ML17059C550: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter: | {{#Wiki_filter:ENCLOSUKE3 1%1NEMHEPOINTUI.'GTl(NMPl)CORESHROUDVERTICALWELDREPAIRDESIGNREPORTNON-PROPMKTARY VERSION9902i00204 990203'DR ADOCK05000220PPDR 4~4'J raqMpRASSOCIATES INC.ENGINEERSNineMilePointUnit1CoreShroudVerticalWeldRepairDesignReportMPR-1966(NP)Non-Proprietary VersionRevision0January1999Preparedby:H.illiamMurdyReviewedby:-aiB.%wanner Approvedby:WilliamR.SchmidtPrincipal Contributors H.WilliamMcCurdy,MPRAssociates CraigB.Swanner,MPRAssociates, BenjaminR.Lane,MPRAssociates QUALITYASSURANCE DOCUMENTThisdocumenthasbeenprepared, | ||
: reviewed, andapprovedinaccordance withtheQualityAssurance requirements of10CFR50AppendixB,asspecified intheMPRQualityAssurance Manual.320KINGSTREE'TALEXANDRIA, VA22314-3230 703.519-0200 FAX:703-519-0224 | |||
TableofContents1Introduction andSummary.~.~~....~......... | |||
~......~..~..~1-11.1Introduction 1.2Summary............ | |||
~~.1.2.1RepairOverview....................................... | |||
1-11.2.2Structural andDesignEvaluations,....................... | |||
1-11.2.3SystemEvaluations | |||
.......... | |||
1.2.4MaterialandFabrication 1-21-21.2.5Pre-Modification andPost-Modification Inspection | |||
......2Background 2.1ReactorInternals DesignBases........... | |||
~....~........ | |||
2.2Functional Requirements 1-22-12-13Description ofRepair............. | |||
~...~~........... | |||
~......~3-13.1DesignObjectives | |||
.3.2DesignCriteria...........3-13-13.3Description ofRepairComponents andDesignFeatures....4Structural andDesignEvaluation | |||
.~~...~~~..~~.....~....4.1DesignLoadsandLoadCombinations 4.2AnalysisModelsandMethods4.3RepairHardwareEvaluation | |||
~4.3.1RepairHardwareStructural Evaluation 4.3.2FlowInducedVibration 4.3.3Radiation Effects.3-14-14-14-14-14-14-24.4ShroudEvaluation | |||
......4-34.5ImpactonTie-RodRepair.... | |||
4-3MPR-1966(NP)Revision0n | |||
4.6LoosePartsConsiderations.444. | 4.6LoosePartsConsiderations | ||
.444.7Installation Cleanliness | |||
~445SystemsEvaluation | |||
....................................... | |||
5-15.1BypassFlowforNormalOperation | |||
.5.2BypassFlowforOtherConditions | |||
..~~~~~~~~~5-25.3Downcomer FlowandOtherEffects............ | |||
~..,........ | |||
5-26Materials andFabrication | |||
................................ | |||
6-16.1MaterialSelection 6-16.2MaterialProcurement Specifications 6.3MaterialFabrication | |||
~~~~~~~~~~~~~~6-27Pre-Modification andPost-Modification inspection 7.1Pre-Modification Inspection 7.2Post-Modification Inspection | |||
~~~~~~~~~~~~~7-1~~~~~~~~717.2.1PriortoRPVReassembly | |||
.7.2.2DuringSubsequent Refueling Outages~~~~~~~~~~~~~7-18References | |||
.............................................. | |||
8~MPR-1966(NP)Revision0 | |||
Tables4-1CoreShroudVerticalWeldRepairDesignLoadsandLoadCombinations............................................464-2LimitingStressesintheRepairClampAssembly...............4-74-3ShroudStressRatioSummary..............................4-86-1RepairClampMaterials...................................6-3MPR-1966(NP)Revision01V | Tables4-1CoreShroudVerticalWeldRepairDesignLoadsandLoadCombinations | ||
............................................ | |||
464-2LimitingStressesintheRepairClampAssembly............... | |||
4-74-3ShroudStressRatioSummary.............................. | |||
4-86-1RepairClampMaterials | |||
................................... | |||
6-3MPR-1966(NP)Revision01V | |||
Figures1-1NineMilePointUnit1CoreShroudWelds...~...~~.~..~..~...1-31-2NineMilePointUnit1Assembly.~~...~..1-3NineMilePointUnit1Assembly1-4NineMitePointUnit1ClampAssembly1-5NineMilePointUnit1Assembly....~..~~ExplodedViewofV4VerticalWeldClamp~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Figures1-1NineMilePointUnit1CoreShroudWelds...~...~~.~..~..~...1-31-2NineMilePointUnit1Assembly.~~...~..1-3NineMilePointUnit1Assembly1-4NineMitePointUnit1ClampAssembly1-5NineMilePointUnit1Assembly....~..~~ExplodedViewofV4VerticalWeldClamp~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Installed V4VerticalWeldClamp~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ExplodedViewofV9/V10VerticalWeld~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Installed V9V/10VerticalWeldClamp~~~~~~~~~MPR-1966(NP)Revision0 | ||
introduction andSummary1.1Introduction Thisreportdocuments thedesignofthecoreshroudverticalweldrepairfortheNineMilePointNuclearStationUnit1(NMP-1).Thereportfollowstheguidelines inBWRVIP-04 | |||
[1],"GuideforFormatandContentofCoreShroudRepairSubmittals." | |||
Asummaryoftherepairdesign,supporting evaluations, | |||
: material, fabrication andinspection requirements isprovidedinthisreport.1.2SummaryTheNMP-1coreshroudverticalweldrepairaddresses thecrackingofverticalweldsV4,V9andV10(seeFigure1-1).TherepairisnotincludedundertheASMEBoilerandPressureVesselCodeSectionXIdefinition forrepairorreplacement. | |||
Rather,therepairisdeveloped asanalternative repairpursuantto10CFR50.55a(a)(3). | |||
Assummarized below,therepairsatisfies therequirements specified inBWRVIP-02 | |||
[2],"CoreShroudRepairDesignCriteria." | |||
Therepairisconsistent withthecurrentplantlicensing basisandensuresthattheshroudwillsatisfyitsoperational andsafetyfunctions. | |||
1.2.1RepairOverviewAsshowninFigures1-2through1-5,therepairconsistsofrepairclampswhichholdtheshroudtogetheratthefailedverticalweldlocations. | |||
Therepairdesignspecification isprovidedinReference 3.1.2.2Sfrucfural andDesignEvaluations Assummarized below,therepairsatisfies thestructural requirements specified inReferences 2,3and4.~Ridl-TPpIIpdIpIIIdcriteriafortherepairhardware. | |||
Inparticular, althoughtherepairisnotconsidered anASMEB&PVCoderepair,therepairsatisfies theDesignbyAnalysisstressandfatiguecriteriaoftheASMEBoiler&MPR-1966(NP)Revision0 | |||
PressureVesselCode,SectionIII, | PressureVesselCode,SectionIII,Subsection NG[4].SeeSection4.3ofthisreportforadditional information ontherepairassemblystructural evaluation. | ||
~Shroud-Thestressesintheshroudresulting fromtherepairarewithinthestressallowables ofSectionIII,Subsection NGoftheASMEBoiler&PressureVesselCode[4].SeeSection4.4ofthisreportforadditional information ontheshroudstructural evaluation. | |||
1.2.3SystemEvaiuafions Theleakagethroughthefailedverticalweldswiththerepairclampsinstalled wascalculated andfoundtobewithintheacceptance criteria. | |||
Thisincludedtheleakagethroughtherepairclampshroudattachments. | |||
SeeSection5ofthisreportforadditional information ontheseevaluations. | |||
1.2.4MaferiaiandFabrication Thematerials specified foruseintherepairassemblies areresistant tostresscorrosion crackingandhavebeenusedsuccessfully intheBWRreactorcoolantsystemenvironment. | |||
Therepairassemblies arefabricated fromsolutionannealedType304or316stainless steelorsolutionannealedTypeXM-19stainless steel.Noweldingispermitted inthefabrication orinstallation oftherepair,andspecialcontrolsandprocessqualifications areimposedinthefabrication oftherepairtoassureacceptable materialsurfaceconditions aftermachining. | |||
SeeSection6ofthisreportforadditional information onrepairhardwarematerials andfabrication. | |||
1.2.5Pre-Modification andPost-Modification Inspections Theinspections tobeperformed tosupporttherepairaresummarized below.Pre-Modification Insection-Priortoinstallation oftheshroudrepair,visualinspections willbeperformed tosupporttherepairinstallation. | |||
Theseinspections arelistedinSection7.1.PostModification Insection-Priortoreactorpressurevesselreassembly, visualinspections willbeperformed toverifytheproperinstallation ofrepair.Thescopeoftheseinspections isdiscussed inSection7.2.Inspection oftheshroudandtherepairinfuturerefueling outageswillbebasedontheBWRVIP-07 | |||
[6],"Guidelines forReinspection ofCoreShrouds." | |||
MPR-1966(NP)Revision01-2 | |||
~I~~s~~+~0S~R~~~o~~~o~~~~~~~~~I | ~I~~s~~+~0S~R~~~o~~~o~~~~~~~~~I | ||
ShroudLockingScrew"t14VerticalWeldV4PlateCutoutlnShroudlWallLeftBayonetEccentric' | ShroudLockingScrew"t14VerticalWeldV4PlateCutoutlnShroudlWallLeftBayonetEccentric | ||
'8RightBayonetEccentric ThreadedPln199SNPRASSOCIATES U.S.PATENTPENONG5BMPR)slOl~OS00)l0/l1/N(AD)Figure1-2.NineMilePoint-Unit1ExplodedViewofV4VerticalWeldClampAssembly | |||
V4VerticalWeldLoctdngScrewShroudRightBayonetEccentric LeftBayonetEccentric V4PlateThreadedPinldMPR/tieOllOl0$/21/$4(JSI)Figure1-3.NineMilePoint-Unit1Installed V4VerticalWeldClampAssemblyI998IIPRASSOCAIES U.S.PAIEIITPEIIOIIIC | |||
ShroudIV9jV10VerticalWeldLockingScrewCutoutinShroudWallV9/ | ShroudIV9jV10VerticalWeldLockingScrewCutoutinShroudWallV9/V10PlateLeftBayonetEccentric ThreadedPinRightBayonetEccentric FAHMPR/N$01~01ol/c4/ssIAu)Figure1%.NineMilePoint-Unit1ExplodedViewofV9/V10VerticalWeldClampAssemblyPCI99SMPRASSOCNTES U.S.PAIENrPENQNG | ||
V4VerticalWeldShroudLockingScrewRightBayonetEccentric LeftBayonetEccentric V9jV10PlateThreadedPinQMPRtlnOl~C4IN/4I/nIAJTFigure0-5.NineMilePoint-UnitIInstalled V9/V10VerticalWeldClampAssemblyPC199SIJPRASSOCIATES IAS.PATEtITPEIITNNO | |||
2Backround2. | 2Backround2.1Reactorinternals DesignBasesFromtheNMP-1FinalSafetyAnalysisReport(Updated) | ||
[5],thereactorinternals aredesignedto:1.Providesupportforthefuel,steamseparators, dryers,etc.,duringnormaloperation andaccidentcondition. | |||
2.Maintainrequiredconfigurations andclearances duringnormaloperation andaccidentconditions. | |||
3.Circulate reactorcoolanttocoolthefuel.4.Provideadequateseparation ofsteamfromwater.2.2Functional Requirements fortheRepairThefunctional requirements fortherepairareidentified inBWRVIP-02 | |||
[2].Therequirements are:1.Structurally replacetheverticalweldsandmaintainthestressesoftheaffectedshroudcylinderwithinASMESectionIIIstressallowables forallloadcombinations andservicelevels.2.Limitcoolantleakagethroughthecrackedverticalweldstoacceptable levelsfornormaloperation andtransient plantconditions. | |||
NotethattheNMP-1plantdoesnotrequireafloodable volumetobemaintained foraccidentconditions toprovidefoxadequatecorecooling.MPR-1966(NP)Revision02-1 | |||
DescritionofReair3. | DescritionofReair3.1DesignObjectives Thefunctionoftherepairistostructurally replacefailedV4,V9andV10(seeFigure1-1)coreshroudwelds.3.2.DesignCriteriaTherepairisdeveloped asanalternative repairpursuantto10CFR50.55a(a)(3). | ||
Therepairisconsistent withandmeetsthecriteriadeveloped bytheBoilingWaterReactorVesselandInternals Project,asstatedinBWRVIP-02 | |||
[2].Thedesignspecification fortherepairisprovidedinReference 3.Therepairisdesignedtosatisfythestructural requirements ofSectionIII,Subsection NG,"CoreSupportStructures," | |||
oftheASMEBoiler&PressureVesselCode[4].3.3.Description ofRepairComponents andDesignFeaturesTherepairclampisillustrated inFigures1-2through1-5:~Figures1-2and1-3showexplodedandinstalled viewsoftherepairclampforverticalweldV4.~Figures1-4and1-5showexplodedandinstalled viewsoftherepairclampforverticalweldsV9andV10.Eachrepairclampconsistsofaclampplateandtwobayoneteccentric/threaded pinassemblies. | |||
Theclampisinstalled inthrough-wall holesmachinedintheshroudbyEDMprocesses oneachsideoftherepairedverticalweld.Therepairweldclamptransmits theshroudhooppressureforcewhichwouldnormallybetransmitted throughtheshroudverticalweld.Thestructural loadpathisfromtheshroudthroughabayoneteccentric/threaded pintotheclampplateandthroughtheclampplateandotherbayoneteccentric/threaded pinassemblybacktotheshroud.MPR-1966(NP)Revision03-1 | |||
Theinstallation stepsfortherepairclampareasfollows:~Therepairclampisassembled with:Thepinsretracted withtheirflangesurfacesflushwiththeplateinnersurfaces. | |||
Thebayoneteccentrics rotatedtothepositionwherethepinaxisisalignedwiththecenterofthe1.563inchradiusportionoftheshroudhole.FortheV4clamp,therightbayoneteccentric/threaded pinassemblyisinsertedintheclampplateaftertheclampplatehasbeenmovedinpositionbetweenthecoreshroudandthecorespraypipe.~Thepinsarethreadedinwarduntiltheirflangesextendbeyondtheshroudinsidesurfaces. | |||
~Thebayoneteccentrics arerotatedtobringthepinshaftsintothe1.265inchradiusportionoftheshroudholeandintocontactwiththeshroudholesurfaces. | |||
~Thebayoneteccentrics arefixedintopositionwiththelockingscrewswhichextendintomatingslotsintheeccentrics. | |||
Thelockingscrewsarefixedinpositionbycrimpingattwolocations. | |||
~Thepinsarethreadedoutwardtobringtheirflangesurfacesintocontactwiththeshroudinnersurfaceandtorquedtoprovideaspecified preload.Anallowable of50percentforrelaxation ofpreloadduetocombinedthermalandirradiation effectsisprovidedinthepreloaddetermination. | |||
~Thepinsarelockedinpositionbycrimpingtotheeccentric attwolocations. | |||
Notethattheclampinstallation providesthefollowing features: | |||
Theleakagepathsthroughtheshroudholesareeffectively sealedbytheextendedsealringportionsoftheclampplatewhicharemachinedtoaradiusequaltotheshroudradiusandseatontheshroudsurface.Thepreloadbetweenthepinflanges,theclampplateandtheshroudpreventsrelativedisplacement betweentherepairclampandshroudduetoflowinducedvibration loading.PerReference 10,clamploadingduetoshroudvibration isnegligible. | |||
MPR-1966(NP)Revision03-2 | |||
Therepairdesignhasconsidered crevicesandtheirimpactonstresscorrosion crackingbyusingmaterials whicharehighlyresistant toIntergranular StressCorrosion Cracking(IGSCC).Thematerial's IGSCCresistance isverifiedbytestingperrequirements ofASTMA262PracticeE.SeeSection6ofthisdesignsummaryreportforfurtherdiscussion onmaterials andfabrication. | |||
MPR-1966(NP)Revision03-3 | |||
Structural andDesinEvaluation 4.1DesignLoadsandLoadCombinations Theloadsandloadcombinations arelistedintheDesignSpecification fortherepair[3].Theseloadsandloadcombinations aresummarized inTable4-1.Acombination ofhandcalculations andfiniteelementanalysesareusedtodefinethedesignloads.Thecoreshroudpressuredifferentials listedintheDesignSpecification areusedinthedesignoftherepair.Theonlydesignloadsofsignificance totherepairarethoseduetodifferential pressureacrosstheshroudandthoseduetodifferential thermalexpansion betweentheshroudandrepairclamp.4.2AnalysisModelsandMethodology Analysismodelsandmethodsusedtoevaluatetherepairhardwareandexistingstructures arediscussed below.Acombination ofhandcalculations andfiniteelementanalyseswereusedtoevaluatetherepairhardwareandexistingstructures. | |||
Three-dimensional finiteelementanalysesusingtheANSYScodewereusedtodetermine thestructural responseoftheshroud.Handcalculations wereusedintheevaluations oftherepairhardware. | |||
4.3RepairHardwareEvaluation 4.3.7RepairHardwareStructural Evaluation Therepairhardwaresatisfies thestructural criteria. | |||
Inparticular: | |||
~TheDesignbyAnalysisstressandfatiguecriteriaoftheASMEBoiler8r,PressureVesselCode,SectionIII,Subsection NGaresatisfied. | |||
MPR-1966(NP)Revision04-1 | |||
~Themaximumfatigueusageintherepairassemblyduetothermalexpansion( | ~Themaximumfatigueusageintherepairassemblyduetothermalexpansion (including startupandshutdown) loadsoccurinthebayonetholeintherepairclampplate.Thefatigueusageatthislocationislessthan3%.~Themaximumfatigueusageintheshroudattherepairattachments isnegligible. | ||
~Thefatigueusagefromflowinducedvibration isnegligible. | |||
~ThereisnonetsectionyieldingforServiceLevelsA/8loads.Theratioofthecalculated stresstotheallowable stressforthelimitingloadcasesissummarized inTable4-2fortheclampcomponents. | |||
4.3.2FlowInducedVibration Therepairclampswereanalyzedtoensurethatreactorcoolantflowwouldnotinduceunacceptable vibration. | |||
Thefollowing basicapproachwasfollowedtoprovideresistance toflow-induced vibration loading:~Theflow-induced loadperunitareaoftherepairclampisconservatively calculated basedonadifference inpressureequaltoone-timestheflowvelocityheadacrosstheclampplate.~Theclampispreloaded bytightening thethreadedpinstoaforcewhichisgreaterthanthesumoftheflow-induced loadplusthepressureleadactingtoejecttheclampfromtheshroud.Theminimumpreloadisincreased byafactorof50%toaccountforrelaxation duetocombinedthermalandirradiation effects.Thisapproachprovidesassurance thatnoclampdisplacements andnoalternating stresswillresultfromtheflow-induced vibration loading.NotethatperTableB.6.1ofReference 10,theshroudvibration amplitude isonlyonemilandtherefore hasanegligible effectontherepairclampvibration. | |||
4.3.3Radiation EffectsTheeffectsofradiation wereconsidered intheselection oftherepairmaterials andfabrication processes. | |||
Relaxation duetothermalandirradiations effectswasconsidered inthedetermination ofthreadedpinpreload.Asdiscussed inSection6,allmaterials usedintherepairhavebeenusedsuccessfully foryearsintheBWRenvironment. | |||
MPR-1966(NP)Revision04-2 | |||
4. | 4.4ShroudEvaluation Thestresses1nthecoreshroudwereevaluated tothestresscriteriaoftheASMEB&PVCode,SectionIII,Subsection NG[4].Theratioofcalculated shroudstressestotheallowable stressforthelimitingloadcasesissummarized inTable4-3.Asshowninthetable,theshroudcancarrytheappliedloadswithinthecodestressallowables foralldefinedloadings. | ||
4.5ImpactonTie-RodRepairThesafety,stressandseismicanalysesforthecoreshroudtie-rodrepair(References 7,8and9)werereviewedandevaluated todetermine ifthereisanyimpactfromtheverticalweldrepair.Resultsofthereview/evaluation are:Nospecificdiscussion ofrequirements fortheshroudverticalweldswasfoundinReferences 7,8and9.However,itisclearthatthedesignandtheanalysesofthetie-rodrepairarebasedontheshroudretaining acylindrical configuration intheeventofcrackingintheverticalwelds.Accordingly, theverticalweldrepairisrequiredtopreservethecylindrical shroudconfiguration forallappliedloadsandloadcombinations. | |||
Asidentified inSection2.2above,thisisoneofthefunctional requirements fortheverticalweldrepair.Noallowance forcoolantleakagethroughcrackedverticalweldsisconsidered inthesafetyanalysisforthetie-rodrepair(Reference 7).Therefore, theverticalweldrepairisrequiredtolimitverticalweldleakage,incombination withotherleakagesources,towithinacceptable levelsforallplantconditions. | |||
Thisisafunctional requirement fortheverticalweldrepairasstatedinSection2.2above.PerReference 9,theseismicfuelloadsaretransmitted directlythroughthetopguideorcoresupportplateringstothetie-rodradialrestraints. | |||
Therefore, itisthestiffness oftheseringsandnotthestiffness oftheshroudcylinders thataffectsthefuelseismicresponse. | |||
Forashroudcylinderwithfullycrackedverticalweldsandendconditions thatprovidenolateralshearrestraint, thelateralstiffness wouldbereduced.Sinceshroudstiffness isaparameter intheshroudseismicmodel,thisreduction couldimpacttheseismicanalysisresults.However,thispotential impactisnotsignificant sinceforalloftheseismiccasesconsidered inSection5ofReference 9,theH1-H2andH4-H5shroudcylinders havehingedconnections totheadjacentcylinders. | |||
Thishingedconnection MPR-1966(NP)Revision04-3 | |||
providessheartransferbetweentheshroudcylinders andpermitstheshroudcylinders toretaintheiruncracked momentofinertiaandrotational stiffness. | |||
Forthetie-roddesignbasisconfiguration withaclearance of0.75inchbetweentheshroudandthemid-supports, Reference 9determines thattherearenolateralseismicloadsappliedtotheshroudduringaseismicevent.However,withtheas-installed clearance of0.375inchbetweentheshroudandthemid-supports, thereareseveralLevelDloadcombinations wheretherelativeseismicdisplacement atthemid-support exceedsthe0.375inchclearance. | |||
Theresulting mid-support loadwasevaluated asaprimaryload,andtheloadsreactedbytheverticalweldrepairweredetermined tobeacceptable. | |||
Basedontheabove,theverticalweldrepairhasnoimpactonthetie-rodrepairandthesupporting safety,stressandseismicanalyses. | |||
4.6.LoosePartsConsideration Thevariouspiecesthatmakeuptherepairassemblies arecapturedandrestrained byappropriate lockingdevicessuchaslockingcupsandcrimping. | |||
Theselockingdevicedesignshavebeenusedsuccessfully formanyyearsinreactorinternals. | |||
Loosepiecescannotoccurwithoutfailureofthelockingdevicesorrepairassemblycomponents. | |||
Suchlockingdevicesandthestressesinthepieceswhichmakeuptherepairclampsarewellwithinallowable limitsfornormalplantoperation. | |||
4.7.Installation Cleanliness Alltoolingusedforinstallation willbeinventoried andsubjected toforeignmaterialexclusion procedures wheninthereactorvesselarea.Toolingwillbecheckedforloosepartspriortoinstallation intothecanal.Furthermore, thetoolingwillbeextensively fieldhardenedpriortositedeployment toreducethepossibility oftoolfailuresand/orbreakswhichcouldpotentially resultinloosepartsremaining inthevessel.Iffailuresoccur,thepartswillberetrieved fromthereactorvesselorcavity.Foreachrepairclamp,through-thickness holesaremachinedintheshroudsupportusingtheEDMprocess.Thisprocessresultsinaveryfinedebris(swarf'eing generated. | |||
Thisdebrisisprimarily comprised ofcarbon,nickel,iron,chromium, etc.,whicharetheprimaryelementscontained intheshroudandEDMelectrode material. | |||
Thisswarfisflushedandvacuumedfromthecutduringthemachining operation, thenfilteredpriortodischarge backintothecavity.TheEDMelectrode isdesignedtoonlygenerateswarf.Aslugisnotgenerated astheelectrode breaksthroughtheinsidesurfaceoftheshroud.Also,adebriscollection systemisMPR-1966(NP)Revision044 | |||
positioned ontheshroudinsidesurfacetocollecttheEDMswarfgenerated whentheEDMelectrode breaksthroughtheinsidesurfaceoftheshroud.TheEDMdebrissystemhasa10micronanda2micronfilterinseries.Eachfilterhas200sq.ft.ofeffective surfacearea.The10micronfilterisratedat99%efficient for10micronsand80%efficient forjustbelow2.5microns.The2micronfilteris99%efficient for2micronsand90to93%efficient for1micron.Asthesefiltersareloaded,theirefficiency willgreatlyincrease. | |||
Thetotalamountofswarfcollected bythisEDMdebriscollection systemhasbeenqualified. | |||
Thedebrissystemcollected over95%ofthedebristhatwasgenerated. | |||
Thisqualification wasperformed withoutaninternaldebriscup. | |||
Therefore, thetestwasconservative. | |||
Thesmallamountofswarfnotcollected bytheEDMdebrissystemisnotdetrimental totheBWRsystem.'ISubsequent tocompletion oftherepairhardwareinstallation activities, afinalvideoinspection inthereactorvesselandcavitywillbeperformed toverifynoforeignobjectentryduringtherepair.MPR-1966(NP)Revision04-5 | |||
Table4- | Table4-1CoreShroudVerticalWeldRepairDesignLoadsandLoadCombinations No.EventNormalOperation UpsetNo.1UpsetNo.2Emergency No.1Emergency No.2Emergency No.3FaultedNo.1FaultedNo.2FaultedNo.3LoadCombination<'1't'1'<'1 NormalPressure+DW+SteadyStateThermalUpsetPressure+DW+UpsetThermalUpsetPressure+DW+OBE+SteadyStateThermal"'ormal Pressure+DW+DBESteamLineLOCA+DWRecirculation OutletLineLOCA+DWSteamLineLOCA+DW+DBERecirculation InletLineLOCA+DW+DBERecirculation OutletLineLOCA+DW+DBENotes:(1)Loadcombinations asspecified inTable2-2ofGENE-B13-01739-04 | ||
[8].(2)DW=Deadweight, LOCA=LossofCoolantAccident, DBE=DesignBasisEarthquake, OBE=Operating BasisEarthquake. | |||
(3)Alleventsincludeflowloads.(4)OBEloadsareequivalent toDBEloads.(5)Theonlydesignloadsfortherepairclampareexpectedtobethoseduetodifferential pressureacrosstheshroudandthoseduetodifferential thermalexpansion betweentheshroudandrepairclamp.Otherloadsshallbeevaluated toconfirmthattheyneednotbeconsidered asdesign-basis loads.MPR-1966(NP)Revision04-6 | |||
Table4-2LimitingStressesintheRepairClampAssemblyRepairLocationLimitingStressLocationServiceLevel: | Table4-2LimitingStressesintheRepairClampAssemblyRepairLocationLimitingStressLocationServiceLevel:ServiceCondition StresstypeStressLimitStressRatioV9orV10BayonetConnection BayonetConnection BayonetConnection A:NormalOperation B:UpsetPressureB:LossofFeedwater ThermalTransient BearingBearingBearing1.0Sy0.4001.0Sy0.6041.0Sy0.636BayonetConnection C:SteamLineBreakBearing1.5Sy0.994PlateatBayonetHoleA:NormalOperation MembranePlusBending1.5Sm0.367PlateatBayonetHoleB:UpsetPressureMembranePlusBending1.5Sm0.555V4BayonetConnection B:LossofFeedwater ThermalTransient Bearing1.0Sy0.479PlateatBayonetHoleC:SteamLineBreakMembranePlusBending2.25Sm0.915MPR-1966(NP)Revision04-7 | ||
Table4-3ShroudStressRatioSummaryRepairLocationV9orV10V4ServiceLevel: | Table4-3ShroudStressRatioSummaryRepairLocationV9orV10V4ServiceLevel:ServiceCondition A:NormalOperation B:UpsetPressureB:LossofFeedwater Transient C:MainSteamLineBreakA:NormalOperation B:UpsetPressureB:LossofFeedwater Transient StressTypePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBendingPrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHoleStressLimitSm1.5Sm3SmSm1.5Sm3Sm3Sm3Sm1.5Sm2.KSmSm1.5Sm3SmSm1.5Sm3Sm3Sm3SmStressRatio0.200.190.410.300.290.540.660.55O.e70.460.070.080.310.110.110.410.570.49C:MainSteamLineBreakPrimaryMembranePrimaryMembranePlusBending1.5Sm2.25Sm0.170.18MPR-1966(NP)Revision04-8 | ||
5. | 5.2BypassFlowforOtherConditions Asdiscussed inPartB.3ofReference 7,therearenodetrimental effectsofshroudbypassfloweitheronplantanticipated abnormaltransients oronemergency corecoolingsystemperformance. | ||
5.3Downcomer FlowandOtherEffectsThe'effects oftherepairclampassemblyontheflowinthereactorvesseldowncomer regionare:~TheV4repairclampreducestheflowareainthedowncomer atthetopofthecoreshroudbyapproximately 2.5percent.TheV9/VOclampswouldreducetheflowareabyalesseramountbecausetheyarepositioned atalowerelevation wherethedowncomer flowareaisgreater.~Thepressuredropassociated withtheV4clampisapproximately | |||
==0.0 06psidfornormaloperation== | |||
and0.044psidfortherecirculation linebreakcondition. | |||
FortheV9/V10clamps,thepressuredropislessthanfortheV4clamp.FortheV4,V9andV10clamps,thetotalweightislessthan1000lbswhichisnegligible comparedtothetotalshroudweight.Thedisplaced reactorwaterinventory islessthantwocubicfeetofwater,whichisalsonegligible. | |||
MPR-1966(NP)Revision05-2 | |||
Materials andFabrication 6.1MaterialSelection Thematerials specified foruseintherepairclampsareresistant tostresscorrosion crackingandhavebeenusedsuccessfully intheBWRreactorcoolantsystemenvironment. | |||
AsshowninTable6-1,therepairclampsarefabricated fromsolutionannealedType304or316orTypeXM-19stainless steel.XM-19materialisusedforallpartsexceptthelockingscrewwhereType304/316orTypeXM-19stainless steelisused.AsrequiredbytheDesignSpecification, allmaterials specified foruseintheshroudrepairareinaccordance withASMEorASTMapprovedspecifications. | |||
Allmaterials havebeenpreviously usedintheBWRenvironment similartothatexperienced bytherepairclamps.Thematerials arenotsusceptible togeneralcorrosion andareresistant toIntergranular StressCorrosion Cracking(IGSCC)inaBWRenvironment. | |||
Additional information onmaterialspecification, procurement andfabrication requirements implemented toensurethattherepairhardwareishighlyresistant toIGSCCisprovidedinSections6.2and6.3.Materialproperties andallowable stressesforrepaircomponents areasspecified intheASMEB&PVCode,SectionsIIandIII,1989EditionforClass1components. | |||
6.2MaterialProcurement Specifications Allhardwareisconstructed fromaustenitic stainless steelmaterial. | |||
Weldingonthesematerials isprohibited bytheprocurement requirements. | |||
Thesematerials asprocured, arehighlyresistant toIGSCC.NDEofmaterialusedforload-bearing membersisperformed inaccordance withASMECodeSectionIII,Subsection NG-2000.Specificmaterialrequirements aresummarized belowforthematerialusedintherepair.Allstainless steelmaterialisprocuredinaccordance withtheapplicable ASMEorASTMstandards supplemented bythefollowing: | |||
~Type304/316alloyshave0.03%maximumcarbon.TypeXM-19alloyhas0.04%maximumcarbon.Allstainless steelmaterials arefullcarbidesolutionannealedandeitherwaterorforcedairquenchedfromthesolutionannealing MPR-1966(NP)Revision06-1 | |||
temperature sufficient tosuppresschromiumcarbideprecipitation tothegrainboundaries inthecenterofthematerialcrosssection.Solutionannealing ofthematerialisthefinalprocessstepinmaterialmanufacture. | |||
ASTMA262PracticeEtestsareperformed oneachheat/lotofstainless steelmaterialtoverifyresistance tointergranular attackandthatanon-sensitized microstructure exists(nograinboundarycarbidedecoration). | |||
: Pickling, passivation oracidcleaningofloadbearingmembersisprohibited aftersolutionannealing unlessanadditional | |||
==0.0 10inchesmaterialthickness== | |||
isremovedbymechanical methods.Forothernon-loadbearingitems,metallography at500Xisperformed onmaterials fromeachheat,similarly processed, toverifyexcessive intergranular attackhasnotoccurred. | |||
Controlsarealsospecified intheprocurement documents toprecludematerialcontamination duringmaterialprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens. | |||
6.3MaterialFabrication Noweldingorthermalcuttingisusedinthefabrication andassemblyoftheitems.Cuttingfluidsandlubricants areapprovedpriortouse.Controlsarealsospecified toprecludematerialcontamination duringprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens. | |||
Passivation, picklingoracidcleaningoftheitemsisprohibited. | |||
Liquidpenetrant testingafterfinalmachining orgrindingoncriticalsurfacesisperformed. | |||
Abusivemachining andgrindingpractices areavoided.Machining andgrindingprocessparameters andoperations arecontrolled. | |||
Additionally, machining processparameters incriticalloadbearingthreadedareasarecontrolled, basedonqualification samples,whichhavebeensubjected tomacroscopic andmetallographic examinations andmicrohardness testing.Evaluations includehardnessmagnitudes anddepths,depthofseveremetaldistortion, depthofvisibleevidenceofslipplanesanddepthofcoldwork.MPR-1966(NP)Revision06-2 t | |||
Table6-1RepairClampMaterials Parti'PlateBaonetEccentric ThreadedPinV4ClamXM-19XM-19XM-19Material'" | |||
V9/V10ClamXM-19XM-19XM-19LockingScrewType304/316orXM-19@Type304/316orXM-19"'otes:(1)SeeFigures1-2and1Aforidentification ofparts.(2)Allmaterialissolutionannealed. | |||
(3)XM-19materialisusedforthelockingscrewsfortheNMP-1repairclamps.MPR-1966(NP)Revision06-3 | |||
Pre-Modification andPost-Modification Insection7.1Pre-Modification Inspection Thefollowing visualinspections willbeperformed tosupporttherepairinstallation: | |||
Theazimuthal locations oftheV4,V9andV10verticalweldswillbeidentified usingvisual,ultrasonic oreddycurrentmethods.Ifweldscannotbeidentified | |||
: visually, amethodforvisuallyidentifying theweldlocations willbedeveloped whichinvolvesmarkingtheshroudorindexingtotheweldfromotherinternals. | |||
Following identification oftheV4weld,measurements willbemadetoverifythatadequateclearance existsbetweentheverticalweldandthecoresprayverticalpipingtoallowinstallation oftherepairclamp.TVvisualinspection willbeperformed attheV4,V9and/orV10verticalweldswheretheverticalrepairclampswillbeinstalled toassurethattherearenointerferences oradditional cracking. | |||
Anengineering evaluation willbeperformed toaddressanyinterferences oradditional crackingidentified. | |||
7.2Post-Modification Inspection 7.2.1PriortoRPVReassembly Properinstallation ofeachverticalweldrepairclampassemblywillbeconfirmed andrecordedbyTVvisualinspection fromboththeinsideandoutsideoftheshroud.Theinspection willverif'ythatallpartsareinstalled asrequiredandnoforeignobjectsremain.Asaminimum,thefollowing areaswillbeinspected: | |||
Thetopandbottomoftherepairclamptoverifythattheclearance betweentheplateandtheshroudsurfaceisconsistent withthedesignclearance. | |||
Theslotsintheplateandtheeccentrics toverif'ythattheeccentrics areproperlyalignedwiththeplate.Thetopofthelockingscrewtoverifythatthelockingscrewisfullyengagedwiththeeccentric. | |||
MPR-1966(NP)Revision07-1 | |||
~Thepinliptoverifythatthepinlipareaoverlapping theshroudinsidesurfaceisconsistent withthedesignconfiguration. | |||
~Theaxiallocationofthethreadedpinrelativetotheeccentric toqualitatively verifythatthethreadedpinisengagedwiththeshroudinnerdiameter. | |||
~Thelockingscrewsandthreadedpinstoconfirmcrimping. | |||
~Afinalvideoinspection inthereactorvesselandcavitywillbeperformed toverifynoforeignobjectentryduringtherepair.7.2.2DuringSubsequent Refueling OutagesInspection oftherepairclampsinfuturerefueling outageswillbebasedontherequirements inSection4.2ofBWRVIP-07 | |||
[6],"Guidelines forReinspection ofCoreShrouds." | |||
Theinspection willinvolvethevisualinspection oftheoverallclampandthethreadedpin-to-eccentric andlockingscrew-to-eccentric crimpareastoconfirmnochangefromtheircondition duringthepost-installation inspection. | |||
Inspection frequency willbeinaccordance withBWRVIP-07 requirements. | |||
MPR-1966(NP)Revision07-2 0 | |||
References 1.EPRIReportTR-105692, "BWRVIPVesselandInternals Project,GuideforFormatandContentofCoreShroudRepairDesignSubmittals (BWRVIP-04)," | |||
October1995.2.EPRIReport,"BWRVIPVesselandInternals Project,CoreShroudRepairDesignCriteria(BWRVIP-02)," | |||
Revision2,FifthDraftReport,April1988.3.MPRSpecification No.249014-001, "DesignSpecification forNineMilePointNuclearStationUnit1(NMP1)CoreShroudVerticalWeldRepair,"Revision1,October12,1998.4.ASMEBoilerandPressureVesselCode,SectionIII,Division1-Subsection NG,"CoreSupportStructures," | |||
1989Edition.5.NineMilePointNuclearStationUnit1FinalSafetyAnalysisReport(Updated), | |||
Revision15,November1997.6.EPRIReportTR-105747, "BWRVesselandInternals Project,Guidelines forReinspection ofBWRCoreShrouds(BWRVIP-07)," | |||
February1996.7.NineMilePointUnit1SafetyEvaluation Number94-080,Rev.1forModification N1-94-003, ReactorCoreShroudRepair.8.GENE-B13-01739-04, "NineMilePointUnit1ShroudRepairHardwareStressAnalysis(NMPCCalculation No.SO-Vessel-M028)," | |||
Revision0.9.GENE-B13-01739-03, "NineMilePointUnit1NuclearPowerStation,SeismicAnalysis, CoreShroudRepairModification (NMPCCalculation No.SO-Vessel-M027)," | |||
Revision0.10.NEDE-13109, "OysterCreekStartupTestResults," | |||
July1970.MPR-1966(NP)Revision08-1 | |||
ENCLOSURE4 YOFNIAGARAMOHAWK10CFR50.59 SAFETYEVALUTION | |||
CORESHROUDVERTICALWELDREPAIRCLAMPSSAFETYEVALUATION SUMMARYDI<'.SCRIPTION tTheNMP-1coreshroudverticalweldrepairaddresses thecrackingofverticalweldsV4,V9andV10(seeFigure1-1).Therepairbasically consistsofaclampwithaplatewithattachedpinswhichareinsertedintoholeswhicharemachinedbytheElectricDischarge Machining (EDM)processoneithersideoftheflawedverticalweld.Theclampsbridgeacrosstheflawedverticalweldandtransmitthepressureloadnormallytransmitted throughtheverticalweld.TwoclampsareusedfortheV9weld,twoclampsfortheV10w'eldandoneclampisusedfortheshorterV4weld.Therepairclampscanbeinstalled oneachweldindependently, thatisanyone,twoorthreeweldscanberepairedwiththeserepairclamps.Priortothisrepairbeingutilizedasastructural replacement forthewelds,anNRCapprovalwillberequired. | |||
Assummarized below,therepairsatisfies therequirements specified inBWRVIP-02 | |||
[1],"CoreShroudRepairDesignCriteria." | |||
Therepairisconsistent withthecurrentplantlicensing basisandensuresthattheshroudwillsatisfyitsoperational andsafetyfunctions. | |||
Fordetailsoftherepairclampevaluations, whicharesummarized below,seethedesignreportfortherepair,reference 9.PARTA.1-GE<NERAL Therepairclampdesignisillustrated iriFigures1-2through1-5:~Figures1-2and1-3showexplodedandinstalled viewsoftherepairclampforverticalweldV4.~Figures1-4and1-,5showexplodedandinstalled viewsoftherepairclampsforverticalweldsV9andV10.Eachrepairclampconsistsofaclampplateandtwobayoneteccentric/threaded pinassemblies. | |||
Theclampsareinstalled inthrough-wall holesmachinedintheshroudbyEDMprocesses oneachsideoftherepairedverticalweld.Therepairweldclampstransmittheshroudhooppressureforcewhichwouldnormallybetransmitted throughtheshroudverticalweld.Thestructural loadpathisfromtheshroudthroughabayoneteccentric/threaded pintotheclampplateandthroughtheclampplateandotherbayoneteccentric/threaded pinassemblybacktotheshroud.Theinstallation stepsfortherepairclampsareasfollows:~Therepairclampsareassembled with:Thepinsretracted withtheirflangesurfacesflushwiththeplateinnersurfacesThebayoneteccentrics rotatedtothepositionwherethepinaxisisalignedwiththecenterofthelargerportionoftheshroudhole.FortheV4clamp,therightbayoneteccentric/threaded pinassemblyisinsertedintheclampplateaftertheclampplatehasbeenmovedinposition. | |||
~Thepinsarethreadedinwarduntiltheirflangesextendbeyondtheshroudinsidesurfaces. | |||
1of14 | |||
~Thebayoneteccentrics arerotatedtobringthepinshaftsintothesmallerradiusportionoftheshroudholeandintocontactwiththeshroudholesurfaces. | |||
I~Thebayoneteccentrics arefixedintopositionwiththelockingscrewswhichextendintomatingslotsintheeccentrics. | |||
Thelockingscrewsarefixedinpositionbycrimpingattwolocations. | |||
~Thepinsarethreadedoutwardtobringtheirflangesurfacesintocontactwiththeshroudinnersurfaceandtorquedtoprovideaspecified preload.~Thepinsarelockedinpositionbycrimpingtotheeccentric attwolocations. | |||
Notethattheclampinstallation providesthefollowing features: | |||
~Theleakagepathsthroughtheshroudholesareeffectively sealedbytheextendedsealringportionsoftheclampplate,whicharemachinedtoaradiusequaltotheshroudradiusandseatontheshroudsurface.~Thepreloadbetweenthepinflanges,theclampplateandtheshroudpreventsrelativedisplacement betweentherepairclampandshroudduetoflowinducedvibration loading.PARTA.2-MATERIALS PARTA.2.1-MATERIALSELECTION Thematerials specified foruseintherepairclampsareresistant tostresscorrosion crackingandhavebeenusedsuccessfully intheBWRreactorcoolantsystemenvironment. | |||
Therepairclampsarefabricated fromsolutionannealedTypeXM-19stainless steel~AsrequiredbytheDesignSpecification | |||
[2],allmaterials specified foruseintheshroudrepairareinaccordance withASMEorASTMapprovedspecifications. | |||
Allmaterials havebeenpreviously usedintheBWRenvironment similartothatexperienced bytherepairclamps.Thematerials arenotsusceptible togeneralcorrosion andareresistant toIntergranular StressCorrosion'Cracking (IGSCC)inaBWRenvironment. | |||
Additional information onmaterialspecification, procurement andfabrication requirements implemented toensurethattherepairhardwareishighlyresistant toIGSCCisprovidedinA.2.2andA.2.3below.Materialproperties andallowable stressesforrepaircomponents areasspecified intheASMEB&PVCode,SectionsIIandIII,1989EditionforClass1components, MPR-1966[9].PARTA.2.2-MATERIALPROCUREMENT SPECII'ICATIONS Allhardwareisconstructed fromaustenitic stainless steelmaterial. | |||
Weldingonthesematerials isprohibited bytheprocurement requirements. | |||
Thesematerials asprocured, arehighlyresistant toIGSCC.NDEofmaterialusedforload-bearing membersisperformed inaccordance withASMECodeSectionIII,Subsection NG-2000.Specificmaterialrequirements aresummarized belowforthematerialusedintherepair.Allstainless steelmaterialisprocuredinaccordance withtheapplicable ASMEorASTMstandards supplemented bythefollowing: | |||
~Type304/316alloyshave0.03%maximumcarbon.TypeXM-19alloyhas0.04%maximumcarbon.Allstainless steelmaterials arefullcarbidesolutionannealedandeitherwaterorforcedairquenchedfromthesolutionannealing temperature sufficient tosuppresschromiumcarbideprecipitation tothegrainboundaries inthecenterofthematerialcrosssection.2of14 0 | |||
~Solutionannealing ofthematerialisthefinalprocessstepinmaterialmanufacture. | |||
ASTMA262PracticeEtestsareperformed oneachheat/lotofstainless steelmaterialtoverifyresistance tointergranular attackandthatanon-sensitized microstructure exists(nograinboundarycarbidedecoration). | |||
~Pickling, passivation oracidcleaningofload-bearing membersisprohibited aftersolutionannealing unlessanadditional | |||
==0.0 10inchesmaterialthickness== | |||
isremovedbymechanical methods.Forothernon-loadbearingitems,metallography at500Xisperformed onmaterials fromeachheat,similarly processed, toverifyexcessive intergranular attackhasnotoccurred. | |||
~Controlsarealsospecified intheprocurement documents toprecludematerialcontamination duringmaterialprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens. | |||
PARTA.2.3-MATERIALFABRICATION Noweldingorthermalcuttingisusedinthefabrication andassemblyoftheitems.Cuttingfluidsandlubricants areapprovedpriortouse.Controlsarealsospecified toprecludematerialcontamination duringprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens. | |||
Passivation, picklingoracidcleaningoftheitemsisprohibited. | |||
Liquidpenetrant testingafterfinalmachining orgrindingoncriticalsurfacesisperformed. | |||
Abusivemachining andgrindingpractices areavoided.Machining andgrindingprocessparameters andoperations arecontrolled. | |||
Additionally, machining processparameters incriticalloadbearingthreadedareasarecontrolled, basedonqualification samples,whichhavebeensubjected tomacroscopic andmetallographic examinations andmicrohardness testing.Evaluations includehardnessmagnitudes anddepths,depthofseveremetaldistortion, depthofvisibleevidenceofslipplanesanddepthofcoldwork.Themachining practices usedinthefabrication processfortheclampswillbequalified toensurethecoldworklayeratthesurfacehasbeenmaintained toreducethepotential forIGSCCinitiation sites.PART8-ANALYSISPART8.1-REPAIRDESIGNLIFECRITERIAThedesignlifeoftherepairshallbefor25calendaryears(remaining lifeoftheplantincluding lifeextension) toinclude20effective fullpoweryears.PART8.1.1-REPAIRDESIGNLIFECONFORMANCE Allrepairhardwarehasbeendesignedfor25calendaryearstoinclude20effective fullpoweryears.Thisincludes: | |||
~Selection of.stainless steelrepairmaterials whichhavebeensuccessfully usedinaboiling,waterreactorenvironment andwhichareresistant toIGSCC.~Consideration ofplanttransients representative of20effective fullpoweryearsofoperation (i.e.,120 thermaltransients fromstartupsandshutdowns and30scramswithlossoffeedwater pumps.)~Consideration ofradiation fluenceinducedrelaxation ofrepairhardwarepreload.3of14 | |||
PART8. | PART8.2-FUNCTIONAL REUIREMENTS CRITERIAThefunctional requirements fortherepairareidentified inBWRVIP-02 | ||
[1].Therequirements are:1.Structurally replacetheverticalweldsandmaintainthestressesoftheaffectedshroudcylinders withinASMESectionIIIstressallowables forallloadcombinations andservicelevels.2.Limitcoolantleakagethroughthecrackedverticalweldstoacceptable levelsfornormaloperation andtransient plantconditions. | |||
NotethattheNMP-1plantdoesnotrequireafloodable volumetobemaintained foraccidentconditions toprovideforadequatecorecooling.PART8.2.1-FUNCTIONAL REUIREMENTS CONFORMANCE Therepairhardwaresatisfies thestructural criteriafortherepairhardware. | |||
Inparticular: | |||
~TheDesignbyAnalysisstressandfatiguecriteriaoftheASMEBoiler8r,PressureVesselCode,SectionIII,Subsection NGaresatisfied fortheshroudandfortherepairclamps.Acomparison ofthecalculated andallowable stressintensities fortherepairclampsisshowninthefollowing table:4of14 | |||
LimitingStressesintheRepairClampAssemblyRepairLocationLimitingStressLocationBayonetConnection BayonetConnection ServiceLevel:ServiceCondition A:NormalOperation B:UpsetPressureStresstypeBearingBearingStressLimit1.0Sy1.0SyStressRatio0.4000.604BayonetConnection B:LossofFeedwaterThermalTransient Bearing1.0Sy0.636V9orV10BayonetConnection C:SteamLineBreakBearing1.5Sy0.994PlateatBayonetHolePlateatBayonetHoleBayonetConnection A:NormalOperation B:UpsetPressureB:LossofFeedwater ThermalTransient MembranePlusBendingMembranePlusBendingBearing1.5Sm1.5Sm1.0Sy0.3670.5550.479V4PlateatBayonetHoleC:SteamLineBreakMembranePlusBending2.25Sm0.915~Themaximumfatigueusageintherepairassemblyduetothermalexpansion (including startupandshutdown) loadsoccurinthethreadedpins.Thefatigueusageatthislocationislessthan3%.~Themaximumfatigueusageintheshroudattherepairattachments isnegligible. | |||
~Thefatigueusagefromflowinducedvibration isnegligible. | |||
Coolantleakagecriteriaandconformance arediscussed inPartsB.3,B.3.1,B.3.1.1andB.3.1.2below.PARTB.3-FLOWPARTITION CRITERIASof14 | |||
TherepairsshallconsiderleakagethroughtherepairedverticalweldsV4,V9andV10aswellasthroughtheattachment holesinthecoreshroud.Theleakageshallbelessthanallowables whicharedetermined basedonconsideration ofleakagefromothersources(crackedhorizontal welds,tie-rodlowerconnection, etc.).PART8.3.1-FLOWPARTITION CONI'ORMANCE Therepairdesignlimitsshroudleakagetotheallowables definedinReference 2forallplantoperating conditions. | |||
Specifically, theleakageiswithinlimitsestablished forcorebypassleakageandsteamcarry-under asdiscussed inPartB.3.1.1below.Asdiscussed inPartB.3.1.2,theeffectsofleakageoncoremonitoring, anticipated abnormaltransients, emergency corecoolantandfuelcyclelengtharenegligible. | |||
PART8.3.1.1-LEAKAGEFLOWEVALUATION AsstatedinPartB.2(Functional Requirements (Criteria)) | |||
ofthisreport,therepairisrequiredtolimitleakageofreactorcoolantthroughtherepairedverticalweldsduringnormalplantoperation. | |||
Thisincludestheleakagethroughtheverticalweldsandtheleakagethroughtheholesmachinedthroughtheshroudwallfortherepairclampinstallation. | |||
Considering leakagefromallothersources,allowable leakagerateswereestablished forthevertical'weld repairasdescribed inSection6.2oftheDesignSpecification | |||
[2].Theselimitsare:~ThecombinedleakageratethroughweldsV9andV10andtheirrepairclampsshallbelessthan0.25%ofthetotalcoreflow(2%ofthecorebypassflow)fornormaldifferential pressure. | |||
~ThecombinedleakagerateofsteamthroughweldV4anditsrepairclampshallbelessthan0.08%oftherecirculation (coreminussteam)flowfornormaldifferential pressure. | |||
Thecalculated leakageflowratesthroughrepairedverticalweldsV4,V9andV10aresummarized asfollows:RepairedVerticalWeldLeakageLeakageFlowRate(gpm)RepairedWeldsCalculated Allowable V41.6396V9andV10247337PART8.3.1.2-COREMONITORING ANTICIPATED ABNORMALTRANSIENTS EMERGENCY CORECOOLINGSYSTEMANDFUELCYCLELENGTHAsdiscussed inPartsB.3.1.3throughB.3.1.6ofReference 6,theeffectofshroudleakageoncoremonitoring, anticipated abnormaltransients, emergency corecoolingandfuelcyclelengthareconsidered tonotbesignificant. | |||
6of14 | |||
PART8.3.1.3-CONCLUSION Theimpactoftheleakagethroughtherepairedshroudverticalweldsonplantoperation hasbeenevaluated asdiscussed aboveandfoundtobeacceptable., | |||
6. | PART8.4-FLOW-INDUCED VIBRATION CRITERIAEvaluations shallbeperformed ofrepairclampvibration andwearforflow-induced vibration. | ||
Thealternating stressfromtherepairclampvibration shallbelimitedtothematerialendurance stressortheASMECodeallowable stressforthenumberofvibration cycles.PART8.4.1-FLOW-INDUCED VIBRATION CONFORMANCE Therepairclampswereanalyzedtoensurethatreactorcoolantflowwouldnotinduceunacceptable vibration. | |||
Thefollowing basicapproachwas'followed toprovideresistance toflow-inducedvibration loading:~Theflow-induced loadperunitareaoftherepairclampisconservatively calculated basedonadifference inpressureequaltoone-times theflowvelocityheadacrosstheclampplate.~Theclampispreloaded bytightening thethreadedpinstoaforcewhichisgreaterthanthesumoftheflow-induced loadplusthepressureloadactingtoejecttheclampfromtheshroud.Thisapproachprovidesassurance thatnoclampdisplacements andnoalternating stresswillresultfromtheflow-induced vibration loadingfornormalplantconditions. | |||
PART8.5-LOADINGONEXISTINGINTE<RNAL COMPONENTS CRITERIATheloadingandresulting stressesfortheshroudshallbeevaluated andshowntobewithinallowables, asspecified inReferences 1,2and3.PART8.5.1-LOADINGONE<XISTING INTE<RNAL COMPONENTS | |||
~CONFORM*NCR Thestressesinthecoreshroudwereevaluated tothestresscriteriaoftheASMEBEcPVCode,SectionIII,Subsection NG[3].Theshroudcancarrytheappliedloadswithinthecodestressallowables forallloadcasesasshowninthefollowing table.l7of14 0 | |||
ShroudStressRatioSummaryRepairLocationServiceLevel:ServiceCondition StressTypeStressLimitStressRatioA:NormalOperation PrimaryMembranePrimaryMembranePlusBendingSm0.201.5Sm0.19IPrimaryPlusSecondary MembraneatHole3Sm0.41B:UpsetPressurePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHoleSm0.303Sm0.541.5Sm0.29V9orV10B:LossofFeedwater Transient C:MainSteamLineBreakPrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBending3Sm0663Sm0.551.5Sm0.472.25Sm0.46A:NormalOperation PrimaryMembraneSm0.07PrimaryMembranePlusBending1.5Sm0.08PrimaryPlusSecondary MembraneatHole3Sm0.31B:UpsetPressurePrimaryMembraneSm0.11PrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHole1.5Sm0.113Sm0.41B:LossofFeedwater Transient PrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHole3Sm3Sm0.570.49V4C:MainSteamLineBreakIPrimaryMembranePrimaryMembranePlusBending1.5Sm0.172.25Sm0.188of14 0 | |||
PART8.6-SEISMICANALYSISCRITE<RIA Theexistingseismicevaluations ofthecoreshroudandhorizontal weldrepairhardwareshallbereviewedtodetermine iftheverticalweldrepairhardwareneedstoaddressanyseismicloadsordisplacements. | |||
Stressesforanyverticalweldrepairseismicloadingshallbecalculated andcomparedwithallowables asspecified inReferences 1,2and3.PART8.6.1-SEISMICANALYSISCONFORMANCE Existingseismicevaluations werereviewedandseveralloadingcasesidentified whereaseismicloadwasappliedtotheH4-H5shroudcylinderbythemid-support ofthecoreshroudrepair.Theresulting loadsandstressesontheverticalweldrepairclampswereevaluated andfoundtobeacceptable. | |||
PART8.7-ANNULUSFLOWDISTRIBUTION CRITERIAAnalysesshallbeperformed toshowthattherepairdesigndoesnotadversely affectthein-vessel flowcharacteristics inthedowncomer annulusregion.PART8.7.1-ANNULUSFLOWDISTRIBUTION CONFORMANCE Theevaluation oftheeffectsoftherepairclampassemblyontheflowinthereactorvesseldowncomer regiondetermined that:~TheV4repairclampreducestheflowareainthedowncomer atthetopofthecoreshroudbyapproximately 2.5percent.TheV9/V10clampswouldreducetheflowareabyalesseramountbecausetheyarepositioned atalowerelevation wherethedowncomer flowareaisgreater.~Thepressuredropassociated withtheV4clampisapproximately | |||
==0.0 06psidfornormaloperation== | |||
and0.044psidfortherecirculation linebreakcondition. | |||
FortheV9/V10clamps,thepressuredropislessthanfortheV4clamp.Theflowarearestriction andpressuredropincreaseareconcluded tohaveanegligible effectontheannulusflowdistribution. | |||
PART8.8-E<ME<RGE<NCY OPE<RATING PROCEDURE<S'<OPs'ALCULATIONS CRITERIAInputstotheEOPcalculations suchasbulksteelresidualheatcapacityandreduction ofreactorwaterinventory shallbeaddressed basedonrepairhardwaremassandwaterdisplacement. | |||
PART8.8.1-EME<RGENCY OPERATING PROCE<DURES' OPs'ALCULATIONS CONFORMANCE Theweightforeachrepairclampwasdetermined. | |||
FortheV4,V9andV10clamps,thetotalweightislessthan1000Ibswhichisnegligible comparedtothetotalshroudweight.Thedisplaced reactorwaterinventory islessthantwocubicfeetwhichisalsonegligible. | |||
Thesearenegligible effectsontheEOPcalculations. | |||
9of14 | |||
PART8.9-RADIATION E<F<FE<CTS ONREPAIRDESIGNCRITE<RIA Therepairdesignshallconsidertheeffectsofradiation onmaterials andonradiation fluenceinducedrelaxation ofpreloads. | |||
PART8.9.1-RADIATION EFFECTSONREPAIRDESIGNCONFORMANCE Theeffectsofradiation wereconsidered intheselection oftherepairmaterials and'abrication processes. | |||
Asdiscussed inPartA.2.1,allmaterials usedintherepairhavebeenusedsuccessfully foryearsintheBWRenvironment. | |||
Also,theeffectofrelaxation ofthepinpreloadduetoradiation fluencewasconsidered inthepreloadselection. | |||
PART8.10-THERMALCYCLESCRITERIATherepairanalysesshallconsidertheplantthermalcyclesovertheremaining lifeasspecified inAppendixAofReference 2.PART8.10.1-THE<RMALCYCLE<SCONFORMANCE Therepairanalysesshowthatthefatigueusagesintheshroudandrepairhardwareareacceptable forthespecified plantthermalcycles.PART8.11-CHE<MISTRY/FLUX CRITERIATherepairdesignshallusematerials whicharesuitableforusewiththeexistingandanticipated reactorwaterchemistry controlmeasures. | |||
Anyeffectsofneutronfluxonmaterials usedintherepairshallbeconsidered. | |||
PART8.11.1-CHE<MISTRY/FLUX CONFORMANCE The300seriesandXM-19materials selectedfortherepairaresuitableforusewiththeexistingandanticipated reactorwaterchemistry controlmeasures. | |||
Thematerials arenotsusceptible togeneralcorrosion andareresistant toIntergranular StressCorrosion Cracking(IGSCC)inaBWRenvironment. | |||
Also,themaximumradiation fluenceswillhavenoeffectonrepairmaterialproperties. | |||
PART8.12-LOOSEPARTSCONSIDE<RATION DURINGOPERATION CRITERIAThedesignedrepairshallhavefeatureswhichensureallpartsaresecuredsoastopreventpartsfrombecominglooseandenteringthecoreorbeingcarriedintodownstream systems.PART8.12.1-LOOSEPARTSCONSIDERATION DURINGOPE<RATION | |||
~CC'CMANC'hevariouspartsthatmakeuptherepairclampassemblies aresecuredandrestrained byappropriate lockingdevicessuchaslockingcupsandcrimping. | |||
Theselockingdevicedesignshavebeenusedsuccessfully formanyyearsinreactorinternals. | |||
Loosepiecescannotoccurwithoutfailureofthelockingdevicesorrepairassemblycomponents. | |||
Suchlockingdevicesandthestressesinthepartswhichmakeuptherepairclampsarewellwithinallowable limitsforallplantoperating conditions. | |||
IfanyofthelockingcuppartsI10of14 1'I weretofail,anyofthepartswhichweresubsequently releasedwouldhavetopassthroughtherecirculation pumpsandlowerreactorinternals toreachthecore.Largepartswouldnotbeabletopassthroughtherecirculation pumps.Althoughnotspecifically | |||
: analyzed, theconsequences ofthesmallerpartswouldbeconsistent withtheconsequences ofotherpostulated loosepieces.PART8.13-INSPECTION ACCE<SSCRITERIAThedesignshallconsiderthefollowing inspection accessrequirements: | |||
~Therepairhardwareshallnotadversely impacttheaccesstootherreactorinternals, reactorvesselorECCScomponents. | |||
~Therepairhardwareshallnotinterfere withrefueling operations orotherin-vessel activities. | |||
~Therepairshallberemovable asfrequently aseachoutagewithoutpermanent damagetotherepaircomponents and/orexistinginternals. | |||
~Allrepairpartsshallbereadilyremovable andreplaceable. | |||
~Therepairdesignshallpermitfutureinspection oftherepairhardwarepertherequirements ofReference 5.PART8.13.1-INSPECTION ACCESSCONFORMANCE Thedesignoftherepairisinconformance withallcriterialistedinPartB.13abovebasedonthefollowing: | |||
~Therepairclampshavealowprofileandfitsnuglyagainstthecor'eshroud.~Therepairclampscanberemovedinastraightforward mannerbyreversing theinstallation stepsdiscussed inPartA.1above.PART8.14-CREVICE<SCRITE<RIA Therepairdesignshallbereviewedforcrevicesbetweenrepaircomponents andbetweenrepaircomponents andoriginalstructures toassurethatcriteriaforcrevicesimmunetostresscorrosion crackingacceleration aresatisfied. | |||
PART8.14.1-CREVICESCONIORMANCETherepairdesignhasconsidered crevicesandtheirimpactonstresscorrosion crackingbyusingmaterials whicharehighlyresistant toIntergranular StressCorrosion Cracking(IGSCC).Thematerial's IGSCCresistance isverifiedbytestingperrequirements ofASTMA262PracticeE.PART8.15-MATERIALS CRITE<RIA Allmaterials shallbeinconformance withBWRVIP-02 (Reference 1)requirements. | |||
11of14 0 | |||
PART8.15.1-MATERIALS CONFORMANCE Allmaterials areusedinconformance withBWRVIP-02 (Reference 1)requirements. | |||
Specifically, allrequirements forstainless steelmaterials asspecified inBWRVIP-02 aremetfortherepairmaterials asdiscussed inPartA.2above.PART8.16-MAINTE<NANCE/INSPECTION OFREPAIRHARDWARE~CRITRRIA Thedesignedrepairshallminimizefutureinspections andmaintenance ofrepaircomponents andpermitfutureinspection oftherepairhardware. | |||
PART8.16.1-MAINTENANCE/INSPECTION OFREPAIRHARDWARECONFORMANCE Inspection oftherepairclampsinfuturerefueling outageswillbebasedontherequirements inSection4.2ofBWRVIP-07 | |||
[5],"BWRVesselInternals Project,Guidelines forReinspection ofCoreShrouds." | |||
Theinspection willinvolvethevisualinspection oftheoverallclampsandthethreadedpin-to-eccentric andlockingscrew-to-eccentric crimpareastoconfirmnochangefromtheircondition duringthepost-installation inspection PART8.17-IMPACTONTIE-RODHORIZONTAL WELDRE<PAIR~CRITRRITheverticalweldrepairshallnotimpactthecoreshroudtie-rodrepairandthesupporting safety,stressandseismicanalyses(References 6,7and8).PART8.17.1-IMPACTONTIE-RODHORIZONTAL WE<LDRE<PAIR~CONRORMANCR Thesafety,stressandseismicanalysesforthecoreshroudtie-rodrepair(References 6,7and8)werereviewedandevaluated todetermine ifthereisanyimpactfromtheverticalweldrepair.Resultsofthereview/evaluation are:~Nospecificdiscussion ofrequirements fortheshroudverticalweldswasfoundinReferences 6,7and8.However,itisclearthatthedesignandtheanalysesofthetie-rodrepairarebasedontheshroudretaining acylindrical configuration intheeventofcrackingintheverticalwelds.Accordingly, theverticalweldrepairisrequiredtopreservethecylindrical shroudconfiguration forallappliedloadsandloadcombinations. | |||
Asidentified inPartB.2above,thisisoneofthefunctional requirements fortheverticalweldrepair.~Noallowance forcoolantleakagethroughcrackedverticalweldsisconsidered inthesafetyanalysisforthetie-rodrepair(Reference 6).Therefore, theverticalweldrepairisrequiredtolimitverticalweldleakage,incombination withotherleakagesources,towithinacceptable levelsforallplantconditions. | |||
Thisisafunctional requirement fortheverticalweldrepairasstatedinPartB.2above.12of14 | |||
~PerReference 8,theseismicfuelloadsaretransmitted directlythroughthetopguideorcoresupportplateringstothetie-rodradialrestraints. | |||
Therefore, itisthestiffness oftheseringsandnotthestiffness oftheshroudcylinders thataffectsthefuelseismicresponse. | |||
~Forashroudcylinderwithfullycrackedverticalweldsandendconditions thatprovidenolateralshearrestraint, thelateralstiffness wouldbereduced.Sinceshroudstiffness isaparameter intheshroudseismicmodel,thisreduction couldimpacttheseismicanalysisresults.However,thispotential impactisnotsignificant sinceforalloftheseismiccasesconsidered inSection5ofReference 8,theHl-H2andH4-H5shroudcylinders havehingedconnections totheadjacentcylinders. | |||
Thishingedconnection providessheartransferbetweentheshroudcylinders andpermitstheshroudcylinders toretaintheiruncracked momentofinertiaandrotational stiffness. | |||
Basedontheabove,theverticalweldrepairhasnoimpactonthetie-rodrepairandthesupporting safety,stressandseismicanalyses. | |||
PARTC-CONCLUSIONS Thissafetyevaluation hasdetermined thattheadditionofverticalweldrepairtotheNMP-1coreshrouddoesnotincreasetheprobability ofoccurrence orconsequences ofanaccidentpreviously evaluated intheNMP-1UpdatedFinalSafetyAnalysisReport(UFSAR)(Ref. | |||
4),doesnotincreasetheprobability ofoccurrence orconsequences ofamalfunction ofequipment important tosafetyevaluated previously intheUFSAR,doesnotcreatethepossibility ofanaccidentormalfunction ofequipment important tosafetyofadifferent typeevaluated previously intheUFSARorreducethemarginofsafetyasdefinedinthebasisforanytechnical specification. | |||
Therefore, itisconcluded thattheadditionofaverticalweldrepairdoesnotconstitute anunreviewed safetyquestion. | |||
PARTD-REFERENCES l.EPRIReport,"BWRVIPVesselandInternals Project,CoreShroudRepairDesignCriteria(BWRVIP-02)," | |||
Revision2,FifthDraftReport,April1988.2.MPRSpecification No.249014-001, "DesignSpecification forNineMilePointNuclearStationUnit1(NMP1)CoreShroudVerticalWeldRepair,"Revision2,December28,1998.13.ASMEBoilerandPressureVesselCode,SectionIII,Division1-Subsection NG,"CoreSupportStructures," | |||
1989Edition.4.NineMilePointNuclearStationUnit1UpdatedFinalSafetyAnalysisReport,Revision15,November1997.5.EPRIReportTR-105747, "BWRVesselandInternals Project,Guidelines forReinspection ofBWRCoreShrouds(BWRVIP-07)," | |||
February1996.13of14 | |||
6.NineMilePointUnit1SafetyEvaluation Number94-080,Rev.1forModification N1-94-003, ReactorCoreShroudRepair.7.GENE-B13-01739-04, "NineMilePointUnit1ShroudRepairHardwareStressAnalysis(NMPCCalculation No.SO-,Vessel-M028)," | |||
Revision0.8.GENE-B13-01739-03, "NineMilePointUnit1NuclearPowerStation,SeismicAnalysis, CoreShroudRepairModification (NMPCCalculation No.SO-Vessel-M027),"Revision0.9.MPR-1966, "NineMilePointUnit1CoreShroudVerticalWeldRepairDesignReport,"December1998,Revision1.PARTE<-ATTACHME<NTS 1.Figures1-1through1-5.14of14 0 | |||
6.0I31.25I2.018.501H1HHV5V1V3V6V2Y4'00V8SHROUDHEADFlANGETOPGUIDESUPPORT90.120000V9Y1100V10REPAIRCLAMP{nP)V1263.50.50H6222.13H6A4V13V15V1416COREPLATESUPPORTSHROUDSUPPORTRINGL~ma/144@)l+Wl S1/61/66(~)FigureMNMP-1CoreShroud%'clds | |||
ShroudLocidngScrew"V4VerticalWeldV4PlateCutoutlnShroudiWallLeftBayonetEccentric IIIIIRightBayonetEccentric ThreadedPinl99SNPRASSOCIATES U.S.PATENTPENO9ICMMPR/NlOll0$IXIl0/N/NIMIFigure1-2.NineMilePoint-Unit1ExplodedViewofV4VerticalWeldClampAssembly | |||
'h~t V4VerticalWeldLockingScrewShroudRightBayonetEccentric LeftBayonetEccentric ThreadedPinlalMPRIlnonlyOl/1$/l41ALI)Figure0-3.NineMilePoint-UnitiInstalled V4VerticalWeldClampAssembly1998LIPRASSOOAIES U.S.PA1ENrPEtlDNG 0 | |||
VcChzShroudV9/V10'I/eNcalWeldIIjLockingScrew-CutoutinShroud'allV9/V10PlateLeftBayonetEccentric ThreadedPinAightBayonetEccentric LLMPR/N%Ol~01ol/04/00I~Figure1R.NineMilePoint-Unit1ExplodedViewofV9/V10VerticalWeldClampAssemblyl998IIPRASSOCIATES U,S.PAIENrPENOINC | |||
V4VerticalWeldShroudLockingScrewRightBayonetEccentric LeftBayonetEccentric V9/Vt0PlateThreadedPinQMPRtI<0OllOIot/ol/04IMtFigure1-5.NineMilePoint-Unit1Installed V9/V10VerticalWeldClampAssemblyPC199SllPRASSOCIAIES U.S.PATOllPEIIDIIIG | |||
~"0}} | ~"0}} | ||
Revision as of 21:45, 29 June 2018
| ML17059C550 | |
| Person / Time | |
|---|---|
| Site: | Nine Mile Point |
| Issue date: | 01/31/1999 |
| From: | MCCURDY H W MPR ASSOCIATES, INC. |
| To: | |
| Shared Package | |
| ML17059C551 | List: |
| References | |
| MPR-1966(NP), MPR-1966(NP)-R, MPR-1966(NP)-R00, NUDOCS 9902100204 | |
| Download: ML17059C550 (104) | |
Text
ENCLOSUKE3 1%1NEMHEPOINTUI.'GTl(NMPl)CORESHROUDVERTICALWELDREPAIRDESIGNREPORTNON-PROPMKTARY VERSION9902i00204 990203'DR ADOCK05000220PPDR 4~4'J raqMpRASSOCIATES INC.ENGINEERSNineMilePointUnit1CoreShroudVerticalWeldRepairDesignReportMPR-1966(NP)Non-Proprietary VersionRevision0January1999Preparedby:H.illiamMurdyReviewedby:-aiB.%wanner Approvedby:WilliamR.SchmidtPrincipal Contributors H.WilliamMcCurdy,MPRAssociates CraigB.Swanner,MPRAssociates, BenjaminR.Lane,MPRAssociates QUALITYASSURANCE DOCUMENTThisdocumenthasbeenprepared,
- reviewed, andapprovedinaccordance withtheQualityAssurance requirements of10CFR50AppendixB,asspecified intheMPRQualityAssurance Manual.320KINGSTREE'TALEXANDRIA, VA22314-3230 703.519-0200 FAX:703-519-0224
TableofContents1Introduction andSummary.~.~~....~.........
~......~..~..~1-11.1Introduction 1.2Summary............
~~.1.2.1RepairOverview.......................................
1-11.2.2Structural andDesignEvaluations,.......................
1-11.2.3SystemEvaluations
..........
1.2.4MaterialandFabrication 1-21-21.2.5Pre-Modification andPost-Modification Inspection
......2Background 2.1ReactorInternals DesignBases...........
~....~........
2.2Functional Requirements 1-22-12-13Description ofRepair.............
~...~~...........
~......~3-13.1DesignObjectives
.3.2DesignCriteria...........3-13-13.3Description ofRepairComponents andDesignFeatures....4Structural andDesignEvaluation
.~~...~~~..~~.....~....4.1DesignLoadsandLoadCombinations 4.2AnalysisModelsandMethods4.3RepairHardwareEvaluation
~4.3.1RepairHardwareStructural Evaluation 4.3.2FlowInducedVibration 4.3.3Radiation Effects.3-14-14-14-14-14-14-24.4ShroudEvaluation
......4-34.5ImpactonTie-RodRepair....
4-3MPR-1966(NP)Revision0n
4.6LoosePartsConsiderations
.444.7Installation Cleanliness
~445SystemsEvaluation
.......................................
5-15.1BypassFlowforNormalOperation
.5.2BypassFlowforOtherConditions
..~~~~~~~~~5-25.3Downcomer FlowandOtherEffects............
~..,........
5-26Materials andFabrication
................................
6-16.1MaterialSelection 6-16.2MaterialProcurement Specifications 6.3MaterialFabrication
~~~~~~~~~~~~~~6-27Pre-Modification andPost-Modification inspection 7.1Pre-Modification Inspection 7.2Post-Modification Inspection
~~~~~~~~~~~~~7-1~~~~~~~~717.2.1PriortoRPVReassembly
.7.2.2DuringSubsequent Refueling Outages~~~~~~~~~~~~~7-18References
..............................................
8~MPR-1966(NP)Revision0
Tables4-1CoreShroudVerticalWeldRepairDesignLoadsandLoadCombinations
............................................
464-2LimitingStressesintheRepairClampAssembly...............
4-74-3ShroudStressRatioSummary..............................
4-86-1RepairClampMaterials
...................................
6-3MPR-1966(NP)Revision01V
Figures1-1NineMilePointUnit1CoreShroudWelds...~...~~.~..~..~...1-31-2NineMilePointUnit1Assembly.~~...~..1-3NineMilePointUnit1Assembly1-4NineMitePointUnit1ClampAssembly1-5NineMilePointUnit1Assembly....~..~~ExplodedViewofV4VerticalWeldClamp~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Installed V4VerticalWeldClamp~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ExplodedViewofV9/V10VerticalWeld~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Installed V9V/10VerticalWeldClamp~~~~~~~~~MPR-1966(NP)Revision0
introduction andSummary1.1Introduction Thisreportdocuments thedesignofthecoreshroudverticalweldrepairfortheNineMilePointNuclearStationUnit1(NMP-1).Thereportfollowstheguidelines inBWRVIP-04
[1],"GuideforFormatandContentofCoreShroudRepairSubmittals."
Asummaryoftherepairdesign,supporting evaluations,
- material, fabrication andinspection requirements isprovidedinthisreport.1.2SummaryTheNMP-1coreshroudverticalweldrepairaddresses thecrackingofverticalweldsV4,V9andV10(seeFigure1-1).TherepairisnotincludedundertheASMEBoilerandPressureVesselCodeSectionXIdefinition forrepairorreplacement.
Rather,therepairisdeveloped asanalternative repairpursuantto10CFR50.55a(a)(3).
Assummarized below,therepairsatisfies therequirements specified inBWRVIP-02
[2],"CoreShroudRepairDesignCriteria."
Therepairisconsistent withthecurrentplantlicensing basisandensuresthattheshroudwillsatisfyitsoperational andsafetyfunctions.
1.2.1RepairOverviewAsshowninFigures1-2through1-5,therepairconsistsofrepairclampswhichholdtheshroudtogetheratthefailedverticalweldlocations.
Therepairdesignspecification isprovidedinReference 3.1.2.2Sfrucfural andDesignEvaluations Assummarized below,therepairsatisfies thestructural requirements specified inReferences 2,3and4.~Ridl-TPpIIpdIpIIIdcriteriafortherepairhardware.
Inparticular, althoughtherepairisnotconsidered anASMEB&PVCoderepair,therepairsatisfies theDesignbyAnalysisstressandfatiguecriteriaoftheASMEBoiler&MPR-1966(NP)Revision0
PressureVesselCode,SectionIII,Subsection NG[4].SeeSection4.3ofthisreportforadditional information ontherepairassemblystructural evaluation.
~Shroud-Thestressesintheshroudresulting fromtherepairarewithinthestressallowables ofSectionIII,Subsection NGoftheASMEBoiler&PressureVesselCode[4].SeeSection4.4ofthisreportforadditional information ontheshroudstructural evaluation.
1.2.3SystemEvaiuafions Theleakagethroughthefailedverticalweldswiththerepairclampsinstalled wascalculated andfoundtobewithintheacceptance criteria.
Thisincludedtheleakagethroughtherepairclampshroudattachments.
SeeSection5ofthisreportforadditional information ontheseevaluations.
1.2.4MaferiaiandFabrication Thematerials specified foruseintherepairassemblies areresistant tostresscorrosion crackingandhavebeenusedsuccessfully intheBWRreactorcoolantsystemenvironment.
Therepairassemblies arefabricated fromsolutionannealedType304or316stainless steelorsolutionannealedTypeXM-19stainless steel.Noweldingispermitted inthefabrication orinstallation oftherepair,andspecialcontrolsandprocessqualifications areimposedinthefabrication oftherepairtoassureacceptable materialsurfaceconditions aftermachining.
SeeSection6ofthisreportforadditional information onrepairhardwarematerials andfabrication.
1.2.5Pre-Modification andPost-Modification Inspections Theinspections tobeperformed tosupporttherepairaresummarized below.Pre-Modification Insection-Priortoinstallation oftheshroudrepair,visualinspections willbeperformed tosupporttherepairinstallation.
Theseinspections arelistedinSection7.1.PostModification Insection-Priortoreactorpressurevesselreassembly, visualinspections willbeperformed toverifytheproperinstallation ofrepair.Thescopeoftheseinspections isdiscussed inSection7.2.Inspection oftheshroudandtherepairinfuturerefueling outageswillbebasedontheBWRVIP-07
[6],"Guidelines forReinspection ofCoreShrouds."
MPR-1966(NP)Revision01-2
~I~~s~~+~0S~R~~~o~~~o~~~~~~~~~I
ShroudLockingScrew"t14VerticalWeldV4PlateCutoutlnShroudlWallLeftBayonetEccentric
'8RightBayonetEccentric ThreadedPln199SNPRASSOCIATES U.S.PATENTPENONG5BMPR)slOl~OS00)l0/l1/N(AD)Figure1-2.NineMilePoint-Unit1ExplodedViewofV4VerticalWeldClampAssembly
V4VerticalWeldLoctdngScrewShroudRightBayonetEccentric LeftBayonetEccentric V4PlateThreadedPinldMPR/tieOllOl0$/21/$4(JSI)Figure1-3.NineMilePoint-Unit1Installed V4VerticalWeldClampAssemblyI998IIPRASSOCAIES U.S.PAIEIITPEIIOIIIC
ShroudIV9jV10VerticalWeldLockingScrewCutoutinShroudWallV9/V10PlateLeftBayonetEccentric ThreadedPinRightBayonetEccentric FAHMPR/N$01~01ol/c4/ssIAu)Figure1%.NineMilePoint-Unit1ExplodedViewofV9/V10VerticalWeldClampAssemblyPCI99SMPRASSOCNTES U.S.PAIENrPENQNG
V4VerticalWeldShroudLockingScrewRightBayonetEccentric LeftBayonetEccentric V9jV10PlateThreadedPinQMPRtlnOl~C4IN/4I/nIAJTFigure0-5.NineMilePoint-UnitIInstalled V9/V10VerticalWeldClampAssemblyPC199SIJPRASSOCIATES IAS.PATEtITPEIITNNO
2Backround2.1Reactorinternals DesignBasesFromtheNMP-1FinalSafetyAnalysisReport(Updated)
[5],thereactorinternals aredesignedto:1.Providesupportforthefuel,steamseparators, dryers,etc.,duringnormaloperation andaccidentcondition.
2.Maintainrequiredconfigurations andclearances duringnormaloperation andaccidentconditions.
3.Circulate reactorcoolanttocoolthefuel.4.Provideadequateseparation ofsteamfromwater.2.2Functional Requirements fortheRepairThefunctional requirements fortherepairareidentified inBWRVIP-02
[2].Therequirements are:1.Structurally replacetheverticalweldsandmaintainthestressesoftheaffectedshroudcylinderwithinASMESectionIIIstressallowables forallloadcombinations andservicelevels.2.Limitcoolantleakagethroughthecrackedverticalweldstoacceptable levelsfornormaloperation andtransient plantconditions.
NotethattheNMP-1plantdoesnotrequireafloodable volumetobemaintained foraccidentconditions toprovidefoxadequatecorecooling.MPR-1966(NP)Revision02-1
DescritionofReair3.1DesignObjectives Thefunctionoftherepairistostructurally replacefailedV4,V9andV10(seeFigure1-1)coreshroudwelds.3.2.DesignCriteriaTherepairisdeveloped asanalternative repairpursuantto10CFR50.55a(a)(3).
Therepairisconsistent withandmeetsthecriteriadeveloped bytheBoilingWaterReactorVesselandInternals Project,asstatedinBWRVIP-02
[2].Thedesignspecification fortherepairisprovidedinReference 3.Therepairisdesignedtosatisfythestructural requirements ofSectionIII,Subsection NG,"CoreSupportStructures,"
oftheASMEBoiler&PressureVesselCode[4].3.3.Description ofRepairComponents andDesignFeaturesTherepairclampisillustrated inFigures1-2through1-5:~Figures1-2and1-3showexplodedandinstalled viewsoftherepairclampforverticalweldV4.~Figures1-4and1-5showexplodedandinstalled viewsoftherepairclampforverticalweldsV9andV10.Eachrepairclampconsistsofaclampplateandtwobayoneteccentric/threaded pinassemblies.
Theclampisinstalled inthrough-wall holesmachinedintheshroudbyEDMprocesses oneachsideoftherepairedverticalweld.Therepairweldclamptransmits theshroudhooppressureforcewhichwouldnormallybetransmitted throughtheshroudverticalweld.Thestructural loadpathisfromtheshroudthroughabayoneteccentric/threaded pintotheclampplateandthroughtheclampplateandotherbayoneteccentric/threaded pinassemblybacktotheshroud.MPR-1966(NP)Revision03-1
Theinstallation stepsfortherepairclampareasfollows:~Therepairclampisassembled with:Thepinsretracted withtheirflangesurfacesflushwiththeplateinnersurfaces.
Thebayoneteccentrics rotatedtothepositionwherethepinaxisisalignedwiththecenterofthe1.563inchradiusportionoftheshroudhole.FortheV4clamp,therightbayoneteccentric/threaded pinassemblyisinsertedintheclampplateaftertheclampplatehasbeenmovedinpositionbetweenthecoreshroudandthecorespraypipe.~Thepinsarethreadedinwarduntiltheirflangesextendbeyondtheshroudinsidesurfaces.
~Thebayoneteccentrics arerotatedtobringthepinshaftsintothe1.265inchradiusportionoftheshroudholeandintocontactwiththeshroudholesurfaces.
~Thebayoneteccentrics arefixedintopositionwiththelockingscrewswhichextendintomatingslotsintheeccentrics.
Thelockingscrewsarefixedinpositionbycrimpingattwolocations.
~Thepinsarethreadedoutwardtobringtheirflangesurfacesintocontactwiththeshroudinnersurfaceandtorquedtoprovideaspecified preload.Anallowable of50percentforrelaxation ofpreloadduetocombinedthermalandirradiation effectsisprovidedinthepreloaddetermination.
~Thepinsarelockedinpositionbycrimpingtotheeccentric attwolocations.
Notethattheclampinstallation providesthefollowing features:
Theleakagepathsthroughtheshroudholesareeffectively sealedbytheextendedsealringportionsoftheclampplatewhicharemachinedtoaradiusequaltotheshroudradiusandseatontheshroudsurface.Thepreloadbetweenthepinflanges,theclampplateandtheshroudpreventsrelativedisplacement betweentherepairclampandshroudduetoflowinducedvibration loading.PerReference 10,clamploadingduetoshroudvibration isnegligible.
MPR-1966(NP)Revision03-2
Therepairdesignhasconsidered crevicesandtheirimpactonstresscorrosion crackingbyusingmaterials whicharehighlyresistant toIntergranular StressCorrosion Cracking(IGSCC).Thematerial's IGSCCresistance isverifiedbytestingperrequirements ofASTMA262PracticeE.SeeSection6ofthisdesignsummaryreportforfurtherdiscussion onmaterials andfabrication.
MPR-1966(NP)Revision03-3
Structural andDesinEvaluation 4.1DesignLoadsandLoadCombinations Theloadsandloadcombinations arelistedintheDesignSpecification fortherepair[3].Theseloadsandloadcombinations aresummarized inTable4-1.Acombination ofhandcalculations andfiniteelementanalysesareusedtodefinethedesignloads.Thecoreshroudpressuredifferentials listedintheDesignSpecification areusedinthedesignoftherepair.Theonlydesignloadsofsignificance totherepairarethoseduetodifferential pressureacrosstheshroudandthoseduetodifferential thermalexpansion betweentheshroudandrepairclamp.4.2AnalysisModelsandMethodology Analysismodelsandmethodsusedtoevaluatetherepairhardwareandexistingstructures arediscussed below.Acombination ofhandcalculations andfiniteelementanalyseswereusedtoevaluatetherepairhardwareandexistingstructures.
Three-dimensional finiteelementanalysesusingtheANSYScodewereusedtodetermine thestructural responseoftheshroud.Handcalculations wereusedintheevaluations oftherepairhardware.
4.3RepairHardwareEvaluation 4.3.7RepairHardwareStructural Evaluation Therepairhardwaresatisfies thestructural criteria.
Inparticular:
~TheDesignbyAnalysisstressandfatiguecriteriaoftheASMEBoiler8r,PressureVesselCode,SectionIII,Subsection NGaresatisfied.
MPR-1966(NP)Revision04-1
~Themaximumfatigueusageintherepairassemblyduetothermalexpansion (including startupandshutdown) loadsoccurinthebayonetholeintherepairclampplate.Thefatigueusageatthislocationislessthan3%.~Themaximumfatigueusageintheshroudattherepairattachments isnegligible.
~Thefatigueusagefromflowinducedvibration isnegligible.
~ThereisnonetsectionyieldingforServiceLevelsA/8loads.Theratioofthecalculated stresstotheallowable stressforthelimitingloadcasesissummarized inTable4-2fortheclampcomponents.
4.3.2FlowInducedVibration Therepairclampswereanalyzedtoensurethatreactorcoolantflowwouldnotinduceunacceptable vibration.
Thefollowing basicapproachwasfollowedtoprovideresistance toflow-induced vibration loading:~Theflow-induced loadperunitareaoftherepairclampisconservatively calculated basedonadifference inpressureequaltoone-timestheflowvelocityheadacrosstheclampplate.~Theclampispreloaded bytightening thethreadedpinstoaforcewhichisgreaterthanthesumoftheflow-induced loadplusthepressureleadactingtoejecttheclampfromtheshroud.Theminimumpreloadisincreased byafactorof50%toaccountforrelaxation duetocombinedthermalandirradiation effects.Thisapproachprovidesassurance thatnoclampdisplacements andnoalternating stresswillresultfromtheflow-induced vibration loading.NotethatperTableB.6.1ofReference 10,theshroudvibration amplitude isonlyonemilandtherefore hasanegligible effectontherepairclampvibration.
4.3.3Radiation EffectsTheeffectsofradiation wereconsidered intheselection oftherepairmaterials andfabrication processes.
Relaxation duetothermalandirradiations effectswasconsidered inthedetermination ofthreadedpinpreload.Asdiscussed inSection6,allmaterials usedintherepairhavebeenusedsuccessfully foryearsintheBWRenvironment.
MPR-1966(NP)Revision04-2
4.4ShroudEvaluation Thestresses1nthecoreshroudwereevaluated tothestresscriteriaoftheASMEB&PVCode,SectionIII,Subsection NG[4].Theratioofcalculated shroudstressestotheallowable stressforthelimitingloadcasesissummarized inTable4-3.Asshowninthetable,theshroudcancarrytheappliedloadswithinthecodestressallowables foralldefinedloadings.
4.5ImpactonTie-RodRepairThesafety,stressandseismicanalysesforthecoreshroudtie-rodrepair(References 7,8and9)werereviewedandevaluated todetermine ifthereisanyimpactfromtheverticalweldrepair.Resultsofthereview/evaluation are:Nospecificdiscussion ofrequirements fortheshroudverticalweldswasfoundinReferences 7,8and9.However,itisclearthatthedesignandtheanalysesofthetie-rodrepairarebasedontheshroudretaining acylindrical configuration intheeventofcrackingintheverticalwelds.Accordingly, theverticalweldrepairisrequiredtopreservethecylindrical shroudconfiguration forallappliedloadsandloadcombinations.
Asidentified inSection2.2above,thisisoneofthefunctional requirements fortheverticalweldrepair.Noallowance forcoolantleakagethroughcrackedverticalweldsisconsidered inthesafetyanalysisforthetie-rodrepair(Reference 7).Therefore, theverticalweldrepairisrequiredtolimitverticalweldleakage,incombination withotherleakagesources,towithinacceptable levelsforallplantconditions.
Thisisafunctional requirement fortheverticalweldrepairasstatedinSection2.2above.PerReference 9,theseismicfuelloadsaretransmitted directlythroughthetopguideorcoresupportplateringstothetie-rodradialrestraints.
Therefore, itisthestiffness oftheseringsandnotthestiffness oftheshroudcylinders thataffectsthefuelseismicresponse.
Forashroudcylinderwithfullycrackedverticalweldsandendconditions thatprovidenolateralshearrestraint, thelateralstiffness wouldbereduced.Sinceshroudstiffness isaparameter intheshroudseismicmodel,thisreduction couldimpacttheseismicanalysisresults.However,thispotential impactisnotsignificant sinceforalloftheseismiccasesconsidered inSection5ofReference 9,theH1-H2andH4-H5shroudcylinders havehingedconnections totheadjacentcylinders.
Thishingedconnection MPR-1966(NP)Revision04-3
providessheartransferbetweentheshroudcylinders andpermitstheshroudcylinders toretaintheiruncracked momentofinertiaandrotational stiffness.
Forthetie-roddesignbasisconfiguration withaclearance of0.75inchbetweentheshroudandthemid-supports, Reference 9determines thattherearenolateralseismicloadsappliedtotheshroudduringaseismicevent.However,withtheas-installed clearance of0.375inchbetweentheshroudandthemid-supports, thereareseveralLevelDloadcombinations wheretherelativeseismicdisplacement atthemid-support exceedsthe0.375inchclearance.
Theresulting mid-support loadwasevaluated asaprimaryload,andtheloadsreactedbytheverticalweldrepairweredetermined tobeacceptable.
Basedontheabove,theverticalweldrepairhasnoimpactonthetie-rodrepairandthesupporting safety,stressandseismicanalyses.
4.6.LoosePartsConsideration Thevariouspiecesthatmakeuptherepairassemblies arecapturedandrestrained byappropriate lockingdevicessuchaslockingcupsandcrimping.
Theselockingdevicedesignshavebeenusedsuccessfully formanyyearsinreactorinternals.
Loosepiecescannotoccurwithoutfailureofthelockingdevicesorrepairassemblycomponents.
Suchlockingdevicesandthestressesinthepieceswhichmakeuptherepairclampsarewellwithinallowable limitsfornormalplantoperation.
4.7.Installation Cleanliness Alltoolingusedforinstallation willbeinventoried andsubjected toforeignmaterialexclusion procedures wheninthereactorvesselarea.Toolingwillbecheckedforloosepartspriortoinstallation intothecanal.Furthermore, thetoolingwillbeextensively fieldhardenedpriortositedeployment toreducethepossibility oftoolfailuresand/orbreakswhichcouldpotentially resultinloosepartsremaining inthevessel.Iffailuresoccur,thepartswillberetrieved fromthereactorvesselorcavity.Foreachrepairclamp,through-thickness holesaremachinedintheshroudsupportusingtheEDMprocess.Thisprocessresultsinaveryfinedebris(swarf'eing generated.
Thisdebrisisprimarily comprised ofcarbon,nickel,iron,chromium, etc.,whicharetheprimaryelementscontained intheshroudandEDMelectrode material.
Thisswarfisflushedandvacuumedfromthecutduringthemachining operation, thenfilteredpriortodischarge backintothecavity.TheEDMelectrode isdesignedtoonlygenerateswarf.Aslugisnotgenerated astheelectrode breaksthroughtheinsidesurfaceoftheshroud.Also,adebriscollection systemisMPR-1966(NP)Revision044
positioned ontheshroudinsidesurfacetocollecttheEDMswarfgenerated whentheEDMelectrode breaksthroughtheinsidesurfaceoftheshroud.TheEDMdebrissystemhasa10micronanda2micronfilterinseries.Eachfilterhas200sq.ft.ofeffective surfacearea.The10micronfilterisratedat99%efficient for10micronsand80%efficient forjustbelow2.5microns.The2micronfilteris99%efficient for2micronsand90to93%efficient for1micron.Asthesefiltersareloaded,theirefficiency willgreatlyincrease.
Thetotalamountofswarfcollected bythisEDMdebriscollection systemhasbeenqualified.
Thedebrissystemcollected over95%ofthedebristhatwasgenerated.
Thisqualification wasperformed withoutaninternaldebriscup.
Therefore, thetestwasconservative.
Thesmallamountofswarfnotcollected bytheEDMdebrissystemisnotdetrimental totheBWRsystem.'ISubsequent tocompletion oftherepairhardwareinstallation activities, afinalvideoinspection inthereactorvesselandcavitywillbeperformed toverifynoforeignobjectentryduringtherepair.MPR-1966(NP)Revision04-5
Table4-1CoreShroudVerticalWeldRepairDesignLoadsandLoadCombinations No.EventNormalOperation UpsetNo.1UpsetNo.2Emergency No.1Emergency No.2Emergency No.3FaultedNo.1FaultedNo.2FaultedNo.3LoadCombination<'1't'1'<'1 NormalPressure+DW+SteadyStateThermalUpsetPressure+DW+UpsetThermalUpsetPressure+DW+OBE+SteadyStateThermal"'ormal Pressure+DW+DBESteamLineLOCA+DWRecirculation OutletLineLOCA+DWSteamLineLOCA+DW+DBERecirculation InletLineLOCA+DW+DBERecirculation OutletLineLOCA+DW+DBENotes:(1)Loadcombinations asspecified inTable2-2ofGENE-B13-01739-04
[8].(2)DW=Deadweight, LOCA=LossofCoolantAccident, DBE=DesignBasisEarthquake, OBE=Operating BasisEarthquake.
(3)Alleventsincludeflowloads.(4)OBEloadsareequivalent toDBEloads.(5)Theonlydesignloadsfortherepairclampareexpectedtobethoseduetodifferential pressureacrosstheshroudandthoseduetodifferential thermalexpansion betweentheshroudandrepairclamp.Otherloadsshallbeevaluated toconfirmthattheyneednotbeconsidered asdesign-basis loads.MPR-1966(NP)Revision04-6
Table4-2LimitingStressesintheRepairClampAssemblyRepairLocationLimitingStressLocationServiceLevel:ServiceCondition StresstypeStressLimitStressRatioV9orV10BayonetConnection BayonetConnection BayonetConnection A:NormalOperation B:UpsetPressureB:LossofFeedwater ThermalTransient BearingBearingBearing1.0Sy0.4001.0Sy0.6041.0Sy0.636BayonetConnection C:SteamLineBreakBearing1.5Sy0.994PlateatBayonetHoleA:NormalOperation MembranePlusBending1.5Sm0.367PlateatBayonetHoleB:UpsetPressureMembranePlusBending1.5Sm0.555V4BayonetConnection B:LossofFeedwater ThermalTransient Bearing1.0Sy0.479PlateatBayonetHoleC:SteamLineBreakMembranePlusBending2.25Sm0.915MPR-1966(NP)Revision04-7
Table4-3ShroudStressRatioSummaryRepairLocationV9orV10V4ServiceLevel:ServiceCondition A:NormalOperation B:UpsetPressureB:LossofFeedwater Transient C:MainSteamLineBreakA:NormalOperation B:UpsetPressureB:LossofFeedwater Transient StressTypePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBendingPrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHoleStressLimitSm1.5Sm3SmSm1.5Sm3Sm3Sm3Sm1.5Sm2.KSmSm1.5Sm3SmSm1.5Sm3Sm3Sm3SmStressRatio0.200.190.410.300.290.540.660.55O.e70.460.070.080.310.110.110.410.570.49C:MainSteamLineBreakPrimaryMembranePrimaryMembranePlusBending1.5Sm2.25Sm0.170.18MPR-1966(NP)Revision04-8
5.2BypassFlowforOtherConditions Asdiscussed inPartB.3ofReference 7,therearenodetrimental effectsofshroudbypassfloweitheronplantanticipated abnormaltransients oronemergency corecoolingsystemperformance.
5.3Downcomer FlowandOtherEffectsThe'effects oftherepairclampassemblyontheflowinthereactorvesseldowncomer regionare:~TheV4repairclampreducestheflowareainthedowncomer atthetopofthecoreshroudbyapproximately 2.5percent.TheV9/VOclampswouldreducetheflowareabyalesseramountbecausetheyarepositioned atalowerelevation wherethedowncomer flowareaisgreater.~Thepressuredropassociated withtheV4clampisapproximately
0.0 06psidfornormaloperation
and0.044psidfortherecirculation linebreakcondition.
FortheV9/V10clamps,thepressuredropislessthanfortheV4clamp.FortheV4,V9andV10clamps,thetotalweightislessthan1000lbswhichisnegligible comparedtothetotalshroudweight.Thedisplaced reactorwaterinventory islessthantwocubicfeetofwater,whichisalsonegligible.
MPR-1966(NP)Revision05-2
Materials andFabrication 6.1MaterialSelection Thematerials specified foruseintherepairclampsareresistant tostresscorrosion crackingandhavebeenusedsuccessfully intheBWRreactorcoolantsystemenvironment.
AsshowninTable6-1,therepairclampsarefabricated fromsolutionannealedType304or316orTypeXM-19stainless steel.XM-19materialisusedforallpartsexceptthelockingscrewwhereType304/316orTypeXM-19stainless steelisused.AsrequiredbytheDesignSpecification, allmaterials specified foruseintheshroudrepairareinaccordance withASMEorASTMapprovedspecifications.
Allmaterials havebeenpreviously usedintheBWRenvironment similartothatexperienced bytherepairclamps.Thematerials arenotsusceptible togeneralcorrosion andareresistant toIntergranular StressCorrosion Cracking(IGSCC)inaBWRenvironment.
Additional information onmaterialspecification, procurement andfabrication requirements implemented toensurethattherepairhardwareishighlyresistant toIGSCCisprovidedinSections6.2and6.3.Materialproperties andallowable stressesforrepaircomponents areasspecified intheASMEB&PVCode,SectionsIIandIII,1989EditionforClass1components.
6.2MaterialProcurement Specifications Allhardwareisconstructed fromaustenitic stainless steelmaterial.
Weldingonthesematerials isprohibited bytheprocurement requirements.
Thesematerials asprocured, arehighlyresistant toIGSCC.NDEofmaterialusedforload-bearing membersisperformed inaccordance withASMECodeSectionIII,Subsection NG-2000.Specificmaterialrequirements aresummarized belowforthematerialusedintherepair.Allstainless steelmaterialisprocuredinaccordance withtheapplicable ASMEorASTMstandards supplemented bythefollowing:
~Type304/316alloyshave0.03%maximumcarbon.TypeXM-19alloyhas0.04%maximumcarbon.Allstainless steelmaterials arefullcarbidesolutionannealedandeitherwaterorforcedairquenchedfromthesolutionannealing MPR-1966(NP)Revision06-1
temperature sufficient tosuppresschromiumcarbideprecipitation tothegrainboundaries inthecenterofthematerialcrosssection.Solutionannealing ofthematerialisthefinalprocessstepinmaterialmanufacture.
ASTMA262PracticeEtestsareperformed oneachheat/lotofstainless steelmaterialtoverifyresistance tointergranular attackandthatanon-sensitized microstructure exists(nograinboundarycarbidedecoration).
- Pickling, passivation oracidcleaningofloadbearingmembersisprohibited aftersolutionannealing unlessanadditional
0.0 10inchesmaterialthickness
isremovedbymechanical methods.Forothernon-loadbearingitems,metallography at500Xisperformed onmaterials fromeachheat,similarly processed, toverifyexcessive intergranular attackhasnotoccurred.
Controlsarealsospecified intheprocurement documents toprecludematerialcontamination duringmaterialprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens.
6.3MaterialFabrication Noweldingorthermalcuttingisusedinthefabrication andassemblyoftheitems.Cuttingfluidsandlubricants areapprovedpriortouse.Controlsarealsospecified toprecludematerialcontamination duringprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens.
Passivation, picklingoracidcleaningoftheitemsisprohibited.
Liquidpenetrant testingafterfinalmachining orgrindingoncriticalsurfacesisperformed.
Abusivemachining andgrindingpractices areavoided.Machining andgrindingprocessparameters andoperations arecontrolled.
Additionally, machining processparameters incriticalloadbearingthreadedareasarecontrolled, basedonqualification samples,whichhavebeensubjected tomacroscopic andmetallographic examinations andmicrohardness testing.Evaluations includehardnessmagnitudes anddepths,depthofseveremetaldistortion, depthofvisibleevidenceofslipplanesanddepthofcoldwork.MPR-1966(NP)Revision06-2 t
Table6-1RepairClampMaterials Parti'PlateBaonetEccentric ThreadedPinV4ClamXM-19XM-19XM-19Material'"
V9/V10ClamXM-19XM-19XM-19LockingScrewType304/316orXM-19@Type304/316orXM-19"'otes:(1)SeeFigures1-2and1Aforidentification ofparts.(2)Allmaterialissolutionannealed.
(3)XM-19materialisusedforthelockingscrewsfortheNMP-1repairclamps.MPR-1966(NP)Revision06-3
Pre-Modification andPost-Modification Insection7.1Pre-Modification Inspection Thefollowing visualinspections willbeperformed tosupporttherepairinstallation:
Theazimuthal locations oftheV4,V9andV10verticalweldswillbeidentified usingvisual,ultrasonic oreddycurrentmethods.Ifweldscannotbeidentified
- visually, amethodforvisuallyidentifying theweldlocations willbedeveloped whichinvolvesmarkingtheshroudorindexingtotheweldfromotherinternals.
Following identification oftheV4weld,measurements willbemadetoverifythatadequateclearance existsbetweentheverticalweldandthecoresprayverticalpipingtoallowinstallation oftherepairclamp.TVvisualinspection willbeperformed attheV4,V9and/orV10verticalweldswheretheverticalrepairclampswillbeinstalled toassurethattherearenointerferences oradditional cracking.
Anengineering evaluation willbeperformed toaddressanyinterferences oradditional crackingidentified.
7.2Post-Modification Inspection 7.2.1PriortoRPVReassembly Properinstallation ofeachverticalweldrepairclampassemblywillbeconfirmed andrecordedbyTVvisualinspection fromboththeinsideandoutsideoftheshroud.Theinspection willverif'ythatallpartsareinstalled asrequiredandnoforeignobjectsremain.Asaminimum,thefollowing areaswillbeinspected:
Thetopandbottomoftherepairclamptoverifythattheclearance betweentheplateandtheshroudsurfaceisconsistent withthedesignclearance.
Theslotsintheplateandtheeccentrics toverif'ythattheeccentrics areproperlyalignedwiththeplate.Thetopofthelockingscrewtoverifythatthelockingscrewisfullyengagedwiththeeccentric.
MPR-1966(NP)Revision07-1
~Thepinliptoverifythatthepinlipareaoverlapping theshroudinsidesurfaceisconsistent withthedesignconfiguration.
~Theaxiallocationofthethreadedpinrelativetotheeccentric toqualitatively verifythatthethreadedpinisengagedwiththeshroudinnerdiameter.
~Thelockingscrewsandthreadedpinstoconfirmcrimping.
~Afinalvideoinspection inthereactorvesselandcavitywillbeperformed toverifynoforeignobjectentryduringtherepair.7.2.2DuringSubsequent Refueling OutagesInspection oftherepairclampsinfuturerefueling outageswillbebasedontherequirements inSection4.2ofBWRVIP-07
[6],"Guidelines forReinspection ofCoreShrouds."
Theinspection willinvolvethevisualinspection oftheoverallclampandthethreadedpin-to-eccentric andlockingscrew-to-eccentric crimpareastoconfirmnochangefromtheircondition duringthepost-installation inspection.
Inspection frequency willbeinaccordance withBWRVIP-07 requirements.
MPR-1966(NP)Revision07-2 0
References 1.EPRIReportTR-105692, "BWRVIPVesselandInternals Project,GuideforFormatandContentofCoreShroudRepairDesignSubmittals (BWRVIP-04),"
October1995.2.EPRIReport,"BWRVIPVesselandInternals Project,CoreShroudRepairDesignCriteria(BWRVIP-02),"
Revision2,FifthDraftReport,April1988.3.MPRSpecification No.249014-001, "DesignSpecification forNineMilePointNuclearStationUnit1(NMP1)CoreShroudVerticalWeldRepair,"Revision1,October12,1998.4.ASMEBoilerandPressureVesselCode,SectionIII,Division1-Subsection NG,"CoreSupportStructures,"
1989Edition.5.NineMilePointNuclearStationUnit1FinalSafetyAnalysisReport(Updated),
Revision15,November1997.6.EPRIReportTR-105747, "BWRVesselandInternals Project,Guidelines forReinspection ofBWRCoreShrouds(BWRVIP-07),"
February1996.7.NineMilePointUnit1SafetyEvaluation Number94-080,Rev.1forModification N1-94-003, ReactorCoreShroudRepair.8.GENE-B13-01739-04, "NineMilePointUnit1ShroudRepairHardwareStressAnalysis(NMPCCalculation No.SO-Vessel-M028),"
Revision0.9.GENE-B13-01739-03, "NineMilePointUnit1NuclearPowerStation,SeismicAnalysis, CoreShroudRepairModification (NMPCCalculation No.SO-Vessel-M027),"
Revision0.10.NEDE-13109, "OysterCreekStartupTestResults,"
July1970.MPR-1966(NP)Revision08-1
ENCLOSURE4 YOFNIAGARAMOHAWK10CFR50.59 SAFETYEVALUTION
CORESHROUDVERTICALWELDREPAIRCLAMPSSAFETYEVALUATION SUMMARYDI<'.SCRIPTION tTheNMP-1coreshroudverticalweldrepairaddresses thecrackingofverticalweldsV4,V9andV10(seeFigure1-1).Therepairbasically consistsofaclampwithaplatewithattachedpinswhichareinsertedintoholeswhicharemachinedbytheElectricDischarge Machining (EDM)processoneithersideoftheflawedverticalweld.Theclampsbridgeacrosstheflawedverticalweldandtransmitthepressureloadnormallytransmitted throughtheverticalweld.TwoclampsareusedfortheV9weld,twoclampsfortheV10w'eldandoneclampisusedfortheshorterV4weld.Therepairclampscanbeinstalled oneachweldindependently, thatisanyone,twoorthreeweldscanberepairedwiththeserepairclamps.Priortothisrepairbeingutilizedasastructural replacement forthewelds,anNRCapprovalwillberequired.
Assummarized below,therepairsatisfies therequirements specified inBWRVIP-02
[1],"CoreShroudRepairDesignCriteria."
Therepairisconsistent withthecurrentplantlicensing basisandensuresthattheshroudwillsatisfyitsoperational andsafetyfunctions.
Fordetailsoftherepairclampevaluations, whicharesummarized below,seethedesignreportfortherepair,reference 9.PARTA.1-GE<NERAL Therepairclampdesignisillustrated iriFigures1-2through1-5:~Figures1-2and1-3showexplodedandinstalled viewsoftherepairclampforverticalweldV4.~Figures1-4and1-,5showexplodedandinstalled viewsoftherepairclampsforverticalweldsV9andV10.Eachrepairclampconsistsofaclampplateandtwobayoneteccentric/threaded pinassemblies.
Theclampsareinstalled inthrough-wall holesmachinedintheshroudbyEDMprocesses oneachsideoftherepairedverticalweld.Therepairweldclampstransmittheshroudhooppressureforcewhichwouldnormallybetransmitted throughtheshroudverticalweld.Thestructural loadpathisfromtheshroudthroughabayoneteccentric/threaded pintotheclampplateandthroughtheclampplateandotherbayoneteccentric/threaded pinassemblybacktotheshroud.Theinstallation stepsfortherepairclampsareasfollows:~Therepairclampsareassembled with:Thepinsretracted withtheirflangesurfacesflushwiththeplateinnersurfacesThebayoneteccentrics rotatedtothepositionwherethepinaxisisalignedwiththecenterofthelargerportionoftheshroudhole.FortheV4clamp,therightbayoneteccentric/threaded pinassemblyisinsertedintheclampplateaftertheclampplatehasbeenmovedinposition.
~Thepinsarethreadedinwarduntiltheirflangesextendbeyondtheshroudinsidesurfaces.
1of14
~Thebayoneteccentrics arerotatedtobringthepinshaftsintothesmallerradiusportionoftheshroudholeandintocontactwiththeshroudholesurfaces.
I~Thebayoneteccentrics arefixedintopositionwiththelockingscrewswhichextendintomatingslotsintheeccentrics.
Thelockingscrewsarefixedinpositionbycrimpingattwolocations.
~Thepinsarethreadedoutwardtobringtheirflangesurfacesintocontactwiththeshroudinnersurfaceandtorquedtoprovideaspecified preload.~Thepinsarelockedinpositionbycrimpingtotheeccentric attwolocations.
Notethattheclampinstallation providesthefollowing features:
~Theleakagepathsthroughtheshroudholesareeffectively sealedbytheextendedsealringportionsoftheclampplate,whicharemachinedtoaradiusequaltotheshroudradiusandseatontheshroudsurface.~Thepreloadbetweenthepinflanges,theclampplateandtheshroudpreventsrelativedisplacement betweentherepairclampandshroudduetoflowinducedvibration loading.PARTA.2-MATERIALS PARTA.2.1-MATERIALSELECTION Thematerials specified foruseintherepairclampsareresistant tostresscorrosion crackingandhavebeenusedsuccessfully intheBWRreactorcoolantsystemenvironment.
Therepairclampsarefabricated fromsolutionannealedTypeXM-19stainless steel~AsrequiredbytheDesignSpecification
[2],allmaterials specified foruseintheshroudrepairareinaccordance withASMEorASTMapprovedspecifications.
Allmaterials havebeenpreviously usedintheBWRenvironment similartothatexperienced bytherepairclamps.Thematerials arenotsusceptible togeneralcorrosion andareresistant toIntergranular StressCorrosion'Cracking (IGSCC)inaBWRenvironment.
Additional information onmaterialspecification, procurement andfabrication requirements implemented toensurethattherepairhardwareishighlyresistant toIGSCCisprovidedinA.2.2andA.2.3below.Materialproperties andallowable stressesforrepaircomponents areasspecified intheASMEB&PVCode,SectionsIIandIII,1989EditionforClass1components, MPR-1966[9].PARTA.2.2-MATERIALPROCUREMENT SPECII'ICATIONS Allhardwareisconstructed fromaustenitic stainless steelmaterial.
Weldingonthesematerials isprohibited bytheprocurement requirements.
Thesematerials asprocured, arehighlyresistant toIGSCC.NDEofmaterialusedforload-bearing membersisperformed inaccordance withASMECodeSectionIII,Subsection NG-2000.Specificmaterialrequirements aresummarized belowforthematerialusedintherepair.Allstainless steelmaterialisprocuredinaccordance withtheapplicable ASMEorASTMstandards supplemented bythefollowing:
~Type304/316alloyshave0.03%maximumcarbon.TypeXM-19alloyhas0.04%maximumcarbon.Allstainless steelmaterials arefullcarbidesolutionannealedandeitherwaterorforcedairquenchedfromthesolutionannealing temperature sufficient tosuppresschromiumcarbideprecipitation tothegrainboundaries inthecenterofthematerialcrosssection.2of14 0
~Solutionannealing ofthematerialisthefinalprocessstepinmaterialmanufacture.
ASTMA262PracticeEtestsareperformed oneachheat/lotofstainless steelmaterialtoverifyresistance tointergranular attackandthatanon-sensitized microstructure exists(nograinboundarycarbidedecoration).
~Pickling, passivation oracidcleaningofload-bearing membersisprohibited aftersolutionannealing unlessanadditional
0.0 10inchesmaterialthickness
isremovedbymechanical methods.Forothernon-loadbearingitems,metallography at500Xisperformed onmaterials fromeachheat,similarly processed, toverifyexcessive intergranular attackhasnotoccurred.
~Controlsarealsospecified intheprocurement documents toprecludematerialcontamination duringmaterialprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens.
PARTA.2.3-MATERIALFABRICATION Noweldingorthermalcuttingisusedinthefabrication andassemblyoftheitems.Cuttingfluidsandlubricants areapprovedpriortouse.Controlsarealsospecified toprecludematerialcontamination duringprocessing andhandlingfromlowmeltingpointmetals,theiralloysandcompounds, aswellassulfurandhalogens.
Passivation, picklingoracidcleaningoftheitemsisprohibited.
Liquidpenetrant testingafterfinalmachining orgrindingoncriticalsurfacesisperformed.
Abusivemachining andgrindingpractices areavoided.Machining andgrindingprocessparameters andoperations arecontrolled.
Additionally, machining processparameters incriticalloadbearingthreadedareasarecontrolled, basedonqualification samples,whichhavebeensubjected tomacroscopic andmetallographic examinations andmicrohardness testing.Evaluations includehardnessmagnitudes anddepths,depthofseveremetaldistortion, depthofvisibleevidenceofslipplanesanddepthofcoldwork.Themachining practices usedinthefabrication processfortheclampswillbequalified toensurethecoldworklayeratthesurfacehasbeenmaintained toreducethepotential forIGSCCinitiation sites.PART8-ANALYSISPART8.1-REPAIRDESIGNLIFECRITERIAThedesignlifeoftherepairshallbefor25calendaryears(remaining lifeoftheplantincluding lifeextension) toinclude20effective fullpoweryears.PART8.1.1-REPAIRDESIGNLIFECONFORMANCE Allrepairhardwarehasbeendesignedfor25calendaryearstoinclude20effective fullpoweryears.Thisincludes:
~Selection of.stainless steelrepairmaterials whichhavebeensuccessfully usedinaboiling,waterreactorenvironment andwhichareresistant toIGSCC.~Consideration ofplanttransients representative of20effective fullpoweryearsofoperation (i.e.,120 thermaltransients fromstartupsandshutdowns and30scramswithlossoffeedwater pumps.)~Consideration ofradiation fluenceinducedrelaxation ofrepairhardwarepreload.3of14
PART8.2-FUNCTIONAL REUIREMENTS CRITERIAThefunctional requirements fortherepairareidentified inBWRVIP-02
[1].Therequirements are:1.Structurally replacetheverticalweldsandmaintainthestressesoftheaffectedshroudcylinders withinASMESectionIIIstressallowables forallloadcombinations andservicelevels.2.Limitcoolantleakagethroughthecrackedverticalweldstoacceptable levelsfornormaloperation andtransient plantconditions.
NotethattheNMP-1plantdoesnotrequireafloodable volumetobemaintained foraccidentconditions toprovideforadequatecorecooling.PART8.2.1-FUNCTIONAL REUIREMENTS CONFORMANCE Therepairhardwaresatisfies thestructural criteriafortherepairhardware.
Inparticular:
~TheDesignbyAnalysisstressandfatiguecriteriaoftheASMEBoiler8r,PressureVesselCode,SectionIII,Subsection NGaresatisfied fortheshroudandfortherepairclamps.Acomparison ofthecalculated andallowable stressintensities fortherepairclampsisshowninthefollowing table:4of14
LimitingStressesintheRepairClampAssemblyRepairLocationLimitingStressLocationBayonetConnection BayonetConnection ServiceLevel:ServiceCondition A:NormalOperation B:UpsetPressureStresstypeBearingBearingStressLimit1.0Sy1.0SyStressRatio0.4000.604BayonetConnection B:LossofFeedwaterThermalTransient Bearing1.0Sy0.636V9orV10BayonetConnection C:SteamLineBreakBearing1.5Sy0.994PlateatBayonetHolePlateatBayonetHoleBayonetConnection A:NormalOperation B:UpsetPressureB:LossofFeedwater ThermalTransient MembranePlusBendingMembranePlusBendingBearing1.5Sm1.5Sm1.0Sy0.3670.5550.479V4PlateatBayonetHoleC:SteamLineBreakMembranePlusBending2.25Sm0.915~Themaximumfatigueusageintherepairassemblyduetothermalexpansion (including startupandshutdown) loadsoccurinthethreadedpins.Thefatigueusageatthislocationislessthan3%.~Themaximumfatigueusageintheshroudattherepairattachments isnegligible.
~Thefatigueusagefromflowinducedvibration isnegligible.
Coolantleakagecriteriaandconformance arediscussed inPartsB.3,B.3.1,B.3.1.1andB.3.1.2below.PARTB.3-FLOWPARTITION CRITERIASof14
TherepairsshallconsiderleakagethroughtherepairedverticalweldsV4,V9andV10aswellasthroughtheattachment holesinthecoreshroud.Theleakageshallbelessthanallowables whicharedetermined basedonconsideration ofleakagefromothersources(crackedhorizontal welds,tie-rodlowerconnection, etc.).PART8.3.1-FLOWPARTITION CONI'ORMANCE Therepairdesignlimitsshroudleakagetotheallowables definedinReference 2forallplantoperating conditions.
Specifically, theleakageiswithinlimitsestablished forcorebypassleakageandsteamcarry-under asdiscussed inPartB.3.1.1below.Asdiscussed inPartB.3.1.2,theeffectsofleakageoncoremonitoring, anticipated abnormaltransients, emergency corecoolantandfuelcyclelengtharenegligible.
PART8.3.1.1-LEAKAGEFLOWEVALUATION AsstatedinPartB.2(Functional Requirements (Criteria))
ofthisreport,therepairisrequiredtolimitleakageofreactorcoolantthroughtherepairedverticalweldsduringnormalplantoperation.
Thisincludestheleakagethroughtheverticalweldsandtheleakagethroughtheholesmachinedthroughtheshroudwallfortherepairclampinstallation.
Considering leakagefromallothersources,allowable leakagerateswereestablished forthevertical'weld repairasdescribed inSection6.2oftheDesignSpecification
[2].Theselimitsare:~ThecombinedleakageratethroughweldsV9andV10andtheirrepairclampsshallbelessthan0.25%ofthetotalcoreflow(2%ofthecorebypassflow)fornormaldifferential pressure.
~ThecombinedleakagerateofsteamthroughweldV4anditsrepairclampshallbelessthan0.08%oftherecirculation (coreminussteam)flowfornormaldifferential pressure.
Thecalculated leakageflowratesthroughrepairedverticalweldsV4,V9andV10aresummarized asfollows:RepairedVerticalWeldLeakageLeakageFlowRate(gpm)RepairedWeldsCalculated Allowable V41.6396V9andV10247337PART8.3.1.2-COREMONITORING ANTICIPATED ABNORMALTRANSIENTS EMERGENCY CORECOOLINGSYSTEMANDFUELCYCLELENGTHAsdiscussed inPartsB.3.1.3throughB.3.1.6ofReference 6,theeffectofshroudleakageoncoremonitoring, anticipated abnormaltransients, emergency corecoolingandfuelcyclelengthareconsidered tonotbesignificant.
6of14
PART8.3.1.3-CONCLUSION Theimpactoftheleakagethroughtherepairedshroudverticalweldsonplantoperation hasbeenevaluated asdiscussed aboveandfoundtobeacceptable.,
PART8.4-FLOW-INDUCED VIBRATION CRITERIAEvaluations shallbeperformed ofrepairclampvibration andwearforflow-induced vibration.
Thealternating stressfromtherepairclampvibration shallbelimitedtothematerialendurance stressortheASMECodeallowable stressforthenumberofvibration cycles.PART8.4.1-FLOW-INDUCED VIBRATION CONFORMANCE Therepairclampswereanalyzedtoensurethatreactorcoolantflowwouldnotinduceunacceptable vibration.
Thefollowing basicapproachwas'followed toprovideresistance toflow-inducedvibration loading:~Theflow-induced loadperunitareaoftherepairclampisconservatively calculated basedonadifference inpressureequaltoone-times theflowvelocityheadacrosstheclampplate.~Theclampispreloaded bytightening thethreadedpinstoaforcewhichisgreaterthanthesumoftheflow-induced loadplusthepressureloadactingtoejecttheclampfromtheshroud.Thisapproachprovidesassurance thatnoclampdisplacements andnoalternating stresswillresultfromtheflow-induced vibration loadingfornormalplantconditions.
PART8.5-LOADINGONEXISTINGINTE<RNAL COMPONENTS CRITERIATheloadingandresulting stressesfortheshroudshallbeevaluated andshowntobewithinallowables, asspecified inReferences 1,2and3.PART8.5.1-LOADINGONE<XISTING INTE<RNAL COMPONENTS
~CONFORM*NCR Thestressesinthecoreshroudwereevaluated tothestresscriteriaoftheASMEBEcPVCode,SectionIII,Subsection NG[3].Theshroudcancarrytheappliedloadswithinthecodestressallowables forallloadcasesasshowninthefollowing table.l7of14 0
ShroudStressRatioSummaryRepairLocationServiceLevel:ServiceCondition StressTypeStressLimitStressRatioA:NormalOperation PrimaryMembranePrimaryMembranePlusBendingSm0.201.5Sm0.19IPrimaryPlusSecondary MembraneatHole3Sm0.41B:UpsetPressurePrimaryMembranePrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHoleSm0.303Sm0.541.5Sm0.29V9orV10B:LossofFeedwater Transient C:MainSteamLineBreakPrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHolePrimaryMembranePrimaryMembranePlusBending3Sm0663Sm0.551.5Sm0.472.25Sm0.46A:NormalOperation PrimaryMembraneSm0.07PrimaryMembranePlusBending1.5Sm0.08PrimaryPlusSecondary MembraneatHole3Sm0.31B:UpsetPressurePrimaryMembraneSm0.11PrimaryMembranePlusBendingPrimaryPlusSecondary MembraneatHole1.5Sm0.113Sm0.41B:LossofFeedwater Transient PrimaryPlusSecondary MembranePlusBendingPrimaryPlusSecondary MembraneatHole3Sm3Sm0.570.49V4C:MainSteamLineBreakIPrimaryMembranePrimaryMembranePlusBending1.5Sm0.172.25Sm0.188of14 0
PART8.6-SEISMICANALYSISCRITE<RIA Theexistingseismicevaluations ofthecoreshroudandhorizontal weldrepairhardwareshallbereviewedtodetermine iftheverticalweldrepairhardwareneedstoaddressanyseismicloadsordisplacements.
Stressesforanyverticalweldrepairseismicloadingshallbecalculated andcomparedwithallowables asspecified inReferences 1,2and3.PART8.6.1-SEISMICANALYSISCONFORMANCE Existingseismicevaluations werereviewedandseveralloadingcasesidentified whereaseismicloadwasappliedtotheH4-H5shroudcylinderbythemid-support ofthecoreshroudrepair.Theresulting loadsandstressesontheverticalweldrepairclampswereevaluated andfoundtobeacceptable.
PART8.7-ANNULUSFLOWDISTRIBUTION CRITERIAAnalysesshallbeperformed toshowthattherepairdesigndoesnotadversely affectthein-vessel flowcharacteristics inthedowncomer annulusregion.PART8.7.1-ANNULUSFLOWDISTRIBUTION CONFORMANCE Theevaluation oftheeffectsoftherepairclampassemblyontheflowinthereactorvesseldowncomer regiondetermined that:~TheV4repairclampreducestheflowareainthedowncomer atthetopofthecoreshroudbyapproximately 2.5percent.TheV9/V10clampswouldreducetheflowareabyalesseramountbecausetheyarepositioned atalowerelevation wherethedowncomer flowareaisgreater.~Thepressuredropassociated withtheV4clampisapproximately
0.0 06psidfornormaloperation
and0.044psidfortherecirculation linebreakcondition.
FortheV9/V10clamps,thepressuredropislessthanfortheV4clamp.Theflowarearestriction andpressuredropincreaseareconcluded tohaveanegligible effectontheannulusflowdistribution.
PART8.8-E<ME<RGE<NCY OPE<RATING PROCEDURE<S'<OPs'ALCULATIONS CRITERIAInputstotheEOPcalculations suchasbulksteelresidualheatcapacityandreduction ofreactorwaterinventory shallbeaddressed basedonrepairhardwaremassandwaterdisplacement.
PART8.8.1-EME<RGENCY OPERATING PROCE<DURES' OPs'ALCULATIONS CONFORMANCE Theweightforeachrepairclampwasdetermined.
FortheV4,V9andV10clamps,thetotalweightislessthan1000Ibswhichisnegligible comparedtothetotalshroudweight.Thedisplaced reactorwaterinventory islessthantwocubicfeetwhichisalsonegligible.
Thesearenegligible effectsontheEOPcalculations.
9of14
PART8.9-RADIATION E<F<FE<CTS ONREPAIRDESIGNCRITE<RIA Therepairdesignshallconsidertheeffectsofradiation onmaterials andonradiation fluenceinducedrelaxation ofpreloads.
PART8.9.1-RADIATION EFFECTSONREPAIRDESIGNCONFORMANCE Theeffectsofradiation wereconsidered intheselection oftherepairmaterials and'abrication processes.
Asdiscussed inPartA.2.1,allmaterials usedintherepairhavebeenusedsuccessfully foryearsintheBWRenvironment.
Also,theeffectofrelaxation ofthepinpreloadduetoradiation fluencewasconsidered inthepreloadselection.
PART8.10-THERMALCYCLESCRITERIATherepairanalysesshallconsidertheplantthermalcyclesovertheremaining lifeasspecified inAppendixAofReference 2.PART8.10.1-THE<RMALCYCLE<SCONFORMANCE Therepairanalysesshowthatthefatigueusagesintheshroudandrepairhardwareareacceptable forthespecified plantthermalcycles.PART8.11-CHE<MISTRY/FLUX CRITERIATherepairdesignshallusematerials whicharesuitableforusewiththeexistingandanticipated reactorwaterchemistry controlmeasures.
Anyeffectsofneutronfluxonmaterials usedintherepairshallbeconsidered.
PART8.11.1-CHE<MISTRY/FLUX CONFORMANCE The300seriesandXM-19materials selectedfortherepairaresuitableforusewiththeexistingandanticipated reactorwaterchemistry controlmeasures.
Thematerials arenotsusceptible togeneralcorrosion andareresistant toIntergranular StressCorrosion Cracking(IGSCC)inaBWRenvironment.
Also,themaximumradiation fluenceswillhavenoeffectonrepairmaterialproperties.
PART8.12-LOOSEPARTSCONSIDE<RATION DURINGOPERATION CRITERIAThedesignedrepairshallhavefeatureswhichensureallpartsaresecuredsoastopreventpartsfrombecominglooseandenteringthecoreorbeingcarriedintodownstream systems.PART8.12.1-LOOSEPARTSCONSIDERATION DURINGOPE<RATION
~CC'CMANC'hevariouspartsthatmakeuptherepairclampassemblies aresecuredandrestrained byappropriate lockingdevicessuchaslockingcupsandcrimping.
Theselockingdevicedesignshavebeenusedsuccessfully formanyyearsinreactorinternals.
Loosepiecescannotoccurwithoutfailureofthelockingdevicesorrepairassemblycomponents.
Suchlockingdevicesandthestressesinthepartswhichmakeuptherepairclampsarewellwithinallowable limitsforallplantoperating conditions.
IfanyofthelockingcuppartsI10of14 1'I weretofail,anyofthepartswhichweresubsequently releasedwouldhavetopassthroughtherecirculation pumpsandlowerreactorinternals toreachthecore.Largepartswouldnotbeabletopassthroughtherecirculation pumps.Althoughnotspecifically
- analyzed, theconsequences ofthesmallerpartswouldbeconsistent withtheconsequences ofotherpostulated loosepieces.PART8.13-INSPECTION ACCE<SSCRITERIAThedesignshallconsiderthefollowing inspection accessrequirements:
~Therepairhardwareshallnotadversely impacttheaccesstootherreactorinternals, reactorvesselorECCScomponents.
~Therepairhardwareshallnotinterfere withrefueling operations orotherin-vessel activities.
~Therepairshallberemovable asfrequently aseachoutagewithoutpermanent damagetotherepaircomponents and/orexistinginternals.
~Allrepairpartsshallbereadilyremovable andreplaceable.
~Therepairdesignshallpermitfutureinspection oftherepairhardwarepertherequirements ofReference 5.PART8.13.1-INSPECTION ACCESSCONFORMANCE Thedesignoftherepairisinconformance withallcriterialistedinPartB.13abovebasedonthefollowing:
~Therepairclampshavealowprofileandfitsnuglyagainstthecor'eshroud.~Therepairclampscanberemovedinastraightforward mannerbyreversing theinstallation stepsdiscussed inPartA.1above.PART8.14-CREVICE<SCRITE<RIA Therepairdesignshallbereviewedforcrevicesbetweenrepaircomponents andbetweenrepaircomponents andoriginalstructures toassurethatcriteriaforcrevicesimmunetostresscorrosion crackingacceleration aresatisfied.
PART8.14.1-CREVICESCONIORMANCETherepairdesignhasconsidered crevicesandtheirimpactonstresscorrosion crackingbyusingmaterials whicharehighlyresistant toIntergranular StressCorrosion Cracking(IGSCC).Thematerial's IGSCCresistance isverifiedbytestingperrequirements ofASTMA262PracticeE.PART8.15-MATERIALS CRITE<RIA Allmaterials shallbeinconformance withBWRVIP-02 (Reference 1)requirements.
11of14 0
PART8.15.1-MATERIALS CONFORMANCE Allmaterials areusedinconformance withBWRVIP-02 (Reference 1)requirements.
Specifically, allrequirements forstainless steelmaterials asspecified inBWRVIP-02 aremetfortherepairmaterials asdiscussed inPartA.2above.PART8.16-MAINTE<NANCE/INSPECTION OFREPAIRHARDWARE~CRITRRIA Thedesignedrepairshallminimizefutureinspections andmaintenance ofrepaircomponents andpermitfutureinspection oftherepairhardware.
PART8.16.1-MAINTENANCE/INSPECTION OFREPAIRHARDWARECONFORMANCE Inspection oftherepairclampsinfuturerefueling outageswillbebasedontherequirements inSection4.2ofBWRVIP-07
[5],"BWRVesselInternals Project,Guidelines forReinspection ofCoreShrouds."
Theinspection willinvolvethevisualinspection oftheoverallclampsandthethreadedpin-to-eccentric andlockingscrew-to-eccentric crimpareastoconfirmnochangefromtheircondition duringthepost-installation inspection PART8.17-IMPACTONTIE-RODHORIZONTAL WELDRE<PAIR~CRITRRITheverticalweldrepairshallnotimpactthecoreshroudtie-rodrepairandthesupporting safety,stressandseismicanalyses(References 6,7and8).PART8.17.1-IMPACTONTIE-RODHORIZONTAL WE<LDRE<PAIR~CONRORMANCR Thesafety,stressandseismicanalysesforthecoreshroudtie-rodrepair(References 6,7and8)werereviewedandevaluated todetermine ifthereisanyimpactfromtheverticalweldrepair.Resultsofthereview/evaluation are:~Nospecificdiscussion ofrequirements fortheshroudverticalweldswasfoundinReferences 6,7and8.However,itisclearthatthedesignandtheanalysesofthetie-rodrepairarebasedontheshroudretaining acylindrical configuration intheeventofcrackingintheverticalwelds.Accordingly, theverticalweldrepairisrequiredtopreservethecylindrical shroudconfiguration forallappliedloadsandloadcombinations.
Asidentified inPartB.2above,thisisoneofthefunctional requirements fortheverticalweldrepair.~Noallowance forcoolantleakagethroughcrackedverticalweldsisconsidered inthesafetyanalysisforthetie-rodrepair(Reference 6).Therefore, theverticalweldrepairisrequiredtolimitverticalweldleakage,incombination withotherleakagesources,towithinacceptable levelsforallplantconditions.
Thisisafunctional requirement fortheverticalweldrepairasstatedinPartB.2above.12of14
~PerReference 8,theseismicfuelloadsaretransmitted directlythroughthetopguideorcoresupportplateringstothetie-rodradialrestraints.
Therefore, itisthestiffness oftheseringsandnotthestiffness oftheshroudcylinders thataffectsthefuelseismicresponse.
~Forashroudcylinderwithfullycrackedverticalweldsandendconditions thatprovidenolateralshearrestraint, thelateralstiffness wouldbereduced.Sinceshroudstiffness isaparameter intheshroudseismicmodel,thisreduction couldimpacttheseismicanalysisresults.However,thispotential impactisnotsignificant sinceforalloftheseismiccasesconsidered inSection5ofReference 8,theHl-H2andH4-H5shroudcylinders havehingedconnections totheadjacentcylinders.
Thishingedconnection providessheartransferbetweentheshroudcylinders andpermitstheshroudcylinders toretaintheiruncracked momentofinertiaandrotational stiffness.
Basedontheabove,theverticalweldrepairhasnoimpactonthetie-rodrepairandthesupporting safety,stressandseismicanalyses.
PARTC-CONCLUSIONS Thissafetyevaluation hasdetermined thattheadditionofverticalweldrepairtotheNMP-1coreshrouddoesnotincreasetheprobability ofoccurrence orconsequences ofanaccidentpreviously evaluated intheNMP-1UpdatedFinalSafetyAnalysisReport(UFSAR)(Ref.
4),doesnotincreasetheprobability ofoccurrence orconsequences ofamalfunction ofequipment important tosafetyevaluated previously intheUFSAR,doesnotcreatethepossibility ofanaccidentormalfunction ofequipment important tosafetyofadifferent typeevaluated previously intheUFSARorreducethemarginofsafetyasdefinedinthebasisforanytechnical specification.
Therefore, itisconcluded thattheadditionofaverticalweldrepairdoesnotconstitute anunreviewed safetyquestion.
PARTD-REFERENCES l.EPRIReport,"BWRVIPVesselandInternals Project,CoreShroudRepairDesignCriteria(BWRVIP-02),"
Revision2,FifthDraftReport,April1988.2.MPRSpecification No.249014-001, "DesignSpecification forNineMilePointNuclearStationUnit1(NMP1)CoreShroudVerticalWeldRepair,"Revision2,December28,1998.13.ASMEBoilerandPressureVesselCode,SectionIII,Division1-Subsection NG,"CoreSupportStructures,"
1989Edition.4.NineMilePointNuclearStationUnit1UpdatedFinalSafetyAnalysisReport,Revision15,November1997.5.EPRIReportTR-105747, "BWRVesselandInternals Project,Guidelines forReinspection ofBWRCoreShrouds(BWRVIP-07),"
February1996.13of14
6.NineMilePointUnit1SafetyEvaluation Number94-080,Rev.1forModification N1-94-003, ReactorCoreShroudRepair.7.GENE-B13-01739-04, "NineMilePointUnit1ShroudRepairHardwareStressAnalysis(NMPCCalculation No.SO-,Vessel-M028),"
Revision0.8.GENE-B13-01739-03, "NineMilePointUnit1NuclearPowerStation,SeismicAnalysis, CoreShroudRepairModification (NMPCCalculation No.SO-Vessel-M027),"Revision0.9.MPR-1966, "NineMilePointUnit1CoreShroudVerticalWeldRepairDesignReport,"December1998,Revision1.PARTE<-ATTACHME<NTS 1.Figures1-1through1-5.14of14 0
6.0I31.25I2.018.501H1HHV5V1V3V6V2Y4'00V8SHROUDHEADFlANGETOPGUIDESUPPORT90.120000V9Y1100V10REPAIRCLAMP{nP)V1263.50.50H6222.13H6A4V13V15V1416COREPLATESUPPORTSHROUDSUPPORTRINGL~ma/144@)l+Wl S1/61/66(~)FigureMNMP-1CoreShroud%'clds
ShroudLocidngScrew"V4VerticalWeldV4PlateCutoutlnShroudiWallLeftBayonetEccentric IIIIIRightBayonetEccentric ThreadedPinl99SNPRASSOCIATES U.S.PATENTPENO9ICMMPR/NlOll0$IXIl0/N/NIMIFigure1-2.NineMilePoint-Unit1ExplodedViewofV4VerticalWeldClampAssembly
'h~t V4VerticalWeldLockingScrewShroudRightBayonetEccentric LeftBayonetEccentric ThreadedPinlalMPRIlnonlyOl/1$/l41ALI)Figure0-3.NineMilePoint-UnitiInstalled V4VerticalWeldClampAssembly1998LIPRASSOOAIES U.S.PA1ENrPEtlDNG 0
VcChzShroudV9/V10'I/eNcalWeldIIjLockingScrew-CutoutinShroud'allV9/V10PlateLeftBayonetEccentric ThreadedPinAightBayonetEccentric LLMPR/N%Ol~01ol/04/00I~Figure1R.NineMilePoint-Unit1ExplodedViewofV9/V10VerticalWeldClampAssemblyl998IIPRASSOCIATES U,S.PAIENrPENOINC
V4VerticalWeldShroudLockingScrewRightBayonetEccentric LeftBayonetEccentric V9/Vt0PlateThreadedPinQMPRtI<0OllOIot/ol/04IMtFigure1-5.NineMilePoint-Unit1Installed V9/V10VerticalWeldClampAssemblyPC199SllPRASSOCIAIES U.S.PATOllPEIIDIIIG
~"0