ML110730083

From kanterella
Revision as of 17:13, 18 March 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
WCAP-17341-NP, Revision 0, Palisades Nuclear Power Plant Heatup and Cooldown Limit Curves for Normal Operation and Upper-Shelf Energy Evaluation, Attachment 5 to Pnp 2011-016
ML110730083
Person / Time
Site: Palisades Entergy icon.png
Issue date: 02/28/2011
From: Byrne S T, Long E J
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
PNP 2011-016 WCAP-17341-NP, Rev 0
Download: ML110730083 (86)


Text

ATTACHMENT 5 WCAP-17341-NP Palisades Nuclear Power Plant Heatup and Cooldown Limit Curves for Normal Operation and Upper-Shelf Energy Evaluation 93 Pages Follow Westinghouse Non-Proprietary Class 3 WCAP- 17341-NP February 2(Revision 0 Palisades Nuclear Power Plant Heatup and Cooldown Limit Curves for Normal Operation and Upper-Shelf Energy Evaluation Westinghouse

)11 WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-17341-NP Revision 0 Palisades Nuclear Power Plant Heatup and Cooldown Limit Curves for Normal Operation and Upper-Shelf Energy Evaluation E. J. Long*Aging Management and License Renewal Services S. T. Byrne*Aging Management and License Renewal Services February 2011 Reviewers:

A. E. Leicht*Aging Management and License Renewal Services J. B. Hall*Materials Center of Excellence Manager: N. A. Palm* for P. C. Paesano Aging Management and License Renewal Services*Electronically approved records are authenticated in the electronic document management system.Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066© 2011 Westinghouse Electric Company LLC All Rights Reserved ii Westinghouse Non-Proprietary Class 3 RECORD OF REVISION Revision 0: Original Issue WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 iii TABLE OF CONTENTS L IS T O F T A B L E S .......................................................................................................................................

iv L IS T O F F IG U R E S .....................................................................................................................................

v i EX EC U TIV E SU M M A R Y .........................................................................................................................

vii 1 IN T R O D U C T IO N ........................................................................................................................

1-1 2 FRACTURE TOUGHNESS PROPERTIES

................................................................................

2-1 3 CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS

................

3-1 3.1 O V ER A L L A PPR O A C H .................................................................................................

3-1 3.2 METHODOLOGY FOR PRESSURE-TEMPERATURE LIMIT CURVE D E V E L O P M E N T ............................................................................................................

3-1 3.3 CLOSURE HEAD/VESSEL FLANGE REQUIREMENTS

...........................................

3-5 3.4 DELTA PRESSURE CORRECTION

..............................................................................

3-5 3.5 LOWEST SERVICE TEMPERATURE REQUIREMENTS

...........................................

3-5 3.6 BOLTUP TEMPERATURE REQUIREMENTS

.............................................................

3-6 3.7 REACTOR VESSEL BELTLINE DIMENSIONS

..........................................................

3-6 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE

..........................................

4-1 5 HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES .......................

5-1 6 APPLICABILITY OF CURRENT HEATUP AND COOLDOWN LIMITS ...............................

6-1 7 RECREATION OF PALISADES TECHNICAL SPECIFICATION P-T LIMIT CURVES .........

7-1 8 R E F E R E N C E S .............................................................................................................................

8-1 APPENDIX A THERMAL STRESS INTENSITY FACTORS (KIT) ................................

A-1 APPENDIX B LTOP SYSTEM ENABLE TEMPERATURE

......................................

B-1 APPENDIX C HEATUP AND COOLDOWN LIMITS WITH MARGINS FOR INSTRUMENT ERRORS ....................................................................

C-1 APPENDIX D UPPER-SHELF ENERGY CALCULATIONS

.........................

D-1 WCAP- 17341-NP February 2011 Revision 0 iv Westinghouse Non-Proprietary Class 3 LIST OF TABLES Table 2-1 Summary of the Best-Estimate Cu and Ni Weight Percent and Initial RTNDT Values for the Palisades Reactor Vessel Beltline M aterials ....................................................................

2-2 Table 2-2 Summary of the Initial RTNDT Values for the Palisades Balance of RCS, Closure Head Flange and V essel Flange .................................................................................................

2-2 Table 2-3 Summary of the Palisades Reactor Vessel Beltline Material Chemistry Factors Per R egulatory G uide 1.99, R evision 2 ..................................................................................

2-3 Table 3-1 Summary of the Reactor Vessel Beltline Dimensions for Palisades

................................

3-6 Table 4-1 Fluence Values and Fluence Factors for the Vessel Surface, 1/4T and 3/4T Locations for the Palisades Reactor Vessel Beltline Materials at 42.1 EFPY ........................................

4-3 Table 4-2 Adjusted Reference Temperature Evaluation for the Palisades Reactor Vessel Beltline M aterials through 42.1 EFPY at th& 1/4T Location .........................................................

4-4 Table 4-3 Adjusted Reference Temperature Evaluation for the Palisades Reactor Vessel Beltline M aterials through 42.1 EFPY at the 3/4T Location .........................................................

4-5 Table 4-4 Summary of the Limiting ART Values Used in the Generation of the Palisades H eatup/Cooldown Curves at 42.1 EFPY .........................................................................

4-6 Table 5-1 Palisades 42.1 EFPY Heatup Data Points Using the 1998 through the 2000 Addenda App.G Methodology, With K 1 ,, With Flange Notch, Without Margin for Instrument Errors (Except for the Hydrostatic Leak Test) and With Delta Pressure Correction

..................

5-5 Table 5-1 -Cont. Palisades 42.1 EFPY Heatup Data Points Using the 1998 through the 2000 Addenda App.G Methodology, With K 1 c, With Flange Notch, Without Margin for Instrument Errors (Except for the Hydrostatic Leak Test) and With Delta Pressure Correction

..................

5-8 Table 5-2 Palisades 42.1 EFPY Cooldown Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With Kic, With Flange Notch, Without Margin for Instrument Errors and W ith Delta Pressure Correction

....................................................................

5-11 Table 6-1 Current Palisades P-T Limit Curve Data Points Plus 10% Margin for Heatup ...............

6-4 Table 6-2 Current Palisades P-T Limit Curve Data Points Plus 10% Margin for Cooldown ..........

6-5 Table 6-3 Data Points for Palisades Heatup P-T Limit Curve Comparison between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY ................

6-10 Table 6-4 Data Points for Palisades Cooldown P-T Limit Curve Comparison between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY .............

6-12 Table 6-5 Palisades Heatup P-T Limit Curve Margin Summary between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY ..........................

6-14 Table 6-6 Palisades Cooldown P-T Limit Curve Margin Summary between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY ..........................

6-15 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 v Table 7-1 Palisades Current P-T Limit Curve Data Points Used in the Recreation of Technical Specification Figure 3.4.3-1 ...................................................................................

7-4 Table 7-2 Palisades Current P-T Limit Curve Data Points Used in the Recreation of Technical Specification Figure 3.4.3-2 ............................................................................................

7-5 Table A-I K 1 t Values for Palisades 42.1 EFPY 1 00°F/hr Heatup Curves (w/o Margins for Instrument E rr o rs) .................................................................................................................

............

A -2 Table A-2 KIt Values for Palisades 42.1 EFPY 100°F/hr Cooldown Curves (w/o Margins for Instrum ent E rrors) ...........................................................................................................

A -3 Table C- I Palisades 42.1 EFPY HeatuI Data Points Using the 1998 through the 2000 Addenda App.G Methodology, With K 1 ,, With Flange Notch, With Margin for Instrument Errors and W ith D elta Pressure C orrection

......................................................................................

C -4 Table C-1-Cont.

Palisades 42.1 EFPY Heatup Data Points Using the 1998 through the 2000 Addenda App.G Methodology, With K 1 ,, With Flange Notch, With Margin for Instrument Errors and W ith D elta Pressure C orrection

......................................................................................

C -7 Table C-2 Palisades 42.1 EFPY Cooldown Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With K 1 ,, With Flange Notch, With Margin for Instrument Errors and With Delta Pressure Correction

....................................

C-10 Table D-l Palisades Reactor Vessel Beltline Initial USE and Copper Weight Percent Values ........ D-2 Table D-2 Palisades Reactor Vessel Surveillance Capsule Fluence and USE Data ........................

D-3 Table D-3 Post-Irradiation USE Measurements for Weld Heat # 27204 Using Linde 1092 Flux for D iablo Canyon U nit 1 and Palisades

..............................................................................

D -4 Table D-4 Palisades Predicted Positions 1.2 and 2.2 USE Values at 42.1 EFPY ............................

D-5 Table D-5 Calculation of the 1/4T Fluence Value for LS Plate D-3804-1 to Reach the 10 CFR 50, A ppendix G , Screening Criteria ....................................................................................

D -8 Table D-6 Calculation of the Surface Fluence, EFPY and Calendar Date for LS Plate D-3804-1 to Drop Below the 10 CFR 50, Appendix G, Screening Criteria ........................................

D-8 Table D-7 Calculation of the 1/4T Fluence Value for IS to LS Circ. Weld (Heat # 27204) to Reach the 10 CFR 50, Appendix G, Screening Criteria:ý

...........................................................

D-9 Table D-8 Calculation of the Surface Fluence, EFPY and Calendar Date for IS to LS Circ. Weld (Heat # 27204) to Drop Below the 10 CFR 50, Appendix G, Screening Criteria ...........

D-9 WCAP-17341-NP February 2011 Revision 0 vi Westinghouse Non-Proprietary Class 3 LIST OF FIGURES Figure 5-1 Palisades Reactor Coolant System Steady State and Heatup Curves for 20, 40, 60, 80 and 100°F/hr Applicable to 42.1 EFPY Based on the K 1 c Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, Without Margins for Instrumentation Errors (Except for the Hydrostatic Leak Test), and With Delta Pressure C orrection

........................................................................................................................

5 -3 Figure 5-2 Palisades Reactor Coolant System Steady State and Cooldown Curves for 20, 40, 60, 80 and 100°F/hr Applicable to 42.1 EFPY Based on the K 1 c Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, Without Margins for Instrumentation Errors, and With Delta Pressure Correction

.......................

5-4 Figure 6-1 Palisades Heatup P-T Limit Curve Comparison between the Current P-T Limit Curves +10% Margin and the New P-T Limit Curves to 42.1 EFPY ............................................

6-6 Figure 6-2 Palisades Heatup P-T Limit Curve Comparison between the Current P-T Limit Curves +.10% Margin and the New P-T Limit Curves to 42.1 EFPY Magnified

...........................

6-7 Figure 6-3 Palisades Cooldown P-T Limit Curve Comparison between the Current P-T Limit Curves+ 10% Margin and the New P-T Limit Curves to 42.1 EFPY .........................................

6-8 Figure 6-4 Palisades Cooldown P-T Limit Curve Comparison between the Current P-T Limit Curves+ 10% Margin and the New P-T Limit Curves to 42.1 EFPY Magnified

........................

6-9 Figure 7-1 Recreation of Palisades Nuclear Plant Technical Specification Figure 3.4.3-1 with Addition of Basis Information and Applicability Term ...................................................

7-2 Figure 7-2 Recreation of Palisades Nuclear Plant Technical Specification Figure 3.4.3-2 with Addition of Basis Information and Applicability Term ...................................................

7-3 Figure C-1 Palisades Reactor Coolant System Steady State and Heatup Curves for 20, 40, 60, 80 and 100°F/hr Applicable to 42.1 EFPY Based on the KI, Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, With Margins for Instrumentation Errors, and With Delta Pressure Correction

.........................................

C-2 Figure C-2 Palisades Reactor Coolant System Steady State and Cooldown Curves for 20, 40, 60, 80 and 100°F/hr Applicable to 42.1 EFPY Based on the K 1.Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, With Margins for Instrumentation Errors, and With Delta Pressure Correction

......................

C-3 Figure D-1 Regulatory Guide 1.99, Revision 2, Predicted Decrease in USE for Welds as a Function of Copper and Fluence for Palisades

..............................................................................

D -6 Figure D-2 Regulatory Guide 1.99, Revision 2, Predicted Decrease in USE for Plates as a Function of Copper and Fluence for Palisades

............................................................................

D -7 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 vii EXECUTIVE

SUMMARY

This report provides the methodology and results of the generation of heatup and cooldown pressure-temperature (P-T) limit curves for normal operation of the Palisades reactor vessel. The heatup and cooldown P-T limit curves were generated using the limiting Adjusted Reference Temperature (ART)values pertaining to Palisades.

The limiting ART values, which pertain to an axially oriented weld, were those of the intermediate and lower shell axial welds 2-112 and 3-112 (Heat # W5214 using the Position 2.1 chemistry factor value with a full margin term) at both 1/4 thickness (1/4T) and 3/4 thickness (3/4T)locations.

The P-T curves made use of the Klc methodology that was first incorporated into the 1998 through the 2000 Addenda Edition of the ASME Code,Section XI, Appendix G, and ASME Code Case N-641.The P-T limit curves were generated for an End-of-License Extension (EOLE) calendar date of March 24, 203 l, which corresponded to 42.1 Effective Full Power Years (EFPY), using heatup rates of 0, 20, 40, 60, 80 and 100°F/hr, and cooldown rates of 0, 20, 40, 60, 80 and 100°F/hr.

The curves were developed without margins for instrumentation errors and with a delta pressure correction for static and dynamic head loss. These curves can be found in Figures 5-1 and 5-2. Appendix A contains the thermal stress intensity factors for the maximum heatup and cooldown rates at 42.1 EFPY. Appendix B contains the determination of the Low Temperature Overpressure Protection (LTOP) system minimum enable temperature at 42.1 EFPY.Appendix C contains heatup and cooldown limit curves that were developed with margins for instrumentation errors and with a delta pressure correction for static and dynamic head loss. These can be found in Figures C-I and C-2.Additionally, the curves documented in this report were compared to the current Palisades heatup and cooldown limit curves to determine if adequate margin exists to justify continued operation of the current curves. The current P-T limit curves for Palisades, including a ten-percent increase in pressure to account for changes between the K 1 c and Kla methodology, remain conservative through EOLE when compared to the curves documented in this report using the latest methodologies detailed in the 1998 through the 2000 Addenda Edition of the ASME Code,Section XI, Appendix G, and ASME Code Case N-641. This ten-percent increase to the pressure values is for comparison purposes only and is not to be used in actual plant operation.

This comparison can be found in Figures 6-1 through 6-4. A summary of the available margin is contained in Tables 6-5 and 6-6 for heatup and cooldown, respectively.

Finally, the current Technical Specification P-T limit curves for Palisades have been recreated, with the inclusion of the basis information and applicability term, in Figures 7-1 and 7-2.Furthermore, Appendix D contains the Upper-Shelf Energy evaluation for Palisades at 42.1 EFPY. The limiting plate and weld materials (lower shell plate D-3804-1 and intermediate to lower shell circumferential weld 9-112 (Heat # 27204), using Position 1.2 data) are predicted to drop below 50 ft-lb in December of 2016 for the plate and November of 2027 for the weld. Per 10 CFR 50, Appendix G, an Equivalent Margins Analysis needs to be submitted to the NRC at least three years prior to the date when the predicted Charpy upper-shelf energy values are predicted to drop below 50 ft-lb. All of the remaining reactor vessel beltline materials are predicted to meet the 10 CFR 50, Appendix G, limits at EOLE.WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 1-1 1 INTRODUCTION Heatup and cooldown P-T limit curves are calculated using the adjusted RTNDT (reference nil-ductility transition temperature) corresponding to the limiting beltline region material of the reactor vessel. The adjusted RTNDT of the limiting material in the core region of the reactor vessel is determined by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ARTNDT, and adding a margin. The unirradiated RTNDT is designated as the higher of either the drop-weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60'F.RTNDT increases as the material is exposed to fast-neutron radiation.

Therefore, to find the most limiting RTNDT at any time period in the reactor's life, ARTNDT due to the radiation exposure associated with that time period must be added to the unirradiated RTNDT (IRTNDT).

The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials" [Reference 1].Regulatory Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature (ART)values (IRTNDT + ARTNDT + margins for uncertainties) at the surface, 1/4T and 3/4T locations, where T is the thickness of the vessel at the beltline region measured from the clad/base metal interface.

The heatup and cooldown pressure-temperature (P-T) limit curves documented in this report were generated using the ART values pertaining to the most limiting beltline material in the Palisades reactor vessel and the NRC-approved methodology documented in WCAP-14040-A, Revision 4 [Reference 2],"Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves." Specifically, the "Axial Flaw" and "Circumferential Flaw" methodologies of the 1998 through the 2000 Addenda Edition of ASME Code,Section XI, Appendix G [Reference 3], was used, which makes use of the K 1 , methodology.

The calculated ART values for an EOLE date of March 24, 2031 [Reference 4], which corresponds to 42.1 EFPY, are documented in Tables 4-2 and 4-3 of this report. The design basis fluence projections are based on the values verified by Westinghouse in WCAP-15353

-Supplement 1-NP, Revision 0[Reference 5].The purpose of this report is to present the calculations and the development of the Palisades heatup and cooldown P-T limit curves for 42.1 EFPY. This report documents the calculated ART values and the development of the P-T limit curves for normal operation.

The P-T curves herein were generated without margins for instrumentation errors. The P-T curves contain a delta pressure correction to account for static and dynamic head loss. Additionally, the P-T curves include the lowest service temperature which is distinctive to Combustion Engineering (CE) design reactor vessels and pressure-temperature limits for the vessel flange region per the requirements of 10 CFR Part 50, Appendix G [Reference 6]. Finally, the current Palisades heatup and cooldown limit curves, contained in their Technical Specifications, were compared to the curves generated in this report to determine if adequate margin exists to justify continued operation of the Palisades current P-T limits through EOLE (42.1 EFPY).WCAP-l 7341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 2-1 2 FRACTURE TOUGHNESS PROPERTIES The fracture toughness properties of the ferritic materials in the Palisades reactor vessel are presented in Table 2-1. The unirradiated RTNDT values for the limiting component in the balance of the reactor coolant system (RCS), the closure head flange and the vessel flange are documented in Table 2-2.The Regulatory Guide 1.99, Revision 2, methodology used to develop the heatup and cooldown P-T limit curves documented in this report is the same as that documented in WCAP-14040-A, Revision 4[Reference 2]. The chemistry factors (CFs) were calculated using Regulatory Guide 1.99, Revision 2, Positions 1.1 and 2.1. Position 1.1 uses the tables from the Regulatory Guide along with the best-estimate copper and nickel weight percents, which are presented in Table 2-1. Position 2.1 uses the surveillance capsule Charpy data from all capsules withdrawn and tested to date. Table 2-3 summarizes the Position 1.1 and 2.1 CFs determined for the Palisades beltline materials.

WCAP-17341-NP February 2011 Revision 0 2-2 Westinghouse Non-Proprietary Class 3 Table 2-1 Summary of the Best-Estimate Cu and Ni Weight Percent and Initial RTNDT Values for the Palisades Reactor Vessel Beltline Materials Material Description (a) Chem~ical Fracture Toughness Composition~a)

Property (a Reactor Vessel Material Heat Cu Ni IiilRNT(F Number wt. % wt. %n R:: ....Intermediate Shell (IS) Plate D-3803-1 C-1279 0.24 0.50 -5(b)IS Plate D-3803-2 A-0313 0.24 0.52 -3 0 (b)IS Plate D-3803-3 C-1279 0.24 0.50 -5(b)Lower Shell (LS) Plate D-3804-1 C-1308A 0.19 0.48 0 (b)LS Plate D-3804-2 C-1308B 0.19 0.50 -30(b)LS Plate D-3804-3 B-5294 0.12 0.55 -25(b)IS Axial Welds 2-112 A/B/C W5214 0.213 1.007 -56(c)34B009 0.192 0.98 -56(c)LS Axial Welds 3-112 A/B/C W5214 0.213 1.007 -56(c)IS to LS Circ. Weld 9-112 27204 0.203 1.0 18 -56(c)Notes for Table 2- 1: (a) The sources for this information are Structural Integrity Associates (SIA) reports 1000915.401, Revision 1 [Reference 7], and 1001026.401, Revision 1 [Reference 8].(b) Initial RTNDT values are based on measured data for all beltline materials.(c) Initial RTNDT values of all reactor vessel beltline welds (Heat Numbers W5214, 34B009 and 27204)are estimated.

Table 2-2 Summary of the Initial RTNDT Values for the Palisades Balance of RCS, Closure Head Flange and Vessel Flange Initial RTNDT ('F)Balance of RCS (Vessel Closure Head)72(a)Closure Head Flange 60(b)Vessel Flange 60(b)Notes for Table 2-2: (a) Value taken from the Palisades Final Safety Analysis Report (FSAR) [Reference 9], Table 1-2.(b) Values based on the data contained in the Certified Material Test Reports (CMTRs) for the Closure Head Flange [Reference 10] and the Vessel Flange [Reference 11].WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 2-3 Table 2-3 Summary of the Palisades Reactor Vessel Beltline Material Chemistry Factors Per Regulatory Guide 1.99, Revision 2 CIhemistry Factor(") (OF)Reactor Vessel Material Heat Number-...

P.osi ' .tion 1.1 Position 2*.1 (b)IS Plate D-3803-1 C-1279 157.5 147.71 IS Plate D-3803-2 A-0313 160.4 ---IS Plate D-3803-3 C-1279 157.5 147.71 LS Plate D-3804-1 C-1308A 128.8 ---LS Plate D-3804-2 C-1308B 131 ---LS Plate D-3804-3 B-5294 82 ---IS Axial Welds 2-112 A/B/C W5214 230.73 227.74(c)34B009 217.7 -- -LS Axial Welds 3-112 A/B/C W5214 230.73 227.74(c)IS to LS Circ. Weld 9-112 27204 226.8 216.13(c)Notes for Table 2-3: (a) Values taken from SIA reports 1000915.401, Revision I [Reference 7], and 1001026.401, Revision 1 [Reference 8]. The chemistry factor values documented in References 7 and 8 were calculated per the guidance provided by the NRC Staff during the NRC/Industry workshop on RPV integrity issues, held on February 1 2 th, 1998.(b) Based on the interpretation of credibility in SIA Reports 0901132.401, Revision 0 [Reference 12], and 1000915.401, Revision 1 [Reference 7], surveillance data of the plate materials were considered to be non-credible, surveillance data of the weld material Heat # W5214 were considered to be not fully credible and surveillance data of the weld material Heat # 27204 were considered to be credible.(c) It should be noted that in the calculations of Position 2.1 chemistry factors for weld Heat #W5214 and Heat # 27204, the ratio and temperature adjustment procedures described in Reference 1 were applied to account for differences in chemistry and plant operating temperatures.

The Position 2.1 chemistry factor for weld Heat # W5214 was calculated using Charpy data from Palisades and sister plant Charpy data from Indian Point Units 2 and 3 and H. B. Robinson Unit 2. The Position 2.1 chemistry factor for weld Heat # 27204 was calculated using Charpy data from Palisades and sister plant Charpy data from Diablo Canyon Unit 1.WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 3-1 3 CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS

3.1 OVERALL

APPROACH The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, KI, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, KI,, for the metal temperature at that time. KI, is obtained from the reference fracture toughness curve, defined in the 1998 Edition through the 2000 Addenda of Section XI, Appendix G, of the ASME Code [Reference 3].The KIc curve is given by the following equation: Kjc =3 3.2+2 O.7 3 4*e [0.0 2 (T- RTNDT)(1)where, Kic (ksi"in.)

= reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT This KIc curve is based on the lower bound of static critical K, values measured as a function of temperature on specimens of SA-533 Grade B Class 1, SA-508-1, SA-508-2, and SA-508-3 steel.3.2 METHODOLOGY FOR PRESSURE-TEMPERATURE LIMIT CURVE DEVELOPMENT The governing equation for the heatup-cooldown analysis is defined in Appendix G of the ASME Code as follows: C* Kim + Kit < KIc (2)where, KIm Kit Kjc C C= stress intensity factor caused by membrane (pressure) stress-stress intensity factor caused by the thermal gradients= reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT-2.0 for Level A and Level B service limits= 1.5 for hydrostatic and leak test conditions during which the reactor core is not critical WCAP-17341-NP February 2011 Revision 0 3-2 Westinghouse Non-Proprietary Class 3 For membrane tension, the corresponding K, for the postulated defect is:)Kim = m. x (pRi/ t) (3)where, Mm for an inside axial surface flaw is given by: Mm = 1.85 for 7 < 2, Mm = 0.926 7 for 2_< ft- < 3.464, Mm = 3.21 for 47 > 3.464 and, Mm for an outside axial surface flaw is given by: Mm = 1.77 for 7 < 2, Mm = 0.893 -47 for 2 _7 3.464, Mm = 3.09 for 4f7- > 3.464 Similarly, Mm for an inside or an outside circumferential surface flaw is given by: Mm = 0.89 for t 7 < 2, Mm = 0.443 it for 2<4 7 F <3.464, Mm = 1.53 for > 3.464 Where: p = internal pressure (ksi), Ri= vessel inner radius (in.), and t = vessel wall thickness (in.).The maximum K, produced by radial thermal gradient for the postulated axial or circumferential inside surface defect of G-2120 is: Kit = 0.953x10-3 x CR x t 2 5 (4)where CR is the cooldown rate in 'F/hr., or for a postulated axial or circumferential outside surface defect Kit = 0.753x10-3 x HU x t 2.5 , (5)where HU is the heatup rate in 'F/hr.The through-wall temperature difference associated with the maximum thermal K, can be determined from ASME Code,Section XI, Appendix G, Fig. G-2214-1.

The temperature at any radial distance from the vessel surface can be determined from ASME Code,Section XI, Appendix G, Fig. G-2214-2 for the WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 3-3 maximum thermal K 1.(a) The maximum thermal K, relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions given in G-2214.3(a)(1) and (2).(b) Alternatively, the K 1 for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a 1/4A-thickness axial or circumferential inside surface defect using the relationship:

Kit = (1.0359Co

+ 0.6322C , + 0.4753C 2 + 0.3855C 3) * (6)or similarly, Kit during heatup for a 1/4-thickness axial or circumferential outside surface defect using the relationship:

Ki, = (1.043Co + 0.630Ci + 0.48 1C2 + 0.401C3)

  • Z (7)where the coefficients Co, CI, C 2 and C 3 are determined from the thermal stress distribution at any specified time during the heatup or cooldown using the form: ir(x) = Co + Ci(x / a) + C2(x/ a)2 + C3(x / a)3 (8)and x is a variable that represents the radial distance (in.) from the appropriate (i.e., inside or outside) surface to any point on the crack front, and a is the maximum crack depth (in.).Note that Equation 3 and Equations 6 through 9 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-temperature (P-T) limit curves (Equations 4 and 5 are not utilized by the OPERLIM code). The P-T curve methodology is the same as that described in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Reference 2], Section 2.6 (equations 2.6.2-4 and 2.6.3-1).At any time during the heatup or cooldown transient, K 1 , is determined by the metal temperature at the tip of a postulated flaw (the postulated flaw has a depth of 1/4 of the section thickness, and a length of 1.5 times the section thickness per ASME Code,Section XI, paragraph G-2120), the appropriate value for RTNDT, and the reference fracture toughness curve (Equation 1). The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, K 1 t, for the reference flaw are computed.

By substituting the appropriate equations from this section into Equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures for Level A and B Service Conditions are calculated per Equation 9.P-Kk , K (9)WCAP- 17341-NP February 2011 Revision 0 3-4 Westinghouse Non-Proprietary Class 3 For the calculation of the allowable pressure-versus-coolant temperature during cooldown, the reference 1/4T flaw of Appendix G to Section XI of the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the vessel wall because the thermal gradients, which increase with increasing cooldown rates, produce tensile stresses at the inside surface that would tend to open (propagate) the existing flaw. Allowable pressure-temperature curves are generated for steady state (zero-rate) and each finite cooldown rate specified.

From these curves, composite limit curves are constructed as the minimum of the steady-state or finite rate curve for each cooldown rate specified.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 1/4T vessel location is at a higher temperature than the fluid adjacent to the vessel inner diameter.

This condition, of course, is not true for the steady-state situation.

It follows that, at any given reactor coolant temperature, the AT (temperature) across the vessel wall developed during cooldown results in a higher value of K 1 , at the 1/4T location for finite cooldown rates than for steady-state operation.

Furthermore, if conditions exist so that the increase in Kic exceeds KIt, the calculated allowable pressure during cooldown will be greater than the steady-state value. The use of the composite curve ensures conservative operation of the system for the entire cooldown period.Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowable pressure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 1/4T defect at the inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure.

The metal temperature at the crack tip lags the coolant temperature; therefore, the K 1 c for the inside 1/4T flaw during heatup is lower than the K 1 c for the flaw during steady-state conditions at the same coolant temperature.

During heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower K 1 c values do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 1/4T flaw is considered.

Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.The third portion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a 1/4T flaw located at the 1/4T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.Following the generation of pressure-temperature curves for the steady-state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the least of the three values taken from the curves under consideration.

The use of the composite curve is necessary to set conservative heatup limitations because it is possible for WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 3-5 conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

3.3 CLOSURE

HEAD/VESSEL FLANGE REQUIREMENTS 10 CFR Part 50, Appendix G [Reference 6], addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RTNDT by at least 120'F for normal operation when the pressure exceeds 20 percent of the pre-service hydrostatic test pressure (3110 psig for Palisades as documented in Reference 13), which is calculated to be 622 psig. The limiting unirradiated RTNDT of 60'F occurs in the closure head flange and vessel flange of the Palisades reactor vessel, so the minimum allowable temperature of this region is 180'F at pressures greater than 622 psig (without margin for instrument uncertainties).

This limit is shown in Figures 5-1 and 5-2 wherever applicable.

The P-T limit curves presented in Appendix C incorporate margins for instrument errors of 5°F on temperature and 30 psi on pressure.

These margins for instrument errors are consistent with the values used in the P-T limit curve analysis of record (AOR) for Palisades contained in EA-A-PAL-92-095-01, Revision 0 [Reference 14]. Therefore, with the inclusion of these margins for instrument errors, the minimum allowable temperature of this region is 185'F at pressures greater than 592 psig.3.4 DELTA PRESSURE CORRECTION The current Palisades heatup and cooldown limit curves include a variable delta pressure correction to account for static and dynamic head loss effects, which are dependent on the number of primary coolant pumps in operation.

Per Reference 14, below primary system temperatures of 300°F, since no more than two primary coolant pumps can be operating, the delta pressure correction is 35 psi. At 300'F and above, when three or more primary coolant pumps are in operation, the delta pressure correction is 54 psi. These pressure correction factors have been incorporated in the heatup and cooldown limit curves shown in Figures 5-1 and 5-2 as well as in Appendix C.3.5 LOWEST SERVICE TEMPERATURE REQUIREMENTS The lowest service temperature (LST) is the minimum allowable temperature at which pressure can exceed 20% of the pre-service hydrostatic test pressure (3110 psig). This temperature is defined by Paragraph NB-2332 of ASME Code Section III [Reference 15] as the most limiting RTNDT for the balance of the RCS components plus 100'F. The balance of the reactor coolant system components includes consideration of the ferritic materials outside the reactor vessel beltline but within the primary system.The most limiting RTNDT for the balance of RCS is 72°F. Therefore, without margins for instrument errors, the LST for Palisades is 172°F. The curves contained in Appendix C do contain margins for instrument errors; the LST for these curves is 177°F.WCAP- 17341-NP February 2011 Revision 0 3-6 Westinghouse Non-Proprietary Class 3 3.6 BOLTUP TEMPERATURE REQUIREMENTS The minimum boltup temperature is the minimum allowable temperature at which the reactor vessel closure head bolts can be preloaded.

It is determined by the highest reference temperature, RTNDT, in the closure flange region. This requirement is established in Appendix G to 10 CFR 50 [Reference 6].The limiting unirradiated RTNDT of 60'F occurs in the closure head flange and vessel flange of the Palisades reactor vessel; therefore, the minimum boltup temperature for the Palisades reactor vessel is 60'F (without margins for instrument uncertainties).

This limit is shown in Figures 5-1 and 5-2. The curves contained in Appendix C do contain instrument errors; the boltup temperature for these curves is 65 0 F.3.7 REACTOR VESSEL BELTLINE DIMENSIONS Reactor vessel beltline dimensions are input to the calculations used in the development of P-T limit curves. WCAP-15353, Revision 0 [Reference 16] documents Palisades' reactor vessel as-built (measured) dimensions.

Table 3-1 summarizes the vessel inner radius, 1/4T, 3/4T and outer radius dimensions along with the beltline thickness.

Table 3-1 Summary of the Reactor Vessel Beltline Dimensions for Palisades Dimension~a)

Reactor Vessel Location (ins)(inches)Base Metal Inner Radius 86.35 Base Metal 1/4T 88.55 Base Metal 3/4T 92.94 Base Metal Outer Radius 95.14 Beltline Thickness 8.79(b Notes for Table 3-1: (a) Values taken fromWCAP-15353, Revision 0 [Reference 16], unless otherwise noted.(b) Beltline thickness was determined using the base metal outer and inner radii.WCAP-l 7341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4, 4-1 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusted reference temperature (ART) for each material in the beltline region is given by the following expression:

ART = Initial RTNDT + ARTNDT + Margin (10)Initial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-2331 of Section III of the ASME Boiler and Pressure Vessel Code [Reference 15]. If measured values of the initial RTNDT for the material in question are not available, generic mean values for that class of material may be used, provided there are sufficient test results to establish a mean and standard deviation for the class. Per Table 2-1, the Palisades reactor vessel beltline materials have both measured and generic initial RTNDT values.ARTNDT is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows: ARTNDT = CF

  • f(0.2s -0.I0lgf (11)To calculate ARTNDT at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.f(depth x) = fsurfacc
  • e (-0.24x) (12)where x inches (vessel beltline thickness is 8.79 inches) is the depth into the vessel wall measured from the vessel clad/base metal interface.

The resultant fluence is then placed in Equation 11 to calculate the ARTNDT at the specific depth.The projected reactor vessel neutron fluence for Palisades was updated in WCAP-15353

-Supplement 1-NP [Reference 5]. The evaluation methods used in Reference 5 are consistent with the methods presented in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Reference 2]. NUREG-1871, Revision 0[Reference 4], specifies that the extended operating license for Palisades will expire on March 24, 2031 (EOLE). This EOLE calendar date is expected to be between end-of-cycles (EOCs) 34 and 35 per Reference 5 and was determined to correspond to 42.1 EFPY.The peak surface fluence values at the 600 and 750 azimuthal locations were interpolated in SIA report 1000915.401, Revision 1 [Reference 7] to the EOLE calendar date and summarized in Table 4-1. The Palisades intermediate and lower shell axial welds are located at 00 and 600 with respect to the coordinate system used in the fluence analysis contained in Reference

5. The fluence at the 600 azimuthal location is higher than the fluence at the 0' azimuthal location.

Therefore, the fluence values used for the reactor vessel plate and circumferential weld materials are based on the 750 peak azimuthal fluence (i.e. the maximum fluence value for the Palisades beltline region) while the fluence values used for the reactor vessel axial weld materials are based on the 600 peak azimuthal fluence.WCAP- 17341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 4-2 Westinghouse Non-Proprietary Class 3 The surface fluence values, which were obtained from SIA report 1000915.401

[Reference 7], were used to calculate the 1/4T and 3/4T fluence and fluence factors, per Regulatory Guide 1.99, Revision 2, for 42.1 EFPY Table 4-1 contains these values, which will be used to calculate the 42.1 EFPY ART values for all beltline materials in the Palisades reactor vessel.Margin is calculated as M = 2 ar + a A2 .The standard deviation for the initial RTNDT margin term (cyi) is 0 0 F when the initial RTNDT is a measured value, and 17'F when a generic value is available.

The standard deviation for the ARTNDT margin term, CYA, is 17'F for plates or forgings when surveillance data is not used or is non-credible, and 8.5°F (half the value) for plates or forgings when credible surveillance data is used. For welds, CYA is equal to 28°F when surveillance capsule data is not used or is non-credible, and is 14'F (half the value) when credible surveillance capsule data is used. The value for CTa need not exceed 0.5 times the mean value of ARTNDT.Contained in Tables 4-2 and 4-3 are the 42.1 EFPY ART calculations and values at the 1/4T and 3/4T locations for generation of the Palisades heatup and cooldown curves.WCAP-17341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4-3 Table 4-1 Fluence Values and Fluence Factors for the Vessel Surface, 1/4T and 3/4T Locations for the Palisades Reactor Vessel Beltline Materials at 42.1 EFPY Limitng, /4T-314T f LiiigSurface Flu~ence','

fa9 2/4 f Reactor Vessel Material Azimuthal (0'9n/cm 2 E> 1.0 MeV) io 9 n/cm, 1/4T FF (x l0'9'n/cm 2 , 3/4T FF Location ( W 'lE l , LEM6V) E> 1.0 MeV)Plates and Circumferential Welds 750 3.429 2.024 1.1922 0.705 0.9019 Axial Welds 600 2.161 1.275 1.0677 0.444 0.7742 Note for Table 4- 1: (a) Values taken from SIA report 1000915.401

[Reference 7].WCAP- 17341-NP February 2011 Revision 0 4-4 Westinghouse Non-Proprietary Class 3 Table 4-2 Adjusted Reference Temperature Evaluation for the Palisades Reactor Vessel Beltline Materials through 42.1 EFPY at the 1/4T Location 1~~~ /4T f , [CF 1019 f 12/4T RTNDT(U) (a) ARTNDT al a)1 I aA ( M ART (d)Reactor Vessel Material CF (x 109 n/cmV i (OF) E >1.0MeV) FF ::(OF) ,:(F) (O)(O)(F) (F IS Plate D-3803-1 157.5 2.024 1.1922 -5 187.8 0 17 34.0 216.8 Using Non-Credible Surveillance Data 147.71 2.024 1.1922 -5 176.1 0 17 34.0 205.1 IS Plate D-3803-2 160.4 2.024 1.1922 -30 191.2 0. 17 34.0 195.2 IS Plate D-3803-3 157.5 2.024 1.1922 -5 187.8 0 17 34.0 216.8 Using Non-Credible Surveillance Data 147.71 2.024 1.1922 -5 176.1 0 17 34.0 205.1 LS Plate D-3804-1 128.8 2.024 1.1922 0 153.6 0 17 34.0 187.6 LS Plate D-3804-2 131 2.024 1.1922 -30 156.2 0 17 34.0 160.2 LS Plate D-3804-3 82 2.024 1.1922 -25 97.8 0 17 34.0 106.8 IS Axial Welds 2-112 (Heat # W5214) 230.73 1.275 1.0677 -56(b) 246.4 1 7 (b) 28 65.5 255.9 Using Not Fully Credible Surveillance Data 227.74 1.275 1.0677 -5 6 (b) 243.2 1 7 (b) 28 65.5 252.7 LS Axial Welds 3-112 (Heat # 34B009) 217.7 1.275 1.0677 -5 6 (b) 232.4 1 7 (b) 28 65.5 242.0 LS Axial Welds 3-112 (Heat # W5214) 230.73 1.275 1.0677 -5 6 (b) 246.4 1 7 (b) 28 65.5 255.9 Using Not Fully Credible Surveillance Data 227.74 1.275 1.0677 -5 6 (b) 243.2 1 7 (b) 28 65.5 252.7 IS to LS Circ. Weld 9-112 (Heat # 27204) 226.8 2.024 1.1922 -56(b) 270.4 1 7 (b) 28 65.5 279.9 Using Credible Surveillance Data 216.13 2.024 1.1922 -5 6 (b) 257.7 1 7 (b) 14 44.0 245.7 Notes for Table 4-2: (a) Initial RTNDT values are measured for all materials, except where otherwise noted; hence a, 0°F.(b) Initial RTNDT of all three reactor vessel beltline welds (Heat Numbers W5214, 34B009 and 27204) are estimated; hence CF = 17°F.(c) Based on the interpretation of credibility in the SIA reports, References 7 and 12, surveillance data of the plate materials were considered to be non-credible, surveillance data of the weld material Heat # W5214 were considered to be not fully credible, and surveillance data of the weld material Heat # 27204 were considered to be credible.

Per the guidance of Reg. Guide 1.99, Revision 2, the base metal GA = 17'F for both Positions 1.1 and 2.1, the weld metal aA = 28°F for Positions 1.1 and 2.1 with not fully credible surveillance data, and (Ta = 14'F for Position 2.1 with credible surveillance data. However, aA need not exceed 0.5*ARTNDT.(d) The Regulatory Guide 1.99, Revision 2 methodology was used to calculate ART values. ART = RTNDT(U) + ARTNDT + Margin.WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4-5 Table 4-3 Adjusted Reference Temperature Evaluation for the Palisades Reactor Vessel Beltline Materials through 42.1 EFPY at the 3/4T Location CF 3 (x f 2 3/4T RTNDT TNDT (3,(a) C7A(c) M ART(d)(OF) E > 1.0 MeV) FF (OF) (OF) (OF) (OF) (OF) (OF)IS Plate D-3803-1 157.5 0.705 0.9019 -5 142.0 0 17 34.0 171.0 Using Non-Credible Surveillance Data 147.71 0.705 0.9019 -5 133.2 0 17 34.0 162.2 IS Plate D-3803-2 160.4 0.705 0.9019 -30 144.7 0 17 34.0 148.7 IS Plate D-3803-3 157.5 0.705 0.9019 -5 142.0 0 17 34.0 171.0 Using Non-Credible Surveillance Data 147.71 0.705 0.9019 -5 133.2 0 17 34.0 162.2 LS Plate D-3804-1 128.8 0.705 0.9019 0 116.2 0 17 34.0 150.2 LS Plate D-3804-2 131 0.705 0.9019 -30 118.1 0 17 34.0 122.1 LS Plate D-3804-3 82 0.705 0.9019 -25 74.0 0 17 34.0 83.0 IS Axial Weld 2-112 (Heat # W5214) 230.73 0.444 0.7742 -5 6 (b) 178.6 1 7 (b) 28 65.5 188.2 Using Not Fully Credible Surveillance Data 227.74 0.444 0.7742 -5 6 (b) 176.3 1 7 (b) 28 65.5 185.8 LS Axial Welds 3-112 (Heat # 34B009) 217.7 0.444 0.7742 -5 6 (b) 168.6 1 7 (b) 28 65.5 178.1 LS Axial Welds 3-112 (Heat # W5214) 230.73 0.444 0.7742 -5 6 (b) 178.6 1 7 (b) 28 65.5 188.2 Using Not Fully Credible Surveillance Data 227.74 0.444 0.7742 -5 6 (b) 176.3 1 7 (b) 28 65.5 185.8 IS to LS Circ. Weld 9-112 (Heat # 27204) 226.8 0.705 0.9019 -5 6 (b) 204.5 1 7 (b) 28 65.5 214.1 Using Credible Surveillance Data 216.13 0.705 0.9019 -5 6 (b) 194.9 1 7 (b) 14 44.0 183.0 Notes for Table 4-3: (a) Initial RTNDT values are measured for all materials, except where otherwise noted; hence yi = 0OF.(b) Initial RTNDT of all three reactor vessel beltline welds (Heat Numbers W5214, 34B009 and 27204) are estimated; hence a, = 17°F.(c) Based on the interpretation of credibility in the SIA reports, References 7 and 12, surveillance data of the plate materials were considered to be non-credible, surveillance data of the weld material Heat # W5214 were considered to be not fully credible, and surveillance data of the weld material Heat # 27204 were considered to be credible.

Per the guidance of Reg. Guide 1.99, Revision 2, the base metal cTA = 17'F for both Positions 1.1 and 2.1, the weld metal GA = 28°F for Positions 1.1 and 2.1 with not fully credible surveillance data, and TA = 14'F for Position 2.1 with credible surveillance data. However, GA need not exceed 0.5*ARTNDT.(d) The Regulatory Guide 1.99, Revision 2 methodology was used to calculate ART values. ART = RTNDT(U) + ARTNDT + Margin.WCAP-17341-NP February 2011 Revision 0 4-6 Westinghouse Non-Proprietary Class 3 Contained in Table 4-4 is a summary of the limiting ART values that are used in the generation of the Palisades reactor vessel heatup and cooldown curves. The limiting ART values for the axially oriented welds and plates correspond to Axial Welds 2-112 and 3-112 (Heat # W5214) using Position 2.1. These Position 2.1 ART values were determined using not fully credible surveillance data. Per SIA Report 1000915.401, Revision 1 [Reference 7], the Position 2.1 chemistry factor value, with full margin term, was used in the PTS calculations because the surveillance data credibility evaluation in SIA Report 0901132.401, Revision 0 [Reference 12] deemed that all the data points fell within the two standard deviation scatter band of 56°F for welds.The limiting ART values for the circumferentially oriented welds correspond to the IS to LS Circ. Weld 9-112 (Heat # 27204) using Position 2.1 with credible surveillance data. Note that this material resulted in higher ART values when surveillance data was not used (Position 1.1); however, credit was taken for the surveillance data being credible.The ART values corresponding to the axially oriented weld material (Heat # W5214) are higher than the ART values corresponding to the circumferentially oriented weld material (Heat # 27204) (See Tables 4-2 and 4-3). In general, axial weld/plate/forging materials, which consider an axially oriented reference flaw, are more limiting for P-T limit curves in the lower-pressure regions, while circumferential weld materials, which consider a circumferentially oriented flaw, are more limiting in the higher-pressure regions. However, in general, axial flaws are more limiting than circumferential flaws based on the higher-pressure stresses that occur in those regions. Therefore, since the highest ART values are for weld Heat # W5214, which corresponds to an axially oriented flaw, the P-T limit curves for Palisades will be limited by this material only.Table 4-4 Summary of the Limiting ART Values Used in the Generation of the Palisades Heatup/Cooldown Curves at 42.1 EFPY Limiting ART 1/4T 7 3/4T Axial Welds 2-112 and 3-112 (Heat # W5214) Using the Position 2.1 Chemistry Factor Value Based on Not Fully Credible Surveillance Data with Full Margin Term (Limiting Axial Flaw Material)252.7 0 F 185.8 0 F WCAP- 17341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-1 5 HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES Pressure-temperature limit curves for normal heatup and cooldown of the primary reactor coolant system have been calculated for the pressure and temperature in the reactor vessel beltline region using the methods discussed in Sections 3 and 4 of this report. This approved methodology is also presented in WCAP-14040-A, Revision 4.Figure 5-1 presents the limiting heatup curves without margins for possible instrumentation errors using heatup rates of 0, 20, 40, 60, 80 and 100 0 F/hr applicable for 42.1 EFPY, with the "Flange-Notch" requirement and using the "Axial Flaw" methodology only (See explanation in Section 4). Figure 5-2 presents the limiting cooldown curves without margins for possible instrumentation errors using cooldown rates of 0, 20, 40, 60, 80 and 100 0 F/hr applicable for 42.1 EFPY, with the "Flange-Notch" requirement and using the "Axial Flaw" methodology (See explanation in Section 4). The heatup and cooldown curves were generated using the 1998 through the 2000 Addenda ASME Code Section XI, Appendix G. Finally, these curves incorporate a pressure correction of 35 psi for temperatures less than 300'F, and 54 psi for temperatures greater than or equal to 300'F, associated with the number of primary coolant pumps in operation

[Reference 14].Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in Figures 5-1 and 5-2. This is in addition to other criteria, which must be met before the reactor is made critical, as discussed below in the following paragraphs.

The reactor must not be made critical until pressure-temperature combinations are to the right of the criticality limit line shown in Figure 5-1 (heatup curve only). The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservice hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic test is defined in the 1998 through the 2000 Addenda ASME Code Section XI, Appendix G, as follows: 1.5 Kim< Kic where, KI, is the stress intensity factor covered by membrane (pressure) stress, KI, = 33.2 + 20.734 e[0.2 (T- RTNDT)], T is the minimum permissible metal temperature, and RTNDT is the metal reference nil-ductility temperature.

The criticality limit curve specifies pressure-temperature limits for core operation in order to provide additional margin during actual power production.

The pressure-temperature limits for core operation (except for low-power physics tests) are that: 1) the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test, and 2) the reactor vessel must be at least 40'F higher than the minimum permissible temperature in the corresponding pressure-temperature curve for heatup and cooldown calculated as described in Section 3 of this report. For the WCAP-1734 1-NP February 2011 Revision 0 5-2 Westinizhouse Non-PrODrietarv Class 3 heatup and cooldown curves without margins for instrumentation errors, the minimum temperature for the inservice hydrostatic leak tests for the Palisades reactor vessel at 42.1 EFPY is 312'F. However, per Reference 14, margins for instrument errors for pressure and temperature (30 psi and 5°F) were included in the determination of the minimum temperature for the inservice hydrostatic leak tests for the Palisades reactor vessel. Therefore, the minimum temperature for the hydrostatic leak test limits, which is shown on Figure 5-1, is 317°F. This temperature is also used for the criticality limit at 42.1 EFPY. Note that the leak test limits as well as the criticality temperature used for the without margin for instrument error curves is equivalent to those used in the with margin for instrument error curves documented in Appendix C. The vertical line drawn from these points on the pressure-temperature curve, intersecting a curve 40'F higher than the pressure-temperature limit curve, constitutes the limit for core operation for the reactor vessel.The LST is labeled on Figures 5-1 and 5-2. However, since the 10 CFR 50, Appendix G, "Flange-Notch" requirements are more limiting; the traditional vertical line defining this temperature has been omitted from the Figures for clarity.Figures 5-1 and 5-2 define all of the above limits for ensuring prevention of non-ductile failure for the Palisades reactor vessel for 42.1 EFPY with the "Flange-Notch" requirement, without instrumentation uncertainties, and with pressure correction.

The data points used for developing the heatup and cooldown pressure-temperature limit curves shown in Figures 5-1 and 5-2 are presented in Tables 5-1 and 5-2.See Appendix C for the figures and data tables corresponding to the P-T curves developed with margins for instrument errors.WCAP- 17341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-3 MATERIAL PROPERTY BASIS LIMITING MATERIALS:

IS and LS Axial Welds 2-112 and 3-112 (Heat # W5214) Using the Position 2.1 Chemistry Factor Value Based on Not Fully Credible Surveillance Data with Full Margin Term LIMITING ART VALUES AT 42.1 EFPY: 1/4T, 252.7'F (Axial Flaw)3/4T, 185.8°F (Axial Flaw)Figure 5-1 Palisades Reactor Coolant System Stea'dy State and Heatup Curves for 20, 40, 60, 80 and 100 0 F/hr Applicable to 42.1 EFPY Based on the K 1 , Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, Without Margins for Instrumentation Errors (Except for the Hydrostatic Leak Test), and With Delta Pressure Correction 2500 Operlim Version:5.2 Run:28070 Opedim.xls Version: 5.2 Heatup Rate]and Criticality Limit 0 --> 100 Deg. F/Hr 2250 Leak Test Limit 2000 I-1750 Unacceptable 1750 Operation 0 Lowest Service Temp.= 172F 1500 I-T-- -i-IAcceptable in Operation in P 1250 Heatup Rate-"M 0 Deg. F/Hr* 20 Deg. F/Hr C-)750 500 Heatup Rate]500 60 Deg. F/Hr Criticality Limit based on Heatup Rate Heatup Rate inservice hydrostatic test 40 Deg. F/Hr 80 Deg. F/Hr temperature (317'F) for the 250 ,_ _- -... ... ........ ...I 0 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)WCAP-17341-NP February 2011 Revision 0 5-4 Westinahouse Non-Proprietarv Class 3 5-4 Westinghouse Non-Proprietary Class 3 MATERIAL PROPERTY BASIS LIMITING MATERIALS:

IS and LS Axial Welds 2-112 and 3-112 (Heat # W5214) Using the Position 2.1 Chemistry Factor Value Based on Not Fully Credible Surveillance Data with Full Margin Term LIMITING ART VALUES AT 42.1 EFPY: 1/4T, 252.7'F (Axial Flaw)3/4T, 185.8'F (Axial Flaw)Figure 5-2 Palisades Reactor Coolant System Steady State and Cooldown Curves for 20, 40, 60, 80 and 100 0 F/hr Applicable to 42.1 EFPY Based on the K 1 , Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, Without Margins for Instrumentation Errors, and With Delta Pressure Correction 2500 -, .-- -.I- I I I T I 2250 2000 1750 u' 1500 1250 1000.2 750 500 250 0~0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)WCAP- 17341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-5 Table 5-1 Palisades 42.1 EFPY Heatup Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With K 1 ,, With Flange Notch, Without Margin for Instrument Errors (Except for the Hydrostatic Leak Test) and With Delta Pressure Correction Leak Test Limit Steady State Steady State 20 0 F/hr Heatup 20'F/hr 40OF/r riHeaup 40OF/hr Heatup Criticality(a) upi Criticalty C:iticality(a)

T P Ti P T P T P T P T P= T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) i(0 F) (psig)301 2000 60 0 317 0 60 0 317 0 60 0 317 0 301 2000 60 587 317 568 60 587 317 568 60 570 317 551 301 2000 65 587 317 568 65 587 317 568 65 570 317 551 301 2000 70 587 317 568 70 587 317 568 70 570 317 551 301 2000 75 587 317 568 75 587 317 568 75 570 317 551 317 2485 80 587 317 568 80 587 317 568 80 570 317 551 317 2485 85 587 317 568 85 587 317 568 85 570 317 551 317 2485 90 587 317 568 90 587 317 568 90 570 317 551 317 2485 95 587 317 568 95 587 317 568 95 570 317 551 317 2485 100 587 317 568 100 587 317 568 100 571 317 552 105 587 317 568 105 587 317 568 105 574 317 555 110 587 317 568 110 587 317 568 110 578 317 559 115 587 317 568 115 587 317 568 115 582 317 563 120 587 317 568 120 587 317 568 120 587 317 568 125 587 317 568 125 587 317 568 125 587 317 568 130 587 317 568 130 587 317 568 130 587 317 568 135 587 317 568 135 587 317 568 135 587 317 568 140 587 317 568 140 587 317 568 140 587 317 568 145 587 317 568 145 587 317 568 145 587 317 568 150 587 317 568 150 587 317 568 150 587 317 568 155 587 317 568 155 587 317 568 155 587 317 568 160 587 317 568 160 587 317 568 160 587 317 568 165 587 317 568, 165 587 317 568 165 587 317 568 WCAP-17341-NP February 2011 Revision 0 r 5-6 Westinghouse Non-Protorietarv Class 3 Leak Test Limit Steady State Steady State 202F/hr Heat-p --z20rF/hr 40°F/hr Heatup 40.F/hr Heatup Criticality(a) 2 H uicalitya Criticality.a)

T P T P T P T P T P .T P T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (IF) (psig) (OF) (psig)170 587 317 568 170 587 317 568 170 587 317 568 175 587 317 568 175 587 317 568 175 587 317 568 180 587 317 651 180 587 317 651 180 587 317 651 180 587 317 661 180 587 317 661 180 587 317 661 180 670 317 671 180 670 317 671 180 670 317 671 185 680 317 683 185 680 317 683 185 680 317 683 190 690 317 695 190 690 317 695 190 690 317 695 195 702 317 709 195 702 317 709 195 702 317 709 200 714 317 725 200 714 317 725 200 714 317 725 205 728 317 742 205 728 317 742 205 728 317 742 210 744 317 761 210 744 317 761 210 744 317 761 215 761 317 782 215 761 317 782 215 761 317 782 220 780 317 806 220 780 317 806 220 780 317 806 225 801 317 831 225 801 317 831 225 801 317 831 230 825 317 860 230 825 317 860 230 825 317 860 235 850 317 891 235 850 317 891 235 850 317 891 240 879 317 926 240 879 317 926 240 879 317 926 245 910 317 964 245 910 317 964 245 910 317 964 250 945 317 1006 250 945 317 1006 250 945 317 1006 255 983 317 1053 255 983 317 1053 255 983 317 1053 260 1025 317 1105 260 1025 317 1105 260 1025 317 1105 265 1072 317 1162 265 1072 317 1162 265 1072 317 1162 270 1124 320 1225 270 1124 320 1221 270 1124 320 1221 275 1181 325 1295 275 1181 325 1284 275 1181 325 1281 280 1244 330 1372 280 1240 330 1353 280 1240 330 1343 285 1314 335 1457 285 1303 335 1429 285 1300 335 1411 290 1391 340 1551 290 1372 340 1514 290 1362 340 1487 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietar Class 3 5-7 Westinghouse Non-Pro~rietarv Class 3 5-7 SteadyueatupState Steady,0 0 ,hState '0r/h Leak Test Limit Steady SrttecadSt.ae) 20'F/hr Heatup Critical.tya) 40'F/hr Heatup ,ari ,)Heatupit~a Crittiacality T P T P T P T P T P T P T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) ()F) (psig) (OF) (psig) (OF) (psig)295 1476 345 1655 295 1448 345 1607 295 1430 345 1570 1 300 1551 350 1771 300 1514 350 1709 300 1487 350 1662 305 1655 355 1898 305 1607 355 1823 305 1570 355 1764 310 1771 360 2038 310 1709 360 1948 310 1662 360 1876 315 1898 365 2194 315 1823 365 2087 315 1764 365 2000 320 2038 370 2365 320 1948 370 2240 320 1876 370 2136 325 2194 325 2087 375 2409 325 2000 375 2287 330 2365 330 2240 330 2136 380 2454 335 2409 335 2287 1_ 340 2454-________ -----________ 4 4 4 4 Note for Table 5-1: (a) Data in Table 5-1 is associated with the without margin for instrument error heatup curves (Figure 5-1). However, margins for instrument error (5°F and 30 psi) were included on the inservice hydrostatic leak test limits. The inservice hydrostatic leak test temperature is also reflected on the criticality limits; therefore, the criticality limits include margin on the criticality temperature as well.WCAP-17341-NP February 2011 Revision 0 5-8 Westinahouse Non-Proprietary Class 3 Table 5-1-Cont.

Palisades 42.1 EFPY Heatup Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With K 1 c, With Flange Notch, Without Margin for Instrument Errors (Except for the Hydrostatic Leak Test) and With Delta Pressure Correction 60*F/hr 80 0 F/hr 10 0°Fihr 60'F/hr Heatup .Criticality(a) 80'F/hr Heatup Criticality

.a) 100 0 F/hr Heatup Criticalitya T P T P T P T P T P T P (IF) (psig) (OF) (psig) (OF) (psig) (IF) (psig) (OF) (psig) (OF) (psig)60 0 317 0 60 0 317 0 60 0 317 0 60 540 317 521 60 511 317 492 60 483 317 464 65 540 317 521 65 511 317 492 65 483 317 464 70 540 317 521 70 511 317 492 70 483 317 464 75 540 317 521 75 511 317 492 75 483 317 464 80 540 317 521 80 511 317 492 80 483 317 464 85 540 317 521 85 511 317 492 85 483 317 464 90 540 317 521 90 511 317 492 90 483 317 464 95 540 317 521 95 511 317 492 95 483 317 464 100 540 317 521 100 511 317 492 100 483 317 464 105 540 317 521 105 511 317 492 105 483 317 464 110 540 317 521 110 511 317 492 110 483 317 464 115 541 317 522 115 511 317 492 115 483 317 464 120 543 317 524 120 511 317 492 120 483 317 464 125 547 317 528 125 511 317 492 125 483 317 464 130 551 317 532 130 512 317 493 130 483 317 464 135 556 317 537 135 515 317 496 135 483 317 464 140 562 317 543 140 518 317 499 140 483 317 464 145 569 317 550 145 522 317 503 145 485 317 466 150 578 317 559 150 527 317 508 150 487 317 468 155 587 317 568 155 533 317 514 155 491 317 472 160 587 317 568 160 541 317 522 160 495 317 476 165 587 317 568 165 549 317 530 165 500 317 481 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-9 60F/i0'F/hr Heatup 80°F/hr 1 'F/hr Heatup 100IF/hr 60F/hr Heatup i i 8 0 F/hr Heatup Criticality(a), 100 0 Fhr Heatup Criticality(')

T P T P T P T P T P T P (OF) (psig) (OF) (psig) (0 F) (psig) (OF) (psig) (OF) (psig) (OF) (psig)170 587 317 568 170 559 317 540 170 507 317 488 175 587 317 568 175 570 317 551 175 515 317 496 180 587 317 636 180 583 317 564 180 524 317 505 180 587 317 654 180 583 317 578 180 524 317 515 180 655 317 671 180 583 317 594 180 524 317 527 185 673 317 683 185 597 317 612 185 534 317 541 190 690 317 695 190 613 317 631 190 546 317 556 195 702 317 709 195 631 317 653 195 560 317 573 200 714 317 725 200 650 317 678 200 575 317 592 205 728 317 742 205 672 317 705 205 592 317 613 210 744 317 761 210 697 317 735 210 611 317 636 215 761 317 782 215 724 317 768 215 632 317 663 220 780 317 806 220 754 317 804 220 655 317 692 225 801 317 831 225 787 317 831 225 682 317 724 230 825 317 860 230 823 317 860 230 711 317 760 235 850 317 891 235 850 317 891 235 743 317 799 240 879 317 926 240 879 317 926 240 779 317 843 245 910 317 964 245 910 317 964 245 818 317 891 250 945 317 1006 250 945 317 1006 250 862 317 944 255 983 317 1053 255 983 317 1053 255 910 317 1003 260 1025 317 1105 260 1025 317 1105 260 963 317 1068 265 1072 317 1162 265 1072 317 1162 265 1022 317 1139 270 1124 320 1221 270 1124 320 1221 270 1087 320 1218 275 1181 325 1281 275 1181 325 1281 275 1158 325 1281 280 1240 330 1340 280 1240 330 1340 280 1237 330 1340 285 1300 335 1401 285 1300 335 1398 285 1300 335 1398 290 1359 340 1469 290 1359 340 1460 290 1359 340 1457 WCAP-17341-NP February 2011 Revision 0 5-10 Westinehouse Non-ProDrietarv Class 3 60°F/hr 80OF/hr o10 0 F/hr 60'F/hr Heatup Criticality(a) 80F/hr Heatup Criticality(")

100'F/hr Heatup Criticalityea)

T P T P T P T P *T P T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (0 F) (psig) (OF) (psig)295 1420 345 1544 295 1417 345 1527 295 1417 345 1518 300 1469 350 1627 300 1460 350 1602 300 1457 350 1585 305 1544 355 1718 305 1527 355 1684 305 1518 355 1659 310 1627 360 1819 310 1602 360 1774 310 1585 360 1741 315 1718 365 1930 315 1684 365 1874 315 1659 365 1831 320 1819 370 2052 320 1774 370 1984 320 1741 370 1930 325 1930 375 2187 325 1874 375 2105 325 1831 375 2039 330 2052 380 2336 330 1984 380 2239 330 1930 380 2160 335 2187 335 2105 385 2387 335 2039 385 2292 340 2336 340 2239 340 2160 390 2438 345 2387 345 2292 L _350 2438 Note for Table 5-1-Cont.: (a) Data in Table 5-1-Cont.

is associated with the without margin for instrument error heatup curves (Figure 5-1). However, margins for instrument error (5°F and 30 psi) were included on the inservice hydrostatic leak test limits. The inservice hydrostatic leak test temperature is also reflected on the criticality limits; therefore, the criticality limits include margin on the criticality temperature as well.WCAP- 17341-NP February 2011 WCAP- 17341-NP February, 2011 Revision 0 Westinghouse Non-Proprietar Class 3 5-11 Table 5-2 Palisades 42.1 EFPY Cooldown Data Points Using the 1998 through the 2000 Addenda App. G Methodology, Wit.h Kl,, With Flange Notch, Without Margin for Instrument Errors and With Delta Pressure Correction Steady State 20'F/hr. 40OF/hr. 60 0 F/hr. 8 0'F/Ihr. 100T/hr.T -P T P T P T P; T PT P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) ( (psig) (OF) (psig)60 0 60 0 60 0 60 0 60 0 60 0 60 587 60 534 60 478 60 420 60 361 60 300 65 587 65 535 65 478 65 421 65 361 65 300 70 587 70 535 70 479 70 421 70 362 70 300 75 587 75 536 75 480 75 422 75 362 75 301 80 587 80 537 80 481 80 423 80 363 80 301 85 587 85 539 85 482 85 424 85 364 85 302 90 587 90 540 90 483 90 425 90 365 90 303 95 587 95 541 95 484 95 426 95 366 95 305 100 587 100 543 100 486 100 428 100 368 100 306 105 587 105 545 105 488 105 429 105 370 105 308 110 587 110 547 110 490 110 432 110 372 110 311 115 587 115 549 115 492 115 434 115 374 115 313 120 587 120 552 120 495 120 437 120 377 120 316 125 587 125 555 125 498 125 440 125 381 125 320 130 587 130 558 130 501 130 444 130 384 130 324 135 587 135 562 135 505 135 448 135 389 135 329 140 587 140 566 140 509 140 452 140 394 140 334 145 587 145 570 145 514 145 457 145 399 145 340 150 587 150 575 150 519 150 463 150 405 150 347 155 587 155 581 155 525 155 469 155 412 155 355 160 587 160 587 1'60 532 160 476 160 420 160 363 165 587 165 587 165 539 165 484 165 429 165 373 170 587 170 587 170 548 170 493 170 439 170 .384 WCAP-17341-NP February 2011 Revision 0 5-12 Westinghouse Non-Proprietarv Class 3 Steady State 20'F/hr. 40'F/hr. 60 0 F/hr. 8 0'F/hr. l00F/hr.T P T P T P T P T P T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig)175 587 175 587 175 557 175 503 175 450 175 396 180 587 180 587 180 567 180 515 180 462 180 410 180 587 180 587 180 567 180 515 180 462 180 410 180 670 180 619 180 567 180 515 180 462 180 410 185 680 185 629 185 578 185 527 185 476 185 426 190 690 190 640 190 591 190 541 190 491 190 443 195 702 195 653 195 604 195 556 195 508 195 462 200 714 200 667 200 620 200 573 200 527 200 483 205 728 205 682 205 637 205 592 205 549 205 507 210 744 210 700 210 656 210 613 210 572 210 534 215 761 215 719 215 677 215 637 215 598 215 563 220 780 220 740 220 700 220 663 220 628 220 596 225 801 225 763 225 726 225 692 225 660 225 632 230 825 230 789 230 755 230 724 230 696 230 673 235 850 235 817 235 786 235 759 235 736 235 718 240 879 240 849 240 822 240 798 240 780 240 767 245 910 245 883 245 861 245 842 245 829 245 823 250 945 250 922 250 904 250 890 250 883 250 883 255 983 255 965 255 951 255 944 255 944 255 944 260 1025 260 1012 260 1004 260 1003 260 1003 260 1003 265 1072 265 1064 265 1063 265 1063 265 1063 265 1063 270 1124 270 1122 270 1122 270 1122 270 1122 270 1122 275 1181 275 1181 275 1181 275 1181 275 1181 275 1181 280 1244 280 1244 280 1244 280 1244 280 1244 280 1244 285 1314 285 1314 285 1314 285 1314 285 1314 285 1314 290 1391 290 1391 290 1391 290 1391 290 1391 290 1391 295 1476 295 1476 295 1476 295 1476 295 1476 295 1476 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-13 Steady State -20°F/hr.

40-F/hr. 60°F/hr. 80'F/hr. 100 0 F/hr.TP T, P T PTP T P T:P (OF) (psig) (9F) (psig) (0 F) (psig) (OF) (ps g) ,(0 (psig) (0 F) -(psig).300 1551 300 1551 300 1551 300 1551 300 1551 300 1551 305 1655 305 1655 305 1655 305 1655 305 1655 305 1655 310 1771 310 1771 310 1771 310 1771 310 1771 310 1771 315 1898 315 1898 315 1898 315 1898 315 1898 315 1898 320 2038 320 2038 320 2038 320 2038 320 2038 320 2038 325 2194 325 2194 325 2194 325 2194 325 2194 325 2194 330 2365 330 2365 330 2365 330 2365 330 2365 330 2365 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-1 6 APPLICABILITY OF CURRENT HEATUP AND COOLDOWN LIMITS The applicability of the current Palisades P-T limit curves was determined based on a comparison of the available operating margin between the P-T limits developed in this report at 42.1 EFPY with those contained in EA-A-PAL-92-095-01

[Reference 14], which documents the development of the current Palisades P-T limit curves that are contained in the Palisades Technical Specifications (Figures 3.4.3-1 and 3.4.3-2).

The P-T limit curves presented in Figures 3.4.3-1 and 3.4.3-2 of the Palisades Technical Specifications do not contain margins for instrumentation error.The methodology of the 1998 through the 2000 Addenda Edition of the ASME B&PV Code,Section XI, Appendix G, along with ASME Code Case N-641 was used in the development of the P-T limit curves contained in this report. Code Case N-641 removes some of the conservatism in P-T limit curves by allowing the use of the Kic reference stress intensity factor, instead of the older, more conservative Kla reference stress intensity factor, which was used in the development of the Palisades current P-T limit curves. Additionally, the 1998 through the Summer 2000 Addenda Edition of the ASME Code Section XI, Appendix G methodology allows use of the less restrictive "Circ-Flaw" methodology, which postulates circumferentially oriented reference defects in circumferential weld materials.

Therefore, the P-T limit curves developed in this report took advantage of these updates to the ASME P-T limit methodology and are predicted to contain additional operating margin not present in the curves developed using the older Kla methodology.

However, when K 1 , methodology is used, the LTOP system shall limit the maximum pressure in the vessel to 100% of the pressure determined to satisfy Equation 2 of Section 3. Previously, while using Kla, the maximum pressure determined from Equation 2 of Section 3 could be exceeded by 10% by the LTOP system. Therefore, since the current curves utilized the KIa reference stress intensity factor, the P-T limit curve pressure values (without margins for instrumentation error) contained in the analysis of record (AOR), EA-A-PAL-92-095-01 were increased by 10% in order to determine if margin exists between this data and the P-T limit curves developed herein using the KIc reference stress intensity factor. This 10%increase to the pressure values contained in the AOR is for comparison purposes only. The increased pressure values are not to be used in actual plant operation.

Furthermore, the current Palisades P-T limit curve data points were converted to units of psig (from psia) so that direct comparison could be made between these pressure values (current curves plus 10% margin) and the pressure values for the curves developed in this report. These adjusted values are shown below in Tables 6-1 and 6-2, for heatup and cooldown, respectively.

Additionally, in order for the current Palisades P-T limit curves to be bounded by the curves developed in this report, the criticality temperature shown in Section 5 must be found to be lower than the criticality temperature determined in EA-PAL-92-095-01

[Reference 14]. The criticality temperature determined in Section 5 is 3177F, with consideration for margins for instrument errors on the inservice hydrostatic leak test limit. In EA-PAL-92-095-01, the criticality temperature was determined to be 385'F. Reference 14 also states that the Palisades reactor vessel will not be made critical below a temperature of 525°F.Therefore, based on this analysis, significant margin exists between the current Palisades criticality temperature and the criticality temperature determined in this report.WCAP-17341-NP February 2011 Revision 0 6-2 Westinahouse Non-ProDrietarv Class 3 The pressure and temperature values contained in Tables 6-1 and 6-2 (current curves plus 10% margin)were plotted together with the data points from Tables 5-1 and 5-2 of this report, which were developed using the K 1 , reference stress intensity factor, in Figures 6-1 through 6-4. In Figures 6-1 through 6-4, the curves developed in this report (through 42.1 EFPY; without margins for instrumentation errors) are shown as solid lines while the curves developed from the data points in Tables 6-1 and 6-2 (current curves plus 10% margin) are shown as dashed lines. The color scheme in the Figures correlates so that the solid and dashed lines have an identical color for each heatup or cooldown rate.Figure 6-1 shows the comparison of the heatup curves. Figure 6-2 shows a magnified version of Figure 6-1 in the lower pressure and temperature region. The corresponding data points, along with the additional margin between the current Palisades P-T limit curves +10% margin and the P-T limit curves developed in this report are contained in Table 6-3.Figure 6-3 shows the comparison of the cooldown curves. Figure 6-4 shows a magnified version of Figure 6-3 in the lower pressure and temperature region. The corresponding data points, along with the additional margin between the current Palisades P-T limit curves +10% margin and the P-T limit curves developed in this report are contained in Table 6-4.Pressure values for the current curves at 60'F and at the highest temperature, which corresponds to the final temperature of the P-T limit curves developed in this report, were interpolated from the data contained in Tables 6-1 and 6-2. Furthermore, the pressures for the current curves at 180'F, which is the limiting temperature for the flange-notch region, were also determined using interpolation from the data contained in Tables 6-1 and 6-2. These interpolations are needed to accurately compare the current P-T limit curves with the P-T limit curves developed in this report at the end of the heatup, the beginning of the cooldown or at the limiting temperature for the flange-notch region.Finally, Tables 6-5 and 6-6 contain a summary of the available margin between the P-T limits developed in Section 5 of this report (through 42.1 EFPY; without margins for instrumentation errors) and the current Palisades P-T limits, contained in Reference 14, plus 10% margin.P-T Limit Curve Applicability Conclusion Tables 6-5 and 6-6 show that adequate margin exists between the current Palisades P-T limit curves plus 10% margin (to account for the methodology change between KUa to K 1) and the P-T limit curves developed in this report for 42.1 EFPY (EOLE). Therefore, the continued use, of the current Palisades P-T limit curves is justified through EOLE.WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-3 Low Temperature Overpressure Protection (LTOP) Applicability Conclusion The primary coolant system (PCS) pressures permitted by the new set of pressure-temperature limit curves are demonstrated to be less restrictive than the PCS pressures permitted by the current heatup and cooldown figures as adjusted in Tables 6-1 and 6-2. Palisades Nuclear Plant Technical Specification Figure 3.4.12-1 provides the upper limit on the power operated relief valves (PORV) setpoints for the LTOP system, which assures protection for LTOP transients which may approach the pressure of the current Palisades P-T limit curves plus 10%.Per LTR-SEE-II-10-98

[Reference 17], in order for the implemented LTOP setpoint curve to-remain valid, the PCS pressures permitted by the new set of pressure-temperature limit curves must be less restrictive (or no more restrictive) than the historical PCS pressure limits increased by 10%, to compensate for the methodology change between Kla to KIc, for the maximum heatup and cooldown rates.Furthermore, the new isothermal limit curves must be less restrictive (or no more restrictive) than the historical PCS pressure limits increased by 10% to support the Primary Coolant Pump (PCP) start transient results.Per Tables 6-5 and 6-6, adequate margin exists between the current Palisades P-T limit curves plus 10% margin (to account for the methodology change between Kla to KIt) and the P-T limit curves developed in this report for 42.1 EFPY (EOLE). Therefore, the continued use of the current Palisades LTOP setpoint curve, PORV setpoints, and LTOP enabling temperature (See Appendix B)are justified through EOLE.WCAP- 17341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 6-4 Westin6ouse Non-Pronrietarv Class 3 Table 6-1 Current Palisades P-T Limit Curve Data Points Plus 10% Margin for Heatup Temperatureta)

Pressure(a) (psig)(OF) 0°F/hr 20°F/hr 40 0 F/hr 60'F/hr 80°F/hr 100°F/hr Heatup Heatup Heatup Heatup Heatup Heatup 50 493 436 336 241 144 54 100 493 465 360 261 161 68 150 519 511 410 303 195 98 200 574 574 499 389 267 158 250 687 687 687 552 415 282 300 899 899 899 890 680 504 350 1381 1381 1381 1381 1294 1022 400 2091 2091 2091 2091 2091 2091 410) 2450 2450 2450 2450 2450 2450 450 3223 3223 3223 3223 3223 3223 Notes for Table 6-1: (a) Data is associated with the Palisades current heatup curves contained in the AOR, EA-A-PAL-92-095-

01. Ten-percent margin was added to the pressure values after converting to units of psig from psia.This ten-percent margin on the pressure values is for comparison purposes only and is not to be used in actual plant operation.

These data points do not contain margins for instrumentation error.(b) Values were interpolated to an arbitrary pressure below the design pressure.

This is for visual comparison purposes only. See Figure 6-1.WCAP-1 7341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-5 Table 6-2 Current Palisades P-T Limit Curve Data Points Plus 10% Margin for Cooldown T.m...tur~a)

_______I Pressure(a) (psig)Tem perature~a I ý:,", .... ...... .. ... ,1,:,, ,........., 0 F) 0 0 F/hr 20OF/hr 40 0 F/h 60rF/hr 80 0 F/hr 100 0 F/r9 ',:!(, ) I....1 Cooldown Cooldown Cooldown Cooldown Cooldown Cooldown 50 493 427 360 286 219 142 100 493 441 375 302 236 161 150 519 470 406 336 271 199 200 574 516 470 404 345 278 250 687 636 586 531 483 441 300 899 864 831 796 767 737 350 1381 1378 1378 1378 1378 1378 400 2333 2333 2333 2333 2333 2333 Note for Table 6-2: (a) Data is associated with the Palisades current cooldown curves contained in the AOR, EA-A-PAL 095-01. Ten-percent margin was added to the pressure values after converting to units of psig from psia.This ten-percent margin on the pressure values is for comparison purposes only and is not to be used in actual plant operation.

These data points do not contain margins for instrumentation error.WCAP-1 7341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 6-6 Westin2house Non-Proprietary Class 3 6-6 Westinghouse Non-Proprietary Class 3 Figure 6-1 Palisades Heatup P-T Limit Curve Comparison between the Current P-T Limit Curves + 10% Margin and the New P-T Limit Curves to 42.1 EFPY 2500 2250 2000 1750 t 15001250=1000 750 500 250 0 I, Unacceptable Operation Acceptable Operation/I U ---A.., I ]Solid Lines: New P-T Limits Dashed Lines: AOR + 10% Margin-100 I'll Heatup Rates Deg. F/Hr steady-state black (ss)20 red 40 blue 60 80 "rc ii 100 orange I I....................

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)WCAP-1 7341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-7 Figure 6-2 Palisades HeatuD P-T Limit Curve Comparison between the Current P-T Limit Curves + 10% Margin and the New P-T Limit Curves to 42.1 EFPY Magnified 1000 -_____9001 j I 800 Unacceptable

[ .Operation SS iI 700,/ /l~.600 Acceptab UOperatioi 10 400 0 300.. ..../ Solid Lines: New P-T Limits__ ~Dashed Lines: AOR + 10% 1 200 ..Heatup Rates 80 Deg. F/Hr steady-state black (ss'100 20 i Lred_T .0, : I s heLine:AOlp 1%1 0 0 50 100 150 200 250 300 350 400 Moderator Temperature (Deg. F)WCAP-17341-NP February 2011 Revision 0 6-8 Westin2house Non-Proorietarv Class 3 6-8 Westinghouse Non-Pro~rietarv Class 3 Figure 6-3 Palisades Cooldown P-T Limit Curve Comparison between the Current P-T Limit Curves + 10% Margin and the New P-T Limit Curves to 42.1 EFPY 2500 22504 2000 +1750 Unacceptable C, Operation o1500 0)~1250J I-Acceptable M Operation S1000 i Solid Lines: New P-T Limits If Dashed Lines: AOR + 10% Margin 500 Cooldown 10000,Rates 00 Deg. F/Hr steady-state black (ss)-20 red 250 J, -40 blue 0 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-9 Figure 6-4 Palisades Cooldown P-T Limit Curve Comparison between the Current P-T Limit Curves + 10% Margin and the New P-T Limit Curves to 42.1 EFPY Magnified 1000 900 800 700 0 a. 600 U)U)2) 500 04 a)3 400 u 0 300 200 100 0 0 50 100 150 200 250 300 350 400 Moderator Temperature (Deg. F)WCAP-17341-NP February 2011 Revision 0 6-10 Westinghouse Non-Proprietarv Class 3 Table 6-3. Data Points for Palisades Heatul P-T Limit Curve Comparison between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY 0 0 F/hr : 20,: 0 6/hr:'. 4 0 F/hr, _10% New P ar. T 10%C Ne. 1... Nw .+1 New P-T i T + 10 New P- Margintb)

T Current Curvs ()Marg! ,: T Curvrents pMargi Curv Curves Curves.Curren Curves (Psi) (OF) C! re (Psi) Curves (pig), (psi)--p (O):ues (:psig) ' ... "(pslg)M (psik ((psig) (, (psig) .. ._. _ p_ ig)______

______ ______ _____60 4 9 3 (a) 587 94 60 442(a) 587 145 60 340(a) 570 229 100 493 587 94 100 465 587 122 100 360 571 212 150 519 587 68 150 511 587 76 150 410 587 177 180 552(a) 587 35 180 549(a) 587 38 180 463(a) 587 124 200 574 714 141 200 574 714 141 200 499 714 215 250 687 945 258 250 687 945 258 250 687 945 258 300 899 1551 652 300 899 1514 614 300 899 1487 588 330 1188(a) 2365 1177 335 1237(a) 2409 1172 340 1285(a) 2454 1169 60 0 F/hr 80OF/hr .100OF/hr _________+ 10%0 e + 10% + 10% NewP-T Marg T Current New ... MarginMb)

T Current argin) T Current: -Margin TCr eCurvest:

Ne w Curves Margn T Current Curves (-psi)(OF) CCrves (psi) (OF) Curves (psig (pi) (F) urves (ps)(psig) (psig) (i) (psig)60 245(a) 540 295 60 147(a) 511 364 60 57(a) 483 426 100 261 540 278 100 161 511 350 100 68 483 414 150 303 578 274 150 195 527 332 150 98 487 390 180 355(a) 587 232 180 238 583 345 180 134(a) 524 390 200 389 714 325 200 267 650 383 200 158 575 417 250 552 945 392 250 415(a) 945 530 250 282 862 579 300 890 1469 580 300 680 1460 780 300 504 1457 952 340 1283(a) 2336 1053 345 1233(a) 2387 1154 350 1022 2438 1416 WCAP- 17341-NP February 2011 WCAP- 17341 -NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-11 Notes for Table 6-3: (a) Pressure values at temperatures of 60'F, 1807F, and the final temperature (varies per heatup rate) were interpolated from the current Palisades P-T limit data points for direct comparison to the data points developed in this report.(b) Margin equals New P-T limit curve data point minus the current P-T limit curves + 10 % data point for each temperature and rate.WCAP- 17341-NP February 2011 Revision 0 6-12 Westinghouse Non-Proprietary Class 3 Table 6-4 Data Points for Palisades Cooldown P-T Limit Curve Comparison between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY 0OF/hr 20 0 F/hr ____:_40°F/hr

+1 10%T Current New P-T Margin(b)

T CurrentlNew P-T Margin(b)

T Current NesP-T Margin()rCurves C Curves (s):) uv (F) Curves s (psi) (TF) Curvest (psi) (F) Curves (psi)(psig) (psig)() (sig) I _ _(psig) (psig)60 493(a) 587 94 60 430(a) 534 104 60 363(a) 478 115 100 493 587 94 100 441 543 102 100 375 486 111 150 519 587 68 150 470 575 105 150 406 519 114 180 552(a) 587 35 180 498(a) 587 89 180 444(a) 567 123 200 574 714 141 200 516 667 151 200 470 620 150 250 687 945 258 250 636 922 286 250 586 904 318 300 899 1551 652 300 864 1551 687 300 831 1551 721 330 1188(a) 2365 1177 330 1172(a) 2365 1193 330 1159(a) 2365 1206 S 60°F/hrI 80'F/hr 100 0 F/hr _ _+100%e New P MT g(b) + 10% New(P-T Margn (b)T Current MarginN T Current New P-T Margin T Current Margin (IF) Curves rpsvge (psi) (OF) Curves Cutoesg) (psi) (IF) Curves Cvesw ý(psi)(PS p(psig) (psig) (psig)) (sig) -_60 289(a) 420 131 60 222(a) 361 139 60 146(a) 300 154 100 302 428 125 100 236 368 132 100 161 306 146 150 336 463 127 150 271 405 134 150 199 347 148 180 377(a) 515 138 180 316(a) 462 147 180 246(a) 410 164 200 404 573 169 200 345 527 183 200 278 483 205 250 531 890 359 250 483 883 400 250 441 883 442 300 796 1551 755 300 767 1551 784 300 737 1551 814 330 1145(a) 2365 1220 330 1134(a) 2365 1232 330 1121(a) 2365 1244 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-13 Notes for Table 6-4: (a) Pressure values at temperatures of 60'F, 180'F, and 330'F were interpolated from the current Palisades P-T limit data points for direct comparison to the data points generated in this report.(b) Margin equals New P-T limit curve data point minus the current P-T limit curves + 10 % data point for each temperature and rate.WCAP-17341-NP February 2011 Revision 0 6-14 Westin2house Non-Pronrietarv Class 3 Table 6-5 Palisades Heatup P-T Limit Curve Margin Summary between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY 0OF/hr 20OF/hr 40'F/hr 60°F/hr 80'F/hr 100F/hr T Margin T Margin T Margin T Margin T Margin T Margin (OF) (psi) (OF) (psi) (OF) (psi) (OF) (psi) (OF) (psi) (OF) (psi)60 94 60 145 60 229 60 295 60 364 60 426 100 94 100 122 100 212 100 278 100 350 100 414 150 68 150 76 150 177 150 274 150 332 150 390 180 35 180 38 180 124 180 232 180 345 180 390 200 141 200 141 200 215 200 325 200 383 200 417 250 258 250 258 250 258 250 392 250 530 250 579 300 652 300 614 300 588 300 580 300 780 300 952 330 1177 335 1172 340 1169 340 1053 345 1154 350 1416 WCAP- 17341-NP February 2011 WCAP- 17341 -NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-15 Table 6-6 Palisades Cooldown P-T Limit Curve Margin Summary between the Current P-T Limit Curves + 10 % Margin and the New P-T Limit Curves to 42.1 EFPY 0 0 F/hr 20'F/hr 40°F/hr 60°F/hr 80 0 F/hr 100 0 F/hr T Margin T Margin T Margin T Margin T Margin T Margin (OF) (psig) (OF) (psi) (OF) (psi) (OF) (psi) (OF) --(psi) (OF) (psi)60 94 60 104 60 115 60 131 60 139 60 154 100 94 100 102 100 111 100 125 100 132 100 146 150 68 150 105 150 114 150 127 150 134 150 148 180 35 180 89 180 123 180 138 180 147 180 164 200 141 200 151 200 150 200 169 200 183 200 205 250 258 250 286 250 318 250 359 250 400 250 442 300 652 300 687 300 721 300 755 300 784 300 814 330 1177 330 1193 330 1206 330 1220 330 1232 330 1244 WCAP- 17341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 7-1 7 RECREATION OF PALISADES TECHNICAL SPECIFICATION P-T LIMIT CURVES The current Palisades Nuclear Plant Technical Specification P-T limit curves (Figures 3.4.3-1 and 3.4.3-2)do not contain information to discern their development basis or applicability term. Therefore, these Technical Specification figures have been recreated as Figures 7-1 and 7-2 in this report with development basis information and applicability term included.

Some or all of the additional information included on Figures 7-1 and 7-2 may be added to the Palisades Technical Specification figures for clarity.These new Figures contain identical data points to the current curves. The only changes to the new Figures are the addition of the basis information and the applicability term. For consistency with the current Palisades Technical Specification P-T limit curves, the pressure values on the resulting figures are reported in units of psia. The data points used to generate the current Technical Specification Figures, as well as Figures 7-1 and 7-2 contained in this report, were originally documented in EA-A-PAL-92-095-01, Revision 0 [Reference 14] and are summarized in Tables 7-1 and 7-2 of this report for heatup and cooldown, respectively.

Note that the P-T limit curves contained in the Technical Specifications do not contain margins for instrumentation error.WCAP-17341-NP February 2011 Revision 0 7-2 Westinghouse Non-Proprietary Class 3 Figure 7-1 Recreation of Palisades Nuclear Plant Technical Specification Figure 3.4.3-1 with Addition of Basis Information and Applicability Term Figure 3.4.3-1 (Page 1 of 1)Palisades Pressure -Temperature Limit Curves for Heatup Applicable through an EOLE of 42.1 EFPY 2500 Validated by the Information Contained in WCAP-1 7341-NP, Revision 0 Based on Limiting Material Axial Welds 2-112 and 3-112 (Heat #W5214) Using Position 2.1 2250 Su rveillance Capsule Data Limiting ART Values for Axial Welds 2-112 and 3-112 at 42.1 EFPY 2000 1/4T= 252.7'F; 3/4T= 185.8'F Peak Vessel Surface Fluence Value at the 60* Azimuth on Axial Welds 2-112 and 3-112 at 42.1 EFPY 2.161 x 1019 n/cm 2 (E > 1.0 MeV)1750 Cg)RV Inlet Avg. Hrly.Temperature H/U Limit 1250 T ! 170"F 20"F/H r..250 T > 1707F 40"F/Hr.N 350 > T > 2507 60"F/Hr.*T ! 360TF 100"F/Hr.(n 1000 When shutdown cooling isolation Ytalues MO-3016 and MO-3016 are open, PCS I._L heatup rate shall be maintained

< 40"F/Hr 750 ...0 F/hr--20 F/hr-A--40 F/hr 500 60 F/hr S---80 F/hr-4-- 100 F/hr 50 100 150 200 250 300 350 400 450 RV Inlet Temperature, F WCAP-1 7341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 7-3 Figure 7-2 Recreation of Palisades Nuclear Plant Technical Specification Figure 3.4.3-2 with Addition of Basis Information and Applicability Term Figure 3.4.3-2 (Page 1 of 1)Palisades Pressure -Temperature Limit Curves for Cooldown Applicable through an EOLE of 42.1 EFPYa 2250 2000 1750 C,)0- 1500 1250 0.N1000 0)750 500 250 Validated by the Information Contained in WCAP-17341 NP. Revision 0 Based on Limiting Material Axial Welds 112 and 3-112 (Heat #V521 4) Using Position 2.1 Surveillance Capsule Data Limiting APTValues for Axial Welds 2-112 and 3-112 at 42.1 EFPY 1/4T= 252.70F; 3/4T= 185.80F Peak Vessel Surface Fluence Value at the 60° Azimuth Axial Welds 2-112 and 3-112 at 42.1 EFPY 2.161 x 1019 n/cm 2 (E > 1.0 MeM0 on ge A_I Additional resirictions when head is on reactor vessel: 1. Maintain average core exit temperature:

135°F>T110'F for>3hours

2. Following completion of item 1, maintain avera hourl y cooldown (C/D) limit of 200F/hour based on core exit temperature indication RV Inlet Avg. Hrly.Temperature C/D Limit T! <1707 40"F/Hr.250 ! T> 170F 40"F/Hr.350 > T > 250'F 60"F/Hr.T ;! 350"F_ 100"FIHr.0 F/hr-5-20 F/hr--40 F/hr 60 F/hr A*80 F/hr I 100 F/hr 0 50 100 150 200 250 300 350 400 450 RV Inlet Temperature, F WCAP-17341-NP February 2011 Revision 0 7-4 Westinghouse Non-Proprietary Class 3 Table 7-1 Palisades Current P-T Limit Curve Data Points Used in the Recreation of Technical Specification Figure 3.4.3-1 ea) Pressure~a) (psia)Temperature~a (OF) O 0 F/hr 20'F/hr 4 0 IF/hr 60 0 F/hr 80'F/hr lOOT/hr Heatup Heatup Heatup Heatup Heatup Heatup 50 462.9 410.9 319.8 234.0 145.5 63.9 100 462.5 437.5 341.8 252.4 160.8 76.8 150 486.6 479.4 387.1 290.3 192.3 103.4 200 536.3 536.3 468.3 368.7 257.4 158.2 250 639.1 639.1 639.1 516.7 391.7 271.5 300 832.2 832.2 832.2 823.4 633.0 473.2 350 1270.2 1270.2 1270.2 1270.2 1191.5 943.9 400 1915:8 1915.8 1915.8 1915.8 1915.8 1915.8 450 2944.6 2944.6 2944.6 2944.6 2944.6 2944.6 Note for Table 7-1: (a) Data is associated with the Palisades current heatup curves contained in the Technical Specifications and originally documented in EA-A-PAL-92-095-01

[Reference 14]. The pressure values are reported in units of psia for consistency with Figure 3.4.3-1 of the Palisades Technical Specifications.

These data points do not contain margins for instrumentation error.WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary.Class 3 7-5 Table 7-2 Palisades Current P-T Limit Curve Data Points Used in the Recreation of Technical Specification Figure 3.4.3-2 Temperatureta)

Pressure(a) (psia)(OF) 0 0 F/hr 20IF/hr 4 0 OF/hr 60°F/hr 80°F/hr 100F/hr Cooldown Cooldown Cooldown Cooldown Cooldown Cooldown 50 462.9 403.1 341.6 274.8 213.5 143.9 100 462.5 415.8 355.2 289.5 229.1 160.8 150 486.6 442.2 383.4 319.7 261.5 195.6 200 536.3 483.7 441.6 382.2 328.2 267.4 250 639.1 593.2 547.1 497.8 453.8 415.8 300 832.2 800.3 769.8 738.3 712.3 684.6 350 1270.2 1267.2 1267.2 1267.2 1267.2 1267.2 400 2135.8 2135.8 2135.8 2135.8 2135.8 2135.8 450 3769.8 3769.8 3769.8 3769.8 3761.8 3590.7 Note for Table 7-2: (a) Data is associated with the Palisades current cooldown curves contained in the Technical Specifications and originally documented in EA-A-PAL-92-095-01

[Reference 14]. The pressure values are reported in units of psia for consistency with Figure 3.4.3-2 of the Palisades Technical Specifications.

These data points do not contain margins for instrumentation error.WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U. S.Nuclear Regulatory Commission, May 1988.2. WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," J. D. Andrachek, et al., May 2004.3. Appendix G to the 1998 through the 2000 Addenda Edition of the ASME Boiler and Pressure Vessel (B&PV) Code,Section XI, Division 1, "Fracture Toughness Criteria for Protection Against Failure." 4. NUREG-1871, Revision 0, "Safety Evaluation Report Related to the License Renewal of Palisades Nuclear Plant," Docket No. 50-255, Nuclear Management Company LLC, January 2007 5. WCAP-15353

-Supplement 1-NP, Revision 0, "Palisades Reactor Pressure Vessel Fluence Evaluation," S. L. Anderson, May 2010.6. Code of Federal Regulations, 10 CFR Part 50, Appendix G, "Fracture Toughness Requirements," U.S. Nuclear Regulatory Commission, Washington, D. C., Federal Register, Volume, 60, No. 243, dated December 19, 1995.7. SIA Report No. 1000915.401, Revision 1, "Revised Pressurized Thermal Shock Evaluation for the Palisades Reactor Pressure Vessel," T. J. Griesbach, November 2010.8. SIA Report No. 1001026.401, Revision 1, "Basis for Period of Validity of the Palisades Pressure-Temperature (P-T) Limit Curves," T. J. Griesbach, November 2010.9. Final Safety Analysis Report (FSAR), Palisades Nuclear Power Plant, Revision 28.10. Certified Material Test Report (CMTR) -Palisades Closure Head Flange, Bethlehem Steel Corporation Order #3109-784.

11. Certified Material Test Report (CMTR) -Palisades Vessel Flange, Bethlehem Steel Corporation Order #3109-610.
12. SIA Report No. 0901132.401, Revision 0, "Evaluation of Surveillance Data for Weld Heat No.W5214 for Application to Palisades PTS Analysis," T. J. Griesbach, April 2010.13. "Reactor Vessel Assembly Instruction Manual -Palisades Plant, Consumers Power Company," C. E.Book No. 2966-A, May 1969.14. Consumers Power Calculation EA-A-PAL-92-095-01, Revision 0, "Pressure-Temperature Curves and LTOP Setpoint Curve for Maximum Reactor Vessel Fluence of 2.192 x 101 9 Neutrons/cm 2 ," G. F.Pratt, August 1994.15. ASME Boiler and Pressure Vessel (B&PV) Code,Section II, Division 1, Subsection NB, Section NB-2300, "Fracture Toughness Requirements for Material." 16. WCAP-15353, Revision 0, "Palisades Reactor Pressure Vessel Neutron Fluence Evaluation," S. L.Anderson et al., January 2000.17. Westinghouse Letter LTR-SEE-II-10-98, Revision 0, "Westinghouse Review of LTOP Analyses and LTOP Controls Assumptions for Palisades Nuclear Plant," February 2011.WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-1 Westinghouse Non-Proprietary Class 3 A-i APPENDIX A THERMAL STRESS INTENSITY FACTORS (KIT)Tables A- I and A-2 contain the thermal stress intensity factors (K,,) for the maximum heatup and cooldown rates. The vessel radii to the 1/4T and 3/4T locations are as follows:* 1/4T Radius = 88.55"* 3/4T Radius = 92.94" WCAP- 17341-NP February 2011 Revision 0 A-2 Westinghouse Non-Proprietary Class 3 Table A-1 KI, Values for Palisades 42.1 EFPY 100 0 F/hr Heatup Curves (w/o Margins for Instrument Errors)Vessel 1/4T Thermal Vessel 3@T Thermal Water Temperature
  • Temperature

@/STress.... ...... Stress ... ... ..Stress Temp. 1/4T Location for 3/4T Location for (OF) 100 0 F/hr Heatup Intensity Factor 100F/hr Heatup (KSItint)( O F ) ( K S I in .) ( O F ) _ _ _ _ _ _ _ _ _60 55.956 -0.996 55.039 0.468 65 58.480 -2.466 55.271 1.431 70 61.512 -3.749 55.897 2.430 75 64.756 -4.974 56.977 3.380 80 68.274 -6.040 58.464 4.237 85 71.903 -7.018 60.324 5.009 90 75.713 -7.873 62.520 5.696 95 79.621 -8.655 65.013 6.314 100 83.660 -9.345 67.772 6.866 105 87.787 -9.974 70.766 7.361 110 92.008 -10.530 73.966 7.804 115 96.305 -11.039 77.349 8.204 120 100.673 -11.492 80.893 8.566 125 105.102 -11.908 84.580 8.892 130 109.584 -12.280 88.394 9.188 135 114.116 -12.623 92.320 9.457 140 118.689 -12.930 96.347 9.701 145 123.302 -13.215 100.463 9.924 150 127.946 -13.472 104.657 10.127 155 132.624 -13.711 108.921 10.314 160 137.324 -13.928 113.247 10.486 165 142.051 -14.131 117.628 10.644 170 146.797 -14.317 122.058 10.790 175 .151.563 -14.492 126.531 10.926 180 156.344 -14.653 131.043 11.052 185 161.141 -14.805 135.589 11.170 190 165.950 -14.946 140.166 11.281 195 170.772 -15.081 144.770 11.385 200 175.602 -15.207 149.397 11.483 205 180.444 -15.328 154.047 11.576 210 185.292 -15.442 158.715 11.665 WCAP-1 7341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-3 Table A-2 Kit Values for Palisades 42.1 EFPY 100°F/hr Cooldown Curves (w/o Margins for Instrument Errors)Vessel Temperature 100 0 F/hr Cooldown Terp. @ 1/4T Location for 1/4T Thermal Stress Temp.100 0 F/hr Cooldown Intensity Factor (OF) (KSl'in.)210 238.150 18.024 205 233.063 17.953 200 227.974 17.882 195 222.886 17.810 190 217.797 17.739 185 212.707 17.666 180 207.617 17.594 175 202.527 17.522 170 197.437 17.449 165 192.347 17.376 160 187.256 17.304 155 182.165 17.231 150 177.075 17.158 145 171.984 17.086 140 166.893 17.013 135 161.802 16.940 130 156.711 1.6.867 125 , 151.620 16.795 120 146.529 16.722 115 141.439 16.650 110 136.348 16.577 105 131.257 16.505 100 126.166 16.433 95 121.076 16.360 90 115.985 16.289 85 110.895 16.216 80 105.805 16.145 75 100.715 16.073 70 95.625 16.002 65 90.535 15.930 60 85.446 15.858 WCAP-1 7341-NP February 2011 WCAP- 17341 -NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-1 APPENDIX B LTOP SYSTEM ENABLE TEMPERATURE ASME Code Case N-641 [Reference B-i] presents alternative procedures for calculating pressure-temperature relationships and low temperature overpressure protection (LTOP) system effective temperatures and allowable pressures.

The procedures provided in Code Case N-641 take into account alternative fracture toughness properties, circumferential and axial reference flaws, and plant-specific LTOP effective temperature calculations.

Per ASME Code Case N-641, the LTOP system shall be effective below the higher temperature determined in accordance with (1) and (2) below. Alternatively, LTOP systems shall be effective below the higher temperature determined in accordance with (1) and (3) below.(1) a coolant temperature(a) of 200'F (2) a coolant temperature(a) corresponding to a reactor vessel metal temperature(b) for all vessel beltline materials, where Te is defined for inside axial surface flaws as RTNDT + 40'F, and Te is defined for inside circumferential surface flaws as RTNDT -85°F.(3) a coolant temperature(a) corresponding to a reactor vessel metal temperatureb, for all vessel beltline materials, where Te is calculated on a plant-specific basis for axial and circumferential reference flaws using the following equation: Te = RTNDT + 50 In [((F

  • Mm (pRi / t)) -33.2) / 20.734]Where, F = 1.1, accumulation factor for safety relief valves Mm = the value of Mm determined in accordance with G-2214.1 p= vessel design pressure, ksi Ri = vessel inner radius, in.t= vessel wall thickness, in.Notes: (a) The coolant temperature is the reactor coolant inlet temperature.(b) The-vessel metal temperature is the temperature at a distance 1/4 of the vessel section thickness from the clad/base metal interface in the vessel beltline region.RTNDT is the highest adjusted reference temperature (for weld or base metal in the beltline region) at a distance 1/4 of the vessel section thickness from the vessel clad/base metal interface as determined by Regulatory Guide 1.99, Revision 2[Reference B-2].WCAP-17341-NP February 2011 Revision 0 B3-2 Westinghouse Non-Proprietary Class 3 Using the ASME Code Case N-641 equations and the following inputs, the Palisades LTOP system minimum enable temperature using Cases 2 and 3 was determined.

F =1.1 Mm = 2.745 (See Section 3 for equations used to calculated Mm)p = 2.485 ksi Ri = 86.35 inches t = 8.79 inches RTNDT = 252.7'F (at 1/4T per Table 4-4)The LTOP system shall be effective below the higher temperature determined in accordance with (1) and (2) above, which has been determined to be 319.8°F. Alternatively, LTOP systems shall be effective below the higher temperature determined in accordance with (1) and (3) above, which has been determined to be 313.2'F.Therefore, the minimum required enable temperature (without margins for instrument uncertainty) for the Palisades reactor vessel will be chosen to be 313.2°F at 42.1 EFPY. Per LTR-SEE-IL-10-98

[Reference B-3], the current Limiting Condition for Operation (LCO) 3.4.12 dictates LTOP System operability requirements when the primary coolant system (PCS) is less than 430'F. This 430'F must bound the LTOP enable range associated with the new set of pressure-temperature limit curves for plant heatup and cooldown.

Since the LTOP enable temperature (313.2°F) developed in this Appendix for 42.1 EFPY, is less than the value prescribed by LTR-SEE-II-10-98, the LTOP System operability requirements of the current LCO 3.4.12 will continue to be met through 42.1 EFPY.B.1 REFERENCES B-1 ASME Code Case N-641, "Alternative Pressure-Temperature Relationship and Low Temperature Overpressure Protection System RequirementsSection XI, Division 1," January 17, 2000.B-2 Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U. S. Nuclear Regulatory Commission, May 1988.B-3 Westinghouse Letter LTR-SEE-II-10-98, Revision 0, "Westinghouse Review of LTOP Analyses and LTOP Controls Assumptions for Palisades Nuclear Plant," February 2011.WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-1 APPENDIX C HEATUP AND COOLDOWN LIMITS WITH MARGINS FOR INSTRUMENT ERRORS Figures C-I and C-2 define all the limits described in Section 5.0 for ensuring prevention of non-ductile failure for the Palisades reactor vessel for 42.1 EFPY including the "Flange-Notch" requirements and with pressure correction for static and dynamic head loss. In addition', these curves contain margins for instrument errors of 5°F on temperature and 30 psi on pressure.

The data points used for developing the heatup and cooldown pressure-temperature limit curves, with margins for instrument uncertainties, shown in Figures C-I and C-2 are presented in Tables C-i and C-2.WCAP-17341-NP February 2011 Revision 0 C-2 Westinehouse Non-Proprieta Class 3 C-2 Wsieos o-rnitr ls MATERIAL PROPERTY BASIS LIMITING MATERIALS:

IS and LS Axial Welds 2-112 and 3-112 (Heat # W5214) Using the Position 2.1 Chemistry Factor Value Based on Not Fully Credible Surveillance Data with Full Margin Term LIMITING ART VALUES AT 42.1 EFPY: 1/4T, 252.7°F (Axial Flaw)3/4T, 185.8°F (Axial Flaw)Figure C-1 Palisades Reactor Coolant System Steady State and Heatup Curves for 20, 40, 60, 80 and 100WF/hr Applicable to 42.1 EFPY Based on the K 1 , Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, With Margins for Instrumentation Errors, and With Delta Pressure Correction 2500 2250 2000 1750 1500 0 2 1250 750 500 250 loperlim Version:5.2 Run:27170 Operlimls Version: 5.2Heatup Rate and Criticality Limit 0 --> 100 Deg. F/Hr Lek iet Limit Unacceptable Operation Lowest Service Temp. = 177rFI I Acceptable Heatup Rate Operation 0 Deg. F/Hr Heatup Rate T 20 Feg r IHeatup Rate Heatup Rate 60 Deg. F/Hr______-

__-HeaupCriticality Limit based on 40 Deg. F/Hr H~eatu-p Ra-te inservice hydrostatic test_____ -0 Deg. F/Hr Itemperature (317*F) for the Temp. = 65"F Heatup Rate service period up to 42.1 EFPY V-F-7100 Deg. F/Hr _0 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-3 Westinghouse Non-Proprietary Class 3 C-3 MATERIAL PROPERTY BASIS LIMITING MATERIALS:

IS and LS Axial Welds 2-112 and 3-112 (Heat # W5214) Using the Position 2.1 Chemistry Factor Value Based on Not Fully Credible Surveillance Data with Full Margin Term LIMITING ART VALUES AT 42.1 EFPY: 1/4T, 252.7°F (Axial Flaw)3/4T, 185.8'F (Axial Flaw)Figure C-2 Palisades Reactor Coolant System Steady State and Cooldown Curves for 20, 40, 60, 80 and 100lF/hr Applicable to 42.1 EFPY Based on the Kjc Methodology of the 1998 through the Summer 2000 Addenda Edition of ASME Code,Section XI, App. G, With Margins for Instrumentation Errors, and With Delta Pressure Correction 2500 .2250 2000 1750 m 1500 U)1250 a.0,1000 750 500 250 0 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)WCAP-17341-NP February 2011 Revision 0 C-4 Westinghouse Non-Proprietary Class 3 Table C-1 Palisades 42.1 EFPY Heatun Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With K 1 ,, With Flange Notch, With Margin for Instrument Errors and With Delta Pressure Correction Steady 20tF/hr Steady .. .20 0 F/hr 440 0 hrr Heatup Leak Test Limit SteadynState SteadcyState 2 Heatup 0tcaiyCriticality 4 Heatup Criticality CicatyCriticality T P T P T P T P T P T P_ T P.(OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig)301 2000 65 0 317 0 65 0 317 0 65 0 317 0 301 2000 65 557 317 538 65 557 317 .538 65 540 317 521 301 2000 70 557 317 538 70 557 317 538 70 540 317 521 301 2000 75 557 317 538 75 557 317 538 75 540 317 521 301 2000 80 557 317 538 80 557 317 538 80 540 317 521 317 2485 85 557 317 538 85 557 317 538 85 540 317 521 317 2485 90 557 317 538 90 557 317 538 90 540 317 521 317 2485 95 557 317 538 95 557 317 538 95 540 317 521 317 2485 100 557 317 538 100 557 317 538 100 540 317 521 317 2485 105 557 317 538 105 557 317 538 105 541 317 522 110 557 317 538 110 557 317 538 110 544 317 525 115 557 317 538 115 557 317 538 115 548 317 529 120 557 317 538 120 557 317 538 120 552 317 533 125 557 317 538 125 557 317 538 125 557 317 538 130 557 317 538 130 557 317 538 130 557 317 538 135 557 317 538 135 557 317 538 135 557 317 538 140 557 317 538 140 557 317 538 140 557 317 538 145 557 317 538 145 557 317 538 145 557 317 538 150 557 317 538 150 557 317 538 150 557 317 538 155 557 317 538 155 557 317 538 155 557 317 538 160 557 317 538 160 557 317 538 160 557 317 538 165 557 317 538 165 557 317 538 165 557 317 538 170 557 317 538 170 557 317 538 170 557 317 538 175 557 317 538 175 557 317 538 175 557 317 538 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-5 Leak Test Limi .Steady State Steady State 20 eatup F/r 0/nr Heatup Crtial Heatup Criticality , H C t 4 H Criticality T P T P T P T P T P" T P.. T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (0 F) (psig) (0 F) (psig)180 557 317 538 180 557 317 538 180 557 317 538 185 557 317 621 185 557 317 621 185 557 317 621 185 557 317 631 185 557 317 631 185 557 317 631 185 640 317 641 185 640 317 641 185 640 317 641 190 650 317 653 190 650 317 653 190 650 317 653 195 660 317 665 195 660 317 665 195 660 31-7 665 200 672 317 679 200 672 317 679 200 672 317 679 205 684 317 695 205 684 317 695 205 684 317 695 210 698 317 712 210 698 317 712 210 698 317 712 215 714 317 731 215 714 317 731 215 714 317 731 220 731 317 752 220 731 317 752 220 731 317 752 225 750 317 776 225 750 317 776 225 750 317 776 230 771 317 801 230 771 317 801 230 771 317 801 235 795 317 830 235 795 317 830 235 795 317 830 240 820 317 861 240 820 317 861 240 820 317 861 245 849 317 896 245 849 317 896 245 849 317 896 250 880 317 934 250 880 317 934 250 880 317 934 255 915 317 976 255 915 317 976 255 915 317 976 260 953 317 1023 260 953 317 1023 260 953 317 1023 265 995 317 1075 265 995 317 1075 265 995 317 1075 270 1042 320 1132 270 1042 320 1132 270 1042 320 1132 275 1094 325 1195 275 1094 325 1191 275 1094 325 1191 280 1151 330 1265 280 1151 330 1254 280 1151 330 1251 285 1214 335 1342 285 1210 335 1323 285 1210 335 1313 290 1284 340 1427 290 1273 340 1399 290 1270 340 1381 295 1361 345 1521 295 1342 345 1484 295 1332 345 1457 300 1427 350 1625 300 1399 350 1577 300 1381 350 1540 WCAP-17341-NP February 2011 Revision 0 C-6 Westinahouse Non-Proprietary Class 3 Steady State- -Steady State h...2 r Heatup 4oFr It'LeakTestLimt Heatup Criticality

..r. ..4 0 vFhrHeatup Criticali y-, T P T" P T1 T P 1P T P T (cF) (psig) (0 F) (psig) (0 F),(psig) (E)i (psig (OF) (psig) (-F) (psig) (0 F)305 1521 355 1741 305 1484 355 1679 305 1457 355 1632 310 1625 360 1868 310. 1577 360 1793 310 1540 360 1734 315 1741 365 2008 315 1679 365 1918 315 1632 365 1846 320 1868 370 2164 320 1793 370 2057 320 1734 370 1970 325 2008 375 2335 325 1918 375 2210 325 1846 375 2106 330 2164 330 2057 380 2379 330 1970 380 2257 335 2335 335 2210 1 335 2106 385 2424 340 2379 340 2257 I 1 345 2424 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-7 Table C-1-Cont.

Palisades 42.1 EFPY Heatun Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With Kl, With Flange Notch, With Margin for Instrument Errors and With Delta Pressure Correction 60 0 F/hr 80OF/hr 1009F/hr,..

60 0 F/hr Heatup Crtialt 80 0 F/hr Heatup Crtclt 100OF/hr Heatup Criticality C riticality:

'1UP *: ::ut~T P T P T P T P T P T P-(OF) (psig) (1F) (psig) (OF) (psig) (OF) (psig)_ (OF) (psig) (OF) (psig)65 0 317 0 65 0 317 0 65 0 317 0 65 510 317 491 65 481 317 462 65 453 317 434 70 510 317 491 70 481 317 462 70 453 317 434 75 510 317 491 75 481 317 462 75 453 317 434 80 510 317 491 80 481 317 462 80 453 317 434 85 510 317 491 85 481 317 462 85 453 317 434 90 510 317 491 90 481 317 462 90 453 317 434 95 510 317 491 95 481 317 462 95 453 317 434 100 510 317 491 100 481 317 462 100 453 317 434 105 510 317 491 105 481 317 462 105 453 317 434 110 510 317 491 110 481 317 462 110 453 317 434 115 510 317 491 115 481 317 462 115 453 317 434 120 511 317 492 120 481 317 462 120 453 317 434 125 513 317 494 125 481 317 462 125 453 317 434 130 517 317 498 130 481 317 462 130 453 317 434 135 521 317' 502 135 482 317 463 135 453 317 434 140 526 317 507 140 485 317 466 140 453 317 434 145 532 317 513 145 488 317 469 145 453 317 434 150 539 317 520 150 492 317 473 150 455 317 436 155 548 317 529 155 497 317 478 155 457 317 438 160 557 317 538 160 503 317 484 160 461 317 442 165 557 317 538 165 511 317 492 165 465 317 446 170 557 317 538 170 519 317 500 170 470 317 451 175 557 317 538 175 529 317 510 175 477 317 459 WCAP- 17341-NP February 2011 Revision 0 C-8 Westinghouse Non-Proprietary Class 3 60OF/hr 80 0 F/hr 100oF/hr 60 0 F/hr Heatup- Citicality 80 0 F/hr Heatup Critiality 100F/hr Heatup Crifi.a.ity

.... .Criticality C ritcality C. .ritcality T P P P T P T P T P (OF) (psig) (0 F) (psig) (OF) (psig) (OF) (psig), (OF) (psig) (OF) (psig)180 557 317 538 180 540 317 521 180 485 317 466 185 557 317 606 185 553 317 534 185 494 317 475 185 557 317 624 185 553 317 548 185 494 317 485 185 625 317 641 185 553 317 564 185 494 317 497 190 643 317 653 190 567 317 582 190 504 317 511 195 660 317 665 195 583 317 601 195 516 317 526 200 672 317 679 200 601 317 623 200 530 317 543 205 684 317 695 205 620 317 648 205 545 317 562 210 698 317 712 210 642 317 675 210 562 317 583 215 714 317 731 215 667 317 705 215 581 317 606 220 731 317 752 220 694 317 738 220 602 317 633 225 750 317 776 225 724 317 774 225 625 317 662 230 771 317 801 230 757 317 801 230 652 317 694 235 795 317 830 235 793 317 830 235 681 317 730 240 820 317 861 240 820 317 861 240 713 317 769 245 849 317 896 245 849 317 896 245 749 317 813 250 880 317 934 250 880 317 934 250 788 317 861 255 915 317 976 255 915 317 976 255 832 317 914 260 953 317 1023 260 953 317 1023 260 880 317 973 265 995 317 1075 265 995 317 1075 265 933 317 1038 270 1042 320 1132 270 1042 320 1132 270 992 320 1109 275 1094 325 1191 275 1094 325 1191 275 1057 325 1188 280 1151 330 1251 280 1151 330 1251 280 1128 330 1251 285 1210 335 1310 285 1210 335 1310 285 1207 335 1310 290 1270 340 1371 290 1270 340 1368 290 1270 340 1368 295 1329 345 1439 295 1329 345 1430 295 1329 345 1427 300 1371 350 1514 300 1368 350 1497 300 1368 350 1488 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprieta Class 3 C-9 60 0 F/r .80 0 F/hr 100FF/hr 60 0 F/hr Heatup °Chriticality 80OF/hr Heatup 1 0 0 F/hr Heatup -Crit.cal.i:5 T P T P T P T P T P, T (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig)305 1439 355 1597 305 1430 355 1572 305 1427 355 1555 310 1514 360 1688 310 1497 360 1654 310 1488 360 1629 315- 1597 365 1789 315 1572 365 1744 315 1555 365 1711 320 1688 370 1900 320 1654 370 1844 320 1629 370 1801 325 1789 375 2022 325 1744 375 1954 325 1711 375 1900 330 1900 380 2157 330 1844 380 2075 330 1801 380 2009 335 2022 385 2306 335 1954 385 2209 335 1900 385 2130 340 2157 390 2471 340 2075 390 2357 340 2009 390 2262 345 2306 345 2209 345 -2130 395 2408 350 2471 350 2357 350 2262 355 2408 WCAP- 17341-NP February 2011 Revision 0 C-10 Westinahouse Non-Proorietar Class 3 Table C-2 Palisades 42.1 EFPY Cooldown Data Points Using the 1998 through the 2000 Addenda App. G Methodology, With K 1 ,, With Flange Notch, With Margin for Instrument Errors and With Delta Pressure Correction Steady State 20 0 F/hr. 4 0°F/hr. 6 0 OF/hr. 80'F/hr. 100 0 F/hr.T P T P T P T P T P T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig)ky (OF)- (psig) (OF) (psig)65 0 65 0 65 0 65 0 65 0 65 0 65 557 65 504 65 448 65 390 65 331 65 270 70 557 70 505 70 448 70 391 70 331 70 270 75 557 75 505 75 449 75 391 75 332 75 270 80 557 80 506 80 450 80 392 80 332 80 271 85 557 85 507 85 451 85 393 85 333 85 271 90 557 90 509 90 452 90 394 90 334 90 272 95 557 95 510 95 453 95 395 95 335 95 273 100 557 100 511 100 454 100 396 100 336 100 275 105 557 105 513 105 456 105 398 105 338 105 276 110 557 110 515 110 458 110 399 110 340 110 278 115 557 115 517 115 460 115 402 115 342 115 281 120 557 120 519 120 462 120 404 120 344 120 283 125 557 125 522 125 465 125 407 125 347 125 286 130 557 130 525 130 468 130 410 130 351 130 290 135 557 135 528 135 471 135 414 135 354 135 294 140 557 140 532 140 475 140 418 140 359 140 299 145 557 145 536 145 479 145 422 145 364 145 304 150 557 150 540 150 484 150 427 150 369 150 310 155 557 155 545 155 489 155 433 155 375 155 317 160 557 160 551 160 495 160 439 160 382 160 325 165 557 165 557 165 502 165 446 165 390 165 333 170 557 170 557 170 509 170 454 170 399 170 343 175 557 175 557 175 518 175 463 175 409 175 354 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Prolsrietar Class 3 C-11 Steady State 20 O F/hr. 40OF/hr. 60OF/hr.i 80 0 F/hr. l0OFO/hr.T P T, P T P -T P 'T P T P (OF) (psig) (OF) (psig) (O F) (psig) (OF) (psig). (OF) (psig) (OF) (psig)180 557 180 557 180 527 180 473 180 420 180 366 185 557 185 557 185 537 185 485 185 432 185 380 185 557 185 557 185 537 185 485 185 432 185 380 185 640 185 589 185 537 185 485 185 432 185 380 190 650 190 599 190 548 190 497 190 446 190 396 195 660 195 610 195 561 195 511 195 461 195 413 200 672 200 623 200 574 200 526 200 478 200 432 205 684 205 637 205 590 205 543 205 497 205 453 210 698 210 652 210 607 210 562 210 519 210 477 215 714 215 670 215 626 215 583 215 542 215 504 220 731 220 689 220 647 220 607 220 568 220 533 225 750 225 710 225 670 225 633 225 598 225 566 230 771 230 733 230 696 230 662 230 630 230 602 235 795 235 759 235 725 235 694 235 666 235 643 240 820 240 787 240 756 240 729 240 706 240 688 245 849 245 819 245 792 245 768 245 750 245 737 250 880 250 853 250 831 250 812 250 799 250 793 255 915 255 892 255 874 255 860 255 853 255 853 260 953 260 935 260 921 260 914 260 914 260 914 265 995 265 982 265 974 265 973 265 973 265 973 270 1042 270 1034 270 1033 270 1033 270 1033 270 1033 275 1094 275 1092 275 1092 275 1092 275 1092 275 1092 280 1151 280 1151 280 1151 280 1151 280 1151 280 1151 285 1214 285 1214 285 1214 285 1214 285 1214 285 1214 290 1284 290 1284 290 1284 290 1284 290 1284 290 1284 295 1361 295 1361 295 1361 295 1361 295 1361 295 1361 300 1427 300 1427 300 1427 300 1427 300 1427 300 1427 WCAP- 17341-NP February 2011 Revision 0 C-12 Westinghouse Non-Proprietary Class 3 Steady State 20"F/hr. 40OF/hr. 60'F/hr. 80.F/hr. 100OF/hr.T P T P T p T P T P T P (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig) (OF) (psig)305 1521 305 1521 305 1521 305 1521 305 1521 305 1521 310 1625 310 1625 310 1625 310 1625 310 1625 310 1625 315 1741 315 1741 315 1741 315 1741 315 1741 315 1741 320 1868 320 1868 320 1868 320 1868 320 1868 320 1868 325 2008 325 2008 325 2008 325 2008 325 2008 325 2008 330 2164 330 2164 330 2164 330 2164 330 2164 330 2164 335 2335 335 2335 335 2335 335 2335 335 2335 335 2335 WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-I APPENDIX D UPPER-SHELF ENERGY CALCULATIONS The requirements for upper-shelf energy (USE) are contained in 10 CFR 50, Appendix G [Reference D-1]. 10 CFR 50, Appendix G, requires utilities to submit an analysis at least 3 years prior to the time that the USE of any reactor vessel material is predicted to drop below 50 ft-lb.Regulatory Guide 1.99, Revision 2, defines two methods that can be used to predict the decrease in USE due to irradiation.

The method to be used depends on the availability of credible surveillance capsule data. For vessel beltline materials that are not in the surveillance program or are not credible, the Charpy USE (Position 1.2) is assumed to decrease as a function of fluence and copper content, as indicated in Regulatory Guide 1.99, Revision 2 [Reference D-2].When two or more credible surveillance data sets become available from the reactor vessel, they may be used to determine the Charpy USE of the surveillance materials.

The surveillance data are then used in conjunction with Figure 2 of the Regulatory Guide to predict the decrease in USE (Position 2.2) of the reactor vessel materials due to irradiation.

The 42.1 EFPY (EOLE) Position 1.2 USE values of the vessel materials can be predicted using the corresponding 1/4T fluence projection, the copper content, and Figure 2 in Regulatory Guide 1.99, Revision 2.The predicted Position 2.2 USE values are determined for the beltline materials that are contained in the surveillance program by using the reduced plant surveillance data along with the corresponding 1/4T fluence projection.

The reduced plant surveillance data for the Palisades beltline welds from Capsules SA-60-1 and SA-240-1 are contained in Appendix B of SIA report 1001026.401, Revision I [Reference D-3]. The reduced plant surveillance data for the Palisades beltline IS plates, Heat # C-1279, are contained in Appendix C of SIA report 1001026.401, Revision 1, for Capsules A-240, W-290, W- 110 and W-100. The weld and plate reduced surveillance data were plotted on Reg. Guide 1.99, Revision 2, Figure 2 (see Figures D-1 and D-2 of this report) using the updated surveillance capsule fluence values originally documented in WCAP-15353

-Supplement 1-NP [Reference D-4]. These updated capsule fluence values are also documented in SIA report 1001026.401, Revision 1. This data was fitted by drawing a line parallel to the existing lines as the upper bound of all the surveillance data. These reduced lines were used instead of the existing lines to determine the Position 2.2 EOLE USE values.The initial USE values for the Palisades beltline materials, which were obtained from Constellation Nuclear Services report CNS-04-02-01, Revision 1 [Reference D-5], are contained in Table D-1. The surveillance capsule data, as described above, for the surveillance program weld and plate materials have been summarized in Table D-2. Using the data contained in Tables D-1 and D-2 along with the 1/4T fluence values, the projected USE values were calculated to determine if the Palisades reactor vessel materials remain above the 50 ft-lb limit at EOLE. Table D-4 contains the USE calculations for the Palisades reactor vessel beltline materials.

WCAP-1 7341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 D-2 Westinghouse Non-Proprietary Class 3 Table D-1 Palisades Reactor Vessel Beltline Initial USE and Copper Weight Percent Values Heat # wt. % Initial Reactor Vessel Material (Hux Type) Cu#t) USE~b)((ft-lb)IS Plate D-3803-1 C-1279 0.24 102 IS Plate D-3803-2 A-0313 0.24 87 IS Plate D-3803-3 C-1279 0.24 91 LS Plate D-3804-1 C-1308A 0.19 72 LS Plate D-3804-2 C-1308B 0.19 76 LS Plate D-3804-3 B-5294 0.12 73 IS Axial Welds 2-112 A/B/C W5214 0.213 118 34B009 0.192 111 LS Axial Welds 3-112 A/B/C W5214 0.213 118 IS to LS Circ. Weld 9-112 27204 0.203 84(d)NLinde 124)oo D Notes for Table D- 1 : (a)Values taken from Table 2-1 of this report.(b) Source for this information is Constellation Nuclear Services report CNS-04-02-01, Revision 1 [Reference D-5].(c) The information source for the weld flux type used in the Palisades reactor vessel for the IS to LS Circ. Weld (Heat # 27204) is Appendix A of BAW-2398 [Reference D-6]. This is consistent with Appendix A of BAW-2341, Revision 2 [Reference D-7].(d) The initial USE value for Heat # 27204 is based on generic data for Linde 124 flux welds as given in CEN-622-A

[Reference D-8]. This initial USE value is consistent with CNS-04-02-01, Revision 1 [Reference D-5].WCAP-17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-3 Table D-2 Palisades Reactor Vessel Surveillance Capsule Fluence and USE Data Heat # Upper-Shelf Energy"a) (ftlb) Surveillance Capsule Surveillance Capsule (Flux Ter,~~~~~~~(Flux Type or i Identification)(xl0.

n/cm, Orientation)

Unirradiated Irradiated, Decrease.

E> 1. MeV)W5214 102.7 54.5 46.9%SA-60-1 34B009 113.9 55.3 51.5% 1.50 27204 (Linde 1092)(c) 108.4 53.0 51.1%W5214 102.7 52.5 48.9%SA-240-1 34B009 113.9 57.4 49.6% 2.38 27204 (Linde 1092)() 108.4 53.8 50.4%C-12 7 9(d) (Long.) 165.0 95.0 42.4%A-240 32%4.09 C-1279(d) (Trans.) 105.0 68.0 35.2%C2 1279(d) (Long) 155.0 112.0 27.7%W-290 0.938 C-12 7 9 (d) (Trans.) 102.0 84.0 17.6%W-110 C- 1279(d) (Long.) 155.0 103.0 33.5% 1.64 C- 1279(d) (Long.) 154.8 102.0 34.1%W-100 2.09 C71279(d) (Trans.) 101.6 73.0 28.1%Notes for Table D-2: (a) Information source for the unirradiated and irradiated USE values is SIA report 1001026.401, Revision 1, Appendix B, for the weld materials and Appendix C for the plate materials.(b) The surveillance capsule fluence values, originally documented in WCAP-15353

-Supplement 1-NP, are summarized in SIA report 1001026.401, Revision 1.(c) CE Report No. TR-MCC- 189 [Reference D-9] documented that Linde 1092 weld flux type was used in the Palisades supplemental capsules, SA-60-1 and SA-240-1, for the Heat # 27204 Charpy specimens.

Therefore, the data for Heat # 27204 is provided only for completeness; however, it will be excluded from the USE evaluation.

See discussion below for more information.(d) Plate surveillance data for these capsules used material from IS Plate D-3803-1; however, IS Plate D-3803-3 is made from the same heat. Therefore, this USE data will be used for both IS Plates D-3803-1 and D-3803-3 (Heat C-1279) in the USE evaluation.

Weld Heat # 27204 Surveillance Data Weld seam 9-112 is a circumferential weld joining the intermediate and lower shell courses of the Palisades reactor pressure vessel. The weld was fabricated by an automatic submerged arc process using wire Heat # 27204 with Linde 124 weld flux. At the time of fabrication the requirement was to perform three Charpy impact tests at 10'F. As a result, there is insufficient data to establish the initial (unirradiated) upper-shelf energy. Furthermore, there is no record of a full set of Charpy impact tests done on another weld fabricated using wire Heat # 27204 with Linde 124 weld flux. In the absence of a WCAP-17341-NP February 2011 Revision 0 D-4 Westinghouse Non-Proprietary Class 3 specific value for upper shelf, the generic initial value of 84 ft-lb is used, which was based on the data for Linde 124 flux welds as given in CEN-622-A

[Reference D-8]. An initial USE of 84 ft-lb corresponds to the mean-minus-two-sigma value for Linde 124 flux welds. As noted in the Staff's safety evaluation for CEN-622-A: "The staff has concluded that the arguments presented by CEOG in CEN-622 indicate that welds produced with Linde 1092, 0091 and 124 fluxes are metallurgically different with regard to the influence on USE. " There are two sets of post-irradiation test results fabricated with the same heat (# 27204) but a different flux (Linde 1092). However, there are no reactor surveillance program data for a weld fabricated using wire Heat #27204 with Linde 124 weld flux. The Linde 1092 surveillance welds are metallurgically different from the Linde 124 Palisades vessel welds, so the irradiated Linde 1092 weld data may not correctly model the behavior of the Palisades circumferential weld 9-112, with regards to USE only. The irradiated upper-shelf data are reproduced in the table below. Table D-3 provides a summary of all available post-irradiation USE values for Heat # 27204 with Linde 1092 flux. In summary, the Position 2.2 surveillance data for Heat # 27204 is not fully representative of the Palisades circumferential weld 9-112 due to the different flux type used; therefore, the surveillance USE data will be excluded from the reactor vessel USE evaluation.

Table D-3 Post-Irradiation USE Measurements for Weld Heat # 27204 Using Linde 1092 Flux for Diablo Canyon Unit 1 and Palisades Fluence(b)

Measured Measured Post-Vessel('a)

Capsule(a) (x 1019 n/cm 2 , Initial USE(a) Irradiation USE(.)E > 1.0 MeV) (ft-lb) (ft-lb)Diablo Canyon Unit 1 S 0.284 87 Diablo Canyon Unit 1 y 1.05 98 .66 Diablo Canyon Unit 1 V 1.37 66 Palisades SA-60-1 1.50 53.0 108.4 Palisades SA-240-1 2.38 53.8 Notes for Table D-3: (a) The values shown were taken from the various capsule reports included as Appendix B to SIA Report 1001026.401, Revision 1 [Reference D-3].(b) Fluence values are from SIA Report 1001026.401, Revision 1 [Reference D-3]WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-5 The USE calculations for the Palisades reactor vessel beltline materials are provided below in Table D-4.Table D-4 Palisades Predicted Positions 1.2 and 2.2 USE Values at 42.1 EFPY Wt. % 1/4T EOLE Fluence(b)

Unirradiated Projected:USE Projected Reactor Vessel Material cU(.) (xl0% n/cm 2 , USE(a) Decrease(")

EOLE USE E > 1.0 MeV) (ft-lb) (%) (ft-lb)IS Plate D-3803-1 0.24 2.024 102 39 62.2 Using Surveillance Data 0.24 2.024 102 36(d) 65.3 IS Plate D-3803-2 0.24 2.024 87 39 53.1 IS Plate D-3803-3 0.24 2.024 91 39 55.5 Using Surveillance Data 0.24 2.024 91 36(d) 58.2 LS Plate D-3804-1 0.19 2.024 72 33 48.2 LS Plate D-3804-2 0.19 2.024 76 33 50.9 LS Plate D-3804-3 0.12 2.024 73 25 54.8 ISAxialWeds2-112 0.213 1.275 118 38 73.2 (Heat # W5214)Using Surveillance Data 0.213 1.275 118 4 5 (dc) 64.9 LS Axial Welds 3-112 0.192 1.275 111 35 72.2 (Heat # 34B009)Using Surveillance Data 0.192 1.275 111 4 9 (dc) 56.6 LSAxialWelds3-112 0.213 1.275 118 38 73.2 (Heat #W5214)Using Surveillance Data 0.213 1.275 118 4 5 (de) 64.9 IS to LS Circ. Weld 9-112 0.203 2.024 84 41 49.6 (Heat # 27204)Notes for Table D-4: (a) Values taken from Table D-l of this report.(b) Values taken from Table 4-1 of this report.(c) Unless otherwise noted, percentage USE decrease values are based on Position 1.2 of Regulatory Guide 1.99, Revision 2 and calculated by plotting the 1/4T fluence values on Figure 2 of the Guide. The percent USE decrease values that corresponded to each materials' specific Cu wt. % value were determined using interpolation between the existing Weld or Base Metal lines on Figure 2.(d) Percentage USE decrease is based on Position 2.2 of Regulatory Guide 1.99, Revision 2, using data from Table D-2 of this report. Credibility Criterion 3 in the Discussion section of Regulatory Guide 1.99, Revision 2, indicates that even if the surveillance data are not considered credible for determination of ARTNDT, "they may be credible for determining decrease in upper-shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E 185-82." Regulatory Guide 1.99, Revision 2, Position 2.2 indicates that an upper-bound line drawn parallel to the existing lines (in Figure 2 of the Guide) through the surveillance data points should be used in preference to the existing graph lines for determining the decrease in-USE.(e) Since the limiting surveillance data fell above the limiting line on Figure 2 of the Guide, the upper-bound line was drawn parallel to the "% copper" lines, and not the "upper limit" line. This was considered to be a conservative approach for the fluence levels being used in this evaluation.

WCAP-17341-NP February 2011 Revision 0 D-6 Westin2house Non-Pronrietarv Class 3 D-6 Westinghouse Non-Proorietarv Class 3 Limiting Percent USE Decrease (W5214)1 46.9% from Capsule SA-60-1 I Liriting Percent USE Decrease (34B009)1 51.5% from Capsule SA-60-1 I 100.0 Hea #34O0 0.0-10.0 j M uvilne M ateiial: Weld[CpueSA-60-1 Fluence =1650 X 10C' n/cfrn24 I L uvilne M aterial: Weld C a s l e S A -2 4 0 -1 u e n c e =l 2 .8 x 1 0 1 W / n H e a t # 3 4 B 0 09 1.01 f II-L 1.00E+17 1.00OE18 1.00E+19 1.00E+20 Neutron Fluence, n/cm 2 (E > I MeV)Figure D-1 Regulatory Guide 1.99, Revision 2, Predicted Decrease in USE for Welds as a Function of Copper and Fluence for Palisades WCAP- 17341-NP February 2011 WCAP- 17341 -NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-7 Westinghouse Non-Proprietary Class 3 D-7 Lirn-iting Percent USE Decrease 42.4% from Capsule A-240 (Longitudinal Orientation) 10 .U)00.1.0 I .00E417 nHeatC_1 27 0 Surveillance Material:

IS Plate Heat # C-179 1.00E+18 1.00E+19 1.00E120 Neutron Fluence, n/cm 2 (E > 1 MeV)Figure D-2 Regulatory Guide 1.99, Revision 2, Predicted Decrease in USE for Plates as a Function of Copper and Fluence for Palisades WCAP- 17341-NP February 2011 Revision 0 D-8 Westinghouse Non-Proprietary Class 3 USE Conclusion Two materials in the Palisades reactor vessel beltline, the LS Plate D-3804-1 and IS to LS Circ. Weld 9-112 (Heat # 27204) using Position 1.2 data, are predicted to drop below the 10 CFR 50, Appendix G, screening criteria prior to 42.1 EFPY (EOLE). The limiting plate material is predicted to drop below the screening limit in December of 2016 (See Tables D-5 and D-6). The limiting weld material is predicted to drop below the screening limit in November of 2027 (See Tables D-7 and D-8). Per 10 CFR 50, Appendix G, an Equivalent Margins Analysis (EMA) will need to be submitted to the NRC at least three years prior to the date when the predicted Charpy upper-shelf energy will fall below 50 ft-lb. All of the remaining beltline materials in the Palisades reactor vessel are projected to remain above the USE screening criterion value of 50 ft-lb (per 10 CFR 50, Appendix G) through EOLE (42.1 EFPY).Table D-5 Calculation of the 1/4T Fluence Value for LS Plate D-3804-1 to Reach the 10 CFR 50, Appendix G, Screening Criteria 1 1/4T Fluence Projected USE :1 r 4 o e Reactor' VeCseulmate ri a I (x .10V n/cm :,,,::'Decrease USE E > 1.0 MeV) USE (f-b (%)1 (ft-lb)LS Plate D-3804-1 0.190 1.5 0 0 (b) 72 30.5(a) 50 Notes for Table D-5: (a) This percent USE decrease is the maximum allowable decrease for this material to reach 50 ft-lb.(b) The 1/4T fluence value was calculated from the predicted maximum allowable percent USE decrease and Figure 2 of Regulatory Guide 1.99, Revision 2.Table D-6 Calculation of the Surface Fluence, EFPY and Calendar Date for LS Plate D-3804-1 to Drop Below the 10 CFR 50, Appendix G, Screening Criteria Fluence (x 1019 n/cm 2 , EOC Calendar Date EFPY E > 1.0 MeV)Surface 1/4T 25(a) Oct-2016 28.8 2.527 1.491 (c)(b) Dec-2016 29.0 2.542 1.500(d)26(a) Apr-2018 30.2 2.621 1.547(c)Notes for Table D-6: (a) Values taken from WCAP-15353

-Supplement 1-NP [Reference D-4], unless otherwise noted.(b) Values (in bold) are interpolated.(c) The 1/4T fluence values are calculated from the surface fluence using the attenuation formula contained in Regulatory Guide 1.99, Revision 2.(d) The predicted maximum 1/4T fluence value is taken from Table D-5.WCAP-1 7341-NP February 2011 WCAP- 17341-NP February 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-9 Table D-7 Calculation of the 1/4T Fluence Value for IS to LS Circ. Weld (Heat # 27204) to Reach the 10 CFR 50, Appendix G, Screening Criteria Projected' 1/4TY 'U'rd~ec Reactor...

.. .:-* : Ve..sel ,aterial * ........ ... ... / Fluence U nirradiated Proi'.

" ... ,:,F USE USE Re:"r:e Mate I .Cu (x 1 0'9 n/cm 2 , 'Decrease USE E 1 ef l

.(ft-Ib)`:

IS to LS Circ. Weld 9-112 0.203 1.9 0 0 (b) 84 40.4(a) 50 (Heat # 27204)Notes for Table D-7: (a) This percent USE decrease is the maximum allowable decrease for this material to reach 50 ft-lb.(b) The 1/4T fluence value was calculated from the predicted maximum allowable percent USE decrease and Figure 2 of Regulatory Guide 1.99, Revision 2.Table D-8 Calculation of the Surface Fluence, EFPY and Calendar Date for IS to LS Circ. Weld (Heat # 27204) to Drop Below the 10 CFR 50, Appendix G, Screening Criteria_ ý -F ..... ...--iI1 111 1 -1 1 I i ; :1: ...: I. .-" " ` P , ., I .....-`: h "19 -, ..F Enc (x 1.01 n/cm 2 , EO0C_ Calendar Date EFPY E >i.OMeV Surface 14 32(a) Apr-2027 38.4 3.182- 1.878(c)(b) Nov-2027 39.0 3.220 1.900(d)33(a) Oct-2028 39.8 3.276 1.933(c)Notes for Table D-8: (a) Values taken from WCAP-15353

-Supplement 1-NP [Reference D-4], unless otherwise noted.(b) Values (in bold) are interpolated.(c) The 1/4T fluence values are calculated from the surface fluence using the attenuation formula contained in Regulatory Guide 1.99, Revision 2.(d) The predicted maximum 1/4T fluence value is taken from Table D-7.WCAP-17341-NP February 2011 WCAP-17341-NP February 2011 Revision 0 D-10 Westinghouse Non-Proprietary Class 3 D.1 REFERENCES D-1 Code of Federal Regulations, 10 CFR Part 50, Appendix G, "Fracture Toughness Requirements," U.S. Nuclear Regulatory Commission, Washington, D. C., Federal Register, Volume 60, No. 243, dated December 19, 1995.D-2 Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U. S. Nuclear Regulatory Commission, May 1988.D-3 SIA Report No. 1001026.401, Revision 1, "Basis for Period of Validity of the Palisades Pressure-Temperature (P-T) Limit Curves," T. J. Griesbach, November 2010.D-4 WCAP-15353

-Supplement 1-NP, Revision 0, "Palisades Reactor Pressure Vessel Fluence Evaluation," S. L. Anderson, May 2010.D-5 Constellation Nuclear Services Report CNS-04-02-01, Revision 1, "Evaluation of Palisades Nuclear Plant Reactor Pressure Vessel Through the Period of Extended Operation," W. Pavinich, June 2004.D-6 Framatome ANP Report BAW-2398, Revision 0, "Test Results of Capsule SA-240-1 Consumers Energy Palisades Nuclear Plant," M. J. DeVan, May 2001.D-7 Framatome ANP Report BAW-2341, Revision 2, "Test Results of Capsule SA-60-1 Consumers Energy Palisades Nuclear Plant," M. J. DeVan, May 2001.D-8 Combustion Engineering Report CEN-622-A, "Generic Upper Shelf Values for Linde 1092, 124 and 0091 Reactor Vessel Welds," C-E Owners Group, December 1996.D-9 Combustion Engineering Report TR-MCC-189, Revision 0, "Fabrication of Charpy Specimens from Reactor Vessel Weld Archive Material for Electric Power Research Institute," B. C. Chang, February 1992.WCAP- 17341-NP February 2011 Revision 0