ML18022A260: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 176: Line 176:
ENCL OSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A From these flanges all piping in the negative Y direction is aluminum ----__, J All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1 Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point. Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section. Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section. 10 ENCL O SU R E 1 Mo-99 Target Cooling System Seismic Analys i s Design Calculat i on Report -... --r-R -r-;;;; ..... Ci .. rtoi h,..;, (GQ ..............
ENCL OSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A From these flanges all piping in the negative Y direction is aluminum ----__, J All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1 Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point. Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section. Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section. 10 ENCL O SU R E 1 Mo-99 Target Cooling System Seismic Analys i s Design Calculat i on Report -... --r-R -r-;;;; ..... Ci .. rtoi h,..;, (GQ ..............
r,ooJ c. ... ..,. Figure 8. AutoPIPE Model Guide Support Value r'l""-* r= ._ ... .-3 C.......w.,t.
r,ooJ c. ... ..,. Figure 8. AutoPIPE Model Guide Support Value r'l""-* r= ._ ... .-3 C.......w.,t.
ro.--r--;;;; ... -r,a ,....., rtii -Figure 9. AutoPIPE Model Line Stop Value 6.2 Valves and Flanges 30441 R00030/A The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing. See Table 1 for we i ghts. 11 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Des i gn Calculation Report 30441 R00030/A Table 1. Flanged Valve Weight Size (inch) Ball Valve (l bf) Globe (lbf) 3 N/A 82 4 144 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified.
ro.--r--;;;; ... -r,a ,....., rtii -Figure 9. AutoPIPE Model Line Stop Value 6.2 Valves and Flanges 30441 R00030/A The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing. See Table 1 for we i ghts. 11 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Des i gn Calculation Report 30441 R00030/A Table 1. Flanged Valve Weight Size (inch) Ball Valve (l bf) Globe (lbf) 3 N/A 82 4 144 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified.  
6.3 Piping The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6. Table 2. Pipe Properties Nominal Outer Wall Size Schedule Diameter Thickness Material (inch) (inch) (inch) 2 40 2.375 0.154 TP316L 3 40 3.5 0.216 TP316L or AL-6061 T6 4 40 4.5 0.237 TP316L or AL-6061 T6 Table 3. Material Properties Material Yield Strength Ultimate Strength (ksi) (ksi) TP316L 25 70 AL-6061 T6 35 42 12 ENC LOS URE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 10. Pipe sizes 6.4 Flexible Joints To account for independent seismic movement of the building relative to the pool , flexible p i ping is added to the piping connection at the bridge level. All flexible pip i ng is 11 inches in length and flanged. A guide support is added with the flange connections on the non-flex i ble piping side. Flexible piping stiffness values were based on GA test data. The following stiffness is applied
 
===6.3 Piping===
The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6. Table 2. Pipe Properties Nominal Outer Wall Size Schedule Diameter Thickness Material (inch) (inch) (inch) 2 40 2.375 0.154 TP316L 3 40 3.5 0.216 TP316L or AL-6061 T6 4 40 4.5 0.237 TP316L or AL-6061 T6 Table 3. Material Properties Material Yield Strength Ultimate Strength (ksi) (ksi) TP316L 25 70 AL-6061 T6 35 42 12 ENC LOS URE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 10. Pipe sizes 6.4 Flexible Joints To account for independent seismic movement of the building relative to the pool , flexible p i ping is added to the piping connection at the bridge level. All flexible pip i ng is 11 inches in length and flanged. A guide support is added with the flange connections on the non-flex i ble piping side. Flexible piping stiffness values were based on GA test data. The following stiffness is applied
* Axial -1 82 lb/in
* Axial -1 82 lb/in
* Shear -14 lb/in (both directions)
* Shear -14 lb/in (both directions)

Revision as of 09:01, 18 October 2018

30441R00030, Revision a, Mo-99 Target Cooling System Eismic Analysis Design Calculation Report.
ML18022A260
Person / Time
Site: University of Missouri-Columbia
Issue date: 01/11/2017
From: Mar A
General Atomics, Univ of Missouri - Columbia
To:
Office of Nuclear Reactor Regulation, Nordion (Canada), US Dept of Energy, National Nuclear Security Admin
References
CAC A11010/05000186/L-2017-LLA-0227, DE-NA0002773 30441R00030, Rev A
Download: ML18022A260 (50)


Text

CDMA v d RELEASED 2017/01/11 30441R00030 Revision A REACTOR-BASED MOL YBDENUM-99 SUPPLY SYSTEM PROJECT M0-99 TARGET COOLING SYSTEM SEISMIC ANALYSIS DESIGN CALCULATION REPORT Prepared by General Atomics for the U.S. Department of Energy/National Nuclear Security Administration and Nordion Canada Inc. Cooperative Agreement DE-NA0002773 M~ ;/--; ... GA Project 30441 WBS 1110 nordion ENCL O SURE I Mo-99 Target Cooling System Seism i c Analysis Design Calculation Report 30441 R00030/A REVISION HISTORY Revision Date Description of Changes A 11JAN17 Initial Release POINT OF CONTACT INFORMATION PREPARED BY: Name Position Email Phone Alv i n Mar Engineer Alvin.Mar@ga.com 858-676-7602 APPROVED BY: , Name Position Email Phone B. Schleicher Chief Engineer Bob.Schleicher@ga

.com 858-455-4 733 K. Murray Project Manager Katherine.Murray@ga.com 858-455-3272 K. Partain Quality Engineer Katherine.Partain@ga.com 858-455-3225 DESIGN CONTROL SYSTEM DESCRIPTION D R&D DISC QA LEVEL SYS [g'.J DV&S D DESIGN D T&E N II NIA D NA ii ENC LO SURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A TABLE OF CONTENTS REVISION HISTORY ............

........................................................................................................

ii POINT OF CONT ACT INFORMATION

............................................................

............................

ii DESIGN CONTROL SYSTEM DESCRIPTION

............................................................................

ii ACRONYMS ................................................................................................................................

vi 1 OBJECTIVE

..............

.....................

.............................................................

......................

1 2 APPLICABLE DOCUMENTS

..................................................................

.........................

2 3 IN PUTS ......................

......................................

.................................................................

2 3.1 General. ..................................................................................................................... 2 3.2 Loads ............................................................................

............................................. 3 4 ASSUMPTIONS

...............................................................................

.................................

3 5 METHOD ..........

.............

...................

...........

..............

........................................................

3 6 AUTOPIPE MODEL .........................

.................................

................................................

4 6.1 Support Details ........................................................................................................ 10 6.2 Valves and Flanges .............................

..........................

.......................................... 11 6.3 Piping ..................................................................................................

.................... 12 6.4 Flexible Joints ....................................................

................................

...................... 13 7 CALC UA TION BODY .......................................................................

..............................

14 7.1 Operational Loading ................................................................................................

14 7 .2 Seismic Loads ......................................................................................................... 14 7 .2.1 Site Specific Criteria ........................................................................................ 14 7.2.2 Seismic Forces ...................

..............................................................

............... 15 8 RESULTS ..............................................................

.........................................................

16 8.1 ASME B31.3 Code Stress Results ....................

...................................................... 16 8.1.1 ASME B31.3 Sustain Stress Ratio Plots ......................................................... 18 8.1.2 ASME B31.3 Expansion Stress Rat i o Plots .................................

.................... 21 8.1.3 ASME B31.3 Hoop Stress Ratio Plots ............................................................. 24 8.1.4 ASME B31.3 Occasional Stress Ratio Plots ............................................

........ 27 8.2 Seismic Displacement

............................................................................................. 30 9 SUPPORT AND ANCHOR LOADS ..............................................

..................................

31 10 CONCLUSIONS

..................................

..........................................................

..................

36 11 REFERENCES

..............................................

...........

..........................

.............................

36 APPENDIX A USGS DESIGN MAPS DETAIL REPORT ....................................................

A-1 APPENDIX B USGS MAPS

SUMMARY

REPORT .............................................................

B-1 APPENDIX C FEMA MAPS ...................................................

.................

.............................

C-1 iii ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A LIST OF FIGURES Figure 1. Moly 99 Solidworks model .............................

........................

.......................................

2 Figure 2. Sol i dworks Assembly (Red Box is the piping of interest)

.........................

.....................

5 Figure 3. AutoPIPE's model of the piping of interest ..........

..............

...........................................

6 Figure 4. Solidworks Level 3-4 up-close view .........................................

....................

................. 7 Figure 5. AutoPIPE Level 3-4 up-close view ........................

............

......................................

...... 8 Figure 6. Solidworks model with pool hidden ...............

......................................

.......................... 9 Figure 7. AutoP I PE model with pool hidden .................

....................

.........................................

10 Figure 8. AutoPIPE Model Guide Support Value ....................................................................... 1 1 Figure 9. AutoPIPE Model Line Stop Value .......................

.....................................

...................

11 Figure 10. Pipe sizes ..........................

....................................................................................... 13 Figure 11. Flexible jo i nt input values ......................................................

...............................

..... 14 Figure 12. AutoPIPE Se i smic Inputs and cor r esponding G levels .............................................

16 Figure 13. GR + MaxP{1} Stress Ratio Plot.. ........................................

.....................................

18 Figure 14. GR+ MaxP{1} Stress Rat i o Plot Close Up , Stainless Steel Pipes ...........................

1 9 Figure 15. GR+ MaxP{1} Stress Ra t io Plot Close Up , Aluminum Pipes ................

...................

2 0 Figure 16. Amb to T1 {1} Stress Rat i o Plot.. ...............

.........................

.......................................

21 Figure 17. Amb to T1{1} Stress Ratio Plot Close Up , Stainless Steel Pipes .............................

22 Figure 18. Amb to T1{1} Stress Ratio Plot Close Up , Aluminum Pipes ..................................... 23 Figure 19. MaxP{1} Stress Ratio Plot ...............................................

......................................

... 2 4 Fig u re 20. MaxP{1} Stress Ratio Plot Close Up , Stainless Steel P i pes ..............................

....... 25 Figu r e 21. MaxP{1} Stress Ratio Plot Close Up , Aluminum Pipes .............................................

2 6 Figure 22. Sus + E{1} Stress Ratio Plot (Seismic)

...............

......................

................................

27 Figu r e 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Stainless Steel Piping .............

28 Figure 24. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in A lu minum Pip i ng ....................

29 Figure 25. Imposed displacement on the Tower Side AutoPIPE model +z direc t ion .................

30 Figure 26. Imposed displacement on the Tower Side Sus+ E{1} Stress Rat i o Plot +z direction

............................................................

...........................................

.................... 31 Figure 27. Piping supports point numbers on Towe r s i de .....................

.....................................

3 4 Figu r e 28. Pip i ng supports point numbers fo r Flex Joints and along the pool ...................

........ 3 4 Figu r e 29. Pip i ng supports point numbers in t he pool ........................

................................

........ 3 5 Figure 30. Anchor supports point numbers a t the Heat Exchange r and Target interface

.......... 36 iv ENCL OSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A LIST OF TABLES Table 1. Flanged Valve Weight ...........................................

.......................................................

12 Table 2. Pipe Properties

............................................................................................................

12 Table 3. Material Properties

.................

............................

........................................

............

...... 12 Table 4. Loading Inputs ......................................................................

..................

..............

....... 14 Table 5. ASME B31.3 Code Max Stress Result Summary ......................

............................

...... 16 Table 6. Support Forces Summary for Normal Operation

.........................................................

32 Table 7. Support Forces Summary for Operation+

Seismic ...................

..................................

33 Table 8. Anchor Forces Summary .............................................................................................

35 V ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A ACRONYMS Acronym Description AISC American Institute of Steel Construction ASCE American Society of Civil Engineering ASME American Society of Mechanical Engineering MDMT Minimum Design Metal Temperature GA General Atomics GR Gravity MDMT Minimum Design Metal Temperature p Pressure vi ENCL O SURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 1 OBJECTIVE The purpose of this document is to demonstrate that the Mo-99 Target Cooling System for the Once-Through Approach as part of the Reactor-Based Molybdenum-99 Selective Gas Extraction (SGE) meets the requirements of the ASME B31.3 2014 (Ref. 1) and seismic load conditions per ASCE 7-10 (Ref. 2). Top level design requirements for the Mo-99 Target Cooling System are defined in the Molybdenum-99 Supply System Requirements Document (30441 S00001 ). The Once-Through Approach design will be developed and demonstrated under the RB-MSS project, co-funded by the Department of Energy , National Nuclear Security Administration NNSA) and Nordion (Canada), Inc. It is intended that the MSS will be installed and operated at the University of Missouri Research Reactor (MURR) to begin production of significant quantities of Mo-99 (~3000 6-day Ci/week) by the beginning of 2018. This document provides the pipe stress calculations for the primary cooling loop , see Figure 1, excluding equ i pment. The analysis was performed using Bentley AutoPIPE CONNECT Advance Edition Version 10.00.00.10 , a specialized nonlinear finite element piping program. The resulting piping stresses were interpreted in accordance of ASME B31.3 (Ref. 1) and ASCE 7-10 (Ref. 2), for structural adequacy.

The target housing and heat exchanger interface connection will be idealized with anchors at the flange points. 1 ENCLOSURE 1 Mo-99 Target Cooling System Seism i c Analysis Design Calculation Report 30441 R00030/A Fig u re 1. Maly 99 Solidworks model 2 APPLICABLE DOCUMENTS Document Title Document Number 30441S00001 Molybdenum-99 Supply System Requirements Document 3 INPUTS 3.1 General The following i nputs were used for the calculat i ons presented herein:

  • Piping arrangements as depicted i n Figure 2; " MURR Maste r Mode l.S L DASM" , So l idWorks. 2 ENCL O SURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A
  • Pipe sizes and material selection per " MURR Master Model.SLDASM" and as described in Section 5.3
  • Component weights per " MURR Master Model.SLDASM" for pipe sizes and material selection. 3.2 Loads Operating and Seismic loads are based on the " Molybdenum-99 Supply System Requirements Document" (30441S00001), ASME B31.3 (Ref. 1) and ASCE 7-10 (Ref. 2) and are as described in Section 6. 4 ASSUMPTIONS The following assumptions are made for the structural evaluation of the piping of the target cooling system.
  • All pumps , heat exchangers, and external connections will be modeled as anchors at interface connection points. This is an accurate depiction as the mechanical components can be considered rigid , with indefinite stiffness.
  • All piping supports , vibration damping type, are modeled as line supports with no gaps and connected to rigid ground. This is an accu r ate depiction of this type of supports.
  • Bio-Shield, CoStarTower and Bridge are rigid structures. This is an accurate depiction of said structures due to low seismic loading , maximum deflections of structures within areas of interest are estimated to be< 1/16 1 h inch.
  • Maximum seismic differential movement between CoStarTower/Bridge and Bio-Shield is < 2.0 inches. This is a conservative number , as lateral movement of the CoStarTower is estimated to be less than 1/8 1 h inch at bridge elevation.

5 METHOD Seismic loading conditions will be defined per ASCE 7-10, and evaluated against ASME B31.3 2014. Two types of analysis were performed:

1. Rigid Support Structure: 3 ENCLOSURE I Mo-99 Target Cooling System Seism i c Analysis Design Calculation Report 30441 R00030/ A o Assumes that piping support structures , Bio-shield/pool, CoStarTower and bridge are rigid structures.

No differential lateral displacements occurs between the individual structures during a seismic event. o Pipe analysis is performed in accordance with ASME 831.3 and ASCE 7-10. 2. Flexible Support Structure o Assumes that the Bioshield/pool and CoStarTower combined with the Bridge will laterally displace during a seismic event. o Pipe analysis is performed to evaluate stresses and adequacy of flexible piping. A forced displacement of 2 inches is applied to the piping located on the CoStarTower and Bridge side relative to the piping located and mounted on the Bio-Shield side to simulate differential movement between the two main structures during a seismic event. Analysis is performed in accordance with ASME 831.3 and ASCE 7-10. Further description and results can be found in Section 7. 6 AUTOPIPE MODEL AutoPIPE model is generated from Solidworks 3-D model , " MURR Maste r Model.SLDASM

" , October 12 , 2016 , with an update on December 5, 2016 to remove a subset of piping. Figure 2 to Figure 7 show the Solidworks/AutoPIPE details of the piping sys t em wi t h the pool and frame hidden. Green symbols on AutoPIPE mode figures represent constraints on the piping. 4 E NCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 2. Solidworks Assembly (Red Box is the piping of interes t) 5 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A y X Figure 3. AutoPIPE's model of the piping of interest 6 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R 00030/A Figure 4. Solidworks Level 3-4 up-close view 7 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Guide+ line Supports All other supports shown are Guide Supports Only Figure 5. AutoPIPE Level 3-4 up-close view 8 30441 R00030/A Valve connections from heat exchangers.

Rigid Anchor connections on the ends. Flexible Joints to simulate flexible piping. (Not shown on Solidworks model)

ENCL OSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A From these flanges all piping in the negative Y direction is aluminum ----__, J All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1 Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point. Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section. Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section. 10 ENCL O SU R E 1 Mo-99 Target Cooling System Seismic Analys i s Design Calculat i on Report -... --r-R -r-;;;; ..... Ci .. rtoi h,..;, (GQ ..............

r,ooJ c. ... ..,. Figure 8. AutoPIPE Model Guide Support Value r'l""-* r= ._ ... .-3 C.......w.,t.

ro.--r--;;;; ... -r,a ,....., rtii -Figure 9. AutoPIPE Model Line Stop Value 6.2 Valves and Flanges 30441 R00030/A The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing. See Table 1 for we i ghts. 11 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Des i gn Calculation Report 30441 R00030/A Table 1. Flanged Valve Weight Size (inch) Ball Valve (l bf) Globe (lbf) 3 N/A 82 4 144 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified.

6.3 Piping

The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6. Table 2. Pipe Properties Nominal Outer Wall Size Schedule Diameter Thickness Material (inch) (inch) (inch) 2 40 2.375 0.154 TP316L 3 40 3.5 0.216 TP316L or AL-6061 T6 4 40 4.5 0.237 TP316L or AL-6061 T6 Table 3. Material Properties Material Yield Strength Ultimate Strength (ksi) (ksi) TP316L 25 70 AL-6061 T6 35 42 12 ENC LOS URE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 10. Pipe sizes 6.4 Flexible Joints To account for independent seismic movement of the building relative to the pool , flexible p i ping is added to the piping connection at the bridge level. All flexible pip i ng is 11 inches in length and flanged. A guide support is added with the flange connections on the non-flex i ble piping side. Flexible piping stiffness values were based on GA test data. The following stiffness is applied

  • Axial -1 82 lb/in
  • Shear -14 lb/in (both directions)
  • Torsional

-Rigid

  • Bending -Rigid (both directions) / 13 ENCL OS URE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A ~-* ...... d pont. rAAil U*qfndiic.11~

.,.._ r .............. OII Nte* c>><: r,ti'7r OY; O Z ,-----rfoo' r-otlF ~o1t .... 1o.alobooir,g.,_...

r Fllng,td r .... _, Y,ehN,""'-n r-T4oo z ........ l!ifMM ,. r,<<iii ,,_,,._, rRliill Y~R lf roe.1. Figure 11. Flexible joint input values 7 CALCUATION BODY 7.1 Operational Loading The system was analyzed subject to the following loading in Table 4. In addition to the temperature and pressure loads the piping system was also subjected to gravitational load. The liquid in the piping is assumed to be water. Table 4. Loading Inputs Gravity Temperature Pressure Notes 1g 78.8°F 30 psig Ambient is 68°F 7 .2 Seismic Loads ASCE 7-10, Reference 2 , shall serve as the seismic design guide for the installed and operated target cooling system at MURR. 7.2.1 Site Specific Criteria Location is Latitude 38.93166 and Longitude

-92.3418 is based on Columbia , MO 65211

  • Ip= 1.0 (attached to an occupancy II building/structure)
  • Rp = 12 (ASCE 7-10 table 13.6-1; welded piping)
  • ap = 2.5 (ASCE 7-10 table 13.6-1) 14 E NCLOSURE 1 Mo-99 Target Cooling System Seismic Ana l ys i s Design Calculation Report 30441 R00030/A
  • Sos = 0.112g (Refs. 4 and 5-USGS APPENDIX A and APPENDIX B respectively)
  • Site Class B (Rock , based on FEMA maps see Ref. 6 -APPENDIX C)
  • z = 62.5 ft (Based on the Solidworks model the bottom of the building to top of the piping system)
  • h = 70ft (Based on the Solidworks model from the bottom to the top of the building) 7 .2.2 Seismic Forces Seismic forces , FP , will be determined in accordance with Section 13.3 (Ref. 2) as follows: Fp = 0.4apSo s Wo(1+2z/h) (Rp//p) (Eqn. 13.3-1, Ref. 2) However, Fp will not be greater than: Fp = 1.6So s/pWo and , FP will not be less than: where: F p = Seismic design force ap = Amplification factor S os= Design spectral response acceleration, short period Wo = Dead load z = Attachment Height, relative to finished grade (Eqn. 13.3-2, Ref. 2) (Eqn. 13.3-3, Ref. 2) h = Roof Height , height of structure , relative to adjacent finished grade RP = Response modification factor /p = Importance factor Seismic Load per Section 12.4.2 (Ref. 2): fa: pQE E v= 0.2So s 0 where: fa = Horizontal seismic load effect E v = Vertical seismic load effect p = 1.0 (Redundancy Factor) OE = FP (Effect of horizontal seismic force) (Eqn. 12.4-3 , Ref. 2) (Eqn. 12.4-4, Ref. 2)* So s= Design spectral response acceleration at short period D = Dead Load (piping operating weight) *Note: In addition of applying the two shear forces simultaneously, a conservative AutoPIPE default vertical factor of 0.5 was used. Vertical force can be calculated using ASCE 7-10 12.4-4 but i s much smaller than 0.5 x shear direct i on. The higher value is used.
  • Eh = 0.035g (Shear) 15 E N CL OSURE I Mo-99 Target Coo lin g System Seismic Ana l ysis Design Calculat io n Report 30441 R00030/ A
  • E v= 0.0175g (Vertical)

S tatic Earthqua tr w N ew ModlySelected I DoieteSelected I Dolet e AI ( ASCE 2010 C..o S.iemk:Coda V e nal X(g) Y(g) Z (g) fectO< Si,,0-: I B ..:l r q,Code: I E t ASC E 20 1 0 0.50 .... D.1115 .... I~ F acto, PP): ,-l l(~XXJ-r-~: p e.93 166 Attachmerl H eight (z): j 62.500 L ongh,de: 1*92 341 80 R od H eight (h): j 70.CXXl Conl)Ol,enl R._,_ (R p) : j 1 2 0 r M opped Spocbol jo.17524 ii R ooponse(Ss)

An1>'fication F act cr (ap): -12500--M aicinun Conoidefed jtCXXJOO Elllthquok e (F e): M~ Focio< (ij: j 1.CXXJ Show L ocotion on M op I OK H..-, O K Cancel H.-i Figure 12. AutoPIPE Seismic Inputs and corresponding G levels 8 RESULTS 8.1 ASME B31.3 Code Stress Results The ASME 831.3 code combinations results are documented i n this section. Results i n Table 5 show combinations with numbers in the name. Loading input is shown in Table 4. Occasional stress category is calculated by combining seismic with sustain load. Figures 13 through 24 show the stress ratio plots. The red circles indicate the general areas of the high stress. Within that circle the square box with crosshairs is the exact point of the high stress.
  • GR -Gravity
  • Amb to T1 -Amb i ent to Operating Temperature
  • Max P -Max Pressure
  • Sus -GR + Max P
  • E -Seismic Load Table 5. ASME B31.3 Code Max Stress Result Summary Stress Stress/Stress Node Combinati o n Category Material Stress (ksi) Allowable Allowable Ratio Number Location Figure (ksi) Y-Pipe , GR+ Ma x P{1} Sustain 316L 0.7 16.7 0.0 4 AL 13 before Figure fle x ib l e 14 p i ping Inside GR+ Ma x P{1} Sustain 6061-T6 1.0 12.7 0.08 AL36 F -Pool , o n Figur e expansion 1 5 loo p 16 ENCL OSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Stress Stress/Stress Node Combination Category Material Stress (ksi) A llo wable Allowable Ratio Number Location Figure (ksi) At Heat Figure Amb to T1{1} Expansion 316L 3.2 25 0.13 AK03 Exchanger Interface 17 At SS to Al Figure Amb t o T1{1} Expansion 6061-T6 0.2 19 0.01 AH51 pipe i nterface 18 Max P{1} Hoop 316L 0.3 16.7 0.02 AL06 3" to 2" y Figu re p i pe 20 Max P{1} Hoop 6061-T6 0.3 12.7 0.02 AK46 AIIAI Figure piping 21 Sus. + E1{1} Occasion 316L 0.9 22.2 0.04 AL09-Y-piping Figure support 23 Inside Sus.+ E1{1} Occasion 6061-T6 1.0 16.9 0.06 AH61N+ Poo l , o n Figure expans i on 24 loop 17 EN C LOSURE I Mo-99 Target Cooling Sys t em Se i sm i c Analysis Des i gn Calculation Report 8.1.1 ASME B31.3 Sustain Stress Ratio Plots ....... l'IIJ(SUI)

................

  • 004.J ** .u .. ** -o .. **-* .... UI .. ,. MAX STR ESS in S S MAX STRE S S in Al ,.,..-. ,., ,.,., ... GR*W*P(l) Figure 13. GR+ MaxP{1} Stress Ratio Plot 18 3044 1 R00 030/A t II E NC L OSURE I Mo-99 Target Cooling System Seismic Analy s i s Design Cal c u l a t i o n Report Mt*W*l'{1}(9UI) l'l.ti*NAll-~

lt Str ...

  • 0.0-0.2 .0.2-0 ...
  • 0.40.11 .O.MU a o..e-1.0 ., 1.0 MA X S T R E S S in SS S~(Marl* Sk-: 1:.: l c:ona,..; Figure 14. GR+ MaxP{1} St r ess Ratio Plot Close Up , Stainless Steel Pipes 19 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report H*-l'tllC-U.) .0,CMU .O.J.0 4 .0 4 U .OM.I .u.1.0 **Ut Iii-............... ~"4-1*;, ....... : 12100 Allio: O.OI C:.-.: GA*M*fltl)

Figure 15. GR+ MaxP{1} Stress Ratio Plot Close Up , Aluminum Pipes 20 30441 R00030/A "" "' """ ... 6fl+MeoP(1}

t II ENC L OSURE I Mo-99 Targ e t Coo l ing Sy s tem Seismic Analy s is Design Calculation Report 8.1.2 ASME 831.3 Expansion Stress Ratio Plots .0.24.* .0.40.8 .O.Mt.l *G.9*1.0 ... ,.o M AX S TRES S i n S S ':J.... M AX S T RESS i n Al Figure 16. Amb to T1{1} Stress Ratio Plot 21 30441 R00030/A W II ENCLOSU RE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report ..,..,.11{tl (JXI') "***-l>l*h ..

  • 0.0.0.2 .02 .... a o."'41* .....
  • D.1.0 **t.o y :-l. MAX S TRE S S i n S S Figure 17. Amb to T1{1} Stress Ratio Plot Close Up , Stainless Steel Pipes 22 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seism i c Analy si s Design Calculation Report .. ___ _ a ooe.a .U0.<11 .040 .HO.I *0.1*1.0 .. ,. MAX STRES S in A l l'l:li"t. AH51. [--~-JIiii S-.: 195 ..... : 250!!0 Allio: Qtn Ca,a,.* .... 111 11 nJ Figure 18. Amb to T1{1} Stress Ratio Plot Close Up , Aluminum Pipes 23 30441 R00030/A ' a' E N C LOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.3 ASME 831.3 Hoop Stress Ratio Plots ........ ..._.....SR. a o.0.0.2 .G.2-0-" .04U a uu .o .... ,.o **1.0 MAX STRESS in Al 11-Ptwll: AUl6 H ooplM.J* plli SlteN: 31 4 Abt.: 16700 F1 411io: a m CGll'lbil\
M*PO J Figure 19. MaxP{1} Stress Ratio Plot 24 30441 R00030/A E N C LOSUR E I Mo-99 Target Cool i ng System Seismic Ana l ysis Design Calcu l a ti on Report lil*"tllOiOOI')

l(.i .. .00,0.J .02.0.* a o.011 .o ... , .01-1 0 ** u Pon: Al.06 HOCPIM*I* pli , s._: J U Aloi,,!: 1 670) 'R<<o: 0.02 : c.ontiin: M1111P{1) Figure 20. MaxP{1} Stress Ratio Plot Close Up , Stainless Steel Pipes 25 30441 R00030/A ' ..

ENCLOSURE I Mo-99 Target Cooling System Seism i c Analysis Des i gn Calculation Report -l'(l)(WOOI') **-.2 .uu ..... .... .a. .... 1, **u MAX S T R E SS in A l -, 11*-,.... N,.C't:,."'_..,. m M,,t.* 1000 A*: o.m: Celcih.; MaP"(I) F i gure 21. MaxP{1} Stress Ratio Plot Close Up , Aluminum Pipes 26 30441 R00030/A ' . -*

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.4 ASME 831.3 Occasional Stress Ratio Plots lw.*11{1)(0CC)

,-o111,1itA11-,kft

    • .0..0-0.2 .0.2-0., .040.4 .0.6-0.I .o .. ,.o .J,.0 '~. Pon: AH61N* DCCNional:IM*I
  • PIii SIMM: Bl9 Alow.: 16891 R.rio: 005 C<<ia\: S1&
  • El{H MAX STRESS in Al 1 028 '""' om; S**E1fH Figure 22. Sus+ E{1} Stress Ratio Plot (Seismic) 27 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Sv.i. .. £1111 (OCC) R.WoMAII-W.h..:

.OJM>.2 .0.2-(J..1 .Q.4,0_8 .0.0-0.1 *U-1.0 **1.G Point: Al.09. O~IM*l* pa s11 .. : ees Alo#.: 2221 1 A llio; 0.04 Conti\: Sua.

  • E 1(1} M AX S TRE S S in S S 883 222 11 ... Sut.*E HH Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Stainless Steel Piping 28 30441 R00030/A E NCLOSURE I Mo-99 Target Cooling System Seismic Analys i s Design Calcu l a ti on Report Sw..*11f1JCO'C) lt,hle....,_DllS-..:

.00-0.2 .0.2-0. 7. 11 REFERENCES Reference Document Number Description 1 ASCE 7-10 Minimum Design Loads for Buildings and Other Structures 2 ASME B31.3 Process Piping, 2014 Edition 3 30441S00001 Moved to Applicable Documents Section 4 USGS Design Maps Deta il Report 5 USGS Design Maps Summary Report 6 FEMA FEMA Hazard Maps 36 ENCLOSURE l Mo-99 Target Cooling System Seismic Analysis Des i gn Calculation Report APPENDIX A USGS DESIGN MAPS DETAIL REPORT 12113/20 1 6 Oes i lJI Maps D etai l ed R eport lJSGS Design M aps Deta i l e d Report A S CE 7-10 Standard (38.93166°N , 92.34 1 8°W) Site Class B -"Rode", Risk ca t egory I/II/III Se c t i on 1 1.4.1 -Mapped A cc e l e r at i o n Pa r ameters Note: Grou n d mot i on values provided be l ow are for the d i rect i on of maximum horizonta l spectra l response aoce l erat i on. They have been converted from corresponding geometric mean ground motions computed by the USGS by apply i ng factors of 1.1 (to obta i n Ss} and 1.3 (to obta i n S 1). Maps in the 2010 ASCE.-7 Standard are prov i ded for Site dass B. Adjustments for other Site C l asses a r e made, as needed , i n Sect i on 11.4.3. 30441 R00030/A From Figure 22-1 111 S s = 0.168 g F r o m Figure 22-2 1 2 1 S 1 = 0.093 g Se c t i o n 11.4.2 -S i te C lass The authority hav i ng ju ri sd i ctio n (not t h e USGS), site-specific geotechn i ca l da t a, an d/o r the default has dassified the site as S it e dass B, based o n the site soi l properties in accordance wit h Chapter 20. Tab l e 2 0.3-1 S i te C l ass i fi c at i o n Si te C l as s A. Ha r d Rock B. Roc k C. Ve ry d ense so i l and soft roc k D. Stiff So il E. So ft d ay so il F. So i l s r eq ui ri n g s i te res p onse an a l ys i s i n acco r dance with Section 2 1.1 v s N or N c1, S u >5 , 000 ft/s N/A N/A 2,500 to 5,000 ft/s N/A N/A 1 ,200 to 2 , 500 ft/s >50 >2 , 000 ps f 600 to 1,200 ft/s 1 5 to 50 1,000 to 2 , 000 psf <600 ft/s <15 <1 , 000 ps f A n y p r o fi l e with m ore tha n 1 0 ft of so i l hav i ng the c h a r acteristics:

  • P l as ti city i n d e x PI > 20,
  • Mo i stu r e co n tent w 40%, and
  • U n dra i ned s h ea r stre n gth s.< 500 ps f See Se cti o n 20.3.1 Fo r S I: 1 ft/s = 0.3 0 48 m/s l ib/ft> 0.0 479 kN/m 2 A-1 E N CLOSURE 1 Mo-99 Target Cooling System Seism i c Analysis Design Calculation Report 30441 R00030/ A 1 2/1 3/20 1 1! OH i S,, Maps DM.Ji l ed Repcrt Se c t i o n 11.4.3 -S i t e C oe fficients a nd Risk-T a r geted Ma x im u m C o ns idered E arthq ua ke (,MC E~) Sp e c t r a l R espon se A cc ele r a t i o n Pa r a m ete rs S i te dass A B C D E F S i te C l ass A B C D E F T a b l e 11.4-1: S i te Coeffic i ent F. Ma p ped MCE R Spectra l Response A cce l eration Pa r ameter at Short Period 5s S 0.25 5s = 0.50 5s = 0.75 5s = 1.00 5s 1.25 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.1 1.0 1.0 1.6 1.4 1.2 1.1 1.0 2.5 1.7 1.2 0.9 0.9 see Section 11.4.7 of ASCE 7 No t e: Use straight-li ne i nterpo l at i on for i ntermediate va l ues o f Ss For Site Class= B and S 5 = 0.1 6 8 g, F. = 1.000 Tab l e 1 1.4-2: S i te Coeffic i ent F , Mapped MCE R Spectral Response Accelerat i on Paramete r at 1-s Period s , S 0.10 s , = 0.20 s , = 0.30 s , = 0.40 s , 0.50 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.7 1.6 1.5 1.4 1.3 2.4 2.0 1.8 1.6 1.5 3.5 3.2 2.8 2.4 2.4 see Section 11.4. 7 of ASCE 7 Note: Use straight-lin e i nterpolat i on for i ntermediate va l ues of S 1 For Site Class= B a n d S 1 = 0.093 g, F, = 1.000 h tipo:H ear1hqwl<e

.usgs.go,,ldesignmapslus/report.p,p?lem pl u=mini m al&l.aii1Ude=3Ul3 1 11G&l ongitude=*G2.3418&s i leelau= 1&r i s kc.,iego,y

=O&edi ti on=a s ce-2... 2/0 A-2 ENC LOS URE 1 Mo-99 Target Cooling System Seismic Anal ys is Design Calculat i on Report Equation (11.4-1): SM S = F.s s = 1.000 x 0.1 68 = 0.1 6 8 g Equation (11,4-2):

SH I = F y Sl = 1.000 X 0.0 93 = 0.09 3 g Sect i on 11.4.4 -Des i gn Spectral Accelerati o n Parameters Equation (11.4-3):

S os=% SM s = o/s X 0.168 = 0.112 g Equation (11.4-4):

S 01 = Y. S , 41 = Y. X 0.09 3 = 0.0 62 g Sect i on 1 1.4.5 -Des i gn Response Spec t rum From Figure 22-12 r 3 1 T L = 12 seconds F i g u r e 11.4-1: Des i gn Respon s e S pectrum T,sTs T *. s , -s.. { T

  • T , , s, :*-.( 0 , 4
  • 0.8T IT,) S
  • O. ll 2 T 1 < T :s T,: S,
  • S 0 1 IT S o ,* 0.0 6 2 T , -O.ll l T , = 0.55 4 T>l, : S ,= S 01 T, I T' 1.0 00 P er iod , T (sec) A-3 30441 R00030/A E N CLOSURE I Mo-99 Target Cooling System Seismic Analys i s Design Calculation Report 30441 R00030/ A 12/13/20 16 Sect i on 11.4.6 -R i sk-Targeted Max i mum Cons i dered Earthquake (MCE R) Response Spectrum The MC E* Responae Spectrum i s d e termined by mu l tiplying the design res p ons e s p ectrum above by 1.5. ! : t " " < I " ct j s .. 1-0.093 T ,*0.11 1 T ,
  • 0.55 4 1.000 Perlod.T(sed A-4 EN C L O S U RE 1 Mo-99 Target Cool i ng System Seismic Anal y s i s Design Calculation Report 30441 R00030/A 1 2/1 3/20 1 0 Oes i g, Maps Detai l ed Repa, Section 11.8.3 -A d ditional Geotechnical Investigation Report Requiremen t s for Seismic Desi g n Categories D through F From figure 22-Z 1 4 1 PGA = 0.080 Equation (11.8-1):

PG~ = F PGA PGA = 1.000 x 0.080 = 0.08 g Tab l e 11.8-1: S i te Coeff i cient F""" Site dass Mapped MCE Geometric Mean Peak Ground Acce l erat i on, PGA A B C D E F PGA :5: 0.10 0.8 1.0 1.2 1.6 2.5 PGA = 0.20 PGA = 0.30 PGA = 0.40 PGA 2: 0.50 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.2 1.1 1.0 1.0 1.4 1.2 1.1 1.0 1.7 1.2 0.9 0.9 See Sect i on 11.4.7 of ASCE 7 Note: U se stra i ght-line i nterpo l at i on for intermed i ate values of PGA For Site Class= Band PGA = 0.080 g, F * .,.. = 1.00 0 Section 21.2.1.1 -Method 1 (from Chapter 21 -Site-Specific Ground Mot i on Procedures for Seismic Design) From figure 22-17 1 51 = 0.862 From Figure 22-18 1 6 1 Cii 1 = 0.835 A-5 ENCLOSURE 1 Mo-99 Target Cooling Sys t em Seismic Analysis Design Calculation Report 1 21 1:112i11e Des i gn M~ Data/l oci R~ Section 11.6 -Seismic Design Category Tab l e 11.6-1 Se i sm i c Design Category Based on Short Period Response Acce l e r atio n Paramete r RISK CATEGORY VALUE OF S., 5 I or II III IV S 05 < 0.167g A A A 0.1 67g S S 05 < 0.33g B B C 0.33g S S 05 < 0.50g C C 0 0.50g S S 05 0 0 0 For Risk Category=

I and S 05 = 0.112 g , Seismic Design Category=

A Table 11.6-2 Seismic Des i gn Catego ry Based on 1-S Pe r i od Res p onse Accelerat i on Parameter RISK CATEGORY VALUE OF S 01 I or II III IV s ... < 0.067g A A A 0.067g S s.,. < 0.133g B B C 0.133g S s.,. < 0.20g C C 0 0.20g S s ... 0 0 0 For Risk Category = I and S 01 = 0.062 g , Seismic Design Category = A Note: Whens , is greater than or equa l to 0.75g, the Seismic Design category is E fo r bu il d i ngs in Risk categories I, Il, and Ill, and F for those i n Risk category IV, irrespective of the above. Se i smic Design Category = Kthe more severe design category i n accordance w i th Tab l e 11.6-1 or 11.6-2" = A Note: See Section 11.6 for alternative approaches to calculating Seismic Design category.

References 30441 R00030/A 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7

_Figure_22-1

.pdf 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010

_ASCE-7 _Figure_22-2 .pdf 3. Figure 22-12: http://earthquake

.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7

_Figure_22-12.pdf 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7

.pdf 5. Figure 22-17: http://earthquake

.usgs.gov/h azards/de s i gnmaps/downloads/pdfs/20 10_ASCE-7

_Figure_22-17 .pdf 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 lO_ASCE-7 _Figure_22-18.pdf A-6 E NCLOSURE I Mo-99 Target Cool i ng System Se i smic Anal y s is Design Calculation Report APPENDIX B USGS MAPS

SUMMARY

REPORT 12/1 3/20 6 Des i gn MiJPs St.mmary Repon lJSGS Design Maps Summary Report U s er-Speci fi ed Input Build i ng C ode Reference D oc ume nt ASCE 7-10 St a ndard (which utilizes USGS hazard data available ,n 2008) Site Coor d ina tes 38.93 1 66°N , 92.3418°W S i t e Soil Classifi cati on Site dass B -~Rockn Risk C atego ry J/II/IIJ USGS-Provi d e d Output s,= 0.1689 s, = 0.093 g SMs = 0.168 g s ... = 0.0 93 g Sos= 0.112 g s ... = 0.062 g 30441 R00030/A Fo r information on how the SS and Sl va l ues above h ave been calcu l ated from p r obabi li stic (ris k-targeted) and dete r min i stic g r o u nd motions in the d i rectio n of max i m u m h orizontal r espo n se , please r eturn ID the app l icatio n and select the "2 009 N E HRP" bui l d i ng code reference document.

'.!

  • Ill O U 0 1' O U G.1 2 0 10 0 08 0 0G 0 04 0.02 M CE 11 R es pon se S p ect rum 0.00 _______ _,_ ........ _...__, ____ +--< 0 00 0 20 t 40 0 , o O.to l 00 I 20 I ,o I , o 1 1 0 2.00 Period, T (Hcl '.! II Ill D es ign R es pon se Sp ect rnm 0.1 2 0.1 0 o o a 0 o , 0 o, 0 0 2 0.00 ,l----,>--+--+--,--+--+---s>---+--+--

000 0 20 0 ~0~0 to l 00 1 20 l l l to ~OO P erio d, T (s.c) For PGA,.. T , , c * ., and c., va l ue!:, please view the detailed report. Although t h , s information t s a product of the U.S. Geo l og i cal Su rv e y , \.,e p J'Ovlde no w a rr ant y, expressed 01 i m p lied , as to the accuracy of the data cont~i ned t he.rein. This too l is not a subst i tute fo r techn i ca l subje d-matte r lc:no w ledge.. heps ://eanhqua!<e

.U5lls.gcw,-ign m ops, summary.J>l,p?t em pl3!!!"'ffl irimal&l,..tudea38..113 1 l!MlongiWdl,a-ll2

.3418&.sil!Clas s* l&ri s kc.mgo,y*O&~tiOIP'asc.

.. 1/1 8-1 ENCLOSURE I Mo-99 Target Cooling System Seism i c Analysis Design Calculation Report 30441 R00030/A APPENDIX C FEMA MAPS Earthquake Hazard Maps I FEMA.go v Page 3 of7 mtoo l ft. earthq u a kprogrammanag ers) > I nformation 0 l nd M d als (t ea uake-i ind.M duals-a d-amilies J In orma *on for Comm

  • ies (l earthqua i nformat i o comm ies) > l nformatio for Bus i sses (/earthquakei fo rmbusina nd-o t h e -o ganizat i ons) In ormation for Bu i ldin g Desig rs (/earthqua l nforma io designersm anagers-a nd-r egulators) Earthquake Hazard Maps hazard-maps) Y our Ea quake Ri sk (/yourearthq a krls k) -t -:---_. *--. ......,. SOC map of t h e Eas tern Un it ed States for low-r i s e Occupancy Catego ry I and 11 structures located on sites wit h a v e r age all uv ia l so i l cond i t i ons. hnps://www.fema.gov/earthquake-hazard-maps C-1 1 2/8/2016