ML13066A311: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Mitman, JeffreyI From:                     Ferrante, Fernando    & -
{{#Wiki_filter:Mitman, JeffreyI From:
Sent:                   Wednesday, February 03, 2010 3:20 PM To:                     James, Lois Cc:                     Mitman, Jeffrey
Sent:
To:
Cc:


==Subject:==
==Subject:==
Sensitivity Analysis Attachments:            Memo for the Sensitivity Analysis.doc; sensitivity summary Rev.4.doc; Breach Parameter Matrix.xls Lois, Per our discussion, please find attached.
Attachments:
Ferrante, Fernando Wednesday, February 03, 2010 3:20 PM James, Lois Mitman, Jeffrey Sensitivity Analysis Memo for the Sensitivity Analysis.doc; sensitivity summary Rev.4.doc; Breach Parameter Matrix.xls
: Lois, Per our discussion, please find attached.
Thank you, Fernando Ferrante, Ph.D.
Thank you, Fernando Ferrante, Ph.D.
Office of Nuclear Reactor Regulation (NRR)
Office of Nuclear Reactor Regulation (NRR)
Division of Risk Assessment (DRA)
Division of Risk Assessment (DRA)
  -Operational Support and Maintenance Branch (APOB)
-Operational Support and Maintenance Branch (APOB)
\ Mail Stop: 0-10C15 Phone: 301-415-8385 Fax: 301-415-3577 1
\\
Mail Stop: 0-10C15 Phone: 301-415-8385 Fax: 301-415-3577 1


==Subject:==
==Subject:==
Line 31: Line 36:


==Dear XXXXXXXXX,==
==Dear XXXXXXXXX,==
Please find attached a preliminary analysis developed by the Office of Nuclear Reactor Regulation, Division of Risk Assessment, PRA Operational Support Branch (NRR/DRAIAPOB) in order to perform an initial evaluation of the 101 runs of a 1 D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site.
Please find attached a preliminary analysis developed by the Office of Nuclear Reactor Regulation, Division of Risk Assessment, PRA Operational Support Branch (NRR/DRAIAPOB) in order to perform an initial evaluation of the 101 runs of a 1 D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site.
This preliminary analysis provides insights into the data provided without the benefit of a detailed explanation or key to the results presented. An Excel spreadsheet is attached to this document that presents the results in a more amenable form for review. The results of this effort are presented to you as a potential aid in the on-going discussions with the licensee regarding the sensitivity analysis.
This preliminary analysis provides insights into the data provided without the benefit of a detailed explanation or key to the results presented. An Excel spreadsheet is attached to this document that presents the results in a more amenable form for review. The results of this effort are presented to you as a potential aid in the on-going discussions with the licensee regarding the sensitivity analysis.
Sincerely, XXXXXXXXX
Sincerely, XXXXXXXXX


N       E NFO                         LB     ELEA
N E NFO LB ELEA


==GENERAL COMMENT==
==GENERAL COMMENT==
S
S The comments and results presented below were derived from an Excel spreadsheet (see attached) that contains 101 runs of a 1D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site (i.e., Jocassee Dam).
  " The comments and results presented below were derived from an Excel spreadsheet (see attached) that contains 101 runs of a 1D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site (i.e., Jocassee Dam).
Explanations and justifications for some of the variation of input parameters are provided in attachments to the November 30, 2009, Duke Energy letter to the NRC, which are a response to a request from the NRC on April 30, 2009. Previous discussions of the parameters used for the sensitivity study took place on May 11, 2009 (as described in a November 10, 2009 summary) and August 27, 2009 (presentation slides available).
* Explanations and justifications for some of the variation of input parameters are provided in attachments to the November 30, 2009, Duke Energy letter to the NRC, which are a response to a request from the NRC on April 30, 2009. Previous discussions of the parameters used for the sensitivity study took place on May 11, 2009 (as described in a November 10, 2009 summary) and August 27, 2009 (presentation slides available).
The spreadsheet obtained from the licensee was particularly challenging to analyze in terms of insights or the quality of the sensitivity performed. The input and output data was reorganized in order to allow for a coherent analysis of any possible insights (also attached).
  " The spreadsheet obtained from the licensee was particularly challenging to analyze in terms of insights or the quality of the sensitivity performed. The input and output data was reorganized in order to allow for a coherent analysis of any possible insights (also attached).
COMMENTS ON INPUT PARAMETERS There are a total of 22 input parameters presented in the sensitivity data: 5 Manning's roughness coefficients, 4 time to failure parameters, 3 modeling parameters, and 9 geometric parameters (see attachment A for full list). The output is represented by 4 flood elevations values at 3 selected locations (Keowee Dam, Oconee Intake Dike, and World of Energy Swale).
COMMENTS ON INPUT PARAMETERS
Specific discrete values have been used for each parameter (mentioned in interactions between NRC and Duke Energy). For example, for a specific time to failure (Jocassee Dam Failure Time),
* There are a total of 22 input parameters presented in the sensitivity data: 5 Manning's roughness coefficients, 4 time to failure parameters, 3 modeling parameters, and 9 geometric parameters (see attachment A for full list). The output is represented by 4 flood elevations values at 3 selected locations (Keowee Dam, Oconee Intake Dike, and World of Energy Swale).
  " Specific discrete values have been used for each parameter (mentioned in interactions between NRC and Duke Energy). For example, for a specific time to failure (Jocassee Dam Failure Time),
there are 7 potential values listed (i.e., 1.0, 2.0, 2.6, 2.8, 3.0, 4.0, and 5.0 hours) as input.
there are 7 potential values listed (i.e., 1.0, 2.0, 2.6, 2.8, 3.0, 4.0, and 5.0 hours) as input.
However, for most inputs, there are either 2 or 3 possible values presented. A subset of all possible combinations for the potential parameters indicated was used for a total of 101 runs resulting in flood elevations at the selected site locations mentioned above.
However, for most inputs, there are either 2 or 3 possible values presented. A subset of all possible combinations for the potential parameters indicated was used for a total of 101 runs resulting in flood elevations at the selected site locations mentioned above.
* Only the 1 st run had a value of the Jocassee Reservoir Elevation different than 1110 feet (i.e.,
Only the 1 st run had a value of the Jocassee Reservoir Elevation different than 1110 feet (i.e.,
1108 feet was used). It most likely appears that this value was used to calibrate the updated model with the results used for the FERC 1992 Inundation Study. Additional parameters not varied in the analysis are mentioned in the May 11, 2009, presentation by the licensee.
1108 feet was used). It most likely appears that this value was used to calibrate the updated model with the results used for the FERC 1992 Inundation Study. Additional parameters not varied in the analysis are mentioned in the May 11, 2009, presentation by the licensee.
  " The input parameter describing Keowee Breach Side Slopes is described with three possibilities:
The input parameter describing Keowee Breach Side Slopes is described with three possibilities:
(1:1,1:1), (1.5:1,1.5:1), and (3.45:1, 2:03:1). However, side slopes of (1.5:1, 1.5:1) were not used in any of the 101 runs.
(1:1,1:1), (1.5:1,1.5:1), and (3.45:1, 2:03:1). However, side slopes of (1.5:1, 1.5:1) were not used in any of the 101 runs.
* As mentioned by the licensee, a specific subset of 3 combinations from the listed potential values was used in the inputs for the Manning's roughness coefficients (see attachment B for the full list): 0.02, 0.025, 0.035 and 0.07. The Manning's number coefficient for the Reservoir Tributaries upstream of the Keowee Dam was maintained constant at 0.035 for all runs (i.e., no sensitivity appears to have been done for this parameter).
* As mentioned by the licensee, a specific subset of 3 combinations from the listed potential values was used in the inputs for the Manning's roughness coefficients (see attachment B for the full list): 0.02, 0.025, 0.035 and 0.07. The Manning's number coefficient for the Reservoir Tributaries upstream of the Keowee Dam was maintained constant at 0.035 for all runs (i.e., no sensitivity appears to have been done for this parameter).
1
1


                          /EýN$TJW_4S     /RATN>ro             R       ICRLS
/EýN$TJW_4S  
  " Three modeling parameters inputs were considered: inclusion/exclusion of saddle dike failures, inclusion/exclusion of bypass flow, and Jocassee Dam Failure Progression Type (i.e., linear or sine wave).
/RATN>ro R
  " The following pairs of runs exhibit repeated inputs resulting in the same outputs: 7 & 34, 12 & 36, and 63 & 76. It is unclear why these repetitions were included in the analysis since it does not appear that a probabilistic sampling of input parameters was done.
ICRLS Three modeling parameters inputs were considered: inclusion/exclusion of saddle dike failures, inclusion/exclusion of bypass flow, and Jocassee Dam Failure Progression Type (i.e., linear or sine wave).
* There are two sets of runs (59 & 60, and 64 & 66 & 67) that have equivalent inputs and different outputs. Since there are no other parameters listed and the physical model used is assumed to be deterministic, reasons for the discrepancies may be due to (i) typo, (ii) error in the transcription of the results, (iii) additional input parameters affecting the output not shown, or (iv) problems with the deterministic model. The discrepancies in output between this subset are not significant for the most part (i.e., not more than a few decimal places) indicating possible numerical approximations in the output. However, in the case of runs 59 & 60, the difference in the Keowee Tailrace Elevation flood depth is > 3 feet.
The following pairs of runs exhibit repeated inputs resulting in the same outputs: 7 & 34, 12 & 36, and 63 & 76. It is unclear why these repetitions were included in the analysis since it does not appear that a probabilistic sampling of input parameters was done.
* If the input repetitions in the listed runs mentioned above were to be resolved, there would be 95 individual runs with different inputs, instead of the 101 runs presented.
There are two sets of runs (59 & 60, and 64 & 66 & 67) that have equivalent inputs and different outputs. Since there are no other parameters listed and the physical model used is assumed to be deterministic, reasons for the discrepancies may be due to (i) typo, (ii) error in the transcription of the results, (iii) additional input parameters affecting the output not shown, or (iv) problems with the deterministic model. The discrepancies in output between this subset are not significant for the most part (i.e., not more than a few decimal places) indicating possible numerical approximations in the output. However, in the case of runs 59 & 60, the difference in the Keowee Tailrace Elevation flood depth is > 3 feet.
COMMENTS ON OUTPUT PARAMETERS
If the input repetitions in the listed runs mentioned above were to be resolved, there would be 95 individual runs with different inputs, instead of the 101 runs presented.
  " Considering the 95 runs without repetitions, the cumulative distributions derived for each output parameter are shown in Attachment B, along with indications for the mean, 90th interval, and a normal distribution fit to the results. A comparison between the three groups of Manning's coefficients described above is also presented. To add perspective to the results, it should be considered that the height above mean sea level for (i) Jocassee Dam is 1125 feet, (ii) for Keowee Dam is 815 feet, and (iii) for the ONS Intake Dike is 815 feet. Additionally, the ONS yard elevation is at 796 feet above mean sea level.
COMMENTS ON OUTPUT PARAMETERS Considering the 95 runs without repetitions, the cumulative distributions derived for each output parameter are shown in Attachment B, along with indications for the mean, 90th interval, and a normal distribution fit to the results. A comparison between the three groups of Manning's coefficients described above is also presented. To add perspective to the results, it should be considered that the height above mean sea level for (i) Jocassee Dam is 1125 feet, (ii) for Keowee Dam is 815 feet, and (iii) for the ONS Intake Dike is 815 feet. Additionally, the ONS yard elevation is at 796 feet above mean sea level.
* Not all runs resulted in flooding elevation values at the World of Energy Swale. The first 76 runs resulted in "n/a" entries at this site location, possibly because the analysis does not indicate a significant elevation at this location using this subset of input parameters.
Not all runs resulted in flooding elevation values at the World of Energy Swale. The first 76 runs resulted in "n/a" entries at this site location, possibly because the analysis does not indicate a significant elevation at this location using this subset of input parameters.
* The variation of the output parameters versus the input parameters has been plotted using a box and whiskers representation. Description from MATLAB Manual: "The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Notches graph a robust estimate of the uncertaintyabout the means for box-to-box comparison. Outliers are data with values beyond the ends of the whiskers", (indicated as '+'). "If there is no data outside the whisker, a dot is placed at the bottom whisker."
The variation of the output parameters versus the input parameters has been plotted using a box and whiskers representation. Description from MATLAB Manual: "The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Notches graph a robust estimate of the uncertainty about the means for box-to-box comparison. Outliers are data with values beyond the ends of the whiskers", (indicated as '+'). "If there is no data outside the whisker, a dot is placed at the bottom whisker."
  " Results are shown for all the runs and major subsets of runs (i.e., by Manning's coefficient subsets) including all non-repeated inputs (except the 1108 feet Jocassee Reservoir Elevation calibrations run. For the runs where a different output is obtained with equal input parameters, the larger output values are used.
Results are shown for all the runs and major subsets of runs (i.e., by Manning's coefficient subsets) including all non-repeated inputs (except the 1108 feet Jocassee Reservoir Elevation calibrations run. For the runs where a different output is obtained with equal input parameters, the larger output values are used.
* It is very important to note that, without further clarification at this point, the variability in the input parameters only reflects the choice of values made by the licensee, since it is unclear whether 2
It is very important to note that, without further clarification at this point, the variability in the input parameters only reflects the choice of values made by the licensee, since it is unclear whether 2


the variation is a reflection of known uncertainties in the values or recalibration of the sensitivity analysis based on initial results. Additionally, because multiple input parameters are modified between runs, care needs to be exercised in relating changes between a single input parameter and an output parameter.
the variation is a reflection of known uncertainties in the values or recalibration of the sensitivity analysis based on initial results. Additionally, because multiple input parameters are modified between runs, care needs to be exercised in relating changes between a single input parameter and an output parameter.
The maximum elevation values obtained from the 101 runs are: (i) 847.5 feet at Keowee Headwater (Run 54), (ii) 811 feet at Keowee Tailrace (Run 33), (iii) 830.4 feet at ONS Intake Dike Headwater (Run 80), and 817 feet at World of Energy Swale (Runs 81 and 82). See Attachment B for the corresponding input values. However, it is unclear from the observed data whether the true bounding maximum values could be established from this analysis based on the most conservative input parameter subset already limited by the licensee's chosen input values.
The maximum elevation values obtained from the 101 runs are: (i) 847.5 feet at Keowee Headwater (Run 54), (ii) 811 feet at Keowee Tailrace (Run 33), (iii) 830.4 feet at ONS Intake Dike Headwater (Run 80), and 817 feet at World of Energy Swale (Runs 81 and 82). See Attachment B for the corresponding input values. However, it is unclear from the observed data whether the true bounding maximum values could be established from this analysis based on the most conservative input parameter subset already limited by the licensee's chosen input values.
For the 95 runs, it is challenging to establish clear trends between the output/input results (see Attachment B). However, some conclusions can be derived:
For the 95 runs, it is challenging to establish clear trends between the output/input results (see Attachment B). However, some conclusions can be derived:
    "  The group 1 subset of Manning's coefficients (all values equal to 0.035) causes smaller outputs of the ONS Intake Dike Headwater Elevation and higher results for the Keowee Tailrace Elevation. The smaller subset of results for the Keowee Headwater Elevation does not appear to show statistically significant differences between the three Manning's coefficient groups.
The group 1 subset of Manning's coefficients (all values equal to 0.035) causes smaller outputs of the ONS Intake Dike Headwater Elevation and higher results for the Keowee Tailrace Elevation. The smaller subset of results for the Keowee Headwater Elevation does not appear to show statistically significant differences between the three Manning's coefficient groups.
o   For the Keowee Headwater Elevation     RKeoweeH:
o For the Keowee Headwater Elevation RKeoweeH:
R H
R H
              "  Increases in the RKeowH output results are observed from increases in Keowee Overtopping Trigger parameter, Jocassee Piping Elevation, and the use of sine wave Jocassee Failure Progression versus a linear model.
Increases in the RKeowH output results are observed from increases in Keowee Overtopping Trigger parameter, Jocassee Piping Elevation, and the use of sine wave Jocassee Failure Progression versus a linear model.
              "  Increases in RKeoweeH are observed with lower values of the Jocassee Breach Bottom Width and when a value of 1 hour is used for Jocassee Dam Failure Time. A value of 600 feet for the Jocassee Breach Bottom Width also results in H
Increases in RKeoweeH are observed with lower values of the Jocassee Breach Bottom Width and when a value of 1 hour is used for Jocassee Dam Failure Time. A value of 600 feet for the Jocassee Breach Bottom Width also results in H
higher values for RKeowee , although very few runs were made with larger widths of 625 feet and 650 feet to effectively establish its effects beyond 600 feet.
higher values for RKeowee  
    "  For the Keowee Tailrace Elevation   RKeoweeT:
, although very few runs were made with larger widths of 625 feet and 650 feet to effectively establish its effects beyond 600 feet.
* An increase in RKeoweeT values is observed with a decrease in Little River and Keowee Dam Failure Times, although this conclusion is cannot be conclusively extended to the other two time parameters.
For the Keowee Tailrace Elevation RKeoweeT:
              "  Exclusion of Saddle Dam failures in the model results in a significant magnitude increase in elevation values
An increase in RKeoweeT values is observed with a decrease in Little River and Keowee Dam Failure Times, although this conclusion is cannot be conclusively extended to the other two time parameters.
* An increase in values of       RKeowee T
Exclusion of Saddle Dam failures in the model results in a significant magnitude increase in elevation values An increase in values of RKeoweeT is observed with decreasing Keowee Overtopping Trigger Parameter, Jocassee Piping Elevation, and a Jocassee Side Slope configuration of 1:1 for both breach sides.
is observed with decreasing Keowee Overtopping Trigger Parameter, Jocassee Piping Elevation, and a Jocassee Side Slope configuration of 1:1 for both breach sides.
For the ONS Intake Dike Headwater Elevation Rintake DikeH An increase results from decreasing Jocassee Dam Failure Time. It is unclear that the remaining time parameters follow this trend, it seems in fact that larger elevations result from an increase in failure time for Little River, ONS Intake Dike, and Keowee.
    "  For the ONS Intake Dike Headwater Elevation       Rintake DikeH An increase results from decreasing Jocassee Dam Failure Time. It is unclear that the remaining time parameters follow this trend, it seems in fact that larger elevations result from an increase in failure time for Little River, ONS Intake Dike, and Keowee.
3
3


                        "    Inclusion of Saddle Dam failures in the model results in a increase in elevation values
Inclusion of Saddle Dam failures in the model results in a increase in elevation values An increase in output values results in an increase in Jocassee Piping Elevation o
                        "  An increase in output values results in an increase in Jocassee Piping Elevation o   For the World of Energy Swale Elevation   RWES:
For the World of Energy Swale Elevation RWES:
* An increase in the output results occurs from an increase in Little River and ONS Intake Canal Dike failure times, although it should be noted that a limited subset of values was produced for this output parameter
An increase in the output results occurs from an increase in Little River and ONS Intake Canal Dike failure times, although it should be noted that a limited subset of values was produced for this output parameter For Group 1 Manning's coefficient input parameters, the most significant contributors to an increase in RKeoweeH appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Jocassee Piping Elevation (see Attachment Cl for output variation in other parameters).
* For Group 1 Manning's coefficient input parameters, the most significant contributors to an increase in RKeoweeH appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Jocassee Piping Elevation (see Attachment Cl for output variation in other parameters).
For Group 2 Manning's coefficient input parameters, the most significant contributors to an R H increase in RKeowee appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Keowee Overtopping Trigger Elevation (see Attachment C2 for output variation in other parameters).
    "    For Group 2 Manning's R H        coefficient input parameters, the most significant contributors to an increase in RKeowee appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Keowee Overtopping Trigger Elevation (see Attachment C2 for output variation in other parameters).
For Group 3 Manning's coefficient input parameters, the most significant contributor to an T
* For Group 3 Manning's coefficient input parameters, the most significant contributor to an increase in RKeowee T , appears to the exclusion of Saddle Dam failures. For other parameters, few samples were used to assess the sensitivity to various input values (see Attachment C3 for output variation in other parameters).
increase in RKeowee, appears to the exclusion of Saddle Dam failures. For other parameters, few samples were used to assess the sensitivity to various input values (see Attachment C3 for output variation in other parameters).
RECOMMENDATIONS FROM LITERATURE The following excerpts were obtained from reports and papers discussing dam breach parameter modeling and guidance related to sensitivity analysis associated with flooding analysis due to dam failures.
RECOMMENDATIONS FROM LITERATURE The following excerpts were obtained from reports and papers discussing dam breach parameter modeling and guidance related to sensitivity analysis associated with flooding analysis due to dam failures.
Federal Emergency Management Agency, "The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams", Workshop Report, November 14-15, 2001, in Davis, California.
Federal Emergency Management Agency, "The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams", Workshop Report, November 14-15, 2001, in Davis, California.
    *    "The Commission's guidelines for breach parameters is given in Table 1 of Appendix A of Chapter 2. In general, the average breach width should be between 2 and 4 times the height of the dam for earth or rock fill dams..." "Failure times range from 0.1 to 1.0 hours for earth or rock fill dams, and from 0.1 to 0.3 hours for gravity dams."
"The Commission's guidelines for breach parameters is given in Table 1 of Appendix A of Chapter 2. In general, the average breach width should be between 2 and 4 times the height of the dam for earth or rock fill dams..." "Failure times range from 0.1 to 1.0 hours for earth or rock fill dams, and from 0.1 to 0.3 hours for gravity dams."
    "    "Because of the uncertainty of breaches, the consultant should perform a sensitivity analysis of these parameters. For projects with large reservoirs, conservative breach parameters should be adopted since the rate of draw down of the reservoir during a breach is significantly slower than it is for projects with smaller reservoirs."
"Because of the uncertainty of breaches, the consultant should perform a sensitivity analysis of these parameters. For projects with large reservoirs, conservative breach parameters should be adopted since the rate of draw down of the reservoir during a breach is significantly slower than it is for projects with smaller reservoirs."
    *    "Common Modeling Problems
"Common Modeling Problems
: 1. Failure to model the entire reservoir. If dynamic routing of the reservoir stead of level pool routing is done, the consultant needs to make sure the cross-sections extend upstream of the reservoir to the point where backwater effects no longer exist. The shape of the cross-sections also needs to be examined to make sure all the storage between the cross-sections is accounted for. In some cases, the consultant extended the cross-sections only part way 4
: 1. Failure to model the entire reservoir. If dynamic routing of the reservoir stead of level pool routing is done, the consultant needs to make sure the cross-sections extend upstream of the reservoir to the point where backwater effects no longer exist. The shape of the cross-sections also needs to be examined to make sure all the storage between the cross-sections is accounted for. In some cases, the consultant extended the cross-sections only part way 4


                        /SEN-SITkl )Nf j~&AI                 ý       B C into the reservoir, effectively negating the storage upstream that could be released through a breach.
/SEN-SITkl )Nf j~&AI  
: 2. No sensitivity studies. Although the selected breach width may be at the conservative end of the accepted range given in our criteria, a larger breach width may result in a substantially higher incremental rise downstream. If the incremental rise is highly sensitive to the breach width, then this needs to be considered when selecting the breach width.
ý B C into the reservoir, effectively negating the storage upstream that could be released through a breach.
: 3. Improper use of the Manning's n values. The NWS DAMBRK program requires the user to provide the composite Manning's n values at each elevation. Therefore, for out-of-bank flood elevations the consultant needs to compute the composite Manning's n value based on the weighted wetted perimeter. In many cases, the consultant will select too high of a Manning's value for the out-of-bank elevations. Although not a major factor, this can effect the results in some analysis.
: 2.
: 4. Improper spillway rating curve. In some cases, the reservoir was allowed to draw down during the beginning of the routing because the consultant did not adjust the rating curve for when the gates are closed to maintain the normal pool level. In other cases, the consultant adjusted the rating curve to correct this, but the simulation then appeared as though the licensee closed all the gates instantaneously when the reservoir receded below the normal maximum pool after the breach developed."
No sensitivity studies. Although the selected breach width may be at the conservative end of the accepted range given in our criteria, a larger breach width may result in a substantially higher incremental rise downstream. If the incremental rise is highly sensitive to the breach width, then this needs to be considered when selecting the breach width.
: 3.
Improper use of the Manning's n values. The NWS DAMBRK program requires the user to provide the composite Manning's n values at each elevation. Therefore, for out-of-bank flood elevations the consultant needs to compute the composite Manning's n value based on the weighted wetted perimeter. In many cases, the consultant will select too high of a Manning's value for the out-of-bank elevations. Although not a major factor, this can effect the results in some analysis.
: 4.
Improper spillway rating curve. In some cases, the reservoir was allowed to draw down during the beginning of the routing because the consultant did not adjust the rating curve for when the gates are closed to maintain the normal pool level. In other cases, the consultant adjusted the rating curve to correct this, but the simulation then appeared as though the licensee closed all the gates instantaneously when the reservoir receded below the normal maximum pool after the breach developed."
Wahl, T., "Prediction of Embankment Dam Breach Parameters". Dam Safety Research Report DSO 004, US Department of Interior, Bureau of Reclamation, Dam Safety Office, July 1998
Wahl, T., "Prediction of Embankment Dam Breach Parameters". Dam Safety Research Report DSO 004, US Department of Interior, Bureau of Reclamation, Dam Safety Office, July 1998
      " The importance of different parameters varies with reservoir size. In large reservoirs, the peak discharge occurs when the breach reaches its maximum depth and width. Changes in reservoir head are relatively slight during the breach formation period. In these cases, accurate prediction of breach geometry is most critical."
" The importance of different parameters varies with reservoir size. In large reservoirs, the peak discharge occurs when the breach reaches its maximum depth and width. Changes in reservoir head are relatively slight during the breach formation period. In these cases, accurate prediction of breach geometry is most critical."
    "  "The ultimate breach width and the rate of breach width expansion can dramatically affect the peak flowrate and resulting inundation levels downstream from the dam."
"The ultimate breach width and the rate of breach width expansion can dramatically affect the peak flowrate and resulting inundation levels downstream from the dam."
    "  "Accurately predicting the breach side slope angles is generally of secondary importance to predicting the breach width and depth."
"Accurately predicting the breach side slope angles is generally of secondary importance to predicting the breach width and depth."
Wahl, T., "Uncertainty of Predictions of Embankment Dam Breach Parameters", Journal of Hydraulic Engineering, Vol. 130, No. 5, May 2004
Wahl, T., "Uncertainty of Predictions of Embankment Dam Breach Parameters", Journal of Hydraulic Engineering, Vol. 130, No. 5, May 2004
        "'The uncertainties of predictions of breach width, failure time, and peak outflow are large for all methods, and thus it may be worthwhile to incorporate uncertainty analysis results into future risk assessment studies when predicting breach parameters using these methods."
" 'The uncertainties of predictions of breach width, failure time, and peak outflow are large for all methods, and thus it may be worthwhile to incorporate uncertainty analysis results into future risk assessment studies when predicting breach parameters using these methods."
5
5


ER OR AS SE INF OMA TIOT ATTACHMENT A 6
S E INF OMA TIOT OR ER AS ATTACHMENT A 6


OVERALL OUTPUT PARAMETERS RKee     H=   Keowee Headwater Elevation (feet)
OVERALL OUTPUT PARAMETERS RKee H = Keowee Headwater Elevation (feet)
RKeoweeT = Keowee Tailrace Elevation (feet)
RKeoweeT = Keowee Tailrace Elevation (feet)
H Rintake Dike   = ONS Intake Dike Headwater Elevation (feet)
H Rintake Dike  
= ONS Intake Dike Headwater Elevation (feet)
RW~s = World of Energy Swale Elevation (feet)
RW~s = World of Energy Swale Elevation (feet)
OVERALL INPUT PARAMETERS Manning's number             NcD/s = Keowee Downstream Channel = [0.02, 0.025, 0.035]
OVERALL INPUT PARAMETERS Manning's number NcD/s = Keowee Downstream Channel = [0.02, 0.025, 0.035]
NIT     = Keowee Downstream Immediate Tailrace = [0.035, 0.07]
NIT  
NRTu/s = Keowee Upstream Reservoir Tributaries = [0.035]1           'Constant in all runs Ncu/s = Keowee Upstream Reservoir Channel = [0.02, 0.025, 0.035]
= Keowee Downstream Immediate Tailrace = [0.035, 0.07]
N1Tuls = Keowee Upstream Immediate Tailrace           [0.035, 0.07]
NRTu/s = Keowee Upstream Reservoir Tributaries = [0.035]1  
Time to Failure             TLittle River = Little River Dam Failure Time (hours) = [1.0, 1.6, 1.9, 2.4, 5.0]
'Constant in all runs Ncu/s = Keowee Upstream Reservoir Channel = [0.02, 0.025, 0.035]
Tintake Dike = ONS Intake Canal Dike (hours) = [0.8, 0.9, 1.0, 1.2, 2.0]
N1Tuls = Keowee Upstream Immediate Tailrace
TKeowee =     Keowee Dam Failure Time (hours) = [2.0, 2.4, 2.8, 4.0]
[0.035, 0.07]
Time to Failure TLittle River = Little River Dam Failure Time (hours) = [1.0, 1.6, 1.9, 2.4, 5.0]
Tintake Dike = ONS Intake Canal Dike (hours) = [0.8, 0.9, 1.0, 1.2, 2.0]
TKeowee = Keowee Dam Failure Time (hours) = [2.0, 2.4, 2.8, 4.0]
Tjocassee = Jocassee Dam Failure Time (hours) = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
Tjocassee = Jocassee Dam Failure Time (hours) = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
Modeling                     WBF     = With Bypass Flow and Saddle Dam Failure = [Yes, No]
Modeling WBF = With Bypass Flow and Saddle Dam Failure = [Yes, No]
WSD = With Bypass Flow and Saddle Dam Failure = [Yes, No]
WSD = With Bypass Flow and Saddle Dam Failure = [Yes, No]
FP = Jocassee Failure Progression = [linear, sine wave]
FP = Jocassee Failure Progression = [linear, sine wave]
Geometric         SKeowee = Keowee Side Slopes = [(1:1,1:1), (1.5:1,1.5:1)2, (3.45:1, 22:03:1)]
Geometric SKeowee = Keowee Side Slopes = [(1:1,1:1), (1.5:1,1.5:1)2, (3.45:1, 2:03:1)]
Not used on any runs BKeoweew = Keowee Breach Bottom Width (feet) = [500, 650]
2Not used on any runs BKeoweew = Keowee Breach Bottom Width (feet) = [500, 650]
HKeoweeB   = Keowee Breach Bottom Elevation (feet) = [670, 700]
HKeoweeB = Keowee Breach Bottom Elevation (feet) = [670, 700]
OTKeowee =     Keowee Overtopping Trigger (feet) = [815.5, 817]
OTKeowee = Keowee Overtopping Trigger (feet) = [815.5, 817]
Socassee= Jocassee Side Slopes = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1),
Socassee= Jocassee Side Slopes = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1),
(1.55:1,0.7:1)]
(1.55:1,0.7:1)]
Bjocasseew = Jocassee Breach Bottom Width (feet) = [250, 425, 500, 600, 625, 650]
Bjocasseew = Jocassee Breach Bottom Width (feet) = [250, 425, 500, 600, 625, 650]
Hjocassee B= Jocassee Breach Bottom Elevation (feet) = [750, 800, 825, 850]
Hjocassee B = Jocassee Breach Bottom Elevation (feet) = [750, 800, 825, 850]
Jocassee = Jocassee Piping Elevation (feet) = [940, 1020]
Jocassee = Jocassee Piping Elevation (feet) = [940, 1020]
Jocassee = Jocassee Reservoir Elevation (feet) = [1108, 1110]
Jocassee = Jocassee Reservoir Elevation (feet) = [1108, 1110]
7
7


                \,-/ý~~IITv/INFO                 TI     -ýNO         RPUBýLR       ýE SUBSET RUNES GROUP 1 Fixed       Manning's number             Ncu'o = 0.035 Geometric Parameters         SKewee =     (1:1,1:1 ), HjocasseR = 1110 feet Constant    Manning's number             NcD/s   = NITD/s = NRTu/s =     Ncu/s = NITu/s= 0.035 Time to failure             TLiftle River = TIntake Dike = 1 hour, TKeowee = 2 hours Geometric Parameters         BKoweeW =       500 feet,   HKeowCeB = 670 feet Varying    WBF = [Yes, No],
\\,-/ý~~IITv/INFO TI  
-ýNO RPUBýLR  
ýE SUBSET RUNE GROUP 1 Fixed Constant Varying S
Manning's number Ncu'o = 0.035 Geometric Parameters SKewee = (1:1,1:1 ), HjocasseR = 1110 feet Manning's number NcD/s = NITD/s = NRTu/s = Ncu/s = NITu/s= 0.035 Time to failure TLiftle River = TIntake Dike = 1 hour, TKeowee = 2 hours Geometric Parameters BKoweeW = 500 feet, HKeowCeB = 670 feet WBF = [Yes, No],
WSD = [Yes, No],
WSD = [Yes, No],
OTKeowee = [815.5, 817],
OTKeowee = [815.5, 817],
Line 144: Line 156:
TjosPee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
TjosPee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]
HjocasseeP = [940, 1020],
HjocasseeP = [940, 1020],
Sjocasee =   [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],
Sjocasee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],
Bjocasseew = [250, 425, 500, 600, 625, 650],
Bjocasseew = [250, 425, 500, 600, 625, 650],
Hjocassee B = [750, 800, 825, 850]
Hjocassee B = [750, 800, 825, 850]
Line 150: Line 162:
8
8


                          -- 'ýNS VEFO-                         F   PUB C E       ýASE GROUP 2 Fixed   Manning's number               NcDIs = 0.025 Geometric Parameters SKeowee = (1:1,1:1),             BKeoweew   = 500 feet, Constant Manning's number               NITD/s = 0.07, NRTU/S = 0.035, Ncu/s = 0.025, NITU/s= 0.07 Geometric Parameters OTKeowee             = 817 feet, Hjocassee g   800 feet, Hj 0,.sse   = 1110 feet, FP = sine wave, Jocasseep=   1020 feet Modeling Parameters           WBF = No, Varyj.g TLiftle River= [1.0, 1.6, 1.9, 2.4, 5.0]
-- 'ýNS VEFO-F PUB C E  
ýASE GROUP 2 Fixed Manning's number NcDIs = 0.025 Geometric Parameters SKeowee = (1:1,1:1), BKeoweew = 500 feet, Constant Manning's number NIT D/s = 0.07, NRTU/S = 0.035, Ncu/s = 0.025, NITU/s= 0.07 Geometric Parameters OTKeowee = 817 feet, Hjocassee g 800 feet, Hj 0,.sse  
= 1110 feet, FP = sine wave, Jocasseep= 1020 feet Modeling Parameters WBF = No, Varyj.g TLiftle River= [1.0, 1.6, 1.9, 2.4, 5.0]
TIntake Dike = [0.8, 0.9, 1.0, 1.2, 2.0]
TIntake Dike = [0.8, 0.9, 1.0, 1.2, 2.0]
WSD     = [Yes, No],
WSD = [Yes, No],
TKeowee = [2.0, 2.4, 2.8, 4.0]
TKeowee = [2.0, 2.4, 2.8, 4.0]
HKeo.B = [670, 700]
HKeo.B = [670, 700]
Line 161: Line 175:
9
9


GROUP 3 Fixed   Manning's number           NcD 0 s = 0.020 Constant Manning's number           NITDs = 0.07,       NRTu/s =   0.035, Ncu 0 s = 0.020, NITU/s=     0.07 Geometric Parameters       TLiftie River = TIntake Dike = 1 hour, TKeowee = 2 hours, SKeowee = (1:1,1:1), BKeoweew = 500 feet, Hocssee B =     800 feet, HJocsseR = 1110 feet, HKeOWeeB = 670 feet Varvina WBF = [Yes, No],
GROUP 3 Fixed Manning's number NcD 0
s = 0.020 Constant Manning's number NITDs = 0.07, NRTu/s = 0.035, Ncu 0 s = 0.020, NITU/s= 0.07 Geometric Parameters TLiftie River = TIntake Dike = 1 hour, TKeowee = 2 hours, SKeowee = (1:1,1:1), BKeoweew = 500 feet, Hocssee B = 800 feet, HJocsseR = 1110 feet, HKeOWeeB = 670 feet Varvina WBF = [Yes, No],
WSD = [Yes, No],
WSD = [Yes, No],
OTKeowee = [815.5, 817],
OTKeowee = [815.5, 817],
Line 173: Line 188:
10
10


-SZNSITIV /NF MA     NT   R L Eý ATTACHMENT B 11
-SZNSITIV /NF MA NT R
L Eý ATTACHMENT B 11


                                      /ELý           -OT FO           ýRE INPUT PARAMETERS RESULTING IN MAXIMUM KEOWEE HEADWATER ELEVATION (849.7 FT)
/ELý  
KeoweeLittle               River Manning's                                             Keowee Parameters numberParameters INPUT PARAMETERS RESULTING IN M Keowee DIS           Little River Manning's               Dam number            Parameters WORLD OF ENERGY SWALE ELEVATION 12
-OT FO  
ýRE INPUT PARAMETERS RESULTING IN MAXIMUM KEOWEE HEADWATER ELEVATION (849.7 FT)
KeoweeLittle River Manning's Keowee Parameters numberParameters INPUT PARAMETERS RESULTING IN M Keowee DIS Manning's number Little River Dam Parameters WORLD OF ENERGY SWALE ELEVATION 12


OVERALL RESULTS 0.8 .s c                       T           H                     WE
OVERALL RESULTS 0.8.s c
            .                      Keowee       Intake Dike 0.2 RH H
T H
RKec 780           800         820             84C)
WE Keowee Intake Dike 0.2 H
Elevation (feet)
RH RKec 780 800 820 84C Elevation (feet)
CDF                               O CDF Meana                     Mean 0 I- Mean Fit Normal                    0.5 Normal Fit th   th             5 th, 9 th 5      5 0.6 0,4 0.61 70                                     0.4 EE 13
CDF O CDF Meana Mean Mean 0 I -
Normal Fit 0.5 Normal Fit 5
th 5
th 5 th, 9 th 0.6 0.61 0,4 70 0.4 EE
)
13


COMPARISON BETWEEN OUTPUT RESULTS FOR GROUPS 1, 2, AND 3 GROUP 1                                                 GROUP 1
COMPARISON BETWEEN OUTPUT RESULTS FOR GROUPS 1, 2, AND 3 GROUP 1 GROUP 1 GROUP 2 GROUP 2 0.8-GROUP 3 0.8 GROUP 3 C
__  GROUP 2                                                 GROUP 2 0.8-           GROUP 3                                   0.8           GROUP 3 C
C 0
0                                                       C 0.6                                                     0.6
0.6 0.6
  *5                                                       i5 10.4                                                     .20.4 E                                                       E 0.2                                                     0.2 760           780             800           820       60         830       84 RTKeowee = Keowee Tailrace Elevation (feet)             RHKeowee = Keowee Hea 0.8                               j
*5 i5 10.4  
                          .0 0.6 a)
.20.4 E
_T0.4
E 0.2 0.2 760 780 800 820 60 830 84 RT
= Keowee Tailrace Elevation (feet)
RH
= Keowee Hea Keowee Keowee 0.8 j
.0 0.6 a)
_T 0.4
:3 E
:3 E
0 915         820       825         830       835 R Intake Dike D   = ONS Intake Dike Headwater Elevation (feet) 14
0 915 820 825 830 835 R
D  
= ONS Intake Dike Headwater Elevation (feet)
Intake Dike 14


OVERALL VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 850ý                                                         850-0                                                             0
OVERALL VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 850ý 850-0 0
_ 845                                                         _ 845 U 840                                                             840 3 835 I1 0                                                            II 835-0 830*                                                         830 1         1.6       1.9     2.4       5                   0.8       0.9     1     1.2       2 TLittle River' Little River Dam Failure Time (hours)           Tintake Dike' ONS Intake Canal Dike (hours)
_ 845
Q   850                                                           &
_ 845 U 840 840 I1 II 3 835 835-0 0
850 0                                                           0 (U                                                           (U
830*
        > 8451,>                                                           4 ww M
830 1
          ~840-                     _.                                  840-II S835r                                   ~835-           II                                            -
1.6 1.9 2.4 5
830U                                                         830i 2           2.4       2.8         4                   1       2     2.6 2.8   3     4     5 TKeowee, Keowee Dam Failure Time (hours)                   Tjocassee, Jocassee Dam Failure Time (hours) 15
0.8 0.9 1
1.2 2
TLittle River' Little River Dam Failure Time (hours)
Tintake Dike' ONS Intake Canal Dike (hours)
Q 850 850 0
0 (U
( U
> 8451,>
4 ww M
~840-840-II II S835r  
~835-830U 830i 2
2.4 2.8 4
1 2
2.6 2.8 3
4 5
TKeowee, Keowee Dam Failure Time (hours)
Tjocassee, Jocassee Dam Failure Time (hours) 15


0 RHHK = Keowee Headwater Elevation (feet) Q KeowOe
H RH K
                                                                                                  -o
= Keowee Headwater Elevation (feet)
                                                                                                  ~1 Cd)
KeowOe 0
:*0 m
Q
z H
-o
RH     = Keowee Headwater Elevation (feet) -
~1 Cd)
:*0 H
RH  
= Keowee Headwater Elevation (feet)
Keowee
Keowee
-n 0*
-n 0*
0 CD T1) z
0 CD T1)
-n                                                         H RH o = Keowee Headwater Elevation (feet)
-n 0
KOoweD                                 -n, 0
RO 0
RO I
mz z
0 cn m
-n, m
I-0.
I-I H
RH o  
= Keowee Headwater Elevation (feet)
KOoweD cn 0.
CD
CD


GNoSeI (Keowee               P        e Geometric Parameters (Keowee) 850                                                '    850 C
GNoSeI P
84                                                   0 (u 845
e (Keowee Geometric Parameters (Keowee) 850 C
_*840 3:835 0
84
S8.35 (D
_*840 3:835 0(D
n-                                                    -r)
'830 n-850 0
I8
(u 845 S8.35 I8
        '830 1                   3                               815.5                817 SKow, Keowee Side Slopes                     OTKeowee, Keowee Overtopping Trigger (feet)
-r) 1 3
C 8501                                                      850 0
: SKow, Keowee Side Slopes 815.5 817 OTKeowee, Keowee Overtopping Trigger (feet) 8501 C
* 845                                                     845.
0
uJ 840-(D U1)                                                           Mo -
* 845 uJ 840-(D U1)
II S835 L II 0U)
II S835 L
M y~830ý1 MY         L 500                650                                670                 700 B                                                      Heowe Keowee Breach Bottom Elevation (feet)
~830ý1 M
WK.wee Keowee Breach Bottom Width (feet) 17
y MY L
850 845.
Mo -
IIU) 0 670 700 Heowe Keowee Breach Bottom Elevation (feet)
B 500 650 WK.wee Keowee Breach Bottom Width (feet) 17


AfiýýSý               O     TI ý-MMR+t N                          RELE
AfiýýSý O
. . .........          .. .........        l .  .  . . . . .  .
TI N
850-~                                                             050 0
ý-MMR+t RELE l.
                  > 845-                                                                 o845-840
850-~
                                                                                        ~840~
0
84)
> 845-840 84) 83 IK 050 o845-
S835; 83 IK
~840~
                                                                                          &30 1         2           3     4     5 Sjocassee, Jocassee Side Slopes                         Hjorassee, Jocassee Piping Elevation (feet)
S835;
              "850                                                                       e85oi C
&30 1
0                                                                    0
2 3
                                                                                        ~845r 840,
4 Sjocassee, Jocassee Side Slopes 5
                                                                                      ~840 84
Hjorassee, Jocassee Piping Elevation (feet)
                                                                                                            ¸ __
"850 0
0                                                                    -I-L 3 835 II 0
: 840, 3 835 0
                                                                                        ~835F 835 830~
II 835 250 425 500 600 625 650 BwJsse'. Jocassee Breach Bottom Width (feet)
250        425        500        600 625  650                    750           800       825       850 HB BwJsse'. Jocassee Joc(feet) Breach Bottom Width (feet)              Hcss, Jocassee Breach Bottom Elevation (feet) 18
Joc(feet) e85oi C
0
~845r 84
~840  
¸
-I-L
~835F 0
830~
750 800 825 850 H B Hcss, Jocassee Breach Bottom Elevation (feet) 18


SENSITI E I     OR       IM- NOT OR             L         LEAS OVERALL VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810                                                        810 o 805                                                     o   805
SENSITI E I OR IM-NOT OR L
      -*    800                                                    -2 800 8w                                                    LU o795                                                          S795 H- 790                                                        - 790 0 785                                                     0 785 i  780                                                    it 780 1775                                                        1775 770 0.8       0.9     1       1.2       2                       1         1.6       1.9     2.4       5 TInlake Dike' ONS Intake Canal Dike (hours)              TLuie River' Little River Dam Failure Time (hours) 810                                                       ~810' o 805 r
LEAS OVERALL VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 o 805 800 8w o795 H-790 0 785 i
7
780 1775 810 o 805
                                                                      =0805
-2 800 LU S795 790 0 785 it 780 1775 770 0.8 0.9 1
        -0 800 w                                                           (D S795 H-   79C                                                   it  7800 W
1.2 2
0 785 i*i 78C 785-1775*
TInlake Dike' ONS Intake Canal Dike (hours) 1 1.6 1.9 2.4 5
2           2.4     2.8         4                     1       2     2.6   2.8   3     4     5 TKeowee, Keowee Dam Failure Time (hours)                  Tjocassee, Jocassee Dam Failure Time (hours) 19
TLuie River' Little River Dam Failure Time (hours) 810 ro 805
-0 800 w
S795 H-79C W
0 785 i*i 78C 1775*
~810'
=0805 7
(D it 7800 785-2 2.4 2.8 4
TKeowee, Keowee Dam Failure Time (hours) 1 2
2.6 2.8 3
4 5
Tjocassee, Jocassee Dam Failure Time (hours) 19


7 E4NO ENST-                    ION - NOT FOR PBL           REL ASE Modeling Parameters 810                                                   810 o0 805 W 80 w
ENST-7 E4NO ION - NOT FOR PBL REL ASE Modeling Parameters 810 W 80
                                                              - 800      I-(1)
* 795 I-790
* 795                          4-                   c) 795 I- 790                                              I    790
* 785 ii 780 775 4-810 o0 805 800 w
* 785                                               *0 785 (U
(1) c) 795 I
ii 780                                               . 780 775 7-7 770 0                   1                                    0                  1 WSD, With Saddle Dam Failure                                 WBF, With Bypass Flow 810 o 805
790
                              --   800 LU 795 I- 790 3: 785 780 I-     7 770 1                   2 FP, Jocassee Failure Progression 20
* 785 0
(U 780 7-7 770 I-0 1
WSD, With Saddle Dam Failure 0
1 WBF, With Bypass Flow 810 o 805
-- 800 LU 795 I-790 3: 785 780 I-7 770 1
2 FP, Jocassee Failure Progression 20


SENGeToImetrifaa t           - NO             P   LIC     L Geometric Parameters (Keowee)
SENGeToImetrifaa t  
CU   810i                                                   810 1-0 0 805-8w o 805 LIJCU800 w
- NO P
795.                                               C 795
LIC L
        - 790"                                               H 790 S785-                                                 0*  785 ii 780                                                  i  780 I-I 775-                                                     775 77n, 770-1                     3                                   815.5                817 SKeowee, Keowee Side Slopes                         OTK.ow.e, Keowee Overtopping Trigger (feet) 810ý                                                     8110 08051                                                 2  805 CU (D~ 800-                                                    C 8 0 0-
Geometric Parameters (Keowee)
        , 795k                                                     7951 S7901 H    790 CU
CU 810i 0 805-8w1-0 795.
          ~785r                                                     785          ___
790" S785-ii 780 I-I 775-770-1 3
ii780                                                     780 S775"r 770L                                                     770, 670                  700                                    500                 650 BrachBotom K., eowe Heowee Keowee                 Elevaton Breach Bottom Eevaion(feet)                 Bow BKoe  Keowee Breach Bottom Width (feet) 21
SKeowee, Keowee Side Slopes 810 o 805 CU800 LIJ w
C 795 H 790 0* 785 i
780 775
: 77n, 815.5 817 OTK.ow.e, Keowee Overtopping Trigger (feet) 810ý 08051 (D~ 800-
, 795k S7901
~785r ii780 S775"r 770L 8110 2
805 CU C8 0 0-7951 H
790 CU 785 780
: 770, 500 650 Bow BKoe Keowee Breach Bottom Width (feet) 670 700 Heowee Keowee Breach Bottom Elevaton K., eowe BrachBotom Eevaion(feet) 21


G)
T RT K
= Keowee Tailrace Elevation (feet) o-001 88
-4 0
(DI 03 m
aii 3
T RTKoW
= Keowee Tailrace Elevation (feet)
Z, 1-
-0 wo 0
C-0 (DI CD RT
= Keowee Tailrace Elevation (feet)
Keowee CD C-0 Fj G)
Co a
Co a
RTT K      = Keowee Tailrace Elevation (feet)    RTKeowee = Keowee Tailrace Elevation (feet) o-001                          88                                                              CD
CD 0
        -4                                                                            Fj                0 0
2o CD z
CD                                              2o CD zV)
V) m 0Z z
(DI C-03 0                                                    m 3m        aii 0Z z
-g Wn RT = Keowee Talirace Elevation (feet) 0 (D
T RTKoW    = Keowee Tailrace Elevation (feet)          RT   = Keowee Talirace Elevation (feet)
CA 0A IQ N)j
Z,  1- -0
                                                                                                              -g Wn 0
(D 0
C-                                                    CA wo CD 0      (DI                                        0A IQ N)j


OVERALL VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0                                                               0
OVERALL VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
        " 830                                                         16 830-w                                             L+
0
828       -                                                      828                     -
" 830 16 830-w L+
826                                  -826           I 824                                                               824 822     .822 W                                                                                               Z-1 z                                                             z o                                                             0 it 820                                                         ,    820 1         1.6       1.9     2.4     5                       0.8     0.9     1     1.2     2 Little River' Little River Dam Failure Time (hours)                       Dike ONS Intake Canal Dike (hours) cC 0
828 828 826
830-                                                       > 830 2
-826 I
(D Lu 828                                                             828    -
824 824 822  
826          i            -                                    826 U)                 "_I-824                                                      O 824 S
.822 W
U) 822                                  *_
Z-1 z
                                                                        -=822-z 0
z o
                                                                      ,    820 z      evve 2            2.4      2.          4 S         1     2     2.6 2.8   3     4     5 z-  T~ewe Keowee Dam Failure Time (hours)                    E     Tc         Jocassee Dam Failure Time (hours) 23
0 it 820 820 1
1.6 1.9 2.4 5
0.8 0.9 1
1.2 2
Little River' Little River Dam Failure Time (hours)
Dike ONS Intake Canal Dike (hours) 0 830-(D 828 826 i
824
--S 822 U) 2 2.4
: 2.
4 z-T~ewe Keowee Dam Failure Time (hours) z evve cC
> 830 2
Lu 828 826 U)  
"_I O 824
-=822 -
z 0
820 S
1 2
2.6 2.8 3
4 5
E Tc Jocassee Dam Failure Time (hours) 23


NSITI El         ~
NSITI El  
Modelinq Parameters C
~
0                                                       0 830                                                  M 830 MU                                                      ,'3) 828                                                        828 M
Modelinq Parameters 0
                                                              "U 826                                                 '    826 O 824                                                  5     824 c 822                                                  c    822 V) z                                                      z 0                                                      0 u 820                                                        820 a)
830 MU 828 826 O 824 c 822 z
Ws 0                       1                                  0                    1 With Saddle Dam Failure                                 WBF, With Bypass Flow C
0 u 820 Ws C
0 16 830 U)
0 M 830
(U 828
,'3) 828 M
                                  ')826 o     824 822-*
"U 826 5
03 z
824 c
822 V)z0 820 a) 0 1
With Saddle Dam Failure 0
1 WBF, With Bypass Flow C0 16 830 U) 828 (U
')826 o
824 822-*
z03
* 820
* 820
                                .4               1                     2 FP, Jocassee Failure Progression 24
.4 1
2 FP, Jocassee Failure Progression 24


Geometric Parameters(Keowee)
Geometric Parameters (Keowee) 830 0
w 828 826 I
824
-E 822 z0 i
820 5is C
0 (D
0 XI of 830 828 826 824 822 82C
+
1 3
SKeowee' Keowee Side Slopes 815.5 817 OTKeowee Keowee Overtopping Trigger (feet)
C0 (a
0 (D
0 83C 828 826 824 822 820 C
0 M 830 0
LU 828-o826
-a 5
824 (V
822 z
0 o 820 670 700 B
HR Keowee Breach Bottom Elevation (feet) 500 650 BKeoweW Keowee Breach Bottom Width (feet) 25
 
S ENSITIVE, IFO NT'A Geometric Parameters (Jocassee) 0
> 830 (u
828
(
826 824 822 z0 i
820 N
C 0
>M 830 (U) r) 828 (go
(
826 O 824 822 Uo z0 ii 820 05 1
2 3
4 SJOCasse, Jocassee Side Slopes 5
940 1020 o
P HjOC...., Jocassee Piping Elevation (feet)
C 0
830 uii 6 828 (U 826 "I
a) 824 a)
-8 822 C')z i
820
=
250 425 500 600 625 650 B~W Jocassee Breach Bottom Width (feet)
C 0
C 0
830                                                  830                              +
f830 w
0 w
828 (U
828                                                  828 (D
826 M
826                                                   826 I
824 (U
824                                                   824 0
-c 822 z
      -E 822                                                      822 XI z                                                     of 0                                                            82C i    820 5
0u 820 0
is 1                    3                              815.5              817 SKeowee' Keowee Side Slopes                    OTKeowee Keowee Overtopping Trigger (feet)
750 800 825 850 B
C C
H Hoese, Jocassee Breach Bottom Elevardon (feet) 26
0                                                      0 (a  83C                                              M 830 0
0 LU 828                                                    828-(D                                                    o826
                                                                -a                ;-
826 5    824 824 (V
0 822                                                - 822 z
0 820                                                o 820 500                650                                670                700 BKeoweW Keowee Breach Bottom Width (feet)        HRB    Keowee Breach Bottom Elevation (feet) 25


SENSITIVE, IFO              NT'A Geometric Parameters(Jocassee)
JVERL R TIO1NW RLM N -
C 0                                                    0
TO UNDIIDUA OVERALL VARIATION IN WORLD OF ENERGY SWALE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
          > 830                                                >M830 (U)
ca) w ci) tM 01 c) 0ý 834 833 832 831 830 829 828 827 0) ai) w 16 834 833 832 831 83C 829 828 827 1
(u 828                                              r) 828 (go
1.6 1.9 2.4 5
(  826                                              (    826 824                                              O 824
T-ittle River' Little River Dam Failure Time (hours) 0.8 0.9 1
          --  822
1.2 2
* 822 Uo z                                                      z 0                                                      0 i  820                                                ii  820            o 05 N
Tlntake Dike' ONS Intake Canal Dike (hours) 4)
1      2        3      4      5                          940                  1020 SJOCasse, Jocassee Side Slopes                    HjOC....,
834 0
P        Jocassee Piping Elevation (feet)
833 W 832 ci)~831 S830 w
C                                                        C 0                                                        0 830                                              wf830 uii 6 828                                                    (U 828 (U 826 "I                          --                                826 M
829 o 828 cU 827 3,
a) 824                                                    824 a)                                                        (U
t834 0
    -8      822    -                                        -c    822 C')
833 832 831 21 8X csa)
z                                                        z 0
Lul
i      820  .                                            u 820
"- 829 828 IIwu 827 1
          =        250    425    500    600    625  650          0        750        800      825        850
2 2.6 2.8 3
        .      B~W      Jocassee Breach Bottom Width (feet)            B H Hoese,  Jocassee Breach Bottom Elevardon (feet) 26
TJocassee, Jocassee Dam Failure Time (hours) 2 2.4 2.8 4
 
TKeowee, Keowee Dam Failure Time (hours)
JVERL     TIO1NW R                RLM       N-             UNDIIDUA                 TO OVERALL VARIATION IN WORLD OF ENERGY SWALE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 834                                                      0)  834 0
833                                                            833 ca) w 832                                                            ai)  832 ci) 831 tM                                                             w 831 16 830                                                            83C 01 829                                                            829 c) 828                                                            828 0ý 827                                                           827 1         1.6       1.9     2.4       5                   0.8        0.9      1      1.2      2 T-ittle River' Little River Dam Failure Time (hours)             Tlntake Dike' ONS Intake Canal Dike (hours) 4)
834                                                             t834 0                                                               0 833                                                            833 W     832                                                            832 ci)
              ~831                                                               831 csa) 21 8X S830 w                                                                Lul
* 829                                                      "- 829 o 828                                                                 828 IIwu827 cU827 3,
1          2       2.6     2.8       3                         2          2.4      2.8        4 TJocassee, Jocassee Dam Failure Time (hours)                   TKeowee, Keowee Dam Failure Time (hours)
Modeling Parameters (D
Modeling Parameters (D
    .834 0)
0)
'4   833 W 832 c.)
.834
'4 833 W 832 c.)
* 831
* 831
_ 830 w
_ 830 w
  ,6 829 o 828 Lu 827 0                           1 WSD, With Saddle Dam Failure 27
,6 829 o 828 Lu 827 0
1 WSD, With Saddle Dam Failure 27


Geometric Parameters(Keowee) 0 0-84M (U   833 w     832 831 83C w
Geometric Parameters (Keowee) 0 0-84M (U 833 w 832 831 83C w*6 829 828 u, 827 1
*6 829 828 u, 827 1                     3 SKeowee, Keowee Side Slopes 834                                                 834 C
3 SKeowee, Keowee Side Slopes 834 0
0 w833ý                                             16 833
w833ý 8321 n831 830-w" 829 828 wu 827 n,"
834 C
16 833
()
()
8321                                              ' 832 n831                                                    831 830-                                                830 C
' 832 831 830 C
w
829 828 wu 827 (03 500 650 BWeo Keowee Breach Bottom Width (feet)
" 829                                                "    829 828                                                 828 wu827                                                wu827 n,"                                                (03 500                   650                         670                700 BWeo   K(feet) Breach Bottom Width (feet)
K(feet) 670 700 H  
Keowee                                      H , SKeowee Breach Bottom Elevation (feet) 28
, SKeowee Breach Bottom Elevation (feet) 28


ITIVE!   "ATI T Pu LKRELE Geometric Parameters(Jocassee)
ITIVE!  
.......................                      i ........         E 834-0 833 Cn 832 8311-830 C
"AT I T
w 829ý 828t 8271 uj 2           3               4         5 Sjocassee, Jocassee Side Slopes a
Pu L KRELE Geometric Parameters (Jocassee) i........
a C        834 0
E 0
(U       8331 U) w 832~
Cn Cw uj 834-833 832 8311-830 829ý 828t 8271 2
4)
3 4
(U CO       831k a        830k C
5 Sjocassee, Jocassee Side Slopes aa C
w 0
0 (U
U) w 4)
(U CO aCw 0
V U]
V U]
250         425               500       600 BJocassee, Jocassee Breach Bottom Width (feet) 29
834 8331 832~
831k 830k 250 425 500 600 BJocassee, Jocassee Breach Bottom Width (feet) 29


ATTACHMENT Cl 30
ATTACHMENT Cl 30


ITI             MA           NOTF               BL   REL     SE GROUP I RESULTS GROUP 1 0.8-0 O0.6-0 E
ITI MA NOTF BL REL SE GROUP I RESULTS GROUP 1 0.8-0 O0.6-0 E
M 0.2                                               RH Recwee R_
M 0.2 RH R_
RIntake Dike A50               800                 850               900 GROUP 1                                               GROUP 1 0.8                                         0.8 0.6
Recwee RIntake Dike A50 800 850 900 GROUP 1 GROUP 1 0.8 0.8 0.6
        't 0.6                                     .50.6 E                                           E 0.2                       Mean Normal Fit       0.2 5t, 95 t 830         840             850         "9 T         800           81
't 0.6  
                % =Keowee Headwater Elevation (feet)           RT       = Keowee Tailrace El Keowee GROUP 1 C
.50.6 E
E 0.2 Mean Normal Fit 0.2 5t, 95 t 830 840 850 "9 T 800 81
=Keowee Headwater Elevation (feet)
RT  
= Keowee Tailrace El Keowee GROUP 1 C
0 E
0 E
31
31


SS            FOAT! NPT                       R
S S FOAT! NPT R
                                                                              'FýW   I  ELE   E GROUP I VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
I
                                        ~8M
'FýW ELE E
                                      ~4!
GROUP I VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
                                        ~84C Mc 1         3           4       5 TJocassee' Jocassee Dam Failure Time (hours)
~8M
Modeling Parameters 850 D   850 0                                                             CU 845 0
~ 4!
            ~840 4)
~84C Mc 1
I 4))835                                                          B340
3 4
                                                                        'I J830______
5 TJocassee' Jocassee Dam Failure Time (hours)
J83 0                       1                                        0                  1 WSo, With Saddle Dam Failure                                       WBF, With Bypass Flow 850i C
Modeling Parameters D 850 0
845
~840 4))835 J830______
850 0
CU B340 4)
I
'I J83 0
1 WSo, With Saddle Dam Failure 850i C
0 LU
0 LU
                                    " 840 Ell
" 840 Ell 835-
                                    ~80 a)
~80 a) of II ji830__
II   835-of ji830__
0 1
1                       2 FP, Jocassee Failure Progression 32
WBF, With Bypass Flow 1
2 FP, Jocassee Failure Progression 32


RM   -NO         RPU ýLIC         ýLEII Geometric Parameters(Keowee) iaam           e Geometric (U
RM  
850                                                                    A  850 (U
-NO RPU ýLIC  
ýLEII Geometric Parameters (Keowee)
Geometric iaam e
(U (U
C 0
C 0
(U (Uw (U
(U (U
I (U
(U 0
(U 0
(U                                                                         r.l (U    845                                                                      S845 w                                                                           (U (U
(U II Ii 850 845 840 835 830 A 850 0(U r.lS845 w
(U                                                                        w 840                                                                      ~840 (U
(U
I (U
~840 II3: 835 0
(U                                                                        II3:
830 1
0 835                                                                 0 835 (U
3 SKeowee, Keowee Side Slopes 815.5 817 OTKeawee, Keowee Overtopping Trigger (feet)
II 830                                                                        830 Ii 1                         3                                   815.5                  817 SKeowee, Keowee Side Slopes                               OTKeawee, Keowee Overtopping Trigger (feet)
Geometric Parameters (Jocassee) i.
Geometric Parameters(Jocassee)
f
...      ..        .    .    .        ..      i .       .... f S850
~840 M
              "* 845 0
(D
                    ~840                                                                   (D   845 M
"* 845 (u
(u (D
(U 835 I8 z!835 0-S850 0
(U                                                                             ~840-835 If z!835 I8 0-1                 2         3         4                             940                    1020 SJocssee' Jocassee Side Slopes                                       Jocassee HJocsseeP          Piping Elevation (feet) 850                                                                   A850[
(D 845
0 A-(U      845                                                                        845    7>8 (U                                                                          w 840                                                                    ~840r II      835                                                                    ~835, (U
~840-If 1
830                                                                      ~830-250          500          600      625    650                      750         800       825         850 BW                  Jocassee Breach       Bottom Width (feet)           HB          Jo(feet) Breach Bottom Elevation (feet)
2 3
Jocassee Jocassee'Jcse                 rahBotmWdh(et 33
4 SJocssee' Jocassee Side Slopes 940 1020 HJocsseeP Jocassee Piping Elevation (feet)
(U (U
II (U
850 845 840 835 830 A850[
0 A-7>8 845 w
~840r
~835,
~830-750 800 825 850 HB Jocassee Breach Bottom Elevation (feet)
Jo(feet) 250 500 600 625 650 BW Jocassee Breach Bottom Width (feet)
Jocassee'Jcse rahBotmWdh(et 33


GROUP I VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 0   808
GROUP I VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 0 808
                              .T 806 uJ (D 804
.T 806 uJ (D 804 802 0800 S798 II 796 I-794 n" 792 1
                              -    802 0800 S798 II 796 I-     794 n" 792 1         3           4       5 TjocasseeJocassee Dam Failure Time (hours)
3 4
Modeling Parameters (D                                                       810 810 0 810 A 806                                                    806 w                                                   C-S804
5 TjocasseeJocassee Dam Failure Time (hours)
                                                            . 802 S802 F-                                                   0    800 0800 (OD798
Modeling Parameters (D
        ,   796                                                ii796
810 A 806 w
                                                              - 794
S804 S802 F-0800 (OD798 796 794
        -   794
,,792 810 0 810 806 802 C-0 800 ii796
          ,,792                                                rr792 0                     1                                    0                  1 WSDWith Saddle Dam Failure                                   WBF, With Bypass Flow 34
- 794 rr792 0
1 WSDWith Saddle Dam Failure 0
1 WBF, With Bypass Flow 34


Geometric Parameters(Keowee)
Geometric Parameters (Keowee) 20 810 C
                  ÷ 20 810                                         810 C                                          C
: 0. 808 4z a 806 w
: 0. 808                                     S808 4z a 806                                      806 w
a 804 800 S798 796
a 804                                         ~804 i  802 800
!794 I, 792 810 0
                                                ) 800 S798                                     S798
808 a)806 w
    . 796                                    II 796
S804
      !794 I, 792                                     n, 792 1                    3                      815.5              817 SKeowee, Keowee Side Slopes            OTKowe, Keowee Overtopping Trigger (feet) 810 0
.N 802 I-(D 800 00798 796 t-794 of 792
.      808 w a)806 S804
÷ 810 C
.N 802 I-(D 800 00798
S808 806
  . 796 t- 794 of 792 1                     2 FP, Jocassee Failure Progression 35
~804 i
802
) 800 S798 II 796 n, 792 1
3 SKeowee, Keowee Side Slopes 815.5 817 OTKowe, Keowee Overtopping Trigger (feet) 1 2
FP, Jocassee Failure Progression 35


Geometric Parameters(Jocassee) 810 810 C
Geometric Parameters (Jocassee) 810 0~ 808
0~ 808                                                     . 808 (U
_ 806 uLJ I--
                                                                      'a806 uLJ
800
_ 806                                                   w o804
~798 i
* 802 I--                                                        I-
796 r 792 810
                                                                      'a800 800 S798
'0 808 w 806 w
            ~798 i   796                                                   I     796 r 792                                                  r      792 1         2         3         4                                 940                  1020 SJocase Jocassee Side Slopes                         HPJocs      Jocassee Piping Elevation (feet) 810                                              g S810   808 0     B
S804 A 802 I--
      '0 808 w 806                                                    '806  BN w
1 798 I
S804 o      804 A 802                                                          j802 I--                                                      i-
796 I
                                                                'a     800 1 798                                                    (OD798 I     796                                                 I    796 I        794 f 792                                              n, 792 250       500   600     625     650                       750        800        825        850 jWoc.s.., Jocassee Breach Bottom Width (feet)             B Hjoassee , Jocassee Breach Bottom Elevation (feet) 36
794 f 792 1
2 3
4 SJocase Jocassee Side Slopes 810 C.
808 (U
'a806 w
o804 802 I-
'a800 S798 I
796 r
792 S810 0
B g
808
'806BN o
804 j802 i-'a 800 (OD798 I
796 n, 792 940 1020 HPJocs Jocassee Piping Elevation (feet) 250 500 600 625 650 jWoc.s.., Jocassee Breach Bottom Width (feet) 750 800 825 850 BHjoassee, Jocassee Breach Bottom Elevation (feet) 36


jSEJRITV         FOR         I   -NO       FOR       LI GROUP I VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 825 W 824-
jSEJRITV FOR I  
                                  "      823   -
-NO FOR LI GROUP I VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 825 W 824-823 03 822 0 821 Z
03
820 0
* 822 0   821 Z     820 0
"819 UI
                                      "819 UI 1         3           4       5
-1.5 1
                                  -1.5 Tjocassee, Jocassee Dam Failure Time (hours)
3 4
Modelina Parameters C
5 Tjocassee, Jocassee Dam Failure Time (hours)
o 825-                                                       WO    825 Wu   824                                                      LU 824 0
Modelina Parameters Co 825-Wu 824 0
S8231                                                     "* 823 M
S8231 (822L
L (822L                                                             822 i5 W  -~8211k
-~8211k W
* 821 Z     II 820'-                                                   z     820 0                                                             0 8819:                                                            819 0                        1                      -r 0                   1 Er-        WsI                                                  nC D'With Saddle Dam Failure                                         WBF, With Bypass Flow 825 0
Z 820'-
0 II 8819:
Er-WsI L
WO 825 LU 824
"* 823 M
822 i5 821 z
820 0
819
-r nC 0
1 D'With Saddle Dam Failure 0
1 WBF, With Bypass Flow 825 0
LU 824
LU 824
                                  "* 823 S822
"* 823 0
                                  *15
ID 819 S822
                                  *0 821 CID 819 z     820 0
*15 821 C
z 820 0
I,
I,
* 819 C,                 1                     2 FP, Jocassee Failure Progression 37
* 819 C,
1 2
FP, Jocassee Failure Progression 37


SEN TI     INF   M         N- OT             PUKBC          LEA Geometric Parameters (Keowee)
SEN TI INF M
... ..    .  . ....        ...    . i .. .. f 0     825-                                                             o 825 LW 8 2 4                                                               LU 824 I
N-OT P UKBC LEA Geometric Parameters (Keowee) i f
      "*823                                                                  cc "I-822                                                                     822-821-                                                               S821 M,
0 825-LW 8 2 4
z     820-                                                           Z 820 0II           /<
"*823I 822 821-z 820-0II  
0II
/<
            ~819[________                                                           819 a                           1                   3                    ",               815.5                 817 SKeowee Keowee Side Slopes                Iz.E-         OTKeowee, Keowee Overtopping Trigger (feet)
~819[________
Geometric Parameters(Jocassee)          I          I o0   825                                                              0      825 LU 824                                                                  uJ 824
a 1
      "* 823                                                                         823-                       /
SKeowee Keowee Si Geometric Parameters (Jocassee) o 825 LU 824 cc "I-822-S821 M,
* 822                                                              (     822 M
Z 820 0II 819 815.5 817 Iz.E -
821                                                                      821-Z 820 0
OTKeowee, Keowee Overtopping Trigger (feet) 3 de Slopes I
oZ      820                      -
I o0 825 LU 824
819                                                                  ,819 a,-                      940                  1020                    1         250       500     600     625     650 Jo......, Jocassee Piping Elevation (feet)         --         Bw      , Jocassee Breach Bottom Width (feet)
"* 823 822 M
C O    825                                                                o 825 LW 824-                                                                  LU 824 a
821 Z 820 0
823          7117                                                  MS823
819 a,-
      = 822-                                                                  M 85
0 825 uJ 824 823-  
      -    821                                                                c 821 Cn                                                                      C-C,)
/
Z    820-                                                              z     820 III                                                    0 II 819                                                                    i*819 a,
(
        "                  750            800      825      850                  a,.         1           2         3         4 of                        Jocassee Breach Bottom Elevation (feet)                        Sjocassee, Jocassee Side Slopes 38
822 821-Z 820 o
,819 1
250 500 600 625 650 Bw
, Jocassee Breach Bottom Width (feet) 940 1020 Jo......, Jocassee Piping Elevation (feet)
O 825 LW 824-823 7117 a
= 822-821 Cn Z
820-III 819 750 800 825 850 of Jocassee Breach Bottom Elevation (feet)
Co 825 LU 824 S823 M
85 M
c 821 C-C,)
z 820 0
II i*819 a,a,.
1 2
3 4
Sjocassee, Jocassee Side Slopes 38


J--SE &#xfd; R       NTJSI4BLC&.E.
J--SE  
&#xfd; R
NTJSI4BLC&.E.
ATTACHMENT B2 39
ATTACHMENT B2 39


SENSITILE GROUP 2 RESULTS GROUP 2 C 0.8 0.6 20.4 E
SENSITILE GROUP 2 RESULTS GROUP 2 0.8 C
0.2-                                         RH RIV*
0.6 20.4 E
____  Intake Dike 750                 800             850               900 GROUP2                                             GROUP2 1                                         1 0.8                                               0.8 0
0.2-RH RIV*
0.6-                                             0.6 a>
Intake Dike 750 800 850 900 GROUP2 GROUP2 1
          ! 0.4                                             20.4 E                                                 E 0.2                               Mean                                       ...
1 0.8 0.8 0
Normal Fit 5th, 5th 8
0.6-0.6 a>
35         840         845       850       70T       780         790 K   Keowee Headwater Elevation (feet)             RKeoe = Keowee Tailrace Ele GROUP 2 C
! 0.4 20.4 E
0 0.6~
E 0.2 Mean Normal Fit 5th, 5th 8 35 840 845 850 70T 780 790 K
Keowee Headwater Elevation (feet)
RKeoe = Keowee Tailrace Ele GROUP 2 C0 0.6~
45
45
                                -c 0.4k E
-c 0.4k E
0.2~
0.2~
820 RHIntake Dike 40
RH 820 Intake Dike 40


                              -- S&#xfd;&#xfd;IVE MA&#xfd;NN NjP&#xfd;UBIR         -                      EA GROUP 2 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure v=848 0
-- S&#xfd;&#xfd;IVE MA&#xfd;NN  
W 846 W 844 U   842 840 CD 838 8   836 834
-NjP&#xfd;UBIR EA GROUP 2 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure v=848 0
                                  - 832 1             3               4 Tjocassee, Jocassee Dam Failure Time (hours)
W 846 W 844 U 842 840 CD 838 8 836 834
ModelinQ Parameters
- 832 1
          . 848 0                                                         0 846                                                       U846r W   844                                                 EL 844-842                                                        842*
3 4
S840 838                                                  o838 8    836                                                      a836-II   834t 834 1832                                                          832' te0 0                     1                                      0                    1 WSD, With Saddle Dam Failure                                     WBF, With Bypass Flow (D
Tjocassee, Jocassee Dam Failure Time (hours)
ModelinQ Parameters 848 0
846 W
844 842 S840 838 8 836 834 1832 0
U846r EL 844-842*
o838 a836-II 834t 832' te0 0
1 WSD, With Saddle Dam Failure 0
1 WBF, With Bypass Flow (D
Y848 0
Y848 0
9 846 LU 844 842 S840 S838 0
9 846 LU 844 842 S840 S838 0
                                "834 8832 1                       2 FP, Jocassee Failure Progression 41
"834 8832 1
2 FP, Jocassee Failure Progression 41


Geometric Parameters(Keowee) 848 846 844 0    842 (D
Geometric Parameters (Keowee) 0 (D
840 838 836-834-832-815.5                 817 OTKowe, Keowee Overtopping Trigger (feet)
848 846 844 842 840 838 836-834-832-815.5 817 OTKowe, Keowee Overtopping Trigger (feet)
Geometric Parameters(Jocassee) 848 846 W 844 (U
Geometric Parameters (Jocassee) 848 846 W
844 (U
842
842
        ~840
~840
        ~838 o836 "1834 832 ry 2                         3                                       940                  1020 Sjocassee, Jocassee Side Slopes                                 Jocassee' Jocassee Piping Elevaton (feet)
~838 o836 "1834 832 ry 2
3 Sjocassee, Jocassee Side Slopes 940 1020 Jocassee' Jocassee Piping Elevaton (feet)
(D "6848 0
(D "6848 0
W     844 (U
W 844 (U
(U842
(U842
                                      , 840 838
, 840 838
                                    &deg;836 "834 r*
&deg;836 "834 r*
250 ao        500           600 Bwse'Joca Jocassee Breach Bottom Width (et 42
ao 250 500 600 Bwse'Joca Jocassee Breach Bottom Width (et 42


p-&#xfd;NP6ISNORIA               NITPRPU                  kELELEA GROUP 2 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
p-&#xfd;NP6ISNORIA NIT PRPU kELELEA GROUP 2 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
        .*   85                                                         .*805 0                                                              0 ro                                                             0
0
        = 800-                                                             80 0795                                                               795 00 w     7   9     5 0         *--                                          0                               --        -
.* 85  
785-                                                        Q)* 785
.*805 ro 0
        =    780                               -                            780 775                                                             775-               "
= 800-80 0795 795 785-Q)*
770                                                             7708 78o5                  1 16         1.9   2 .4     5                   0.8         0 ,9     1     1.2     2 T Little River' Little River Dam Failure Time (hours)             T Intake Dike' ONS Intake Canal Dike (hours) sm                                                         0             _
785 00 w
II                                                              I K                                                                      -
7 9
o                                         80 Lu 795-                                                             795 47 790[7 7079                                                              0 805-775 0
5 0
78578 0
0  
y   780                                   -                  Y* 780 770                                                         0f 770 2 24 28         41                                   2   2.6     2.8       3 T~ewe Keowee Dam Failure Time (hours)                       Tjocassee, Jocassee Dam Failure Time (hours) 43
=
780 780 775 775-770 7708 1 16 1.9 2.4 5
0.8 0,9 1
1.2 2
T Little River' Little River Dam Failure Time (hours)
T Intake Dike' ONS Intake Canal Dike (hours) 78o5 sm 0
o 80 Lu 795-795 II I
K 790[7 0
47 7079 78578 0
0 y
780 Y
780 775 805-770 0f 770 2 24 28 41 2
2.6 2.8 3
T~ewe Keowee Dam Failure Time (hours)
Tjocassee, Jocassee Dam Failure Time (hours) 43


RE             M51:4N ATI         NOTF JR`NBLII(R           EA 'E' Modeling Parameters 4!     805 0
RE M51:4N ATI NOTF JR`NBLII(R EA 'E' Modeling Parameters 4! 805 0
W 795 a)
W 795 a)
=     790 7-a     780
=
    - 775-770 0                     1 WSD, With Saddle Dam Failure Geometric Parameters(Keowee) 895
790 7-a 780
.2     805 I
- 775-770 0
C 0
1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee) 895
S800 (D
.2 805 C
a)
0 S800 (D
LM785 0
LM 785 a) 0 C)
C)
= 770 I-a) 785 770 I
I-
1 3
=a) 785770 770 1                   3 SKe.wee, Keowee Side Slopes (D 805-                                                     .~805 0
SKe.wee, Keowee Side Slopes (D 805-0 800-lu795-790
800-lu795-                                                     L 795 790                                                = 790
(-
(-                                                      I--
i 775
.~805 L 795
= 790 I--
785 0
785 0
a) vII 780 i 775 775 770 500                 650                                     670                 700 Bw                                                        HKeowee' B       Keowee Breach Bottom Elevation (feet)
a) v 780 II 775 770 500 650 Bw KeveKeowee Breach Bottom Width (feet) 670 700 H B Keowee Breach Bottom Elevation (feet)
KeveKeowee Breach Bottom Width (feet) 44
Keowee' 44


SENSIT E I                 ATIO         T     RPU     REL A Geometric Parameters(Jocassee)
SENSIT E I ATIO T
* 805 0
RPU REL A Geometric Parameters (Jocassee) 805 0
800-w     795
800-w 7 9 5
                              =_ 790 F-.
=_ 790 F-.
785 o           ',    J<
785 o
780 775-   '
J<
770 2           3       4         5 SjocasseJocassee Side Slopes
780 775-770 2
                            ,2 805 0
3 4
wj 795-8w
5 SjocasseJocassee Side Slopes
                            =     790 H/
,2 805 0
                                )785
8w wj 795-
:II 780                                '
=
T.75               .. . .
790 H/
770 250         425     500       600 Bw JO.... Jocassee Breach Bottom Width (feet) 45
)785 780 II T. 75 770 250 425 500 600 BwJO.... Jocassee Breach Bottom Width (feet) 45


                      -,cNSIT     E INFO       A             TFOR P BLI GROUP 2 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
-,cNSIT E INFO A
TFOR P BLI GROUP 2 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
W 828-827-
W 828-827-
                                  ~826-
~826-
                              'D   825k i     824
'D 825k i
                              -    823 in 822 z
824 823 in 822 z0 821 0 820
0 821 0 820 1             3               4
_r T j 1
_r    Tj Jocassee' Jocassee Dam Failure Time (hours)
3 4
Modeling Parameters 0                                                         0 4M 0 828                                                    >   828 827                                                       827
Jocassee' Jocassee Dam Failure Time (hours)
* 826                                                      826 ca 825                                                    : 825 824                                                       824
Modeling Parameters 0
* 823                                                      S823 C:
0 828 827 826 825 824 823 cQ 822 z
cQ 822                                                    1n 822 z                                                       z 0                                                        011 821 821 6 820                                                    o 820 0                    1
0 821 6 820 0
                                                                -r 0                   1 WSDWith Saddle Dam Failure                                       WBF, With Bypass Flow c
4M
> 828 827 826 ca: 825 824 S823 C:
1n 822 z
011 821 o 820
-r 0
1 WSDWith Saddle Dam Failure 0
1 WBF, With Bypass Flow c
0
0
                              > 828 827 826 825 824 823 (Q 822 z
> 828 827 826 825 824 823 (Q 822 z0 821 6 820 1
0 821 6 820 1                     2 FP, Jocassee Failure Progression 46
2 FP, Jocassee Failure Progression 46


Geometric Parameters(Keowee) 0 828 827
Geometric Parameters (Keowee) 0 828 827 826 825 824 823 ci 822 z0 821 i 820 of 815.5 817 OTKeovee, Keowee Overtopping Trigger (feet)
                                    .      826
Geometric Parameters (Jocassee) t-828i 827
                                        - 825 824 823 ci     822 z
-- 825 824
0 821 i 820 815.5                   817 of        OTKeovee, Keowee Overtopping Trigger (feet)
~823-C:
Geometric Parameters(Jocassee) t-828i                                                         0 828                                    ----
u) 822 z
827                                                              827 S826 1
0If 821 O 820 ME
        -- 825                                                             825 8
- 1 0
824                                                              824
828 827 S826 825 8824 823 c
        ~823-                                   -                          823 C:
822 z
u) 822                                                            c  822 z                                                                 z 0
821 0820 250 500 600
If 821                                                                821 O 820                                                             0820      -_
,&#xfd;-g BIN  
ME              940                      1020                                  250           500           600
, Jocassee Breach Bottom Width (feet) 940 1020 Jocassee, Jocassee Piping Elevation (feet) a0 T 828 827
                                                                      ,&#xfd;-g   BIN       , Jocassee Breach Bottom Width (feet)
,826 825 824 823 ci 822 z
Jocassee, Jocassee Piping Elevation (feet) a 0
T 828                                                 J 827
                                        ,826 825 824
* 823 ci   822 z
0 821
0 821
                                        '5 820 0*               2                     3 SJocassee, Jocassee Side Slopes 47
'5 820 0*
J 2
3 SJocassee, Jocassee Side Slopes 47


ATTACHMENT C3 48
ATTACHMENT C3 48


GROUP 3 RESULTS 1                      GROUP 3 0.8 0
GROUP 3 RESULTS GROUP 3 1
4z 0.6-20.4-E
0.8 0
__    H foe 0.2R Wake Dike RWE 5
4z 0.6-20.4-E H
800               850                 900 GROUP3                                                   GROUP3 0.8                                                   08 Co                                                   C 0.6                                               '00 06 0.4 S0.4 E                                                     E O                               --  CDF 0.2                           .. Mean             0 Normal Fit           0.2 5 th, 9 5 th 8 0 Heawwat84 Evto(fe         t*      "* T     78acei 9 5 Keowee = eowee Hea4water E eva*on (fe                   Keowee Weowee
0.2R foe Wake Dike RWE 5
                                                                                    =-       Tairace El GROUP3                                                     GROUP3 0.8                                                     0.8 0o 4.
800 850 900 GROUP3 GROUP3 0.8 08 Co C
i0.6                                                         0.6 5                                         0
0.6 06
        >                                                          (D 2=0.4                                                         0.4
'00 0.4 S0.4 E
        *                                -CDF       kA~           E C75 49
E O
CDF 0.2 Mean 0
Normal Fit 0.2 5th, 9 5 th Heawwat84 Evto(fe 8t* 0 T
78acei Keowee =9 e5owee Hea4water E eva*on (fe Keowee =-
Weowee Tairace El GROUP3 GROUP3 0.8 0.8 0o 4.i0.6 0.6 5
0 (D
2= 0.4 0.4
-CDF E
kA~
C75 49


GROUP 3 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure
GROUP 3 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure o 844 O842 S840
* 846-o 844                                                          C 844
&3 834 II 1 832 T
                                                                      .p O842                                                          w 842-S840 S838 II                                                                S836-834
n-I
              &3 1 832                                                            834 T                                                          832 n-I        1         1.6       1.9     2.4     5                   0.8       0.9     1       1.2     2 Little River' Little River Dam Failure Time (hours)            Tlntake Dike' ONS Intake Canal Dike (hours)
* 846-C
.p 844 w 842-S838 S836-834 832 1
1.6 1.9 2.4 5
Little River' Little River Dam Failure Time (hours) 0.8 0.9 1
1.2 2
Tlntake Dike' ONS Intake Canal Dike (hours) jj842-Ua
: 0) 8w8, IW S8364 1832-
:846-
:846-
                                                                      &deg;   844-jj842-                                                    L] 842 U)
&deg; 844-L] 842 U)
Ua
S80
: 0) 8w8,                                                        S80
&38
                                                                            &38 IW
~836[
                                                                          ~836[
834 SJ832 2
S8364 834 1832-                                                      SJ832 2             2.4       2.8         4                     1         2     2.6     2.8       3 TKeowee, Keowee Dam Failure Time (hours)                  Tjocasse,' Jocassee Dam Failure Time (hours) 50
2.4 2.8 4
TKeowee, Keowee Dam Failure Time (hours) 1 2
2.6 2.8 3
Tjocasse,' Jocassee Dam Failure Time (hours) 50


Modeling Parameters 846
Modeling Parameters 846 844 Ca 842
                            . 844 Ca
, 840 (D838
* 842
                              , 840 (D838
* 836 0
* 836 0
(D) 834
(D) 834
: 832 0                   1 WSD, With Saddle Dam Failure Geometric Parameters(Keowee)
: 832 0
(D84E                                                 (2)
1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee)
(D84E CD 3-84E 0~84 G)834
~832 0
(2)
(2)
(2)
C 0
C 0
(U (2) w (2)
(U (2)w (2)
CD (U
(U (2)
3- 84E (2) 0~84                                                I (2)
I (2)
(2)
(2) 0 (2)
G)834 0
II Ii 1
(2)
3 Keowee Side Slopes Bwe Keowee Breach Bottom Width (feet)
          ~832                                                II 0
Keowee' 846 C
Ii 1                   3 Keowee Side Slopes                         Bwe Keowee' Keowee Breach Bottom Width (feet) 846 C
o 844 842
o 844 842
                                ,840 838 (2)
,840 838 (2)
* 836 0
* 836 0
834 832 670               700 HKeowee,B Keowee Breach Bottom Elevation (feet) 51
834 832 670 700 HKeowee,B Keowee Breach Bottom Elevation (feet) 51


Geometric Parameters(Jocassee) 846 0 844
Geometric Parameters (Jocassee) 846 0 844
[842 S838 S834 J832 2            3        4          5 Sjocassee, Jocassee Side Slopes C~846 o 844 (U
[842 S838 S834 J832
w   842 S840 838 S836
~846 C
  ,834 832 250         425       500       600 Bwocessee, Jocassee Breach Bottom Width (feet) 52
o 844 (U
w 842 S840 838 S836
,834 832 2
3 4
5 Sjocassee, Jocassee Side Slopes B
250 425 500 600 wocessee, Jocassee Breach Bottom Width (feet) 52


1         0   I     NOT                 DORP   TLICNEAE GROUP 3 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure g) j2 805                                                          4? 805 t-0                                                               0 S800 8W U 795-UJ                                                                  u  795
1 0
                                                                          '79
I NOT DORP TLIC NEAE GROUP 3 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure g) j2 805 t-0 8W UUJ 795-
            =790-I.-                                                              I.-
=790-I.-
Q 785                                                               )  785 vII 780-                                                       "      780                  -r-
Q 785 v 780-II 775 770-4? 805 0 S800 u 795
* 775 I   7I 770-                                                           77C 1         1.6       1.9       2.4     5                       0.8         0.9     1     1.2     2 TIittle River' Little River Dam Failure Time (hours)                  TIntake Dike' ONS Intake Canal Dike (hours)
'79 I.-
        .805                                                               ,805 0                                                              0 43 800                                                         = 80C c)
) 785 780 I
[]     795 U 795 0)
7I 77C
        .= 790 7C) 790 I-                                                              I--
-r-1 1.6 1.9 2.4 5
0)785                                                             785 v    780                                                      '      78C II                                                            II
TIittle River' Little River Dam Failure Time (hours) 0.8 0.9 1
1.2 2
TIntake Dike' ONS Intake Canal Dike (hours)
.805 043 800 c)
[] 795 0) 7C)
.= 790 I-0)785 v
780 II
,805 0= 80C U 795 790 I--
785 78C II
[75 I Iv.
[75 I Iv.
2           2.4         2.8       4                           1           2     2.6   2.8       3 TKeowee, Keowee Dam Failure Time (hours)                        Tjocassee, Jocassee Dam Failure Time (hours) 53
2 2.4 2.8 4
TKeowee, Keowee Dam Failure Time (hours) 1 2
2.6 2.8 3
Tjocassee, Jocassee Dam Failure Time (hours) 53


1           E1, FO PTION-       0         PU tR         E Modeling Parameters 805 l LU 800 795 0
1 E1, FO PTION-0 PU tR E
790 JU M) 785 780 775 770 0                     1 WSD, With Saddle Dam Failure Geometric Parameters(Keowee)
Modeling Parameters LU 0
JU M) 805 l 800 795 790 785 780 775 770 0
1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee)
U)
U)
                                            .~805 0
.~805 0
                                        *4 800 uIJ 795 U)
*4 800 uIJ 795 U)
                                        =     790 I--
=
U   785 v
790 I--
II   780 775 770 1                   3 SKeowe, Keowee Side Slopes 805-                                                     09 N 800 w(U 795-                                                  L] 795 78) 19U
U 785 v
          = 790-U)
780 II 775 770 1
U785
3 SKeowe, Keowee Side Slopes 805-w 795-(U
                                                                    )780 v  780                                                       7-75 775 770 770 500                   650                             670                  700 BWeowee, Keowee Breach Bottom Width (feet)               H*B, Keowee Breach Bottom Elevation (feet)
= 790-U785 v
780 775 770 500 650 BWeowee, Keowee Breach Bottom Width (feet) 09 N 800 L] 795 19U 78)
)780 U) 7-75 770 H
670 700
*B, Keowee Breach Bottom Elevation (feet)
Ke(feet) 54
Ke(feet) 54


N         Ezrt EI NfO'R0               T   &#xfd;RP         EL&#xfd; Geometric Parameters(Jocassee)
N zrt E
I               W C)
EI NfO'R0 T  
.805 800 WJ 795
&#xfd;RP E L&#xfd; Geometric Parameters (Jocassee)
=     790 I-o) 785
I W
  , 780 775 77n 2           3         4             5 SJocassee, Jocassee Side Slopes 805 0
C)
C)~800 UJ 795
.805 800 WJ 795
                                  =     790 C     785 0
=
790 I-o) 785
, 780 775 77n 2
3 4
5 SJocassee, Jocassee Side Slopes 805 0
~800 C)
UJ 795
=
790 C 785 0
780 II
780 II
                                  *i 77 250   425       500     600 Bw Bw e Jocassee Breach Bottom Width (feet) 55
*i 77 250 425 500 600 Bw Bw e Jocassee Breach Bottom Width (feet) 55
 
.... S VE)NF M4i' PP
&R LE GROUP 3 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
830 829 828 827 S826 825 824 z
0 823-i"- 822 r-L
> 830 829 828 827 826 5
W 32 825 824 z
o 823 II A 822 W
1 1.6 1.9 2.4 5
ittle River' Little River Dam Failure Time (hours) 0.8 0.9 1
1.2 2
Tlntake Dike' ONS Intake Canal Dike (hours) a0 4-
>830 829 w
828 0
0 827 I
826 0
a) 32 825 824 z
0 823 II
* 822 IS 830 829
.*828 0827 826 8
824 z0 823 A 822 0_
n-2 2.4 2.8 4
TK
, Keowee Dam Failure Time (hours) 1 2
2.6 2.8 3
ocassee, Jocassee Dam Failure Time (hours)
Modeling Parameters c0 c
830 829 828 a
(
827 M
0(D
-l 826 825 824 z0 823 II 822 0
IS 0
1 WSD, With Saddle Dam Failure 56


                                    ....S          VE)NF M4i'                    PP        &R        LE GROUP 3 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0
eNoS ImTeItVI N PFar amet eNOTO BrLEA E Geometric Parameters (Keowee) 0 830 I
830                                                              >    830 829                                                                    829 828                                                                   828 827 827 S826                                                                      826 5
829 828 cc 827 826 0
W
SR 825 824 z
        . 825                                                             32 825 824                                                                    824 z                                                                   z 0    823-                                                          o      823 II i"-822                                                                A 822 1         1.6      1.9          2.4  5              W 0.8        0.9      1      1.2      2 r-        L                                                                      Tlntake Dike' ONS Intake Canal Dike (hours) ittle River' Little River Dam Failure Time (hours) a 4-0
O 823 822 1
        >830                                                                        830 829                                                                     829 w
3 SKeotweeKeowee Side Slopes 0
* 828                                                              .*828 0
>830 829 (U
0    827                                                             0827 I
828 827 826 0
0   826                                                            .      826 8
825 824 z
a) 32 825 824                                                                    824 z                                                                   z 0
O 823 822 I S I
II 823                                                             0      823
* 822                                                                 A 822 0_
2            2.4            2.8    4                            1          2      2.6    2.8      3 IS                                                                      n-TK        , Keowee Dam Failure Time (hours)                          ocassee, Jocassee Dam Failure Time (hours)
Modeling Parameters c
0 c    830 829
                                                .      828 a
(    827 M
0
0
                                                -l(D 826 825 824 z
> 830 (D
0      823 II 822 0
IL 829 828 827
0                      1 IS            WSD, With Saddle Dam Failure 56
-: 826 5
 
r  
eNoS ImTeItVI N            PFar amet eNOTO          BrLEA E Geometric Parameters(Keowee) 0 830 I    829 828 cc 827 0    826 SR 825
]'.
                                      -  824 z
825 824 zO 823 822 w
O 823 822 1                      3 SKeotweeKeowee Side Slopes 0                                                            0
670 700 B
        >830                                              I          >    830 (D
I H,
829                                                    IL 829 (U
, Keowee Breach Bottom Elevation (feet) 500 650
828                                                          828 827
: Bwe, Keowee Breach Bottom Width (feet)
* 827 0    826                                                    5-:   826       r     ]'.                  .
Geometric Parameters (Jocassee) 0 T830 829 (D
      .      825                                                          825 824                                                         824 z                                                            z O 823                                                        O 823 822                                                         822 500                  650                      w             670                   700 I S Bwe,   Keowee Breach Bottom Width (feet)           I      H,B  , Keowee Breach Bottom Elevation (feet)
828
Geometric Parameters(Jocassee)
* 827 826 0
C 0                                                            0 T830                                                         > 830 829                                                    L 829 (D
S825
Ca
-- 824 z
      . 828                                                   A 828 cu
0 823-II 822 U
* 827                                                       (    827 ID 826
250 425 500 600 w
* 826 0                                           -
"E Bw Jocassee Breach Bottom Width (feet)
S825                                                     2 825
C 0
        -- 824                                                          824 z                                                           z 0II 823-                                                    0     823 822                                                        9-822 U       250     425         500       600                           2            3        4          5 "E Bw w      Jocassee Breach Bottom Width (feet)       IS               Sjocassee, Jocassee Side Slopes 57
> 830 L 829 Ca A 828 cu
(
827 ID 826 2 825 824 z
0 823 9-822 IS 2
3 4
5 Sjocassee, Jocassee Side Slopes 57


RUN mm 27 3 mm 59 60 mm     mm mm     mm       p mm     mm mm U U m
RUN 27 3
m U U m U U
mm mm mm mm mm mm mm mm mm 59 60 p
m m
m U
U U U
U U U
U U


I       I       I     I I I I                         I I I                 I I I               I I               I 840.0 840.0           837.7 837.7     843.4 843.4                     831.9 831.9 802.1 802.1           799.0 799.0     792.8 792.8                     789.2 789.0 821.1 821.1           820.8 820.8     823.9 823.9   822.1 822.0      82.682.
I I
n/a     n/a           n/a     n/a     n/a   n/a     n/a   n/a       n/a   n/a   In/a RUN      7      34            12i    3      631    76      59     60         64   661   67 INPUT/OUTPUT VALUES EQUIVALENT BETWEEN              IN PUT VALUES EQUIVALENT/OUTPUT INDIVIDUAL SETS OF RUNS                      DIFFERENT BETWEEN RUNS}}
I I
I I I I I I I I I I I I
840.0 840.0 837.7 837.7 843.4 843.4 802.1 802.1 799.0 799.0 792.8 792.8 821.1 821.1 820.8 820.8 823.9 823.9 n/a n/a n/a n/a n/a n/a 7
34 12i 3
631 76 INPUT/OUTPUT VALUES EQUIVALENT BETWEEN INDIVIDUAL SETS OF RUNS 831.9 831.9 789.2 789.0 822.1 822.0 82.682.
n/a n/a n/a n/a In/a 59 60 64 661 67 IN PUT VALUES EQUIVALENT/OUTPUT DIFFERENT BETWEEN RUNS RUN}}

Latest revision as of 10:34, 11 January 2025

Email from F. Ferrante, NRR to L. James, NRR on Sensitivity Analysis
ML13066A311
Person / Time
Site: Oconee  Duke Energy icon.png
Issue date: 02/03/2010
From: Ferrante F
NRC/NRR/DRA/APOB
To: Lois James
Office of Nuclear Reactor Regulation
References
FOIA/PA-2012-0325
Download: ML13066A311 (61)


Text

Mitman, JeffreyI From:

Sent:

To:

Cc:

Subject:

Attachments:

Ferrante, Fernando Wednesday, February 03, 2010 3:20 PM James, Lois Mitman, Jeffrey Sensitivity Analysis Memo for the Sensitivity Analysis.doc; sensitivity summary Rev.4.doc; Breach Parameter Matrix.xls

Lois, Per our discussion, please find attached.

Thank you, Fernando Ferrante, Ph.D.

Office of Nuclear Reactor Regulation (NRR)

Division of Risk Assessment (DRA)

-Operational Support and Maintenance Branch (APOB)

\\

Mail Stop: 0-10C15 Phone: 301-415-8385 Fax: 301-415-3577 1

Subject:

NRR/DRAIAPOB Preliminary Analysis of 1D dam breach modeling runs for the flooding evaluation of the Oconee Nuclear Station (ONS) due to an upstream dam failure

Dear XXXXXXXXX,

Please find attached a preliminary analysis developed by the Office of Nuclear Reactor Regulation, Division of Risk Assessment, PRA Operational Support Branch (NRR/DRAIAPOB) in order to perform an initial evaluation of the 101 runs of a 1 D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site.

This preliminary analysis provides insights into the data provided without the benefit of a detailed explanation or key to the results presented. An Excel spreadsheet is attached to this document that presents the results in a more amenable form for review. The results of this effort are presented to you as a potential aid in the on-going discussions with the licensee regarding the sensitivity analysis.

Sincerely, XXXXXXXXX

N E NFO LB ELEA

GENERAL COMMENT

S The comments and results presented below were derived from an Excel spreadsheet (see attached) that contains 101 runs of a 1D dam breach modeling analysis developed by Duke Energy as part of their approach to sensitivity analysis of potential flooding effects at Oconee Nuclear Station (ONS) due to a piping failure of a large dam upstream of the site (i.e., Jocassee Dam).

Explanations and justifications for some of the variation of input parameters are provided in attachments to the November 30, 2009, Duke Energy letter to the NRC, which are a response to a request from the NRC on April 30, 2009. Previous discussions of the parameters used for the sensitivity study took place on May 11, 2009 (as described in a November 10, 2009 summary) and August 27, 2009 (presentation slides available).

The spreadsheet obtained from the licensee was particularly challenging to analyze in terms of insights or the quality of the sensitivity performed. The input and output data was reorganized in order to allow for a coherent analysis of any possible insights (also attached).

COMMENTS ON INPUT PARAMETERS There are a total of 22 input parameters presented in the sensitivity data: 5 Manning's roughness coefficients, 4 time to failure parameters, 3 modeling parameters, and 9 geometric parameters (see attachment A for full list). The output is represented by 4 flood elevations values at 3 selected locations (Keowee Dam, Oconee Intake Dike, and World of Energy Swale).

Specific discrete values have been used for each parameter (mentioned in interactions between NRC and Duke Energy). For example, for a specific time to failure (Jocassee Dam Failure Time),

there are 7 potential values listed (i.e., 1.0, 2.0, 2.6, 2.8, 3.0, 4.0, and 5.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />) as input.

However, for most inputs, there are either 2 or 3 possible values presented. A subset of all possible combinations for the potential parameters indicated was used for a total of 101 runs resulting in flood elevations at the selected site locations mentioned above.

Only the 1 st run had a value of the Jocassee Reservoir Elevation different than 1110 feet (i.e.,

1108 feet was used). It most likely appears that this value was used to calibrate the updated model with the results used for the FERC 1992 Inundation Study. Additional parameters not varied in the analysis are mentioned in the May 11, 2009, presentation by the licensee.

The input parameter describing Keowee Breach Side Slopes is described with three possibilities:

(1:1,1:1), (1.5:1,1.5:1), and (3.45:1, 2:03:1). However, side slopes of (1.5:1, 1.5:1) were not used in any of the 101 runs.

  • As mentioned by the licensee, a specific subset of 3 combinations from the listed potential values was used in the inputs for the Manning's roughness coefficients (see attachment B for the full list): 0.02, 0.025, 0.035 and 0.07. The Manning's number coefficient for the Reservoir Tributaries upstream of the Keowee Dam was maintained constant at 0.035 for all runs (i.e., no sensitivity appears to have been done for this parameter).

1

/EýN$TJW_4S

/RATN>ro R

ICRLS Three modeling parameters inputs were considered: inclusion/exclusion of saddle dike failures, inclusion/exclusion of bypass flow, and Jocassee Dam Failure Progression Type (i.e., linear or sine wave).

The following pairs of runs exhibit repeated inputs resulting in the same outputs: 7 & 34, 12 & 36, and 63 & 76. It is unclear why these repetitions were included in the analysis since it does not appear that a probabilistic sampling of input parameters was done.

There are two sets of runs (59 & 60, and 64 & 66 & 67) that have equivalent inputs and different outputs. Since there are no other parameters listed and the physical model used is assumed to be deterministic, reasons for the discrepancies may be due to (i) typo, (ii) error in the transcription of the results, (iii) additional input parameters affecting the output not shown, or (iv) problems with the deterministic model. The discrepancies in output between this subset are not significant for the most part (i.e., not more than a few decimal places) indicating possible numerical approximations in the output. However, in the case of runs 59 & 60, the difference in the Keowee Tailrace Elevation flood depth is > 3 feet.

If the input repetitions in the listed runs mentioned above were to be resolved, there would be 95 individual runs with different inputs, instead of the 101 runs presented.

COMMENTS ON OUTPUT PARAMETERS Considering the 95 runs without repetitions, the cumulative distributions derived for each output parameter are shown in Attachment B, along with indications for the mean, 90th interval, and a normal distribution fit to the results. A comparison between the three groups of Manning's coefficients described above is also presented. To add perspective to the results, it should be considered that the height above mean sea level for (i) Jocassee Dam is 1125 feet, (ii) for Keowee Dam is 815 feet, and (iii) for the ONS Intake Dike is 815 feet. Additionally, the ONS yard elevation is at 796 feet above mean sea level.

Not all runs resulted in flooding elevation values at the World of Energy Swale. The first 76 runs resulted in "n/a" entries at this site location, possibly because the analysis does not indicate a significant elevation at this location using this subset of input parameters.

The variation of the output parameters versus the input parameters has been plotted using a box and whiskers representation. Description from MATLAB Manual: "The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Notches graph a robust estimate of the uncertainty about the means for box-to-box comparison. Outliers are data with values beyond the ends of the whiskers", (indicated as '+'). "If there is no data outside the whisker, a dot is placed at the bottom whisker."

Results are shown for all the runs and major subsets of runs (i.e., by Manning's coefficient subsets) including all non-repeated inputs (except the 1108 feet Jocassee Reservoir Elevation calibrations run. For the runs where a different output is obtained with equal input parameters, the larger output values are used.

It is very important to note that, without further clarification at this point, the variability in the input parameters only reflects the choice of values made by the licensee, since it is unclear whether 2

the variation is a reflection of known uncertainties in the values or recalibration of the sensitivity analysis based on initial results. Additionally, because multiple input parameters are modified between runs, care needs to be exercised in relating changes between a single input parameter and an output parameter.

The maximum elevation values obtained from the 101 runs are: (i) 847.5 feet at Keowee Headwater (Run 54), (ii) 811 feet at Keowee Tailrace (Run 33), (iii) 830.4 feet at ONS Intake Dike Headwater (Run 80), and 817 feet at World of Energy Swale (Runs 81 and 82). See Attachment B for the corresponding input values. However, it is unclear from the observed data whether the true bounding maximum values could be established from this analysis based on the most conservative input parameter subset already limited by the licensee's chosen input values.

For the 95 runs, it is challenging to establish clear trends between the output/input results (see Attachment B). However, some conclusions can be derived:

The group 1 subset of Manning's coefficients (all values equal to 0.035) causes smaller outputs of the ONS Intake Dike Headwater Elevation and higher results for the Keowee Tailrace Elevation. The smaller subset of results for the Keowee Headwater Elevation does not appear to show statistically significant differences between the three Manning's coefficient groups.

o For the Keowee Headwater Elevation RKeoweeH:

R H

Increases in the RKeowH output results are observed from increases in Keowee Overtopping Trigger parameter, Jocassee Piping Elevation, and the use of sine wave Jocassee Failure Progression versus a linear model.

Increases in RKeoweeH are observed with lower values of the Jocassee Breach Bottom Width and when a value of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is used for Jocassee Dam Failure Time. A value of 600 feet for the Jocassee Breach Bottom Width also results in H

higher values for RKeowee

, although very few runs were made with larger widths of 625 feet and 650 feet to effectively establish its effects beyond 600 feet.

For the Keowee Tailrace Elevation RKeoweeT:

An increase in RKeoweeT values is observed with a decrease in Little River and Keowee Dam Failure Times, although this conclusion is cannot be conclusively extended to the other two time parameters.

Exclusion of Saddle Dam failures in the model results in a significant magnitude increase in elevation values An increase in values of RKeoweeT is observed with decreasing Keowee Overtopping Trigger Parameter, Jocassee Piping Elevation, and a Jocassee Side Slope configuration of 1:1 for both breach sides.

For the ONS Intake Dike Headwater Elevation Rintake DikeH An increase results from decreasing Jocassee Dam Failure Time. It is unclear that the remaining time parameters follow this trend, it seems in fact that larger elevations result from an increase in failure time for Little River, ONS Intake Dike, and Keowee.

3

Inclusion of Saddle Dam failures in the model results in a increase in elevation values An increase in output values results in an increase in Jocassee Piping Elevation o

For the World of Energy Swale Elevation RWES:

An increase in the output results occurs from an increase in Little River and ONS Intake Canal Dike failure times, although it should be noted that a limited subset of values was produced for this output parameter For Group 1 Manning's coefficient input parameters, the most significant contributors to an increase in RKeoweeH appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Jocassee Piping Elevation (see Attachment Cl for output variation in other parameters).

For Group 2 Manning's coefficient input parameters, the most significant contributors to an R H increase in RKeowee appear to be a decrease in the Jocassee Dam Failure Time and an increase in the Keowee Overtopping Trigger Elevation (see Attachment C2 for output variation in other parameters).

For Group 3 Manning's coefficient input parameters, the most significant contributor to an T

increase in RKeowee, appears to the exclusion of Saddle Dam failures. For other parameters, few samples were used to assess the sensitivity to various input values (see Attachment C3 for output variation in other parameters).

RECOMMENDATIONS FROM LITERATURE The following excerpts were obtained from reports and papers discussing dam breach parameter modeling and guidance related to sensitivity analysis associated with flooding analysis due to dam failures.

Federal Emergency Management Agency, "The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams", Workshop Report, November 14-15, 2001, in Davis, California.

"The Commission's guidelines for breach parameters is given in Table 1 of Appendix A of Chapter 2. In general, the average breach width should be between 2 and 4 times the height of the dam for earth or rock fill dams..." "Failure times range from 0.1 to 1.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> for earth or rock fill dams, and from 0.1 to 0.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> for gravity dams."

"Because of the uncertainty of breaches, the consultant should perform a sensitivity analysis of these parameters. For projects with large reservoirs, conservative breach parameters should be adopted since the rate of draw down of the reservoir during a breach is significantly slower than it is for projects with smaller reservoirs."

"Common Modeling Problems

1. Failure to model the entire reservoir. If dynamic routing of the reservoir stead of level pool routing is done, the consultant needs to make sure the cross-sections extend upstream of the reservoir to the point where backwater effects no longer exist. The shape of the cross-sections also needs to be examined to make sure all the storage between the cross-sections is accounted for. In some cases, the consultant extended the cross-sections only part way 4

/SEN-SITkl )Nf j~&AI

ý B C into the reservoir, effectively negating the storage upstream that could be released through a breach.

2.

No sensitivity studies. Although the selected breach width may be at the conservative end of the accepted range given in our criteria, a larger breach width may result in a substantially higher incremental rise downstream. If the incremental rise is highly sensitive to the breach width, then this needs to be considered when selecting the breach width.

3.

Improper use of the Manning's n values. The NWS DAMBRK program requires the user to provide the composite Manning's n values at each elevation. Therefore, for out-of-bank flood elevations the consultant needs to compute the composite Manning's n value based on the weighted wetted perimeter. In many cases, the consultant will select too high of a Manning's value for the out-of-bank elevations. Although not a major factor, this can effect the results in some analysis.

4.

Improper spillway rating curve. In some cases, the reservoir was allowed to draw down during the beginning of the routing because the consultant did not adjust the rating curve for when the gates are closed to maintain the normal pool level. In other cases, the consultant adjusted the rating curve to correct this, but the simulation then appeared as though the licensee closed all the gates instantaneously when the reservoir receded below the normal maximum pool after the breach developed."

Wahl, T., "Prediction of Embankment Dam Breach Parameters". Dam Safety Research Report DSO 004, US Department of Interior, Bureau of Reclamation, Dam Safety Office, July 1998

" The importance of different parameters varies with reservoir size. In large reservoirs, the peak discharge occurs when the breach reaches its maximum depth and width. Changes in reservoir head are relatively slight during the breach formation period. In these cases, accurate prediction of breach geometry is most critical."

"The ultimate breach width and the rate of breach width expansion can dramatically affect the peak flowrate and resulting inundation levels downstream from the dam."

"Accurately predicting the breach side slope angles is generally of secondary importance to predicting the breach width and depth."

Wahl, T., "Uncertainty of Predictions of Embankment Dam Breach Parameters", Journal of Hydraulic Engineering, Vol. 130, No. 5, May 2004

" 'The uncertainties of predictions of breach width, failure time, and peak outflow are large for all methods, and thus it may be worthwhile to incorporate uncertainty analysis results into future risk assessment studies when predicting breach parameters using these methods."

5

S E INF OMA TIOT OR ER AS ATTACHMENT A 6

OVERALL OUTPUT PARAMETERS RKee H = Keowee Headwater Elevation (feet)

RKeoweeT = Keowee Tailrace Elevation (feet)

H Rintake Dike

= ONS Intake Dike Headwater Elevation (feet)

RW~s = World of Energy Swale Elevation (feet)

OVERALL INPUT PARAMETERS Manning's number NcD/s = Keowee Downstream Channel = [0.02, 0.025, 0.035]

NIT

= Keowee Downstream Immediate Tailrace = [0.035, 0.07]

NRTu/s = Keowee Upstream Reservoir Tributaries = [0.035]1

'Constant in all runs Ncu/s = Keowee Upstream Reservoir Channel = [0.02, 0.025, 0.035]

N1Tuls = Keowee Upstream Immediate Tailrace

[0.035, 0.07]

Time to Failure TLittle River = Little River Dam Failure Time (hours) = [1.0, 1.6, 1.9, 2.4, 5.0]

Tintake Dike = ONS Intake Canal Dike (hours) = [0.8, 0.9, 1.0, 1.2, 2.0]

TKeowee = Keowee Dam Failure Time (hours) = [2.0, 2.4, 2.8, 4.0]

Tjocassee = Jocassee Dam Failure Time (hours) = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

Modeling WBF = With Bypass Flow and Saddle Dam Failure = [Yes, No]

WSD = With Bypass Flow and Saddle Dam Failure = [Yes, No]

FP = Jocassee Failure Progression = [linear, sine wave]

Geometric SKeowee = Keowee Side Slopes = [(1:1,1:1), (1.5:1,1.5:1)2, (3.45:1, 2:03:1)]

2Not used on any runs BKeoweew = Keowee Breach Bottom Width (feet) = [500, 650]

HKeoweeB = Keowee Breach Bottom Elevation (feet) = [670, 700]

OTKeowee = Keowee Overtopping Trigger (feet) = [815.5, 817]

Socassee= Jocassee Side Slopes = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1),

(1.55:1,0.7:1)]

Bjocasseew = Jocassee Breach Bottom Width (feet) = [250, 425, 500, 600, 625, 650]

Hjocassee B = Jocassee Breach Bottom Elevation (feet) = [750, 800, 825, 850]

Jocassee = Jocassee Piping Elevation (feet) = [940, 1020]

Jocassee = Jocassee Reservoir Elevation (feet) = [1108, 1110]

7

\\,-/ý~~IITv/INFO TI

-ýNO RPUBýLR

ýE SUBSET RUNE GROUP 1 Fixed Constant Varying S

Manning's number Ncu'o = 0.035 Geometric Parameters SKewee = (1:1,1:1 ), HjocasseR = 1110 feet Manning's number NcD/s = NITD/s = NRTu/s = Ncu/s = NITu/s= 0.035 Time to failure TLiftle River = TIntake Dike = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, TKeowee = 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> Geometric Parameters BKoweeW = 500 feet, HKeowCeB = 670 feet WBF = [Yes, No],

WSD = [Yes, No],

OTKeowee = [815.5, 817],

FP = [linear, sine wave],

TjosPee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

HjocasseeP = [940, 1020],

Sjocasee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],

Bjocasseew = [250, 425, 500, 600, 625, 650],

Hjocassee B = [750, 800, 825, 850]

[Values in red were not used in this subset]

8

-- 'ýNS VEFO-F PUB C E

ýASE GROUP 2 Fixed Manning's number NcDIs = 0.025 Geometric Parameters SKeowee = (1:1,1:1), BKeoweew = 500 feet, Constant Manning's number NIT D/s = 0.07, NRTU/S = 0.035, Ncu/s = 0.025, NITU/s= 0.07 Geometric Parameters OTKeowee = 817 feet, Hjocassee g 800 feet, Hj 0,.sse

= 1110 feet, FP = sine wave, Jocasseep= 1020 feet Modeling Parameters WBF = No, Varyj.g TLiftle River= [1.0, 1.6, 1.9, 2.4, 5.0]

TIntake Dike = [0.8, 0.9, 1.0, 1.2, 2.0]

WSD = [Yes, No],

TKeowee = [2.0, 2.4, 2.8, 4.0]

HKeo.B = [670, 700]

Tjocssee = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

Sjoassee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],

Bjocasseew = [250, 425, 500, 600, 625, 650]

[Values in red were not used in this subset]

9

GROUP 3 Fixed Manning's number NcD 0

s = 0.020 Constant Manning's number NITDs = 0.07, NRTu/s = 0.035, Ncu 0 s = 0.020, NITU/s= 0.07 Geometric Parameters TLiftie River = TIntake Dike = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, TKeowee = 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, SKeowee = (1:1,1:1), BKeoweew = 500 feet, Hocssee B = 800 feet, HJocsseR = 1110 feet, HKeOWeeB = 670 feet Varvina WBF = [Yes, No],

WSD = [Yes, No],

OTKeowee = [815.5, 817],

FP = [linear, sine wave],

T jo.se = [1.0, 2.0, 2.6, 2.8, 3.0, 4.0, 5.0]

HKeoweeB = [670, 700]

HJocassee' = [940, 1020],

Sjocassee = [(0.9:1,0.9:1), (1:1,1:1), (1.5:1,1.5:1), (1.55:1,1:1), (1.55:1,0.7:1)],

Bjocasseew = [250, 425, 500, 600, 625, 650],

[Values in red were not used in this subset]

10

-SZNSITIV /NF MA NT R

L Eý ATTACHMENT B 11

/ELý

-OT FO

ýRE INPUT PARAMETERS RESULTING IN MAXIMUM KEOWEE HEADWATER ELEVATION (849.7 FT)

KeoweeLittle River Manning's Keowee Parameters numberParameters INPUT PARAMETERS RESULTING IN M Keowee DIS Manning's number Little River Dam Parameters WORLD OF ENERGY SWALE ELEVATION 12

OVERALL RESULTS 0.8.s c

T H

WE Keowee Intake Dike 0.2 H

RH RKec 780 800 820 84C Elevation (feet)

CDF O CDF Meana Mean Mean 0 I -

Normal Fit 0.5 Normal Fit 5

th 5

th 5 th, 9 th 0.6 0.61 0,4 70 0.4 EE

)

13

COMPARISON BETWEEN OUTPUT RESULTS FOR GROUPS 1, 2, AND 3 GROUP 1 GROUP 1 GROUP 2 GROUP 2 0.8-GROUP 3 0.8 GROUP 3 C

C 0

0.6 0.6

  • 5 i5 10.4

.20.4 E

E 0.2 0.2 760 780 800 820 60 830 84 RT

= Keowee Tailrace Elevation (feet)

RH

= Keowee Hea Keowee Keowee 0.8 j

.0 0.6 a)

_T 0.4

3 E

0 915 820 825 830 835 R

D

= ONS Intake Dike Headwater Elevation (feet)

Intake Dike 14

OVERALL VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 850ý 850-0 0

_ 845

_ 845 U 840 840 I1 II 3 835 835-0 0

830*

830 1

1.6 1.9 2.4 5

0.8 0.9 1

1.2 2

TLittle River' Little River Dam Failure Time (hours)

Tintake Dike' ONS Intake Canal Dike (hours)

Q 850 850 0

0 (U

( U

> 8451,>

4 ww M

~840-840-II II S835r

~835-830U 830i 2

2.4 2.8 4

1 2

2.6 2.8 3

4 5

TKeowee, Keowee Dam Failure Time (hours)

Tjocassee, Jocassee Dam Failure Time (hours) 15

H RH K

= Keowee Headwater Elevation (feet)

KeowOe 0

Q

-o

~1 Cd)

  • 0 H

RH

= Keowee Headwater Elevation (feet)

Keowee

-n 0*

0 CD T1)

-n 0

RO 0

mz z

-n, m

I-I H

RH o

= Keowee Headwater Elevation (feet)

KOoweD cn 0.

CD

GNoSeI P

e (Keowee Geometric Parameters (Keowee) 850 C

84

_*840 3:835 0(D

'830 n-850 0

(u 845 S8.35 I8

-r) 1 3

SKow, Keowee Side Slopes 815.5 817 OTKeowee, Keowee Overtopping Trigger (feet) 8501 C

0

  • 845 uJ 840-(D U1)

II S835 L

~830ý1 M

y MY L

850 845.

Mo -

IIU) 0 670 700 Heowe Keowee Breach Bottom Elevation (feet)

B 500 650 WK.wee Keowee Breach Bottom Width (feet) 17

AfiýýSý O

TI N

ý-MMR+t RELE l.

850-~

0

> 845-840 84) 83 IK 050 o845-

~840~

S835;

&30 1

2 3

4 Sjocassee, Jocassee Side Slopes 5

Hjorassee, Jocassee Piping Elevation (feet)

"850 0

840, 3 835 0

II 835 250 425 500 600 625 650 BwJsse'. Jocassee Breach Bottom Width (feet)

Joc(feet) e85oi C

0

~845r 84

~840

¸

-I-L

~835F 0

830~

750 800 825 850 H B Hcss, Jocassee Breach Bottom Elevation (feet) 18

SENSITI E I OR IM-NOT OR L

LEAS OVERALL VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 o 805 800 8w o795 H-790 0 785 i

780 1775 810 o 805

-2 800 LU S795 790 0 785 it 780 1775 770 0.8 0.9 1

1.2 2

TInlake Dike' ONS Intake Canal Dike (hours) 1 1.6 1.9 2.4 5

TLuie River' Little River Dam Failure Time (hours) 810 ro 805

-0 800 w

S795 H-79C W

0 785 i*i 78C 1775*

~810'

=0805 7

(D it 7800 785-2 2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

4 5

Tjocassee, Jocassee Dam Failure Time (hours) 19

ENST-7 E4NO ION - NOT FOR PBL REL ASE Modeling Parameters 810 W 80

  • 795 I-790
  • 785 ii 780 775 4-810 o0 805 800 w

(1) c) 795 I

790

  • 785 0

(U 780 7-7 770 I-0 1

WSD, With Saddle Dam Failure 0

1 WBF, With Bypass Flow 810 o 805

-- 800 LU 795 I-790 3: 785 780 I-7 770 1

2 FP, Jocassee Failure Progression 20

SENGeToImetrifaa t

- NO P

LIC L

Geometric Parameters (Keowee)

CU 810i 0 805-8w1-0 795.

790" S785-ii 780 I-I 775-770-1 3

SKeowee, Keowee Side Slopes 810 o 805 CU800 LIJ w

C 795 H 790 0* 785 i

780 775

77n, 815.5 817 OTK.ow.e, Keowee Overtopping Trigger (feet) 810ý 08051 (D~ 800-

, 795k S7901

~785r ii780 S775"r 770L 8110 2

805 CU C8 0 0-7951 H

790 CU 785 780

770, 500 650 Bow BKoe Keowee Breach Bottom Width (feet) 670 700 Heowee Keowee Breach Bottom Elevaton K., eowe BrachBotom Eevaion(feet) 21

T RT K

= Keowee Tailrace Elevation (feet) o-001 88

-4 0

(DI 03 m

aii 3

T RTKoW

= Keowee Tailrace Elevation (feet)

Z, 1-

-0 wo 0

C-0 (DI CD RT

= Keowee Tailrace Elevation (feet)

Keowee CD C-0 Fj G)

Co a

CD 0

2o CD z

V) m 0Z z

-g Wn RT = Keowee Talirace Elevation (feet) 0 (D

CA 0A IQ N)j

OVERALL VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

0

" 830 16 830-w L+

828 828 826

-826 I

824 824 822

.822 W

Z-1 z

z o

0 it 820 820 1

1.6 1.9 2.4 5

0.8 0.9 1

1.2 2

Little River' Little River Dam Failure Time (hours)

Dike ONS Intake Canal Dike (hours) 0 830-(D 828 826 i

824

--S 822 U) 2 2.4

2.

4 z-T~ewe Keowee Dam Failure Time (hours) z evve cC

> 830 2

Lu 828 826 U)

"_I O 824

-=822 -

z 0

820 S

1 2

2.6 2.8 3

4 5

E Tc Jocassee Dam Failure Time (hours) 23

NSITI El

~

Modelinq Parameters 0

830 MU 828 826 O 824 c 822 z

0 u 820 Ws C

0 M 830

,'3) 828 M

"U 826 5

824 c

822 V)z0 820 a) 0 1

With Saddle Dam Failure 0

1 WBF, With Bypass Flow C0 16 830 U) 828 (U

')826 o

824 822-*

z03

  • 820

.4 1

2 FP, Jocassee Failure Progression 24

Geometric Parameters (Keowee) 830 0

w 828 826 I

824

-E 822 z0 i

820 5is C

0 (D

0 XI of 830 828 826 824 822 82C

+

1 3

SKeowee' Keowee Side Slopes 815.5 817 OTKeowee Keowee Overtopping Trigger (feet)

C0 (a

0 (D

0 83C 828 826 824 822 820 C

0 M 830 0

LU 828-o826

-a 5

824 (V

822 z

0 o 820 670 700 B

HR Keowee Breach Bottom Elevation (feet) 500 650 BKeoweW Keowee Breach Bottom Width (feet) 25

S ENSITIVE, IFO NT'A Geometric Parameters (Jocassee) 0

> 830 (u

828

(

826 824 822 z0 i

820 N

C 0

>M 830 (U) r) 828 (go

(

826 O 824 822 Uo z0 ii 820 05 1

2 3

4 SJOCasse, Jocassee Side Slopes 5

940 1020 o

P HjOC...., Jocassee Piping Elevation (feet)

C 0

830 uii 6 828 (U 826 "I

a) 824 a)

-8 822 C')z i

820

=

250 425 500 600 625 650 B~W Jocassee Breach Bottom Width (feet)

C 0

f830 w

828 (U

826 M

824 (U

-c 822 z

0u 820 0

750 800 825 850 B

H Hoese, Jocassee Breach Bottom Elevardon (feet) 26

JVERL R TIO1NW RLM N -

TO UNDIIDUA OVERALL VARIATION IN WORLD OF ENERGY SWALE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

ca) w ci) tM 01 c) 0ý 834 833 832 831 830 829 828 827 0) ai) w 16 834 833 832 831 83C 829 828 827 1

1.6 1.9 2.4 5

T-ittle River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

Tlntake Dike' ONS Intake Canal Dike (hours) 4)

834 0

833 W 832 ci)~831 S830 w

829 o 828 cU 827 3,

t834 0

833 832 831 21 8X csa)

Lul

"- 829 828 IIwu 827 1

2 2.6 2.8 3

TJocassee, Jocassee Dam Failure Time (hours) 2 2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours)

Modeling Parameters (D

0)

.834

'4 833 W 832 c.)

  • 831

_ 830 w

,6 829 o 828 Lu 827 0

1 WSD, With Saddle Dam Failure 27

Geometric Parameters (Keowee) 0 0-84M (U 833 w 832 831 83C w*6 829 828 u, 827 1

3 SKeowee, Keowee Side Slopes 834 0

w833ý 8321 n831 830-w" 829 828 wu 827 n,"

834 C

16 833

()

' 832 831 830 C

829 828 wu 827 (03 500 650 BWeo Keowee Breach Bottom Width (feet)

K(feet) 670 700 H

, SKeowee Breach Bottom Elevation (feet) 28

ITIVE!

"AT I T

Pu L KRELE Geometric Parameters (Jocassee) i........

E 0

Cn Cw uj 834-833 832 8311-830 829ý 828t 8271 2

3 4

5 Sjocassee, Jocassee Side Slopes aa C

0 (U

U) w 4)

(U CO aCw 0

V U]

834 8331 832~

831k 830k 250 425 500 600 BJocassee, Jocassee Breach Bottom Width (feet) 29

ATTACHMENT Cl 30

ITI MA NOTF BL REL SE GROUP I RESULTS GROUP 1 0.8-0 O0.6-0 E

M 0.2 RH R_

Recwee RIntake Dike A50 800 850 900 GROUP 1 GROUP 1 0.8 0.8 0.6

't 0.6

.50.6 E

E 0.2 Mean Normal Fit 0.2 5t, 95 t 830 840 850 "9 T 800 81

=Keowee Headwater Elevation (feet)

RT

= Keowee Tailrace El Keowee GROUP 1 C

0 E

31

S S FOAT! NPT R

I

'FýW ELE E

GROUP I VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure

~8M

~ 4!

~84C Mc 1

3 4

5 TJocassee' Jocassee Dam Failure Time (hours)

Modeling Parameters D 850 0

845

~840 4))835 J830______

850 0

CU B340 4)

I

'I J83 0

1 WSo, With Saddle Dam Failure 850i C

0 LU

" 840 Ell 835-

~80 a) of II ji830__

0 1

WBF, With Bypass Flow 1

2 FP, Jocassee Failure Progression 32

RM

-NO RPU ýLIC

ýLEII Geometric Parameters (Keowee)

Geometric iaam e

(U (U

C 0

(U (Uw (U

(U (U

I (U

(U 0

(U II Ii 850 845 840 835 830 A 850 0(U r.lS845 w

(U

~840 II3: 835 0

830 1

3 SKeowee, Keowee Side Slopes 815.5 817 OTKeawee, Keowee Overtopping Trigger (feet)

Geometric Parameters (Jocassee) i.

f

~840 M

(D

"* 845 (u

(U 835 I8 z!835 0-S850 0

(D 845

~840-If 1

2 3

4 SJocssee' Jocassee Side Slopes 940 1020 HJocsseeP Jocassee Piping Elevation (feet)

(U (U

II (U

850 845 840 835 830 A850[

0 A-7>8 845 w

~840r

~835,

~830-750 800 825 850 HB Jocassee Breach Bottom Elevation (feet)

Jo(feet) 250 500 600 625 650 BW Jocassee Breach Bottom Width (feet)

Jocassee'Jcse rahBotmWdh(et 33

GROUP I VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 810 0 808

.T 806 uJ (D 804 802 0800 S798 II 796 I-794 n" 792 1

3 4

5 TjocasseeJocassee Dam Failure Time (hours)

Modeling Parameters (D

810 A 806 w

S804 S802 F-0800 (OD798 796 794

,,792 810 0 810 806 802 C-0 800 ii796

- 794 rr792 0

1 WSDWith Saddle Dam Failure 0

1 WBF, With Bypass Flow 34

Geometric Parameters (Keowee) 20 810 C

0. 808 4z a 806 w

a 804 800 S798 796

!794 I, 792 810 0

808 a)806 w

S804

.N 802 I-(D 800 00798 796 t-794 of 792

÷ 810 C

S808 806

~804 i

802

) 800 S798 II 796 n, 792 1

3 SKeowee, Keowee Side Slopes 815.5 817 OTKowe, Keowee Overtopping Trigger (feet) 1 2

FP, Jocassee Failure Progression 35

Geometric Parameters (Jocassee) 810 0~ 808

_ 806 uLJ I--

800

~798 i

796 r 792 810

'0 808 w 806 w

S804 A 802 I--

1 798 I

796 I

794 f 792 1

2 3

4 SJocase Jocassee Side Slopes 810 C.

808 (U

'a806 w

o804 802 I-

'a800 S798 I

796 r

792 S810 0

B g

808

'806BN o

804 j802 i-'a 800 (OD798 I

796 n, 792 940 1020 HPJocs Jocassee Piping Elevation (feet) 250 500 600 625 650 jWoc.s.., Jocassee Breach Bottom Width (feet) 750 800 825 850 BHjoassee, Jocassee Breach Bottom Elevation (feet) 36

jSEJRITV FOR I

-NO FOR LI GROUP I VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 825 W 824-823 03 822 0 821 Z

820 0

"819 UI

-1.5 1

3 4

5 Tjocassee, Jocassee Dam Failure Time (hours)

Modelina Parameters Co 825-Wu 824 0

S8231 (822L

-~8211k W

Z 820'-

0 II 8819:

Er-WsI L

WO 825 LU 824

"* 823 M

822 i5 821 z

820 0

819

-r nC 0

1 D'With Saddle Dam Failure 0

1 WBF, With Bypass Flow 825 0

LU 824

"* 823 0

ID 819 S822

  • 15 821 C

z 820 0

I,

  • 819 C,

1 2

FP, Jocassee Failure Progression 37

SEN TI INF M

N-OT P UKBC LEA Geometric Parameters (Keowee) i f

0 825-LW 8 2 4

"*823I 822 821-z 820-0II

/<

~819[________

a 1

SKeowee Keowee Si Geometric Parameters (Jocassee) o 825 LU 824 cc "I-822-S821 M,

Z 820 0II 819 815.5 817 Iz.E -

OTKeowee, Keowee Overtopping Trigger (feet) 3 de Slopes I

I o0 825 LU 824

"* 823 822 M

821 Z 820 0

819 a,-

0 825 uJ 824 823-

/

(

822 821-Z 820 o

,819 1

250 500 600 625 650 Bw

, Jocassee Breach Bottom Width (feet) 940 1020 Jo......, Jocassee Piping Elevation (feet)

O 825 LW 824-823 7117 a

= 822-821 Cn Z

820-III 819 750 800 825 850 of Jocassee Breach Bottom Elevation (feet)

Co 825 LU 824 S823 M

85 M

c 821 C-C,)

z 820 0

II i*819 a,a,.

1 2

3 4

Sjocassee, Jocassee Side Slopes 38

J--SE

ý R

NTJSI4BLC&.E.

ATTACHMENT B2 39

SENSITILE GROUP 2 RESULTS GROUP 2 0.8 C

0.6 20.4 E

0.2-RH RIV*

Intake Dike 750 800 850 900 GROUP2 GROUP2 1

1 0.8 0.8 0

0.6-0.6 a>

! 0.4 20.4 E

E 0.2 Mean Normal Fit 5th, 5th 8 35 840 845 850 70T 780 790 K

Keowee Headwater Elevation (feet)

RKeoe = Keowee Tailrace Ele GROUP 2 C0 0.6~

45

-c 0.4k E

0.2~

RH 820 Intake Dike 40

-- SýýIVE MAýNN

-NjPýUBIR EA GROUP 2 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure v=848 0

W 846 W 844 U 842 840 CD 838 8 836 834

- 832 1

3 4

Tjocassee, Jocassee Dam Failure Time (hours)

ModelinQ Parameters 848 0

846 W

844 842 S840 838 8 836 834 1832 0

U846r EL 844-842*

o838 a836-II 834t 832' te0 0

1 WSD, With Saddle Dam Failure 0

1 WBF, With Bypass Flow (D

Y848 0

9 846 LU 844 842 S840 S838 0

"834 8832 1

2 FP, Jocassee Failure Progression 41

Geometric Parameters (Keowee) 0 (D

848 846 844 842 840 838 836-834-832-815.5 817 OTKowe, Keowee Overtopping Trigger (feet)

Geometric Parameters (Jocassee) 848 846 W

844 (U

842

~840

~838 o836 "1834 832 ry 2

3 Sjocassee, Jocassee Side Slopes 940 1020 Jocassee' Jocassee Piping Elevaton (feet)

(D "6848 0

W 844 (U

(U842

, 840 838

°836 "834 r*

ao 250 500 600 Bwse'Joca Jocassee Breach Bottom Width (et 42

p-ýNP6ISNORIA NIT PRPU kELELEA GROUP 2 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

0

.* 85

.*805 ro 0

= 800-80 0795 795 785-Q)*

785 00 w

7 9

5 0

0

=

780 780 775 775-770 7708 1 16 1.9 2.4 5

0.8 0,9 1

1.2 2

T Little River' Little River Dam Failure Time (hours)

T Intake Dike' ONS Intake Canal Dike (hours) 78o5 sm 0

o 80 Lu 795-795 II I

K 790[7 0

47 7079 78578 0

0 y

780 Y

780 775 805-770 0f 770 2 24 28 41 2

2.6 2.8 3

T~ewe Keowee Dam Failure Time (hours)

Tjocassee, Jocassee Dam Failure Time (hours) 43

RE M51:4N ATI NOTF JR`NBLII(R EA 'E' Modeling Parameters 4! 805 0

W 795 a)

=

790 7-a 780

- 775-770 0

1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee) 895

.2 805 C

0 S800 (D

LM 785 a) 0 C)

= 770 I-a) 785 770 I

1 3

SKe.wee, Keowee Side Slopes (D 805-0 800-lu795-790

(-

i 775

.~805 L 795

= 790 I--

785 0

a) v 780 II 775 770 500 650 Bw KeveKeowee Breach Bottom Width (feet) 670 700 H B Keowee Breach Bottom Elevation (feet)

Keowee' 44

SENSIT E I ATIO T

RPU REL A Geometric Parameters (Jocassee) 805 0

800-w 7 9 5

=_ 790 F-.

785 o

J<

780 775-770 2

3 4

5 SjocasseJocassee Side Slopes

,2 805 0

8w wj 795-

=

790 H/

)785 780 II T. 75 770 250 425 500 600 BwJO.... Jocassee Breach Bottom Width (feet) 45

-,cNSIT E INFO A

TFOR P BLI GROUP 2 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

W 828-827-

~826-

'D 825k i

824 823 in 822 z0 821 0 820

_r T j 1

3 4

Jocassee' Jocassee Dam Failure Time (hours)

Modeling Parameters 0

0 828 827 826 825 824 823 cQ 822 z

0 821 6 820 0

4M

> 828 827 826 ca: 825 824 S823 C:

1n 822 z

011 821 o 820

-r 0

1 WSDWith Saddle Dam Failure 0

1 WBF, With Bypass Flow c

0

> 828 827 826 825 824 823 (Q 822 z0 821 6 820 1

2 FP, Jocassee Failure Progression 46

Geometric Parameters (Keowee) 0 828 827 826 825 824 823 ci 822 z0 821 i 820 of 815.5 817 OTKeovee, Keowee Overtopping Trigger (feet)

Geometric Parameters (Jocassee) t-828i 827

-- 825 824

~823-C:

u) 822 z

0If 821 O 820 ME

- 1 0

828 827 S826 825 8824 823 c

822 z

821 0820 250 500 600

,ý-g BIN

, Jocassee Breach Bottom Width (feet) 940 1020 Jocassee, Jocassee Piping Elevation (feet) a0 T 828 827

,826 825 824 823 ci 822 z

0 821

'5 820 0*

J 2

3 SJocassee, Jocassee Side Slopes 47

ATTACHMENT C3 48

GROUP 3 RESULTS GROUP 3 1

0.8 0

4z 0.6-20.4-E H

0.2R foe Wake Dike RWE 5

800 850 900 GROUP3 GROUP3 0.8 08 Co C

0.6 06

'00 0.4 S0.4 E

E O

CDF 0.2 Mean 0

Normal Fit 0.2 5th, 9 5 th Heawwat84 Evto(fe 8t* 0 T

78acei Keowee =9 e5owee Hea4water E eva*on (fe Keowee =-

Weowee Tairace El GROUP3 GROUP3 0.8 0.8 0o 4.i0.6 0.6 5

0 (D

2= 0.4 0.4

-CDF E

kA~

C75 49

GROUP 3 VARIATION IN KEOWEE HEADWATER ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure o 844 O842 S840

&3 834 II 1 832 T

n-I

  • 846-C

.p 844 w 842-S838 S836-834 832 1

1.6 1.9 2.4 5

Little River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

Tlntake Dike' ONS Intake Canal Dike (hours) jj842-Ua

0) 8w8, IW S8364 1832-
846-

° 844-L] 842 U)

S80

&38

~836[

834 SJ832 2

2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

Tjocasse,' Jocassee Dam Failure Time (hours) 50

Modeling Parameters 846 844 Ca 842

, 840 (D838

  • 836 0

(D) 834

832 0

1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee)

(D84E CD 3-84E 0~84 G)834

~832 0

(2)

(2)

C 0

(U (2)w (2)

(U (2)

I (2)

(2) 0 (2)

II Ii 1

3 Keowee Side Slopes Bwe Keowee Breach Bottom Width (feet)

Keowee' 846 C

o 844 842

,840 838 (2)

  • 836 0

834 832 670 700 HKeowee,B Keowee Breach Bottom Elevation (feet) 51

Geometric Parameters (Jocassee) 846 0 844

[842 S838 S834 J832

~846 C

o 844 (U

w 842 S840 838 S836

,834 832 2

3 4

5 Sjocassee, Jocassee Side Slopes B

250 425 500 600 wocessee, Jocassee Breach Bottom Width (feet) 52

1 0

I NOT DORP TLIC NEAE GROUP 3 VARIATION IN KEOWEE TAILRACE ELEVATION DUE TO INDIVIDUAL PARAMETERS Time to Failure g) j2 805 t-0 8W UUJ 795-

=790-I.-

Q 785 v 780-II 775 770-4? 805 0 S800 u 795

'79 I.-

) 785 780 I

7I 77C

-r-1 1.6 1.9 2.4 5

TIittle River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

TIntake Dike' ONS Intake Canal Dike (hours)

.805 043 800 c)

[] 795 0) 7C)

.= 790 I-0)785 v

780 II

,805 0= 80C U 795 790 I--

785 78C II

[75 I Iv.

2 2.4 2.8 4

TKeowee, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

Tjocassee, Jocassee Dam Failure Time (hours) 53

1 E1, FO PTION-0 PU tR E

Modeling Parameters LU 0

JU M) 805 l 800 795 790 785 780 775 770 0

1 WSD, With Saddle Dam Failure Geometric Parameters (Keowee)

U)

.~805 0

  • 4 800 uIJ 795 U)

=

790 I--

U 785 v

780 II 775 770 1

3 SKeowe, Keowee Side Slopes 805-w 795-(U

= 790-U785 v

780 775 770 500 650 BWeowee, Keowee Breach Bottom Width (feet) 09 N 800 L] 795 19U 78)

)780 U) 7-75 770 H

670 700

  • B, Keowee Breach Bottom Elevation (feet)

Ke(feet) 54

N zrt E

EI NfO'R0 T

ýRP E Lý Geometric Parameters (Jocassee)

I W

C)

.805 800 WJ 795

=

790 I-o) 785

, 780 775 77n 2

3 4

5 SJocassee, Jocassee Side Slopes 805 0

~800 C)

UJ 795

=

790 C 785 0

780 II

  • i 77 250 425 500 600 Bw Bw e Jocassee Breach Bottom Width (feet) 55

.... S VE)NF M4i' PP

&R LE GROUP 3 VARIATION IN ONS INTAKE DIKE HEADWATER DUE TO INDIVIDUAL PARAMETERS Time to Failure 0

830 829 828 827 S826 825 824 z

0 823-i"- 822 r-L

> 830 829 828 827 826 5

W 32 825 824 z

o 823 II A 822 W

1 1.6 1.9 2.4 5

ittle River' Little River Dam Failure Time (hours) 0.8 0.9 1

1.2 2

Tlntake Dike' ONS Intake Canal Dike (hours) a0 4-

>830 829 w

828 0

0 827 I

826 0

a) 32 825 824 z

0 823 II

  • 822 IS 830 829

.*828 0827 826 8

824 z0 823 A 822 0_

n-2 2.4 2.8 4

TK

, Keowee Dam Failure Time (hours) 1 2

2.6 2.8 3

ocassee, Jocassee Dam Failure Time (hours)

Modeling Parameters c0 c

830 829 828 a

(

827 M

0(D

-l 826 825 824 z0 823 II 822 0

IS 0

1 WSD, With Saddle Dam Failure 56

eNoS ImTeItVI N PFar amet eNOTO BrLEA E Geometric Parameters (Keowee) 0 830 I

829 828 cc 827 826 0

SR 825 824 z

O 823 822 1

3 SKeotweeKeowee Side Slopes 0

>830 829 (U

828 827 826 0

825 824 z

O 823 822 I S I

0

> 830 (D

IL 829 828 827

-: 826 5

r

]'.

825 824 zO 823 822 w

670 700 B

I H,

, Keowee Breach Bottom Elevation (feet) 500 650

Bwe, Keowee Breach Bottom Width (feet)

Geometric Parameters (Jocassee) 0 T830 829 (D

828

  • 827 826 0

S825

-- 824 z

0 823-II 822 U

250 425 500 600 w

"E Bw Jocassee Breach Bottom Width (feet)

C 0

> 830 L 829 Ca A 828 cu

(

827 ID 826 2 825 824 z

0 823 9-822 IS 2

3 4

5 Sjocassee, Jocassee Side Slopes 57

RUN 27 3

mm mm mm mm mm mm mm mm mm 59 60 p

m m

m U

U U U

U U U

U U

I I

I I

I I I I I I I I I I I I

840.0 840.0 837.7 837.7 843.4 843.4 802.1 802.1 799.0 799.0 792.8 792.8 821.1 821.1 820.8 820.8 823.9 823.9 n/a n/a n/a n/a n/a n/a 7

34 12i 3

631 76 INPUT/OUTPUT VALUES EQUIVALENT BETWEEN INDIVIDUAL SETS OF RUNS 831.9 831.9 789.2 789.0 822.1 822.0 82.682.

n/a n/a n/a n/a In/a 59 60 64 661 67 IN PUT VALUES EQUIVALENT/OUTPUT DIFFERENT BETWEEN RUNS RUN