ML13066A311

From kanterella
Jump to navigation Jump to search
Email from F. Ferrante, NRR to L. James, NRR on Sensitivity Analysis
ML13066A311
Person / Time
Site: Oconee  Duke Energy icon.png
Issue date: 02/03/2010
From: Ferrante F
NRC/NRR/DRA/APOB
To: Lois James
Office of Nuclear Reactor Regulation
References
FOIA/PA-2012-0325
Download: ML13066A311 (61)


Text

Mitman, JeffreyI From:

Sent:

To:

Cc:

Subject:

Attachments:

Ferrante, Fernando Wednesday, February 03, 2010 3:20 PM James, Lois Mitman, Jeffrey Sensitivity Analysis Memo for the Sensitivity Analysis.doc; sensitivity summary Rev.4.doc; Breach Parameter Matrix.xls

Lois, Per our discussion, please find attached.

Thank you, Fernando Ferrante, Ph.D.

Office of Nuclear Reactor Regulation (NRR)

Division of Risk Assessment (DRA)

-Operational Support and Maintenance Branch (APOB)

\\

Mail Stop: 0-10C15 Phone: 301-415-8385 Fax: 301-415-3577 1

Subject:

NRR/DRAIAPOB Preliminary Analysis of 1D dam breach modeling runs for the flooding evaluation of the Oconee Nuclear Station (ONS) due to an upstream dam failure

Dear XXXXXXXXX,

Please find attached a preliminary analysis developed by the Office of Nuclear Reactor Regulation, Division of Risk Assessment, PRA Operational Support Branch (NRR/DRAIAPOB) in order to perform an initial evaluation of the 101 runs of a 1 D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site.

This preliminary analysis provides insights into the data provided without the benefit of a detailed explanation or key to the results presented. An Excel spreadsheet is attached to this document that presents the results in a more amenable form for review. The results of this effort are presented to you as a potential aid in the on-going discussions with the licensee regarding the sensitivity analysis.

Sincerely, XXXXXXXXX

N E NFO LB ELEA

GENERAL COMMENT

S The comments and results presented below were derived from an Excel spreadsheet (see attached) that contains 101 runs of a 1D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site (i.e., Jocassee Dam).

Explanations and justifications for some of the variation of input parameters are provided in attachments to the November 30, 2009, Duke Energy letter to the NRC, which are a response to a request from the NRC on April 30, 2009. Previous discussions of the parameters used for the sensitivity study took place on May 11, 2009 (as described in a November 10, 2009 summary) and August 27, 2009 (presentation slides available).

The spreadsheet obtained from the licensee was particularly challenging to analyze in terms of insights or the quality of the sensitivity performed. The input and output data was reorganized in order to allow for a coherent analysis of any possible insights (also attached).

COMMENTS ON INPUT PARAMETERS There are a total of 22 input parameters presented in the sensitivity data: 5 Manning's roughness coefficients, 4 time to failure parameters, 3 modeling parameters, and 9 geometric parameters (see attachment A for full list). The output is represented by 4 flood elevations values at 3 selected locations (Keowee Dam, Oconee Intake Dike, and World of Energy Swale).

Specific discrete values have been used for each parameter (mentioned in interactions between NRC and Duke Energy). For example, for a specific time to failure (Jocassee Dam Failure Time),

there are 7 potential values listed (i.e., 1.0, 2.0, 2.6, 2.8, 3.0, 4.0, and 5.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />) as input.

However, for most inputs, there are either 2 or 3 possible values presented. A subset of all possible combinations for the potential parameters indicated was used for a total of 101 runs resulting in flood elevations at the selected site locations mentioned above.

Only the 1 st run had a value of the Jocassee Reservoir Elevation different than 1110 feet (i.e.,

1108 feet was used). It most likely appears that this value was used to calibrate the updated model with the results used for the FERC 1992 Inundation Study. Additional parameters not varied in the analysis are mentioned in the May 11, 2009, presentation by the licensee.

The input parameter describing Keowee Breach Side Slopes is described with three possibilities:

(1:1,1:1), (1.5:1,1.5:1), and (3.45:1, 2:03:1). However, side slopes of (1.5:1, 1.5:1) were not used in any of the 101 runs.

  • As mentioned by the licensee, a specific subset of 3 combinations from the listed potential values was used in the inputs for the Manning's roughness coefficients (see attachment B for the full list): 0.02, 0.025, 0.035 and 0.07. The Manning's number coefficient for the Reservoir Tributaries upstream of the Keowee Dam was maintained constant at 0.035 for all runs (i.e., no sensitivity appears to have been done for this parameter).

1

/EýN$TJW_4S

/RATN>ro R

ICRLS Three modeling parameters inputs were considered: inclusion/exclusion of saddle dike failures, inclusion/exclusion of bypass flow, and Jocassee Dam Failure Progression Type (i.e., linear or sine wave).

The following pairs of runs exhibit repeated inputs resulting in the same outputs: 7 & 34, 12 & 36, and 63 & 76. It is unclear why these repetitions were included in the analysis since it does not appear that a probabilistic sampling of input parameters was done.

There are two sets of runs (59 & 60, and 64 & 66 & 67) that have equivalent inputs and different outputs. Since there are no other parameters listed and the physical model used is assumed to be deterministic, reasons for the discrepancies may be due to (i) typo, (ii) error in the transcription of the results, (iii) additional input parameters affecting the output not shown, or (iv) problems with the deterministic model. The discrepancies in output between this subset are not significant for the most part (i.e., not more than a few decimal places) indicating possible numerical approximations in the output. However, in the case of runs 59 & 60, the difference in the Keowee Tailrace Elevation flood depth is > 3 feet.

If the input repetitions in the listed runs mentioned above were to be resolved, there would be 95 individual runs with different inputs, instead of the 101 runs presented.

COMMENTS ON OUTPUT PARAMETERS Considering the 95 runs without repetitions, the cumulative distributions derived for each output parameter are shown in Attachment B, along with indications for the mean, 90th interval, and a normal distribution fit to the results. A comparison between the three groups of Manning's coefficients described above is also presented. To add perspective to the results, it should be considered that the height above mean sea level for (i) Jocassee Dam is 1125 feet, (ii) for Keowee Dam is 815 feet, and (iii) for the ONS Intake Dike is 815 feet. Additionally, the ONS yard elevation is at 796 feet above mean sea level.

Not all runs resulted in flooding elevation values at the World of Energy Swale. The first 76 runs resulted in "n/a" entries at this site location, possibly because the analysis does not indicate a significant elevation at this location using this subset of input parameters.

The variation of the output parameters versus the input parameters has been plotted using a box and whiskers representation. Description from MATLAB Manual: "The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Notches graph a robust estimate of the uncertainty about the means for box-to-box comparison. Outliers are data with values beyond the ends of the whiskers", (indicated as '+'). "If there is no data outside the whisker, a dot is placed at the bottom whisker."

Results are shown for all the runs and major subsets of runs (i.e., by Manning's coefficient subsets) including all non-repeated inputs (except the 1108 feet Jocassee Reservoir Elevation calibrations run. For the runs where a different output is obtained with equal input parameters, the larger output values are used.

It is very important to note that, without further clarification at this point, the variability in the input parameters only reflects the choice of values made by the licensee, since it is unclear whether 2

the variation is a reflection of known uncertainties in the values or recalibration of the sensitivity analysis based on initial results. Additionally, because multiple input parameters are modified between runs, care needs to be exercised in relating changes between a single input parameter and an output parameter.

The maximum elevation values obtained from the 101 runs are: (i) 847.5 feet at Keowee Headwater (Run 54), (ii) 811 feet at Keowee Tailrace (Run 33), (iii) 830.4 feet at ONS Intake Dike Headwater (Run 80), and 817 feet at World of Energy Swale (Runs 81 and 82). See Attachment B for the corresponding input values. However, it is unclear from the observed data whether the true bounding maximum values could be established from this analysis based on the most conservative input parameter subset already limited by the licensee's chosen input values.

For the 95 runs, it is challenging to establish clear trends between the output/input results (see Attachment B). However, some conclusions can be derived:

The group 1 subset of Manning's coefficients (all values equal to 0.035) causes smaller outputs of the ONS Intake Dike Headwater Elevation and higher results for the Keowee Tailrace Elevation. The smaller subset of results for the Keowee Headwater Elevation does not appear to show statistically significant differences between the three Manning's coefficient groups.

o For the Keowee Headwater Elevation RKeoweeH:

R H

Increases in the RKeowH output results are observed from increases in Keowee Overtopping Trigger parameter, Jocassee Piping Elevation, and the use of sine wave Jocassee Failure Progression versus a linear model.

Increases in RKeoweeH are observed with lower values of the Jocassee Breach Bottom Width and when a value of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is used for Jocassee Dam Failure Time. A value of 600 feet for the Jocassee Breach Bottom Width also results in H

higher values for RKeowee

, although very few runs were made with larger widths of 625 feet and 650 feet to effectively establish its effects beyond 600 feet.

For the Keowee Tailrace Elevation RKeoweeT:

An increase in RKeoweeT values is observed with a decrease in Little River and Keowee Dam Failure Times, although this conclusion is cannot be conclusively extended to the other two time parameters.

Exclusion of Saddle Dam failures in the model results in a significant magnitude increase in elevation values An increase in values of RKeoweeT is observed with decreasing Keowee Overtopping Trigger Parameter, Jocassee Piping Elevation, and a Jocassee Side Slope configuration of 1:1 for both breach sides.

For the ONS Intake Dike Headwater Elevation Rintake DikeH An increase results from decreasing Jocassee Dam Failure Time. It is unclear that the remaining time parameters follow this trend, it seems in fact that larger elevations result from an increase in failure time for Little River, ONS Intake Dike, and Keowee.

3

Inclusion of Saddle Dam failures in the model results in a increase in elevation values An increase in output values results in an increase in Jocassee Piping Elevation o

For the World of Energy Swale Elevation RWES:

An increase in the output results occurs from an increase in Little River and ONS Intake Canal Dike failure times, although it should be noted that a limited subset of values was produced for this output parameter For Group 1 Manning's coefficient input parameters, the most significant contributors to an increase in RKeoweeH appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Jocassee Piping Elevation (see Attachment Cl for output variation in other parameters).

For Group 2 Manning's coefficient input parameters, the most significant contributors to an R H increase in RKeowee appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Keowee Overtopping Trigger Elevation (see Attachment C2 for output variation in other parameters).

For Group 3 Manning's coefficient input parameters, the most significant contributor to an T

increase in RKeowee, appears to the exclusion of Saddle Dam failures. For other parameters, few samples were used to assess the sensitivity to various input values (see Attachment C3 for output variation in other parameters).

RECOMMENDATIONS FROM LITERATURE The following excerpts were obtained from reports and papers discussing dam breach parameter modeling and guidance related to sensitivity analysis associated with flooding analysis due to dam failures.

Federal Emergency Management Agency, "The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams", Workshop Report, November 14-15, 2001, in Davis, California.

"The Commission's guidelines for breach parameters is given in Table 1 of Appendix A of Chapter 2. In general, the average breach width should be between 2 and 4 times the height of the dam for earth or rock fill dams..." "Failure times range from 0.1 to 1.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> for earth or rock fill dams, and from 0.1 to 0.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> for gravity dams."

"Because of the uncertainty of breaches, the consultant should perform a sensitivity analysis of these parameters. For projects with large reservoirs, conservative breach parameters should be adopted since the rate of draw down of the reservoir during a breach is significantly slower than it is for projects with smaller reservoirs."

"Common Modeling Problems

1. Failure to model the entire reservoir. If dynamic routing of the reservoir stead of level pool routing is done, the consultant needs to make sure the cross-sections extend upstream of the reservoir to the point where backwater effects no longer exist. The shape of the cross-sections also needs to be examined to make sure all the storage between the cross-sections is accounted for. In some cases, the consultant extended the cross-sections only part way 4

/SEN-SITkl )Nf j~&AI

ý B C into the reservoir, effectively negating the storage upstream that could be released through a breach.

2.

No sensitivity studies. Although the selected breach width may be at the conservative end of the accepted range given in our criteria, a larger breach width may result in a substantially higher incremental rise downstream. If the incremental rise is highly sensitive to the breach width, then this needs to be considered when selecting the breach width.

3.

Improper use of the Manning's n values. The NWS DAMBRK program requires the user to provide the composite Manning's n values at each elevation. Therefore, for out-of-bank flood elevations the consultant needs to compute the composite Manning's n value based on the weighted wetted perimeter. In many cases, the consultant will select too high of a Manning's value for the out-of-bank elevations. Although not a major factor, this can effect the results in some analysis.

4.

Improper spillway rating curve. In some cases, the reservoir was allowed to draw down during the beginning of the routing because the consultant did not adjust the rating curve for when the gates are closed to maintain the normal pool level. In other cases, the consultant adjusted the rating curve to correct this, but the simulation then appeared as though the licensee closed all the gates instantaneously when the reservoir receded below the normal maximum pool after the breach developed."

Wahl, T., "Prediction of Embankment Dam Breach Parameters". Dam Safety Research Report DSO 004, US Department of Interior, Bureau of Reclamation, Dam Safety Office, July 1998

" The importance of different parameters varies with reservoir size. In large reservoirs, the peak discharge occurs when the breach reaches its maximum depth and width. Changes in reservoir head are relatively slight during the breach formation period. In these cases, accurate prediction of breach geometry is most critical."

"The ultimate breach width and the rate of breach width expansion can dramatically affect the peak flowrate and resulting inundation levels downstream from the dam."

"Accurately predicting the breach side slope angles is generally of secondary importance to predicting the breach width and depth."

Wahl, T., "Uncertainty of Predictions of Embankment Dam Breach Parameters", Journal of Hydraulic Engineering, Vol. 130, No. 5, May 2004

" 'The uncertainties of predictions of breach width, failure time, and peak outflow are large for all methods, and thus it may be worthwhile to incorporate uncertainty analysis results into future risk assessment studies when predicting breach parameters using these methods."

5

S E INF OMA TIOT OR ER AS ATTACHMENT A 6

OVERALL OUTPUT PARAMETERS RKee H = Keowee Headwater Elevation (feet)

RKeoweeT = Keowee Tailrace Elevation (feet)

H Rintake Dike

= ONS Intake Dike Headwater Elevation (feet)

RW~s = World of Energy Swale Elevation (feet)

OVERALL INPUT PARAMETERS Manning's number NcD/s = Keowee Downstream Channel = [0.02, 0.025, 0.035]

NIT

= Keowee Downstream Immediate Tailrace = [0.035, 0.07]

NRTu/s = Keowee Upstream Reservoir Tributaries = [0.035]1

'Constant in all runs Ncu/s = Keowee Upstream Reservoir Channel = [0.02, 0.025, 0.035]

N1Tuls = Keowee Upstream Immediate Tailrace

[0.035, 0.07]

Time to Failure TLittle River = Little River Dam Failure Time (hours) = [1.0, 1.6, 1.9, 2.4, 5.0]

Tintake Dike = ONS Intake Canal Dike (hours) = [0.8, 0.9, 1.0, 1.2, 2.0]

TKeowee = Keowee Dam Failure Time (hours) = [2.0, 2.4, 2.8, 4.0]

Tjocassee = Jocassee Dam Failure Time (hours) = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

Modeling WBF = With Bypass Flow and Saddle Dam Failure = [Yes, No]

WSD = With Bypass Flow and Saddle Dam Failure = [Yes, No]

FP = Jocassee Failure Progression = [linear, sine wave]

Geometric SKeowee = Keowee Side Slopes = [(1:1,1:1), (1.5:1,1.5:1)2, (3.45:1, 2:03:1)]

2Not used on any runs BKeoweew = Keowee Breach Bottom Width (feet) = [500, 650]

HKeoweeB = Keowee Breach Bottom Elevation (feet) = [670, 700]

OTKeowee = Keowee Overtopping Trigger (feet) = [815.5, 817]

Socassee= Jocassee Side Slopes = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1),

(1.55:1,0.7:1)]

Bjocasseew = Jocassee Breach Bottom Width (feet) = [250, 425, 500, 600, 625, 650]

Hjocassee B = Jocassee Breach Bottom Elevation (feet) = [750, 800, 825, 850]

Jocassee = Jocassee Piping Elevation (feet) = [940, 1020]

Jocassee = Jocassee Reservoir Elevation (feet) = [1108, 1110]

7

\\,-/ý~~IITv/INFO TI

-ýNO RPUBýLR

ýE SUBSET RUNE GROUP 1 Fixed Constant Varying S

Manning's number Ncu'o = 0.035 Geometric Parameters SKewee = (1:1,1:1 ), HjocasseR = 1110 feet Manning's number NcD/s = NITD/s = NRTu/s = Ncu/s = NITu/s= 0.035 Time to failure TLiftle River = TIntake Dike = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, TKeowee = 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> Geometric Parameters BKoweeW = 500 feet, HKeowCeB = 670 feet WBF = [Yes, No],

WSD = [Yes, No],

OTKeowee = [815.5, 817],

FP = [linear, sine wave],

TjosPee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

HjocasseeP = [940, 1020],

Sjocasee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],

Bjocasseew = [250, 425, 500, 600, 625, 650],

Hjocassee B = [750, 800, 825, 850]

[Values in red were not used in this subset]

8

-- 'ýNS VEFO-F PUB C E

ýASE GROUP 2 Fixed Manning's number NcDIs = 0.025 Geometric Parameters SKeowee = (1:1,1:1), BKeoweew = 500 feet, Constant Manning's number NIT D/s = 0.07, NRTU/S = 0.035, Ncu/s = 0.025, NITU/s= 0.07 Geometric Parameters OTKeowee = 817 feet, Hjocassee g 800 feet, Hj 0,.sse

= 1110 feet, FP = sine wave, Jocasseep= 1020 feet Modeling Parameters WBF = No, Varyj.g TLiftle River= [1.0, 1.6, 1.9, 2.4, 5.0]

TIntake Dike = [0.8, 0.9, 1.0, 1.2, 2.0]

WSD = [Yes, No],

TKeowee = [2.0, 2.4, 2.8, 4.0]

HKeo.B = [670, 700]

Tjocssee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

Sjoassee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],

Bjocasseew = [250, 425, 500, 600, 625, 650]

[Values in red were not used in this subset]

9

GROUP 3 Fixed Manning's number NcD 0

s = 0.020 Constant Manning's number NITDs = 0.07, NRTu/s = 0.035, Ncu 0 s = 0.020, NITU/s= 0.07 Geometric Parameters TLiftie River = TIntake Dike = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, TKeowee = 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, SKeowee = (1:1,1:1), BKeoweew = 500 feet, Hocssee B = 800 feet, HJocsseR = 1110 feet, HKeOWeeB = 670 feet Varvina WBF = [Yes, No],

WSD = [Yes, No],

OTKeowee = [815.5, 817],

FP = [linear, sine wave],

T jo.se = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

HKeoweeB = [670, 700]

HJocassee' = [940, 1020],

Sjocassee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],

Bjocasseew = [250, 425, 500, 600, 625, 650],

[Values in red were not used in this subset]

10

-SZNSITIV /NF MA NT R

L Eý ATTACHMENT B 11

/ELý

-OT FO

ýRE INPUT PARAMETERS RESULTING IN MAXIMUM KEOWEE HEADWATER ELEVATION (849.7 FT)

KeoweeLittle River Manning's Keowee Parameters numberParameters INPUT PARAMETERS RESULTING IN M Keowee DIS Manning's number Little River Dam Parameters WORLD OF ENERGY SWALE ELEVATION 12

OVERALL RESULTS 0.8.s c

T H

WE Keowee Intake Dike 0.2 H

RH RKec 780 800 820 84C Elevation (feet)

CDF O CDF Meana Mean Mean 0 I -

Normal Fit 0.5 Normal Fit 5

th 5

th 5 th, 9 th 0.6 0.61 0,4 70 0.4 EE

)

13

COMPARISON BETWEEN OUTPUT RESULTS FOR GROUPS 1, 2, AND 3 GROUP 1 GROUP 1 GROUP 2 GROUP 2 0.8-GROUP 3 0.8 GROUP 3 C

C 0

0.6 0.6

  • 5 i5 10.4

.20.4 E

E 0.2 0.2 760 780 800 820 60 830 84 RT

= Keowee Tailrace Elevation (feet)

RH

= Keowee Hea Keowee Keowee 0.8 j

.0 0.6 a)

_T 0.4

3 E

0 915 820 825 830 835 R

D

= ONS Intake Dike Headwater Elevation (feet)

Intake Dike 14

OVERALL VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 850ý 850-0 0

_ 845

_ 845 U 840 840 I1 II 3 835 835-0 0

830*

830 1

1.6 1.9 2.4 5

0.8 0.9 1

1.2 2

TLittle River' Little River Dam Failure Time (hours)

Tintake Dike' ONS Intake Canal Dike (hours)

Q 850 850 0

0 (U

( U

> 8451,>

4 ww M

~840-840-II II S835r

~835-830U 830i 2

2.4 2.8 4

1 2

2.6 2.8 3

4 5

TKeowee, Keowee Dam Failure Time (hours)

Tjocassee, Jocassee Dam Failure Time (hours) 15

H RH K

= Keowee Headwater Elevation (feet)

KeowOe 0

Q

-o

~1 Cd)

  • 0 H

RH

= Keowee Headwater Elevation (feet)

Keowee

-n 0*

0 CD T1)

-n 0

RO 0

mz z

-n, m

I-I H

RH o

= Keowee Headwater Elevation (feet)

KOoweD cn 0.

CD

GNoSeI P

e (Keowee Geometric Parameters (Keowee) 850 C

84

_*840 3:835 0(D

'830 n-850 0

(u 845 S8.35 I8

-r) 1 3

SKow, Keowee Side Slopes 815.5 817 OTKeowee, Keowee Overtopping Trigger (feet) 8501 C

0

  • 845 uJ 840-(D U1)

II S835 L

~830ý1 M

y MY L

850 845.

Mo -

IIU) 0 670 700 Heowe Keowee Breach Bottom Elevation (feet)

B 500 650 WK.wee Keowee Breach Bottom Width (feet) 17

AfiýýSý O

TI N

ý-MMR+t RELE l.

850-~

0

> 845-840 84) 83 IK 050 o845-

~840~

S835;

&30 1

2 3

4 Sjocassee, Jocassee Side Slopes 5

Hjorassee, Jocassee Piping Elevation (feet)

"850 0

840, 3 835 0

II 835 250 425 500 600 625 650 BwJsse'. Jocassee Breach Bottom Width (feet)

Joc(feet) e85oi C

0

~845r 84

~840

¸

-I-L

~835F 0

830~

750 800 825 850 H B Hcss, Jocassee Breach Bottom Elevation (feet) 18

SENSITI E I OR IM-NOT OR L

LEAS OVERALL VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 o 805 800 8w o795 H-790 0 785 i

780 1775 810 o 805

-2 800 LU S795 790 0 785 it 780 1775 770 0.8 0.9 1

1.2 2

TInlake Dike' ONS Intake Canal Dike (hours) 1 1.6 1.9 2.4 5

TLuie River' Little River Dam Failure Time (hours) 810 ro 805

-0 800 w

S795 H-79C W

0 785 i*i 78C 1775*

~810'

=0805 7

(D it 7800 785-2 2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

4 5

Tjocassee, Jocassee Dam Failure Time (hours) 19

ENST-7 E4NO ION - NOT FOR PBL REL ASE Modeling Parameters 810 W 80

  • 795 I-790
  • 785 ii 780 775 4-810 o0 805 800 w

(1) c) 795 I

790

  • 785 0

(U 780 7-7 770 I-0 1

WSD, With Saddle Dam Failure 0

1 WBF, With Bypass Flow 810 o 805

-- 800 LU 795 I-790 3: 785 780 I-7 770 1

2 FP, Jocassee Failure Progression 20

SENGeToImetrifaa t

- NO P

LIC L

Geometric Parameters (Keowee)

CU 810i 0 805-8w1-0 795.

790" S785-ii 780 I-I 775-770-1 3

SKeowee, Keowee Side Slopes 810 o 805 CU800 LIJ w

C 795 H 790 0* 785 i

780 775

77n, 815.5 817 OTK.ow.e, Keowee Overtopping Trigger (feet) 810ý 08051 (D~ 800-

, 795k S7901

~785r ii780 S775"r 770L 8110 2

805 CU C8 0 0-7951 H

790 CU 785 780

770, 500 650 Bow BKoe Keowee Breach Bottom Width (feet) 670 700 Heowee Keowee Breach Bottom Elevaton K., eowe BrachBotom Eevaion(feet) 21

T RT K

= Keowee Tailrace Elevation (feet) o-001 88

-4 0

(DI 03 m

aii 3

T RTKoW

= Keowee Tailrace Elevation (feet)

Z, 1-

-0 wo 0

C-0 (DI CD RT

= Keowee Tailrace Elevation (feet)

Keowee CD C-0 Fj G)

Co a

CD 0

2o CD z

V) m 0Z z

-g Wn RT = Keowee Talirace Elevation (feet) 0 (D

CA 0A IQ N)j

OVERALL VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

0

" 830 16 830-w L+

828 828 826

-826 I

824 824 822

.822 W

Z-1 z

z o

0 it 820 820 1

1.6 1.9 2.4 5

0.8 0.9 1

1.2 2

Little River' Little River Dam Failure Time (hours)

Dike ONS Intake Canal Dike (hours) 0 830-(D 828 826 i

824

--S 822 U) 2 2.4

2.

4 z-T~ewe Keowee Dam Failure Time (hours) z evve cC

> 830 2

Lu 828 826 U)

"_I O 824

-=822 -

z 0

820 S

1 2

2.6 2.8 3

4 5

E Tc Jocassee Dam Failure Time (hours) 23

NSITI El

~

Modelinq Parameters 0

830 MU 828 826 O 824 c 822 z

0 u 820 Ws C

0 M 830

,'3) 828 M

"U 826 5

824 c

822 V)z0 820 a) 0 1

With Saddle Dam Failure 0

1 WBF, With Bypass Flow C0 16 830 U) 828 (U

')826 o

824 822-*

z03

  • 820

.4 1

2 FP, Jocassee Failure Progression 24

Geometric Parameters (Keowee) 830 0

w 828 826 I

824

-E 822 z0 i

820 5is C

0 (D

0 XI of 830 828 826 824 822 82C

+

1 3

SKeowee' Keowee Side Slopes 815.5 817 OTKeowee Keowee Overtopping Trigger (feet)

C0 (a

0 (D

0 83C 828 826 824 822 820 C

0 M 830 0

LU 828-o826

-a 5

824 (V

822 z

0 o 820 670 700 B

HR Keowee Breach Bottom Elevation (feet) 500 650 BKeoweW Keowee Breach Bottom Width (feet) 25

S ENSITIVE, IFO NT'A Geometric Parameters (Jocassee) 0

> 830 (u

828

(

826 824 822 z0 i

820 N

C 0

>M 830 (U) r) 828 (go

(

826 O 824 822 Uo z0 ii 820 05 1

2 3

4 SJOCasse, Jocassee Side Slopes 5

940 1020 o

P HjOC...., Jocassee Piping Elevation (feet)

C 0

830 uii 6 828 (U 826 "I

a) 824 a)

-8 822 C')z i

820

=

250 425 500 600 625 650 B~W Jocassee Breach Bottom Width (feet)

C 0

f830 w

828 (U

826 M

824 (U

-c 822 z

0u 820 0

750 800 825 850 B

H Hoese, Jocassee Breach Bottom Elevardon (feet) 26

JVERL R TIO1NW RLM N -

TO UNDIIDUA OVERALL VARIATION IN WORLD OF ENERGY SWALE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

ca) w ci) tM 01 c) 0ý 834 833 832 831 830 829 828 827 0) ai) w 16 834 833 832 831 83C 829 828 827 1

1.6 1.9 2.4 5

T-ittle River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

Tlntake Dike' ONS Intake Canal Dike (hours) 4)

834 0

833 W 832 ci)~831 S830 w

829 o 828 cU 827 3,

t834 0

833 832 831 21 8X csa)

Lul

"- 829 828 IIwu 827 1

2 2.6 2.8 3

TJocassee, Jocassee Dam Failure Time (hours) 2 2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours)

Modeling Parameters (D

0)

.834

'4 833 W 832 c.)

  • 831

_ 830 w

,6 829 o 828 Lu 827 0

1 WSD, With Saddle Dam Failure 27

Geometric Parameters (Keowee) 0 0-84M (U 833 w 832 831 83C w*6 829 828 u, 827 1

3 SKeowee, Keowee Side Slopes 834 0

w833ý 8321 n831 830-w" 829 828 wu 827 n,"

834 C

16 833

()

' 832 831 830 C

829 828 wu 827 (03 500 650 BWeo Keowee Breach Bottom Width (feet)

K(feet) 670 700 H

, SKeowee Breach Bottom Elevation (feet) 28

ITIVE!

"AT I T

Pu L KRELE Geometric Parameters (Jocassee) i........

E 0

Cn Cw uj 834-833 832 8311-830 829ý 828t 8271 2

3 4

5 Sjocassee, Jocassee Side Slopes aa C

0 (U

U) w 4)

(U CO aCw 0

V U]

834 8331 832~

831k 830k 250 425 500 600 BJocassee, Jocassee Breach Bottom Width (feet) 29

ATTACHMENT Cl 30

ITI MA NOTF BL REL SE GROUP I RESULTS GROUP 1 0.8-0 O0.6-0 E

M 0.2 RH R_

Recwee RIntake Dike A50 800 850 900 GROUP 1 GROUP 1 0.8 0.8 0.6

't 0.6

.50.6 E

E 0.2 Mean Normal Fit 0.2 5t, 95 t 830 840 850 "9 T 800 81

=Keowee Headwater Elevation (feet)

RT

= Keowee Tailrace El Keowee GROUP 1 C

0 E

31

S S FOAT! NPT R

I

'FýW ELE E

GROUP I VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure

~8M

~ 4!

~84C Mc 1

3 4

5 TJocassee' Jocassee Dam Failure Time (hours)

Modeling Parameters D 850 0

845

~840 4))835 J830______

850 0

CU B340 4)

I

'I J83 0

1 WSo, With Saddle Dam Failure 850i C

0 LU

" 840 Ell 835-

~80 a) of II ji830__

0 1

WBF, With Bypass Flow 1

2 FP, Jocassee Failure Progression 32

RM

-NO RPU ýLIC

ýLEII Geometric Parameters (Keowee)

Geometric iaam e

(U (U

C 0

(U (Uw (U

(U (U

I (U

(U 0

(U II Ii 850 845 840 835 830 A 850 0(U r.lS845 w

(U

~840 II3: 835 0

830 1

3 SKeowee, Keowee Side Slopes 815.5 817 OTKeawee, Keowee Overtopping Trigger (feet)

Geometric Parameters (Jocassee) i.

f

~840 M

(D

"* 845 (u

(U 835 I8 z!835 0-S850 0

(D 845

~840-If 1

2 3

4 SJocssee' Jocassee Side Slopes 940 1020 HJocsseeP Jocassee Piping Elevation (feet)

(U (U

II (U

850 845 840 835 830 A850[

0 A-7>8 845 w

~840r

~835,

~830-750 800 825 850 HB Jocassee Breach Bottom Elevation (feet)

Jo(feet) 250 500 600 625 650 BW Jocassee Breach Bottom Width (feet)

Jocassee'Jcse rahBotmWdh(et 33

GROUP I VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 0 808

.T 806 uJ (D 804 802 0800 S798 II 796 I-794 n" 792 1

3 4

5 TjocasseeJocassee Dam Failure Time (hours)

Modeling Parameters (D

810 A 806 w

S804 S802 F-0800 (OD798 796 794

,,792 810 0 810 806 802 C-0 800 ii796

- 794 rr792 0

1 WSDWith Saddle Dam Failure 0

1 WBF, With Bypass Flow 34

Geometric Parameters (Keowee) 20 810 C

0. 808 4z a 806 w

a 804 800 S798 796

!794 I, 792 810 0

808 a)806 w

S804

.N 802 I-(D 800 00798 796 t-794 of 792

÷ 810 C

S808 806

~804 i

802

) 800 S798 II 796 n, 792 1

3 SKeowee, Keowee Side Slopes 815.5 817 OTKowe, Keowee Overtopping Trigger (feet) 1 2

FP, Jocassee Failure Progression 35

Geometric Parameters (Jocassee) 810 0~ 808

_ 806 uLJ I--

800

~798 i

796 r 792 810

'0 808 w 806 w

S804 A 802 I--

1 798 I

796 I

794 f 792 1

2 3

4 SJocase Jocassee Side Slopes 810 C.

808 (U

'a806 w

o804 802 I-

'a800 S798 I

796 r

792 S810 0

B g

808

'806BN o

804 j802 i-'a 800 (OD798 I

796 n, 792 940 1020 HPJocs Jocassee Piping Elevation (feet) 250 500 600 625 650 jWoc.s.., Jocassee Breach Bottom Width (feet) 750 800 825 850 BHjoassee, Jocassee Breach Bottom Elevation (feet) 36

jSEJRITV FOR I

-NO FOR LI GROUP I VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 825 W 824-823 03 822 0 821 Z

820 0

"819 UI

-1.5 1

3 4

5 Tjocassee, Jocassee Dam Failure Time (hours)

Modelina Parameters Co 825-Wu 824 0

S8231 (822L

-~8211k W

Z 820'-

0 II 8819:

Er-WsI L

WO 825 LU 824

"* 823 M

822 i5 821 z

820 0

819

-r nC 0

1 D'With Saddle Dam Failure 0

1 WBF, With Bypass Flow 825 0

LU 824

"* 823 0

ID 819 S822

  • 15 821 C

z 820 0

I,

  • 819 C,

1 2

FP, Jocassee Failure Progression 37

SEN TI INF M

N-OT P UKBC LEA Geometric Parameters (Keowee) i f

0 825-LW 8 2 4

"*823I 822 821-z 820-0II

/<

~819[________

a 1

SKeowee Keowee Si Geometric Parameters (Jocassee) o 825 LU 824 cc "I-822-S821 M,

Z 820 0II 819 815.5 817 Iz.E -

OTKeowee, Keowee Overtopping Trigger (feet) 3 de Slopes I

I o0 825 LU 824

"* 823 822 M

821 Z 820 0

819 a,-

0 825 uJ 824 823-

/

(

822 821-Z 820 o

,819 1

250 500 600 625 650 Bw

, Jocassee Breach Bottom Width (feet) 940 1020 Jo......, Jocassee Piping Elevation (feet)

O 825 LW 824-823 7117 a

= 822-821 Cn Z

820-III 819 750 800 825 850 of Jocassee Breach Bottom Elevation (feet)

Co 825 LU 824 S823 M

85 M

c 821 C-C,)

z 820 0

II i*819 a,a,.

1 2

3 4

Sjocassee, Jocassee Side Slopes 38

J--SE

ý R

NTJSI4BLC&.E.

ATTACHMENT B2 39

SENSITILE GROUP 2 RESULTS GROUP 2 0.8 C

0.6 20.4 E

0.2-RH RIV*

Intake Dike 750 800 850 900 GROUP2 GROUP2 1

1 0.8 0.8 0

0.6-0.6 a>

! 0.4 20.4 E

E 0.2 Mean Normal Fit 5th, 5th 8 35 840 845 850 70T 780 790 K

Keowee Headwater Elevation (feet)

RKeoe = Keowee Tailrace Ele GROUP 2 C0 0.6~

45

-c 0.4k E

0.2~

RH 820 Intake Dike 40

-- SýýIVE MAýNN

-NjPýUBIR EA GROUP 2 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure v=848 0

W 846 W 844 U 842 840 CD 838 8 836 834

- 832 1

3 4

Tjocassee, Jocassee Dam Failure Time (hours)

ModelinQ Parameters 848 0

846 W

844 842 S840 838 8 836 834 1832 0

U846r EL 844-842*

o838 a836-II 834t 832' te0 0

1 WSD, With Saddle Dam Failure 0

1 WBF, With Bypass Flow (D

Y848 0

9 846 LU 844 842 S840 S838 0

"834 8832 1

2 FP, Jocassee Failure Progression 41

Geometric Parameters (Keowee) 0 (D

848 846 844 842 840 838 836-834-832-815.5 817 OTKowe, Keowee Overtopping Trigger (feet)

Geometric Parameters (Jocassee) 848 846 W

844 (U

842

~840

~838 o836 "1834 832 ry 2

3 Sjocassee, Jocassee Side Slopes 940 1020 Jocassee' Jocassee Piping Elevaton (feet)

(D "6848 0

W 844 (U

(U842

, 840 838

°836 "834 r*

ao 250 500 600 Bwse'Joca Jocassee Breach Bottom Width (et 42

p-ýNP6ISNORIA NIT PRPU kELELEA GROUP 2 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

0

.* 85

.*805 ro 0

= 800-80 0795 795 785-Q)*

785 00 w

7 9

5 0

0

=

780 780 775 775-770 7708 1 16 1.9 2.4 5

0.8 0,9 1

1.2 2

T Little River' Little River Dam Failure Time (hours)

T Intake Dike' ONS Intake Canal Dike (hours) 78o5 sm 0

o 80 Lu 795-795 II I

K 790[7 0

47 7079 78578 0

0 y

780 Y

780 775 805-770 0f 770 2 24 28 41 2

2.6 2.8 3

T~ewe Keowee Dam Failure Time (hours)

Tjocassee, Jocassee Dam Failure Time (hours) 43

RE M51:4N ATI NOTF JR`NBLII(R EA 'E' Modeling Parameters 4! 805 0

W 795 a)

=

790 7-a 780

- 775-770 0

1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee) 895

.2 805 C

0 S800 (D

LM 785 a) 0 C)

= 770 I-a) 785 770 I

1 3

SKe.wee, Keowee Side Slopes (D 805-0 800-lu795-790

(-

i 775

.~805 L 795

= 790 I--

785 0

a) v 780 II 775 770 500 650 Bw KeveKeowee Breach Bottom Width (feet) 670 700 H B Keowee Breach Bottom Elevation (feet)

Keowee' 44

SENSIT E I ATIO T

RPU REL A Geometric Parameters (Jocassee) 805 0

800-w 7 9 5

=_ 790 F-.

785 o

J<

780 775-770 2

3 4

5 SjocasseJocassee Side Slopes

,2 805 0

8w wj 795-

=

790 H/

)785 780 II T. 75 770 250 425 500 600 BwJO.... Jocassee Breach Bottom Width (feet) 45

-,cNSIT E INFO A

TFOR P BLI GROUP 2 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

W 828-827-

~826-

'D 825k i

824 823 in 822 z0 821 0 820

_r T j 1

3 4

Jocassee' Jocassee Dam Failure Time (hours)

Modeling Parameters 0

0 828 827 826 825 824 823 cQ 822 z

0 821 6 820 0

4M

> 828 827 826 ca: 825 824 S823 C:

1n 822 z

011 821 o 820

-r 0

1 WSDWith Saddle Dam Failure 0

1 WBF, With Bypass Flow c

0

> 828 827 826 825 824 823 (Q 822 z0 821 6 820 1

2 FP, Jocassee Failure Progression 46

Geometric Parameters (Keowee) 0 828 827 826 825 824 823 ci 822 z0 821 i 820 of 815.5 817 OTKeovee, Keowee Overtopping Trigger (feet)

Geometric Parameters (Jocassee) t-828i 827

-- 825 824

~823-C:

u) 822 z

0If 821 O 820 ME

- 1 0

828 827 S826 825 8824 823 c

822 z

821 0820 250 500 600

,ý-g BIN

, Jocassee Breach Bottom Width (feet) 940 1020 Jocassee, Jocassee Piping Elevation (feet) a0 T 828 827

,826 825 824 823 ci 822 z

0 821

'5 820 0*

J 2

3 SJocassee, Jocassee Side Slopes 47

ATTACHMENT C3 48

GROUP 3 RESULTS GROUP 3 1

0.8 0

4z 0.6-20.4-E H

0.2R foe Wake Dike RWE 5

800 850 900 GROUP3 GROUP3 0.8 08 Co C

0.6 06

'00 0.4 S0.4 E

E O

CDF 0.2 Mean 0

Normal Fit 0.2 5th, 9 5 th Heawwat84 Evto(fe 8t* 0 T

78acei Keowee =9 e5owee Hea4water E eva*on (fe Keowee =-

Weowee Tairace El GROUP3 GROUP3 0.8 0.8 0o 4.i0.6 0.6 5

0 (D

2= 0.4 0.4

-CDF E

kA~

C75 49

GROUP 3 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure o 844 O842 S840

&3 834 II 1 832 T

n-I

  • 846-C

.p 844 w 842-S838 S836-834 832 1

1.6 1.9 2.4 5

Little River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

Tlntake Dike' ONS Intake Canal Dike (hours) jj842-Ua

0) 8w8, IW S8364 1832-
846-

° 844-L] 842 U)

S80

&38

~836[

834 SJ832 2

2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

Tjocasse,' Jocassee Dam Failure Time (hours) 50

Modeling Parameters 846 844 Ca 842

, 840 (D838

  • 836 0

(D) 834

832 0

1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee)

(D84E CD 3-84E 0~84 G)834

~832 0

(2)

(2)

C 0

(U (2)w (2)

(U (2)

I (2)

(2) 0 (2)

II Ii 1

3 Keowee Side Slopes Bwe Keowee Breach Bottom Width (feet)

Keowee' 846 C

o 844 842

,840 838 (2)

  • 836 0

834 832 670 700 HKeowee,B Keowee Breach Bottom Elevation (feet) 51

Geometric Parameters (Jocassee) 846 0 844

[842 S838 S834 J832

~846 C

o 844 (U

w 842 S840 838 S836

,834 832 2

3 4

5 Sjocassee, Jocassee Side Slopes B

250 425 500 600 wocessee, Jocassee Breach Bottom Width (feet) 52

1 0

I NOT DORP TLIC NEAE GROUP 3 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure g) j2 805 t-0 8W UUJ 795-

=790-I.-

Q 785 v 780-II 775 770-4? 805 0 S800 u 795

'79 I.-

) 785 780 I

7I 77C

-r-1 1.6 1.9 2.4 5

TIittle River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

TIntake Dike' ONS Intake Canal Dike (hours)

.805 043 800 c)

[] 795 0) 7C)

.= 790 I-0)785 v

780 II

,805 0= 80C U 795 790 I--

785 78C II

[75 I Iv.

2 2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

Tjocassee, Jocassee Dam Failure Time (hours) 53

1 E1, FO PTION-0 PU tR E

Modeling Parameters LU 0

JU M) 805 l 800 795 790 785 780 775 770 0

1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee)

U)

.~805 0

  • 4 800 uIJ 795 U)

=

790 I--

U 785 v

780 II 775 770 1

3 SKeowe, Keowee Side Slopes 805-w 795-(U

= 790-U785 v

780 775 770 500 650 BWeowee, Keowee Breach Bottom Width (feet) 09 N 800 L] 795 19U 78)

)780 U) 7-75 770 H

670 700

  • B, Keowee Breach Bottom Elevation (feet)

Ke(feet) 54

N zrt E

EI NfO'R0 T

ýRP E Lý Geometric Parameters (Jocassee)

I W

C)

.805 800 WJ 795

=

790 I-o) 785

, 780 775 77n 2

3 4

5 SJocassee, Jocassee Side Slopes 805 0

~800 C)

UJ 795

=

790 C 785 0

780 II

  • i 77 250 425 500 600 Bw Bw e Jocassee Breach Bottom Width (feet) 55

.... S VE)NF M4i' PP

&R LE GROUP 3 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

830 829 828 827 S826 825 824 z

0 823-i"- 822 r-L

> 830 829 828 827 826 5

W 32 825 824 z

o 823 II A 822 W

1 1.6 1.9 2.4 5

ittle River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

Tlntake Dike' ONS Intake Canal Dike (hours) a0 4-

>830 829 w

828 0

0 827 I

826 0

a) 32 825 824 z

0 823 II

  • 822 IS 830 829

.*828 0827 826 8

824 z0 823 A 822 0_

n-2 2.4 2.8 4

TK

, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

ocassee, Jocassee Dam Failure Time (hours)

Modeling Parameters c0 c

830 829 828 a

(

827 M

0(D

-l 826 825 824 z0 823 II 822 0

IS 0

1 WSD, With Saddle Dam Failure 56

eNoS ImTeItVI N PFar amet eNOTO BrLEA E Geometric Parameters (Keowee) 0 830 I

829 828 cc 827 826 0

SR 825 824 z

O 823 822 1

3 SKeotweeKeowee Side Slopes 0

>830 829 (U

828 827 826 0

825 824 z

O 823 822 I S I

0

> 830 (D

IL 829 828 827

-: 826 5

r

]'.

825 824 zO 823 822 w

670 700 B

I H,

, Keowee Breach Bottom Elevation (feet) 500 650

Bwe, Keowee Breach Bottom Width (feet)

Geometric Parameters (Jocassee) 0 T830 829 (D

828

  • 827 826 0

S825

-- 824 z

0 823-II 822 U

250 425 500 600 w

"E Bw Jocassee Breach Bottom Width (feet)

C 0

> 830 L 829 Ca A 828 cu

(

827 ID 826 2 825 824 z

0 823 9-822 IS 2

3 4

5 Sjocassee, Jocassee Side Slopes 57

RUN 27 3

mm mm mm mm mm mm mm mm mm 59 60 p

m m

m U

U U U

U U U

U U

I I

I I

I I I I I I I I I I I I

840.0 840.0 837.7 837.7 843.4 843.4 802.1 802.1 799.0 799.0 792.8 792.8 821.1 821.1 820.8 820.8 823.9 823.9 n/a n/a n/a n/a n/a n/a 7

34 12i 3

631 76 INPUT/OUTPUT VALUES EQUIVALENT BETWEEN INDIVIDUAL SETS OF RUNS 831.9 831.9 789.2 789.0 822.1 822.0 82.682.

n/a n/a n/a n/a In/a 59 60 64 661 67 IN PUT VALUES EQUIVALENT/OUTPUT DIFFERENT BETWEEN RUNS RUN