2CAN070804, Cycle 20 Startup Report

From kanterella
Revision as of 09:26, 12 July 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Cycle 20 Startup Report
ML081900610
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 07/03/2008
From: James D
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
2CAN070804
Download: ML081900610 (26)


Text

2CAN070804

July 3, 2008

U.S. Nuclear Regulatory Commission

Attn: Document Control Desk

Washington, DC 20555

SUBJECT:

ANO-2 Cycle 20 Startup Report Arkansas Nuclear One, Unit 2

Docket No. 50-368

License No.

NPF-6

Dear Sir or Madam:

The Arkansas Nuclear One, Unit 2 (ANO-2) Technical Requirement Manual (TRM)

Section 6.9.1.1 requires a summary report of plant startup and power escalation testing

following the installation of fuel that has a different design. Cycle 20 is the first cycle at ANO-2

to be refueled with Westinghouse's Next Generation Fuel (NGF) design fuel assemblies.

The unit achieved criticality on April 10, 2008, following the 2R19 refueling outage.

This letter contains no new commitments.

By means of this submittal, the reporting r equirements of ANO-2 TRM 6.9.1.1 are fulfilled.

If you have any questions or require additional information, please contact me.

Sincerely, DEJ/rwc

Attachment:

ANO-2 Cycle 20 Startup Report Entergy Operations, Inc.

1448 S.R. 333 Russellville, AR 72802

Tel 479-858-4619 Dale E. James Manager, Licensing Arkansas Nuclear One 2CAN070804 Page 2 of 2

cc: Dr. Elmo E. Collins Regional Administrator U. S. Nuclear Regulatory Commission Region IV 612 Lamar Blvd., Suite 400 Arlington, TX 76011-4125

NRC Senior Resident Inspector Arkansas Nuclear One P. O. Box 310

London, AR 72847

U. S. Nuclear Regulatory Commission

Attn: Mr. Alan B. Wang

MS O-7D1 Washington, DC 20555-0001

Mr. Bernard R. Bevill

Director Division of Radiation

Control and Emergency Management

Arkansas Department of Health

4815 West Markham Street

Little Rock, AR 72205

Attachment to 2CAN070804 ANO-2 Cycle 20 Startup Report Attachment to 2CAN070804

Page 1 of 23

ANO-2 Cycle 20 Startup Report

ABSTRACT This report summarizes the results of the startup physics test program. Results of these

activities verify the Cycle 20 nuclear design calculations and demonstrate adequate

conservatism in core performance with respect to the Arkansas Nuclear One, Unit 2 (ANO-2)

Safety Analysis Report (SAR), Technical Specif ications (TSs), Technical Requirements Manual (TRM), and the Cycle 20 Reload Safety Evaluati on. Cycle 20 achieved initial criticality on April 10, 2008.

Attachment to 2CAN070804

Page 2 of 23

TABLE OF CONTENTS Page

1.0 INTRODUCTION

.................................................................................................. 3 2.0 REACTOR CORE DESCRIPTION....................................................................... 3 2.1 Loading Pattern and Assembly Burnup.................................................... 4 2.2 Incore Instrumentation (ICI) Locations..................................................... 4 2.3 Verification of Core Loading..................................................................... 4 3.0 PRECRITICAL TESTS......................................................................................... 4 3.1 Control Element Assembly (CEA) Drop Time Testing.............................. 4 4.0 LOW POWER PHYSICS TESTING..................................................................... 5 4.1 Initial Criticality......................................................................................... 5 4.2 STAR Program HZP Critical Boron Concentration................................... 5 4.3 STAR Program MTC Alternate Surveillance............................................ 6 5.0 POWER ASCENSION TESTING......................................................................... 6 5.1 Reactor Coolant System (RCS) Flow Rate.............................................. 6 5.2 Core Power Distribution........................................................................... 6 5.2.1 29% Power Test Plateau Results................................................ 6 5.2.2 66% Power Test Plateau Results................................................ 7 5.2.3 100% Power Test Plateau Results.............................................. 8 5.3 Shape Annealing Matrix (SAM) and Boundary Point Power Correlation Coefficient (BPPCC) Measurement....................................... 9 5.4 Planar Radial Peaking Factor (RPF) Verification..................................... 10 5.5 Temperature Reactivity Coefficient ......................................................... 10

6.0 CONCLUSION

S................................................................................................... 11

7.0 REFERENCES

..................................................................................................... 11 8.0 FIGURES Figure 1 Cycle 20 Core Loading................................................................................. 12 Figure 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for Batch Z Fuel Assemblies --.................................................. 14 Figure 3 Cycle 20 Fuel Management Scheme............................................................ 15 Figure 4 BOC Assembly Average Burnup and Initial Enrichment Distribution............ 16 Figure 5 ICI Locations................................................................................................. 17 Figure 6 GETARP Output for the 29% Power Plateau................................................ 18 Figure 7 GETARP Output for the 66% Power Plateau................................................ 20 Figure 8 GETARP Output for the 100% Power Plateau.............................................. 22 Attachment to 2CAN070804

Page 3 of 23

1.0 INTRODUCTION

This report summarizes the results of the ANO-2 Cycle 20 startup physics test program. The

startup physics test program consisted of a series of tests performed at various stages, including prior to initial criticality, low power physics testing (LPPT), and during power

ascension.

The objective of these tests were (a) to demonstrate that during reactor operation, the

measured core physics parameters would be within the assumptions of the SAR accident

analyses (Reference 7.1), within the limitations of the plant TSs (Reference 7.2), and within the

limitations of the Cycle 20 reload safety evaluat ion (References 7.3 and 7.4), (b) to verify the nuclear design calculations, and (c) to provide the bases for validation of database and

addressable constants in the core protection calculators (CPCs) and the core operating limit

supervisory system (COLSS). Specifically, s hape annealing matrix (SAM) elements installed in each channel of the CPCs are determined and the all rods out (ARO) planar radial peaking

factor (RPF) is verified and conservatively adjusted in the CPCs and COLSS during power

ascension.

Section 2 of this report provides a brief description of the reactor core. Section 3 discusses the

pre-critical control element assembly (CEA) drop time test. In section 4, initial criticality and the

low power physics tests are presented. Section 5 describes the power ascension tests, which

include a reactor coolant system (RCS) flow rate determination, core power distribution

measurements, the SAM determination, planar RPF verification, azimuthal power tilt verification, and a temperature reactivity coefficient measurem ent. The conclusions of this report are given in Section 6. Section 7 lists the references cited in this report.

2.0 REACTOR CORE DESCRIPTION The design of the ANO-2 Cycle 20 core includes the first batch of Next Generation Fuel (NGF)

and is the third cycle of zirconium diboride (ZrB

2) as an integral fuel burnable absorber (IFBA).

The NGF fuel design incorporates the following changes relative to the previous fuel design:

A reduced cutback (non-IFBA coated) region at both the tops and bottoms of IFBA fuel rods and a reduced IFBA coating thickness where the coating is applied Eliminated use of annular fuel pellets in non-IFBA fuel rods Reduced fuel pellet and fuel rod cladding diameters to accommodate increased pressure drop of mixing vane grids Slight increase in overall fuel rod length Reduction in fuel rod initial fill gas pressures A wholly re-designed grid cage including lower end fittings, guide tubes, upper end fitting flow plate and longer hold down springs Use of Optimized ZIRLO material for fuel rod cladding and all but the top grid straps An Inconel top grid, new mid-grids with I-Springs and intermediate flow mixing grids Use of bulge joints to connect grid assemblies and guide tubes (vs. welding) Attaching the lower Guardian grid to the lower end fitting with inserts (vs. welding) Use of Stress-Relief Annealed (SRA) ZIRLO material for guide tubes An anti-rotation joint between guide tubes and the upper nozzle

Attachment to 2CAN070804

Page 4 of 23

The 88 new fuel assemblies designated as Batch Z were loaded with fuel rod enrichments as high as 4.16 w/o U-235 and a nominal B-10 loading of 3.14 mg/in in the ZrB 2 IFBA rods. In addition, 1 Batch U and 88 Batch Y assemblies were returned to the Cycle 20 core (Reference 7.3).

The NGF design changes have been explicitly model ed in Cycle 20 neutronics calculations and reload analyses (Reference 7.3).

2.1 Loading Pattern and Assembly Burnup Attached Figures 1 through 4, taken from the ANO-2 Cycle 20 Reload Analysis Report (RAR),

give the loading pattern and beginning of cycle (BOC) assembly average design burnups.

2.2 In-core Instrumentation (ICI) Locations The ICI design consists of 42 fixed ICI assemblies inserted into the center guide tube of 42 fuel

assemblies. ICI locations are identified in Figure 5. Each ICI assembly contains 5 self-powered

rhodium detectors and one core exit thermocouple (CET). None of the 42 ICI assemblies were

replaced during 2R19 prior to the Cycle 20 startup. During power ascension, at least 199 of 210

possible detectors were operable.

2.3 Verification of Core Loading After the reactor core was loaded, core mapping was performed using an underwater television

camera and monitor. This core mapping operation verified that the core was correctly loaded.

Core mapping was performed by the reactor engineering organization. The core mapping

operation included a comparison of the identification numbers on the fuel assemblies, CEA

configuration, and fuel assembly orientation against the design configuration.

3.0 PRECRITICAL TESTS 3.1 Control Element Assembly (CEA) Drop Time Testing This testing verifies that the drop time of all CEAs are in accordance with the surveillance

requirements of ANO-2 TS 3.1.3.4. The method used by this test involves special control

element assembly calculator (CEAC) software (CEA Drop Time Test, or CDTT software), which

allows the measurement of all CEAs simultaneously. After the establishment of hot, full flow RCS conditions (i.e., greater than 525 °F with four reactor coolant pumps operating) and with

the RCS boron concentration at a sufficient level to keep the reactor adequately shutdown

during the test, all CEAs are withdrawn to the full out position. The CDTT software is then

loaded into one of the CEAC channels and initiated. The software transmits a large penalty

factor to each of the CPC channels, thereby initiating a reactor trip. The CDTT software records

CEA positions every 50 milliseconds (msec) dur ing the drop. Data output from the CDTT software is adjusted for holding coil delay time and used to verify that drop time limits are

satisfied (Reference 7.14).

Attachment to 2CAN070804

Page 5 of 23

From a fully withdrawn position, TS 3.1.3.4 requires that the maximum individual CEA drop time and the average of all CEA drop times from when el ectrical power to the CEA drive mechanism is interrupted until the CEAs reach 90% inserted be:

Individual Limit 3.7 seconds Average Limit 3.2 seconds

A 50 msec allowance is used for measurement uncertainty.

All CEAs passed the individual drop time limit of 3.65 seconds (TS limit minus 0.05 seconds).

The slowest drop time was 3.390 seconds (CEA #80). The average CEA drop time was

2.999 seconds, which passed the average limit of 3.15 seconds (TS average limit minus

0.05 seconds).

In addition, ANO-2 utilizes the CEA drop time testing data as a CEA coupling check. If

measured and expected drop times differ by more than 0.1 seconds for a CEA, then an

additional review of drop characteristics (i.e., slowdown in the dashpot region, presence or

absence of "bounce") is performed to determine the condition of the CEA. Expected drop times

are obtained from historical data. If CEAs remain suspect after this further review, additional

CEA coupling data may be taken during low power physics testing by exercising the suspect

CEAs individually and monitoring the reactivity tr ace behavior on a reactimeter. This provides a final confirmation that any suspect CEA is coupled. For Cycle 20, all CEAs were determined to

be coupled based on meeting expected drop times or review of drop characteristics.

4.0 LOW POWER PHYSICS TESTING Prior to reactor startup, engineering evaluations and startup test controlling procedure pre-

requisites verified the applicability requirements of Westinghouse Topical Report WCAP-16011-

P-A, "Startup Test Activity Reduction Program", dated February 2005 (the STAR program) were

satisfied. Based on meeting the requirements of this topical report, a reduced scope of startup

testing was performed versus the traditional reactimeter based test program. The following

presents the STAR test program results.

4.1 Initial Criticality ANO-2 normally withdraws CEAs to criticality. Shutdown Banks A and B are withdrawn and the

RCS is then diluted to an estimated critical boron concentration (CBC) corresponding to the

desired critical CEA position. For Cycle 20, the estimated critical position was Group P at 120.0

inches withdrawn based on a measured RCS boron concentration of 1256 parts per million (ppm) prior to starting the approach to criticality. For Cycle 20, actual criticality was achieved

with Group P at 96 inches withdrawn.

4.2 STAR Program Hot Zero Power (HZP) CBC This test procedure specifies that the controlling group (Group P) position be recorded and all

other CEAs be at their Upper Electrical Limit. As a pre-requisite, boron equilibrium is checked

by obtaining three RCS boron samples and verifying each is within 10 ppm of the average. The

residual worth of Group P is determined using the physics test predictions. The average RCS

boron sample is corrected for the residual Group P worth to determine the ARO CBC. For Attachment to 2CAN070804

Page 6 of 23

Cycle 20, the ARO CBC was predicted to be 1305 ppm. The actual ARO CBC was 1296 ppm.

The acceptance criteria require the actual and predicted ARO CBC values to be within 50 ppm

or the boron equivalent of 0.5 % k/k. Therefore, the 9 ppm difference for Cycle 20 was well within the acceptance criteria limit.

4.3 STAR Program Moderator Temperature Coefficient (MTC) Alternate Surveillance When applying the STAR test program, the MTC of reactivity is calculated at HZP by adjusting

the predicted MTC to account for the difference between actual boron concentration and the

boron concentration associated with the test prediction. The resultant MTC at test conditions

was -0.247 x 10

-4 k/k/°F versus an upper (or positive) Core Operating Limits Report (COLR) limit of +0.5 x 10

-4 k/k/°F. The MTC was extrapolated to the COLR figure Linear Break Point Power Level (LBPPL) and the 100% power level to insure compliance with the COLR. The

resulting MTC (LBPPL) was -0.797 x 10

-4 k/k/°F versus an upper (or positive) COLR limit of

+0.05 x 10

-4 k/k/°F at the LBPPL. The extrapolated MTC (100) was -1.347 x 10

-4 k/k/°F versus an upper (or positive) COLR limit of -0.20 x 10

-4 k/k/°F and a negative COLR limit of

-3.8 x 10-4 k/k/°F at 100% power. All values were within the limits of the COLR which meets the Alternate MTC Surveillance acceptance criteria.

5.0 POWER ASCENSION TESTING 5.1 Reactor Coolant System (RCS) Flow Rate At the 66% power test plateau, the RCS flow rate was determined by calorimetric methods at

steady state conditions in accordance with ANO-2 TS Table 4.3-1, Item 10, Note 8. The

acceptance criterion requires the measured RCS flow rate to be at least 103% of the design

flow rate of 120.4 x 10 6 lbm/hr to account for measurement uncertainties. The RCS flow rate determined calorimetrically was 105.35% of the design flow rate, which satisfies the acceptance

criterion. The COLSS and CPC calculated RCS flow rates were verified to be conservative with

respect to the calorimetric flow rate and the CP Cs were verified conservative with respect to COLSS. No adjustments to COLSS calculated flow were made. However, CPC calculated flow

was adjusted to remove excess conservatism.

5.2 Core Power Distribution 5.2.1 29% Power Test Plateau Results

Core power distribution data using fixed in-core neutron detectors is used to verify proper core

loading and consistency between as-built and engineering design models. The first power

distribution measurement is performed after the turbine is synchronized and prior to exceeding 30% power. The objective of this measurement is primarily to identify any fuel misloading that results in asymmetries or deviations from the reactor physics design. Because of the decreased

signal-to-noise ratio at low powers and the absence of xenon stability requirements, radial and

azimuthal symmetry criteria are emphasized, whereas pointwise absolute statistical acceptance

criteria are relaxed. A core power distribution map at 29% power is given in Figure 6. The

acceptance criteria at 29% follow:

Attachment to 2CAN070804

Page 7 of 23

a. For a predicted relative power density (RPD) < 0.9, the radial power distribution measured and predicted relative power density values shall agree within 0.1 RPD units. b. For a predicted RPD 0.9, the radial power distribution measured and predicted RPD values shall agree within 10%. c. The power in each operable detector shall be within 10% of the average power in its symmetric detector group.
d. The vector tilt shall be less than 3%.

The acceptance criteria stated in a, b, and c above were met for all 177 fuel locations and all

operable detectors (199 operable out of a possible 210). From Figure 6, the maximum percent

difference for a predicted RPD 0.9 was 2.99% (predicted RPD of 0.972 versus measured RPD of 1.001). The largest percent difference for an operable in-core detector relative to the average

power in its symmetric group was 4.70%. The vector tilt was measured to be 0.76%; therefore, the acceptance criterion stated in item d above was met.

5.2.2 66% Power Test Plateau Results

At the intermediate power plateau of approximately 66% power, a core power distribution

analysis is performed to again verify proper fuel loading and consistency with design predictions. The acceptance criteria at the intermediate power analysis follow:

a. The measured radial power distribution is compared to the predicted power distribution by calculating the root mean square (RMS) deviation from predictions of the RPD for

each of the 177 fuel assemblies. This RMS error may not exceed 5%.

b. The measured radial power distribution is additionally compared to the predicted power distribution using a box-by-box comparison of the RPD for each of the 177 fuel assemblies. For a predicted RPD 0.9, the measured and predicted RPD values shall agree within 10%. c. For a predicted RPD < 0.9, the measured and predicted RPD values shall agree within 15%. d. The measured axial power distribution is also compared to the predicted axial power distribution. The acceptance criterion states the RMS error between the measured

axial power distribution and the predicted axial power distribution shall not exceed 5%.

e. The measured values of total planar RPF (F xy), total integrated RPF (F r), core average axial peak (F z), and 3-D power peak (F q) are compared to predicted values. The acceptance criteria state that the measured values:

F xy , F r , and F z shall be within 10% of the predicted values, and that COLSS and CPC constants shall be adjusted to appropriately reflect the measured values. All of the acceptance criteria stated in a through e above were met at the 66% power plateau.

Attachment to 2CAN070804

Page 8 of 23

TABLE 5.2.2-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED % DIFFERENCE*

F xy 1.4229 1.4390 -1.12 F r 1.3696 1.3940 -1.75 F z 1.1417 1.1370 0.41 F q 1.5966 1.5910 0.35

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 7)

Calculated RMS values were:

RADIAL = 1.3784 AXIAL = 4.9895

A RPD map for the 66% power test plateau is given in Figure 7. The maximum percent

difference for a predicted RPD 0.9 was -2.46% (predicted RPD of 1.157 versus measured RPD of 1.128).

5.2.3 100% Power Test Plateau Results

The final core power distribution analysis is performed with equilibrium xenon at approximately 100% power. At this plateau, axial and radial power distributions are compared to design

predictions as a final verification that the core is operating in a manner consistent with its design

within the associated design uncertainties. The acceptance criteria are the same as those for

the intermediate power distribution analysis stated in 5.2.2.a through 5.2.2.e above. The

acceptance criteria stated in 5.2.2.a through 5.2.2.e for the 100% power test plateau were met

for Cycle 20.

TABLE 5.2.3-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED % DIFFERENCE*

F xy 1.4125 1.4280 -1.08 F r 1.3681 1.3790 -0.79 F z 1.1475 1.1150 2.91 F q 1.6299 1.5840 2.90

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 8)

Calculated RMS values were:

RADIAL = 1.2725 AXIAL = 3.6611

Attachment to 2CAN070804

Page 9 of 23

A relative power density (RPD) map for the 100% power test plateau is given in Figure 8. The maximum % difference for a predicted RPD 0.9 was -2.73% (predicted RPD of 1.152 versus measured RPD of 1.121).

5.3 Shape Annealing Matrix (SAM) and Boundary Point Power Correlation Coefficient (BPPCC) Measurement The CPCs, part of the reactor protection system, use excore neutron flux detector signals to

infer the axial distribution of reactor power. The algorithm that infers the core power distribution

from the excore signals includes an adjustment for the non-uniform transport of neutrons

between the core and the excore detectors.

This adjustment is provided by the SAM. The ANO-2 TSs require measurement and installati on of appropriate SAM elements and associated BPPCCs after each refueling or verification of cycle independent SAM (CISAM) elements for

each channel of the CPCs prior to exceeding 70% power. For Cycle 20, new SAM and BPPCC

elements were measured.

Acceptance criteria for the SAM measurement r equire axial shape RMS errors to be less than or equal to 5.5, the standard deviation of peripheral power integral errors to be less than or equal

to 0.5 and a test matrix value between 3.0 and 8.0. The test matrix value acceptance criteria

are intended to identify inconsistencies in data used to calculate the SAM and BPPCC

elements. The ultimate acceptance criterion fo r the SAM measurement is the axial shape RMS error.

In order to meet all of the acceptance crit eria, measured data below approximately 32% power was excluded. This was required to achieve a test matrix value within the allowable range.

With respect to the acceptance criteria, the SAM and BPPCC values that were installed in CPCs

gave the following results:

Criteria Channel A Channel B Channel C Channel D Axial Shape RMS Error 2.021 2.022 2.026 2.021 Power Error 0.1544 0.1712 0.1352 0.1382 Test Matrix Value 5.952 5.735 4.592 4.803 The exclusion of measured data below approximat ely 32% power resulted in slightly higher CPC ASI uncertainty relative to the uncertainty assumed in the overall uncertainty analysis performed for the reload. The exclusion of this data also requires that the CPC uncertainty

constants, BERR1 and BERR3, be increased from original values prior to exceeding a core

burnup of 210 EFPD.

The higher ASI uncertainty required administrative controls to be implemented that restrict the allowable range of CPC ASI. These restrictions were not needed to maintain operability of

CPCs, but were needed to maintain the initial conditions of certain safety analyses initiated at or

below 20% power and above 20% power when COLSS is out of service.

Attachment to 2CAN070804

Page 10 of 23

5.4 Planar Radial Peaking Factor (RPF) Verification At the 66% power test plateau, the RPF for the ARO configuration was measured using in-core

detector data and the CECOR computer code. The measured ARO Fxy was 1.4223. The

planar RPF multiplier corresponding to the ARO condition in CPCs and the similar addressable

constant in COLSS were appropriately and conservatively adjusted as a result of this

measurement prior to the plant increasing power above 70%. Adjustments for other CEA configurations are no longer performed since conservative bounding values have been

determined by reload analyses and are installed prior to startup.

For ANO-2, the CEA shadowing factors are not measured. The CPC database and

addressable constants include allowances for using predicted CEA shadowing factors.

5.5 Temperature Reactivity Coefficient A moderator and isothermal temperature coeffi cient (ITC) measurement was performed at 100%. During the MTC and ITC measurement, turbine load is used to increase RCS average

temperature, which decreases reactor power, and then to decrease RCS average temperature, which increases reactor power. This manipulation yields a ratio of RCS temperature change to

reactor power change. Using a predicted power coefficient (PC) with the measured average

ratio, an ITC is inferred. Using a predicted fuel temperature coefficient with the inferred ITC

yields an MTC.

Acceptance criteria state that the difference between the predicted and inferred ITC shall be

less than 0.3 x 10

-4 k/k/°F. MTC, extrapolated to 100%, 70%, the COLR linear breakpoint power level and 0% power must also be within COLR limits.

For Cycle 20, the ITC and MTC passed the acceptance criteria. The measured ITC was

-1.20 x 10

-4 k/k/°F versus a predicted ITC of -1.30 x 10

-4 k/k/°F. The difference was 0.10 x 10 4 k/k/°F which was within the +/- 0.3 x 10

-4 k/k/°F acceptance criteria. Extrapolated MTC values were as follows:

Power Level Extrapolated MTC Value (k/k/°F) 100% -1.06 x 10

-4 70% -0.63 x 10

-4 COLR Linear Breakpoint Power Level (50%)

-0.34 x 10

-4 0% 0.07 x 10

-4 All extrapolated MTC values remained within COLR limits.

The measured MTC was extrapolated to 100% and 0% power and predicted peak boron

concentration for the cycle to verify the MTC remains within COLR and TS stated design limits.

The MTC extrapolated to 100% power and peak boron concentration was -0.78 x 10

-4 k/k/°F. The MTC extrapolated to 0% power and peak boron concentration was 0.26 x 10

-4 k/k/°F. Both values were within COLR and TS stated design limits.

Attachment to 2CAN070804

Page 11 of 23

Finally, the measured MTC was also extrapolated to 100% power and end of cycle conditions.

This extrapolation indicated that the limiting boron concentration for maintaining COLR

compliance can not be physically achieved (i.e., negative boron concentration) during the cycle, providing assurance that the COLR negative MTC limit of -3.8 x 10

-4 k/k/°F will not be exceeded during Cycle 20.

6.0 CONCLUSION

S Based upon analysis of the startup physics test results, it is concluded that the measured core

parameters verify the Cycle 20 nuclear design calculations and the proper loading of the core.

All test values were found to be acceptable with respect to limits and requirements contained

within the ANO-2 SAR, Technical Specifications and COLR.

The above test results demonstrate adequate conser vatism in the Cycle 20 core performance with respect to the Cycle 20 reload safety evaluations and licensing basis.

7.0 REFERENCES

7.1 ANO-2 Safety Analysis Report (SAR), Section 4.5, Startup Program and Section 15, Accident Analysis

7.2 ANO-2 Technical Specifications 7.3 ANO-2 Cycle 20 Reload Analysis Report (RAR), CALC-ANO2-NE-08-00001

7.4 ANO-2 Cycle 20 Core Operating Limits Report (COLR)

7.5 ANO-2 Procedure 2302.009, Change 025, Moderator Temperature Coefficient at Power, 5/28/2008

7.6 ANO-2 Procedure 2302.021, Change 024, Sequence for Low Power Physics Testing Following Refueling, 5/15/2008

7.7 ANO-2 Procedure 2302.022, Change 015, Initial Criticality Following Refueling, 6/16/2008

7.8 ANO-2 Procedure 2302.034, Change 020-00-0, Power Ascension Testing Controlling Procedure, 6/16/2008

7.9 ANO-2 Procedure 2302.039, Change 013-00-0, Core Power Distribution Following Refueling, 4/12/2008, 4/13/2008 & 4/18/2008

7.10 ANO-2 Procedure 2302.046, Change 009-00-0, CEA Drop Time Test, 4/8/2008

7.11 ANO-2 Procedure 2302.057, Change 005, RCS Calorimetric Flowrate Calibration Using RCSFLOW Program, 4/13/2008 & 4/21/2008

Attachment to 2CAN070804

Page 12 of 23

FIGURE 1 Cycle 20 Core Loading Sub-Batch ID Number of Assemblies Fuel Rods per Assembly (Excluding ZrB 2 Rods) Nominal Enrichment (wt. %) ZrB 2 Rods per Assembly Shim Loading (ZrB 2) Number of Fuel Rods (Including ZrB 2 Rods) Number of ZrB 2 Rods 108 4.16 36 2.00x 2304 576 16 32 3.86 8 2.00x 640 128 Z1 48 3.56 4 2.00x 832 64 108 4.16 36 2.00x 2880 720 20 36 3.86 4 2.00x 800 80 Z2 24 3.56 28 2.00x 1040 560 88 4.16 56 2.00x 1152 448 8 32 3.86 8 2.00x 320 64 Z3 16 3.56 36 2.00x 416 288 80 4.16 64 2.00x 6336 2816 44 24 3.86 16 2.00x 1760 704 Z4 8 3.56 44 2.00x 2288 1936 Total 88 20768 8384 64 4.34 40 1.88x 1248 480 12 56 4.04 20 1.88x 912 240 Y1 36 3.74 20 1.88x 672 240 64 4.34 40 1.88x 1664 640 16 56 4.04 20 1.88x 1216 320 Y2 16 3.74 40 1.88x 896 640 76 4.64 28 1.88x 1664 448 16 64 4.34 12 1.88x 1216 192 Y3 36 4.04 20 1.88x 896 320 64 4.64 40 1.88x 832 320 8 56 4.34 20 1.88x 608 160 Y4 36 4.04 20 1.88x 448 160 64 4.34 40 1.88x 2080 800 20 48 4.04 28 1.88x 1520 560 Y5 12 3.74 44 1.88x 1120 880 56 4.34 48 1.88x 1664 768 16 48 4.04 28 1.88x 1216 448 Y6 8 3.74 48 1.88x 896 768 Total 88 20768 8384

Attachment to 2CAN070804

Page 13 of 23

FIGURE 1 (continued)

Cycle 20 Core Loading Sub-Batch ID Number of Assemblies Fuel Rods per Assembly (Excluding Erbia Rods)

Nominal Enrichment (wt. %) Erbia Rods per Assembly Shim Loading (Erbia) Number of Fuel Rods (Including Erbia Rods)

Number of Erbia Rods 128 4.17 0 ------ 128 0 1 8 3.87 100 2.1 108 100 U4 Total 1 236 100 ZrB 2 Grand 177 41772 16768 Total Erbia 100

Attachment to 2CAN070804

Page 14 of 23

FIGURE 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for Batch Z Fuel Assemblies Batch Z1: 48 ZrB 2 Batch Z2: 68 ZrB 2 Batch Z3: 100 ZrB 2 Batch Z4: 124 ZrB 2 High Enriched Fuel Rod Med Enriched Fuel Rod Low Enriched Fuel Rod High Enriched ZrB 2 Rod Med Enriched ZrB 2 Rod Low Enriched ZrB 2 Rod Attachment to 2CAN070804

Page 15 of 23

FIGURE 3 Cycle 20 Fuel Management Scheme

Note: U4 assembly in center reinserted from t he spent fuel pool, discharged at the end of Cycle 16. Y505 Y610 Y516 Y607 Y514 H-13 K-7 H-7 J-6 H-5 Y602 Y203 Z103 Z203 Z208 Z210 Z106 Y209 Y613 E-6 D-11 FEED FEED FEED FEED FEED M-11 L-6 Y519 Z108 Z216 Z403 Y308 Z416 Y305 Z419 Z217 Z114 Y520 G-12 FEED FEED FEED D-13 FEED M-13 FEED FEED FEED D-7 Y603 Z115 Y407 Z302 Y108 Z431 Y202 Z433 Y104 Z304 Y408 Z102 Y604 F-5 FEED J-14 FEED E-3 FEED K-13 FEED L-3 FEED B-9 FEED K-5 Y205 Z202 Z305 Y503 Z402 Y316 Z441 Y306 Z408 Y517 Z306 Z220 Y204 L-4 FEED FEED G-4 FEED F-2 FEED K-2 FEED M-7 FEED FEED E-4 Y507 Z116 Z426 Y101 Z427 Y402 Z423 Y110 Z424 Y404 Z415 Y102 Z418 Z104 Y506 E-8 FEED FEED C-5 FEED P-9 FEED H-14 FEED G-14 FEED N-5 FEED FEED C-8 Y615 Z204 Y304 Z401 Y310 Z430 Y211 Z414 Y206 Z410 Y309 Z438 Y307 Z213 Y614 F-7 FEED N-4 FEED B-6 FEED C-6 FEED K-3 FEED P-6 FEED C-4 FEED J-10 Y511 Z214 Z436 Y201 Z429 Y111 Z444 U418* Z428 Y106 Z425 Y214 Z435 Z211 Y512 G-8 FEED FEED N-6 FEED P-8 FEED H-5 FEED B-8 FEED C-10 FEED FEED J-8 Y612 Z212 Y313 Z409 Y315 Z440 Y208 Z407 Y215 Z417 Y302 Z434 Y312 Z207 Y608 G-6 FEED N-12 FEED B-10 FEED F-13 FEED N-10 FEED P-10 FEED C-12 FEED K-9 Y513 Z111 Z422 Y112 Z437 Y401 Z439 Y105 Z443 Y405 Z404 Y109 Z442 Z112 Y510 N-8 FEED FEED C-11 FEED J-2 FEED H-2 FEED B-7 FEED N-11 FEED FEED L-8 Y210 Z209 Z307 Y508 Z405 Y314 Z412 Y303 Z406 Y504 Z301 Z201 Y216 L-12 FEED FEED D-9 FEED F-14 FEED K-14 FEED J-12 FEED FEED E-12 Y601 Z109 Y403 Z308 Y103 Z413 Y213 Z421 Y107 Z303 Y406 Z110 Y606 F-11 FEED P-7 FEED E-13 FEED F-3 FEED L-13 FEED G-2 FEED K-11 Y509 Z105 Z215 Z420 Y311 Z411 Y301 Z432 Z206 Z107 Y518 M-9 FEED FEED FEED D-3 FEED M-3 FEED FEED FEED J-4 Y609 Y212 Z101 Z205 Z219 Z218 Z113 Y207 Y616 E-10 D-5 FEED FEED FEED FEED FEED M-5 L-10 Y515 Y605 Y501 Y611 Y502 H-11 G-10 H-9 F-9 H-3 270° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A B C D EFGHJK L MN 180° Y YY Z-ZZ Assembly Identifier Previous Cycle Location

  • from C y cle 16 REGION U4

( 4.036 W/O)REGION Y1

( 4.101 W/O)REGION Y2

( 4.101 W/O)REGION Y3

( 4.401 W/O)REGION Y4

( 4.401 W/O)U Y Y Y Y REGIONY6

( 4.101 W/O)REGION Z1

( 3.977 W/O)REGION Z2

( 3.977 W/O)REGION Y5

( 4.101 W/O)Y Y Z Z REGION Z3

( 3.977 W/O)Z REGION Z4

( 3.977 W/O)Z Attachment to 2CAN070804

Page 16 of 23

FIGURE 4 BOC Assembly Average Burnup and Initial Enrichment Distribution nnBBBB = Batch Identifier for Assembly nnAssembly Average Burnup (MWD/T)1U42Z43Y14Z45Y26Z47Z28Y59Z410Y211Z412Y313Z414Y315Z216Y617Y118Z419Y420Z421Y122Z423Z124Y5 25Z426Y327Z428Y529Z330Z231Y2 32Y233Z434Y135Z336Y437Z138Y6 39Z440Y341Z442Z243Z144Y6 45Z246Z247Z148Y249Y6 50Y551Y652Y5Region Z ZrB2 rods have annular pellets in top & bottom 6" of rod at the rod's nominal enrichment243702455424502 0 24662017843000002426321669024670 24763238920219660 246800194250247620024261216540219510 0 0 24370023888019413017863024567258160021738023892217380xxxx Attachment to 2CAN070804

Page 17 of 23

FIGURE 5 ICI Locations

A B C D EFGHJK L MNDETECTOR AXIAL LEVEL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 O 1 O 7 O 6 O 5 O 4 O 3 O 2 O 11 O 10 O 9 O 8 O 16 O 15 O 14 O 13 O 12 O 17 O 18 O 19 O 20 O 22 O 23 O 24 O 26 O 27 O 28 O 35 O 33 O 32 O 31 O 30 O 29 O 34 O 41 O 40 O 39 O 38 O 37 O 36 O 44 O 43 O 42J = 1 BOTTOM OF CORE J = 2 MIDDLE OF CORE J = 3 TOP OF CORE Attachment to 2CAN070804

Page 18 of 23

FIGURE 6 GETARP Output for the 29% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP

GGG EEE TTT AAA AAA RRR RRR PPP PPP

GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP

GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP

GGG GGG EEE TTT AAA AAA RRR RRR PPP

GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP

GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF

AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR NT REVISION 1

MEASURED DATA EXTRACTED FROM: a32510n.s01

PREDICTED DATA EXTRACTED FROM: a2pred.029

RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+-----------+ +-------+-------+-------+-------+-------+

PREDICTED ;  ; .411 ; .537 ; .563 ; .537 ; .410 ; (MEAS.-PREDICTED)
MEASURED  ;  ; .435 ; .570 ; .595 ; .566 ; .434 ;  % DIFFERENCE = ----------------- X 100.0
% DIFFER  ;  ; 5.88 ; 6.08 ; 5.70 ; 5.31 ; 5.77 ; PREDICTED

+-----------+ +-------+-------+-------+-------+-------+-------+-------+-------+-------+

.418 ; .662 ; 1.056 ; 1.162 ; 1.170 ; 1.162 ; 1.056 ; .663 ; .420 ;
.431 ; .635 ; 1.035 ; 1.150 ; 1.151 ; 1.136 ; 1.036 ; .652 ; .437 ;
3.02 ; -4.05 ; -1.99 ; -1.05 ; -1.66 ; -2.21 ; -1.90 ; -1.61 ; 4.09 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.526 ; 1.071 ; 1.203 ; 1.141 ; 1.276 ; 1.178 ; 1.276 ; 1.143 ; 1.207 ; 1.075 ; .526 ;
.555 ; 1.064 ; 1.169 ; 1.113 ; 1.252 ; 1.154 ; 1.250 ; 1.115 ; 1.177 ; 1.073 ; .559 ;
5.49 ; -.67 ; -2.85 ; -2.47 ; -1.86 ; -2.06 ; -2.00 ; -2.43 ; -2.51 ; -.19 ; 6.25 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.420 ; 1.075 ; 1.229 ; 1.257 ; 1.170 ; 1.165 ; 1.125 ; 1.166 ; 1.171 ; 1.260 ; 1.229 ; 1.071 ; .418 ;
.450 ; 1.081 ; 1.223 ; 1.249 ; 1.175 ; 1.158 ; 1.138 ; 1.163 ; 1.176 ; 1.247 ; 1.227 ; 1.088 ; .455 ;
7.19 ; .58 ; -.53 ; -.61 ; .41 ; -.60 ; 1.12 ; -.24 ; .46 ; -1.06 ; -.13 ; 1.59 ; 8.78 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.663 ; 1.207 ; 1.260 ; 1.140 ; 1.142 ; 1.195 ; 1.111 ; 1.194 ; 1.140 ; 1.140 ; 1.257 ; 1.203 ; .662 ;
.695 ; 1.194 ; 1.236 ; 1.150 ; 1.135 ; 1.199 ; 1.112 ; 1.202 ; 1.138 ; 1.154 ; 1.244 ; 1.205 ; .706 ;
4.79 ; -1.06 ; -1.87 ; .84 ; -.64 ; .34 ; .11 ; .63 ; -.19 ; 1.27 ; -1.06 ; .17 ; 6.59 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.410 ; 1.056 ; 1.143 ; 1.171 ; 1.140 ; 1.145 ; 1.066 ; 1.042 ; 1.064 ; 1.145 ; 1.142 ; 1.170 ; 1.141 ; 1.056 ; .411 ;
.395 ; 1.050 ; 1.136 ; 1.172 ; 1.123 ; 1.151 ; 1.069 ; 1.070 ; 1.071 ; 1.158 ; 1.138 ; 1.184 ; 1.151 ; 1.076 ; .449 ;
-3.56 ; -.56 ; -.63 ; .13 ; -1.51 ; .48 ; .28 ; 2.65 ; .66 ; 1.13 ; -.33 ; 1.20 ; .86 ; 1.89 ; 9.15 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.537 ; 1.162 ; 1.276 ; 1.166 ; 1.194 ; 1.064 ; .972 ; .956 ; .972 ; 1.066 ; 1.195 ; 1.165 ; 1.276 ; 1.162 ; .537 ;
.561 ; 1.159 ; 1.260 ; 1.149 ; 1.189 ; 1.061 ; .994 ; .974 ; 1.001 ; 1.071 ; 1.199 ; 1.158 ; 1.269 ; 1.160 ; .578 ;
4.50 ; -.29 ; -1.26 ; -1.44 ; -.42 ; -.26 ; 2.24 ; 1.85 ; 2.99 ; .47 ; .33 ; -.59 ; -.52 ; -.16 ; 7.57 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.563 ; 1.170 ; 1.178 ; 1.125 ; 1.111 ; 1.042 ; .956 ; .858 ; .956 ; 1.042 ; 1.111 ; 1.125 ; 1.178 ; 1.170 ; .563 ;
.595 ; 1.156 ; 1.157 ; 1.130 ; 1.101 ; 1.053 ; .939 ; .883 ; .958 ; 1.063 ; 1.105 ; 1.137 ; 1.165 ; 1.167 ; .601 ;
5.77 ; -1.18 ; -1.77 ; .49 ; -.93 ; 1.08 ; -1.77 ; 2.91 ; .20 ; 1.97 ; -.52 ; 1.11 ; -1.10 ; -.24 ; 6.80 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.537 ; 1.162 ; 1.276 ; 1.165 ; 1.195 ; 1.066 ; .972 ; .956 ; .972 ; 1.064 ; 1.194 ; 1.166 ; 1.276 ; 1.162 ; .537 ;
.570 ; 1.142 ; 1.256 ; 1.148 ; 1.190 ; 1.059 ; .986 ; .966 ; .993 ; 1.064 ; 1.195 ; 1.156 ; 1.268 ; 1.166 ; .564 ;
6.10 ; -1.71 ; -1.55 ; -1.47 ; -.41 ; -.67 ; 1.42 ; 1.03 ; 2.15 ; .04 ; .08 ; -.88 ; -.59 ; .38 ; 5.05 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.411 ; 1.056 ; 1.141 ; 1.170 ; 1.142 ; 1.145 ; 1.064 ; 1.042 ; 1.066 ; 1.145 ; 1.140 ; 1.171 ; 1.143 ; 1.056 ; .410 ;
.442 ; 1.061 ; 1.137 ; 1.173 ; 1.130 ; 1.143 ; 1.046 ; 1.055 ; 1.052 ; 1.148 ; 1.132 ; 1.179 ; 1.144 ; 1.054 ; .391 ;
7.63 ; .47 ; -.34 ; .23 ; -1.06 ; -.15 ; -1.69 ; 1.20 ; -1.33 ; .28 ; -.69 ; .65 ; .06 ; -.15 ; -4.61 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.662 ; 1.203 ; 1.257 ; 1.140 ; 1.140 ; 1.194 ; 1.111 ; 1.195 ; 1.142 ; 1.140 ; 1.260 ; 1.207 ; .663 ;
.695 ; 1.187 ; 1.229 ; 1.144 ; 1.126 ; 1.187 ; 1.102 ; 1.191 ; 1.131 ; 1.148 ; 1.236 ; 1.194 ; .695 ;
4.93 ; -1.35 ; -2.21 ; .39 ; -1.25 ; -.58 ; -.85 ; -.30 ; -.96 ; .73 ; -1.88 ; -1.05 ; 4.89 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.418 ; 1.071 ; 1.229 ; 1.260 ; 1.171 ; 1.166 ; 1.125 ; 1.165 ; 1.170 ; 1.257 ; 1.229 ; 1.075 ; .420 ;
.445 ; 1.063 ; 1.213 ; 1.238 ; 1.169 ; 1.155 ; 1.132 ; 1.160 ; 1.171 ; 1.240 ; 1.217 ; 1.072 ; .448 ;
6.56 ; -.75 ; -1.33 ; -1.72 ; -.21 ; -.98 ; .63 ; -.42 ; .10 ; -1.39 ; -.95 ; -.27 ; 6.68 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.526 ; 1.075 ; 1.207 ; 1.143 ; 1.276 ; 1.178 ; 1.276 ; 1.141 ; 1.203 ; 1.071 ; .526 ;
.550 ; 1.063 ; 1.171 ; 1.110 ; 1.246 ; 1.147 ; 1.245 ; 1.110 ; 1.170 ; 1.063 ; .552 ;
4.53 ; -1.08 ; -2.96 ; -2.87 ; -2.36 ; -2.62 ; -2.40 ; -2.75 ; -2.78 ; -.74 ; 4.98 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.420 ; .663 ; 1.056 ; 1.162 ; 1.170 ; 1.162 ; 1.056 ; .662 ; .418 ;
.436 ; .655 ; 1.036 ; 1.137 ; 1.143 ; 1.131 ; 1.033 ; .652 ; .435 ;
3.72 ; -1.13 ; -1.90 ; -2.14 ; -2.34 ; -2.64 ; -2.20 ; -1.53 ; 3.99 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.410 ; .537 ; .563 ; .537 ; .411 ;
.434 ; .565 ; .591 ; .563 ; .433 ;
5.73 ; 5.18 ; 5.01 ; 4.89 ; 5.32 ;

+-------+-------+-------+-------+-------+

Attachment to 2CAN070804

Page 19 of 23

FIGURE 6 (continued) GETARP Output for the 29% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON

NODE PREDICTED MEAS.  % DIFFERENCE

1 .4230 .4809 13.6889

2 .4890 .5399 10.4109

3 .5540 .5986 8.0506

4 .6520 .6988 7.1761

5 .7100 .7539 6.1878

6 .7510 .7929 5.5766

7 .7890 .8285 5.0115

8 .8210 .8592 4.6487

9 .8490 .8858 4.3314

10 .8730 .9091 4.1392

11 .8950 .9301 3.9190

12 .9140 .9491 3.8409

13 .9330 .9670 3.6458

14 .9500 .9839 3.5700

15 .9660 1.0000 3.5161

16 .9820 1.0153 3.3943

17 .9970 1.0300 3.3055

18 1.0120 1.0439 3.1493

19 1.0260 1.0571 3.0286

20 1.0400 1.0696 2.8445

21 1.0530 1.0814 2.6999

22 1.0660 1.0927 2.5081

23 1.0800 1.1034 2.1666

24 1.0930 1.1140 1.9239

25 1.1080 1.1259 1.6195

26 1.1250 1.1399 1.3261

27 1.1400 1.1530 1.1420

28 1.1530 1.1622 .7988

29 1.1640 1.1681 .3558

30 1.1730 1.1721 -.0776

31 1.1810 1.1747 -.5361

32 1.1870 1.1757 -.9491

33 1.1920 1.1754 -1.3891

34 1.1950 1.1738 -1.7778

35 1.1980 1.1707 -2.2816

36 1.1990 1.1661 -2.7403

37 1.1990 1.1599 -3.2576

38 1.1980 1.1520 -3.8370

39 1.1950 1.1421 -4.4280

40 1.1890 1.1298 -4.9796

41 1.1810 1.1150 -5.5884

42 1.1680 1.0968 -6.0995

43 1.1500 1.0745 -6.5633

44 1.1260 1.0474 -6.9832

45 1.0930 1.0144 -7.1900

46 1.0500 .9747 -7.1752

47 .9990 .9310 -6.8038

48 .9220 .8687 -5.7854

49 .7910 .7548 -4.5729

50 .7080 .7063 -.2388

51 .6220 .6604 6.1749

PEAKING PARAMETER COMPARISON

PARAMETER MEAS. PREDICTED  % DIFFERENCE

FXY 1.4600 1.4530 .4829 %

FR 1.3782 1.4120 -2.3966 %

FZ 1.1757 1.1990 -1.9405 %

FQ 1.6494 1.6960 -2.7456 %

CALCULATED RMS VALUES

RADIAL = 1.9193

AXIAL = 4.1978

MEASURED ASI = -.0704

PREDICTED ASI = -.1058

ACCEPTANCE CRITERIA REPORT


MEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

RMS ERROR ON AXIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9

WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9

WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET ***

Attachment to 2CAN070804

Page 20 of 23

FIGURE 7 GETARP Output for the 66% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP

GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP

GGG EEE TTT AAA AAA RRR RRR PPP PPP

GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP

GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP

GGG GGG EEE TTT AAA AAA RRR RRR PPP

GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP

GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF

AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR NT REVISION 1

MEASURED DATA EXTRACTED FROM: a3251tk.s01

PREDICTED DATA EXTRACTED FROM: a2pred.068

RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+-----------+ +-------+-------+-------+-------+-------+

PREDICTED ;  ; .423 ; .550 ; .576 ; .549 ; .422 ; (MEAS.-PREDICTED)
MEASURED  ;  ; .433 ; .567 ; .592 ; .562 ; .432 ;  % DIFFERENCE = ----------------- X 100.0
% DIFFER  ;  ; 2.46 ; 3.04 ; 2.76 ; 2.36 ; 2.32 ; PREDICTED

+-----------+ +-------+-------+-------+-------+-------+-------+-------+-------+-------+

.429 ; .671 ; 1.058 ; 1.157 ; 1.165 ; 1.157 ; 1.058 ; .672 ; .430 ;
.430 ; .640 ; 1.036 ; 1.146 ; 1.148 ; 1.131 ; 1.036 ; .659 ; .437 ;
.27 ; -4.55 ; -2.12 ; -.91 ; -1.50 ; -2.26 ; -2.07 ; -1.96 ; 1.69 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.534 ; 1.068 ; 1.195 ; 1.135 ; 1.260 ; 1.169 ; 1.260 ; 1.136 ; 1.198 ; 1.072 ; .534 ;
.550 ; 1.061 ; 1.168 ; 1.113 ; 1.251 ; 1.153 ; 1.248 ; 1.115 ; 1.176 ; 1.071 ; .555 ;
3.04 ; -.70 ; -2.30 ; -1.96 ; -.69 ; -1.34 ; -.91 ; -1.84 ; -1.80 ; -.13 ; 3.94 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; 1.072 ; 1.212 ; 1.244 ; 1.161 ; 1.159 ; 1.120 ; 1.160 ; 1.162 ; 1.246 ; 1.212 ; 1.068 ; .429 ;
.446 ; 1.072 ; 1.216 ; 1.241 ; 1.172 ; 1.160 ; 1.138 ; 1.164 ; 1.174 ; 1.239 ; 1.222 ; 1.081 ; .451 ;
3.69 ; .02 ; .32 ; -.23 ; .97 ; .08 ; 1.59 ; .32 ; 1.02 ; -.57 ; .79 ; 1.22 ; 5.05 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.672 ; 1.198 ; 1.246 ; 1.133 ; 1.139 ; 1.191 ; 1.114 ; 1.190 ; 1.138 ; 1.133 ; 1.244 ; 1.195 ; .671 ;
.691 ; 1.191 ; 1.234 ; 1.146 ; 1.136 ; 1.202 ; 1.117 ; 1.206 ; 1.140 ; 1.152 ; 1.241 ; 1.200 ; .701 ;
2.77 ; -.61 ; -.99 ; 1.18 ; -.27 ; .95 ; .25 ; 1.33 ; .16 ; 1.65 ; -.25 ; .45 ; 4.42 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.422 ; 1.058 ; 1.136 ; 1.162 ; 1.138 ; 1.145 ; 1.075 ; 1.053 ; 1.074 ; 1.145 ; 1.139 ; 1.161 ; 1.135 ; 1.058 ; .423 ;
.403 ; 1.047 ; 1.136 ; 1.171 ; 1.125 ; 1.154 ; 1.076 ; 1.077 ; 1.083 ; 1.164 ; 1.141 ; 1.182 ; 1.147 ; 1.070 ; .445 ;
-4.45 ; -1.08 ; -.02 ; .79 ; -1.13 ; .81 ; .09 ; 2.31 ; .80 ; 1.62 ; .20 ; 1.80 ; 1.06 ; 1.18 ; 5.13 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.549 ; 1.157 ; 1.260 ; 1.160 ; 1.190 ; 1.074 ; .989 ; .978 ; .989 ; 1.075 ; 1.191 ; 1.159 ; 1.260 ; 1.157 ; .550 ;
.557 ; 1.140 ; 1.253 ; 1.148 ; 1.192 ; 1.069 ; 1.005 ; .986 ; 1.013 ; 1.079 ; 1.203 ; 1.159 ; 1.265 ; 1.153 ; .573 ;
1.38 ; -1.45 ; -.52 ; -1.01 ; .16 ; -.49 ; 1.58 ; .78 ; 2.39 ; .40 ; .99 ; -.04 ; .42 ; -.31 ; 4.18 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.576 ; 1.165 ; 1.169 ; 1.120 ; 1.114 ; 1.053 ; .978 ; .883 ; .978 ; 1.053 ; 1.114 ; 1.120 ; 1.169 ; 1.165 ; .576 ;
.590 ; 1.147 ; 1.152 ; 1.129 ; 1.105 ; 1.063 ; .963 ; .898 ; .979 ; 1.072 ; 1.111 ; 1.137 ; 1.162 ; 1.161 ; .597 ;
2.46 ; -1.52 ; -1.42 ; .79 ; -.79 ; .99 ; -1.56 ; 1.67 ; .12 ; 1.84 ; -.26 ; 1.49 ; -.57 ; -.30 ; 3.71 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.550 ; 1.157 ; 1.260 ; 1.159 ; 1.191 ; 1.075 ; .989 ; .978 ; .989 ; 1.074 ; 1.190 ; 1.160 ; 1.260 ; 1.157 ; .549 ;
.566 ; 1.138 ; 1.252 ; 1.148 ; 1.194 ; 1.068 ; .999 ; .979 ; 1.005 ; 1.073 ; 1.198 ; 1.155 ; 1.263 ; 1.158 ; .562 ;
2.83 ; -1.66 ; -.63 ; -.94 ; .26 ; -.64 ; 1.02 ; .11 ; 1.58 ; -.13 ; .70 ; -.39 ; .26 ; .11 ; 2.40 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.423 ; 1.058 ; 1.135 ; 1.161 ; 1.139 ; 1.145 ; 1.074 ; 1.053 ; 1.075 ; 1.145 ; 1.138 ; 1.162 ; 1.136 ; 1.058 ; .422 ;
.439 ; 1.056 ; 1.133 ; 1.171 ; 1.134 ; 1.151 ; 1.060 ; 1.065 ; 1.063 ; 1.153 ; 1.134 ; 1.175 ; 1.138 ; 1.052 ; .399 ;
3.75 ; -.15 ; -.19 ; .86 ; -.45 ; .49 ; -1.27 ; 1.11 ; -1.13 ; .72 ; -.31 ; 1.14 ; .16 ; -.61 ; -5.52 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.671 ; 1.195 ; 1.244 ; 1.133 ; 1.138 ; 1.190 ; 1.114 ; 1.191 ; 1.139 ; 1.133 ; 1.246 ; 1.198 ; .672 ;
.690 ; 1.183 ; 1.228 ; 1.143 ; 1.130 ; 1.194 ; 1.108 ; 1.196 ; 1.133 ; 1.145 ; 1.232 ; 1.188 ; .691 ;
2.90 ; -.97 ; -1.31 ; .88 ; -.74 ; .31 ; -.55 ; .40 ; -.55 ; 1.04 ; -1.10 ; -.80 ; 2.80 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.429 ; 1.068 ; 1.212 ; 1.246 ; 1.162 ; 1.160 ; 1.120 ; 1.159 ; 1.161 ; 1.244 ; 1.212 ; 1.072 ; .430 ;
.442 ; 1.059 ; 1.209 ; 1.232 ; 1.168 ; 1.158 ; 1.133 ; 1.161 ; 1.168 ; 1.231 ; 1.210 ; 1.064 ; .444 ;
3.10 ; -.87 ; -.28 ; -1.12 ; .50 ; -.18 ; 1.20 ; .15 ; .62 ; -1.07 ; -.15 ; -.75 ; 3.22 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.534 ; 1.072 ; 1.198 ; 1.136 ; 1.260 ; 1.169 ; 1.260 ; 1.135 ; 1.195 ; 1.068 ; .534 ;
.547 ; 1.062 ; 1.172 ; 1.112 ; 1.246 ; 1.148 ; 1.244 ; 1.109 ; 1.168 ; 1.059 ; .548 ;
2.44 ; -.89 ; -2.14 ; -2.14 ; -1.10 ; -1.80 ; -1.24 ; -2.26 ; -2.27 ; -.80 ; 2.58 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; .672 ; 1.058 ; 1.157 ; 1.165 ; 1.157 ; 1.058 ; .671 ; .429 ;
.436 ; .662 ; 1.038 ; 1.134 ; 1.141 ; 1.128 ; 1.033 ; .657 ; .434 ;
1.43 ; -1.46 ; -1.92 ; -1.97 ; -2.06 ; -2.46 ; -2.34 ; -2.16 ; 1.17 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.422 ; .549 ; .576 ; .550 ; .423 ;
.432 ; .562 ; .589 ; .561 ; .431 ;
2.46 ; 2.42 ; 2.21 ; 1.93 ; 1.93 ;

+-------+-------+-------+-------+-------+

Attachment to 2CAN070804

Page 21 of 23

FIGURE 7 (continued) GETARP Output for the 66% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON

NODE PREDICTED MEAS.  % DIFFERENCE

1 .5120 .5587 9.1137

2 .5850 .6256 6.9375

3 .6550 .6915 5.5683

4 .7620 .8041 5.5289

5 .8210 .8641 5.2519

6 .8600 .9047 5.1931

7 .8940 .9406 5.2077

8 .9210 .9698 5.3022

9 .9440 .9937 5.2640

10 .9620 1.0131 5.3080

11 .9780 1.0290 5.2099

12 .9910 1.0420 5.1493

13 1.0030 1.0533 5.0130

14 1.0130 1.0630 4.9314

15 1.0230 1.0714 4.7291

16 1.0320 1.0789 4.5423

17 1.0410 1.0855 4.2780

18 1.0490 1.0915 4.0534

19 1.0560 1.0969 3.8770

20 1.0630 1.1019 3.6590

21 1.0710 1.1065 3.3109

22 1.0780 1.1108 3.0399

23 1.0850 1.1147 2.7376

24 1.0920 1.1188 2.4566

25 1.1000 1.1244 2.2176

26 1.1100 1.1321 1.9885

27 1.1200 1.1389 1.6834

28 1.1260 1.1417 1.3942

29 1.1310 1.1412 .9054

30 1.1340 1.1387 .4174

31 1.1360 1.1348 -.1068

32 1.1370 1.1293 -.6782

33 1.1370 1.1224 -1.2799

34 1.1360 1.1143 -1.9100

35 1.1350 1.1049 -2.6485

36 1.1320 1.0944 -3.3186

37 1.1280 1.0827 -4.0197

38 1.1230 1.0697 -4.7475

39 1.1160 1.0553 -5.4394

40 1.1080 1.0393 -6.2027

41 1.0970 1.0215 -6.8800

42 1.0830 1.0012 -7.5526

43 1.0650 .9778 -8.1852

44 1.0420 .9505 -8.7768

45 1.0110 .9185 -9.1461

46 .9710 .8809 -9.2831

47 .9250 .8401 -9.1748

48 .8580 .7829 -8.7557

49 .7390 .6795 -8.0483

50 .6710 .6354 -5.3062

51 .5990 .5938 -.8667

PEAKING PARAMETER COMPARISON

PARAMETER MEAS. PREDICTED  % DIFFERENCE

FXY 1.4229 1.4390 -1.1189 %

FR 1.3696 1.3940 -1.7502 %

FZ 1.1417 1.1370 .4132 %

FQ 1.5966 1.5910 .3517 %

CALCULATED RMS VALUES

RADIAL = 1.3784

AXIAL = 4.9895

MEASURED ASI = -.0024

PREDICTED ASI = -.0449

ACCEPTANCE CRITERIA REPORT


MEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

RMS ERROR ON AXIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9

WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9

WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET ***

Attachment to 2CAN070804

Page 22 of 23

FIGURE 8 GETARP Output for the 100% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP

GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP

GGG EEE TTT AAA AAA RRR RRR PPP PPP

GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP

GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP

GGG GGG EEE TTT AAA AAA RRR RRR PPP

GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP

GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF

AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR NT REVISION 1

MEASURED DATA EXTRACTED FROM: A3255JB.S02

PREDICTED DATA EXTRACTED FROM: a2pred.eq.100

RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+-----------+ +-------+-------+-------+-------+-------+

PREDICTED ;  ; .430 ; .557 ; .583 ; .557 ; .430 ; (MEAS.-PREDICTED)
MEASURED  ;  ; .427 ; .557 ; .582 ; .552 ; .425 ;  % DIFFERENCE = ----------------- X 100.0
% DIFFER  ;  ; -.76 ; -.03 ; -.21 ; -.92 ; -1.17 ; PREDICTED

+-----------+ +-------+-------+-------+-------+-------+-------+-------+-------+-------+

.435 ; .676 ; 1.056 ; 1.152 ; 1.160 ; 1.152 ; 1.057 ; .678 ; .436 ;
.426 ; .643 ; 1.032 ; 1.138 ; 1.142 ; 1.122 ; 1.032 ; .661 ; .432 ;
-2.17 ; -4.83 ; -2.25 ; -1.19 ; -1.51 ; -2.61 ; -2.37 ; -2.55 ; -.85 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.539 ; 1.064 ; 1.188 ; 1.130 ; 1.249 ; 1.164 ; 1.249 ; 1.131 ; 1.191 ; 1.067 ; .539 ;
.539 ; 1.050 ; 1.168 ; 1.119 ; 1.247 ; 1.159 ; 1.243 ; 1.120 ; 1.176 ; 1.060 ; .544 ;
-.08 ; -1.32 ; -1.71 ; -.99 ; -.14 ; -.40 ; -.44 ; -.96 ; -1.29 ; -.68 ; .90 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.436 ; 1.067 ; 1.200 ; 1.235 ; 1.157 ; 1.157 ; 1.119 ; 1.158 ; 1.158 ; 1.238 ; 1.200 ; 1.064 ; .435 ;
.436 ; 1.056 ; 1.201 ; 1.239 ; 1.170 ; 1.172 ; 1.138 ; 1.174 ; 1.170 ; 1.235 ; 1.206 ; 1.067 ; .441 ;
.06 ; -1.02 ; .05 ; .29 ; 1.10 ; 1.26 ; 1.72 ; 1.34 ; 1.03 ; -.24 ; .54 ; .29 ; 1.45 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.678 ; 1.191 ; 1.238 ; 1.130 ; 1.140 ; 1.190 ; 1.118 ; 1.189 ; 1.139 ; 1.130 ; 1.235 ; 1.188 ; .676 ;
.680 ; 1.185 ; 1.234 ; 1.142 ; 1.146 ; 1.207 ; 1.129 ; 1.209 ; 1.149 ; 1.147 ; 1.241 ; 1.195 ; .689 ;
.27 ; -.54 ; -.29 ; 1.09 ; .55 ; 1.40 ; 1.01 ; 1.65 ; .88 ; 1.50 ; .52 ; .56 ; 1.89 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; 1.057 ; 1.131 ; 1.158 ; 1.139 ; 1.146 ; 1.083 ; 1.062 ; 1.082 ; 1.146 ; 1.140 ; 1.157 ; 1.130 ; 1.056 ; .430 ;
.406 ; 1.040 ; 1.136 ; 1.168 ; 1.139 ; 1.160 ; 1.092 ; 1.084 ; 1.096 ; 1.168 ; 1.154 ; 1.178 ; 1.147 ; 1.059 ; .435 ;
-5.52 ; -1.65 ; .41 ; .85 ; -.04 ; 1.24 ; .80 ; 2.07 ; 1.28 ; 1.93 ; 1.26 ; 1.85 ; 1.51 ; .31 ; 1.25 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.557 ; 1.152 ; 1.249 ; 1.158 ; 1.189 ; 1.082 ; 1.001 ; .993 ; 1.001 ; 1.083 ; 1.190 ; 1.157 ; 1.249 ; 1.152 ; .557 ;
.549 ; 1.130 ; 1.245 ; 1.156 ; 1.197 ; 1.086 ; 1.017 ; 1.005 ; 1.024 ; 1.096 ; 1.208 ; 1.167 ; 1.257 ; 1.143 ; .562 ;
-1.48 ; -1.93 ; -.31 ; -.15 ; .70 ; .37 ; 1.64 ; 1.23 ; 2.34 ; 1.23 ; 1.54 ; .85 ; .66 ; -.77 ; .85 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.583 ; 1.160 ; 1.164 ; 1.119 ; 1.118 ; 1.062 ; .993 ; .900 ; .993 ; 1.062 ; 1.118 ; 1.119 ; 1.164 ; 1.160 ; .583 ;
.580 ; 1.141 ; 1.155 ; 1.128 ; 1.120 ; 1.076 ; .996 ; .917 ; 1.012 ; 1.085 ; 1.128 ; 1.136 ; 1.166 ; 1.154 ; .587 ;
-.46 ; -1.65 ; -.77 ; .80 ; .16 ; 1.35 ; .32 ; 1.85 ; 1.92 ; 2.18 ; .86 ; 1.53 ; .13 ; -.50 ; .66 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.557 ; 1.152 ; 1.249 ; 1.157 ; 1.190 ; 1.083 ; 1.001 ; .993 ; 1.001 ; 1.082 ; 1.189 ; 1.158 ; 1.249 ; 1.152 ; .557 ;
.555 ; 1.130 ; 1.244 ; 1.157 ; 1.200 ; 1.088 ; 1.016 ; 1.002 ; 1.020 ; 1.091 ; 1.204 ; 1.163 ; 1.254 ; 1.147 ; .554 ;
-.30 ; -1.90 ; -.36 ; -.03 ; .87 ; .43 ; 1.49 ; .92 ; 1.92 ; .82 ; 1.23 ; .42 ; .38 ; -.45 ; -.49 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; 1.056 ; 1.130 ; 1.157 ; 1.140 ; 1.146 ; 1.082 ; 1.062 ; 1.083 ; 1.146 ; 1.139 ; 1.158 ; 1.131 ; 1.057 ; .430 ;
.430 ; 1.046 ; 1.132 ; 1.168 ; 1.148 ; 1.161 ; 1.086 ; 1.079 ; 1.086 ; 1.161 ; 1.146 ; 1.170 ; 1.135 ; 1.043 ; .403 ;
.04 ; -.92 ; .18 ; .96 ; .69 ; 1.28 ; .39 ; 1.55 ; .24 ; 1.30 ; .57 ; 1.03 ; .32 ; -1.29 ; -6.27 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.676 ; 1.188 ; 1.235 ; 1.130 ; 1.139 ; 1.189 ; 1.118 ; 1.190 ; 1.140 ; 1.130 ; 1.238 ; 1.191 ; .678 ;
.680 ; 1.179 ; 1.230 ; 1.141 ; 1.143 ; 1.203 ; 1.124 ; 1.203 ; 1.143 ; 1.139 ; 1.231 ; 1.181 ; .679 ;
.52 ; -.77 ; -.41 ; .94 ; .32 ; 1.16 ; .58 ; 1.08 ; .30 ; .84 ; -.53 ; -.84 ; .20 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.435 ; 1.064 ; 1.200 ; 1.238 ; 1.158 ; 1.158 ; 1.119 ; 1.157 ; 1.157 ; 1.235 ; 1.200 ; 1.067 ; .436 ;
.434 ; 1.048 ; 1.196 ; 1.231 ; 1.167 ; 1.170 ; 1.135 ; 1.170 ; 1.164 ; 1.226 ; 1.194 ; 1.049 ; .434 ;
-.24 ; -1.55 ; -.34 ; -.57 ; .76 ; 1.02 ; 1.45 ; 1.15 ; .64 ; -.75 ; -.51 ; -1.73 ; -.40 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.539 ; 1.067 ; 1.191 ; 1.131 ; 1.249 ; 1.164 ; 1.249 ; 1.130 ; 1.188 ; 1.064 ; .539 ;
.537 ; 1.054 ; 1.173 ; 1.119 ; 1.243 ; 1.155 ; 1.240 ; 1.114 ; 1.166 ; 1.048 ; .536 ;
-.34 ; -1.26 ; -1.48 ; -1.09 ; -.47 ; -.79 ; -.73 ; -1.39 ; -1.83 ; -1.54 ; -.55 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.436 ; .678 ; 1.057 ; 1.152 ; 1.160 ; 1.152 ; 1.056 ; .676 ; .435 ;
.432 ; .664 ; 1.035 ; 1.128 ; 1.137 ; 1.121 ; 1.029 ; .658 ; .429 ;
-1.01 ; -2.09 ; -2.09 ; -2.12 ; -1.98 ; -2.73 ; -2.54 ; -2.69 ; -1.46 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; .557 ; .583 ; .557 ; .430 ;
.426 ; .553 ; .579 ; .551 ; .424 ;
-.89 ; -.70 ; -.64 ; -1.08 ; -1.30 ;

+-------+-------+-------+-------+-------+

Attachment to 2CAN070804

Page 23 of 23

FIGURE 8 (continued) GETARP Output for the 100% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON

NODE PREDICTED MEAS.  % DIFFERENCE

1 .6090 .6249 2.6181

2 .6900 .7017 1.6925

3 .7680 .7765 1.1049

4 .8850 .9024 1.9665

5 .9470 .9688 2.3013

6 .9860 1.0125 2.6901

7 1.0190 1.0501 3.0493

8 1.0450 1.0793 3.2805

9 1.0640 1.1015 3.5279

10 1.0780 1.1179 3.7047

11 1.0890 1.1297 3.7355

12 1.0970 1.1376 3.7012

13 1.1030 1.1429 3.6176

14 1.1080 1.1460 3.4282

15 1.1110 1.1473 3.2709

16 1.1130 1.1475 3.0967

17 1.1150 1.1466 2.8336

18 1.1150 1.1450 2.6932

19 1.1150 1.1430 2.5100

20 1.1150 1.1406 2.2994

21 1.1130 1.1381 2.2557

22 1.1110 1.1355 2.2080

23 1.1090 1.1328 2.1431

24 1.1080 1.1303 2.0161

25 1.1070 1.1294 2.0259

26 1.1080 1.1306 2.0396

27 1.1080 1.1308 2.0541

28 1.1060 1.1268 1.8851

29 1.1020 1.1195 1.5885

30 1.0960 1.1100 1.2746

31 1.0890 1.0989 .9054

32 1.0810 1.0861 .4730

33 1.0740 1.0720 -.1859

34 1.0650 1.0567 -.7828

35 1.0560 1.0403 -1.4881

36 1.0460 1.0231 -2.1932

37 1.0350 1.0050 -2.9000

38 1.0240 .9862 -3.6873

39 1.0110 .9667 -4.3802

40 .9960 .9463 -4.9918

41 .9810 .9249 -5.7193

42 .9630 .9018 -6.3548

43 .9420 .8766 -6.9456

44 .9160 .8484 -7.3780

45 .8860 .8166 -7.8369

46 .8480 .7801 -8.0020

47 .8050 .7414 -7.9015

48 .7460 .6884 -7.7206

49 .6440 .5953 -7.5588

50 .5910 .5543 -6.2054

51 .5340 .5154 -3.4791

PEAKING PARAMETER COMPARISON

PARAMETER MEAS. PREDICTED  % DIFFERENCE

FXY 1.4125 1.4280 -1.0843 %

FR 1.3681 1.3790 -.7922 %

FZ 1.1475 1.1150 2.9118 %

FQ 1.6299 1.5840 2.8976 %

CALCULATED RMS VALUES

RADIAL = 1.2725

AXIAL = 3.6611

MEASURED ASI = .0672

PREDICTED ASI = .0391

ACCEPTANCE CRITERIA REPORT


MEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

RMS ERROR ON AXIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9

WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9

WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET ***