ML14073A061: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(7 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 03/03/2014
| issue date = 03/03/2014
| title = Flaw Evaluation of SSW Discharge Piping Leaking Elbow, Calculation No. 1400287.302, Rev. 0
| title = Flaw Evaluation of SSW Discharge Piping Leaking Elbow, Calculation No. 1400287.302, Rev. 0
| author name = Tucker J A
| author name = Tucker J
| author affiliation = Structural Integrity Associates, Inc
| author affiliation = Structural Integrity Associates, Inc
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:ATTACHMENT 4TO ENTERGY LETTER 2.14.023PILGRIM RELIEF REQUEST PRR-25Calculation Cover Page EC # 49514Flaw Evaluation of SSW Discharge Piping Leaking ElbowStructural Integrity Associates Calculation No. 1400287.302, Rev. 0(20 Pages)
{{#Wiki_filter:ATTACHMENT 4 TO ENTERGY LETTER 2.14.023 PILGRIM RELIEF REQUEST PRR-25 Calculation Cover Page EC # 49514 Flaw Evaluation of SSW Discharge Piping Leaking Elbow Structural Integrity Associates Calculation No. 1400287.302, Rev. 0 (20 Pages)
ATTACHMENT 9.2 ENGINEERING CALCULATION COVER PAGESheet 1 of 2[] ANO-1 13 ANO-2 El GGNS [1 IP-2 [I IP-3 [E PLPf- JAF Z PNPS [1 RBS El VY [I W3El NP-GGNS-3  
 
[I NP-RBS-3CALCULATION
ATTACHMENT 9.2                                                       ENGINEERING CALCULATION COVER PAGE Sheet 1 of 2
()EC # 49514 (2) Page 1 of 20)COVER PAGE(3) Design Basis Calc. E-- YES NO (4) [Z CALCULATION Markup15) Calculation No: M1398 (5) Revision:
[] ANO-1           13 ANO-2             El GGNS             [1 IP-2           [I IP-3       [E PLP f- JAF             Z PNPS               [1 RBS             El VY             [I W3 El    NP-GGNS-3     [I NP-RBS-3 CALCULATION              ()EC # 49514                                     (2)Page 1 of     20)
0(7) Title: Flaw Evaluation of SSW Discharge Piping Leaking Elbow ,1) Editorial DYES Z NO(9) System(s):
COVER PAGE (3) Design Basis Calc. E--YES       Z* NO       (4) [Z CALCULATION               [-*EC Markup
29(10) Review Org (Department):
: 15) Calculation No: M1398                                                             (5) Revision: 0 (7)
(ii) Safety Class: (12) Component/Equipment/Structure Type/Number:
 
Z Safety / Quality Related PIPE / JF29-8-4[] Augmented Quality Programi-- Non-Safety Related(13) Document Type: CALC(14) Keywords (Description/Topical Codes):JF29-8-4, spool, SIA, Structural Integrity Associates, flaw, leak, rubber lining,1400287.302, 1400287-fREVIEWS(15) Name/Signature/Date (16) Name/Signature/Date (17) Name/Signature/Date Structural Integrity Assoc. John A. Tucker 3. Iq See IASResponsible Engineer  
==Title:==
-- Design Verifier Supervisor/Approval Z ReviewerEi- Comments Attached E- Comments AttachedEN-DC-126 R005 ATAHMENT 19of3CALCULATION REFERENCE SHEETSheet 1 of 3CALCULATION CALCULATION NO: M1398REFERENCE SHEET REVISION:
Flaw Evaluation of SSW Discharge Piping Leaking Elbow                   ,1) Editorial DYES Z NO (9) System(s): 29                             (10)   Review Org (Department):
0I. EC Markups Incorporated (N/A to NP calculations) 1.N/A2.3.4.5.11. Relationships:
(ii) Safety Class:                           (12)   Component/Equipment/Structure Type/Number:
Sht Rev Input Output Impact TrackingDoc Doc Y/N No.1. Specification M300 2-12 109 x 0 N2. M100-7250  
Z Safety / Quality Related                   PIPE / JF29-8-4
-5 x 0 N3. __ 0 04. _ _0 05. 0 0 __III. CROSS  
[] Augmented Quality Program i-- Non-Safety Related (13) Document Type: CALC (14) Keywords (Description/Topical Codes):
                                                                              -f JF29-8-4, spool, SIA, Structural Integrity Associates, flaw, leak, rubber lining, 1400287.302, 1400287 REVIEWS (15) Name/Signature/Date           (16) Name/Signature/Date           (17) Name/Signature/Date Structural Integrity Assoc.         John A. Tucker         3. Iq               See IAS Responsible Engineer           -- Design Verifier                     Supervisor/Approval Z Reviewer Ei- Comments Attached                 E- Comments Attached EN-DC-126 R005
 
ATAHMENT19of3                                                      CALCULATION REFERENCE SHEET Sheet 1 of 3 CALCULATION                      CALCULATION NO: M1398 REFERENCE SHEET                   REVISION: 0 I. EC Markups Incorporated (N/A to NP calculations) 1.N/A 2.
3.
4.
5.
: 11. Relationships:             Sht     Rev     Input   Output     Impact   Tracking Doc     Doc        Y/N     No.
: 1. Specification M300       2-12       109       x       0       N
: 2. M100-7250                 -         5         x       0       N
: 3.                                       __         0        0
: 4.                             _       _0                 0
: 5.                                                 0       0       __
III.     CROSS  


==REFERENCES:==
==REFERENCES:==
: 1. ASME B&PV Code, Section XI, App C, 2001 Edition w/ Add through 20032. ASME B31.1, Power Piping, 1967 Edition3. ASME Code Case N-513-34. Flow of Fluids Through valves, Fittings and Pipe, Crane Co,., Technical Paper No.410IV. SOFTWARE USED:Title: N/A Version/Release:  
: 1. ASME B&PV Code, Section XI, App C, 2001 Edition w/ Add through 2003
-- DisklCD No. --V. DISK/CDS INCLUDED:
: 2. ASME B31.1, Power Piping, 1967 Edition
Title: N/A Version/Release Disk/CD No.VI. OTHER CHANGES:EN-DC-126 R005 Structural Integrity Associates, Inc File No.: 1400287.302 Project No.: 1400287CALCULATION PACKAGE Quality Program:
: 3. ASME Code Case N-513-3
Z Nuclear E] Commercial PROJECT NAME:Pilgrim Leaking Elbow Evaluation SupportCONTRACT NO.:10404807, Change Order No. 001CLIENT: PLANT:Entergy Nuclear Pilgrim Nuclear Power StationCALCULATION TITLE:Flaw Evaluation of SSW Discharge Piping Leaking ElbowDocument Affected Project Manager Preparer(s)  
: 4. Flow of Fluids Through valves, Fittings and Pipe, Crane Co,., Technical Paper No.
&Revision Pages Revision Description Approval Checker(s)
410 IV.       SOFTWARE USED:
Signature  
 
& Date Signatures  
==Title:==
& Date0 1 -15 Initial IssueA-i -A-3Eric Houston Brad DawsonEJH 3/3/14 BPD 3/3/14Raoul GnagneLRG 3/3/14Robert McGillROM 3/3/14Page 1 of 15F0306-01 R1 j Structural Integrity Associates, Inc0Table of Contents1.0 IN TRO D U CTIO N ....................................................................................................
N/A Version/Release:   --       DisklCD No. --
32.0 TECHNICAL APPROACH  
V.       DISK/CDS INCLUDED:
.....................................................................................
 
33.0 DESIGN INPUTS / ASSUMPTIONS  
==Title:==
......................................................................
N/A                   Version/Release           Disk/CD No.
44.0 C A LC U LA TIO N S .....................................................................................................
VI.       OTHER CHANGES:
54.1 A pplied Loads ..............................................................................................
EN-DC-126 R005
54.1.1 H o op S tress ........................................................................................................
 
54.1.2 A xial Stresses  
StructuralIntegrity Associates, Inc                 File No.: 1400287.302 Project No.: 1400287 CALCULATION PACKAGE                               Quality Program: Z Nuclear   E] Commercial PROJECT NAME:
................................................................................................
Pilgrim Leaking Elbow Evaluation Support CONTRACT NO.:
64.2 Stress Intensity Factor Calculations  
10404807, Change Order No. 001 CLIENT:                                         PLANT:
.............................................................
Entergy Nuclear                                 Pilgrim Nuclear Power Station CALCULATION TITLE:
74.3 Critical Fracture Toughness Determination  
Flaw Evaluation of SSW Discharge Piping Leaking Elbow Document      Affected                                     Project Manager           Preparer(s) &
..................................................
Revision       Pages         Revision Description             Approval                 Checker(s)
85.0 R E SU L T S ......................................................................................................................
Signature & Date         Signatures & Date 0          1 - 15           Initial Issue A-i - A-3 Eric Houston             Brad Dawson EJH 3/3/14               BPD 3/3/14 Raoul Gnagne LRG 3/3/14 Robert McGill ROM 3/3/14 Page 1 of 15 F0306-01 R1
86.0 C O N C LU SIO N S ......................................................................................................
 
87.0 R E FERE N C E S ......................................................................................................
j   StructuralIntegrity Associates, Inc0 Table of Contents 1.0     INTRO DU CTION ....................................................................................................                     3 2.0     TECHNICAL APPROACH .....................................................................................                               3 3.0     DESIGN INPUTS / ASSUMPTIONS ......................................................................                                     4 4.0     CA LCULA TIO N S .....................................................................................................                 5 4.1         Applied Loads ..............................................................................................                   5 4.1.1 Ho op S tress........................................................................................................             5 4.1.2 A xial Stresses................................................................................................                   6 4.2         Stress Intensity Factor Calculations .............................................................                             7 4.3         Critical Fracture Toughness Determination ..................................................                                   8 5.0     R E SU LT S ......................................................................................................................     8 6.0     C O NC LU SIO NS ......................................................................................................                 8 7.0     R E FERE N CE S ......................................................................................................               10 APPENDIX A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVA LU A TIO N .......................................................................................                       A -1 List of Tables Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10] 11 Table 2: Axial and Circumferential Structural Factors [4] ................................................                                   12 Table 3: Load Combinations for Circumferential Flaw Analyses .....................................                                           12 Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312") ............................ 12 List of Figures Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow .......................................                                         13 Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow ................... 14 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow ................... 15 File No.: 1400287.302                                                                                                                                 Page 2 of 15 Revision: 0 F0306-OIRI
10APPENDIX A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAWEV A LU A TIO N .......................................................................................
 
A -1List of TablesTable 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database  
jStructural Integrity Associates, IncY
[10] 11Table 2: Axial and Circumferential Structural Factors [4] ................................................
12Table 3: Load Combinations for Circumferential Flaw Analyses  
.....................................
12Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312") ............................
12List of FiguresFigure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow .......................................
13Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow ...................
14Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow ...................
15File No.: 1400287.302 Page 2 of 15Revision:
0F0306-OIRI jStructural Integrity Associates, IncY


==1.0 INTRODUCTION==
==1.0 INTRODUCTION==


A weeping flaw, shown on Figure 1, was discovered near the extrados of a 90 degree elbow in the SaltService Water (SSW) piping at Pilgrim Nuclear Power Station (Pilgrim).
A weeping flaw, shown on Figure 1, was discovered near the extrados of a 90 degree elbow in the Salt Service Water (SSW) piping at Pilgrim Nuclear Power Station (Pilgrim). The leak is located on the JF29-8-4 pipe spool of the SSW system [1]. Ultrasonic testing has been conducted in order to characterize the flaw [1]. Allowable through-wall flaw lengths are determined using methods consistent with an upcoming revision of Code Case N-513-3 [2] as described below.
The leak is located on theJF29-8-4 pipe spool of the SSW system [1]. Ultrasonic testing has been conducted in order tocharacterize the flaw [1]. Allowable through-wall flaw lengths are determined using methods consistent with an upcoming revision of Code Case N-513-3 [2] as described below.2.0 TECHNICAL APPROACHThe flaw evaluation herein is based on the criteria prescribed in an upcoming revision of ASME CodeCase N-513-3.
2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in an upcoming revision of ASME Code Case N-513-3. This Code Case allows for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-3 has been conditionally accepted by the NRC with the stipulation that, "The repair or replacement activity temporarily deferred under the provisions of this Code Case shall be performed during the next scheduled outage," and is published in the latest revision of Regulatory Guide 1.147 [3]. N-513-3 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.
This Code Case allows for the temporary acceptance of through-wall flaws in moderateenergy Class 2 or Class 3 piping. N-513-3 has been conditionally accepted by the NRC with thestipulation that, "The repair or replacement activity temporarily deferred under the provisions of thisCode Case shall be performed during the next scheduled outage,"
The evaluation criteria provided in N-513-3 are only for straight pipe since the technical approach relies on ASME Section XI, Appendix C [4] methods. A new revision of the Code Case (N-513-4) includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences. For elbows, hoop stress is adjusted by considering flaw location and primary stress due to elbow ovalization from axial loads. For axial stresses, the stress scaling follows the same approach given in ASME Section III, ND-3600 [5] design by rule using stress indices and stress intensification factors for the adjustment. Details are provided in N-513-4 for determining these adjusted stresses.
and is published in the latest revisionof Regulatory Guide 1.147 [3]. N-513-3 allows non-planar, through-wall flaws to be characterized andevaluated as planar (i.e., crack-like),
N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for more sophisticated analysis by the user.
through-wall flaws in the axial and circumferential directions.
As stated above, Code Case N-513-3 evaluation criteria rely on the methods given in ASME Section XI, Appendix C. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Since a through-wall flaw is being evaluated, through-wall shape factors Fm, Fb and F are used which are given in Appendix I of the Code Case. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.
The evaluation criteria provided in N-513-3 are only for straight pipe since the technical approach relieson ASME Section XI, Appendix C [4] methods.
This evaluation utilizes finite element methods (FEM) to calculate the primary membrane stress in the hoop direction due to ovalization from axial loads. Section 3.3 of the Code Case's new revision states File No.: 1400287.302                                                                                 Page 3 of 15 Revision: 0 F0306-01RI
A new revision of the Code Case (N-513-4) includesrules for the evaluation of piping components such as elbows, branch tees and reducers.
 
Flaws in thesecomponents may be evaluated as if in straight pipe provided the stresses used in the evaluation areadjusted to account for geometric differences.
jstructural Integrity Associates, IncO that "Alternative methods may be used to calculate the stresses used in evaluation," which justifies the use of FEM techniques.
For elbows, hoop stress is adjusted by considering flawlocation and primary stress due to elbow ovalization from axial loads. For axial stresses, the stressscaling follows the same approach given in ASME Section III, ND-3600 [5] design by rule using stressindices and stress intensification factors for the adjustment.
Details of the Code Case N-513-4 evaluation procedure for elbows are given in Appendix A.
Details are provided in N-513-4 fordetermining these adjusted stresses.
3.0 DESIGN INPUTS / ASSUMPTIONS The SSW Code of Construction is ANSI B31.1 1967 Edition [6].
N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized inASME committee that the technical approach is very conservative.
Based on information provided by Entergy, the 18 inch elbow is located on SSW spool JF29-8-4 [1].
Simple treatment of pipingcomponent flaw evaluation using hand calculations was an important objective in the development of theapproach recognizing the trade-off being conservative results.
The 90 degree elbow located on JF29-8-4 is a schedule 20, long radius elbow [7]. The design pressure and temperature are 10 psig and 100°F, respectively [8].
N-513-4 allows for more sophisticated analysis by the user.As stated above, Code Case N-513-3 evaluation criteria rely on the methods given in ASME Section XI,Appendix C. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed asdescribed in Article C-7000. Since a through-wall flaw is being evaluated, through-wall shape factorsFm, Fb and F are used which are given in Appendix I of the Code Case. Allowable flaw lengths aredetermined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.This evaluation utilizes finite element methods (FEM) to calculate the primary membrane stress in thehoop direction due to ovalization from axial loads. Section 3.3 of the Code Case's new revision statesFile No.: 1400287.302 Page 3 of 15Revision:
The elbow material is ASTM A-234 WPB [7] carbon steel. For the analysis, A106 Gr. B carbon steel is judged to have equivalent material properties. The nominal composition of the two materials is essentially the same and the minimum yield and tensile strengths are the same for both materials. In addition, the longitudinal and transverse elongations are similar between these materials.
0F0306-01RI jstructural Integrity Associates, IncOthat "Alternative methods may be used to calculate the stresses used in evaluation,"
The applied moment loadings are obtained from the ME-101 output listings in Reference [9]. Based on information provided by Entergy, the location of interest is node 22. The moments for each load case are provided in three dimensions (MA, MB, and MC), which are combined by square-root-of-the-sum-of-the-squares (SRSS). The resulting SRSS moments at each location along the elbow (beginning, middle, and end) are compared for each loading, and the bounding moment is used in this analysis.
which justifies theuse of FEM techniques.
Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [4], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kic. The NRC's Pipe Fracture Encyclopedia [10]
Details of the Code Case N-513-4 evaluation procedure for elbows are given in Appendix A.3.0 DESIGN INPUTS / ASSUMPTIONS The SSW Code of Construction is ANSI B31.1 1967 Edition [6].Based on information provided by Entergy, the 18 inch elbow is located on SSW spool JF29-8-4  
contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which are reproduced in Table 1. The minimum reported value of 293 in-lb/in 2 is used in the analysis for both axial and circumferential flaws.
[1].The 90 degree elbow located on JF29-8-4 is a schedule 20, long radius elbow [7]. The design pressureand temperature are 10 psig and 100°F, respectively  
Finite element methods are used to determine the primary membrane stress in the hoop direction due to ovalization from axial loads in Reference [11]. A unit moment of 10,000 in-lbs is applied to the FEM and linearized stresses are extracted at paths in the axial direction from the flaw. A stress of 100 psi conservatively bounds the tensile hoop stress reported in Reference [11]. This bounding stress is factored based on the ratio of the applied moment for the applicable service level to the unit moment of 10,000 in-lbs. The factored stress is used as described in Section 4.1.1 below.
[8].The elbow material is ASTM A-234 WPB [7] carbon steel. For the analysis, A106 Gr. B carbon steel isjudged to have equivalent material properties.
The following design inputs are used in this calculation:
The nominal composition of the two materials isessentially the same and the minimum yield and tensile strengths are the same for both materials.
: 1. Long radius 900 elbow OD = 18 inches [7]
Inaddition, the longitudinal and transverse elongations are similar between these materials.
: 2. Nominal elbow thickness = 0.312 inch (based on Schedule 20 piping [7])
The applied moment loadings are obtained from the ME-101 output listings in Reference  
: 3. Design pressure = 10 psig [8]
[9]. Based oninformation provided by Entergy, the location of interest is node 22. The moments for each load caseare provided in three dimensions (MA, MB, and MC), which are combined by square-root-of-the-sum-of-the-squares (SRSS). The resulting SRSS moments at each location along the elbow (beginning, middle, and end) are compared for each loading, and the bounding moment is used in this analysis.
File No.: 1400287.302                                                                                 Page 4 of 15 Revision: 0 F0306-01 RI
Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C,C-8320 [4], which specifies that 'reasonable lower bound fracture toughness data' may be used todetermine the allowable stress intensity factor, Kic. The NRC's Pipe Fracture Encyclopedia  
 
[10]contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which arereproduced in Table 1. The minimum reported value of 293 in-lb/in2 is used in the analysis for bothaxial and circumferential flaws.Finite element methods are used to determine the primary membrane stress in the hoop direction due toovalization from axial loads in Reference  
jstructural Integrity Associates, Inc!
[11]. A unit moment of 10,000 in-lbs is applied to the FEMand linearized stresses are extracted at paths in the axial direction from the flaw. A stress of 100 psiconservatively bounds the tensile hoop stress reported in Reference  
: 4. Design temperature = 100'F [8]
[11]. This bounding stress isfactored based on the ratio of the applied moment for the applicable service level to the unit moment of10,000 in-lbs. The factored stress is used as described in Section 4.1.1 below.The following design inputs are used in this calculation:
: 5. Young's modulus = 27,900 ksi [6, Table C-I]
: 1. Long radius 900 elbow OD = 18 inches [7]2. Nominal elbow thickness  
: 6. Allowable stress = 15 ksi [6, Table A-2]
= 0.312 inch (based on Schedule 20 piping [7])3. Design pressure  
: 7. Enveloped SRSS Deadweight Moment = 43,973 in-lbs [9]
= 10 psig [8]File No.: 1400287.302 Page 4 of 15Revision:
: 8. Enveloped SRSS OBE Moment = 38,820 in-lbs [9]
0F0306-01 RI jstructural Integrity Associates, Inc!4. Design temperature  
: 9. Enveloped SRSS SSE Moment = 72,789 in-lbs [9]
= 100'F [8]5. Young's modulus = 27,900 ksi [6, Table C-I]6. Allowable stress = 15 ksi [6, Table A-2]7. Enveloped SRSS Deadweight Moment = 43,973 in-lbs [9]8. Enveloped SRSS OBE Moment = 38,820 in-lbs [9]9. Enveloped SRSS SSE Moment = 72,789 in-lbs [9]10. Enveloped SRSS Thermal Moment = 22,047 in-lbs [9]11. Stress intensification factor, i = 3.98 [6]12. Jhc for axial flaws = 293 in-lb/in2 [4, 10]13. Jic for circumferential flaws = 293 in-lb/in2 [4, 10]14. Bounding primary membrane stress in the hoop direction due to unit moment load = 100 psi [11]Note that the wall thickness surrounding the flaw is greater than the elbow nominal thickness  
: 10. Enveloped SRSS Thermal Moment = 22,047 in-lbs [9]
[I].Therefore, the use of the 0.312 inch surrounding wall thickness is considered conservative.
: 11. Stress intensification factor, i = 3.98 [6]
: 12. Jhc for axial flaws = 293 in-lb/in2 [4, 10]
: 13. Jic for circumferential flaws = 293 in-lb/in 2 [4, 10]
: 14. Bounding primary membrane stress in the hoop direction due to unit moment load     = 100 psi [11]
Note that the wall thickness surrounding the flaw is greater than the elbow nominal thickness [I].
Therefore, the use of the 0.312 inch surrounding wall thickness is considered conservative.
The following assumptions are used in this calculation:
The following assumptions are used in this calculation:
: 1. Poisson's ratio is assumed to be 0.3.2. Due to the flaw remoteness from a weld, residual stress effects are assumed negligible.
: 1. Poisson's ratio is assumed to be 0.3.
: 3. A corrosion allowance is not considered (the ongoing inspection requirements in Code CaseN-513-3 address the possibility of flaw growth during the temporary acceptance period).4.0 CALCULATIONS 4.1 Applied Loads4.1.1 Hoop StressFor the allowable axial flaw length, the hoop stress, Gh, due to internal pressure and elbow ovalization from the axial moments may be determined from Equation 9 of N-513-4 (see Appendix A):=( p0  2Rbend + R.Sin6 1 ( 1.95 )~ RMb (1)=( Pt L2(Rb,,d  
: 2. Due to the flaw remoteness from a weld, residual stress effects are assumed negligible.
+ Ro sin 0) h 92/3 )1where:p = internal  
: 3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-3 address the possibility of flaw growth during the temporary acceptance period).
: pressure, psigDo = outside diameter, int = wall thickness, inRbend = elbow bend radius (27 inches)Ro = outside radius, in0 = circumferential angle from elbow flank (see Figure 7 in Appendix A)File No.: 1400287.302 Page 5 of 15Revision:
4.0 CALCULATIONS 4.1 Applied Loads 4.1.1   Hoop Stress For the allowable axial flaw length, the hoop stress, Gh, due to internal pressure and elbow ovalization from the axial moments may be determined from Equation 9 of N-513-4 (see Appendix A):
0F0306-01 R1 tStructural Integrity Associates, Inc!h = flexibility characteristic  
                    =(   p 0  2Rbend + R.Sin6   1   ( 1.95 )~RMb                                         (1)
= t*Rbend/(R mean)2 [6]Rmean = elbow mean radius, inMb = primary bending moment, in-lbsI = moment of inertia, in4.Note that the first term of Equation I accounts for the hoop stress due to internal pressure and includes ascaling factor to account for the circumferential location of the flaw (assuming uniform thickness, pressure based hoop stress is a maximum at the elbow intrados, while a minimum at the elbow extrados).
                        =(Pt L2(Rb,,d + Ro sin 0)         h 92/3 )1 where:
At the flank, the pressure based hoop stress is equal to that of straight pipe. For the analysis herein, it isconservative to set 0 = 0 since the flaw is between the flank and extrados as shown on Figure 2.The second term of Equation 1 accounts for the hoop stress resulting from the axial moments acting toovalize the elbow. This term is replaced with the scaled primary membrane stress in the hoop direction as discussed in the previous section.Finally, N-513-4 limits the use of Equation 1 for h> 0.1. For this elbow, h z 0.11.4.1.2 Axial StressesFor the allowable circumferential flaw length, the axial stress due to pressure, deadweight,  
p = internal pressure, psig Do = outside diameter, in t = wall thickness, in Rbend = elbow bend radius (27 inches)
: seismic, andthermal loading is presented below. For axial membrane stress due to pressure, am, Equation 10 of N-513-4 is used:B,2tD (2)where Bi is an ASME Section III primary stress index for internal pressure.
Ro = outside radius, in 0 = circumferential angle from elbow flank (see Figure 7 in Appendix A)
N-513-4 sets this value to0.5.For axial bending stress, ab, due to deadweight and seismic moments, Equation 11 ofN-513-4 may beused:o-b = B2 (-R --b (3)where B2 is an ASME Section III primary stress index for moment loading.
File No.: 1400287.302                                                                               Page 5 of 15 Revision: 0 F0306-01 R1
From Figure ND-3673.2(b)-I of Reference  
 
[5], B2 = 1.30/h2/3.For this elbow, B2 = 5.74.For axial bending stress due to thermal moments, (e, Equation 12 of N-513-4 may be used:O-e = i(Ro-eJ (4)File No.: 1400287.302 Page 6 of 15Revision:
tStructuralIntegrity Associates, Inc!
0F0306-01 RI Structural Integrity Associates, IncOwhere i is the stress intensification factor. From [6, Appendix D], i = 3.98.4.2 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, Ki, for an axial flaw is taken from Article C-7000 [4] asprescribed by N-513-3 and is given below:KI = Kim + Kir (5)where:Kim = (SFm)Fah(7ta/Q) 0'5SFm = structural factor for membrane stress (see Table 2)F = through-wall shape factor for an axial flaw under hoop stress (given in Appendix I ofN-513-3)o-h = hoop stress, ksia = flaw depth (half flaw length for through-wall flaw), inQ = flaw shape parameter (unity per Appendix I of N-513-3)Kir = Ki from residual stresses at flaw location (assumed negligible).
h = flexibility characteristic = t*Rbend/(R mean)2 [6]
Only the hoop stress influences the allowable axial flaw length which is a function of pressure andprimary bending stress.For LEFM analysis, the stress intensity factor, Ki, for a circumferential flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:K1 = Kim + Klb + Kir (6)where:Kim = (SFm)Fmam(7ra) 0"5Fm = through-wall shape factor for a circumferential flaw under membrane stress (givenin Appendix I ofN-513-3) am = membrane stress, ksiKib = [(SFb)M + ae]Fb(7ta) 05SFb = structural factor for bending stress (see Table 2)ab = bending stress, ksiGe = thermal stress, ksiFb = through-wall shape factor for a circumferential flaw under bending stress (given inAppendix I of N-513-3).
Rmean = elbow mean radius, in Mb = primary bending moment, in-lbs I = moment of inertia, in4.
Note that the through-wall flaw shape factors are a function of flaw length.Table 3 shows the specific load combinations considered herein for the allowable circumferential flawcalculations.
Note that the first term of Equation I accounts for the hoop stress due to internal pressure and includes a scaling factor to account for the circumferential location of the flaw (assuming uniform thickness, pressure based hoop stress is a maximum at the elbow intrados, while a minimum at the elbow extrados).
Since the load combination for Service Level C and D are equivalent, the more limitingflaw length associated with the Service Level C structural factors are presented.
At the flank, the pressure based hoop stress is equal to that of straight pipe. For the analysis herein, it is conservative to set 0 = 0 since the flaw is between the flank and extrados as shown on Figure 2.
File No.: 1400287.302 Page 7 of 15Revision:
The second term of Equation 1 accounts for the hoop stress resulting from the axial moments acting to ovalize the elbow. This term is replaced with the scaled primary membrane stress in the hoop direction as discussed in the previous section.
0F0306-01 RI CStructural Integrity Associates, Inc!4.3 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Kic, istaken from Article C-7000 [4] as prescribed by N-513-3 and is given below:K IC = RE' (7)V 1000where:J= material toughness, in-lb/in2E'= E/(1-v2)E = Young's modulus, ksiv = Poisson's ratio.Based on the design input listed previously, Kic is 94.7 ksi-in°5 for both axial and circumferential flaws.The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.
Finally, N-513-4 limits the use of Equation 1 for h> 0.1. For this elbow, h z 0.11.
5.0 RESULTSTable 4 shows the allowable through-wall flaw lengths resulting from the analysis based on asurrounding nominal wall thickness.
4.1.2 Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight, seismic, and thermal loading is presented below. For axial membrane stress due to pressure, am, Equation 10 of N-513-4 is used:
The most limiting flaw length is 8 inches in the circumferential direction.
B,2tD                                                                               (2) where Bi is an ASME Section III primary stress index for internal pressure. N-513-4 sets this value to 0.5.
The UT results for the leaking elbow are shown in Figure 3 [1]. The leak is easily bounded inthe axial and circumferential directions by 8 inches. Thus, the acceptance criteria of Code Case N-513-4are met.Finally, Paragraph 3.2(d) requires that N-513-3 Equation 9 be satisfied (i.e., the remaining ligamentaverage thickness over the degraded area bounded by the limiting flaw size will resist pressure blowout).
For axial bending stress, ab, due to deadweight and seismic moments, Equation 11 ofN-513-4 may be used:
The average remaining wall thickness requirement covering the degraded area from Equation 9 is 0.07inch (using a Chdj = 8 inches).
o-b = B2 (-R   --
From the inspection data given in Figure 3, only the grids nearest to theleak are less than this value. Thus, this Code Case requirement is met.
b                                                                             (3) where B2 is an ASME Section III primary stress index for moment loading. From Figure ND-3673.2(b)-I of Reference [5], B2 = 1.30/h 2/3. For this elbow, B2 = 5.74.
For axial bending stress due to thermal moments, (e, Equation 12 of N-513-4 may be used:
O-e =i(Ro-eJ                                                                                 (4)
File No.: 1400287.302                                                                                 Page 6 of 15 Revision: 0 F0306-01 RI
 
Structural Integrity Associates, IncO where i is the stress intensification factor. From [6, Appendix D], i = 3.98.
4.2 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, Ki, for an axial flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:
KI = Kim + Kir                                                                             (5) where:
Kim = (SFm)Fah(7ta/Q) 0' 5 SFm = structural factor for membrane stress (see Table 2)
F = through-wall shape factor for an axial flaw under hoop stress (given in Appendix I of N-513-3) o-h = hoop stress, ksi a = flaw depth (half flaw length for through-wall flaw), in Q = flaw shape parameter (unity per Appendix I of N-513-3)
Kir = Ki from residual stresses at flaw location (assumed negligible).
Only the hoop stress influences the allowable axial flaw length which is a function of pressure and primary bending stress.
For LEFM analysis, the stress intensity factor, Ki, for a circumferential flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:
K1 = Kim + Klb + Kir                                                                       (6) where:
05 Kim = (SFm)Fmam(7ra) "
Fm = through-wall shape factor for a circumferential flaw under membrane stress (given in Appendix I ofN-513-3) am = membrane stress, ksi 0 5 Kib = [(SFb)M + ae]Fb(7ta)
SFb = structural factor for bending stress (see Table 2) ab = bending stress, ksi Ge = thermal stress, ksi Fb = through-wall shape factor for a circumferential flaw under bending stress (given in Appendix I of N-513-3).
Note that the through-wall flaw shape factors are a function of flaw length.
Table 3 shows the specific load combinations considered herein for the allowable circumferential flaw calculations. Since the load combination for Service Level C and D are equivalent, the more limiting flaw length associated with the Service Level C structural factors are presented.
File No.: 1400287.302                                                                               Page 7 of 15 Revision: 0 F0306-01 RI
 
CStructuralIntegrity Associates, Inc!
4.3 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Kic, is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:
K = ICRE'                                                                                     (7)
V 1000 where:
J= material toughness, in-lb/in 2 E'= E/(1-v 2)
E = Young's modulus, ksi v = Poisson's ratio.
Based on the design input listed previously, Kic is 94.7 ksi-in°5 for both axial and circumferential flaws.
The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.
5.0 RESULTS Table 4 shows the allowable through-wall flaw lengths resulting from the analysis based on a surrounding nominal wall thickness. The most limiting flaw length is 8 inches in the circumferential direction. The UT results for the leaking elbow are shown in Figure 3 [1]. The leak is easily bounded in the axial and circumferential directions by 8 inches. Thus, the acceptance criteria of Code Case N-513-4 are met.
Finally, Paragraph 3.2(d) requires that N-513-3 Equation 9 be satisfied (i.e., the remaining ligament average thickness over the degraded area bounded by the limiting flaw size will resist pressure blowout).
The average remaining wall thickness requirement covering the degraded area from Equation 9 is 0.07 inch (using a Chdj = 8 inches). From the inspection data given in Figure 3, only the grids nearest to the leak are less than this value. Thus, this Code Case requirement is met.


==6.0 CONCLUSION==
==6.0 CONCLUSION==
S The flaw evaluation of the weeping flaw in a 18-inch elbow of the SSW piping at Pilgrim has beenevaluated using the methods of a pending revision to Code Case N-513-3 (designated N-513-4) currently in the ASME approval process (N-513-3 does not provide evaluation criteria for flaws in elbows, whileN-513-4 does). N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it isrecognized in ASME committee that the technical approach is very conservative.
S The flaw evaluation of the weeping flaw in a 18-inch elbow of the SSW piping at Pilgrim has been evaluated using the methods of a pending revision to Code Case N-513-3 (designated N-513-4) currently in the ASME approval process (N-513-3 does not provide evaluation criteria for flaws in elbows, while N-513-4 does). N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Table 4 shows the axial and circumferential allowable flaw lengths based on a surrounding nominal wall thickness of 0.312 inch. The most limiting flaw size is 8 inches in the circumferential direction. The leak is easily bounded File No.: 1400287.302                                                                               Page 8 of 15 Revision: 0 F0306-01 RI
Table 4 shows theaxial and circumferential allowable flaw lengths based on a surrounding nominal wall thickness of 0.312inch. The most limiting flaw size is 8 inches in the circumferential direction.
 
The leak is easily boundedFile No.: 1400287.302 Page 8 of 15Revision:
r   StructuralIntegrity Associates, Inc!
0F0306-01 RI r Structural Integrity Associates, Inc!in the axial and circumferential directions by 8 inches (as shown in Figure 3). Thus, the acceptance criteria of Code Case N-513-4 are met.File No.: 1400287.302 Revision:
in the axial and circumferential directions by 8 inches (as shown in Figure 3). Thus, the acceptance criteria of Code Case N-513-4 are met.
0Page 9 of 15F0306-OIRI VStructural Integrity Associates, Inc!
File No.: 1400287.302                                                                             Page 9 of 15 Revision: 0 F0306-OIRI
 
VStructural     Integrity Associates, Inc!


==7.0 REFERENCES==
==7.0 REFERENCES==
: 1. Pilgrim NDE Inspection Report, File Name "JF29 4 8 O.dmsdr,"
: 1. Pilgrim NDE Inspection Report, File Name "JF29 4 8 O.dmsdr," February 25, 2014, SI File Number 1400287.201.
February 25, 2014, SI FileNumber 1400287.201.
: 2. ASME Code Case N-513-3, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, January 26, 2009.
: 2. ASME Code Case N-513-3, "Evaluation Criteria for Temporary Acceptance of Flaws inModerate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler andPressure Vessel Code, January 26, 2009.3. Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI,Division 1," Revision 16, Nuclear Regulatory Commission,  
: 3. Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, Nuclear Regulatory Commission, October, 2010.
: October, 2010.4. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with addendathrough 2003.5. ASME Boiler and Pressure Vessel Code, Section III, Subsection ND, 2004 Edition.6. ANSI B3 1.1, Power Piping, 1967 Edition.7. Entergy Drawing Number M100-7250, Revision E5, "Service Water System E209B SSWBackwash Drain Piping,"
: 4. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with addenda through 2003.
SI File Number 1400287.201.
: 5. ASME Boiler and Pressure Vessel Code, Section III, Subsection ND, 2004 Edition.
: 8. Pilgrim Nuclear Power Station Specification Number M300, System 29 Service Water, SI FileNumber 1400287.201.
: 6. ANSI B3 1.1, Power Piping, 1967 Edition.
: 7. Entergy Drawing Number M100-7250, Revision E5, "Service Water System E209B SSW Backwash Drain Piping," SI File Number 1400287.201.
: 8. Pilgrim Nuclear Power Station Specification Number M300, System 29 Service Water, SI File Number 1400287.201.
: 9. Pilgrim Nuclear Power Station Pipe Stress Calculation 638, SI File Number 1400057.201.
: 9. Pilgrim Nuclear Power Station Pipe Stress Calculation 638, SI File Number 1400057.201.
: 10. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.11. SI Calculation Number 1400287.301, Revision 0, "Pilgrim Salt Service Water Discharge PipingElbow (JF29-8-4 Spool) Wall Thinning Stress Analysis."
: 10. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
File No.: 1400287.302 Page 10 of 15Revision:
: 11. SI Calculation Number 1400287.301, Revision 0, "Pilgrim Salt Service Water Discharge Piping Elbow (JF29-8-4 Spool) Wall Thinning Stress Analysis."
0F0306-01 R1 V Structural Integrity Associates, Inc.mTable 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database  
File No.: 1400287.302                                                                       Page 10 of 15 Revision: 0 F0306-01 R1
[10]A106 GradeB. '.B.....__
 
____.__.Database Reference Temperature  
V     StructuralIntegrity Associates, Inc.m Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10]
(°C) Temperature (OF) JIC (kJ/m') JIC (Ibrin/in
A106 GradeB.                                     '.B.....__     ____.__.
: 2) KIC (ksi-ins  
2 Database Reference Temperature (°C) Temperature (OF) JIC (kJ/m') JIC (Ibrin/in ) KIC (ksi-ins )
)2 24 75 97 552 1332 24 75 336 1919 24916 25 77 81 464 12216 25 77 418 2386 27716 25 77 270 1542 22316 25 77 193 1104 18922 24 75 224 1278 20322 20 68 112 641 14422 20 68 117 668 14722 23 73 214 1223 19922 20 68 167 954 17522 20 68 223 1271 20222 20 68 108 617 14123 52 126 116 663 14623 23 73 103 590 13823 23 73 105 600 13923 23 73 93 528 13124 23 73 76 431 11824 23 73 82 469 12324 57 135 511 293 9725 23 73 77 437 11925 23 73 70 400 11425 57 135 62 356 10790 20 68 235 1342 20890 20 68 219 1251 20190 20 68 255 1456 21790 20 68 281 1605 22890 20 68 281 1605 22890 20 68 335 1913 24890 20 68 421 2404 27990 20 68 385 2198 26690 20 68 175 999 18090 20 68 172 982 17890 20 68 178 1016 18190 20 68 214 1222 19990 20 68 275 1570 22590 20 68 133 759 15790 20 68 140 799 16190 20 68 174 994 17990 20 68 111 634 14390 20 68 190 1085 18790 20 68 71 405 11490 20 68 110 628 14290 20 68 104 594 13890 20 68 104 594 13890 20 68 97 554, 13490 20 68 89 508 12890 20 68 88 502 12790 20 68 267 1525 2224-File No.: 1400287.302 Revision:
2             24               75           97           552           133 2              24               75         336           1919           249 16              25               77           81           464           122 16              25               77         418           2386           277 16              25               77         270           1542           223 16              25               77         193           1104           189 22              24               75         224           1278           203 22              20               68         112           641           144 22              20               68         117           668           147 22              23               73         214           1223           199 22              20               68         167           954           175 22              20               68         223           1271           202 22              20               68         108           617           141 23              52             126           116           663           146 23               23              73         103           590           138 23             23              73         105           600           139 23              23               73           93           528           131 24              23               73           76           431           118 24              23               73           82           469           123 24              57             135           511           293             97 4-25              23               73           77           437           119 25              23               73           70           400           114 25              57             135           62           356           107 90              20               68         235           1342           208 90              20               68         219           1251           201 90              20               68         255           1456           217 90              20               68         281           1605           228 90              20               68         281           1605           228 90              20               68         335           1913           248 90              20               68         421           2404           279 90              20               68         385           2198           266 90              20               68         175           999           180 90              20               68         172           982           178 90              20               68         178           1016           181 90              20               68         214           1222           199 90              20               68         275           1570           225 90              20               68         133           759           157 90              20               68         140           799           161 90              20               68         174           994           179 90              20               68         111           634           143 90              20               68         190           1085           187 90              20               68           71             405           114 90              20               68         110             628           142 90              20             68         104             594           138 90              20               68         104             594           138 90              20               68           97             554,         134 90              20               68           89             508           128 90              20               68           88             502           127 90              20               68         267           1525           222 File No.: 1400287.302                                                                                                     Page 11 of 15 Revision: 0 F0306-OIRI
0Page 11 of 15F0306-OIRI CStructural Integrity Associates, Inc,Table 2: Axial and Circumferential Structural Factors [4]Service Level Membrane Stress, SFm Bending Stress, SFbA 2.7 2.3B 2.4 2.0C 1.8 1.6D 1.3 1.4Table 3: Load Combinations for Circumferential Flaw AnalysesLoad Combination Service LevelP+DW+TH AP+DW+OBE+TH BP+DW+SSE+TH C/DTable 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312")Service Allowable Axial Flaw Allowable Circumferential Level Length (in) Flaw Length (in)A 16.0 13.2B 16.0 8.8C/D 16.0 8.0File No.: 1400287.302 Revision:
 
0Page 12 of 15F0306-OIRI CStructural Integrity Associates, Inc."Figure 1. Pinhole Leak in Service Water Piping, 18-inch ElbowFile No.: 1400287.302 Revision:
CStructuralIntegrity Associates, Inc, Table 2: Axial and Circumferential Structural Factors [4]
0Page 13 of 15F0306-01R1 Structural Integrity Associates, Inc!-Af '- ýýY"Toe'4,0C~7~o~4 N4.Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch ElbowFile No.: 1400287.302 Revision:
Service Level       Membrane Stress, SFm       Bending Stress, SFb A                      2.7                       2.3 B                      2.4                       2.0 C                      1.8                       1.6 D                      1.3                       1.4 Table 3: Load Combinations for Circumferential Flaw Analyses Load Combination             Service Level P+DW+TH                         A P+DW+OBE+TH                         B P+DW+SSE+TH                       C/D Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312")
0Page 14 of 15F0306-01Rl Itj-SIructural Integrity Associates, Inc!LOCATION AJ: AK: AL: AM: AN: AO: AP: AQ: AR: AS: AT: AU: AV:1 0.396 0.397 0.397 0.380 0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315 0,3282 0.398 0.396 0.393 0.371 0,334 0.353 0.347 0.343 0.345 0.341 0.337 0,311 0.3253 0.393 0.390 0.393 0.369 0.309 0.361 0.347 0.338 0.343 0.335 0.327 0.308 0.3264 0.387 0.389 0.389 0.383 0.150 0.051 0.109 0.336 0.299 0.336 0.327 0.308 0.3185 0.386 0.390 0.394 0.192 0.087 0.064 0.083 0.334 0.313 0.328 0.328 0.315 0.3206 0.389 0.388 0.392 0.108 0.352 0.362 0.332 0.333 0.334 0.298 0.292 0.317 0.3237 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.339 0.341 0.296 0.337 0.321 0.3238 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch ElbowFile No.: 1400287.302 Revision:
Service     Allowable Axial Flaw   Allowable Circumferential Level           Length (in)           Flaw Length (in)
0Page 15 of 15F0306-OIRI Appendix ADRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVALUATION File No.: 1400287.302 Revision:
A                 16.0                     13.2 B                16.0                       8.8 C/D                 16.0                       8.0 File No.: 1400287.302                                                                 Page 12 of 15 Revision: 0 F0306-OIRI
0Page A- 1 of A-3F0306-OI RI 3.3 Through-wall Flaws in Elbows and Bent PipeThrough-wall flaws in elbows and bent pipe may beevaluated using the straight pipe procedures given in 3 1or 3.2(d) provided the stresses used in the evaluation areadjusted as described below to accouit for the geometrydifferences.
 
Alternate methods may be used to calculate the stresses used in evaluation.
CStructuralIntegrity Associates, Inc."
The hoop stress, o,. for elbow and bent pipeevaluation shall be:-pD.'1[ 2R,_- + Rosin ÷1, owhereRb,, = elbow or bent pipe bend radius0 = circumferential angle defined in Fig-re 7h = flexibility characteristic Mb = resultant primary bending momentI = moment of inertia based on evaluation walltiickness,.
Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow File No.: 1400287.302                                                             Page 13 of 15 Revision: 0 F0306-01R1
Equation 9 is only applicable for elbows and bentpipe where h > 0 1.The axial membrane pressure stress, o,,_ for elbowand bent pipe evaluation shall be:c B -fpB4ID° (10)( 2twhere B, is a primaty stress index as defined in ASMESection III for the piping item. B, shall be equal to 0.5for elbows and bent pipe.The axial bending stress, aob, for elbow and bentpipe evaluation shall be:where B, is a pimnary stress index as defined in ASMESection III for tile piping item.The thernal expansion stress, or,. for elbow andbent pipe evaluation shall be:wherei = stress intensification factor as defined in theCode of Record for the piping itemMl = resultant thermal expansion momentFile No.: 1400287.302 Page A-2 of A-3Revision:
 
0F0306-01 RI Figure 7 from N-513-4:FIG. 7 CIRCUMFERENTIAL ANGLE DEFINEDextradosFile No.: 1400287.302 Revision:
StructuralIntegrity Associates, Inc!
0Page A-3 of A-3F0306-01 RI ATTACHMENT 5TO ENTERGY LETTER 2.14.023PILGRIM RELIEF REQUEST PRR-25SSW Spool JF 29-8-4 NDE Data Sheet(4 pages)
                                            -Af
UT Erosion/Corrosion Examination EntergySiteUnit PNPS / 1Summary No. SSW Pipe SpoolWOrKScopoe BOPProcedure:
                                                        ýýY" Toe' 4,
Procedure Rev.:Work Order No.:CEP-NDE-0606 004.375247-04 Outage No.. NIAReport No.. BOP-UT-14-001 Page 1 ofCooke ASME Sec-XI, 2001-2003 Ada. CatJltem C-HJC7.10 Location "B" Aux BayD'dwn No M100-7250  
0 C~7~o~4 N4.
Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow File No.: 1400287.302                                                                   Page 14 of 15 Revision: 0 F0306-01Rl
 
Itj-SIructuralIntegrity Associates, Inc!
LOCATION AJ:     AK:   AL:   AM:       AN:   AO:   AP:   AQ:   AR:   AS:   AT:   AU:     AV:
1   0.396   0.397 0.397 0.380     0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315   0,328 2    0.398   0.396 0.393 0.371     0,334 0.353 0.347 0.343 0.345 0.341 0.337 0,311   0.325 3    0.393   0.390 0.393 0.369     0.309 0.361 0.347 0.338 0.343 0.335 0.327 0.308   0.326 4    0.387   0.389 0.389 0.383     0.150 0.051 0.109 0.336 0.299 0.336 0.327 0.308   0.318 5    0.386   0.390 0.394 0.192     0.087 0.064 0.083 0.334 0.333 0.313 0.334  0.328 0.298  0.328 0.292  0.315 0.317  0.320 0.323 6    0.389    0.388  0.392 0.108    0.352 0.362 0.332 7    0.390   0.390 0.393 0.390     0.380 0.343 0.342 0.339 0.341 0.296 0.337 0.321   0.323 8    0.385   0.388 0.392 0.388     0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327   0.326 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow File No.: 1400287.302                                                                       Page 15 of 15 Revision: 0 F0306-OIRI
 
Appendix A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVALUATION File No.: 1400287.302                                           Page A- 1 of A-3 Revision: 0 F0306-OI RI
 
3.3 Through-wall Flaws in Elbows and Bent Pipe Through-wall flaws in elbows and bent pipe may be evaluated using the straight pipe procedures given in 3 1 or 3.2(d) provided the stresses used in the evaluation are adjusted as described below to accouit for the geometry differences. Alternate methods may be used to calculate the stresses used in evaluation.
The hoop stress, o,. for elbow and bent pipe evaluation shall be:
                              -pD.'1[ 2R,_- +Rosin           ÷1, o where Rb,,   = elbow or bent pipe bend radius 0    = circumferential angle defined in Fig-re 7 h      = flexibility characteristic Mb     = resultant primary bending moment I      = moment of inertia based on evaluation wall tiickness,.
Equation 9 is only applicable for elbows and bent pipe where h > 0 1.
The axial membrane pressure stress, o,,_ for elbow and bent pipe evaluation shall be:
c   - B (fpB4ID° 2t                      (10) where B, is a primaty stress index as defined in ASME Section III for the piping item. B, shall be equal to 0.5 for elbows and bent pipe.
The axial bending stress, aob,for elbow and bent pipe evaluation shall be:
where B, is a pimnary stress index as defined in ASME Section III for tile piping item.
The thernal expansion stress, or,. for elbow and bent pipe evaluation shall be:
where i = stress intensification factor as defined in the Code of Record for the piping item Ml = resultant thermal expansion moment File No.: 1400287.302                                                             Page A-2 of A-3 Revision: 0 F0306-01 RI
 
Figure 7 from N-513-4:
FIG. 7 CIRCUMFERENTIAL ANGLE DEFINED extrados File No.: 1400287.302                                         Page A-3 of A-3 Revision: 0 F0306-01 RI
 
ATTACHMENT 5 TO ENTERGY LETTER 2.14.023 PILGRIM RELIEF REQUEST PRR-25 SSW Spool JF 29-8-4 NDE Data Sheet (4 pages)
 
UT Erosion/Corrosion Examination Entergy SiteUnit        PNPS     /         1                                              Procedure:           CEP-NDE-0606                                 Outage No..           NIA Summary No.               SSW Pipe Spool                                            Procedure Rev.:                  004.                                   Report No.. BOP-UT-14-001 WOrKScopoe                    BOP                                              Work Order No.:                375247-04                                      Page       1     of Cooke            ASME Sec-XI, 2001-2003 Ada.                           CatJltem               C-HJC7.10                   Location                                 "B" Aux Bay D'dwn No                                 M100-7250                                    
 
== Description:==
18" Elbow Sst[in ID          Service Water System (29)
Component ID Pipe Spool JF29-84                                                                                          Size/Lengtrr    18" 1 6"-12"              Thickness/Diameter        Sch..20118" L1i"iati0ol        NA                                              Component File No.. NA                                          Start Time              9:45            Finish Time          14:10 Calibration Information                                            Partitioning Information                                            Component Information CaLI=aton T r)ckJ*ss (In)            Caorwiabon Times I initiais      Component        Bg"IVCol/Row    EndinQCokRow      component Geometry:                            Pipe Elbow
      "*t=*            meL..W                                              M. UPST Ext            NIA              NIA          Outside Diameter:                18"            Grid Size        314"
        .100 0.200 0.100  0.1*            S Verify ,  12:00        RDA          Main UPST.
Man1A8B                NIA            NWA          Max* Thickness:              0.457        Min. Thickness:        0.051 0.200              0.211          Ven-y      N2A        RDA          Main                    1A              881          Nominal Thickness                    0.312            Tmin.      0.270 0.300              0.299          Verity      NIA          NIA        Main DNST.              NIA            WA N/A        M. DNST EA.            NIA            MIA          Min Thickness Location.                              4 AO 0.400              0.400          Verity      NWA 0.500              0.500          Final:    14:15        RDA          Branch                N/A              N/A          Max. Thickness Location                              8Z Branch Ext.            NIA              NIA          Surface Condition.                              SMOOTH Inbtrument:                                          Transducer:                                            ReferencelSimulator Block:                                Temp. Tool:
MamltaCtufer                      GE                Manufacturer:                  KBA                    Serial No.:            94-5570                            Manufacturer            Elcometer Mocei                        USM-GO                  Serial No.                    01550W                  Type:                  0..1-0.5"                          Serial No..            PNPTEM-288 Senai Nc              USMGO12915119                Size          0.375"        Freq.      5.0 MH        RfSimulator Blok Temp.:                70            FCouplant:
G ai                              66                Mo del:                  113-50-001                                                                0Type              .                Ultrage l Range                          0.500              # of Elements:                      2                  Material/Component Temp.:              73          °F Batch No..                  05125 mne-mets, ODStjuctions        UT performed do to a through wall hole. See CR-PNP-2014-00815. This is not a Code required exam.
ReitS                  Accept            Reject 7,          Eval 41 Avery,..
ar D. (Rck Ric        A                                                      2/6101                                              ,,,,,,,,,,,,.        ,,
ExaminerN/        Level    NIA                          Signatur4'                              Date Site Review              l                    ___        Signaturel,          .        ... /      Date Other            Level    NIA                            Signature                              Date ANII Review                                              Signature                                Date N/A                                                                                                    . WA
 
Supplemental Report Report No.: BOP-UT-14-001 Lii/eq~y                                                                                                        Page:  2  of    4 Summary No. SSW Pipe Spool File Nam. SpkIl JF29-8-4 Descrption      18" Elbow Creation 0 ate 2/25M2014 Prooe      See UT Report Cai Comment            See report Inspctor"      R AVERY              Company                Entergy Instrument Type DMS Go                  Instrument S.N : USMGO12015119 Units          INCH            Vellocity(in/us)    0.2360 Nuonrer or Readings 468                Nurner of Empties es; 0 N~inuttt Uf OUSIrutS 0              Number of Attachments: 0 Range          : 0,406          Points Below MinAlarm : 0 Mean              0 368        Standard Deviation : 0.047 Mnnin.m Vailue        0 051 Minimum Value Loc. .4:AO.1 Maximum Value          0457 Maximum Value Loc. 6Z.1 LOCATIO4        A          B"          C:        D:        E:      F:    G:    H:      1:      J:    K    L    M:        N:
1        0.344      0.348      0.365      0.372      0.374  0.375  0.377 0.373  0.372    0.364  0.361 0.364 0.358      0.359 2      0.346        0.356      0,365      0.370      0.372  0.376  0.373 0.377  0.375    0.370  0.367 0.367 0.364      0 365 3      0.348        0.358      0,363      0.366      0.373  0.376  0.375 0.377  0.376    0.374  0.369 0.367 0.366      0,366 4      0.354        0352        0.365      0369      0,375  0.379  0.381 0.380  0.380    0.380  0.372 0.367 0,366      0.368 5      0,349        0.354      0.366      0,368      0.375  0.378  0.378 0.382  0.382  0.380  0.377 0.372 0.369      0.372 6      0.353        0-357      0364        0.367      0.378  0.378  0.381 0.382  0.366    0.381  0.375 0.372 0.373      0.372 7      0.354        0.357      0365        0.374      0.375  0.380  0.381 0.385  0.381    0.379  0.379 0.371 0.372      0.371 8        0.360        0 359      0.363      0.374      0.373  0.363  0.369 0.382  0.380    0.378  0.377 0.377 0.374      0.372 TOP CiL .o! PIPE Direction of Flow    t
                                                                                                                                                      -71


==
Supplemental Report                                                            Report No.:  BOP-UT-14-001 Ilderoy                                                                                                                                                Page.      3  of  4 SuImrmary No        SSW Pipe Spool 1
Description:==
R r          I        r        r                    r                    I      AA      I AB    I AC I4 AD r                4  AL 0:      ! P:      0:
Q:      R:      S:                  U:        V: L W:                      Y:    Z':  1AA:      IAB:    IAC: IAD:          AE:
0.380  0.386 0.398                                                                                    10.415                    0.404 1-
            ~0.372 0.371                0.386  , 0.398      0.400 10,373 10.413 10.419 10.425              0.427 10.421 10.417                10.417 10.413 0-404 0.392 0.398          0.401 I 0.409 I 0.411 I 0.419 I 0.431 0.428 I 0.428 I 0.421 I 0.422 I 0.417 27                0.378    0.385 0.37310.3741038210383 0.380 0.383
__    096 0.394
__    10.400 0400 0400    I 0.405
______.1__ 0.401 0.409    1______.1__
0.415 0.4231 0.410 10.411      0.420 0.429 0.427 0.428910.42830.421 0.437
__    0.428 0.422 10.422            0.419 0.417 0.418 0.414 0.405 0.415I040 0.410
___      0.404 40.374      0.382    0.383  0.396            10.405    0.409    0.413 0.423 0.427          0.429  0.423      0.421      0.418    0,419  0.415    0.4o3 5      0.378      0.384    0.385  0.400    0.403      0.407  0.412    0.416  0.426      0.428  0.429  0.431      0.427      0.423    0.423  0.421    0.409 6      0.380      0.389    0.393  0.404    0.407      0.414    0.421    0.419  0.429      0.437  0.433  0.430      0.428      0.425 0.422    0.426    0.408 7 0.380 0.387 0.390 0.400 0.406 0.412 0.416 0.419 0.430 0.433 0.430 0.4_30 0.427 0.425 0.423 0.426 0.414
_0_3830-389 0.395 0.401 0.407 0.412 0.418 0.422 0.426 0.428 0.427 0.457 0.421 0.419 0.422 0.421 0.406 F      AG:    AH:      AI:    AJ:        AK:      AL:      AM:    AN:        AO:      AP:    AQ:      AR-        AS:      AT:    AU:      AV:
1      0.400      0.395    0.391  0.396    0.396      0.397    0.397    0.380    0.369      0.352    0.348  0.344    0.342      0.335  0.328  0.315    0.328 2      0.393      0394    0.389  0.397    0.398      0.396    0.393    0.371    0.334      0.353    0.347  0.343      0.345      0.341  0.337  0.311    0.325 3      0.394      0.390    0.388  0.389    0.393      0.390    0.393    0.369    0.309      0.361  0.347  0,338      0.343      0.335  0,327  0.308    0.326 4      0.391      0.385    0.383  0.383 0.387 0.389          0.389    0.383              QAI              0.336      0.299      0.336  0.327  0.308    0.318 0378      0.388    0.380  0.380 0.386 0.390          0.394    Ri                            ------  0.-334    0.313      0.328    0.328  0.315    0.320 61 0390            0.380    0.382  0.383 0.389 0.388          0.392              0.352      0.362    0.332  0.333      0.334                      0.317    0.323 7 0.398            0.385    0.385  0.380 0.390 0.390          0.393    0.390    0.380      0.343    0.342  0.339      0.341              0.337  0.321    0.323 8 1-0.401          0.392    0.388  0.381    0.385      0.388  0.392    0.388    0.386      0.366    0.360  0.356      0.349      0.349    0.348  0.327    0.326 i  AW          AX:I AY¥: IAZ:          B A::      BB:    BC:       BD:      BE:    IBF:        BG:    BH:        Bh:
    -7' 2
            -T 0o336 0.337 I
0.345 04 0.341
                                ' 0.346 0
I 0.340 0340 I0.344 00345 0.339
                                            .345~ 0.341 0.339 0.337 0.335  '0.338 0.333 10.332 0.332 0.328 0.331 10.330 0.338  0.341      0.338 0.344                                                                      0.336  0.339      0.343 S3                  0.341 0.332      0,336    0.343  0.346    0.339      0.337    0.327 0.335 0.334 1 0.336              0.336  0.339      0.344 4        0.326      0.338    0.344  0.343    0.339      0.331    0.336    0.336    0.334      0.336    0.336  0.340      0.349
      .. T                                                                      .  ...  ....  .    .... .  .....  ....  .  ...  ..
: 0.331      0.337    0.343  0.345    0.341      0.339    0.333    0.339    0.335      0.335    0.330  0.346      0.343 6        0.336      0.341    0.347  0.348  0-349      0.346    0.339    0.335    0.338      0,343    0.345  0.339    0.345 0__.337
                .332 08-0.347 0.343 0.350 0.380 0.351 10.356 0.348 0.3511 0348 0.347    0.339 0.338 0.335 0.343 0.344 0.343 0.340 0.341 0.339 0.339 0.341 0.343 0.377 0.351
                                                                                                                                                                                  .- ) 7


18" ElbowSst[in ID Service Water System (29)Component ID Pipe Spool JF29-84 Size/Lengtrr 18" 1 6"-12" Thickness/Diameter Sch..20118" L1i"iati0ol NA Component File No.. NA Start Time 9:45 Finish Time 14:10Calibration Information Partitioning Information Component Information CaLI=aton T
Supplemental Report ,.pArt No BOP-UT-14-O01 4   of   4 EldWeý-"y                                                 Page fin, a Ito SM~ Pipe Spool _______
(In) Caorwiabon Times I initiais Component Bg"IVCol/Row EndinQCokRow component Geometry:
7 ý, ý}}
Pipe ElbowmeL..W M. UPST Ext NIA NIA Outside Diameter:
18" Grid Size 314".100 0.100 S , Main UPST. NIA NWA Thickness:
0.457 Min. Thickness:
0.0510.200 Verify 12:00 RDA Man1A8B0.200 0.211 Ven-y N2A RDA Main 1 A 881 Nominal Thickness 0.312 Tmin. 0.2700.300 0.299 Verity NIA NIA Main DNST. NIA WA0.400 0.400 Verity NWA N/A M. DNST EA. NIA MIA Min Thickness Location.
4 AO0.500 0.500 Final: 14:15 RDA Branch N/A N/A Max. Thickness Location 8 ZBranch Ext. NIA NIA Surface Condition.
SMOOTHInbtrument:
Transducer:
ReferencelSimulator Block: Temp. Tool:MamltaCtufer GE Manufacturer:
KBA Serial No.: 94-5570 Manufacturer Elcometer Mocei USM-GO Serial No. 01550W Type: 0..1-0.5" Serial No.. PNPTEM-288 Senai Nc USMGO12915119 Size 0.375" Freq. 5.0 MH RfSimulator Blok Temp.: 70 FCouplant:
G ai 66 Mo del: 113-50-001 0Type .Ultrage lRange 0.500 # of Elements:
2 Material/Component Temp.: 73 °F Batch No.. 05125mne-mets, ODStjuctions UT performed do to a through wall hole. See CR-PNP-2014-00815.
This is not a Code required exam.ReitS Accept Reject 7, Eval 41Avery,..
Ric ar D. (Rck A 2/6101 ,,,,,,,,,,,,.
,,ExaminerN/
Level NIA Signatur4' Date Site Review l ___ Signaturel,
..../ DateOther Level NIA Signature Date ANII Review Signature DateN/A .WA Lii/eq~ySupplemental ReportReport No.: BOP-UT-14-001 Page: 2 of 4Summary No. SSW Pipe SpoolFile Nam. SpkIl JF29-8-4Descrption 18" ElbowCreation 0 ate 2/25M2014 Prooe See UT ReportCai Comment See reportInspctor" R AVERYInstrument Type DMS GoVelCompany EntergyInstrument S.N : USMGO12015119 locity(in/us) 0.2360UnitsINCHNuonrer or Readings 468N~inuttt Uf OUSIrutS 0Nurner of Empties es; 0Number of Attachments:
0Range : 0,406 Points Below MinAlarm
: 0Mean 0 368 Standard Deviation
: 0.047Mnnin.m Vailue 0 051Minimum Value Loc. .4:AO.1Maximum Value 0457Maximum Value Loc. 6Z.1LOCATIO4 A B" C: D: E: F: G: H: 1: J: K L M: N:1 0.344 0.348 0.365 0.372 0.374 0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.3592 0.346 0.356 0,365 0.370 0.372 0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0 3653 0.348 0.358 0,363 0.366 0.373 0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0,3664 0.354 0352 0.365 0369 0,375 0.379 0.381 0.380 0.380 0.380 0.372 0.367 0,366 0.3685 0,349 0.354 0.366 0,368 0.375 0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.3726 0.353 0-357 0364 0.367 0.378 0.378 0.381 0.382 0.366 0.381 0.375 0.372 0.373 0.3727 0.354 0.357 0365 0.374 0.375 0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.3718 0.360 0 359 0.363 0.374 0.373 0.363 0.369 0.382 0.380 0.378 0.377 0.377 0.374 0.372TOP CiL .o! PIPEDirection of Flow t-71 Supplemental ReportIlderoyReport No.: BOP-UT-14-001 Page. 3 of 4SuImrmary No SSW Pipe Spool1-2-0:~0.372! P:0.3710.378Q:R:S:U:V: L W:Y:Z': 1AA: IAB: IAC: IAD:1 r I r r r r 4 40: R I AA I AB I AC I AD ALAE:0.3800.3850.3860.3980.400 10,373 10.413 10.419 10.425 0.427 10.421 10.417 10.415 10.417 10.4130.4040.386 0.3980-404,0.3920.3980.401 I 0.409 I 0.411 I 0.419 I 0.431 0.428 I 0.428 I 0.421 I 0.422 I 0.417 0.4140.40510.3741038210383 096 0400 I 0.401 0.409 10.411 0.4231 0.427 0.428910.42830.421 10.422 0.419 0.415I040
__ __ 1 ______.1__
1______.1__
__ ___7 0.373 0.380 0.383 0.394 0400 0.405 0.410 0.415 0.420 0.429 0.437 0.428 0.422 0.417 0.418 0.410 0.40440.374 0.382 0.383 0.396 0.400 10.405 0.409 0.413 0.423 0.427 0.429 0.423 0.421 0.418 0,419 0.415 0.4o35 0.378 0.384 0.385 0.400 0.403 0.407 0.412 0.416 0.426 0.428 0.429 0.431 0.427 0.423 0.423 0.421 0.4096 0.380 0.389 0.393 0.404 0.407 0.414 0.421 0.419 0.429 0.437 0.433 0.430 0.428 0.425 0.422 0.426 0.4087 0.380 0.387 0.390 0.400 0.406 0.412 0.416 0.419 0.430 0.433 0.430 0.4_30 0.427 0.425 0.423 0.426 0.414_0_3830-389 0.395 0.401 0.407 0.412 0.418 0.422 0.426 0.428 0.427 0.457 0.421 0.419 0.422 0.421 0.406F AG: AH: AI: AJ: AK: AL: AM: AN: AO: AP: AQ: AR- AS: AT: AU: AV:1 0.400 0.395 0.391 0.396 0.396 0.397 0.397 0.380 0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315 0.3282 0.393 0394 0.389 0.397 0.398 0.396 0.393 0.371 0.334 0.353 0.347 0.343 0.345 0.341 0.337 0.311 0.3253 0.394 0.390 0.388 0.389 0.393 0.390 0.393 0.369 0.309 0.361 0.347 0,338 0.343 0.335 0,327 0.308 0.3264 0.391 0.385 0.383 0.383 0.387 0.389 0.389 0.383 QAI 0.336 0.299 0.336 0.327 0.308 0.3180378 0.388 0.380 0.380 0.386 0.390 0.394 Ri ------ 0.-334 0.313 0.328 0.328 0.315 0.32061 0390 0.380 0.382 0.383 0.389 0.388 0.392 0.352 0.362 0.332 0.333 0.334 0.317 0.3237 0.398 0.385 0.385 0.380 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.339 0.341 0.337 0.321 0.3238 1-0.401 0.392 0.388 0.381 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326AW AX:I AY¥:IAZ:-7'2S3-TiB A:: BB: BC: BD: BE: IBF: BG: BH: Bh:0o336I0.345 ' 0.346 I 0.3400.339 0.339 0.335 '0.338 0.333 1 0.332 0.338 0.341 0.33804 0 03400.3370.341 I0.344 0 .345~0.341 0.337 0.332 0.328 0.331 10.330 0.336 0.339 0.3430.341 0.344 03450.3320,3360.343 0.346 0.339 0.337 0.327 0.335 0.334 1 0.336 0.336 0.339 0.344T .. .... .... ..... ...... .... .... ..4 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336 0.340 0.349: 0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330 0.346 0.3436 0.336 0.341 0.347 0.348 0-349 0.346 0.339 0.335 0.338 0,343 0.345 0.339 0.3450__.337 0.347 0.350 0.380 0.348 0.347 0.339 0.335 0.344 0.340 0.339 0.341 0.37708- .332 0.343 0.351 10.356 0.3511 0348 0.338 0.343 0.343 0.341 0.339 0.343 0.351.-) 7 Supplemental ReportEldWeý-"y
,.pArt No BOP-UT-14-O01 Page 4 of 4fin, a Ito SM~ Pipe Spool _______7 ý, ý}}

Latest revision as of 21:35, 5 February 2020

Flaw Evaluation of SSW Discharge Piping Leaking Elbow, Calculation No. 1400287.302, Rev. 0
ML14073A061
Person / Time
Site: Pilgrim
Issue date: 03/03/2014
From: Tucker J
Structural Integrity Associates
To:
Office of Nuclear Reactor Regulation
References
1400287.302, Rev 0
Download: ML14073A061 (26)


Text

ATTACHMENT 4 TO ENTERGY LETTER 2.14.023 PILGRIM RELIEF REQUEST PRR-25 Calculation Cover Page EC # 49514 Flaw Evaluation of SSW Discharge Piping Leaking Elbow Structural Integrity Associates Calculation No. 1400287.302, Rev. 0 (20 Pages)

ATTACHMENT 9.2 ENGINEERING CALCULATION COVER PAGE Sheet 1 of 2

[] ANO-1 13 ANO-2 El GGNS [1 IP-2 [I IP-3 [E PLP f- JAF Z PNPS [1 RBS El VY [I W3 El NP-GGNS-3 [I NP-RBS-3 CALCULATION ()EC # 49514 (2)Page 1 of 20)

COVER PAGE (3) Design Basis Calc. E--YES Z* NO (4) [Z CALCULATION [-*EC Markup

15) Calculation No: M1398 (5) Revision: 0 (7)

Title:

Flaw Evaluation of SSW Discharge Piping Leaking Elbow ,1) Editorial DYES Z NO (9) System(s): 29 (10) Review Org (Department):

(ii) Safety Class: (12) Component/Equipment/Structure Type/Number:

Z Safety / Quality Related PIPE / JF29-8-4

[] Augmented Quality Program i-- Non-Safety Related (13) Document Type: CALC (14) Keywords (Description/Topical Codes):

-f JF29-8-4, spool, SIA, Structural Integrity Associates, flaw, leak, rubber lining, 1400287.302, 1400287 REVIEWS (15) Name/Signature/Date (16) Name/Signature/Date (17) Name/Signature/Date Structural Integrity Assoc. John A. Tucker 3. Iq See IAS Responsible Engineer -- Design Verifier Supervisor/Approval Z Reviewer Ei- Comments Attached E- Comments Attached EN-DC-126 R005

ATAHMENT19of3 CALCULATION REFERENCE SHEET Sheet 1 of 3 CALCULATION CALCULATION NO: M1398 REFERENCE SHEET REVISION: 0 I. EC Markups Incorporated (N/A to NP calculations) 1.N/A 2.

3.

4.

5.

11. Relationships: Sht Rev Input Output Impact Tracking Doc Doc Y/N No.
1. Specification M300 2-12 109 x 0 N
2. M100-7250 - 5 x 0 N
3. __ 0 0
4. _ _0 0
5. 0 0 __

III. CROSS

REFERENCES:

1. ASME B&PV Code,Section XI, App C, 2001 Edition w/ Add through 2003
2. ASME B31.1, Power Piping, 1967 Edition
3. ASME Code Case N-513-3
4. Flow of Fluids Through valves, Fittings and Pipe, Crane Co,., Technical Paper No.

410 IV. SOFTWARE USED:

Title:

N/A Version/Release: -- DisklCD No. --

V. DISK/CDS INCLUDED:

Title:

N/A Version/Release Disk/CD No.

VI. OTHER CHANGES:

EN-DC-126 R005

StructuralIntegrity Associates, Inc File No.: 1400287.302 Project No.: 1400287 CALCULATION PACKAGE Quality Program: Z Nuclear E] Commercial PROJECT NAME:

Pilgrim Leaking Elbow Evaluation Support CONTRACT NO.:

10404807, Change Order No. 001 CLIENT: PLANT:

Entergy Nuclear Pilgrim Nuclear Power Station CALCULATION TITLE:

Flaw Evaluation of SSW Discharge Piping Leaking Elbow Document Affected Project Manager Preparer(s) &

Revision Pages Revision Description Approval Checker(s)

Signature & Date Signatures & Date 0 1 - 15 Initial Issue A-i - A-3 Eric Houston Brad Dawson EJH 3/3/14 BPD 3/3/14 Raoul Gnagne LRG 3/3/14 Robert McGill ROM 3/3/14 Page 1 of 15 F0306-01 R1

j StructuralIntegrity Associates, Inc0 Table of Contents 1.0 INTRO DU CTION .................................................................................................... 3 2.0 TECHNICAL APPROACH ..................................................................................... 3 3.0 DESIGN INPUTS / ASSUMPTIONS ...................................................................... 4 4.0 CA LCULA TIO N S ..................................................................................................... 5 4.1 Applied Loads .............................................................................................. 5 4.1.1 Ho op S tress........................................................................................................ 5 4.1.2 A xial Stresses................................................................................................ 6 4.2 Stress Intensity Factor Calculations ............................................................. 7 4.3 Critical Fracture Toughness Determination .................................................. 8 5.0 R E SU LT S ...................................................................................................................... 8 6.0 C O NC LU SIO NS ...................................................................................................... 8 7.0 R E FERE N CE S ...................................................................................................... 10 APPENDIX A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVA LU A TIO N ....................................................................................... A -1 List of Tables Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10] 11 Table 2: Axial and Circumferential Structural Factors [4] ................................................ 12 Table 3: Load Combinations for Circumferential Flaw Analyses ..................................... 12 Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312") ............................ 12 List of Figures Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow ....................................... 13 Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow ................... 14 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow ................... 15 File No.: 1400287.302 Page 2 of 15 Revision: 0 F0306-OIRI

jStructural Integrity Associates, IncY

1.0 INTRODUCTION

A weeping flaw, shown on Figure 1, was discovered near the extrados of a 90 degree elbow in the Salt Service Water (SSW) piping at Pilgrim Nuclear Power Station (Pilgrim). The leak is located on the JF29-8-4 pipe spool of the SSW system [1]. Ultrasonic testing has been conducted in order to characterize the flaw [1]. Allowable through-wall flaw lengths are determined using methods consistent with an upcoming revision of Code Case N-513-3 [2] as described below.

2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in an upcoming revision of ASME Code Case N-513-3. This Code Case allows for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-3 has been conditionally accepted by the NRC with the stipulation that, "The repair or replacement activity temporarily deferred under the provisions of this Code Case shall be performed during the next scheduled outage," and is published in the latest revision of Regulatory Guide 1.147 [3]. N-513-3 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.

The evaluation criteria provided in N-513-3 are only for straight pipe since the technical approach relies on ASME Section XI, Appendix C [4] methods. A new revision of the Code Case (N-513-4) includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences. For elbows, hoop stress is adjusted by considering flaw location and primary stress due to elbow ovalization from axial loads. For axial stresses, the stress scaling follows the same approach given in ASME Section III, ND-3600 [5] design by rule using stress indices and stress intensification factors for the adjustment. Details are provided in N-513-4 for determining these adjusted stresses.

N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for more sophisticated analysis by the user.

As stated above, Code Case N-513-3 evaluation criteria rely on the methods given in ASME Section XI, Appendix C. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Since a through-wall flaw is being evaluated, through-wall shape factors Fm, Fb and F are used which are given in Appendix I of the Code Case. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.

This evaluation utilizes finite element methods (FEM) to calculate the primary membrane stress in the hoop direction due to ovalization from axial loads. Section 3.3 of the Code Case's new revision states File No.: 1400287.302 Page 3 of 15 Revision: 0 F0306-01RI

jstructural Integrity Associates, IncO that "Alternative methods may be used to calculate the stresses used in evaluation," which justifies the use of FEM techniques.

Details of the Code Case N-513-4 evaluation procedure for elbows are given in Appendix A.

3.0 DESIGN INPUTS / ASSUMPTIONS The SSW Code of Construction is ANSI B31.1 1967 Edition [6].

Based on information provided by Entergy, the 18 inch elbow is located on SSW spool JF29-8-4 [1].

The 90 degree elbow located on JF29-8-4 is a schedule 20, long radius elbow [7]. The design pressure and temperature are 10 psig and 100°F, respectively [8].

The elbow material is ASTM A-234 WPB [7] carbon steel. For the analysis, A106 Gr. B carbon steel is judged to have equivalent material properties. The nominal composition of the two materials is essentially the same and the minimum yield and tensile strengths are the same for both materials. In addition, the longitudinal and transverse elongations are similar between these materials.

The applied moment loadings are obtained from the ME-101 output listings in Reference [9]. Based on information provided by Entergy, the location of interest is node 22. The moments for each load case are provided in three dimensions (MA, MB, and MC), which are combined by square-root-of-the-sum-of-the-squares (SRSS). The resulting SRSS moments at each location along the elbow (beginning, middle, and end) are compared for each loading, and the bounding moment is used in this analysis.

Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [4], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kic. The NRC's Pipe Fracture Encyclopedia [10]

contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which are reproduced in Table 1. The minimum reported value of 293 in-lb/in 2 is used in the analysis for both axial and circumferential flaws.

Finite element methods are used to determine the primary membrane stress in the hoop direction due to ovalization from axial loads in Reference [11]. A unit moment of 10,000 in-lbs is applied to the FEM and linearized stresses are extracted at paths in the axial direction from the flaw. A stress of 100 psi conservatively bounds the tensile hoop stress reported in Reference [11]. This bounding stress is factored based on the ratio of the applied moment for the applicable service level to the unit moment of 10,000 in-lbs. The factored stress is used as described in Section 4.1.1 below.

The following design inputs are used in this calculation:

1. Long radius 900 elbow OD = 18 inches [7]
2. Nominal elbow thickness = 0.312 inch (based on Schedule 20 piping [7])
3. Design pressure = 10 psig [8]

File No.: 1400287.302 Page 4 of 15 Revision: 0 F0306-01 RI

jstructural Integrity Associates, Inc!

4. Design temperature = 100'F [8]
5. Young's modulus = 27,900 ksi [6, Table C-I]
6. Allowable stress = 15 ksi [6, Table A-2]
7. Enveloped SRSS Deadweight Moment = 43,973 in-lbs [9]
8. Enveloped SRSS OBE Moment = 38,820 in-lbs [9]
9. Enveloped SRSS SSE Moment = 72,789 in-lbs [9]
10. Enveloped SRSS Thermal Moment = 22,047 in-lbs [9]
11. Stress intensification factor, i = 3.98 [6]
12. Jhc for axial flaws = 293 in-lb/in2 [4, 10]
13. Jic for circumferential flaws = 293 in-lb/in 2 [4, 10]
14. Bounding primary membrane stress in the hoop direction due to unit moment load = 100 psi [11]

Note that the wall thickness surrounding the flaw is greater than the elbow nominal thickness [I].

Therefore, the use of the 0.312 inch surrounding wall thickness is considered conservative.

The following assumptions are used in this calculation:

1. Poisson's ratio is assumed to be 0.3.
2. Due to the flaw remoteness from a weld, residual stress effects are assumed negligible.
3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-3 address the possibility of flaw growth during the temporary acceptance period).

4.0 CALCULATIONS 4.1 Applied Loads 4.1.1 Hoop Stress For the allowable axial flaw length, the hoop stress, Gh, due to internal pressure and elbow ovalization from the axial moments may be determined from Equation 9 of N-513-4 (see Appendix A):

=( p 0 2Rbend + R.Sin6 1 ( 1.95 )~RMb (1)

=(Pt L2(Rb,,d + Ro sin 0) h 92/3 )1 where:

p = internal pressure, psig Do = outside diameter, in t = wall thickness, in Rbend = elbow bend radius (27 inches)

Ro = outside radius, in 0 = circumferential angle from elbow flank (see Figure 7 in Appendix A)

File No.: 1400287.302 Page 5 of 15 Revision: 0 F0306-01 R1

tStructuralIntegrity Associates, Inc!

h = flexibility characteristic = t*Rbend/(R mean)2 [6]

Rmean = elbow mean radius, in Mb = primary bending moment, in-lbs I = moment of inertia, in4.

Note that the first term of Equation I accounts for the hoop stress due to internal pressure and includes a scaling factor to account for the circumferential location of the flaw (assuming uniform thickness, pressure based hoop stress is a maximum at the elbow intrados, while a minimum at the elbow extrados).

At the flank, the pressure based hoop stress is equal to that of straight pipe. For the analysis herein, it is conservative to set 0 = 0 since the flaw is between the flank and extrados as shown on Figure 2.

The second term of Equation 1 accounts for the hoop stress resulting from the axial moments acting to ovalize the elbow. This term is replaced with the scaled primary membrane stress in the hoop direction as discussed in the previous section.

Finally, N-513-4 limits the use of Equation 1 for h> 0.1. For this elbow, h z 0.11.

4.1.2 Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight, seismic, and thermal loading is presented below. For axial membrane stress due to pressure, am, Equation 10 of N-513-4 is used:

B,2tD (2) where Bi is an ASME Section III primary stress index for internal pressure. N-513-4 sets this value to 0.5.

For axial bending stress, ab, due to deadweight and seismic moments, Equation 11 ofN-513-4 may be used:

o-b = B2 (-R --

b (3) where B2 is an ASME Section III primary stress index for moment loading. From Figure ND-3673.2(b)-I of Reference [5], B2 = 1.30/h 2/3. For this elbow, B2 = 5.74.

For axial bending stress due to thermal moments, (e, Equation 12 of N-513-4 may be used:

O-e =i(Ro-eJ (4)

File No.: 1400287.302 Page 6 of 15 Revision: 0 F0306-01 RI

Structural Integrity Associates, IncO where i is the stress intensification factor. From [6, Appendix D], i = 3.98.

4.2 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, Ki, for an axial flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:

KI = Kim + Kir (5) where:

Kim = (SFm)Fah(7ta/Q) 0' 5 SFm = structural factor for membrane stress (see Table 2)

F = through-wall shape factor for an axial flaw under hoop stress (given in Appendix I of N-513-3) o-h = hoop stress, ksi a = flaw depth (half flaw length for through-wall flaw), in Q = flaw shape parameter (unity per Appendix I of N-513-3)

Kir = Ki from residual stresses at flaw location (assumed negligible).

Only the hoop stress influences the allowable axial flaw length which is a function of pressure and primary bending stress.

For LEFM analysis, the stress intensity factor, Ki, for a circumferential flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:

K1 = Kim + Klb + Kir (6) where:

05 Kim = (SFm)Fmam(7ra) "

Fm = through-wall shape factor for a circumferential flaw under membrane stress (given in Appendix I ofN-513-3) am = membrane stress, ksi 0 5 Kib = [(SFb)M + ae]Fb(7ta)

SFb = structural factor for bending stress (see Table 2) ab = bending stress, ksi Ge = thermal stress, ksi Fb = through-wall shape factor for a circumferential flaw under bending stress (given in Appendix I of N-513-3).

Note that the through-wall flaw shape factors are a function of flaw length.

Table 3 shows the specific load combinations considered herein for the allowable circumferential flaw calculations. Since the load combination for Service Level C and D are equivalent, the more limiting flaw length associated with the Service Level C structural factors are presented.

File No.: 1400287.302 Page 7 of 15 Revision: 0 F0306-01 RI

CStructuralIntegrity Associates, Inc!

4.3 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Kic, is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:

K = ICRE' (7)

V 1000 where:

J= material toughness, in-lb/in 2 E'= E/(1-v 2)

E = Young's modulus, ksi v = Poisson's ratio.

Based on the design input listed previously, Kic is 94.7 ksi-in°5 for both axial and circumferential flaws.

The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.

5.0 RESULTS Table 4 shows the allowable through-wall flaw lengths resulting from the analysis based on a surrounding nominal wall thickness. The most limiting flaw length is 8 inches in the circumferential direction. The UT results for the leaking elbow are shown in Figure 3 [1]. The leak is easily bounded in the axial and circumferential directions by 8 inches. Thus, the acceptance criteria of Code Case N-513-4 are met.

Finally, Paragraph 3.2(d) requires that N-513-3 Equation 9 be satisfied (i.e., the remaining ligament average thickness over the degraded area bounded by the limiting flaw size will resist pressure blowout).

The average remaining wall thickness requirement covering the degraded area from Equation 9 is 0.07 inch (using a Chdj = 8 inches). From the inspection data given in Figure 3, only the grids nearest to the leak are less than this value. Thus, this Code Case requirement is met.

6.0 CONCLUSION

S The flaw evaluation of the weeping flaw in a 18-inch elbow of the SSW piping at Pilgrim has been evaluated using the methods of a pending revision to Code Case N-513-3 (designated N-513-4) currently in the ASME approval process (N-513-3 does not provide evaluation criteria for flaws in elbows, while N-513-4 does). N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Table 4 shows the axial and circumferential allowable flaw lengths based on a surrounding nominal wall thickness of 0.312 inch. The most limiting flaw size is 8 inches in the circumferential direction. The leak is easily bounded File No.: 1400287.302 Page 8 of 15 Revision: 0 F0306-01 RI

r StructuralIntegrity Associates, Inc!

in the axial and circumferential directions by 8 inches (as shown in Figure 3). Thus, the acceptance criteria of Code Case N-513-4 are met.

File No.: 1400287.302 Page 9 of 15 Revision: 0 F0306-OIRI

VStructural Integrity Associates, Inc!

7.0 REFERENCES

1. Pilgrim NDE Inspection Report, File Name "JF29 4 8 O.dmsdr," February 25, 2014, SI File Number 1400287.201.
2. ASME Code Case N-513-3, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, January 26, 2009.
3. Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, Nuclear Regulatory Commission, October, 2010.
4. ASME Boiler and Pressure Vessel Code,Section XI, Appendix C, 2001 Edition with addenda through 2003.
5. ASME Boiler and Pressure Vessel Code,Section III, Subsection ND, 2004 Edition.
6. ANSI B3 1.1, Power Piping, 1967 Edition.
7. Entergy Drawing Number M100-7250, Revision E5, "Service Water System E209B SSW Backwash Drain Piping," SI File Number 1400287.201.
8. Pilgrim Nuclear Power Station Specification Number M300, System 29 Service Water, SI File Number 1400287.201.
9. Pilgrim Nuclear Power Station Pipe Stress Calculation 638, SI File Number 1400057.201.
10. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
11. SI Calculation Number 1400287.301, Revision 0, "Pilgrim Salt Service Water Discharge Piping Elbow (JF29-8-4 Spool) Wall Thinning Stress Analysis."

File No.: 1400287.302 Page 10 of 15 Revision: 0 F0306-01 R1

V StructuralIntegrity Associates, Inc.m Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10]

A106 GradeB. '.B.....__ ____.__.

2 Database Reference Temperature (°C) Temperature (OF) JIC (kJ/m') JIC (Ibrin/in ) KIC (ksi-ins )

2 24 75 97 552 133 2 24 75 336 1919 249 16 25 77 81 464 122 16 25 77 418 2386 277 16 25 77 270 1542 223 16 25 77 193 1104 189 22 24 75 224 1278 203 22 20 68 112 641 144 22 20 68 117 668 147 22 23 73 214 1223 199 22 20 68 167 954 175 22 20 68 223 1271 202 22 20 68 108 617 141 23 52 126 116 663 146 23 23 73 103 590 138 23 23 73 105 600 139 23 23 73 93 528 131 24 23 73 76 431 118 24 23 73 82 469 123 24 57 135 511 293 97 4-25 23 73 77 437 119 25 23 73 70 400 114 25 57 135 62 356 107 90 20 68 235 1342 208 90 20 68 219 1251 201 90 20 68 255 1456 217 90 20 68 281 1605 228 90 20 68 281 1605 228 90 20 68 335 1913 248 90 20 68 421 2404 279 90 20 68 385 2198 266 90 20 68 175 999 180 90 20 68 172 982 178 90 20 68 178 1016 181 90 20 68 214 1222 199 90 20 68 275 1570 225 90 20 68 133 759 157 90 20 68 140 799 161 90 20 68 174 994 179 90 20 68 111 634 143 90 20 68 190 1085 187 90 20 68 71 405 114 90 20 68 110 628 142 90 20 68 104 594 138 90 20 68 104 594 138 90 20 68 97 554, 134 90 20 68 89 508 128 90 20 68 88 502 127 90 20 68 267 1525 222 File No.: 1400287.302 Page 11 of 15 Revision: 0 F0306-OIRI

CStructuralIntegrity Associates, Inc, Table 2: Axial and Circumferential Structural Factors [4]

Service Level Membrane Stress, SFm Bending Stress, SFb A 2.7 2.3 B 2.4 2.0 C 1.8 1.6 D 1.3 1.4 Table 3: Load Combinations for Circumferential Flaw Analyses Load Combination Service Level P+DW+TH A P+DW+OBE+TH B P+DW+SSE+TH C/D Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312")

Service Allowable Axial Flaw Allowable Circumferential Level Length (in) Flaw Length (in)

A 16.0 13.2 B 16.0 8.8 C/D 16.0 8.0 File No.: 1400287.302 Page 12 of 15 Revision: 0 F0306-OIRI

CStructuralIntegrity Associates, Inc."

Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow File No.: 1400287.302 Page 13 of 15 Revision: 0 F0306-01R1

StructuralIntegrity Associates, Inc!

-Af

ýýY" Toe' 4,

0 C~7~o~4 N4.

Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow File No.: 1400287.302 Page 14 of 15 Revision: 0 F0306-01Rl

Itj-SIructuralIntegrity Associates, Inc!

LOCATION AJ: AK: AL: AM: AN: AO: AP: AQ: AR: AS: AT: AU: AV:

1 0.396 0.397 0.397 0.380 0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315 0,328 2 0.398 0.396 0.393 0.371 0,334 0.353 0.347 0.343 0.345 0.341 0.337 0,311 0.325 3 0.393 0.390 0.393 0.369 0.309 0.361 0.347 0.338 0.343 0.335 0.327 0.308 0.326 4 0.387 0.389 0.389 0.383 0.150 0.051 0.109 0.336 0.299 0.336 0.327 0.308 0.318 5 0.386 0.390 0.394 0.192 0.087 0.064 0.083 0.334 0.333 0.313 0.334 0.328 0.298 0.328 0.292 0.315 0.317 0.320 0.323 6 0.389 0.388 0.392 0.108 0.352 0.362 0.332 7 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.339 0.341 0.296 0.337 0.321 0.323 8 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow File No.: 1400287.302 Page 15 of 15 Revision: 0 F0306-OIRI

Appendix A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVALUATION File No.: 1400287.302 Page A- 1 of A-3 Revision: 0 F0306-OI RI

3.3 Through-wall Flaws in Elbows and Bent Pipe Through-wall flaws in elbows and bent pipe may be evaluated using the straight pipe procedures given in 3 1 or 3.2(d) provided the stresses used in the evaluation are adjusted as described below to accouit for the geometry differences. Alternate methods may be used to calculate the stresses used in evaluation.

The hoop stress, o,. for elbow and bent pipe evaluation shall be:

-pD.'1[ 2R,_- +Rosin ÷1, o where Rb,, = elbow or bent pipe bend radius 0 = circumferential angle defined in Fig-re 7 h = flexibility characteristic Mb = resultant primary bending moment I = moment of inertia based on evaluation wall tiickness,.

Equation 9 is only applicable for elbows and bent pipe where h > 0 1.

The axial membrane pressure stress, o,,_ for elbow and bent pipe evaluation shall be:

c - B (fpB4ID° 2t (10) where B, is a primaty stress index as defined in ASME Section III for the piping item. B, shall be equal to 0.5 for elbows and bent pipe.

The axial bending stress, aob,for elbow and bent pipe evaluation shall be:

where B, is a pimnary stress index as defined in ASME Section III for tile piping item.

The thernal expansion stress, or,. for elbow and bent pipe evaluation shall be:

where i = stress intensification factor as defined in the Code of Record for the piping item Ml = resultant thermal expansion moment File No.: 1400287.302 Page A-2 of A-3 Revision: 0 F0306-01 RI

Figure 7 from N-513-4:

FIG. 7 CIRCUMFERENTIAL ANGLE DEFINED extrados File No.: 1400287.302 Page A-3 of A-3 Revision: 0 F0306-01 RI

ATTACHMENT 5 TO ENTERGY LETTER 2.14.023 PILGRIM RELIEF REQUEST PRR-25 SSW Spool JF 29-8-4 NDE Data Sheet (4 pages)

UT Erosion/Corrosion Examination Entergy SiteUnit PNPS / 1 Procedure: CEP-NDE-0606 Outage No.. NIA Summary No. SSW Pipe Spool Procedure Rev.: 004. Report No.. BOP-UT-14-001 WOrKScopoe BOP Work Order No.: 375247-04 Page 1 of Cooke ASME Sec-XI, 2001-2003 Ada. CatJltem C-HJC7.10 Location "B" Aux Bay D'dwn No M100-7250

Description:

18" Elbow Sst[in ID Service Water System (29)

Component ID Pipe Spool JF29-84 Size/Lengtrr 18" 1 6"-12" Thickness/Diameter Sch..20118" L1i"iati0ol NA Component File No.. NA Start Time 9:45 Finish Time 14:10 Calibration Information Partitioning Information Component Information CaLI=aton T r)ckJ*ss (In) Caorwiabon Times I initiais Component Bg"IVCol/Row EndinQCokRow component Geometry: Pipe Elbow

"*t=* meL..W M. UPST Ext NIA NIA Outside Diameter: 18" Grid Size 314"

.100 0.200 0.100 0.1* S Verify , 12:00 RDA Main UPST.

Man1A8B NIA NWA Max* Thickness: 0.457 Min. Thickness: 0.051 0.200 0.211 Ven-y N2A RDA Main 1A 881 Nominal Thickness 0.312 Tmin. 0.270 0.300 0.299 Verity NIA NIA Main DNST. NIA WA N/A M. DNST EA. NIA MIA Min Thickness Location. 4 AO 0.400 0.400 Verity NWA 0.500 0.500 Final: 14:15 RDA Branch N/A N/A Max. Thickness Location 8Z Branch Ext. NIA NIA Surface Condition. SMOOTH Inbtrument: Transducer: ReferencelSimulator Block: Temp. Tool:

MamltaCtufer GE Manufacturer: KBA Serial No.: 94-5570 Manufacturer Elcometer Mocei USM-GO Serial No. 01550W Type: 0..1-0.5" Serial No.. PNPTEM-288 Senai Nc USMGO12915119 Size 0.375" Freq. 5.0 MH RfSimulator Blok Temp.: 70 FCouplant:

G ai 66 Mo del: 113-50-001 0Type . Ultrage l Range 0.500 # of Elements: 2 Material/Component Temp.: 73 °F Batch No.. 05125 mne-mets, ODStjuctions UT performed do to a through wall hole. See CR-PNP-2014-00815. This is not a Code required exam.

ReitS Accept Reject 7, Eval 41 Avery,..

ar D. (Rck Ric A 2/6101 ,,,,,,,,,,,,. ,,

ExaminerN/ Level NIA Signatur4' Date Site Review l ___ Signaturel, . ... / Date Other Level NIA Signature Date ANII Review Signature Date N/A . WA

Supplemental Report Report No.: BOP-UT-14-001 Lii/eq~y Page: 2 of 4 Summary No. SSW Pipe Spool File Nam. SpkIl JF29-8-4 Descrption 18" Elbow Creation 0 ate 2/25M2014 Prooe See UT Report Cai Comment See report Inspctor" R AVERY Company Entergy Instrument Type DMS Go Instrument S.N : USMGO12015119 Units INCH Vellocity(in/us) 0.2360 Nuonrer or Readings 468 Nurner of Empties es; 0 N~inuttt Uf OUSIrutS 0 Number of Attachments: 0 Range  : 0,406 Points Below MinAlarm : 0 Mean 0 368 Standard Deviation : 0.047 Mnnin.m Vailue 0 051 Minimum Value Loc. .4:AO.1 Maximum Value 0457 Maximum Value Loc. 6Z.1 LOCATIO4 A B" C: D: E: F: G: H: 1: J: K L M: N:

1 0.344 0.348 0.365 0.372 0.374 0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.359 2 0.346 0.356 0,365 0.370 0.372 0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0 365 3 0.348 0.358 0,363 0.366 0.373 0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0,366 4 0.354 0352 0.365 0369 0,375 0.379 0.381 0.380 0.380 0.380 0.372 0.367 0,366 0.368 5 0,349 0.354 0.366 0,368 0.375 0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.372 6 0.353 0-357 0364 0.367 0.378 0.378 0.381 0.382 0.366 0.381 0.375 0.372 0.373 0.372 7 0.354 0.357 0365 0.374 0.375 0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.371 8 0.360 0 359 0.363 0.374 0.373 0.363 0.369 0.382 0.380 0.378 0.377 0.377 0.374 0.372 TOP CiL .o! PIPE Direction of Flow t

-71

Supplemental Report Report No.: BOP-UT-14-001 Ilderoy Page. 3 of 4 SuImrmary No SSW Pipe Spool 1

R r I r r r I AA I AB I AC I4 AD r 4 AL 0:  ! P: 0:

Q: R: S: U: V: L W: Y: Z': 1AA: IAB: IAC: IAD: AE:

0.380 0.386 0.398 10.415 0.404 1-

~0.372 0.371 0.386 , 0.398 0.400 10,373 10.413 10.419 10.425 0.427 10.421 10.417 10.417 10.413 0-404 0.392 0.398 0.401 I 0.409 I 0.411 I 0.419 I 0.431 0.428 I 0.428 I 0.421 I 0.422 I 0.417 27 0.378 0.385 0.37310.3741038210383 0.380 0.383

__ 096 0.394

__ 10.400 0400 0400 I 0.405

______.1__ 0.401 0.409 1______.1__

0.415 0.4231 0.410 10.411 0.420 0.429 0.427 0.428910.42830.421 0.437

__ 0.428 0.422 10.422 0.419 0.417 0.418 0.414 0.405 0.415I040 0.410

___ 0.404 40.374 0.382 0.383 0.396 10.405 0.409 0.413 0.423 0.427 0.429 0.423 0.421 0.418 0,419 0.415 0.4o3 5 0.378 0.384 0.385 0.400 0.403 0.407 0.412 0.416 0.426 0.428 0.429 0.431 0.427 0.423 0.423 0.421 0.409 6 0.380 0.389 0.393 0.404 0.407 0.414 0.421 0.419 0.429 0.437 0.433 0.430 0.428 0.425 0.422 0.426 0.408 7 0.380 0.387 0.390 0.400 0.406 0.412 0.416 0.419 0.430 0.433 0.430 0.4_30 0.427 0.425 0.423 0.426 0.414

_0_3830-389 0.395 0.401 0.407 0.412 0.418 0.422 0.426 0.428 0.427 0.457 0.421 0.419 0.422 0.421 0.406 F AG: AH: AI: AJ: AK: AL: AM: AN: AO: AP: AQ: AR- AS: AT: AU: AV:

1 0.400 0.395 0.391 0.396 0.396 0.397 0.397 0.380 0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315 0.328 2 0.393 0394 0.389 0.397 0.398 0.396 0.393 0.371 0.334 0.353 0.347 0.343 0.345 0.341 0.337 0.311 0.325 3 0.394 0.390 0.388 0.389 0.393 0.390 0.393 0.369 0.309 0.361 0.347 0,338 0.343 0.335 0,327 0.308 0.326 4 0.391 0.385 0.383 0.383 0.387 0.389 0.389 0.383 QAI 0.336 0.299 0.336 0.327 0.308 0.318 0378 0.388 0.380 0.380 0.386 0.390 0.394 Ri ------ 0.-334 0.313 0.328 0.328 0.315 0.320 61 0390 0.380 0.382 0.383 0.389 0.388 0.392 0.352 0.362 0.332 0.333 0.334 0.317 0.323 7 0.398 0.385 0.385 0.380 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.339 0.341 0.337 0.321 0.323 8 1-0.401 0.392 0.388 0.381 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326 i AW AX:I AY¥: IAZ: B A:: BB: BC: BD: BE: IBF: BG: BH: Bh:

-7' 2

-T 0o336 0.337 I

0.345 04 0.341

' 0.346 0

I 0.340 0340 I0.344 00345 0.339

.345~ 0.341 0.339 0.337 0.335 '0.338 0.333 10.332 0.332 0.328 0.331 10.330 0.338 0.341 0.338 0.344 0.336 0.339 0.343 S3 0.341 0.332 0,336 0.343 0.346 0.339 0.337 0.327 0.335 0.334 1 0.336 0.336 0.339 0.344 4 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336 0.340 0.349

.. T . ... .... . .... . ..... .... . ... ..

0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330 0.346 0.343 6 0.336 0.341 0.347 0.348 0-349 0.346 0.339 0.335 0.338 0,343 0.345 0.339 0.345 0__.337

.332 08-0.347 0.343 0.350 0.380 0.351 10.356 0.348 0.3511 0348 0.347 0.339 0.338 0.335 0.343 0.344 0.343 0.340 0.341 0.339 0.339 0.341 0.343 0.377 0.351

.- ) 7

Supplemental Report ,.pArt No BOP-UT-14-O01 4 of 4 EldWeý-"y Page fin, a Ito SM~ Pipe Spool _______

7 ý, ý