Regulatory Guide 1.4: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13350A195
| number = ML003739614
| issue date = 06/30/1973
| issue date = 06/30/1974
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
| author name =  
| author name =  
| author affiliation = US Atomic Energy Commission (AEC)
| author affiliation = NRC/RES
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-1.004, Rev. 1
| document report number = RG-1.4, Rev 2
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 6
| page count = 6
}}
}}
{{#Wiki_filter:Revision 1 Revision 1 June 1973 U.S.     ATOMIC ENERGY COMMISSION
{{#Wiki_filter:Revision 2 June 1974 U.S. ATOMIC ENERGY COMMISSION
                              REGULATORY
                              REGULATORY                                                                                         GUIDE
                                DIRECTORATE OF REGULATORY                               STANDARDS
                              DIRECTORATE OF REGULATORY STANDARDS
                                                                                                                              GUIDE
                                                                    REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES
                                                                REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES
              OF A LOSS OF COOLANT ACCIDENT FOR PRESSURIZED WATER REACTORS
            OF A LOSS OF COOLANT ACf',DENT FOR PRESSURIZED WATER REACTORS'


==A. INTRODUCTION==
==A. INTRODUCTION==
given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data Section 50.34 of 10 CFR Part 50 requires that each                                and calculational techniques that might influence the applicant for a construction permit or operating license                                  final design of engineered safety features or the dose provide an analysis and evaluation of the design and                                      reduction factors allowed for these features.)
performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the                                                   


==C. REGULATORY POSITION==
==C. REGULATORY POSITION==
Sect ion 50.34 o1f 10 CFR Pairl 50 requires that each
facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to                                          1. The assumptions related to the release of radioactive evaluate the adequacy of these structures, systems, and                                  material from the fuel and containment are as follows:
                                                                                      1. The assuimptions related io the release of radioactive applicant fir a c(nstruiction permit or operating license material from the fuel and containment are as Ibllows:
components with respect to the public health and safety.                                        a. Twenty-five percent of the equilibrium This guide gives acceptable assumptions that may be                                      radioactive iodine inventory developed from maximum used in evaluating the radiological consequences of this                                  full power operation of the core should be assumed to accident for a pressurized water reactor. In some cases,                                  be immediately available for leakage from the primary unusual site characteristics, plant design features, or                                  reactor containment. Ninety-one percent of this 25 other factors may require different assumptions which                                    percent is to be assumed to be in the form of elemental will be considered on an individual case basis. The                                      iodine, 5 percent of this 25 percent in the form of Advisory Committee on Reactor Safeguards has been                                        particulate iodine, and 4 percent of this 25 percent in consulted concerning this guide and has concurred in the                                the form of organic iodides.
  provid,: an analysis and cvalua3ion of the design and a. T we n t y -five percent of the equilibriut ierlo*rmance of structures. systems, and components of                              radioactive iodine inventory developed from imlaximu i tile facility with [he objective of assessing fhe risk to full power operation of the core should be assumtned to public health and safety resulting froim operation of the                            be immediately available for leakage from the prinmary facility. Tile design basis loss of" coolant accident                                reactor containment. Ninety-one percent of this 25 (LOCA) is one of the postulated accidents Used to                                    percent is to be assumed ito he ill Ithe forma ofelenllelllal evaluate the adequacy of these structures, systems. and iodine. 5 percent of this 25 percent ill the form of comiponents with respect to the public ltealth and safety.                          particulate iodine. and 4 percent of this 25 percent in This guide gives acceptable assumptions that may be                                  the form of organic iodides.


used in evaluating tIle radiologcal consequences of this                                  b. One hundred percent of the equilibrium accident for a pressurized water reactor. In some cases.                            radioactive noble gas inventory developed front unusual site characteristics, platit design features. or                            maximum full power operation od the core should be other factors may require different assumptions which                                assumed to be immediately available for leakage front will be considered on an individual case basis. The                                  the reactor containment.
regulatory position.                                                                          b. One hundred percent of the equilibrium  
 
Advisory Committee on Reactor Safeguards has been                                          c. The effects of radiological decay during holdup consulted concerning this guide and has concurred in the                              in the containment or other buildings should be taken regulatory position.                                                                  into account.


==B. DISCUSSION==
==B. DISCUSSION==
d. The reduction in the amotunt of radioactive material available for leakage to tile environment by After reviewing a number of applications for                                   containment sprays, recirculating filter systems, or other construction permits and operating licenses for                                       engineered safety features may be taken into account.
radioactive noble gas inventory developed from maximum full power operation of the core should be After reviewing a number of applications for                                     assumed to be immediately available for leakage from construction permits and operating licenses for                                         the reactor containment.


pressurized wateli power reactors, the AEC Regulatory                                 but the amount of reduction in concentration of staff has developed a number of appropriately                                         radioactive materials should be evaluated on an conservative assumptions, based on engineering                                         individual case basis.
pressurized water power reactors, the AEC Regulatory                                           c. The effects of radiological decay during holdup staff has developed a number of appropriately                                           in the containment or other buildings should be taken conservative assumptions, based on engineering                                         into account.


judgment and on applicable experimental results from                                         e. The primary reactor containment should be safety research programs conducted by the AEC and the                                 assumed to leak at the leak rate incorporated or to le nuclear industry, that are used to evaluate calculations                               incorporated as a technical specification requirement at of the radioloocal consequences of various postulated                                  peak accident pressure for the first 24 hours. and at 50
judgment and on applicable experimental results from                                           d. The reduction in the amount of radioactive safety research programs conducted by the AEC and the                                   material available for leakage to the environment by nuclear industry, that are used to evaluate calculations                               containment sprays, recirculating filter systems, or other of the radiological consequences of various postulated                                  engineered safety features may be taken into account, accidents.                                                                              but the amount of reduction in concentration of radioactive materials should be evaluated on an This guide lists acceptable assumptions that may be                               individual case basis.
acciden ts.                                                                            percent of this leak rate for the remaining duration of the accideint. 2 Peak accident pressure is the maximum1 This guide lists acceptable assumptions that may be pressure defined in the technical specifications for used to evaluate the design basis LOCA of a Pressurized containment leak testing.


Water Reactor (PWR). It should be shown that thc
used to evaluate the design basis LOCA of a Pressurized                                      e. The primary reactor containment should be Water Reactor (PWR). It should be shown that the assumed to leak at the leak rate incorporated or to be offsite dose consequences will be within the guidelines incorporated as a technical specification requirement at of 10 CFR Part 100. (During the construction permit peak accident pressure for the first 24 hours, and at 50
                                                                                            2 offsite dose consequences will be within thie guidelines                                     Thte effect on coniainnmeni leakage tinder accident of 10 CFR Part 100,                                                                   conditions of features provided to reduce the leakage ot"
  review, guideline exposures of 20 rem whole body and percent of this leak rate for the remaining duration of
                                                                                      radioactive materials from the containment will be evaluated on
  150 rem thyroid should be used rather than the values USAEC REGULATORY GUIDES                                          Copies of published guide may. be obtained by request                    the divisions indicating D.C.  20646, desired to the US. Atomic Enemgy Commilss*o, Washlngton.
      'This guide is a revision of former Safety Guide 4.                           an individual case basis.


USAEC REGULATORY GUIDES                                      Coples of published guldes may be obtained by request Indicating the divisions desired to the US. Atomic Energy Commission. Washington. 0.1, 20545, Regulatory Guides are issued to describe and make avaliable to the public         Attention: Director of Regulatory Standards. Comments and tuggrsilons for methods acceptable to the AEC Regulatory staff of Implementing specific parts of   impfrovements In these guides ere encouraged end should be sent to the Secretary the Commission's regulations, to delineate techniques used by the staff in         of the Commission, US. Atomic Energy Commission, Washington. O.C. 20545.
Attention: Director    of   Regulatory  Standards. Comments    and  suggestions  for Regulatory Guides we issuad to describe and make available to the parts        public methods acceptable to the AEC Regulatory staff of implementing specific           of Impr° ments In theose uldes we encouraged and should be sent to the Secretary by the staff in of the Commislion, U.S. Atomic Energy Commission,         Washington,    D.C. 20645, the Commission's regulations,    to delineate  techniques    used Attention: Chief, Public ProcoedlnglStaff.


evaluating specific problems or postulated accid3nts. or to provide guidance to     Attention: Chief, Public Proceedings Staff.
eanluating specific problems or postulated accidents, or to provide guidance to applicants. Regulatory Guides are not   substitutes for regulations and compliance setout in The guides are issued in the following ten broad divisions:
 
  with them is not required. Methods and solutions different from thoserequisite      to the guides will be acceptable if they provide a basis for the findings                   1. PeOWrdReactors                          6. Products the Issuance or continuance of a permit or )iconse by the Commissio
applicants. Regulatory Guides are not substitutes for regulations and compliance with them is not required. Methods and solutlons different from those set out in   The guides are issued In the following ten broad divliions:
the guides will be acceptable if they provide a basis for the findings requisite to                                              8. Products the issuance or continuance of a permit or license by the Comrrssio


====n.      ====
====n.      ====
===1. Power Reactors===
                                                                                    2.  Researcha nd Tast Reactors             


===7. Transportation===
===7. Transportation===
                                                                                    3. Fuels and Materials Facilities          8. Occupational Health Published guides will be revised periodically, as appropriate, to accommodate       4. Environmental end Siting                9. Antlitrust Review comments and to reflect new informatio" or experience.                              5. Materials and Plant Protection        1
                                                                                            2. Research end Test Reactors
                                                                                            3. Fuels end Materials Facilities          EL Occupatlonal Health
                                                                                            4. Environmental and Siting                9. Antitrust Review Published guides will be revised periodically, asappropriate, to accommodate             5. Materials and Plant Protection        10. General comments and to reflect new information or experienca.


===0. General===
the accident., Peak accident pressure is the maximum                  The surface body dose rate from beta emitters in the pressure defined in the technical specifications for                  infinite cloud can be approximated as being one-half this containment leak testing.                                            amount (i.e., PD-1 = 0.23 Eox).
2. Acceptable assumptions for atmospheric diffusion and dose conversion are:
    a. The 0-8 hour ground level release                            For gamma emitting material the dose rate in air at the concentrations may be reduced by a factor ranging from                cloud center is:
one to a maximum of three (see Figure 1) for additional dispersion produced by the turbulent wake of the                                            ^/DL = 0.507 E&x reactor building in calculating potential exposures. The volumetric building wake correction, as defined in                    From a semi-infinite cloud, the gamma dose rate in air section 3-3.5.2 of Meteorology and Atomic Energy
1968, should be used only in the 0-8 hour period; it is              is:
used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only.                                          7D    = 0.25EYx b. No correction should be made for depletion of the effluent plume of radioactive iodine due to                      Where deposition on the ground, or for the radiological decay of iodine in transit.                                                      0 , = beta dose rate from an infinite cloudi(rad/sec)
    c. For the first 8 hours, the breathing rate of                        DI= gamma dose rate from an infinite cloud persons offsite should be assumed to be 3.47 x 10"4                                  (rad/sec)
cubic meters per second. From 8 to 24 hours following                      E3      average beta energy per disintegration the accident, the breathing rate should be assumed to be                            (Mev/dis)
1.75 x 104 cubic meters per second. After that until the                  EF"= average gamma energy per disintegration end of the accident, the rate should be assumed to be                                (Mev/dis)
1.75 x 10-4 cubic meters per second. After that until the                  X = concentration of beta or gamma emitting end of the accident, the rate should be assumed to be                                isotope in the cloud (curie/m 3 )
2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107                  f. The following specific 'assumptions are cm3 /day] assumed in the report of ICRP, Committee                    acceptable with respect to the radioactive cloud dose calculations:
11-1959.)
    d. The iodine dose conversion factors are given in                        (1) The dose at any distance from the reactor ICRP Publication 2, Report of Committee II,                          should be calculated based on the maximum concentration in the plume at that distance taking into
"Permissible Dose for Internal Radiation," 1959.


.1
account specific meteorological, topographical, and e. External whole body doses should be calculated other characteristics which may affect the maximum using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the                 plume concentration. These site related characteristics must be evaluated on an individual case basis. In the case distance that the gamma rays and beta particles travel.
2. Acceptable assumptions for atmospheric diffusion              From a semi-infinite cloud, the gamma dose rate in air and dose conversion are:                                        is:
      a. The 0-8 hour ground level release concentrations may be reduced by a factor ranging from                                  ,D    = 0,25E
one to a maximum of three (.see Figure I) for additional dispersion produced by the turbulent wake of the                Where reactor building in calculating potential exposures. The volumetric building wake correction, as defined in                            beta dose rate from an infinite cloud (rad/sec)
section 3.3.5.2 of Meteorology and Atomic Energy                              gamma dose rate from an infinite cloud
1968. should be used only in the 0-8 hour period: it is                        (rad/sec)
used with a shape factor of 112 and the minimum                        EO3= average beta energy per disintegration cross-sectional area of the reactor building only.                            (Mev/dis)
      b. No correction should be made for depletion of'              E = average gamma energy per disintegration the effluent plume of radioactive iodine due to                                (Mev/dis)
deposition on the ground, or for the radiological decay              X = concentration of beta or gamma emilling of iodine in transit.                                                          isotope in the cloud (curie/m3)
      c. For the first 8 hours, the breathing rate of persons offsite should be assumed to be 3.47 x 10'                    f. The following specific assumptions are cubic meters per second. From 8 to 24 hours following            acceptable with respect to the radioactive cloud dose the accident, the breathing rate should be assumed to be        calculations:
1.75 x 104 cubic meters per second. After that until the                  (1) The dose at any distance from the reactor end of the accident, the rate should be assumed to be            should be calculated based on the maximum
2.32 x 104 cubic meters per second. (These values were          concentration in the plume at that distance taking into developed from the average daily breathing rate [2 x 107        account specific meteorological, topographical, and cnv'/dayJ assumed in the report of ICRP, Committee              other characteristics which may affect the maximum
11-1959.)                                                        plume concentration. These site related characteristics d. The iodine dose conversion factors are given in        must be evaluated on an individual case basis. In the case ICRP Publication 2, Report of Committee 11,                      of beta radiation, the receptor is assumed to be exposed
"Permissible Dose for Internal Radiation," 1959.                to an infinite cloud at the maximum ground level e. External whole body doses should be calculated         concentration at that distance from the reactor. In the using "Infinite Cloud" assumptions, i.e., the dimensions         case of gamma radiation, the receptor is assumed to be of the cloud are assumed to be large compared to the             exposed to only one-half the cloud owing to the distance that the gamma rays and beta particles travel.         presence of the groun


====d. The maximum cloud====
of beta radiation, the receptor is assumed to be exposed
"Such a cloud would be considered an infinite cloud for         concentration always should be assumed to be at ground a receptor at the center because any additional [gamma           level.
"Such a cloud would be considered an infinite cloud for to an infinite cloud at the maximum ground level a receptor at the center because any additional [gamma and] beta emitting material beyond the cloud                          concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and                exposed to only one-half the cloud owing to the Atomic Energy, Section 7.4.1.1 -editorial additions                  presence of the ground. The maximum cloud made so that gamma and beta emitting material could be                concentration always should be assumed to be at ground considered). Under these conditions the rate of energy                level.


and] beta emitting material beyond the cloud                              (2) The appropriate average beta and gamma dimensions would not alter the flux of [gamma rays               energies emitted per disintegration, as given in the Table and] beta particles to the receptor" (Meteorology and            of Isotopes, Sixth Edition, by C. M. Lederer, J. M.
absorption per unit volume is equal to the rate of energy                      (2) The appropriate average beta and gamma released per unit volume. For an infinite uniform cloud               energies emitted per disintegration, as given in the Table containing X curies of beta radioactivity per cubic meter            of Isotopes, Sixth Edition, by C. M. Lederer, J. M.


Atomic Energy, Section 7.4. .1.-editorial additions            Hollander, I. Perlman; University of California, Berkeley, made so that gamma and beta emitting material could be          Lawrence Radiation Laboratory; should be used.
the beta dose in air at the cloud center is:                          Hollander, I. Perlman; University of California, Berkeley;
                                                                      Lawrence Radiation Laboratory; should be used.


considered). Under these conditions the rate of energy absorption per unit volume is equal to the rate of energy            g. The atmospheric diffusion model should be as released per unit volume. For an infinite uniform cloud        follows:
SD4 = 0.457 fEX                                  g. The atmospheric diffusion model should be as follows:
containing X curies of beta radioactivity per cubic meter                (1) The basic equation for atmospheric the beta dose in air at the cloud center is:                    diffusion from a ground level point source is:
                                                                                (1) The basic equation for atmospheric diffusion from a ground level point source is:
                        D! = 0.457 EOX
      The effect on containment leakage under accident conditions of features provided to reduce the leakage of                                              1 radioactive materials from the containment will be evaluated on                                      u an individual case basis.
                                                                                      X/Q= ruaya The surface body dose rate from beta emitters in the infinite cloud can be approximated as being one-half this Where amount (i.e., 0DD' = 0.23 E'X).
                                                                      X  = the short term average centerline value of the ground level concentration (curie/meter3)
For gamma emitting material the dose rate in air at the Q = amount of material released (curie/see)
                                                                      u = windspeed (meter/see)
uloud center is:
                                                                        y = the horizontal standard deviation of the plume (meters) [See Figure V-I. Page 48.


7 .D = 0.507 Ey(
XIQ = SrUayoz
                                                                                Nuclear Safety, June 1961, Volume 2.
                                                                1.4-2


1.4-2
Time Where                                                                    Following Accident                Atmospheric Conditions X    = the short term average centerline value of the      3 ground level concentration (curie/meter )              0-8 hours    Pasquill Type F, windspeed        1 meter/see, Q = amount of material released          (curie/sec)                            uniform direction u = windspeed (meter/sec)
      ay = the horizontal standard deviation of the
                                                                        8.24 hours Pasquill Type F, windspeed 1 meter/sec, plume (meters) [See Figure V-i, Page 48, variable direction within a 22.50 sector Nuclear Safety, June 1961. Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric                1-4 days      (a) 40% Pasquill Type D, windspeed 3 Dispersion," F. A. Gifford, Jr.]                                      meter/sec z= the vertical standard deviation of the plume                              (b) 60% Pasquill Type F, windspeed 2 (meters) [See Figure V-2, Page 48, Nudear                            meter/sec Safety, June 1961, Volume 2, Number 4,                                (c) wind direction variable within a 22.50
                "Use of Routine Meteorological                                        sector Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]                        4-30 days (a) 33.3% Pasquill Type C, windspeed            3 meter/sec
          (2) For time periods of greater than 8 hours                                (b) 33.3% Pasquill Type D, windspeed 3 the plume should be assumed to meander and spread                                      meter/sec uniformly over a 22.50 sector. The resultant equation is:                              (c) 33.3% Pasquill Type F, windspeed 2 meter/sec x/Q = 2.032 uu                                                (d) Wind direction 33.3% frequency in a OzU                                                22.50 sector Where
                                                                                  (4) Figures 2A and 2B give the ground level x    = distance from point of release to the receptor;            release atmospheric diffusion factors based on the other variables are as given in g(l).                    parameters given in g(3).
                                                            2
          (3) The atmospheric diffusion model for ground level releases is    based  on the  information    in  the following tabl


Number 4, "Use of Routine Meteorolo-ical                    Time Observations for Estimating Atmospcheric                  Following Dispersion," F. A. Gifford. Jrj..                          Accident                Atmospheric Conditions o" = the vertical standard deviation cf the pluii.e (meters) ISee Figure V-2, Page 48, Nuclear              0.8 hours    Pasquill Type F. wiudspeed        I meter/sec.
====e.     ====


Safqev', June 19(1. Volume 2. Number
==D. IMPLEMENTATION==
2 This  model should be used until adequate site                        The revision to this guide (indicated by a line in the meteorological data are obtained. In some cases, available              margin) reflects current Regulatory staff practice in the information, such as meteorology, topography and geographical          review of construction permit applications; therefore, location, may dictate the use of a more restrictive model to            this revision is effective immediately.


===4. uniform direction===
insure a conservative estimate of potential offsite exposures.
                    "Use      of Routlinc Me leorological Oh,'ervations for Estimating Atmospheric                8-24 hours Pasquill Type F, windspced            I metcr/s.c.


Dispersion," F. A. G;ifford. Jr.I                                    variable direction within a 22.5" sector
1.4-3
            (.2) For lime periods of greater than 8 hours the plume shouid hI assumed to meander and spread                            1-4 days    (a) 4(Y,,%( Pasquill Type  D. windspeed      3 tini*ormly ovcr a 22.i" sector. The resultlant e'quaition is:                            rilel r/sec (b) 600,, Pasquill Type F. windspeed 2 leter/sec
                                        2.032 x/Q =        lx                                            (W' wind direction v: riabie within a 22._.


sector
BUILDING WAKE DISPERSION CORRECTION FACTOR
\Vhicrc
                          0                                                                                                cli
                                                                            4-30 days (a) 33.35, Pasquill Type C, windspeed            3 x        distance from point of release to the receptor;.                          meter/sec other variables are as given in g( 1).                                   (N) 33.3%'. Pasquill Type D. windspeed         3 ineter/sec
    0                                                                                                a'
            (3) Tlhe at mospheric diffusion model" for                                  (c) 33.3%; Pasquill Type F, wirdspeed 2 ground level releases is based on the information in the                                  viieter/sec following lable.                                                                          (d) Wind direction 33.3,:, frequency in a
  W4
                                                                                          22.50 sector
                            .44                                                                            * :1
    -''This    niIdo.l' %liould be useud until adequate site metcorologic'al      d:ta are obtained. In some ,-uses. available information. such u,;        tnic*orology. topography and geovaphicut.                (4) Figures 2A and 213 give the groud level tocalion. may dictate Itic use of a more restrictive model to                release atmospheric diffusion factors based on the insurc a conscrvative eltimuie of potentla oflfsitc exposures.              parameters given in g( 3).
                                                                                                                                      -.T-71
                                                                      1.4-3
                                      -4         ----                                                      *    I
                          [-v                          T    -T
                                              77
                _T_  ,-
        Rat
          -4-                                                                                     -4
                                      1'              ------  --                                                                                  ----9


bI                .1-GiAK
* Lr
                                                                      buPRIP IOýAO
                                                                                                                                                    -t Lii      F-I                                                                        KY
  2.5                                                                      FIGURE 1
            -
                          2 O.SA-SO  meters
                                  H
0                                P'mtr
      ilL-                  1--r H:,        1 ifif-                                                                                            *--7- -7 I
                                                       2
        ýffHTq---
                                                                                      4.
                                IW1ETýý T                                            F I  'I
                                                                                                          7----
                                                                                                          -T  7-
                                                                                                                                  -w
                                                                                                                        7- -+~1*~
U                                  4 F I I    F                                                                                                  -t -..
I
                              f-V
                                            I
                                                *1  - iI                                                                      Ii I
                                                '-
I..'                                                       . . . . . .A . . . . . . . . . . . . .
                                                                                                  K              7 17.


0 .5A-1000 -nws              O.SA-2500atr
"'III'
                            2                      meti
                                                                                                                            ii F.V-~2 H
      2  O.BA-1500 motors              0.5A-3000meru p.            O.5A-2000 metonus ý
              __________________                      +1j
w
                                                          4~~~t  4r~4
0
                                                              ___414_____1___
                            ccI
                                                                              J:r
                        zI
                                                                                -T4 LltIIII]I4J---I-1              1V
w1.5
                                                                                                        -14- - :4Ij4Th1          -
4                                                                          I
                                                                                                                                            1-7.~I
                        uII
      -I                                      w#tThJ              11ff
                                        I                                I      i     . . I *
                                                                                1-ý 4 Lt.]                                                            i-i
                                                                              10w Distance from Structure (metars)


I
.10-40            ::R+
                                                                        III _ . II
      9 I I II'llill'44            -      - ...
       3 L
                                                                                                                                                                                    - . . " I aI I
                                                                    FIGL
                          H-Lik  i                                  -i-v-ti-ti r-i 4      TI          I'      I'
                                S1i        ..        _.
                          . F141       I                                      .F.U.,      7777!ý i                                                                11111    iiiiiin::...,.!
                                                                                                                                                                                          ri-Ill ERH                                                                                                                                                                  i ! ! I
                                                                      t44 I
      4 ER HIE 1.


10-A
FIGURE 2(AAMJ)
                                                                                    I
                                                                                                                                                I
          a- ...                    *-
                                                                                                                                                                                  ++H
                  - --       --                  ......
                                                                                                                                                            fffl  -t-ýft  ttlt
                        7----
                                                                                            1,
      0
                                                                                          -t:      r                                                              ##
                        4--I
                                                                                                -.4
                                0\
                                                                              44-J                                                                                        11E
  1  o          *     .               '1                   %
                                                                                  -. :  44- tLT
                                    Ditne      rmSrut-          (ees
                                                                                                    -
             44sanc4m                    .tu.            St . ..    tes
                                                                                                                                  i--T-4-+I- zh            4444 i i i i !I-H
                                                  1.4-5
  104                                                                                                                                                        fjP +4-tiHi++ ftHl"
      9                                                                                                                      4-   7ý+ý
                  +
                 L-f+ý+'  AL
                -Lý        V
                                                                                                                                                                TTlq4lRh-        4iý
      E                            ýtv4 ft                                                                    T,
                                                                                                                                                                            TfFffliif t 4ý
                                                                                    '-4..,.
                                                                                  '-44
                                                                                          -1-il
                                                                                          4".
                                                                                                            -I                                4 T                                  t
                                                                                    ,j    -:
                                                                                                      4444 U.                                           44                                                1-4                                                4. 4 LV
                                +
                                                                                        1  2                            T' -T
            #4-4                                                                                                                      r! I L
                                                                                                                                    -4=
                                                        74          1-t -      4 -4
                                                          -t              L-T-
                                                                                                                            T
  19-4                                                                                                            ý!J!ý 44-+                          H.4         -+j J+/- 44
        9                                                                                                                  + 4-4-ý    H
                                                                                    r'      *ii
                                                                                                                                                  17
                                                                                                        44 rr
                    44
        6                                                                                                                              V.r
                    444                                                                                                                              - BE
                                                                                        1:
                                                                                                                  T!..TT
        4
                                44 i-II
              vT    RE-                   r
        3
                            14         ::1--, 4,
              -T
              1             I
                                                                                                                                                                                            A-
                            -I                    ý4, S114                                  1 I                                                                                      .1
    4ft-6 I1Ilp      -                              5          Ili10,
                                                          I II                                                                  9l'o
                                                                                                                                                                                          '8 Distance from Structure (meters)
                                                                                          1.4-5


d*
Disance fromt Structure (meter)
10-      I
          1.4-6}}
                                                                                                                                                  I
                                  I I    A ...; I ....  1        1
          .",  . - - -I.-- I--,- - .-*"i ... v  -    .1 - 1 %ý
                                                                                                                            FIGURE 2(81            -
                                _____0-8                                                                  hours7~
.. ,D    L
IU
    E
                            .1.N..                                          '          I                  I I*
* I
                                                                                                            .      %, . . :.
    0
                                                                                                    7  :::::
t~rV~
F-W                                                            0  * -,pI  *      . 'I
                                                                                    X1
                                                                                                      'V
                                                                                          ,
                                                              -,I-                                  -
                                            -7I
10
      163
              ..~.i...                  I_... ...                                                      1. 1ý 10.                      5 b
                                                                                                                                            -
                                                                                                                                              7 1 Distance from Structure (maters)
                                                                                        1.4-6}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 11:29, 28 March 2020

Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
ML003739614
Person / Time
Issue date: 06/30/1974
From:
Office of Nuclear Regulatory Research
To:
References
RG-1.4, Rev 2
Download: ML003739614 (6)


Revision 2 June 1974 U.S. ATOMIC ENERGY COMMISSION

REGULATORY GUIDE

DIRECTORATE OF REGULATORY STANDARDS

REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES

OF A LOSS OF COOLANT ACCIDENT FOR PRESSURIZED WATER REACTORS

A. INTRODUCTION

given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data Section 50.34 of 10 CFR Part 50 requires that each and calculational techniques that might influence the applicant for a construction permit or operating license final design of engineered safety features or the dose provide an analysis and evaluation of the design and reduction factors allowed for these features.)

performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the

C. REGULATORY POSITION

facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to 1. The assumptions related to the release of radioactive evaluate the adequacy of these structures, systems, and material from the fuel and containment are as follows:

components with respect to the public health and safety. a. Twenty-five percent of the equilibrium This guide gives acceptable assumptions that may be radioactive iodine inventory developed from maximum used in evaluating the radiological consequences of this full power operation of the core should be assumed to accident for a pressurized water reactor. In some cases, be immediately available for leakage from the primary unusual site characteristics, plant design features, or reactor containment. Ninety-one percent of this 25 other factors may require different assumptions which percent is to be assumed to be in the form of elemental will be considered on an individual case basis. The iodine, 5 percent of this 25 percent in the form of Advisory Committee on Reactor Safeguards has been particulate iodine, and 4 percent of this 25 percent in consulted concerning this guide and has concurred in the the form of organic iodides.

regulatory position. b. One hundred percent of the equilibrium

B. DISCUSSION

radioactive noble gas inventory developed from maximum full power operation of the core should be After reviewing a number of applications for assumed to be immediately available for leakage from construction permits and operating licenses for the reactor containment.

pressurized water power reactors, the AEC Regulatory c. The effects of radiological decay during holdup staff has developed a number of appropriately in the containment or other buildings should be taken conservative assumptions, based on engineering into account.

judgment and on applicable experimental results from d. The reduction in the amount of radioactive safety research programs conducted by the AEC and the material available for leakage to the environment by nuclear industry, that are used to evaluate calculations containment sprays, recirculating filter systems, or other of the radiological consequences of various postulated engineered safety features may be taken into account, accidents. but the amount of reduction in concentration of radioactive materials should be evaluated on an This guide lists acceptable assumptions that may be individual case basis.

used to evaluate the design basis LOCA of a Pressurized e. The primary reactor containment should be Water Reactor (PWR). It should be shown that the assumed to leak at the leak rate incorporated or to be offsite dose consequences will be within the guidelines incorporated as a technical specification requirement at of 10 CFR Part 100. (During the construction permit peak accident pressure for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and at 50

review, guideline exposures of 20 rem whole body and percent of this leak rate for the remaining duration of

150 rem thyroid should be used rather than the values USAEC REGULATORY GUIDES Copies of published guide may. be obtained by request the divisions indicating D.C. 20646, desired to the US. Atomic Enemgy Commilss*o, Washlngton.

Attention: Director of Regulatory Standards. Comments and suggestions for Regulatory Guides we issuad to describe and make available to the parts public methods acceptable to the AEC Regulatory staff of implementing specific of Impr° ments In theose uldes we encouraged and should be sent to the Secretary by the staff in of the Commislion, U.S. Atomic Energy Commission, Washington, D.C. 20645, the Commission's regulations, to delineate techniques used Attention: Chief, Public ProcoedlnglStaff.

eanluating specific problems or postulated accidents, or to provide guidance to applicants. Regulatory Guides are not substitutes for regulations and compliance setout in The guides are issued in the following ten broad divisions:

with them is not required. Methods and solutions different from thoserequisite to the guides will be acceptable if they provide a basis for the findings 1. PeOWrdReactors 6. Products the Issuance or continuance of a permit or )iconse by the Commissio

n.

7. Transportation

2. Research end Test Reactors

3. Fuels end Materials Facilities EL Occupatlonal Health

4. Environmental and Siting 9. Antitrust Review Published guides will be revised periodically, asappropriate, to accommodate 5. Materials and Plant Protection 10. General comments and to reflect new information or experienca.

the accident., Peak accident pressure is the maximum The surface body dose rate from beta emitters in the pressure defined in the technical specifications for infinite cloud can be approximated as being one-half this containment leak testing. amount (i.e., PD-1 = 0.23 Eox).

2. Acceptable assumptions for atmospheric diffusion and dose conversion are:

a. The 0-8 hour ground level release For gamma emitting material the dose rate in air at the concentrations may be reduced by a factor ranging from cloud center is:

one to a maximum of three (see Figure 1) for additional dispersion produced by the turbulent wake of the ^/DL = 0.507 E&x reactor building in calculating potential exposures. The volumetric building wake correction, as defined in From a semi-infinite cloud, the gamma dose rate in air section 3-3.5.2 of Meteorology and Atomic Energy

1968, should be used only in the 0-8 hour period; it is is:

used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only. 7D = 0.25EYx b. No correction should be made for depletion of the effluent plume of radioactive iodine due to Where deposition on the ground, or for the radiological decay of iodine in transit. 0 , = beta dose rate from an infinite cloudi(rad/sec)

c. For the first 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, the breathing rate of DI= gamma dose rate from an infinite cloud persons offsite should be assumed to be 3.47 x 10"4 (rad/sec)

cubic meters per second. From 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following E3 average beta energy per disintegration the accident, the breathing rate should be assumed to be (Mev/dis)

1.75 x 104 cubic meters per second. After that until the EF"= average gamma energy per disintegration end of the accident, the rate should be assumed to be (Mev/dis)

1.75 x 10-4 cubic meters per second. After that until the X = concentration of beta or gamma emitting end of the accident, the rate should be assumed to be isotope in the cloud (curie/m 3 )

2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107 f. The following specific 'assumptions are cm3 /day] assumed in the report of ICRP, Committee acceptable with respect to the radioactive cloud dose calculations:

11-1959.)

d. The iodine dose conversion factors are given in (1) The dose at any distance from the reactor ICRP Publication 2, Report of Committee II, should be calculated based on the maximum concentration in the plume at that distance taking into

"Permissible Dose for Internal Radiation," 1959.

account specific meteorological, topographical, and e. External whole body doses should be calculated other characteristics which may affect the maximum using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the plume concentration. These site related characteristics must be evaluated on an individual case basis. In the case distance that the gamma rays and beta particles travel.

of beta radiation, the receptor is assumed to be exposed

"Such a cloud would be considered an infinite cloud for to an infinite cloud at the maximum ground level a receptor at the center because any additional [gamma and] beta emitting material beyond the cloud concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and exposed to only one-half the cloud owing to the Atomic Energy, Section 7.4.1.1 -editorial additions presence of the ground. The maximum cloud made so that gamma and beta emitting material could be concentration always should be assumed to be at ground considered). Under these conditions the rate of energy level.

absorption per unit volume is equal to the rate of energy (2) The appropriate average beta and gamma released per unit volume. For an infinite uniform cloud energies emitted per disintegration, as given in the Table containing X curies of beta radioactivity per cubic meter of Isotopes, Sixth Edition, by C. M. Lederer, J. M.

the beta dose in air at the cloud center is: Hollander, I. Perlman; University of California, Berkeley;

Lawrence Radiation Laboratory; should be used.

SD4 = 0.457 fEX g. The atmospheric diffusion model should be as follows:

(1) The basic equation for atmospheric diffusion from a ground level point source is:

The effect on containment leakage under accident conditions of features provided to reduce the leakage of 1 radioactive materials from the containment will be evaluated on u an individual case basis.

XIQ = SrUayoz

1.4-2

Time Where Following Accident Atmospheric Conditions X = the short term average centerline value of the 3 ground level concentration (curie/meter ) 0-8 hours Pasquill Type F, windspeed 1 meter/see, Q = amount of material released (curie/sec) uniform direction u = windspeed (meter/sec)

ay = the horizontal standard deviation of the

8.24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Pasquill Type F, windspeed 1 meter/sec, plume (meters) [See Figure V-i, Page 48, variable direction within a 22.50 sector Nuclear Safety, June 1961. Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric 1-4 days (a) 40% Pasquill Type D, windspeed 3 Dispersion," F. A. Gifford, Jr.] meter/sec z= the vertical standard deviation of the plume (b) 60% Pasquill Type F, windspeed 2 (meters) [See Figure V-2, Page 48, Nudear meter/sec Safety, June 1961, Volume 2, Number 4, (c) wind direction variable within a 22.50

"Use of Routine Meteorological sector Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.] 4-30 days (a) 33.3% Pasquill Type C, windspeed 3 meter/sec

(2) For time periods of greater than 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> (b) 33.3% Pasquill Type D, windspeed 3 the plume should be assumed to meander and spread meter/sec uniformly over a 22.50 sector. The resultant equation is: (c) 33.3% Pasquill Type F, windspeed 2 meter/sec x/Q = 2.032 uu (d) Wind direction 33.3% frequency in a OzU 22.50 sector Where

(4) Figures 2A and 2B give the ground level x = distance from point of release to the receptor; release atmospheric diffusion factors based on the other variables are as given in g(l). parameters given in g(3).

2

(3) The atmospheric diffusion model for ground level releases is based on the information in the following tabl

e.

D. IMPLEMENTATION

2 This model should be used until adequate site The revision to this guide (indicated by a line in the meteorological data are obtained. In some cases, available margin) reflects current Regulatory staff practice in the information, such as meteorology, topography and geographical review of construction permit applications; therefore, location, may dictate the use of a more restrictive model to this revision is effective immediately.

insure a conservative estimate of potential offsite exposures.

1.4-3

BUILDING WAKE DISPERSION CORRECTION FACTOR

0 cli

0 a'

W4

.44 * :1

-.T-71

-4 ---- * I

[-v T -T

77

_T_ ,-

Rat

-4- -4

1' ------ -- ----9

  • Lr

-t Lii F-I KY

-

H

ilL- 1--r H:, 1 ifif- *--7- -7 I

ýffHTq---

IW1ETýý T F I 'I

7----

-T 7-

-w

7- -+~1*~

U 4 F I I F -t -..

I

f-V

I

  • 1 - iI Ii I

'-

I..' . . . . . .A . . . . . . . . . . . . .

K 7 17.

"'III'

ii F.V-~2 H

__________________ +1j

4~~~t 4r~4

___414_____1___

J:r

-T4 LltIIII]I4J---I-1 1V

-14- - :4Ij4Th1 -

1-7.~I

-I w#tThJ 11ff

1-ý 4 Lt.] i-i

.10-40  ::R+

9 I I II'llill'44 - - ...

- . . " I aI I

H-Lik i -i-v-ti-ti r-i 4 TI I' I'

. F141 I .F.U., 7777!ý i 11111 iiiiiin::...,.!

ri-Ill ERH i ! ! I

t44 I

4 ER HIE 1.

FIGURE 2(AAMJ)

I

++H

fffl -t-ýft ttlt

1,

-t: r ##

-.4

44-J 11E

-. : 44- tLT

-

i--T-4-+I- zh 4444 i i i i !I-H

104 fjP +4-tiHi++ ftHl"

9 4- 7ý+ý

+

L-f+ý+' AL

-Lý V

TTlq4lRh- 4iý

E ýtv4 ft T,

TfFffliif t 4ý

'-4..,.

'-44

-1-il

4".

-I 4 T t

,j -:

4444 U. 44 1-4 4. 4 LV

+

1 2 T' -T

  1. 4-4 r! I L

-4=

74 1-t - 4 -4

-t L-T-

T

19-4 ý!J!ý 44-+ H.4 -+j J+/- 44

9 + 4-4-ý H

r' *ii

17

44 rr

44

6 V.r

444 - BE

1:

T!..TT

4

44 i-II

vT RE- r

3

14  ::1--, 4,

-T

1 I

A-

-I ý4, S114 1 I .1

4ft-6 I1Ilp - 5 Ili10,

I II 9l'o

'8 Distance from Structure (meters)

1.4-5

Disance fromt Structure (meter)

1.4-6