ML13066A311
| ML13066A311 | |
| Person / Time | |
|---|---|
| Site: | Oconee |
| Issue date: | 02/03/2010 |
| From: | Ferrante F NRC/NRR/DRA/APOB |
| To: | Lois James Office of Nuclear Reactor Regulation |
| References | |
| FOIA/PA-2012-0325 | |
| Download: ML13066A311 (61) | |
Text
Mitman, JeffreyI From: Ferrante, Fernando & -
Sent: Wednesday, February 03, 2010 3:20 PM To: James, Lois Cc: Mitman, Jeffrey
Subject:
Sensitivity Analysis Attachments: Memo for the Sensitivity Analysis.doc; sensitivity summary Rev.4.doc; Breach Parameter Matrix.xls Lois, Per our discussion, please find attached.
Thank you, Fernando Ferrante, Ph.D.
Office of Nuclear Reactor Regulation (NRR)
Division of Risk Assessment (DRA)
-Operational Support and Maintenance Branch (APOB)
\ Mail Stop: 0-10C15 Phone: 301-415-8385 Fax: 301-415-3577 1
Subject:
NRR/DRAIAPOB Preliminary Analysis of 1D dam breach modeling runs for the flooding evaluation of the Oconee Nuclear Station (ONS) due to an upstream dam failure
Dear XXXXXXXXX,
Please find attached a preliminary analysis developed by the Office of Nuclear Reactor Regulation, Division of Risk Assessment, PRA Operational Support Branch (NRR/DRAIAPOB) in order to perform an initial evaluation of the 101 runs of a 1 D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site.
This preliminary analysis provides insights into the data provided without the benefit of a detailed explanation or key to the results presented. An Excel spreadsheet is attached to this document that presents the results in a more amenable form for review. The results of this effort are presented to you as a potential aid in the on-going discussions with the licensee regarding the sensitivity analysis.
Sincerely, XXXXXXXXX
GENERAL COMMENT
S
" The comments and results presented below were derived from an Excel spreadsheet (see attached) that contains 101 runs of a 1D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site (i.e., Jocassee Dam).
- Explanations and justifications for some of the variation of input parameters are provided in attachments to the November 30, 2009, Duke Energy letter to the NRC, which are a response to a request from the NRC on April 30, 2009. Previous discussions of the parameters used for the sensitivity study took place on May 11, 2009 (as described in a November 10, 2009 summary) and August 27, 2009 (presentation slides available).
" The spreadsheet obtained from the licensee was particularly challenging to analyze in terms of insights or the quality of the sensitivity performed. The input and output data was reorganized in order to allow for a coherent analysis of any possible insights (also attached).
COMMENTS ON INPUT PARAMETERS
- There are a total of 22 input parameters presented in the sensitivity data: 5 Manning's roughness coefficients, 4 time to failure parameters, 3 modeling parameters, and 9 geometric parameters (see attachment A for full list). The output is represented by 4 flood elevations values at 3 selected locations (Keowee Dam, Oconee Intake Dike, and World of Energy Swale).
" Specific discrete values have been used for each parameter (mentioned in interactions between NRC and Duke Energy). For example, for a specific time to failure (Jocassee Dam Failure Time),
there are 7 potential values listed (i.e., 1.0, 2.0, 2.6, 2.8, 3.0, 4.0, and 5.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />) as input.
However, for most inputs, there are either 2 or 3 possible values presented. A subset of all possible combinations for the potential parameters indicated was used for a total of 101 runs resulting in flood elevations at the selected site locations mentioned above.
- Only the 1 st run had a value of the Jocassee Reservoir Elevation different than 1110 feet (i.e.,
1108 feet was used). It most likely appears that this value was used to calibrate the updated model with the results used for the FERC 1992 Inundation Study. Additional parameters not varied in the analysis are mentioned in the May 11, 2009, presentation by the licensee.
" The input parameter describing Keowee Breach Side Slopes is described with three possibilities:
(1:1,1:1), (1.5:1,1.5:1), and (3.45:1, 2:03:1). However, side slopes of (1.5:1, 1.5:1) were not used in any of the 101 runs.
- As mentioned by the licensee, a specific subset of 3 combinations from the listed potential values was used in the inputs for the Manning's roughness coefficients (see attachment B for the full list): 0.02, 0.025, 0.035 and 0.07. The Manning's number coefficient for the Reservoir Tributaries upstream of the Keowee Dam was maintained constant at 0.035 for all runs (i.e., no sensitivity appears to have been done for this parameter).
1
/EýN$TJW_4S /RATN>ro R ICRLS
" Three modeling parameters inputs were considered: inclusion/exclusion of saddle dike failures, inclusion/exclusion of bypass flow, and Jocassee Dam Failure Progression Type (i.e., linear or sine wave).
" The following pairs of runs exhibit repeated inputs resulting in the same outputs: 7 & 34, 12 & 36, and 63 & 76. It is unclear why these repetitions were included in the analysis since it does not appear that a probabilistic sampling of input parameters was done.
- There are two sets of runs (59 & 60, and 64 & 66 & 67) that have equivalent inputs and different outputs. Since there are no other parameters listed and the physical model used is assumed to be deterministic, reasons for the discrepancies may be due to (i) typo, (ii) error in the transcription of the results, (iii) additional input parameters affecting the output not shown, or (iv) problems with the deterministic model. The discrepancies in output between this subset are not significant for the most part (i.e., not more than a few decimal places) indicating possible numerical approximations in the output. However, in the case of runs 59 & 60, the difference in the Keowee Tailrace Elevation flood depth is > 3 feet.
- If the input repetitions in the listed runs mentioned above were to be resolved, there would be 95 individual runs with different inputs, instead of the 101 runs presented.
COMMENTS ON OUTPUT PARAMETERS
" Considering the 95 runs without repetitions, the cumulative distributions derived for each output parameter are shown in Attachment B, along with indications for the mean, 90th interval, and a normal distribution fit to the results. A comparison between the three groups of Manning's coefficients described above is also presented. To add perspective to the results, it should be considered that the height above mean sea level for (i) Jocassee Dam is 1125 feet, (ii) for Keowee Dam is 815 feet, and (iii) for the ONS Intake Dike is 815 feet. Additionally, the ONS yard elevation is at 796 feet above mean sea level.
- Not all runs resulted in flooding elevation values at the World of Energy Swale. The first 76 runs resulted in "n/a" entries at this site location, possibly because the analysis does not indicate a significant elevation at this location using this subset of input parameters.
- The variation of the output parameters versus the input parameters has been plotted using a box and whiskers representation. Description from MATLAB Manual: "The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Notches graph a robust estimate of the uncertaintyabout the means for box-to-box comparison. Outliers are data with values beyond the ends of the whiskers", (indicated as '+'). "If there is no data outside the whisker, a dot is placed at the bottom whisker."
" Results are shown for all the runs and major subsets of runs (i.e., by Manning's coefficient subsets) including all non-repeated inputs (except the 1108 feet Jocassee Reservoir Elevation calibrations run. For the runs where a different output is obtained with equal input parameters, the larger output values are used.
- It is very important to note that, without further clarification at this point, the variability in the input parameters only reflects the choice of values made by the licensee, since it is unclear whether 2
the variation is a reflection of known uncertainties in the values or recalibration of the sensitivity analysis based on initial results. Additionally, because multiple input parameters are modified between runs, care needs to be exercised in relating changes between a single input parameter and an output parameter.
The maximum elevation values obtained from the 101 runs are: (i) 847.5 feet at Keowee Headwater (Run 54), (ii) 811 feet at Keowee Tailrace (Run 33), (iii) 830.4 feet at ONS Intake Dike Headwater (Run 80), and 817 feet at World of Energy Swale (Runs 81 and 82). See Attachment B for the corresponding input values. However, it is unclear from the observed data whether the true bounding maximum values could be established from this analysis based on the most conservative input parameter subset already limited by the licensee's chosen input values.
For the 95 runs, it is challenging to establish clear trends between the output/input results (see Attachment B). However, some conclusions can be derived:
" The group 1 subset of Manning's coefficients (all values equal to 0.035) causes smaller outputs of the ONS Intake Dike Headwater Elevation and higher results for the Keowee Tailrace Elevation. The smaller subset of results for the Keowee Headwater Elevation does not appear to show statistically significant differences between the three Manning's coefficient groups.
o For the Keowee Headwater Elevation RKeoweeH:
R H
" Increases in the RKeowH output results are observed from increases in Keowee Overtopping Trigger parameter, Jocassee Piping Elevation, and the use of sine wave Jocassee Failure Progression versus a linear model.
" Increases in RKeoweeH are observed with lower values of the Jocassee Breach Bottom Width and when a value of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is used for Jocassee Dam Failure Time. A value of 600 feet for the Jocassee Breach Bottom Width also results in H
higher values for RKeowee , although very few runs were made with larger widths of 625 feet and 650 feet to effectively establish its effects beyond 600 feet.
" For the Keowee Tailrace Elevation RKeoweeT:
- An increase in RKeoweeT values is observed with a decrease in Little River and Keowee Dam Failure Times, although this conclusion is cannot be conclusively extended to the other two time parameters.
" Exclusion of Saddle Dam failures in the model results in a significant magnitude increase in elevation values
- An increase in values of RKeowee T
is observed with decreasing Keowee Overtopping Trigger Parameter, Jocassee Piping Elevation, and a Jocassee Side Slope configuration of 1:1 for both breach sides.
" For the ONS Intake Dike Headwater Elevation Rintake DikeH An increase results from decreasing Jocassee Dam Failure Time. It is unclear that the remaining time parameters follow this trend, it seems in fact that larger elevations result from an increase in failure time for Little River, ONS Intake Dike, and Keowee.
3
" Inclusion of Saddle Dam failures in the model results in a increase in elevation values
" An increase in output values results in an increase in Jocassee Piping Elevation o For the World of Energy Swale Elevation RWES:
- An increase in the output results occurs from an increase in Little River and ONS Intake Canal Dike failure times, although it should be noted that a limited subset of values was produced for this output parameter
- For Group 1 Manning's coefficient input parameters, the most significant contributors to an increase in RKeoweeH appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Jocassee Piping Elevation (see Attachment Cl for output variation in other parameters).
" For Group 2 Manning's R H coefficient input parameters, the most significant contributors to an increase in RKeowee appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Keowee Overtopping Trigger Elevation (see Attachment C2 for output variation in other parameters).
- For Group 3 Manning's coefficient input parameters, the most significant contributor to an increase in RKeowee T , appears to the exclusion of Saddle Dam failures. For other parameters, few samples were used to assess the sensitivity to various input values (see Attachment C3 for output variation in other parameters).
RECOMMENDATIONS FROM LITERATURE The following excerpts were obtained from reports and papers discussing dam breach parameter modeling and guidance related to sensitivity analysis associated with flooding analysis due to dam failures.
Federal Emergency Management Agency, "The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams", Workshop Report, November 14-15, 2001, in Davis, California.
- "The Commission's guidelines for breach parameters is given in Table 1 of Appendix A of Chapter 2. In general, the average breach width should be between 2 and 4 times the height of the dam for earth or rock fill dams..." "Failure times range from 0.1 to 1.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> for earth or rock fill dams, and from 0.1 to 0.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> for gravity dams."
" "Because of the uncertainty of breaches, the consultant should perform a sensitivity analysis of these parameters. For projects with large reservoirs, conservative breach parameters should be adopted since the rate of draw down of the reservoir during a breach is significantly slower than it is for projects with smaller reservoirs."
- "Common Modeling Problems
- 1. Failure to model the entire reservoir. If dynamic routing of the reservoir stead of level pool routing is done, the consultant needs to make sure the cross-sections extend upstream of the reservoir to the point where backwater effects no longer exist. The shape of the cross-sections also needs to be examined to make sure all the storage between the cross-sections is accounted for. In some cases, the consultant extended the cross-sections only part way 4
/SEN-SITkl )Nf j~&AI ý B C into the reservoir, effectively negating the storage upstream that could be released through a breach.
- 2. No sensitivity studies. Although the selected breach width may be at the conservative end of the accepted range given in our criteria, a larger breach width may result in a substantially higher incremental rise downstream. If the incremental rise is highly sensitive to the breach width, then this needs to be considered when selecting the breach width.
- 3. Improper use of the Manning's n values. The NWS DAMBRK program requires the user to provide the composite Manning's n values at each elevation. Therefore, for out-of-bank flood elevations the consultant needs to compute the composite Manning's n value based on the weighted wetted perimeter. In many cases, the consultant will select too high of a Manning's value for the out-of-bank elevations. Although not a major factor, this can effect the results in some analysis.
- 4. Improper spillway rating curve. In some cases, the reservoir was allowed to draw down during the beginning of the routing because the consultant did not adjust the rating curve for when the gates are closed to maintain the normal pool level. In other cases, the consultant adjusted the rating curve to correct this, but the simulation then appeared as though the licensee closed all the gates instantaneously when the reservoir receded below the normal maximum pool after the breach developed."
Wahl, T., "Prediction of Embankment Dam Breach Parameters". Dam Safety Research Report DSO 004, US Department of Interior, Bureau of Reclamation, Dam Safety Office, July 1998
" The importance of different parameters varies with reservoir size. In large reservoirs, the peak discharge occurs when the breach reaches its maximum depth and width. Changes in reservoir head are relatively slight during the breach formation period. In these cases, accurate prediction of breach geometry is most critical."
" "The ultimate breach width and the rate of breach width expansion can dramatically affect the peak flowrate and resulting inundation levels downstream from the dam."
" "Accurately predicting the breach side slope angles is generally of secondary importance to predicting the breach width and depth."
Wahl, T., "Uncertainty of Predictions of Embankment Dam Breach Parameters", Journal of Hydraulic Engineering, Vol. 130, No. 5, May 2004
"'The uncertainties of predictions of breach width, failure time, and peak outflow are large for all methods, and thus it may be worthwhile to incorporate uncertainty analysis results into future risk assessment studies when predicting breach parameters using these methods."
5
ER OR AS SE INF OMA TIOT ATTACHMENT A 6
OVERALL OUTPUT PARAMETERS RKee H= Keowee Headwater Elevation (feet)
RKeoweeT = Keowee Tailrace Elevation (feet)
H Rintake Dike = ONS Intake Dike Headwater Elevation (feet)
RW~s = World of Energy Swale Elevation (feet)
OVERALL INPUT PARAMETERS Manning's number NcD/s = Keowee Downstream Channel = [0.02, 0.025, 0.035]
NIT = Keowee Downstream Immediate Tailrace = [0.035, 0.07]
NRTu/s = Keowee Upstream Reservoir Tributaries = [0.035]1 'Constant in all runs Ncu/s = Keowee Upstream Reservoir Channel = [0.02, 0.025, 0.035]
N1Tuls = Keowee Upstream Immediate Tailrace [0.035, 0.07]
Time to Failure TLittle River = Little River Dam Failure Time (hours) = [1.0, 1.6, 1.9, 2.4, 5.0]
Tintake Dike = ONS Intake Canal Dike (hours) = [0.8, 0.9, 1.0, 1.2, 2.0]
TKeowee = Keowee Dam Failure Time (hours) = [2.0, 2.4, 2.8, 4.0]
Tjocassee = Jocassee Dam Failure Time (hours) = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
Modeling WBF = With Bypass Flow and Saddle Dam Failure = [Yes, No]
WSD = With Bypass Flow and Saddle Dam Failure = [Yes, No]
FP = Jocassee Failure Progression = [linear, sine wave]
Geometric SKeowee = Keowee Side Slopes = [(1:1,1:1), (1.5:1,1.5:1)2, (3.45:1, 22:03:1)]
Not used on any runs BKeoweew = Keowee Breach Bottom Width (feet) = [500, 650]
HKeoweeB = Keowee Breach Bottom Elevation (feet) = [670, 700]
OTKeowee = Keowee Overtopping Trigger (feet) = [815.5, 817]
Socassee= Jocassee Side Slopes = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1),
(1.55:1,0.7:1)]
Bjocasseew = Jocassee Breach Bottom Width (feet) = [250, 425, 500, 600, 625, 650]
Hjocassee B= Jocassee Breach Bottom Elevation (feet) = [750, 800, 825, 850]
Jocassee = Jocassee Piping Elevation (feet) = [940, 1020]
Jocassee = Jocassee Reservoir Elevation (feet) = [1108, 1110]
7
\,-/ý~~IITv/INFO TI -ýNO RPUBýLR ýE SUBSET RUNES GROUP 1 Fixed Manning's number Ncu'o = 0.035 Geometric Parameters SKewee = (1:1,1:1 ), HjocasseR = 1110 feet Constant Manning's number NcD/s = NITD/s = NRTu/s = Ncu/s = NITu/s= 0.035 Time to failure TLiftle River = TIntake Dike = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, TKeowee = 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> Geometric Parameters BKoweeW = 500 feet, HKeowCeB = 670 feet Varying WBF = [Yes, No],
WSD = [Yes, No],
OTKeowee = [815.5, 817],
FP = [linear, sine wave],
TjosPee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
HjocasseeP = [940, 1020],
Sjocasee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],
Bjocasseew = [250, 425, 500, 600, 625, 650],
Hjocassee B = [750, 800, 825, 850]
[Values in red were not used in this subset]
8
-- 'ýNS VEFO- F PUB C E ýASE GROUP 2 Fixed Manning's number NcDIs = 0.025 Geometric Parameters SKeowee = (1:1,1:1), BKeoweew = 500 feet, Constant Manning's number NITD/s = 0.07, NRTU/S = 0.035, Ncu/s = 0.025, NITU/s= 0.07 Geometric Parameters OTKeowee = 817 feet, Hjocassee g 800 feet, Hj 0,.sse = 1110 feet, FP = sine wave, Jocasseep= 1020 feet Modeling Parameters WBF = No, Varyj.g TLiftle River= [1.0, 1.6, 1.9, 2.4, 5.0]
TIntake Dike = [0.8, 0.9, 1.0, 1.2, 2.0]
WSD = [Yes, No],
TKeowee = [2.0, 2.4, 2.8, 4.0]
HKeo.B = [670, 700]
Tjocssee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
Sjoassee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],
Bjocasseew = [250, 425, 500, 600, 625, 650]
[Values in red were not used in this subset]
9
GROUP 3 Fixed Manning's number NcD 0 s = 0.020 Constant Manning's number NITDs = 0.07, NRTu/s = 0.035, Ncu 0 s = 0.020, NITU/s= 0.07 Geometric Parameters TLiftie River = TIntake Dike = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, TKeowee = 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, SKeowee = (1:1,1:1), BKeoweew = 500 feet, Hocssee B = 800 feet, HJocsseR = 1110 feet, HKeOWeeB = 670 feet Varvina WBF = [Yes, No],
WSD = [Yes, No],
OTKeowee = [815.5, 817],
FP = [linear, sine wave],
T jo.se = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
HKeoweeB = [670, 700]
HJocassee' = [940, 1020],
Sjocassee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],
Bjocasseew = [250, 425, 500, 600, 625, 650],
[Values in red were not used in this subset]
10
-SZNSITIV /NF MA NT R L Eý ATTACHMENT B 11
/ELý -OT FO ýRE INPUT PARAMETERS RESULTING IN MAXIMUM KEOWEE HEADWATER ELEVATION (849.7 FT)
KeoweeLittle River Manning's Keowee Parameters numberParameters INPUT PARAMETERS RESULTING IN M Keowee DIS Little River Manning's Dam number Parameters WORLD OF ENERGY SWALE ELEVATION 12
OVERALL RESULTS 0.8 .s c T H WE
. Keowee Intake Dike 0.2 RH H
RKec 780 800 820 84C)
Elevation (feet)
CDF O CDF Meana Mean 0 I- Mean Fit Normal 0.5 - Normal Fit th th 5 th, 9 th 5 5 0.6 0,4 0.61 70 0.4 EE 13
COMPARISON BETWEEN OUTPUT RESULTS FOR GROUPS 1, 2, AND 3 GROUP 1 GROUP 1
__ GROUP 2 GROUP 2 0.8- GROUP 3 0.8 GROUP 3 C
0 C 0.6 0.6
- 5 i5 10.4 .20.4 E E 0.2 0.2 760 780 800 820 60 830 84 RTKeowee = Keowee Tailrace Elevation (feet) RHKeowee = Keowee Hea 0.8 j
.0 0.6 a)
_T0.4
- 3 E
0 915 820 825 830 835 R Intake Dike D = ONS Intake Dike Headwater Elevation (feet) 14
OVERALL VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 850ý 850-0 0
_ 845 _ 845 U 840 840 3 835 I1 0 II 835-0 830* 830 1 1.6 1.9 2.4 5 0.8 0.9 1 1.2 2 TLittle River' Little River Dam Failure Time (hours) Tintake Dike' ONS Intake Canal Dike (hours)
Q 850 &
850 0 0 (U (U
> 8451,> 4 ww M
~840- _. 840-II S835r ~835- II -
830U 830i 2 2.4 2.8 4 1 2 2.6 2.8 3 4 5 TKeowee, Keowee Dam Failure Time (hours) Tjocassee, Jocassee Dam Failure Time (hours) 15
0 RHHK = Keowee Headwater Elevation (feet) Q KeowOe
-o
~1 Cd)
- 0 m
z H
RH = Keowee Headwater Elevation (feet) -
Keowee
-n 0*
0 CD T1) z
-n H RH o = Keowee Headwater Elevation (feet)
KOoweD -n, 0
RO I
0 cn m
I-0.
CD
GNoSeI (Keowee P e Geometric Parameters (Keowee) 850 ' 850 C
84 0 (u 845
_*840 3:835 0
S8.35 (D
n- -r)
I8
'830 1 3 815.5 817 SKow, Keowee Side Slopes OTKeowee, Keowee Overtopping Trigger (feet)
C 8501 850 0
- 845 845.
uJ 840-(D U1) Mo -
II S835 L II 0U)
M y~830ý1 MY L 500 650 670 700 B Heowe Keowee Breach Bottom Elevation (feet)
WK.wee Keowee Breach Bottom Width (feet) 17
AfiýýSý O TI ý-MMR+t N RELE
. . ......... .. ......... l . . . . . . . .
850-~ 050 0
> 845- o845-840
~840~
84)
S835; 83 IK
&30 1 2 3 4 5 Sjocassee, Jocassee Side Slopes Hjorassee, Jocassee Piping Elevation (feet)
"850 e85oi C
0 0
~845r 840,
~840 84
¸ __
0 -I-L 3 835 II 0
~835F 835 830~
250 425 500 600 625 650 750 800 825 850 HB BwJsse'. Jocassee Joc(feet) Breach Bottom Width (feet) Hcss, Jocassee Breach Bottom Elevation (feet) 18
SENSITI E I OR IM- NOT OR L LEAS OVERALL VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 810 o 805 o 805
-* 800 -2 800 8w LU o795 S795 H- 790 - 790 0 785 0 785 i 780 it 780 1775 1775 770 0.8 0.9 1 1.2 2 1 1.6 1.9 2.4 5 TInlake Dike' ONS Intake Canal Dike (hours) TLuie River' Little River Dam Failure Time (hours) 810 ~810' o 805 r
7
=0805
-0 800 w (D S795 H- 79C it 7800 W
0 785 i*i 78C 785-1775*
2 2.4 2.8 4 1 2 2.6 2.8 3 4 5 TKeowee, Keowee Dam Failure Time (hours) Tjocassee, Jocassee Dam Failure Time (hours) 19
7 E4NO ENST- ION - NOT FOR PBL REL ASE Modeling Parameters 810 810 o0 805 W 80 w
- 800 I-(1)
- 795 4- c) 795 I- 790 I 790
- 785 *0 785 (U
ii 780 . 780 775 7-7 770 0 1 0 1 WSD, With Saddle Dam Failure WBF, With Bypass Flow 810 o 805
-- 800 LU 795 I- 790 3: 785 780 I- 7 770 1 2 FP, Jocassee Failure Progression 20
SENGeToImetrifaa t - NO P LIC L Geometric Parameters (Keowee)
CU 810i 810 1-0 0 805-8w o 805 LIJCU800 w
795. C 795
- 790" H 790 S785- 0* 785 ii 780 i 780 I-I 775- 775 77n, 770-1 3 815.5 817 SKeowee, Keowee Side Slopes OTK.ow.e, Keowee Overtopping Trigger (feet) 810ý 8110 08051 2 805 CU (D~ 800- C 8 0 0-
, 795k 7951 S7901 H 790 CU
~785r 785 ___
ii780 780 S775"r 770L 770, 670 700 500 650 BrachBotom K., eowe Heowee Keowee Elevaton Breach Bottom Eevaion(feet) Bow BKoe Keowee Breach Bottom Width (feet) 21
G)
Co a
RTT K = Keowee Tailrace Elevation (feet) RTKeowee = Keowee Tailrace Elevation (feet) o-001 88 CD
-4 Fj 0 0
CD 2o CD zV)
(DI C-03 0 m 3m aii 0Z z
T RTKoW = Keowee Tailrace Elevation (feet) RT = Keowee Talirace Elevation (feet)
Z, 1- -0
-g Wn 0
(D 0
C- CA wo CD 0 (DI 0A IQ N)j
OVERALL VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0 0
" 830 16 830-w L+
828 - 828 -
826 -826 I 824 824 822 .822 W Z-1 z z o 0 it 820 , 820 1 1.6 1.9 2.4 5 0.8 0.9 1 1.2 2 Little River' Little River Dam Failure Time (hours) Dike ONS Intake Canal Dike (hours) cC 0
830- > 830 2
(D Lu 828 828 -
826 i - 826 U) "_I-824 O 824 S
U) 822 *_
-=822-z 0
, 820 z evve 2 2.4 2. 4 S 1 2 2.6 2.8 3 4 5 z- T~ewe Keowee Dam Failure Time (hours) E Tc Jocassee Dam Failure Time (hours) 23
NSITI El ~
Modelinq Parameters C
0 0 830 M 830 MU ,'3) 828 828 M
"U 826 ' 826 O 824 5 824 c 822 c 822 V) z z 0 0 u 820 820 a)
Ws 0 1 0 1 With Saddle Dam Failure WBF, With Bypass Flow C
0 16 830 U)
(U 828
')826 o 824 822-*
03 z
- 820
.4 1 2 FP, Jocassee Failure Progression 24
Geometric Parameters(Keowee)
C 0
830 830 +
0 w
828 828 (D
826 826 I
824 824 0
-E 822 822 XI z of 0 82C i 820 5
is 1 3 815.5 817 SKeowee' Keowee Side Slopes OTKeowee Keowee Overtopping Trigger (feet)
C C
0 0 (a 83C M 830 0
0 LU 828 828-(D o826
-a ;-
826 5 824 824 (V
0 822 - 822 z
0 820 o 820 500 650 670 700 BKeoweW Keowee Breach Bottom Width (feet) HRB Keowee Breach Bottom Elevation (feet) 25
SENSITIVE, IFO NT'A Geometric Parameters(Jocassee)
C 0 0
> 830 >M830 (U)
(u 828 r) 828 (go
( 826 ( 826 824 O 824
-- 822
- 822 Uo z z 0 0 i 820 ii 820 o 05 N
1 2 3 4 5 940 1020 SJOCasse, Jocassee Side Slopes HjOC....,
P Jocassee Piping Elevation (feet)
C C 0 0 830 wf830 uii 6 828 (U 828 (U 826 "I -- 826 M
a) 824 824 a) (U
-8 822 - -c 822 C')
z z 0
i 820 . u 820
= 250 425 500 600 625 650 0 750 800 825 850
. B~W Jocassee Breach Bottom Width (feet) B H Hoese, Jocassee Breach Bottom Elevardon (feet) 26
JVERL TIO1NW R RLM N- UNDIIDUA TO OVERALL VARIATION IN WORLD OF ENERGY SWALE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 834 0) 834 0
833 833 ca) w 832 ai) 832 ci) 831 tM w 831 16 830 83C 01 829 829 c) 828 828 0ý 827 827 1 1.6 1.9 2.4 5 0.8 0.9 1 1.2 2 T-ittle River' Little River Dam Failure Time (hours) Tlntake Dike' ONS Intake Canal Dike (hours) 4)
834 t834 0 0 833 833 W 832 832 ci)
~831 831 csa) 21 8X S830 w Lul
- 829 "- 829 o 828 828 IIwu827 cU827 3,
1 2 2.6 2.8 3 2 2.4 2.8 4 TJocassee, Jocassee Dam Failure Time (hours) TKeowee, Keowee Dam Failure Time (hours)
Modeling Parameters (D
.834 0)
'4 833 W 832 c.)
- 831
_ 830 w
,6 829 o 828 Lu 827 0 1 WSD, With Saddle Dam Failure 27
Geometric Parameters(Keowee) 0 0-84M (U 833 w 832 831 83C w
- 6 829 828 u, 827 1 3 SKeowee, Keowee Side Slopes 834 834 C
0 w833ý 16 833
()
8321 ' 832 n831 831 830- 830 C
w
" 829 " 829 828 828 wu827 wu827 n," (03 500 650 670 700 BWeo K(feet) Breach Bottom Width (feet)
Keowee H , SKeowee Breach Bottom Elevation (feet) 28
ITIVE! "ATI T Pu LKRELE Geometric Parameters(Jocassee)
....................... i ........ E 834-0 833 Cn 832 8311-830 C
w 829ý 828t 8271 uj 2 3 4 5 Sjocassee, Jocassee Side Slopes a
a C 834 0
(U 8331 U) w 832~
4)
(U CO 831k a 830k C
w 0
V U]
250 425 500 600 BJocassee, Jocassee Breach Bottom Width (feet) 29
ATTACHMENT Cl 30
ITI MA NOTF BL REL SE GROUP I RESULTS GROUP 1 0.8-0 O0.6-0 E
M 0.2 RH Recwee R_
RIntake Dike A50 800 850 900 GROUP 1 GROUP 1 0.8 0.8 0.6
't 0.6 .50.6 E E 0.2 Mean Normal Fit 0.2 5t, 95 t 830 840 850 "9 T 800 81
% =Keowee Headwater Elevation (feet) RT = Keowee Tailrace El Keowee GROUP 1 C
0 E
31
SS FOAT! NPT R
'FýW I ELE E GROUP I VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
~8M
~4!
~84C Mc 1 3 4 5 TJocassee' Jocassee Dam Failure Time (hours)
Modeling Parameters 850 D 850 0 CU 845 0
~840 4)
I 4))835 B340
'I J830______
J83 0 1 0 1 WSo, With Saddle Dam Failure WBF, With Bypass Flow 850i C
0 LU
" 840 Ell
~80 a)
II 835-of ji830__
1 2 FP, Jocassee Failure Progression 32
RM -NO RPU ýLIC ýLEII Geometric Parameters(Keowee) iaam e Geometric (U
850 A 850 (U
C 0
(U 0
(U r.l (U 845 S845 w (U (U
(U w 840 ~840 (U
I (U
(U II3:
0 835 0 835 (U
II 830 830 Ii 1 3 815.5 817 SKeowee, Keowee Side Slopes OTKeawee, Keowee Overtopping Trigger (feet)
Geometric Parameters(Jocassee)
... .. . . . .. i . .... f S850
"* 845 0
~840 (D 845 M
(u (D
(U ~840-835 If z!835 I8 0-1 2 3 4 940 1020 SJocssee' Jocassee Side Slopes Jocassee HJocsseeP Piping Elevation (feet) 850 A850[
0 A-(U 845 845 7>8 (U w 840 ~840r II 835 ~835, (U
830 ~830-250 500 600 625 650 750 800 825 850 BW Jocassee Breach Bottom Width (feet) HB Jo(feet) Breach Bottom Elevation (feet)
Jocassee Jocassee'Jcse rahBotmWdh(et 33
GROUP I VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 0 808
.T 806 uJ (D 804
- 802 0800 S798 II 796 I- 794 n" 792 1 3 4 5 TjocasseeJocassee Dam Failure Time (hours)
Modeling Parameters (D 810 810 0 810 A 806 806 w C-S804
. 802 S802 F- 0 800 0800 (OD798
, 796 ii796
- 794
- 794
,,792 rr792 0 1 0 1 WSDWith Saddle Dam Failure WBF, With Bypass Flow 34
Geometric Parameters(Keowee)
÷ 20 810 810 C C
- 0. 808 S808 4z a 806 806 w
a 804 ~804 i 802 800
) 800 S798 S798
. 796 II 796
!794 I, 792 n, 792 1 3 815.5 817 SKeowee, Keowee Side Slopes OTKowe, Keowee Overtopping Trigger (feet) 810 0
. 808 w a)806 S804
.N 802 I-(D 800 00798
. 796 t- 794 of 792 1 2 FP, Jocassee Failure Progression 35
Geometric Parameters(Jocassee) 810 810 C
0~ 808 . 808 (U
'a806 uLJ
_ 806 w o804
- 802 I-- I-
'a800 800 S798
~798 i 796 I 796 r 792 r 792 1 2 3 4 940 1020 SJocase Jocassee Side Slopes HPJocs Jocassee Piping Elevation (feet) 810 g S810 808 0 B
'0 808 w 806 '806 BN w
S804 o 804 A 802 j802 I-- i-
'a 800 1 798 (OD798 I 796 I 796 I 794 f 792 n, 792 250 500 600 625 650 750 800 825 850 jWoc.s.., Jocassee Breach Bottom Width (feet) B Hjoassee , Jocassee Breach Bottom Elevation (feet) 36
jSEJRITV FOR I -NO FOR LI GROUP I VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 825 W 824-
" 823 -
03
- 822 0 821 Z 820 0
"819 UI 1 3 4 5
-1.5 Tjocassee, Jocassee Dam Failure Time (hours)
Modelina Parameters C
o 825- WO 825 Wu 824 LU 824 0
S8231 "* 823 M
L (822L 822 i5 W -~8211k
- 821 Z II 820'- z 820 0 0 8819: 819 0 1 -r 0 1 Er- WsI nC D'With Saddle Dam Failure WBF, With Bypass Flow 825 0
LU 824
"* 823 S822
- 15
- 0 821 CID 819 z 820 0
I,
- 819 C, 1 2 FP, Jocassee Failure Progression 37
SEN TI INF M N- OT PUKBC LEA Geometric Parameters (Keowee)
... .. . . .... ... . i .. .. f 0 825- o 825 LW 8 2 4 LU 824 I
"*823 cc "I-822 822-821- S821 M,
z 820- Z 820 0II /<
0II
~819[________ 819 a 1 3 ", 815.5 817 SKeowee Keowee Side Slopes Iz.E- OTKeowee, Keowee Overtopping Trigger (feet)
Geometric Parameters(Jocassee) I I o0 825 0 825 LU 824 uJ 824
"* 823 823- /
- 822 ( 822 M
821 821-Z 820 0
oZ 820 -
819 ,819 a,- 940 1020 1 250 500 600 625 650 Jo......, Jocassee Piping Elevation (feet) -- Bw , Jocassee Breach Bottom Width (feet)
C O 825 o 825 LW 824- LU 824 a
823 7117 MS823
= 822- M 85
- 821 c 821 Cn C-C,)
Z 820- z 820 III 0 II 819 i*819 a,
" 750 800 825 850 a,. 1 2 3 4 of Jocassee Breach Bottom Elevation (feet) Sjocassee, Jocassee Side Slopes 38
J--SE ý R NTJSI4BLC&.E.
ATTACHMENT B2 39
SENSITILE GROUP 2 RESULTS GROUP 2 C 0.8 0.6 20.4 E
0.2- RH RIV*
____ Intake Dike 750 800 850 900 GROUP2 GROUP2 1 1 0.8 0.8 0
0.6- 0.6 a>
! 0.4 20.4 E E 0.2 Mean ...
Normal Fit 5th, 5th 8
35 840 845 850 70T 780 790 K Keowee Headwater Elevation (feet) RKeoe = Keowee Tailrace Ele GROUP 2 C
0 0.6~
45
-c 0.4k E
0.2~
820 RHIntake Dike 40
-- SýýIVE MAýNN NjPýUBIR - EA GROUP 2 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure v=848 0
W 846 W 844 U 842 840 CD 838 8 836 834
- 832 1 3 4 Tjocassee, Jocassee Dam Failure Time (hours)
ModelinQ Parameters
. 848 0 0 846 U846r W 844 EL 844-842 842*
S840 838 o838 8 836 a836-II 834t 834 1832 832' te0 0 1 0 1 WSD, With Saddle Dam Failure WBF, With Bypass Flow (D
Y848 0
9 846 LU 844 842 S840 S838 0
"834 8832 1 2 FP, Jocassee Failure Progression 41
Geometric Parameters(Keowee) 848 846 844 0 842 (D
840 838 836-834-832-815.5 817 OTKowe, Keowee Overtopping Trigger (feet)
Geometric Parameters(Jocassee) 848 846 W 844 (U
842
~840
~838 o836 "1834 832 ry 2 3 940 1020 Sjocassee, Jocassee Side Slopes Jocassee' Jocassee Piping Elevaton (feet)
(D "6848 0
W 844 (U
(U842
, 840 838
°836 "834 r*
250 ao 500 600 Bwse'Joca Jocassee Breach Bottom Width (et 42
p-ýNP6ISNORIA NITPRPU kELELEA GROUP 2 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
.* 85 .*805 0 0 ro 0
= 800- 80 0795 795 00 w 7 9 5 0 *-- 0 -- -
785- Q)* 785
= 780 - 780 775 775- "
770 7708 78o5 1 16 1.9 2 .4 5 0.8 0 ,9 1 1.2 2 T Little River' Little River Dam Failure Time (hours) T Intake Dike' ONS Intake Canal Dike (hours) sm 0 _
II I K -
o 80 Lu 795- 795 47 790[7 7079 0 805-775 0
78578 0
y 780 - Y* 780 770 0f 770 2 24 28 41 2 2.6 2.8 3 T~ewe Keowee Dam Failure Time (hours) Tjocassee, Jocassee Dam Failure Time (hours) 43
RE M51:4N ATI NOTF JR`NBLII(R EA 'E' Modeling Parameters 4! 805 0
W 795 a)
= 790 7-a 780
- 775-770 0 1 WSD, With Saddle Dam Failure Geometric Parameters(Keowee) 895
.2 805 I
C 0
S800 (D
a)
LM785 0
C)
I-
=a) 785770 770 1 3 SKe.wee, Keowee Side Slopes (D 805- .~805 0
800-lu795- L 795 790 = 790
(- I--
785 0
a) vII 780 i 775 775 770 500 650 670 700 Bw HKeowee' B Keowee Breach Bottom Elevation (feet)
KeveKeowee Breach Bottom Width (feet) 44
SENSIT E I ATIO T RPU REL A Geometric Parameters(Jocassee)
- 805 0
800-w 795
=_ 790 F-.
785 o ', J<
780 775- '
770 2 3 4 5 SjocasseJocassee Side Slopes
,2 805 0
wj 795-8w
= 790 H/
)785
- II 780 '
T.75 .. . .
770 250 425 500 600 Bw JO.... Jocassee Breach Bottom Width (feet) 45
-,cNSIT E INFO A TFOR P BLI GROUP 2 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
W 828-827-
~826-
'D 825k i 824
- 823 in 822 z
0 821 0 820 1 3 4
_r Tj Jocassee' Jocassee Dam Failure Time (hours)
Modeling Parameters 0 0 4M 0 828 > 828 827 827
- 826 826 ca 825 : 825 824 824
- 823 S823 C:
cQ 822 1n 822 z z 0 011 821 821 6 820 o 820 0 1
-r 0 1 WSDWith Saddle Dam Failure WBF, With Bypass Flow c
0
> 828 827 826 825 824 823 (Q 822 z
0 821 6 820 1 2 FP, Jocassee Failure Progression 46
Geometric Parameters(Keowee) 0 828 827
. 826
- 825 824 823 ci 822 z
0 821 i 820 815.5 817 of OTKeovee, Keowee Overtopping Trigger (feet)
Geometric Parameters(Jocassee) t-828i 0 828 ----
827 827 S826 1
-- 825 825 8
824 824
~823- - 823 C:
u) 822 c 822 z z 0
If 821 821 O 820 0820 -_
ME 940 1020 250 500 600
,ý-g BIN , Jocassee Breach Bottom Width (feet)
Jocassee, Jocassee Piping Elevation (feet) a 0
T 828 J 827
,826 825 824
- 823 ci 822 z
0 821
'5 820 0* 2 3 SJocassee, Jocassee Side Slopes 47
ATTACHMENT C3 48
GROUP 3 RESULTS 1 GROUP 3 0.8 0
4z 0.6-20.4-E
__ H foe 0.2R Wake Dike RWE 5
800 850 900 GROUP3 GROUP3 0.8 08 Co C 0.6 '00 06 0.4 S0.4 E E O -- CDF 0.2 .. Mean 0 Normal Fit 0.2 5 th, 9 5 th 8 0 Heawwat84 Evto(fe t* "* T 78acei 9 5 Keowee = eowee Hea4water E eva*on (fe Keowee Weowee
=- Tairace El GROUP3 GROUP3 0.8 0.8 0o 4.
i0.6 0.6 5 0
> (D 2=0.4 0.4
- -CDF kA~ E C75 49
GROUP 3 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
- 846-o 844 C 844
.p O842 w 842-S840 S838 II S836-834
&3 1 832 834 T 832 n-I 1 1.6 1.9 2.4 5 0.8 0.9 1 1.2 2 Little River' Little River Dam Failure Time (hours) Tlntake Dike' ONS Intake Canal Dike (hours)
- 846-
° 844-jj842- L] 842 U)
Ua
- 0) 8w8, S80
&38 IW
~836[
S8364 834 1832- SJ832 2 2.4 2.8 4 1 2 2.6 2.8 3 TKeowee, Keowee Dam Failure Time (hours) Tjocasse,' Jocassee Dam Failure Time (hours) 50
Modeling Parameters 846
. 844 Ca
- 842
, 840 (D838
- 836 0
(D) 834
- 832 0 1 WSD, With Saddle Dam Failure Geometric Parameters(Keowee)
(D84E (2)
(2)
C 0
(U (2) w (2)
CD (U
3- 84E (2) 0~84 I (2)
(2)
G)834 0
(2)
~832 II 0
Ii 1 3 Keowee Side Slopes Bwe Keowee' Keowee Breach Bottom Width (feet) 846 C
o 844 842
,840 838 (2)
- 836 0
834 832 670 700 HKeowee,B Keowee Breach Bottom Elevation (feet) 51
Geometric Parameters(Jocassee) 846 0 844
[842 S838 S834 J832 2 3 4 5 Sjocassee, Jocassee Side Slopes C~846 o 844 (U
w 842 S840 838 S836
,834 832 250 425 500 600 Bwocessee, Jocassee Breach Bottom Width (feet) 52
1 0 I NOT DORP TLICNEAE GROUP 3 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure g) j2 805 4? 805 t-0 0 S800 8W U 795-UJ u 795
'79
=790-I.- I.-
Q 785 ) 785 vII 780- " 780 -r-
- 775 I 7I 770- 77C 1 1.6 1.9 2.4 5 0.8 0.9 1 1.2 2 TIittle River' Little River Dam Failure Time (hours) TIntake Dike' ONS Intake Canal Dike (hours)
.805 ,805 0 0 43 800 = 80C c)
[] 795 U 795 0)
.= 790 7C) 790 I- I--
0)785 785 v 780 ' 78C II II
[75 I Iv.
2 2.4 2.8 4 1 2 2.6 2.8 3 TKeowee, Keowee Dam Failure Time (hours) Tjocassee, Jocassee Dam Failure Time (hours) 53
1 E1, FO PTION- 0 PU tR E Modeling Parameters 805 l LU 800 795 0
790 JU M) 785 780 775 770 0 1 WSD, With Saddle Dam Failure Geometric Parameters(Keowee)
U)
.~805 0
- 4 800 uIJ 795 U)
= 790 I--
U 785 v
II 780 775 770 1 3 SKeowe, Keowee Side Slopes 805- 09 N 800 w(U 795- L] 795 78) 19U
= 790-U)
U785
)780 v 780 7-75 775 770 770 500 650 670 700 BWeowee, Keowee Breach Bottom Width (feet) H*B, Keowee Breach Bottom Elevation (feet)
Ke(feet) 54
N Ezrt EI NfO'R0 T ýRP ELý Geometric Parameters(Jocassee)
I W C)
.805 800 WJ 795
= 790 I-o) 785
, 780 775 77n 2 3 4 5 SJocassee, Jocassee Side Slopes 805 0
C)~800 UJ 795
= 790 C 785 0
780 II
- i 77 250 425 500 600 Bw Bw e Jocassee Breach Bottom Width (feet) 55
....S VE)NF M4i' PP &R LE GROUP 3 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
830 > 830 829 829 828 828 827 827 S826 826 5
W
. 825 32 825 824 824 z z 0 823- o 823 II i"-822 A 822 1 1.6 1.9 2.4 5 W 0.8 0.9 1 1.2 2 r- L Tlntake Dike' ONS Intake Canal Dike (hours) ittle River' Little River Dam Failure Time (hours) a 4-0
>830 830 829 829 w
- 828 .*828 0
0 827 0827 I
0 826 . 826 8
a) 32 825 824 824 z z 0
II 823 0 823
- 822 A 822 0_
2 2.4 2.8 4 1 2 2.6 2.8 3 IS n-TK , Keowee Dam Failure Time (hours) ocassee, Jocassee Dam Failure Time (hours)
Modeling Parameters c
0 c 830 829
. 828 a
( 827 M
0
-l(D 826 825 824 z
0 823 II 822 0
0 1 IS WSD, With Saddle Dam Failure 56
eNoS ImTeItVI N PFar amet eNOTO BrLEA E Geometric Parameters(Keowee) 0 830 I 829 828 cc 827 0 826 SR 825
- 824 z
O 823 822 1 3 SKeotweeKeowee Side Slopes 0 0
>830 I > 830 (D
829 IL 829 (U
828 828 827
- 827 0 826 5-: 826 r ]'. .
. 825 825 824 824 z z O 823 O 823 822 822 500 650 w 670 700 I S Bwe, Keowee Breach Bottom Width (feet) I H,B , Keowee Breach Bottom Elevation (feet)
Geometric Parameters(Jocassee)
C 0 0 T830 > 830 829 L 829 (D
Ca
. 828 A 828 cu
- 827 ( 827 ID 826
- 826 0 -
S825 2 825
-- 824 824 z z 0II 823- 0 823 822 9-822 U 250 425 500 600 2 3 4 5 "E Bw w Jocassee Breach Bottom Width (feet) IS Sjocassee, Jocassee Side Slopes 57
RUN mm 27 3 mm 59 60 mm mm mm mm p mm mm mm U U m
m U U m U U
I I I I I I I I I I I I I I I I 840.0 840.0 837.7 837.7 843.4 843.4 831.9 831.9 802.1 802.1 799.0 799.0 792.8 792.8 789.2 789.0 821.1 821.1 820.8 820.8 823.9 823.9 822.1 822.0 82.682.
n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a In/a RUN 7 34 12i 3 631 76 59 60 64 661 67 INPUT/OUTPUT VALUES EQUIVALENT BETWEEN IN PUT VALUES EQUIVALENT/OUTPUT INDIVIDUAL SETS OF RUNS DIFFERENT BETWEEN RUNS