ML22153A182: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Attachment 6 to  to ULNRC-06729 Page 1 of 105 ATTACHMENT 6 NON-PROPRIETARY VERSION OF RLBLOCA
{{#Wiki_filter:}}
 
==SUMMARY==
REPORT The following pages provide the non-proprietary version of the technical summary reports provided by Framatome supporting this license amendment request.
ANP-3944NP, "Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design," Revision 0, dated March 2022
[NON-PROPRIETARY REPORT]
104 pages follow this cover sheet
 
ANP-3944NP Callaway Realistic Large Break          Revision 0 LOCA Analysis with GAIA Fuel Design Licensing Report March 2022 (c) 2022 Framatome Inc.
 
ANP-3944NP Revision 0 Copyright © 2022 Framatome Inc.
All Rights Reserved GAIA, GRIP, HMP, MONOBLOC, M5Framatome, S-RELAP5, and COPERNIC are trademarks or registered trademarks of Framatome or its affiliates, in the USA or other countries.
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                        Page i Nature of Changes Section(s)
Item            or Page(s)      Description and Justification 1              All            Initial Issue
 
Framatome Inc.                                                                                            ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                                                    Page ii Contents Page
 
==1.0    INTRODUCTION==
............................................................................................... 1-1 2.0   
 
==SUMMARY==
OF RESULTS ................................................................................. 2-1
 
==3.0    DESCRIPTION==
OF ANALYSIS.......................................................................... 3-1 3.1    Acceptance Criteria ................................................................................ 3-1 3.2    Description of LBLOCA Event................................................................. 3-2 3.3    Description of Analytical Models ............................................................. 3-3 3.4    GDC-35 Limiting Condition Determination .............................................. 3-7 3.5    Overall Statistical Compliance to Criteria ................................................ 3-7 3.6    Plant Description ..................................................................................... 3-8 3.7    Safety Evaluation Limitations .................................................................. 3-9 4.0    RLBLOCA ANALYSIS ....................................................................................... 4-1 4.1    RLBLOCA Results .................................................................................. 4-1 4.2    Conclusions ............................................................................................ 4-4
 
==5.0    REFERENCES==
.................................................................................................. 5-1 APPENDIX A [                                                ]
 
==SUMMARY==
OF KEY INPUT AND OUTPUT PARAMETERS .............................................................. A-1
 
Framatome Inc.                                                                                              ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                                                    Page iii List of Tables Table 3-1      EMF-2103(P)(A), Revision 3, SE Limitations Evaluation ...................... 3-10 Table 4-1      RLBLOCA Analysis - Plant Parameter Values and Ranges.................... 4-5 Table 4-2      Statistical Distribution Used for Process Parameters .............................. 4-8 Table 4-3      Passive Heat Sinks and Material Properties in Containment Geometry ................................................................................................ 4-9 Table 4-4      Compliance with 10 CFR 50.46(b) ........................................................ 4-10 Table 4-5      Summary of Major Parameters for the Demonstration Case ................ 4-11 Table 4-6        Calculated Event Times for the Demonstration Case .......................... 4-12 Table 4-7      Heat Transfer Parameters for the Demonstration Case ........................ 4-13 Table 4-8      Fuel Rod Rupture Ranges of Parameters ............................................. 4-14 Table A-1      Summary of Key Input and Output Parameters, Part 1 ........................... A-1 Table A-2      Summary of Key Input and Output Parameters, Part 2 ......................... A-15 Table A-3      Summary of Key Input and Output Parameters, Part 3 ......................... A-29
 
Framatome Inc.                                                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                                                      Page iv List of Figures Figure 3-1    Primary System Noding ........................................................................ 3-14 Figure 3-2    Secondary System Noding ................................................................... 3-15 Figure 3-3    Reactor Vessel Noding ......................................................................... 3-16 Figure 4-1    Scatter Plot Key Parameters................................................................. 4-15 Figure 4-1    Scatter Plot Key Parameters (continued) .............................................. 4-16 Figure 4-2    PCT versus PCT Time Scatter Plot ...................................................... 4-17 Figure 4-3    PCT versus Break Size Scatter Plot ..................................................... 4-18 Figure 4-4    Maximum Local Oxidation versus PCT Scatter Plot ............................. 4-19 Figure 4-5    Total Core Wide Oxidation versus PCT Scatter Plot ............................. 4-20 Figure 4-6    Demonstration Case - Peak Cladding Temperature (Independent of Elevation) .............................................................................................. 4-21 Figure 4-7    Demonstration Case - Break Flow ........................................................ 4-22 Figure 4-8    Demonstration Case - Core Inlet Mass Flux ......................................... 4-23 Figure 4-9    Demonstration Case - Core Outlet Mass Flux ...................................... 4-24 Figure 4-10 Demonstration Case - Void Fraction at RCS Pumps ............................ 4-25 Figure 4-11 Demonstration Case - ECCS Flows (Includes Accumulator, HHSI and LHSI).............................................................................................. 4-26 Figure 4-12 Demonstration Case - Upper Plenum Pressure .................................... 4-27 Figure 4-13 Demonstration Case - Collapsed Liquid Level in the Downcomer ........ 4-28 Figure 4-14 Demonstration Case - Collapsed Liquid Level in the Lower Plenum .... 4-29 Figure 4-15 Demonstration Case - Core Collapsed Liquid Level ............................ 4-30 Figure 4-16 Demonstration Case - Containment and Loop Pressures ..................... 4-31 Figure 4-17 Demonstration Case - Pressure Differences between Upper Plenum and Downcomer....................................................................... 4-32 Figure 4-18 [                                                                    ] ..................................... 4-33
 
Framatome Inc.                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                    Page v Nomenclature Acronym                    Definition AO                        Axial Offset CFR                        Code of Federal Regulations CHF                        Critical Heat Flux CSAU                      Code Scaling, Applicability and Uncertainty CWO                        Core-Wide Oxidation ECCS                      Emergency Core Cooling System ECR                        Equivalent Cladding Reacted EM                        Evaluation Model EMDAP                      Evaluation Model Development and Assessment Process F+                        Nuclear Enthalpy Rise Factor/Radial Peaking Factor FQ                        Total Peaking Factor/Global Peaking Factor Framatome                  Framatome Inc.
FSRR                      Fuel Swell Rupture and Relocation Gd2O3                      Gadolinia or Gad GDC                        General Design Criteria HHSI                      High Head Safety Injection HMP                        High Mechanical Performance HTC                        Heat Transfer Coefficient IGM                        Intermediate GAIA Mixing Grid IHSI                      Intermediate Head Safety Injection k(z)                      Axial-Dependent Peaking Factor LBLOCA                    Large Break Loss-of-Coolant Accident LCO                        Limiting Condition of Operation LHGR                      Linear Heat Generation Rate LHSI                      Low Head Safety Injection
 
Framatome Inc.                                                            ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                Page vi Acronym                    Definition LOCA                      Loss-of-Coolant Accident LOOP                      Loss-of-Offsite Power MLO                        Maximum Local Oxidation No-LOOP                    No Loss of Offsite Power NRC                        U. S. Nuclear Regulatory Commission NSSS                      Nuclear Steam Supply System PCT                        Peak Clad Temperature PIRT                      Phenomena Identification and Ranking Table PWR                        Pressurized Water Reactor RAI                        Request for Additional Information RCP                        Reactor Coolant Pump RCS                        Reactor Coolant System RLBLOCA                    Realistic Large Break Loss of Coolant Accident SE                        Safety Evaluation SG                        Steam Generator SI                        Safety Injection SIAS                      Safety Injection Actuation Signal SRM                        Swelling and Rupture Model TS                        Technical Specification UTL                        Upper Tolerance Limit
 
Framatome Inc.                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                    Page 1-1
 
==1.0      INTRODUCTION==
 
This report summarizes the Realistic Large Break Loss-of-Coolant Accident (RLBLOCA) analysis for Callaway Nuclear Plant Unit 1 (Callaway). The purpose of the RLBLOCA analysis is to support the Vendor Qualification Program (VQP) for Callaway with the Framatome GAIA fuel design. This analysis was performed in accordance with the U.S.
Nuclear Regulatory Commission (NRC)-approved S-RELAP5-based methodology described in Reference 1 with the noted exception in Section 3.3.
Callaway is a 4-loop, Westinghouse-designed Pressurized Water Reactor (PWR). The Framatome GAIA fuel design with M5Framatome cladding for Callaway consists of a 17x17 array with GAIA and Intermediate GAIA Mixing (IGM) grids, a lower High Mechanical Performance (HMP) grid and an upper HMP grid. The fuel assembly includes a MONOBLOC guide tube design, M5Framatome fuel rod design and a GRIP lower nozzle.
The fuel is standard UO2 fuel with 2, 4, 6, and 8 weight-percent Gadolinia (Gd2O3) rods included.
The analysis assumes full-power operation at a core power level of 3636 MWt (including measurement uncertainty), a maximum-allowed total peaking factor (FQ) of 2.50 (represents total peaking with an axial-dependent factor k(z) set to 1.0), a radial peaking factor (FH) of 1.65 (includes uncertainty), and up to 5% steam generator (SG) tube plugging per SG. This analysis also addresses typical operational ranges or technical specification (TS) limits (whichever is applicable) with regard to [
              ]. The analysis explicitly analyzes fresh and once-burned fuel assemblies.
The plant parameter specification for this analysis is provided in Table 4-1. The analysis uses the Fuel Swelling, Rupture, and Relocation (FSRR) model to determine if cladding rupture occurs and evaluate the consequences of FSRR on the transient response.
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 1-2
 
Framatome Inc.                                                            ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                              Page 2-1 2.0     
 
==SUMMARY==
OF RESULTS The UTL results providing 95/95 simultaneous coverage from this evaluation meet the 10 CFR 50.46(b) criteria with a PCT of 1561°F, a maximum local oxidation of 2.35 percent and a total core-wide oxidation of 0.028 percent. The PCT of 1561°F occurred in a once-burned 2 weight-percent Gadolinia rod with an assembly burnup of 26.2 GWd/mtU. The results of the analysis demonstrate the adequacy of the ECCS to support the 10 CFR 50.46(b) (1-3) criteria (Reference 2).
 
Framatome Inc.                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                  Page 3-1
 
==3.0      DESCRIPTION==
OF ANALYSIS 3.1      Acceptance Criteria The purpose of the analysis is to verify the adequacy of the Callaway ECCS by demonstrating compliance with the following 10 CFR 50.46(b) criteria (Reference 2):
: 1. The calculated maximum fuel element cladding temperature shall not exceed 2200°F.
: 2. The calculated total oxidation of the cladding shall nowhere exceed 0.17 times the total cladding thickness before oxidation.
: 3. The calculated total amount of hydrogen generated from the chemical reaction of the cladding with water or steam shall not exceed 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react.
The final two criteria, coolable geometry and long-term cooling, are treated in separate plant-specific evaluations.
Note: The original 17% value in the second acceptance criterion for MLO was based on the usage of the Baker-Just correlation. For present reviews on ECCS Evaluation Model (EM) applications, the NRC staff imposed a limitation specifying that the equivalent cladding reacted (ECR) results calculated using the Cathcart-Pawel correlation are considered acceptable in conformance with 10 CFR 50.46(b)(2) if the ECR value is less than 13% (Section 3.3.3, NRC Final Safety Evaluation (SE) for EMF-2103(P) Rev. 3).
The limitation is addressed in Table 3-1.
 
Framatome Inc.                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                    Page 3-2 3.2        Description of LBLOCA Event A Large Break Loss-of-Coolant Accident (LBLOCA) is initiated by a postulated rupture of the Reactor Coolant System (RCS) primary piping. The most challenging break location is in the cold leg piping between the reactor coolant pump and the reactor. The plant is assumed to be operating normally at full power prior to the accident and the break is assumed to open instantaneously. A worst case single-failure is also assumed to occur during the accident. The single-failure for this analysis, as defined in the EM, is the loss of one ECCS pumped injection train without the loss of containment spray.
The LBLOCA event is typically described in three phases: blowdown, refill, and reflood.
Following the initiation of the break, the blowdown phase is characterized by a sudden depressurization from operating pressure down to the saturation pressure of the hot leg fluid. For larger cold leg breaks, an immediate flow reversal and stagnation occurs in the core due to flow out the break, which causes the fuel rods to pass through critical heat flux (CHF), usually within one second following the break. Following this initial rapid depressurization, the RCS depressurizes at a more gradual rate. Reactor trip and emergency injection signals occur when either the low pressure setpoint or the containment high-pressure setpoint are reached. However, for LBLOCA, reactor trip and scram are essentially inconsequential, as reactor shutdown is accomplished by moderator reactivity feedback. During blowdown, core cooling is supported by the natural evolution of the RCS flow pattern as driven by the break flow.
When the system pressure falls below the accumulator pressure, flow from the accumulator is injected into the cold legs ending the blowdown period and initiating the refill period. Once the system pressure falls below the respective shutoff heads of the safety injection systems and the system startup time delays are met, flow from the pumped safety injection systems is injected into the RCS. While some of the ECCS flow bypasses the core and goes directly out of the break, the downcomer and lower plenum gradually refill until the mixture in the lower head and lower plenum regions reaches the bottom of the active core and the reflood period begins. Core cooling is supported by the natural evolution of the RCS flow pattern as driven by the break flow
 
Framatome Inc.                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                    Page 3-3 and condensation in the RCS promoted by safety injection. Towards the end of the refill period, heat transfer from the fuel rods is relatively low, steam cooling and rod-to-rod radiation being the primary mechanisms of core heat removal.
Once the lower plenum is refilled to the bottom of the fuel rod heated length, refill ends and the reflood phase begins. Substantial ECCS fluid is retained in the downcomer during refill. This provides the driving head to move coolant into the core. As the mixture level moves up the core, steam is generated and liquid is entrained, providing cooling in the upper core regions. The two-phase mixture extends into the upper plenum and some liquid may de-entrain and flow downward back into the cooler core regions. The remaining entrained liquid passes into the steam generators where it vaporizes, adding to the steam that must be discharged through the break and out of the system. The difficulty of venting steam is, in general, referred to as steam binding.
It acts to impede core reflood rates. With the initiation of reflood, a quench front starts to progress up the core. With the advancement of the quench front, the cooling in the upper regions of the core increases, eventually arresting the rise in fuel rod surface temperatures. Later the core is quenched and a pool cooling process is established that can maintain the cladding temperature near saturation, so long as the ECCS makes up for the core boil off.
3.3        Description of Analytical Models The NRC-approved RLBLOCA methodology is documented in EMF-2103(P)(A)
Realistic Large Break LOCA Methodology for Pressurized Water Reactors (Reference 1). The methodology follows the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology (Reference 3) and the requirements of the Evaluation Model Development and Assessment Process (EMDAP) documented in Reference 4. The CSAU method outlines an approach for defining and qualifying a best-estimate thermal-hydraulic code and quantifies the uncertainties in a Loss-of-Coolant Accident (LOCA) analysis.
 
Framatome Inc.                                                              ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                  Page 3-4 The Framatome RLBLOCA methodology evaluation model for event response of the primary and secondary systems and the hot fuel rod used in this analysis is based on the use of two computer codes.
x      COPERNIC for computation of the initial fuel stored energy, fission gas release, and the transient fuel-cladding gap conductance.
x      S-RELAP5 for the thermal-hydraulic system calculations (includes ICECON for containment response).
The methodology (Reference 1) has been reviewed and approved by the NRC to perform LBLOCA analyses. However, a difference from the approved Reference 1 LBLOCA methodology was included in this analysis, as described below. This difference has been presented in recent NRC-approved RLBLOCA analyses (References 5 and 6).
The governing two-fluid (plus non-condensable) model with conservation equations for mass, energy, and momentum transfer is used. The reactor core is modeled in S-RELAP5 with heat generation rates determined from reactor kinetics equations (point kinetics) with reactivity feedback, and with actinide and decay heat.
 
Framatome Inc.                                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                      Page 3-5 The two-fluid formulation uses a separate set of conservation equations and constitutive relations for each phase. The effects of one phase on the other are accounted for by interfacial friction and heat and mass transfer interaction terms in the equations. The conservation equations have the same form for each phase; only the constitutive relations and physical properties differ.
The modeling of plant components is performed by following guidelines developed to ensure accurate accounting for physical dimensions and that the dominant phenomena expected during the LBLOCA event are captured. The basic building blocks for modeling are hydraulic volumes for fluid paths and heat structures for heat transfer. In addition, special purpose components exist to represent specific components such as the Reactor Coolant Pumps (RCPs) or the SG separators. All geometries are modeled at the resolution necessary to best resolve the flow field and the phenomena being modeled within practical computational limitations.
The analysis considers blockage effects due to clad swelling and rupture as well as increased heat load due to fuel relocation in the ballooned region of the cladding in the prediction of the hot fuel rod PCT.
A typical calculation using S-RELAP5 begins with the establishment of a steady-state initial condition with all loops intact. The input parameters and initial conditions for this steady-state calculation are chosen to reflect plant technical specifications or to match measured data. Additionally, the COPERNIC code provides initial conditions for the S-RELAP5 fuel models. Specific parameters are discussed in Section 3.6.
Following the establishment of an acceptable steady-state condition, the transient calculation is initiated by introducing a break into one of the loops. The evolution of the transient through blowdown, refill, and reflood is computed continuously using S-RELAP5. Containment pressure is calculated by the ICECON module within S-RELAP5.
 
Framatome Inc.                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                    Page 3-6 A detailed assessment of the S-RELAP5 computer code was made through comparisons to experimental data. These assessments were used to develop quantitative estimates of the ability of the code to predict key physical phenomena in a PWR LBLOCA. The final step of the best-estimate methodology is to combine all the uncertainties related to the code and plant parameters and estimate values for the first three criteria of 10 CFR 50.46(b) with a probability of at least 95 percent with 95 percent confidence. The steps taken to derive the uncertainty estimate are summarized below:
: 1. Base Plant Input File Development First, base COPERNIC and S-RELAP5 input files for the plant (including the containment input file) are developed. The code input development guidelines documented in Appendix A of Reference 1 are applied to ensure that model nodalization is consistent with the model nodalization used in the code validation.
: 2. Sampled Case Development The statistical approach requires that many sampled cases be created and processed. For every set of input created, each key LOCA parameter is randomly sampled over a range established through code uncertainty assessment or expected operating limits (provided by plant technical specifications or data). Those parameters considered "key LOCA parameters" are listed in Table A-6 of Reference 1. This list includes both parameters related to LOCA phenomena, based on the PIRT provided in Reference 1, and to plant operating parameters. The uncertainty ranges associated with each of the model parameters are provided in Table A-7 of Reference 1.
: 3. Determination of Adequacy of ECCS The RLBLOCA methodology uses a non-parametric statistical approach to determine that the first three criteria of 10 CFR 50.46(b) are met with a probability higher than 95 percent with 95 percent confidence.
 
Framatome Inc.                                                              ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                Page 3-7 3.4      GDC-35 Limiting Condition Determination General Design Criteria (GDC)-35 requires that a system be designed to provide abundant core cooling with suitable redundancy such that the capability is maintained in either the LOOP or No-LOOP conditions.          [
                  ]
3.5      Overall Statistical Compliance to Criteria
 
Framatome Inc.                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                  Page 3-8 3.6        Plant Description The plant analyzed is the Callaway Nuclear Plant Unit 1, Westinghouse-designed PWR, which has four loops, each with a hot leg, a U-tube steam generator, and a cold leg with an RCP. The Reactor Coolant System (RCS) includes one pressurizer connected to a hot leg. The ECCS provides injection to each of the four loops via the centrifugal charging/high head safety injection (HHSI) system, SI/intermediate head safety injection (IHSI) system, residual heat removal (RHR)/low head safety injection (LHSI) system, and accumulators. The RLBLOCA transients are of sufficiently short duration that the switchover to sump cooling water for ECCS pumped injection does not need to be considered.
The RCS, reactor vessel, pressurizer, and ECCS are explicitly modeled in the S-RELAP5 model. For the LOCA analysis, IHSI and HHSI are modeled as a combined system and identified as HHSI. For each RCS loop, the ECCS model includes an injection connection to the cold leg for the accumulator, another connection for HHSI, and another connection for LHSI. The ECCS injection connections to the cold leg pipes are downstream of the RCP discharge. The ECCS pumped injection is modeled as a table of flow versus backpressure. Also modeled is the secondary-side steam generator that is instantaneously isolated (closed main steam isolation valve and feedwater trip) at the time of the break. The primary and secondary coolant systems for Callaway were nodalized consistent with code input guidelines in Appendix A of Reference 1. System nodalization details are shown in Figure 3-1 through Figure 3-3.
 
Framatome Inc.                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                  Page 3-9 The results used to demonstrate compliance with the 10 CFR 50.46(b) criteria are only applicable to the Framatome fuel product. However, the analysis includes considerations for the mixed core scenario.        [
                                  ]
As described in Section 3.3, many parameters associated with LBLOCA phenomenological uncertainties and plant operation ranges are sampled. Values for process or operational parameters, including ranges of sampled process parameters, and fuel design parameters used in this analysis are given in Table 4-1. Table 4-2 presents a summary of the uncertainties used in the analysis. Two parameters (refueling water storage tank temperature and diesel start time) are set at conservative bounding values for all calculations. The passive heat sinks and material properties used in the containment input model are provided in Table 4-3.
3.7      Safety Evaluation Limitations Except for the differences noted in Section 3.3, the RLBLOCA analysis for Callaway presented herein is consistent with the submitted RLBLOCA methodology documented in EMF-2103(P)(A), Revision 3 (Reference 1). The limitation and conditions from the NRC SE (Reference 1) for EMF-2103(P)(A), Revision 3, are addressed in Table 3-1.
 
Framatome Inc.                                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                          Page 3-10 Table 3-1 EMF-2103(P)(A), Revision 3, SE Limitations Evaluation Limitations
 
===Response===
(Sub-sections of Section 4.0 in Ref. 1) 1    This EM was specifically reviewed in              This analysis applies only to the accordance with statements in EMF-2103,          acceptance criteria set forth in 10 CFR Revision 3. The NRC staff determined that the    50.46(b), paragraphs (1) through (3).
EM is acceptable for determining whether plant-specific results comply with the acceptance criteria set forth in 10 CFR 50.46(b), paragraphs (1) through (3). AREVA did not request, and the NRC staff did not consider, whether this EM would be considered applicable if used to determine whether the requirements of 10 CFR 50.46(b)(4), regarding coolable geometry, or (b)(5), regarding long-term core cooling, are satisfied. Thus, this approval does not apply to the use of SRELAP5-based methods of evaluating the effects of grid deformation due to seismic of LOCA blowdown loads, or for evaluating the effects of reactor coolant system boric acid transport. Such evaluations would be considered separate methods.
2    EMF-2103, Revision 3, approval is limited to      Callaway is a 4-loop Westinghouse-application for 3-loop and 4-loop                designed NSSS with cold leg ECCS Westinghouse-designed nuclear steam supply        injection.
systems (NSSSs), and to Combustion Engineering-designed NSSSs with cold leg ECCS injection, only. The NRC staff did not consider model applicability to other NSSS designs in its review.
3    The EM is approved based on models that are The analysis supports operation with specific to AREVA proprietary M5 fuel            M5Framatome cladding.
cladding. The application of the model to other cladding types has not been reviewed.
4    Plant-specific applications will generally be    The modeling guidelines contained in considered acceptable if they follow the          Appendix    A of EMF-2103(P)(A),
modeling guidelines contained in Appendix A      Revision  3 (Reference 1) were followed to EMF 2103, Revision 3. Plant-specific          completely for the analysis described in licensing actions referencing EMF 2103,          this report.
Revision 3, analyses should include a statement summarizing the extent to which the guidelines were followed, and justification for any departures.
 
Framatome Inc.                                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                          Page 3-11 Limitations
 
===Response===
(Sub-sections of Section 4.0 in Ref. 1) 5    The response to RAI 15 indicates that the fuel    The analysis burnups applied in this pellet relocation packing factor is derived from  analysis do not exceed the rod average data that extend to currently licensed fuel        burnup of  [                ].
burnup limits (i.e., rod average burnup of
[                  ]). Thus, the approval of this method is limited to fuel burnup below this value. Extension beyond rod average burnup of [                    ] would require a revision or supplement to EMF-2103, Revision 3, or plant-specific justification.
6    The response to RAI 15 indicates that the fuel    The analysis uses the approved EMF-pellet relocation packing factor is derived from  2103(P)(A), Revision 3 (Reference 1) currently available data. Should new data          relocation packing factor application.
become available to suggest that fuel pellet      [
fragmentation behavior is other than that suggested by the currently available database, the NRC may request AREVA to                  ]
update its model to reflect such new data.
7    The regulatory limit contained in 10 CFR          The MLO UTL is less than 13%
50.46(b)(2), requiring cladding oxidation not to  (Table 4-4).  [
exceed 17 percent of the initial cladding thickness prior to oxidation, is based on the use of the Baker-Just oxidation correlation. To account for the use of the Cathcart-Pawel correlation, this limit shall be reduced to 13 percent, inclusive of pre-transient oxide layer thickness.                                                  ]
 
Framatome Inc.                                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                        Page 3-12 Limitations
 
===Response===
(Sub-sections of Section 4.0 in Ref. 1) 8    In conjunction with Limitation 7 above,          All second cycle fuel rod  [
Cathcart-Pawel oxidation results will be considered acceptable, provided plant-specific                                      ]
[
                                            ] If second-cycle fuel is identified in a plant-specific analysis, whose    [
                              ], the NRC staff reviewing the plant-specific analysis may request technical justification or quantitative assessment, demonstrating that      [
                                              ]
9    The response to RAI 13 states that all            [
operating ranges used in a plant-specific analysis are supplied for review by the NRC in a table like Table B-8 of EMF-2103, Revision
: 3. In plant-specific reviews, the uncertainty treatment for plant parameters will be considered acceptable if plant parameters are
[                                                                  ]
                  ], as appropriate . Alternative approaches may be used, provided they are supported with appropriate justification.
10    [                                                [                              ] were not used in this analysis.
                      ]
 
Framatome Inc.                                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                          Page 3-13 Limitations
 
===Response===
(Sub-sections of Section 4.0 in Ref. 1) 11    Any plant submittal to the NRC using EMF-        The present analysis is the first 2103, Revision 3, which is not based on the      statistical application of EMF-2103, first statistical calculation intended to be the  Revision 3 for this plant.
analysis of record must state that a re-analysis has been performed and must identify the changes that were made to the evaluation model and/or input in order to obtain the results in the submitted analysis.
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 3-14 Figure 3-1 Primary System Noding
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 3-15 Figure 3-2 Secondary System Noding
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 3-16 Figure 3-3 Reactor Vessel Noding
 
Framatome Inc.                                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                      Page 4-1 4.0      RLBLOCA ANALYSIS 4.1      RLBLOCA Results For a simultaneous coverage/confidence level of 95/95, the UTL values,          [
                                                                      ], are a PCT of 1561°F, an MLO of 2.35 percent, and a CWO of 0.028 percent. The fraction of total hydrogen generated was not directly calculated; however, it is conservatively bounded by the calculated total core wide percent oxidation, which is well below the 1 percent limit.
A summary of the major input parameters for the demonstration case is provided in Table 4-5. The sequence of event times for the demonstration case is provided in Table 4-6. The heat transfer parameter ranges for the demonstration case are provided in Table 4-7. Table 4-8    [
                                                                  ].
 
Framatome Inc.                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                    Page 4-2 The analysis scatter plots for the case set are shown in Figure 4-1 through Figure 4-5.
Figure 4-1 shows linear scatter plots of the key parameters sampled for all cases.
These figures illustrate the parameter ranges used in the analysis. Visual examination of the linear scatter plots demonstrates that the spread and coverage of all of the values used is appropriate and within the uncertainty ranges listed in Table 4-2. Appendix A provides a listing of all the sampled input values for each case. Key results such as the PCT and event timings are also listed for the case set.
Figure 4-2 and Figure 4-3 show PCT scatter plots versus the time of PCT and versus break size, respectively. The scatter plots for the maximum local oxidation and total core-wide oxidation are shown in Figure 4-4 and Figure 4-5, respectively.
Figure 4-2 shows about 26% of cases have PCT during the blowdown phase (PCT time less than ~30 seconds). The next cluster of PCTs occurs during the early to late reflood period. Blowdown PCT cases are dominated by rapid RCS depressurization and stored energy content. Reflood PCT cases are dominated by decay heat removal capacity. In general, plants with high pressure accumulators inject early in the transient when the break flow is still high. The high pressure and high break flow drive some of this fluid to bypass the core, retarding the progression of the core reflood. This results in cases with PCTs in the reflood phase of the transient.
The high PCT cases in the upper part of Figure 4-2 are mainly influenced by the area of the break. This is demonstrated in Figure 4-3 which shows a general increasing trend in PCT with break size. From all sampled parameters, the break size is a dominant effect on PCT because of its influence on the rate of primary depressurization.
 
Framatome Inc.                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                  Page 4-3 Figure 4-4 shows a correlation of MLO with PCT. Since the MLO includes the pre-transient oxidation, the MLO is not only a function of cladding temperature but also of time in cycle (burnup).    [
                          ]  The CWO also shows a strong correlation to PCT as demonstrated in Figure 4-5, as higher PCT cases would have higher oxidation throughout the core.
The demonstration case is a reflood peak case with a PCT timing of 76 seconds.
Figure 4-6 through Figure 4-17 show key parameters from the S-RELAP5 calculations for the demonstration case. The transient progression for the demonstration case follows that described in Section 3.2.
 
Framatome Inc.                                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                      Page 4-4 4.2        Conclusions This report describes and provides results from the RLBLOCA analysis for the Callaway VQP with the Framatome GAIA fuel design. The application of the Framatome RLBLOCA methodology involves developing input decks, executing the simulations that comprise the uncertainty analysis, retrieving PCT, MLO, and CWO information and determining the simultaneous UTL results for the criteria.        [
                                                    ]  The UTL results providing a 95/95 simultaneous coverage/confidence level from this evaluation meet the 10 CFR 50.46(b) criteria with a PCT of 1561°F, a MLO of 2.35 percent and a CWO of 0.028 percent.
 
Framatome Inc.                                                                                  ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                                    Page 4-5 Table 4-1 RLBLOCA Analysis - Plant Parameter Values and Ranges Plant Parameter                                      Parameter Value 1.0        Plant Physical Description 1.1 Fuel a) Cladding outside diameter                    0.374 in.
b) Cladding inside diameter                      0.329 in.
c) Pellet outside diameter                      0.3225 in.
d) Initial Pellet density                        [                            ]
e) Active fuel length                            144 in.
f) Gd2O3 concentrations                          2, 4, 6, 8 weight-percent 1.2 RCS a) Flow resistance                              Analysis b) Pressurizer location
[
                                                                                    ]
c) Hot assembly location                        Anywhere in core d) Hot assembly type                            17x17 e) SG tube plugging                              5 percent 2.0        Plant Initial Operating Conditions 2.1 Reactor Power a) Analyzed reactor power                        36361 MWt b) FQ                                            2.501 c) F+                                          1.651 2.2 Fluid Conditions a) Total Loop flow                              139.3 Mlbm/hr d M d 162.6 Mlbm/hr b) RCS average temperature                      581.75qF d T d 592.7qF c) Upper head temperature                        ~RCS Cold Leg Temperature2 d) Pressurizer pressure                          2189.3 psia d P d 2279.3 psia e) Pressurizer liquid level                      13.5 percent d L d 95.5 percent f) Accumulator pressure                          616.3 psia d P d 662.3 psia g) Accumulator liquid volume                    810.2 ft3 d V d 889.6 ft3 h) Accumulator temperature                      50qF d T d 120qF3 i) Accumulator resistance fL/D                  As-built piping configuration j) Accumulator boron                            2300 ppm 1 Includes measurement uncertainty.
2 Upper head temperature will change based on sampling of RCS temperature.
3 Coupled with containment temperature.
 
Framatome Inc.                                                                            ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                              Page 4-6 Table 4-1 RLBLOCA Analysis - Plant Parameter Values and Ranges (Continued)
Plant Parameter                            Parameter Value 3.0        Accident Boundary Conditions a) Break location                          Cold leg pump discharge b) Break type                              Double-ended guillotine or split c) Break size (each side, relative to cold leg pipe area) d) ECCS pumped injection 100°F temperature 17 s (No-LOOP) e) HHSI pump delay 29 s (LOOP) 32 s (No-LOOP) f) LHSI pump delay 44 s (LOOP) g) Initial containment pressure            14.3 psia h) Initial containment temperature        50qF d T d 120qF i) Containment sprays delay                0s j) Containment spray water 37qF temperature k) LHSI Flow RCS Cold Leg    Broken Loop    Total Intact Loops Pressure (psia)  Flow (gpm)      Flow (gpm) 14.3            932.1            2848.4 34.3            865.1            2306.1 54.3            792.0            1744.9 74.3            711.0            1196.1 94.3            618.5            826.9 114.3          509.1            375.8 134.3            0.0              0.0
 
Framatome Inc.                                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                      Page 4-7 Table 4-1 RLBLOCA Analysis - Plant Parameter Values and Ranges (Continued)
Plant Parameter                              Parameter Value l) IHSI and HHSI Combined Flow RCS Cold Leg  Broken Loop    Total Intact Loops Pressure (psia)  Flow (gpm)      Flow (gpm) 14.3          245.3            742.8 34.3          244.2            737.8 54.3          243.1            731.3 74.3          242.0            725.5 94.3          240.9            720.4 114.3          239.8            713.9 134.3          238.0            708.1 154.3          236.9            703.1 174.3          235.4            696.5 194.3          233.9            690.7 214.3          232.4            685.9 614.3          199.2            553.8
 
Framatome Inc.                                                          ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                            Page 4-8 Table 4-2 Statistical Distribution Used for Process Parameters Lower          Upper Value          Value 2189.3        2279.3 13.5            95.5 810.2          889.6 616.3          662.3 50            120 2.5              2.7 139.3          162.6 581.75          592.7
 
Framatome Inc.                                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                        Page 4-9 Table 4-3 Passive Heat Sinks and Material Properties in Containment Geometry Heat Sink              Surface Area, ft2          Thickness, ft          Material 0.021          Carbon Steel Heat Structure #1            64919.0 4.0              Concrete 0.021          Carbon Steel Heat Structure #2            34129.0 3.0              Concrete 1.5              Concrete Heat Structure #3            13538.0                    0.021          Carbon Steel 10.0              Concrete Heat Structure #4              8564.0                      1.0              Concrete Heat Structure #5            43497.0                      2.0              Concrete Heat Structure #6            17061.0                      2.5              Concrete 0.021          Carbon Steel Heat Structure #7              7821.0 2.0              Concrete 0.021        Stainless Steel Heat Structure #8              8708.0 2.0              Concrete 0.0001083        Zinc Coating Heat Structure #9              8081.0                    0.005          Carbon Steel 2.0              Concrete 0.0001083        Zinc Coating Heat Structure #10            186183.0 0.0104          Carbon Steel Heat Structure #11            17746.0                    0.0104          Carbon Steel Heat Structure #12            114205.0                  0.0208          Carbon Steel Heat Structure #13            49101.0                    0.0417          Carbon Steel Heat Structure #14            31372.0                    0.0833          Carbon Steel Heat Structure #15              5631.0                    0.1667          Carbon Steel Heat Structure #16              8355.0                    0.3333          Carbon Steel Heat Structure #17              503.0                    0.6667          Carbon Steel Heat Structure #18              9726.0                    0.0833          Carbon Steel Heat Structure #19            35760.0                    0.0104        Stainless Steel Heat Structure #20            10885.0                    0.0417        Stainless Steel Thermal Conductivity            Volumetric Heat Capacity Heat Sink Material Btu/hr-ft-°F                    Btu/ft3-°F Concrete                          1.2                            30.0 Carbon Steel                        30.0                            54.0 Stainless Steel                      10.0                            60.0 Zinc Coating                        65.0                            41.0
 
Framatome Inc.                                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                        Page 4-10 Table 4-4 Compliance with 10 CFR 50.46(b)
UTL for 95/95 Simultaneous Coverage/Confidence Parameter                                  Value                  Case Number PCT (°F)                                    1561                    [      ]
MLO (%)                                      2.35                    [      ]
CWO (%)                                    0.028                    [      ]
Characteristics of Case Setting the PCT UTL PCT (°F)                                                                1561 Once-Burned 2 PCT Rod Type                                                  weight-percent Gadolinia Rod Time of PCT (s)                                                        76.23 Elevation within Core (ft)                                              9.82 Local Maximum Oxidation (%)                                            1.90 Total Core-Wide Oxidation (%)                                          0.032 PCT Rod Rupture Time (s)                                                N/A Rod Rupture Elevation within Core (ft)                                  N/A
 
Framatome Inc.                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                Page 4-11 Table 4-5 Summary of Major Parameters for the Demonstration Case Parameter                                    Value Core Power (MWt)                                  3636 Time in Cycle (hrs)                                2125 Limiting Rod Assembly Burnup (GWd/mtU)                          26.2 Limiting Rod Equivalent, FQ                            2.48 Limiting Rod Radial Peak, F+                            1.65 Limiting Rod Axial Offset                            0.295 Break Type                                  Guillotine Break Size (ft2/side)                              3.4202
[                          ]                        [        ]
 
Framatome Inc.                                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                      Page 4-12 Table 4-6 Calculated Event Times for the Demonstration Case Event                                Time (sec)
Break Opens                                                      0.0 RCP Trip                                                          0.0 SIAS Issued                                                      0.9 Start of Broken Loop Accumulator Injection                        7.9 Start of Intact Loop Accumulator Injection 16.7, 16.7 and 16.7
[                                  ]
SI Available                                                      29.9 Broken Loop HHSI Delivery Began                                  29.9 Intact Loop HHSI Delivery Began 29.9, 29.9 and 29.9
[                                  ]
Beginning of Core Recovery (Beginning of Reflood)                34.1 Broken Loop Accumulator Emptied                                  42.5 LHSI Available                                                    44.9 Broken Loop LHSI Delivery Began                                  44.9 Intact Loop LHSI Delivery Began 44.9, 44.9 and 44.9
[                                  ]
Intact Loop Accumulator Emptied 46.1, 46.3 and 45.6
[                                  ]
PCT Occurred                                                      76.2 Transient Calculation Terminated                                782.6
 
Framatome Inc.                                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                                Page 4-13 Table 4-7 Heat Transfer Parameters for the Demonstration Case Time (s)
Early                                                              Long Term LOCA Phase                              Blowdown1          Refill          Reflood  Quench Blowdown                                                              Cooling2 Heat Transfer Mode Heat Transfer Correlations Maximum LHGR (kW/ft)
Pressure (psia)
Core Inlet Mass Flux (lbm/s-ft2)
Vapor4 Reynolds Number Liquid Reynolds Number Vapor Prandtl Number Liquid Prandtl Number Vapor5 Superheat
(°F) 1 End of blowdown considered as beginning of refill.
2 Quench to End of Transient.
3 [                                                                                  ]
4 Not important in pre-CHF heat transfer.
5 Vapor superheat is meaningless during blowdown and system depressurization.
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-14 Table 4-8 Fuel Rod Rupture Ranges of Parameters
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-15 Figure 4-1 Scatter Plot Key Parameters
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-16 Figure 4-1 Scatter Plot Key Parameters (continued)
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-17 Figure 4-2 PCT versus PCT Time Scatter Plot
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-18 Figure 4-3 PCT versus Break Size Scatter Plot
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-19 Figure 4-4 Maximum Local Oxidation versus PCT Scatter Plot
 
Framatome Inc.                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                        Page 4-20 Figure 4-5 Total Core Wide Oxidation versus PCT Scatter Plot
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-21 Figure 4-6 Demonstration Case - Peak Cladding Temperature (Independent of Elevation)
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-22 Figure 4-7 Demonstration Case - Break Flow
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-23 Figure 4-8 Demonstration Case - Core Inlet Mass Flux
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-24 Figure 4-9 Demonstration Case - Core Outlet Mass Flux
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-25 Figure 4-10 Demonstration Case - Void Fraction at RCS Pumps
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-26 Figure 4-11 Demonstration Case - ECCS Flows (Includes Accumulator, HHSI and LHSI)
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page 4-27 Figure 4-12 Demonstration Case - Upper Plenum Pressure
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-28 Figure 4-13 Demonstration Case - Collapsed Liquid Level in the Downcomer
 
Framatome Inc.                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                        Page 4-29 Figure 4-14 Demonstration Case - Collapsed Liquid Level in the Lower Plenum
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-30 Figure 4-15 Demonstration Case - Core Collapsed Liquid Level
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-31 Figure 4-16 Demonstration Case - Containment and Loop Pressures
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-32 Figure 4-17 Demonstration Case - Pressure Differences between Upper Plenum and Downcomer
 
Framatome Inc.                                                      ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page 4-33 Figure 4-18
[                                          ]
 
Framatome Inc.                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                Page 5-1
 
==5.0      REFERENCES==
: 1. EMF-2103(P)(A) Revision 3, Realistic Large Break LOCA Methodology for Pressurized Water Reactors, Framatome, June 2016.
: 2. Code of Federal Regulations, Title 10, Part 50, Section 46, Acceptance Criteria For Emergency Core Cooling Systems For Light-Water Nuclear Power Reactors, August 2007.
: 3. NUREG/CR-5249, Quantifying Reactor Safety Margins, Application of Code Scaling, Applicability, and Uncertainty Evaluation Methodology to a Large Break, Loss-of-Coolant Accident, U.S. NRC, December 1989.
: 4. Regulatory Guide 1.203, Transient and Accident Analysis Methods, U.S.
NRC, December 2005.
: 5. NRC Letter from Siva P. Lingam (NRC) to Maria L. Lacal (Arizona Public Service Company), Palo Verde Nuclear Generating Station, Units 1, 2, And 3 - Nonproprietary, Issuance Of Amendment Nos. 212, 212, and 212 to Revise Technical Specifications to Support The Implementation Of Framatome High Thermal Performance Fuel (EPID L-2018-LLA-0194),
(NRC ADAMS Accession Number ML20031C947), March 4, 2020.
: 6. NRC Letter from Michael Mahoney (NRC) to Kim Maza (Shearon Harris Nuclear Power Plant), Shearon Harris Nuclear Power Plant, Unit 1 -
Issuance of Amendment No. 185 Regarding Reduction of Reactor Coolant System Minimum Flow Rate and Update to the Core Operating Limits Report (EPID L 2020 LLA 0040), (NRC ADAMS Accession Number ML21047A470), April 8, 2021.
 
Framatome Inc.                                                                                                ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                                                    Page A-1 APPENDIX A              [                                    ]
 
==SUMMARY==
OF KEY INPUT AND OUTPUT PARAMETERS The following tables contain the sampled input values for all the cases analyzed. Key results are also included in columns 2 through 6 in Table A-1 for the case set. In all cases, the core power is 3636 MWt (including uncertainty).
Table A-1 Summary of Key Input and Output Parameters, Part 1
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-2
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-3
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-4
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-5
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-6
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-7
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-8
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                      Page A-9
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-10
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-11
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-12
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-13
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-14
 
Framatome Inc.                                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                        Page A-15 Table A-2 Summary of Key Input and Output Parameters, Part 2
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-16
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-17
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-18
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-19
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-20
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-21
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-22
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-23
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-24
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-25
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-26
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-27
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-28
 
Framatome Inc.                                                                        ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                                        Page A-29 Table A-3 Summary of Key Input and Output Parameters, Part 3
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-30
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-31
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-32
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-33
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-34
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-35
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-36
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-37
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-38
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-39
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-40
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-41
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-42
 
Framatome Inc.                                                    ANP-3944NP Revision 0 Callaway Realistic Large Break LOCA Analysis with GAIA Fuel Design Licensing Report                                                    Page A-43}}

Revision as of 23:39, 17 November 2024