIX) FISd M 3yd =

, . .- .'.' . " - ~. - @m . ..

'! cn c-

- r g

.= -

__ ...-.......=.a..

. ,1 . .

t- . . _ . - -

9 .a*

, =* a .. , . -% .

w. .

i .,

i 6 .

1

{ . . *

  • 7 .

.uc .

E.

1 t

. ..R

~

I

..g

..IS E.

- ..R I

5 N

~

i . . .. I

..e 8 ' -

B .

98 o

Eo I,t

\

5

.4 .x m

A a .

u. CD M

e *

  • 7 M

w

. = ..R

.a e

b n

a e -

a

= rn

.te EB z a

m.

a c

.. C l

=.

  • E z

tu A c O

]  % f

- g o c_ .

I @ $ $ $ $ $

a @ @

e .

= = = s e .e 4 -

m m

i . C.2 0tX) E.L3 3WO70A gin 0II v

  • m

. . c t

z -

4

. _ _ _ . _ _ _ . _ , _ _ _ _ .._ _ _ . . . _ _ _ _ . _ . . , _ .g

. ';~ .

s . . . _ ..

. t g

..S

. 8

..s

. 5

. ..S

.I H . I.

. 14 W

_8 o .- ..R

> c4 o

= x a-

.w n - fr,

.a w u a

.a A r.

o -

- . M C

.a a A tu e

Z t A ..*W l .

- w m3 g

a u

= en u Z

-. D.

l C

.. . o*

S

\

  • w c_

r

.If w '

w .

e u

$. c .-

a =

5 5 8 8 8 8 8 E a 2 e s = * *

  • o r co

. t*ZDIX) Eld in10A 0I/10I1

  • D

. . . o u

-s .. . .

i. . ,r .

+ ._ . ....

~~

.I'.

>' . * ... I u ..  ; A J.u. . . ..w '

r, l 5 a ' ..

g=

il Figure 5. Reactor Vessel Hixture lleight . ,

  • l 3  ;, a 1.05 in. Break in Pressuriser ** .

Stesia Space ,

l i

1

~

c. .

l ,! ' . i f.En < -

'. l

. . i I~ '

i' .t . t. '

I..' L1hn .

t ,

l 4 s .i - 1 -

i i 15.5m .

! i i

j (L3 hn - *+

  • l s La e nu i ' g g .6n - .
o m

I

. i. .

.' 8_

j- a .

jf.lka -

- -s>

A l~

/7.En -

y..

. l  ;

I. Ii .

g'  :  :  : .  :  :  :' ' .

i'Ij y.En  :  :  : ao.cos c.i. coa so.cos g .

.l . so.noa vs.oon  ::o.cos as. coa .

a.nos s.cos io. coa is.cos  ! ' '

S .!

!; ; * .. ..... T it1E( X10 ** ) 2 . . . .

1 00NS '

.', 1:

. MP3,143M PORV OPEN .

W ..

l1 3  ;

l -. g

. - . . . .. ~ .: a _ _ . _ .

.^

. . . 7

-2 ' - -

1. i.1 5

.3 E.

..S

. I.

.R

- OF)

. 3 E e . g. -

  • g .

S .

C E -

I:xa:: LU m

>o

$W n U3

  • w

... . . k

. .. ... ._ .... . .._ .. _ _ . . _ ... . - . . . . . _ . . _ . . _ . _ . . _ . . . . , . . w Z a .

3. -

be

.R ~

d .

.- . .mI.

. ~

n.s .

.Da .. c3

" z C

l o

.. c.

c_

r E

u:

u. r I C Z

8 8 8 q g g g

!! = =

=

. a. a .

- - . o r co C.z OIX) Eid 3WnTA OIn0Il v en

. c.

r -

e *

- .~ . . _ _ . _ _ _ _ . _ .

. : . ___ _._ ] ,

......m-----

j . .. .:

j 8 ac. '

E

. . g.

.l.E.

m.

/ E -

O

.. o.

W o

5

. . I.

tr-i o

~

l

. R ."

c u .

= cs o .

,- e X

_ *.e 8- ie i

. m ~d S O g the us

'"- a t

. = - w x:

4 x

u

. g.--

3 3 -

g

= . a.

)

u m

=

cn

~* Z

    • l .

c ,

o.

2 '

c.

I I in

. v 6

LL t E c Z

2 . k h h

~

! 2 3 = 4 4 .; d- r --

m. -

C.301XI E.L3 IWnT.A CICOI'l

  • I -

l m i CL l E i

- 1 s - - .

3 .

- . :. l t

l i

3 . -P '

s <* .

  • I ' *

- - - - - . '. 7 7,._ ___ _ _ . .

}

. = . , . _ =

I. .

.. . . . . . .:. . . . . . - 1 n

. s-

. . 3

. . .n.

O.

a

. n.

--.. c

n. -

. R ._

a .

o

. x

.a .

.g -

.u rm

> .S O

.- a ca M

i

. a* >=

e4 a .a m

3 z

. C

=,<.

..s C.

e.

m

a. c= .-

Q z

J Q'

8 8

8 8 8 8 8 a

. z m

j c.,arx) su an ca cInon I i m

, . c_

=

'J

. - I.

\

~ . . . .

_.___-. _== .-

_ ,=. =___ .

l

)

. . . . . .. a .. ._

. . ..S

. g s

4

. .n.

s M.

N  %

O m .

. .' - V,'

... a

~

> c_

o e ..

n=x u e . - *

(-m O N cJ n, - ca O

  • l.e > = ,

g, .

. a. -

.- =

3

  • Cr*

O-  !

OM

, 8 O 2 b.e .

m Z

m" c

..a.

_- C.

a.

L.C f n

' ~

- u .

. s c. -

- Z 5 8 5 5 I a. a. g -

_.5

- _ _. . z

, m

C.3 OIX3 E.L3 3Wn10A gin 0Il v

?

i cn

. . a.

z

- ... .. . . . _ . .s t ,

a -

  • . c. . .

.3 i t.---..=- - - - - - .

o a.

. . . _ _ _ - - - ..-n....

---.-._-.._....____.7 * * * * * * ~ ~ - ~ ~ * - e e.- - . _ , , , ,,

- . I, f j. . ., ,  :

~

l

=-

~

s.

  • T w

- g .

- e i l-7

  • 0 0

0

. 0

- 5 0

" . 0 0

. 5 4

0

' 0

. . 0

a. 4 0

0 0

E e .

m a i

T . 8 4

  • 0 . 1

. .*  : 0S 1

a 2 V ,

e . )

m '

u 8 l

E o 00 0 1 V ,

d 5 X 2l J i E u

q M 0 N_

I

. i ,

. T _

L s . 0 0 _

g -

8 _

e - .  :

0 L 2 _

t l

o I

0 0

. 0

~.

7  :

5 e 1 r

u g ,

S

u. 1 N 8

F .

0 0 H o.

0 l

1

. 0 0 N

..- . r  :

0 S

E P

O V

0 R ,

O 0

0

. , n o a 0 P

, o a o m n o 0 o u o

, c. c. c. o.

0 o x n

- o o. 0 o.

s ,

m o s 3 o o o

t. o.
z. s. F t . 3 s t o o N .

. 3

.. :.osx- l yda> g.nRJ 4

i

. 1 3

r

- * . P M .

s.

I . , ,* -' .

n..

i. .' .

. I  !,l

,1 l? .i .,l,Isi j, I 4J

!. 1i ;' ,Il

' , l J

._ =_ _

~

. v. <. .

v

. a

. . . s.

. . g

. . ..a

.. n

. .f s .

. . n.

s. .. N
a.
  • Au .-

~. ,

c'

- . C.

.a . .

.x s ._ - La

gu a

= W

, - a a

g

n. y z

. ..a ..

g .

.j

~ ..

f.f3 g

z e

2 O.

a_.

6 m

n m

! l.L T I -

C

. h. 2 8 8 a 8 a. 's. g

-=-

.8 , =

= a. .

, o r

'. ces

! . I. DIXJ E.L4 En10A GIr.cIl v

~

s s . L*O

+ * . C E *

( I

  • r l : *
  • m -

, . ., . y ..

g -- .

,-A.-... .

[ ..

...- ~ ~ n -_

~ - - - - - .-

._.~ ..

)

., y, ,

- . . . . __ i

  • a, I.

~ ..g I

. ..g I

. .E g

= .-

E.

_= .

14

= .

M O

z . ,--*

e.4 . .<-

= .

.. "i .~

> c -

o . -

.o E -.x lLl m

. .g u

.o M

- O c

i es .

Z i e.

. 5. E Em .R u- .

3 F. a-3w"

..B a c< . .

~

pt o .

  • en.,

b.e 3 .L

= g c i;: .

.e o c_

g _-

e v

, t g c -,

z E  ! 5 5 E. $. $. $. $. ~

5  :  !! o e = - = a r

- - co . . . .

E.L:1 ?,.m0A 0I0011 - * --

C.2OIX) -

CO C

. E l

l I g

.

  • a.* ,

a

  • * - s * *

. . , p 1

1 .

l

= - - - . s. _..=-

l . - - - - - _ _ _ _

. - . . . . . a .+ . .: .

, ~.

. ' .t 0 g

'~ i Figure 13. Secondary Side Steam Pressure . ,

l , ,

- t s.

t3.033 < e 1:

ll .

12.623- * .

{, .

d  !!.000 - . .

O

~ .

x .

ll.6fD - .

s.

'g s

\ b

, . t l .000 -

  • l m

u)

Q- 10.LlD - .

i to I' m .

)

u) ,

e i u) j'd 10.000 -

a.

f .

9.SfD

- a: -

8 9.0fD  :  :  :  :  :  :  :  :  :

  • 0.000 6.000 10.000 15.000 20.000 23.000 E 000 40 000 45.000 60.000 1

TlHE ISEC)(X10 *) *30.000 MP3143N NOF 1415HP 1 09NS ,

=

ad

) .

. sol 7 . .

_. . - o l'

1 s

a ,I

.. e p D D

- D 7

i

, ., .y. -

.aw a, - -

1

. ,, i .

.i ,

t s

i

.j.

w

}  ;. l

.. g. 6 j

- . p 3

. ..'.. _L.. l.

I'

. t .' -

.. . _L . L. 1 1

. .\  : **

l i..._ t.

. 9 l .._ .

i I l

i. j i

I -

l. , -

. 1

.:.. I 1 (-

., . i

_. l i t

. ... . + .  ;

i i i  ! 4 -

=

. 1 n.

... . .s

. _i . . .. . . .

t

..t.. S, .

! j 'l t N

e -

e i.

[.

2. .

4..... . :. . . . .;i .. ! '

.N 6

. j e .,...

. . . . .. .. 1

-t

s  !

w

. . jn , .

t._ . .;

, j

. __ i L _

I 1

4 .

. -..-...s e .i . _ _. . ,L . ._ . _ :. .,

0 6*

1 j

I n  !

e a

. . .i . _ . .. . . . .

,I - _ .

_f:.

.s

. . . j s

.  ! .1 -

ms -

es s

- l i

M [l_;;

' . . L -

sr l',. "l.:1. .-

- t. . . . . .

. l

...f

. . 1, l t

! ( '

__ E .

. . :.r _ . = - _ ...;_. l u _ ,

g t O -

I .* ;d

- _ i_. .;._ . . . :j .

p,. - .

  • _ . I.'

1 I

s

?. l,

  • f.
  • V.. : N i 3 )';_;  ;!

.;- t.!  :.- i

,6 o .- _

_.;.;; J. -

b .

1

.j . , f  :

M ,

. i

  • .:: 0
  • o- . 8

. . . ' , -g .

t.

_l.

E s

{ . ---,

n 1

., '._. j-_. . ,

  • :. ! di.1;. H..

- l

l . .

1 . - .

i

.c - ' -

' - 1- i

_ . ._. v. .

_. - . I

. .l 1 l

....  :.[i. . ! -

. . :E.. . l - . -

4 ...

.- . . . , , , . .. .' .l h"

.l l

_f._ _ . ,  ;

l; . fa.

, 1 -

1.

I. '. - ' 1 .'. ['.

.l.

L. . .' i

. .J. l. ..  ;! . .l  ;

i _-
  • c. L  : _

.f I ,

, .j' ~ .

] .- .I

_...,,,,,LO. l a -.

1. .

t j j ,

L, . :.:  ;- f Ch

. 6...

s

.: ---,[.. .. l .

.t.g .

l i

. t t M _ _ _ _ c ,

'.7 4 :. - 1:.

i-

_ l. ; :._. . \ -

' n.. .

. j_ :p .1 -

._ . _g ..

. . .m . 1 7:..

  • q r. 8

]

    • .- t

..&. =. :.- .!

.. . . :) . _..._ :. ..;

1 .t.. . * - ., .  : *

.(. ..e

\ .}. )

\ . * - t.

l . .g .

.~l . .

l. t% ,

3 . .

[ 1 'y ,

1

.._:._ g_.

L .7 1- l .... .

i 4 -1. .I  ;*

A l

I .

.f.,..

v,

, _ ; yg,_ .. . l
l. .

l' ..._.,) . *

..l

+ _

  • I

! , [ .

i_ ., .1 _. . L' . . _, . . .

. ..:. _7 r.-

I .

4 H N O . ,..

l, M N o I

{

. _ ... . . . Po2// p,uoy 4

.)->m u J auo'. . - .

  • ._1 :

i

1. ,. . ... , , i

. . ~

') . , .l

. .. c. . .. .

f k

-s

.. E.

g

.. S N

3 O

. .k cu g -

R.e. .

> e e . -

gg w 3

e .

gu c C

, 18 o _

g . . g -

7

- g a

O . ..O

, a v

M O o

" 3 s

n M ,

e m u -

z g -

g c

n. .

o o.

\

ao_ 1 a

8 S

. u_

o

- C_

g -

k

k. k.

_o k. k. k.  !- !o r 4

m

.] ( ..,0 tX ) Sid 3WO DA gin 3I'l Z

' ~

m I. i E l . . . . .- . - . . . . .

)

l

Docket No. 50-289 (Restart)

Licensee's Exhibit N3.

,\ I g DCCMsygg 03ne -

y y- SEp g fh g N YDE.ven

/, N

" Auxiliary Feedwater Flow Required for LOCA," Supplement 3 to the May 7, 1979 Small Break Analyses (May 24, 1979)

DUPLICATE DOCUMENT f Entire document previously entered into system unde r: ,

I ANO 7 M 5 5[ d 5 8 &

No. of  :

. _ . . - .- - - - . - - - - - - - - - - - -