ML18022A260

From kanterella
Revision as of 05:32, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
30441R00030, Revision a, Mo-99 Target Cooling System Eismic Analysis Design Calculation Report.
ML18022A260
Person / Time
Site: University of Missouri-Columbia
Issue date: 01/11/2017
From: Mar A
General Atomics, Univ of Missouri - Columbia
To:
Office of Nuclear Reactor Regulation, Nordion (Canada), US Dept of Energy, National Nuclear Security Admin
References
CAC A11010/05000186/L-2017-LLA-0227, DE-NA0002773 30441R00030, Rev A
Download: ML18022A260 (50)


Text

CDMA vd RELEASED 2017/01/11 30441R00030 Revision A REACTOR-BASED MOL YBDENUM-99 SUPPLY SYSTEM PROJECT M0-99 TARGET COOLING SYSTEM SEISMIC ANALYSIS DESIGN CALCULATION REPORT Prepared by General Atomics for the U.S. Department of Energy/National Nuclear Security Administration and Nordion Canada Inc. Cooperative Agreement DE-NA0002773 M~ ;/--; ... GA Project 30441 WBS 1110 nordion ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A REVISION HISTORY Revision Date Description of Changes A 11JAN17 Initial Release POINT OF CONTACT INFORMATION PREPARED BY: Name Position Email Phone Alvin Mar Engineer Alvin.Mar@ga.com 858-676-7602 APPROVED BY: , Name Position Email Phone B. Schleicher Chief Engineer Bob.Schleicher@ga

.com 858-455-4 733 K. Murray Project Manager Katherine

.Murray@ga.com 858-455-3272 K. Partain Quality Engineer Katherine

.Partain@ga.com 858-455-3225 DESIGN CONTROL SYSTEM DESCRIPTION D R&D DISC QA LEVEL SYS [g'.J DV&S D DESIGN D T&E N II NIA D NA ii ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A TABLE OF CONTENTS REVISION HISTORY ............

........................................................................................................

ii POINT OF CONT ACT INFORMATION

............................................................

............................

ii DESIGN CONTROL SYSTEM DESCRIPTION

............................................................................

ii ACRONYMS

................................................................................................................................

vi 1 OBJECTIVE

..............

.....................

.............................................................

......................

1 2 APPLICABLE DOCUMENTS

..................................................................

.........................

2 3 IN PUTS ......................

......................................

.................................................................

2 3.1 General.

........................................................................................................

............. 2 3.2 Loads ............................................................................

............................................. 3 4 ASSUMPTIONS

...............................................................................

.................................

3 5 METHOD ..........

.............

...................

...........

..............

........................................................

3 6 AUTOPIPE MODEL .........................

.................................

................................................

4 6.1 Support Details ........................................................................................................ 10 6.2 Valves and Flanges .............................

..........................

.......................................... 11 6.3 Piping ..................................................................................................

.................... 12 6.4 Flexible Joints ....................................................

................................

...................... 13 7 CALC UA TION BODY .......................................................................

..............................

14 7.1 Operational Loading ................................................................................................

14 7 .2 Seismic Loads ......................................................................................................... 14 7 .2.1 Site Specific Criteria

........................................................................................ 14 7.2.2 Seismic Forces ...................

..............................................................

............... 15 8 RESULTS ..............................................................

.........................................................

16 8.1 ASME B31.3 Code Stress Results ....................

...................................................... 16 8.1.1 ASME B31.3 Sustain Stress Ratio Plots ......................................................... 18 8.1.2 ASME B31.3 Expansion Stress Ratio Plots .................................

.................... 21 8.1.3 ASME B31.3 Hoop Stress Ratio Plots ............................................................. 24 8.1.4 ASME B31.3 Occasional Stress Ratio Plots ............................................

........ 27 8.2 Seismic Displacement

............................................................................................. 30 9 SUPPORT AND ANCHOR LOADS ..............................................

..................................

31 10 CONCLUSIONS

..................................

..........................................................

..................

36 11 REFERENCES

..............................................

...........

..........................

.............................

36 APPENDIX A USGS DESIGN MAPS DETAIL REPORT ....................................................

A-1 APPENDIX B USGS MAPS SUMMARY REPORT .............................................................

B-1 APPENDIX C FEMA MAPS ...................................................

.................

.............................

C-1 iii ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A LIST OF FIGURES Figure 1. Moly 99 Solidworks model .............................

........................

.......................................

2 Figure 2. Solidworks Assembly (Red Box is the piping of interest)

.........................

.....................

5 Figure 3. AutoPIPE's model of the piping of interest

..........

..............

...........................................

6 Figure 4. Solidworks Level 3-4 up-close view .........................................

....................

................. 7 Figure 5. AutoPIPE Level 3-4 up-close view ........................

............

......................................

...... 8 Figure 6. Solidworks model with pool hidden ...............

......................................

.......................... 9 Figure 7. AutoPIPE model with pool hidden .................

....................

.........................................

10 Figure 8. AutoPIPE Model Guide Support Value ....................................................................... 11 Figure 9. AutoPIPE Model Line Stop Value .......................

.....................................

...................

11 Figure 10. Pipe sizes ..........................

...........................

...................

......................................

... 13 Figure 11. Flexible joint input values ......................................................

...............................

..... 14 Figure 12. AutoPIPE Seismic Inputs and corresponding G levels .............................................

16 Figure 13. GR + MaxP{1} Stress Ratio Plot.. ........................................

.....................................

18 Figure 14. GR+ MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes ...........................

19 Figure 15. GR+ MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes ................

...................

20 Figure 16. Amb to T1 {1} Stress Ratio Plot.. ...............

.........................

....................

...................

21 Figure 17. Amb to T1{1} Stress Ratio Plot Close Up, Stainless Steel Pipes .............................

22 Figure 18. Amb to T1{1} Stress Ratio Plot Close Up, Aluminum Pipes ..................

..................

. 23 Figure 19. MaxP{1} Stress Ratio Plot ...............................................

......................................

... 24 Figure 20. MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes .............

.................

....... 25 Figure 21. MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes .............................................

26 Figure 22. Sus + E{1} Stress Ratio Plot (Seismic)

...............

......................

................................

27 Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic)

, in Stainless Steel Piping .............

28 Figure 24. Sus+ E{1} Stress Ratio Plot Close Up (Seismic)

, in Aluminum Piping ....................

29 Figure 25. Imposed displacement on the Tower Side AutoPIPE model +z direction .................

30 Figure 26. Imposed displacement on the Tower Side Sus+ E{1} Stress Ratio Plot +z direction

............................................................

...........................................

.................... 31 Figure 27. Piping supports point numbers on Tower side .....................

.....................................

34 Figure 28. Piping supports point numbers for Flex Joints and along the pool ...................

........ 34 Figure 29. Piping supports point numbers in the pool ........................

................................

........ 35 Figure 30. Anchor supports point numbers at the Heat Exchanger and Target interface

.......... 36 iv ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A LIST OF TABLES Table 1. Flanged Valve Weight ...........................................

.......................................................

12 Table 2. Pipe Properties

............................................................................................................

12 Table 3. Material Properties

.................

............................

........................................

............

...... 12 Table 4. Loading Inputs ......................................................................

..................

..............

....... 14 Table 5. ASME B31.3 Code Max Stress Result Summary ......................

............................

...... 16 Table 6. Support Forces Summary for Normal Operation

.........................................................

32 Table 7. Support Forces Summary for Operation+

Seismic ...................

..................................

33 Table 8. Anchor Forces Summary .............................................................................................

35 V ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A ACRONYMS Acronym Description AISC American Institute of Steel Construction ASCE American Society of Civil Engineering ASME American Society of Mechanical Engineering MDMT Minimum Design Metal Temperature GA General Atomics GR Gravity MDMT Minimum Design Metal Temperature p Pressure vi ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 1 OBJECTIVE The purpose of this document is to demonstrate that the Mo-99 Target Cooling System for the Once-Through Approach as part of the Reactor-Based Molybdenum-99 Selective Gas Extraction (SGE) meets the requirements of the ASME B31.3 2014 (Ref. 1) and seismic load conditions per ASCE 7-10 (Ref. 2). Top level design requirements for the Mo-99 Target Cooling System are defined in the Molybdenum-99 Supply System Requirements Document (30441 S00001 ). The Once-Through Approach design will be developed and demonstrated under the RB-MSS project, co-funded by the Department of Energy, National Nuclear Security Administration NNSA) and Nordion (Canada), Inc. It is intended that the MSS will be installed and operated at the University of Missouri Research Reactor (MURR) to begin production of significant quantities of Mo-99 (~3000 6-day Ci/week) by the beginning of 2018. This document provides the pipe stress calculations for the primary cooling loop, see Figure 1, excluding equipment. The analysis was performed using Bentley AutoPIPE CONNECT Advance Edition Version 10.00.00.10, a specialized nonlinear finite element piping program. The resulting piping stresses were interpreted in accordance of ASME B31.3 (Ref. 1) and ASCE 7-10 (Ref. 2), for structural adequacy.

The target housing and heat exchanger interface connection will be idealized with anchors at the flange points. 1 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 1. Maly 99 Solidworks model 2 APPLICABLE DOCUMENTS Document Title Document Number 30441S00001 Molybdenum-99 Supply System Requirements Document 3 INPUTS 3.1 General The following inputs were used for the calculations presented herein:

  • Piping arrangements as depicted in Figure 2; "MURR Master Model.SLDASM", SolidWorks. 2 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A
  • Pipe sizes and material selection per "MURR Master Model.SLDASM

" and as described in Section 5.3

  • Component weights per "MURR Master Model.SLDASM

" for pipe sizes and material selection

. 3.2 Loads Operating and Seismic loads are based on the "Molybdenum-99 Supply System Requirements Document" (30441S00001)

, ASME B31.3 (Ref. 1) and ASCE 7-10 (Ref. 2) and are as described in Section 6. 4 ASSUMPTIONS The following assumptions are made for the structural evaluation of the piping of the target cooling system.

  • All pumps, heat exchangers, and external connections will be modeled as anchors at interface connection points. This is an accurate depiction as the mechanical components can be considered rigid, with indefinite stiffness.
  • All piping supports, vibration damping type, are modeled as line supports with no gaps and connected to rigid ground. This is an accurate depiction of this type of supports.
  • Bio-Shield, CoStarTower and Bridge are rigid structures

. This is an accurate depiction of said structures due to low seismic loading, maximum deflections of structures within areas of interest are estimated to be< 1/161h inch.

  • Maximum seismic differential movement between CoStarTower/Bridge and Bio-Shield is < 2.0 inches. This is a conservative number, as lateral movement of the CoStarTower is estimated to be less than 1/81h inch at bridge elevation.

5 METHOD Seismic loading conditions will be defined per ASCE 7-10, and evaluated against ASME B31.3 2014. Two types of analysis were performed:

1. Rigid Support Structure
3 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A o Assumes that piping support structures

, Bio-shield/pool, CoStarTower and bridge are rigid structures.

No differential lateral displacements occurs between the individual structures during a seismic event. o Pipe analysis is performed in accordance with ASME 831.3 and ASCE 7-10. 2. Flexible Support Structure o Assumes that the Bioshield/pool and CoStarTower combined with the Bridge will laterally displace during a seismic event. o Pipe analysis is performed to evaluate stresses and adequacy of flexible piping. A forced displacement of 2 inches is applied to the piping located on the CoStarTower and Bridge side relative to the piping located and mounted on the Bio-Shield side to simulate differential movement between the two main structures during a seismic event. Analysis is performed in accordance with ASME 831.3 and ASCE 7-10. Further description and results can be found in Section 7. 6 AUTOPIPE MODEL AutoPIPE model is generated from Solidworks 3-D model, "MURR Master Model.SLDASM

", October 12, 2016, with an update on December 5, 2016 to remove a subset of piping. Figure 2 to Figure 7 show the Solidworks/AutoPIPE details of the piping system with the pool and frame hidden. Green symbols on AutoPIPE mode figures represent constraints on the piping. 4 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 2. Solidworks Assembly (Red Box is the piping of interest) 5 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A y X Figure 3. AutoPIPE's model of the piping of interest 6

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 4. Solidworks Level 3-4 up-close view 7 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Guide+ line Supports All other supports shown are Guide Supports Only Figure 5. AutoPIPE Level 3-4 up-close view 8 30441 R00030/A Valve connections from heat exchangers.

Rigid Anchor connections on the ends. Flexible Joints to simulate flexible piping. (Not shown on Solidworks model)

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A From these flanges all piping in the negative Y direction is aluminum


__,J All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1 Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point. Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section.

Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section.

10 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report -... --r-R -r-;;;; ..... Ci .. rtoi h,..;, (GQ ..............

r,ooJ c. ... ..,. Figure 8. AutoPIPE Model Guide Support Value r'l""-* r= ._ ... .-3 C.......w.,t.

ro.--r--;;;; ... -r,a ,....., rtii -Figure 9. AutoPIPE Model Line Stop Value 6.2 Valves and Flanges 30441 R00030/A The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing. See Table 1 for weights. 11 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Table 1. Flanged Valve Weight Size (inch) Ball Valve (lbf) Globe (lbf) 3 N/A 82 4 144 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified.

6.3 Piping The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6. Table 2. Pipe Properties Nominal Outer Wall Size Schedule Diameter Thickness Material (inch) (inch) (inch) 2 40 2.375 0.154 TP316L 3 40 3.5 0.216 TP316L or AL-6061 T6 4 40 4.5 0.237 TP316L or AL-6061 T6 Table 3. Material Properties Material Yield Strength Ultimate Strength (ksi) (ksi) TP316L 25 70 AL-6061 T6 35 42 12 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 10. Pipe sizes 6.4 Flexible Joints To account for independent seismic movement of the building relative to the pool, flexible piping is added to the piping connection at the bridge level. All flexible piping is 11 inches in length and flanged.

A guide support is added with the flange connections on the non-flexible piping side. Flexible piping stiffness values were based on GA test data. The following stiffness is applied

  • Axial -182 lb/in
  • Shear -14 lb/in (both directions)
  • Torsional

-Rigid

  • Bending -Rigid (both directions

) / 13 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

~-* ...... d pont. rAAil U*qfndiic.11~

.,.._ r .............. OIINte* c>><: r,ti'7r OY; OZ ,-----rfoo' r-otlF ~o1t .... 1o.alobooir,g.,_...

r Fllng,td r .... _, Y,ehN,""'-n r-T4oo z ........ l!ifMM,. r,<<iii ,,_,,._, rRliill Y~Rlfroe.1. Figure 11. Flexible joint input values 7 CALCUATION BODY 7.1 Operational Loading The system was analyzed subject to the following loading in Table 4. In addition to the temperature and pressure loads the piping system was also subjected to gravitational load. The liquid in the piping is assumed to be water. Table 4. Loading Inputs Gravity Temperature Pressure Notes 1g 78.8°F 30 psig Ambient is 68°F 7 .2 Seismic Loads ASCE 7-10, Reference 2, shall serve as the seismic design guide for the installed and operated target cooling system at MURR. 7.2.1 Site Specific Criteria Location is Latitude 38.93166 and Longitude

-92.3418 is based on Columbia, MO 65211

  • Ip= 1.0 (attached to an occupancy II building/structure)
  • Rp = 12 (ASCE 7-10 table 13.6-1; welded piping)
  • ap = 2.5 (ASCE 7-10 table 13.6-1) 14 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A
  • Sos = 0.112g (Refs. 4 and 5-USGS APPENDIX A and APPENDIX B respectively)
  • Site Class B (Rock, based on FEMA maps see Ref. 6 -APPENDIX C)
  • z = 62.5 ft (Based on the Solidworks model the bottom of the building to top of the piping system)
  • h = 70ft (Based on the Solidworks model from the bottom to the top of the building) 7 .2.2 Seismic Forces Seismic forces, FP, will be determined in accordance with Section 13.3 (Ref. 2) as follows:

Fp = 0.4apSosWo(1+2z/h)

(Rp//p) (Eqn. 13.3-1, Ref. 2) However, Fp will not be greater than: Fp = 1.6Sos/pWo and, FP will not be less than: where: Fp = Seismic design force ap = Amplification factor Sos= Design spectral response acceleration, short period Wo = Dead load z = Attachment Height, relative to finished grade (Eqn. 13.3-2, Ref. 2) (Eqn. 13.3-3, Ref. 2) h = Roof Height, height of structure

, relative to adjacent finished grade RP = Response modification factor /p = Importance factor Seismic Load per Section 12.4.2 (Ref. 2): fa: pQE Ev= 0.2Sos0 where: fa = Horizontal seismic load effect Ev = Vertical seismic load effect p = 1.0 (Redundancy Factor) OE = FP (Effect of horizontal seismic force) (Eqn. 12.4-3, Ref. 2) (Eqn. 12.4-4, Ref. 2)* Sos= Design spectral response acceleration at short period D = Dead Load (piping operating weight) *Note: In addition of applying the two shear forces simultaneously, a conservative AutoPIPE default vertical factor of 0.5 was used. Vertical force can be calculated using ASCE 7-10 12.4-4 but is much smaller than 0.5 x shear direction. The higher value is used.

  • Eh = 0.035g (Shear) 15 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A
  • Ev= 0.0175g (Vertical)

Static Earthquatr w New ModlySelected I DoieteSelected I DoleteAI ( ASCE 2010 C..o S.iemk:Coda Venal X(g) Y(g) Z(g) fectO< Si,,0-: IB ..:l r q,Code: I Et ASCE 2010 0.50 .... D.1115 .... I~ Facto, PP): ,-ll(~XXJ-r-~: pe.93166 Attachmerl Height (z): j62.500 Longh,de: 1*9234180 Rod Height (h): j70.CXXl Conl)Ol,enl R._,_ (Rp) : j 120 r Mopped Spocbol jo.17524 ii Rooponse(Ss)

An1>'fication Factcr (ap): -12500--Maicinun Conoidefed jtCXXJOO Elllthquok e (Fe): M~ Focio< (ij: j1.CXXJ Show Locotion on Mop I OK H..-, OK Cancel H.-i Figure 12. AutoPIPE Seismic Inputs and corresponding G levels 8 RESULTS 8.1 ASME B31.3 Code Stress Results The ASME 831.3 code combinations results are documented in this section. Results in Table 5 show combinations with numbers in the name. Loading input is shown in Table 4. Occasional stress category is calculated by combining seismic with sustain load. Figures 13 through 24 show the stress ratio plots. The red circles indicate the general areas of the high stress. Within that circle the square box with crosshairs is the exact point of the high stress.
  • GR -Gravity
  • Amb to T1 -Ambient to Operating Temperature
  • Max P -Max Pressure
  • Sus -GR + Max P
  • E -Seismic Load Table 5. ASME B31.3 Code Max Stress Result Summary Stress Stress/Stress Node Combinati on Category Material Stress (ksi) Allowable Allowable Ratio Number Location Figure (ksi) Y-Pipe, GR+ Max P{1} Sustain 316L 0.7 16.7 0.04 AL 13 before Figure flexible 14 piping Inside GR+ Max P{1} Sustain 6061-T6 1.0 12.7 0.08 AL36F -Pool, on Figure expansion 15 loop 16 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Stress Stress/Stress Node Combination Category Material Stress (ksi) Allowable Allowable Ratio Number Location Figure (ksi) At Heat Figure Amb to T1{1} Expansion 316L 3.2 25 0.13 AK03 Exchanger Interface 17 At SS to Al Figure Amb to T1{1} Expansion 6061-T6 0.2 19 0.01 AH51 pipe interface 18 Max P{1} Hoop 316L 0.3 16.7 0.02 AL06 3"to 2"y Figure pipe 20 Max P{1} Hoop 6061-T6 0.3 12.7 0.02 AK46 AIIAI Figure piping 21 Sus. + E1{1} Occasion 316L 0.9 22.2 0.04 AL09-Y-piping Figure support 23 Inside Sus.+ E1{1} Occasion 6061-T6 1.0 16.9 0.06 AH61N+ Pool, on Figure expansion 24 loop 17 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.1 ASME B31.3 Sustain Stress Ratio Plots ....... l'IIJ(SUI)

................

  • 004.J ** .u .. ** -o .. **-* .... UI .. ,. MAX STRESS in SS MAX STRESS in Al ,.,..-. ,., ,.,., ... GR*W*P(l) Figure 13. GR+ MaxP{1} Stress Ratio Plot 18 30441 R00030/A t II ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Mt*W*l'{1}(9UI) l'l.ti*NAll-~

ltStr ...

  • 0.0-0.2 .0.2-0 ...
  • 0.40.11 .O.MU ao..e-1.0

.,1.0 MAX STRESS in SS S~(Marl* Sk-: 1:.: lc:ona,..; Figure 14. GR+ MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 19 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report H*-l'tllC-U.) .0,CMU .O.J.04 .04U .OM.I .u.1.0 **Ut Iii-............... ~"4-1*;, ....... : 12100 Allio: O.OI C:.-.: GA*M*fltl)

Figure 15. GR+ MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 20 30441 R00030/A "" "' """ ... 6fl+MeoP(1}

t II ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.2 ASME 831.3 Expansion Stress Ratio Plots .0.24.* .0.40.8 .O.Mt.l *G.9*1.0 ... ,.o MAX STRESS in SS ':J.... MAX STRESS in Al Figure 16. Amb to T1{1} Stress Ratio Plot 21 30441 R00030/A W II ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report ..,..,.11{tl(JXI') "***-l>l*h ..

  • 0.0.0.2 .02 .... ao."'41* .....
  • D.1.0 **t.o y :-l. MAX STRESS in SS Figure 17. Amb to T1{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 22 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report .. ___ _ aooe.a .U0.<11 .040 .HO.I *0.1*1.0 .. ,. MAX STRESS in Al l'l:li"t. AH51. [--~-JIiii S-.: 195 ..... : 250!!0 Allio: Qtn Ca,a,.* .... 11111nJ Figure 18. Amb to T1{1} Stress Ratio Plot Close Up, Aluminum Pipes 23 30441 R00030/A

' a' ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.3 ASME 831.3 Hoop Stress Ratio Plots ........

..._.....

SR. ao.0.0.2 .G.2-0-" .04U auu .o .... ,.o **1.0 MAX STRESS in Al 11-Ptwll: AUl6 HooplM.J* plli SlteN: 314 Abt.: 16700 F1411io: am CGll'lbil\

M*POJ Figure 19. MaxP{1} Stress Ratio Plot 24 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report lil*"tllOiOOI')

l(.i .. .00,0.J .02.0.* ao.011 .o ... , .01-10 ** u Pon: Al.06 HOCPIM*I* pli ,s._: JU Aloi,,!: 1670) 'R<<o: 0.02 :c.ontiin: M1111P{1) Figure 20. MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 25 30441 R00030/A

' ..

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report -l'(l)(WOOI') **-.2 .uu ..... .... .a. .... 1, **u MAX STRESS in Al -, 11*-,.... N,.C't:,."'_.

.,. m M,,t.* 1000 A*: o.m: Celcih.;

MaP"(I) Figure 21. MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 26 30441 R00030/A ' . -*

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.4 ASME 831.3 Occasional Stress Ratio Plots lw.*11{1)(0CC)

,-o111,1itA11-,kft

    • .0..0-0.2

.0.2-0., .040.4 .0.6-0.I .o .. ,.o .J,.0 '~. Pon: AH61N* DCCNional:IM*I

  • PIii SIMM: Bl9 Alow.: 16891 R.rio: 005 C<<ia\: S1&
  • El{H MAX STRESS in Al 1028 '""' om; S**E1fH Figure 22. Sus+ E{1} Stress Ratio Plot (Seismic) 27 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Sv.i. .. £1111 (OCC) R.WoMAII-W.h..:

.OJM>.2 .0.2-(J..1 .Q.4,0_8 .0.0-0.1 *U-1.0 **1.G Point: Al.09. O~IM*l* pa s11 .. : ees Alo#.: 22211 Allio; 0.04 Conti\: Sua.

  • E 1(1} MAX STRESS in SS 883 22211 ... Sut.*EHH Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic)

, in Stainless Steel Piping 28 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Sw..*11f1JCO'C) lt,hle....,_DllS-..:

.00-0.2 .0.2-0. 7. 11 REFERENCES Reference Document Number Description 1 ASCE 7-10 Minimum Design Loads for Buildings and Other Structures 2 ASME B31.3 Process Piping, 2014 Edition 3 30441S00001 Moved to Applicable Documents Section 4 USGS Design Maps Detail Report 5 USGS Design Maps Summary Report 6 FEMA FEMA Hazard Maps 36 ENCLOSURE l Mo-99 Target Cooling System Seismic Analysis Design Calculation Report APPENDIX A USGS DESIGN MAPS DETAIL REPORT 12113/2016 OesilJI Maps Detailed Report lJSGS Design Maps Detailed Report ASCE 7-10 Standard (38.93166°N, 92.3418°W) Site Class B -"Rode", Risk category I/II/III Section 11.4.1 -Mapped Acceleration Parameters Note: Ground motion values provided below are for the direction of maximum horizonta l spectral response aoceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain Ss} and 1.3 (to obtain S1). Maps in the 2010 ASCE.-7 Standard are provided for Site dass B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3. 30441 R00030/A From Figure 22-1111 Ss = 0.168 g From Figure 22-2121 S1 = 0.093 g Section 11.4.2 -Site Class The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has dassified the site as Site dass B, based on the site soil properties in accordance with Chapter 20. Table 20.3-1 Site Classification Site Class A. Hard Rock B. Rock C. Very dense soil and soft rock D. Stiff Soil E. Soft day soil F. Soils requiring site response analysis in accordance with Section 21.1 vs NorNc1, Su >5,000 ft/s N/A N/A 2,500 to 5,000 ft/s N/A N/A 1,200 to 2,500 ft/s >50 >2,000 psf 600 to 1,200 ft/s 15 to 50 1,000 to 2,000 psf <600 ft/s <15 <1,000 psf Any profile with more than 10 ft of soil having the characteristics:

  • Plasticity index PI > 20,
  • Moisture content w 40%, and
  • Undrained shear strengths.< 500 psf See Section 20.3.1 For SI: 1ft/s = 0.3048 m/s lib/ft> 0.0479 kN/m 2 A-1 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A 12/13/2011! OHiS,, Maps DM.Jiled Repcrt Section 11.4.3 -Site Coefficients and Risk-Targeted Maximum Considered Earthquake (,MCE~) Spectral Response Acceleration Parameters Site dass A B C D E F Site Class A B C D E F Table 11.4-1: Site Coefficient F. Mapped MCE R Spectral Response Acceleration Parameter at Short Period 5s S 0.25 5s = 0.50 5s = 0.75 5s = 1.00 5s 1.25 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.1 1.0 1.0 1.6 1.4 1.2 1.1 1.0 2.5 1.7 1.2 0.9 0.9 see Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of Ss For Site Class= Band S5 = 0.168 g, F. = 1.000 Table 11.4-2: Site Coefficient F, Mapped MCE R Spectral Response Accelerat ion Parameter at 1-s Period s, S 0.10 s, = 0.20 s, = 0.30 s, = 0.40 s, 0.50 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.7 1.6 1.5 1.4 1.3 2.4 2.0 1.8 1.6 1.5 3.5 3.2 2.8 2.4 2.4 see Section 11.4. 7 of ASCE 7 Note: Use straight-line interpolat ion for intermediate values of S1 For Site Class= Band S1 = 0.093 g, F, = 1.000 htipo:Hear1hqwl<e

.usgs.go,,ldesignmapslus/report.p,p?lem plu=minimal&l.aii1Ude=3Ul3 111G&longitude=*G2.3418&s ileelau= 1&riskc.,iego,y

=O&edition=asce-2... 2/0 A-2 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Equation (11.4-1): SMS = F.ss = 1.000 x 0.168 = 0.168 g Equation (11,4-2):

SHI = FySl = 1.000 X 0.093 = 0.093 g Section 11.4.4 -Design Spectral Accelerati on Parameters Equation (11.4-3):

Sos=% SMs = o/s X 0.168 = 0.112 g Equation (11.4-4):

S01 = Y. S,41 = Y. X 0.093 = 0.062 g Section 11.4.5 -Design Response Spectrum From Figure 22-12 r31 TL = 12 seconds Figure 11.4-1: Design Response Spectrum T,sTsT *. s, -s.. { T

  • T, ,s, :*-.( 0,4
  • 0.8T IT,) S
  • O. ll2 T1 < T :s T,: S,
  • S01 IT So,* 0.062 T, -O.lll T, = 0.554 T>l, :S,= S01T,IT' 1.000 Period, T (sec) A-3 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A 12/13/2016 Section 11.4.6 -Risk-Targeted Maximum Considered Earthquake (MCER) Response Spectrum The MCE* Responae Spectrum is determined by multiplying the design response spectrum above by 1.5. ! : t " " < I " ct j s .. 1-0.093 T,*0.111 T,
  • 0.554 1.000 Perlod.T(

sed A-4 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 12/13/2010 Oesig, Maps Detailed Repa, Section 11.8.3 -Additional Geotechnical Investigation Report Requiremen ts for Seismic Design Categories D through F From figure 22-Z 141 PGA = 0.080 Equation (11.8-1):

PG~ = FPGAPGA = 1.000 x 0.080 = 0.08 g Table 11.8-1: Site Coefficient F""" Site dass Mapped MCE Geometric Mean Peak Ground Acceleration, PGA A B C D E F PGA :5: 0.10 0.8 1.0 1.2 1.6 2.5 PGA = 0.20 PGA = 0.30 PGA = 0.40 PGA 2: 0.50 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.2 1.1 1.0 1.0 1.4 1.2 1.1 1.0 1.7 1.2 0.9 0.9 See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of PGA For Site Class= Band PGA = 0.080 g, F * .,.. = 1.000 Section 21.2.1.1

-Method 1 (from Chapter 21 -Site-Specific Ground Motion Procedures for Seismic Design) From figure 22-17151 = 0.862 From Figure 22-18161 Cii1 = 0.835 A-5 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 1211:112i11e Design M~ Data/loci R~ Section 11.6 -Seismic Design Category Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter RISK CATEGORY VALUE OF S.,5 I or II III IV S05 < 0.167g A A A 0.167g S S05 < 0.33g B B C 0.33g S S05 < 0.50g C C 0 0.50g S S05 0 0 0 For Risk Category=

I and S05 = 0.112 g, Seismic Design Category=

A Table 11.6-2 Seismic Design Category Based on 1-S Period Response Accelerat ion Parameter RISK CATEGORY VALUE OF S01 I or II III IV s ... < 0.067g A A A 0.067g S s.,. < 0.133g B B C 0.133g S s.,. < 0.20g C C 0 0.20g S s ... 0 0 0 For Risk Category

= I and S01 = 0.062 g, Seismic Design Category

= A Note: Whens, is greater than or equal to 0.75g, the Seismic Design category is E for buildings in Risk categories I, Il, and Ill, and F for those in Risk category IV, irrespective of the above. Seismic Design Category

= Kthe more severe design category in accordance with Table 11.6-1 or 11.6-2" = A Note: See Section 11.6 for alternative approaches to calculating Seismic Design category.

References 30441 R00030/A

1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7

_Figure_22-1

.pdf 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010

_ASCE-7 _Figure_22-2

.pdf 3. Figure 22-12: http://earthquake

.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7

_Figure_22-12.pdf 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7

.pdf 5. Figure 22-17: http://earthquake

.usgs.gov/h azards/designmaps/downloads/pdfs/20 10_ASCE-7

_Figure_22-17 .pdf 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 lO_ASCE-7 _Figure_22-18.pdf A-6 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report APPENDIX B USGS MAPS SUMMARY REPORT 12/13/20 6 Design MiJPs St.mmary Repon lJSGS Design Maps Summary Report User-Specified Input Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available

,n 2008) Site Coordinates 38.93166°N, 92.3418°W Site Soil Classification Site dass B -~Rockn Risk Category J/II/IIJ USGS-Provi ded Output s,= 0.1689 s, = 0.093 g SMs = 0.168 g s ... = 0.093 g Sos= 0.112 g s ... = 0.062 g 30441 R00030/A For information on how the SS and Sl values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return ID the application and select the "2009 NEHRP" building code reference document.

'.!

  • Ill OU 01' OU G.12 0 10 0 08 0 0G 004 0.02 MCE11 Response Spectrum 0.00 _______ _,_ ........

_...__, ____ +--< 0 00 0 20 t 40 0 ,o O.to l 00 I 20 I ,o I ,o 1 10 2.00 Period, T (Hcl '.! II Ill Design Response Spectrnm 0.12 0.10 o oa 0 o, 0 o, 0 02 0.00 ,l----,>--+--+--,--+--+---s>---+--+--

0000200 ~0~0tol00120 l l l to ~OO Period, T (s.c) For PGA,.. T,, c * ., and c., value!:, please view the detailed report. Although th,s information ts a product of the U.S. Geological Survey, \.,e pJ'Ovlde no warranty, expressed 01 implied, as to the accuracy of the data cont~ined the.rein. This tool is not a substitute for technical subjed-matter lc:nowledge.. heps ://eanhqua!<e

.U5lls.gcw,-ignm ops, summary.J>l,p?tem pl3!!!"'ffl irimal&l,..tudea38..113 1l!MlongiWdl,a-ll2

.3418&.sil!Clas s* l&riskc.mgo,y*O&~tiOIP'asc.

.. 1/1 8-1 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A APPENDIX C FEMA MAPS Earthquake Hazard Maps I FEMA.gov Page 3 of7 mtool ft. earthquakprogrammanagers) > Information 0 lndMd als (tea uake-i ind.Mduals-a d-amiliesJ In orma *on for Comm

  • ies (learthqua informatio comm ies) > lnformatio for Busi sses (/earthquakei formbusinand-othe -o ganizations) In ormation for Building Desig rs (/earthqua lnforma io designersmanagers-and-regulators

) Earthquake Hazard Maps hazard-maps) Your Ea quake Risk (/yourearthq akrlsk) -t -:---_. *--. ......,. SOC map of the Eastern United States for low-rise Occupancy Category I and 11 structures located on sites with average alluvial soil conditions. hnps://www.fema.gov/earthquake-hazard-maps C-1 12/8/2016