Regulatory Guide 1.4: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13350A195
| number = ML003739614
| issue date = 06/30/1973
| issue date = 06/30/1974
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
| author name =  
| author name =  
| author affiliation = US Atomic Energy Commission (AEC)
| author affiliation = NRC/RES
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-1.004, Rev. 1
| document report number = RG-1.4, Rev 2
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 6
| page count = 6
}}
}}
{{#Wiki_filter:Revision 1U.S. ATOMIC ENERGY COMMISSIONREGULATORYDIRECTORATE OF REGULATORY STANDARDSRevision 1June 1973GUIDEREGULATORY GUIDE 1.4ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCESOF A LOSS OF COOLANT ACf',DENT FOR PRESSURIZED WATER REACTORS'
{{#Wiki_filter:Revision 2 June 1974 U.S. ATOMIC ENERGY COMMISSION
                              REGULATORY                                                                                          GUIDE
                              DIRECTORATE OF REGULATORY STANDARDS
                                                                    REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES
              OF A LOSS OF COOLANT ACCIDENT FOR PRESSURIZED WATER REACTORS


==A. INTRODUCTION==
==A. INTRODUCTION==
Sect ion 50.34 o1f 10 CFR Pairl 50 requires that eachapplicant fir a c(nstruiction permit or operating licenseprovid,: an analysis and cvalua3ion of the design andof structures. systems, and components oftile facility with [he objective of assessing fhe risk topublic health and safety resulting froim operation of thefacility. Tile design basis loss of" coolant accident(LOCA) is one of the postulated accidents Used toevaluate the adequacy of these structures, systems. andcomiponents with respect to the public ltealth and safety.This guide gives acceptable assumptions that may beused in evaluating tIle radiologcal consequences of thisaccident for a pressurized water reactor. In some cases.unusual site characteristics, platit design features. orother factors may require different assumptions whichwill be considered on an individual case basis. TheAdvisory Committee on Reactor Safeguards has beenconsulted concerning this guide and has concurred in theregulatory position.
given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data Section 50.34 of 10 CFR Part 50 requires that each                                and calculational techniques that might influence the applicant for a construction permit or operating license                                  final design of engineered safety features or the dose provide an analysis and evaluation of the design and                                      reduction factors allowed for these features.)
performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the                                                   
 
==C. REGULATORY POSITION==
facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to                                          1. The assumptions related to the release of radioactive evaluate the adequacy of these structures, systems, and                                  material from the fuel and containment are as follows:
components with respect to the public health and safety.                                         a. Twenty-five percent of the equilibrium This guide gives acceptable assumptions that may be                                      radioactive iodine inventory developed from maximum used in evaluating the radiological consequences of this                                  full power operation of the core should be assumed to accident for a pressurized water reactor. In some cases,                                  be immediately available for leakage from the primary unusual site characteristics, plant design features, or                                  reactor containment. Ninety-one percent of this 25 other factors may require different assumptions which                                    percent is to be assumed to be in the form of elemental will be considered on an individual case basis. The                                      iodine, 5 percent of this 25 percent in the form of Advisory Committee on Reactor Safeguards has been                                        particulate iodine, and 4 percent of this 25 percent in consulted concerning this guide and has concurred in the                                the form of organic iodides.
 
regulatory position.                                                                           b. One hundred percent of the equilibrium


==B. DISCUSSION==
==B. DISCUSSION==
After reviewing a number of applications forconstruction permits and operating licenses forpressurized wateli power reactors, the AEC Regulatorystaff has developed a number of appropriatelyconservative assumptions, based on engineeringjudgment and on applicable experimental results fromsafety research programs conducted by the AEC and thenuclear industry, that are used to evaluate calculationsof the radioloocal consequences of various postulatedacciden ts.This guide lists acceptable assumptions that may beused to evaluate the design basis LOCA of a PressurizedWater Reactor (PWR). It should be shown that thcoffsite dose consequences will be within thie guidelinesof 10 CFR Part 100,'This guide is a revision of former Safety Guide 4.
radioactive noble gas inventory developed from maximum full power operation of the core should be After reviewing a number of applications for                                    assumed to be immediately available for leakage from construction permits and operating licenses for                                        the reactor containment.
 
pressurized water power reactors, the AEC Regulatory                                          c. The effects of radiological decay during holdup staff has developed a number of appropriately                                          in the containment or other buildings should be taken conservative assumptions, based on engineering                                          into account.
 
judgment and on applicable experimental results from                                          d. The reduction in the amount of radioactive safety research programs conducted by the AEC and the                                  material available for leakage to the environment by nuclear industry, that are used to evaluate calculations                                containment sprays, recirculating filter systems, or other of the radiological consequences of various postulated                                  engineered safety features may be taken into account, accidents.                                                                             but the amount of reduction in concentration of radioactive materials should be evaluated on an This guide lists acceptable assumptions that may be                              individual case basis.
 
used to evaluate the design basis LOCA of a Pressurized                                      e. The primary reactor containment should be Water Reactor (PWR). It should be shown that the assumed to leak at the leak rate incorporated or to be offsite dose consequences will be within the guidelines incorporated as a technical specification requirement at of 10 CFR Part 100. (During the construction permit peak accident pressure for the first 24 hours, and at 50
  review, guideline exposures of 20 rem whole body and percent of this leak rate for the remaining duration of
  150 rem thyroid should be used rather than the values USAEC REGULATORY GUIDES                                          Copies of published guide may. be obtained by request                    the divisions indicating D.C.  20646, desired to the US. Atomic Enemgy Commilss*o, Washlngton.
 
Attention: Director    of  Regulatory  Standards. Comments    and  suggestions  for Regulatory Guides we issuad to describe and make available to the parts        public methods acceptable to the AEC Regulatory staff of implementing specific            of Impr° ments In theose uldes we encouraged and should be sent to the Secretary by the  staff in of the Commislion, U.S. Atomic Energy Commission,        Washington,    D.C. 20645, the Commission's regulations,    to delineate  techniques    used Attention: Chief, Public ProcoedlnglStaff.
 
eanluating specific problems or postulated accidents, or to provide guidance to applicants. Regulatory Guides are not  substitutes  for  regulations  and compliance setout in  The guides are issued in the following ten broad divisions:
  with them is not required. Methods and solutions different from thoserequisite      to the guides will be acceptable if they provide a basis for the findings                    1. PeOWrdReactors                          6. Products the Issuance or continuance of a permit  or )iconse by  the Commissio
 
====n.      ====
 
===7. Transportation===
                                                                                            2. Research end Test Reactors
                                                                                            3. Fuels end Materials Facilities          EL Occupatlonal Health
                                                                                            4. Environmental and Siting                9. Antitrust Review Published guides will be revised periodically, asappropriate, to accommodate            5. Materials and Plant Protection        10. General comments and to reflect new information or experienca.
 
the accident., Peak accident pressure is the maximum                  The surface body dose rate from beta emitters in the pressure defined in the technical specifications for                  infinite cloud can be approximated as being one-half this containment leak testing.                                            amount (i.e., PD-1 = 0.23 Eox).
2. Acceptable assumptions for atmospheric diffusion and dose conversion are:
    a. The 0-8 hour ground level release                            For gamma emitting material the dose rate in air at the concentrations may be reduced by a factor ranging from                cloud center is:
one to a maximum of three (see Figure 1) for additional dispersion produced by the turbulent wake of the                                            ^/DL = 0.507 E&x reactor building in calculating potential exposures. The volumetric building wake correction, as defined in                    From a semi-infinite cloud, the gamma dose rate in air section 3-3.5.2 of Meteorology and Atomic Energy
1968, should be used only in the 0-8 hour period; it is              is:
used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only.                                          7D    = 0.25EYx b. No correction should be made for depletion of the effluent plume of radioactive iodine due to                      Where deposition on the ground, or for the radiological decay of iodine in transit.                                                      0 , = beta dose rate from an infinite cloudi(rad/sec)
    c. For the first 8 hours, the breathing rate of                        DI= gamma dose rate from an infinite cloud persons offsite should be assumed to be 3.47 x 10"4                                  (rad/sec)
cubic meters per second. From 8 to 24 hours following                      E3      average beta energy per disintegration the accident, the breathing rate should be assumed to be                            (Mev/dis)
1.75 x 104 cubic meters per second. After that until the                  EF"= average gamma energy per disintegration end of the accident, the rate should be assumed to be                                (Mev/dis)
1.75 x 10-4 cubic meters per second. After that until the                  X = concentration of beta or gamma emitting end of the accident, the rate should be assumed to be                                isotope in the cloud (curie/m 3 )
2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107                  f. The following specific 'assumptions are cm3 /day] assumed in the report of ICRP, Committee                    acceptable with respect to the radioactive cloud dose calculations:
11-1959.)
    d. The iodine dose conversion factors are given in                        (1) The dose at any distance from the reactor ICRP Publication 2, Report of Committee II,                          should be calculated based on the maximum concentration in the plume at that distance taking into
"Permissible Dose for Internal Radiation," 1959.
 
account specific meteorological, topographical, and e. External whole body doses should be calculated other characteristics which may affect the maximum using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the                  plume concentration. These site related characteristics must be evaluated on an individual case basis. In the case distance that the gamma rays and beta particles travel.
 
of beta radiation, the receptor is assumed to be exposed
"Such a cloud would be considered an infinite cloud for to an infinite cloud at the maximum ground level a receptor at the center because any additional [gamma and] beta emitting material beyond the cloud                          concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and                exposed to only one-half the cloud owing to the Atomic Energy, Section 7.4.1.1 -editorial additions                  presence of the ground. The maximum cloud made so that gamma and beta emitting material could be                concentration always should be assumed to be at ground considered). Under these conditions the rate of energy                level.
 
absorption per unit volume is equal to the rate of energy                      (2) The appropriate average beta and gamma released per unit volume. For an infinite uniform cloud              energies emitted per disintegration, as given in the Table containing X curies of beta radioactivity per cubic meter            of Isotopes, Sixth Edition, by C. M. Lederer, J. M.
 
the beta dose in air at the cloud center is:                          Hollander, I. Perlman; University of California, Berkeley;
                                                                      Lawrence Radiation Laboratory; should be used.
 
SD4 = 0.457 fEX                                  g. The atmospheric diffusion model should be as follows:
                                                                                (1) The basic equation for atmospheric diffusion from a ground level point source is:
      The effect on containment leakage under accident conditions of features provided to reduce the leakage of                                              1 radioactive materials from the containment will be evaluated on                                      u an individual case basis.
 
XIQ = SrUayoz
                                                                1.4-2
 
Time Where                                                                    Following Accident                Atmospheric Conditions X    = the short term average centerline value of the      3 ground level concentration (curie/meter )              0-8 hours    Pasquill Type F, windspeed        1 meter/see, Q = amount of material released          (curie/sec)                            uniform direction u = windspeed (meter/sec)
      ay = the horizontal standard deviation of the
                                                                        8.24 hours Pasquill Type F, windspeed 1 meter/sec, plume (meters) [See Figure V-i, Page 48, variable direction within a 22.50 sector Nuclear Safety, June 1961. Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric                1-4 days      (a) 40% Pasquill Type D, windspeed 3 Dispersion," F. A. Gifford, Jr.]                                      meter/sec z= the vertical standard deviation of the plume                              (b) 60% Pasquill Type F, windspeed 2 (meters) [See Figure V-2, Page 48, Nudear                            meter/sec Safety, June 1961, Volume 2, Number 4,                                (c) wind direction variable within a 22.50
                "Use of Routine Meteorological                                        sector Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]                        4-30 days (a) 33.3% Pasquill Type C, windspeed            3 meter/sec
          (2) For time periods of greater than 8 hours                                (b) 33.3% Pasquill Type D, windspeed 3 the plume should be assumed to meander and spread                                      meter/sec uniformly over a 22.50 sector. The resultant equation is:                              (c) 33.3% Pasquill Type F, windspeed 2 meter/sec x/Q = 2.032 uu                                                (d) Wind direction 33.3% frequency in a OzU                                                22.50 sector Where
                                                                                  (4) Figures 2A and 2B give the ground level x    = distance from point of release to the receptor;            release atmospheric diffusion factors based on the other variables are as given in g(l).                    parameters given in g(3).
                                                            2
          (3) The atmospheric diffusion model for ground level releases is    based  on the  information    in  the following tabl
 
====e.      ====
 
==D. IMPLEMENTATION==
2 This   model should be used until adequate site                        The revision to this guide (indicated by a line in the meteorological data are obtained. In some cases, available              margin) reflects current Regulatory staff practice in the information, such as meteorology, topography and geographical          review of construction permit applications; therefore, location, may dictate the use of a more restrictive model to            this revision is effective immediately.
 
insure a conservative estimate of potential offsite exposures.
 
1.4-3
 
BUILDING WAKE DISPERSION CORRECTION FACTOR
                          0                                                                                                cli
    0                                                                                                a'
  W4
                            .44                                                                            * :1
                                                                                                                                      -.T-71
                                      -4        ----                                                      *    I
                          [-v                          T    -T
                                              77
                _T_  ,-
        Rat
          -4-                                                                                      -4
                                      1'              ------  --                                                                                  ----9
 
* Lr
                                                                                                                                                    -t Lii      F-I                                                                        KY
            -
                                  H
      ilL-                  1--r H:,        1 ifif-                                                                                            *--7- -7 I
        ýffHTq---
                                IW1ETýý T                                            F I  'I
                                                                                                          7----
                                                                                                          -T  7-
                                                                                                                                  -w
                                                                                                                        7- -+~1*~
U                                  4 F I I    F                                                                                                  -t -..
I
                              f-V
                                            I
                                                *1  - iI                                                                      Ii I
                                                '-
I..'                                                        . . . . . .A . . . . . . . . . . . . .
                                                                                                  K              7 17.


==C. REGULATORY POSITION==
"'III'
1. The assuimptions related io the release of radioactivematerial from the fuel and containment are as Ibllows:a. T we n t y -five percent of the equilibriutradioactive iodine inventory developed from imlaximu ifull power operation of the core should be assumtned tobe immediately available for leakage from the prinmaryreactor containment. Ninety-one percent of this 25percent is to be assumed ito he ill Ithe forma ofelenllelllaliodine. 5 percent of this 25 percent ill the form ofparticulate iodine. and 4 percent of this 25 percent inthe form of organic iodides.b. One hundred percent of the equilibriumradioactive noble gas inventory developed frontmaximum full power operation od the core should beassumed to be immediately available for leakage frontthe reactor containment.c. The effects of radiological decay during holdupin the containment or other buildings should be takeninto account.d. The reduction in the amotunt of radioactivematerial available for leakage to tile environment bycontainment sprays, recirculating filter systems, or otherengineered safety features may be taken into account.but the amount of reduction in concentration ofradioactive materials should be evaluated on anindividual case basis.e. The primary reactor containment should beassumed to leak at the leak rate incorporated or to leincorporated as a technical specification requirement atpeak accident pressure for the first 24 hours. and at 50percent of this leak rate for the remaining duration ofthe accideint.2 Peak accident pressure is the maximum1pressure defined in the technical specifications forcontainment leak testing.2Thte effect on coniainnmeni leakage tinder accidentconditions of features provided to reduce the leakage ot"radioactive materials from the containment will be evaluated onan individual case basis.USAEC REGULATORY GUIDES Coples of published guldes may be obtained by request Indicating the divisionsdesired to the US. Atomic Energy Commission. Washington. 0.1, 20545,Regulatory Guides are issued to describe and make avaliable to the public Attention: Director of Regulatory Standards. Comments and tuggrsilons formethods acceptable to the AEC Regulatory staff of Implementing specific parts of impfrovements In these guides ere encouraged end should be sent to the Secretarythe Commission's regulations, to delineate techniques used by the staff in of the Commission, US. Atomic Energy Commission, Washington. O.C. 20545.evaluating specific problems or postulated accid3nts. or to provide guidance to Attention: Chief, Public Proceedings Staff.applicants. Regulatory Guides are not substitutes for regulations and compliancewith them is not required. Methods and solutlons different from those set out in The guides are issued In the following ten broad divliions:the guides will be acceptable if they provide a basis for the findings requisite tothe issuance or continuance of a permit or license by the Comrrssion. 1. Power Reactors 8. Products2. Researcha nd Tast Reactors 7. Transportation3. Fuels and Materials Facilities 8. Occupational HealthPublished guides will be revised periodically, as appropriate, to accommodate 4. Environmental end Siting 9. Antlitrust Reviewcomments and to reflect new informatio" or experience. 5. Materials and Plant Protection 1
                                                                                                                            ii F.V-~2 H
              __________________                      +1j
                                                          4~~~t  4r~4
                                                              ___414_____1___
                                                                              J:r
                                                                                -T4 LltIIII]I4J---I-1               1V
                                                                                                        -14- - :4Ij4Th1          -
                                                                                                                                            1-7.~I
      -I                                      w#tThJ              11ff
                                                                                1-ý 4 Lt.]                                                            i-i
 
.10-40            ::R+
      9 I I II'llill'44            -      - ...
                                                                                                                                                                                    - . . " I aI I
                          H-Lik  i                                  -i-v-ti-ti r-i 4      TI          I'      I'
                          . F141        I                                      .F.U.,      7777!ý i                                                                11111    iiiiiin::...,.!
                                                                                                                                                                                          ri-Ill ERH                                                                                                                                                                  i ! ! I
                                                                      t44 I
      4 ER HIE 1.
 
FIGURE 2(AAMJ)
                                                                                                                                                I
                                                                                                                                                                                  ++H
                                                                                                                                                            fffl  -t-ýft  ttlt
                                                                                            1,
                                                                                          -t:     r                                                              ##
                                                                                                -.4
                                                                              44-J                                                                                        11E
                                                                                  -. :  44- tLT
                                                                                                    -
                                                                                                                                  i--T-4-+I- zh            4444 i i i i !I-H
  104                                                                                                                                                        fjP +4-tiHi++ ftHl"
      9                                                                                                                      4-  7ý+ý
                  +
                L-f+ý+'   AL
                -Lý        V
                                                                                                                                                                TTlq4lRh-        4iý
      E                            ýtv4 ft                                                                    T,
                                                                                                                                                                            TfFffliif t 4ý
                                                                                    '-4..,.
                                                                                  '-44
                                                                                          -1-il
                                                                                          4".
                                                                                                            -I                                4 T                                  t
                                                                                    ,j    -:
                                                                                                      4444 U.                                           44                                                1-4                                                4. 4 LV
                                +
                                                                                        1  2                            T' -T
            #4-4                                                                                                                      r! I L
                                                                                                                                    -4=
                                                        74          1-t -      4 -4
                                                          -t              L-T-
                                                                                                                            T
  19-4                                                                                                            ý!J!ý 44-+                          H.4          -+j J+/- 44
        9                                                                                                                  + 4-4-ý    H
                                                                                    r'      *ii
                                                                                                                                                  17
                                                                                                        44 rr
                    44
        6                                                                                                                              V.r
                    444                                                                                                                              - BE
                                                                                        1:
                                                                                                                  T!..TT
        4
                                44 i-II
              vT    RE-                    r
        3
                            14          ::1--, 4,
              -T
              1            I
                                                                                                                                                                                            A-
                            -I                    ý4, S114                                  1 I                                                                                      .1
    4ft-6 I1Ilp      -                              5          Ili10,
                                                          I II                                                                  9l'o
                                                                                                                                                                                          '8 Distance from Structure (meters)
                                                                                          1.4-5


===0. General ===
Disance fromt Structure (meter)
.12. Acceptable assumptions for atmospheric diffusionand dose conversion are:a. The 0-8 hour ground level releaseconcentrations may be reduced by a factor ranging fromone to a maximum of three (.see Figure I) for additionaldispersion produced by the turbulent wake of thereactor building in calculating potential exposures. Thevolumetric building wake correction, as defined insection 3.3.5.2 of Meteorology and Atomic Energy1968. should be used only in the 0-8 hour period: it isused with a shape factor of 112 and the minimumcross-sectional area of the reactor building only.b. No correction should be made for depletion of'the effluent plume of radioactive iodine due todeposition on the ground, or for the radiological decayof iodine in transit.c. For the first 8 hours, the breathing rate ofpersons offsite should be assumed to be 3.47 x 10'cubic meters per second. From 8 to 24 hours followingthe accident, the breathing rate should be assumed to be1.75 x 104 cubic meters per second. After that until theend of the accident, the rate should be assumed to be2.32 x 104 cubic meters per second. (These values weredeveloped from the average daily breathing rate [2 x 107cnv'/dayJ assumed in the report of ICRP, Committee11-1959.)d. The iodine dose conversion factors are given inICRP Publication 2, Report of Committee 11,"Permissible Dose for Internal Radiation," 1959.e. External whole body doses should be calculatedusing "Infinite Cloud" assumptions, i.e., the dimensionsof the cloud are assumed to be large compared to thedistance that the gamma rays and beta particles travel."Such a cloud would be considered an infinite cloud fora receptor at the center because any additional [gammaand] beta emitting material beyond the clouddimensions would not alter the flux of [gamma raysand] beta particles to the receptor" (Meteorology andAtomic Energy, Section 7.4. .1.-editorial additionsmade so that gamma and beta emitting material could beconsidered). Under these conditions the rate of energyabsorption per unit volume is equal to the rate of energyreleased per unit volume. For an infinite uniform cloudcontaining X curies of beta radioactivity per cubic meterthe beta dose in air at the cloud center is:From a semi-infinite cloud, the gamma dose rate in airis:,D = 0,25EWherebeta dose rate from an infinite cloud (rad/sec)gamma dose rate from an infinite cloud(rad/sec)EO3 = average beta energy per disintegration(Mev/dis)E = average gamma energy per disintegration(Mev/dis)X = concentration of beta or gamma emillingisotope in the cloud (curie/m3)f. The following specific assumptions areacceptable with respect to the radioactive cloud dosecalculations:(1) The dose at any distance from the reactorshould be calculated based on the maximumconcentration in the plume at that distance taking intoaccount specific meteorological, topographical, andother characteristics which may affect the maximumplume concentration. These site related characteristicsmust be evaluated on an individual case basis. In the caseof beta radiation, the receptor is assumed to be exposedto an infinite cloud at the maximum ground levelconcentration at that distance from the reactor. In thecase of gamma radiation, the receptor is assumed to beexposed to only one-half the cloud owing to thepresence of the ground. The maximum cloudconcentration always should be assumed to be at groundlevel.(2) The appropriate average beta and gammaenergies emitted per disintegration, as given in the Tableof Isotopes, Sixth Edition, by C. M. Lederer, J. M.Hollander, I. Perlman; University of California, Berkeley,Lawrence Radiation Laboratory; should be used.g. The atmospheric diffusion model should be asfollows:(1) The basic equation for atmosphericdiffusion from a ground level point source is:X/Q= ruayaWhereX = the short term average centerline value of theground level concentration (curie/meter3)Q = amount of material released (curie/see)u = windspeed (meter/see)y = the horizontal standard deviation of theplume (meters) [See Figure V-I. Page 48.Nuclear Safety, June 1961, Volume 2.D! = 0.457 EOXThe surface body dose rate from beta emitters in theinfinite cloud can be approximated as being one-half thisamount (i.e., 0DD' = 0.23 E'X).For gamma emitting material the dose rate in air at theuloud center is:7.D = 0.507 Ey(1.4-2 Number 4, "Use of Routine Meteorolo-icalObservations for Estimating AtmospchericDispersion," F. A. Gifford. Jrj..o" = the vertical standard deviation cf the pluii.e(meters) ISee Figure V-2, Page 48, NuclearSafqev', June 19(1. Volume 2. Number 4."Use of Routlinc Me leorologicalOh,'ervations for Estimating AtmosphericDispersion," F. A. G;ifford. Jr.I(.2) For lime periods of greater than 8 hoursthe plume shouid hI assumed to meander and spreadovcr a 22.i" sector. The resultlant e'quaition is:2.032x/Q = lx\Vhicrcx distance from point of release to the receptor;.other variables are as given in g( 1).(3) Tlhe at mospheric diffusion model" forground level releases is based on the information in thefollowing lable.-' 'This niIdo.l' %liould be useud until adequate sitemetcorologic'al d:ta are obtained. In some ,-uses. availableinformation. such u,; topography and geovaphicut.tocalion. may dictate Itic use of a more restrictive model toinsurc a conscrvative eltimuie of potentla oflfsitc exposures.TimeFollowingAccidentAtmospheric Conditions0.8 hours Pasquill Type F. wiudspeed I meter/sec.uniform direction8-24 hours Pasquill Type F, windspced I metcr/s.c.variable direction within a 22.5" sector1-4 days (a) 4(Y,,%( Pasquill Type D.rilel r/sec(b) 600,, Pasquill Type F.leter/sec(W' wind direction v: riabiesectorwindspeed 3windspeed 2within a 22._.4-30 days (a) 33.35, Pasquill Type C, windspeed 3meter/sec(N) 33.3%'. Pasquill Type D. windspeed 3ineter/sec(c) 33.3%; Pasquill Type F, wirdspeed 2viieter/sec(d) Wind direction 33.3,:, frequency in a22.50 sector(4) Figures 2A and 213 give the groud levelrelease atmospheric diffusion factors based on theparameters given in g( 3).1.4-3 bI .1-GiAKbuPRIP IOýAO2.5 FIGURE 1O.SA-SO meters20 P'mtr2  4.0 .5A-1000 -nws O.SA-2500atr2 meti2 O.BA-1500 motors 0.5A-3000merup. O.5A-2000 metonus ýwccI0zIw1.54 IuIII I i ..I *10wDistance from Structure (metars)  
          1.4-6}}
I3 LFIGLS1i .. ._10-A7----4--Ia -... *---- -- ......0 0\44sanc 4m St .tu. ... tes1 o .* '1 %Ditne rmSrut- (eesI II _ .III1.4-5
10-II I A ... ; I .... 1 1I.", .---I.-- I--,- -.-*" i ... v -.1 -1 %ýFIGURE 2(81 -_____0-8 hours7~..,D LIUE0.1.N.. I I ' I%, ...:.7 :::::'Vt~rV~'IF-W0 * ,p -I *.X1 ,-,I- --7I..~.i... I_... ... -101631 1 .ý 10.5 b 7 1Distance from Structure (maters)1.4-6  
}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 10:29, 28 March 2020

Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
ML003739614
Person / Time
Issue date: 06/30/1974
From:
Office of Nuclear Regulatory Research
To:
References
RG-1.4, Rev 2
Download: ML003739614 (6)


Revision 2 June 1974 U.S. ATOMIC ENERGY COMMISSION

REGULATORY GUIDE

DIRECTORATE OF REGULATORY STANDARDS

REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES

OF A LOSS OF COOLANT ACCIDENT FOR PRESSURIZED WATER REACTORS

A. INTRODUCTION

given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data Section 50.34 of 10 CFR Part 50 requires that each and calculational techniques that might influence the applicant for a construction permit or operating license final design of engineered safety features or the dose provide an analysis and evaluation of the design and reduction factors allowed for these features.)

performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the

C. REGULATORY POSITION

facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to 1. The assumptions related to the release of radioactive evaluate the adequacy of these structures, systems, and material from the fuel and containment are as follows:

components with respect to the public health and safety. a. Twenty-five percent of the equilibrium This guide gives acceptable assumptions that may be radioactive iodine inventory developed from maximum used in evaluating the radiological consequences of this full power operation of the core should be assumed to accident for a pressurized water reactor. In some cases, be immediately available for leakage from the primary unusual site characteristics, plant design features, or reactor containment. Ninety-one percent of this 25 other factors may require different assumptions which percent is to be assumed to be in the form of elemental will be considered on an individual case basis. The iodine, 5 percent of this 25 percent in the form of Advisory Committee on Reactor Safeguards has been particulate iodine, and 4 percent of this 25 percent in consulted concerning this guide and has concurred in the the form of organic iodides.

regulatory position. b. One hundred percent of the equilibrium

B. DISCUSSION

radioactive noble gas inventory developed from maximum full power operation of the core should be After reviewing a number of applications for assumed to be immediately available for leakage from construction permits and operating licenses for the reactor containment.

pressurized water power reactors, the AEC Regulatory c. The effects of radiological decay during holdup staff has developed a number of appropriately in the containment or other buildings should be taken conservative assumptions, based on engineering into account.

judgment and on applicable experimental results from d. The reduction in the amount of radioactive safety research programs conducted by the AEC and the material available for leakage to the environment by nuclear industry, that are used to evaluate calculations containment sprays, recirculating filter systems, or other of the radiological consequences of various postulated engineered safety features may be taken into account, accidents. but the amount of reduction in concentration of radioactive materials should be evaluated on an This guide lists acceptable assumptions that may be individual case basis.

used to evaluate the design basis LOCA of a Pressurized e. The primary reactor containment should be Water Reactor (PWR). It should be shown that the assumed to leak at the leak rate incorporated or to be offsite dose consequences will be within the guidelines incorporated as a technical specification requirement at of 10 CFR Part 100. (During the construction permit peak accident pressure for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and at 50

review, guideline exposures of 20 rem whole body and percent of this leak rate for the remaining duration of

150 rem thyroid should be used rather than the values USAEC REGULATORY GUIDES Copies of published guide may. be obtained by request the divisions indicating D.C. 20646, desired to the US. Atomic Enemgy Commilss*o, Washlngton.

Attention: Director of Regulatory Standards. Comments and suggestions for Regulatory Guides we issuad to describe and make available to the parts public methods acceptable to the AEC Regulatory staff of implementing specific of Impr° ments In theose uldes we encouraged and should be sent to the Secretary by the staff in of the Commislion, U.S. Atomic Energy Commission, Washington, D.C. 20645, the Commission's regulations, to delineate techniques used Attention: Chief, Public ProcoedlnglStaff.

eanluating specific problems or postulated accidents, or to provide guidance to applicants. Regulatory Guides are not substitutes for regulations and compliance setout in The guides are issued in the following ten broad divisions:

with them is not required. Methods and solutions different from thoserequisite to the guides will be acceptable if they provide a basis for the findings 1. PeOWrdReactors 6. Products the Issuance or continuance of a permit or )iconse by the Commissio

n.

7. Transportation

2. Research end Test Reactors

3. Fuels end Materials Facilities EL Occupatlonal Health

4. Environmental and Siting 9. Antitrust Review Published guides will be revised periodically, asappropriate, to accommodate 5. Materials and Plant Protection 10. General comments and to reflect new information or experienca.

the accident., Peak accident pressure is the maximum The surface body dose rate from beta emitters in the pressure defined in the technical specifications for infinite cloud can be approximated as being one-half this containment leak testing. amount (i.e., PD-1 = 0.23 Eox).

2. Acceptable assumptions for atmospheric diffusion and dose conversion are:

a. The 0-8 hour ground level release For gamma emitting material the dose rate in air at the concentrations may be reduced by a factor ranging from cloud center is:

one to a maximum of three (see Figure 1) for additional dispersion produced by the turbulent wake of the ^/DL = 0.507 E&x reactor building in calculating potential exposures. The volumetric building wake correction, as defined in From a semi-infinite cloud, the gamma dose rate in air section 3-3.5.2 of Meteorology and Atomic Energy

1968, should be used only in the 0-8 hour period; it is is:

used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only. 7D = 0.25EYx b. No correction should be made for depletion of the effluent plume of radioactive iodine due to Where deposition on the ground, or for the radiological decay of iodine in transit. 0 , = beta dose rate from an infinite cloudi(rad/sec)

c. For the first 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, the breathing rate of DI= gamma dose rate from an infinite cloud persons offsite should be assumed to be 3.47 x 10"4 (rad/sec)

cubic meters per second. From 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following E3 average beta energy per disintegration the accident, the breathing rate should be assumed to be (Mev/dis)

1.75 x 104 cubic meters per second. After that until the EF"= average gamma energy per disintegration end of the accident, the rate should be assumed to be (Mev/dis)

1.75 x 10-4 cubic meters per second. After that until the X = concentration of beta or gamma emitting end of the accident, the rate should be assumed to be isotope in the cloud (curie/m 3 )

2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107 f. The following specific 'assumptions are cm3 /day] assumed in the report of ICRP, Committee acceptable with respect to the radioactive cloud dose calculations:

11-1959.)

d. The iodine dose conversion factors are given in (1) The dose at any distance from the reactor ICRP Publication 2, Report of Committee II, should be calculated based on the maximum concentration in the plume at that distance taking into

"Permissible Dose for Internal Radiation," 1959.

account specific meteorological, topographical, and e. External whole body doses should be calculated other characteristics which may affect the maximum using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the plume concentration. These site related characteristics must be evaluated on an individual case basis. In the case distance that the gamma rays and beta particles travel.

of beta radiation, the receptor is assumed to be exposed

"Such a cloud would be considered an infinite cloud for to an infinite cloud at the maximum ground level a receptor at the center because any additional [gamma and] beta emitting material beyond the cloud concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and exposed to only one-half the cloud owing to the Atomic Energy, Section 7.4.1.1 -editorial additions presence of the ground. The maximum cloud made so that gamma and beta emitting material could be concentration always should be assumed to be at ground considered). Under these conditions the rate of energy level.

absorption per unit volume is equal to the rate of energy (2) The appropriate average beta and gamma released per unit volume. For an infinite uniform cloud energies emitted per disintegration, as given in the Table containing X curies of beta radioactivity per cubic meter of Isotopes, Sixth Edition, by C. M. Lederer, J. M.

the beta dose in air at the cloud center is: Hollander, I. Perlman; University of California, Berkeley;

Lawrence Radiation Laboratory; should be used.

SD4 = 0.457 fEX g. The atmospheric diffusion model should be as follows:

(1) The basic equation for atmospheric diffusion from a ground level point source is:

The effect on containment leakage under accident conditions of features provided to reduce the leakage of 1 radioactive materials from the containment will be evaluated on u an individual case basis.

XIQ = SrUayoz

1.4-2

Time Where Following Accident Atmospheric Conditions X = the short term average centerline value of the 3 ground level concentration (curie/meter ) 0-8 hours Pasquill Type F, windspeed 1 meter/see, Q = amount of material released (curie/sec) uniform direction u = windspeed (meter/sec)

ay = the horizontal standard deviation of the

8.24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Pasquill Type F, windspeed 1 meter/sec, plume (meters) [See Figure V-i, Page 48, variable direction within a 22.50 sector Nuclear Safety, June 1961. Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric 1-4 days (a) 40% Pasquill Type D, windspeed 3 Dispersion," F. A. Gifford, Jr.] meter/sec z= the vertical standard deviation of the plume (b) 60% Pasquill Type F, windspeed 2 (meters) [See Figure V-2, Page 48, Nudear meter/sec Safety, June 1961, Volume 2, Number 4, (c) wind direction variable within a 22.50

"Use of Routine Meteorological sector Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.] 4-30 days (a) 33.3% Pasquill Type C, windspeed 3 meter/sec

(2) For time periods of greater than 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> (b) 33.3% Pasquill Type D, windspeed 3 the plume should be assumed to meander and spread meter/sec uniformly over a 22.50 sector. The resultant equation is: (c) 33.3% Pasquill Type F, windspeed 2 meter/sec x/Q = 2.032 uu (d) Wind direction 33.3% frequency in a OzU 22.50 sector Where

(4) Figures 2A and 2B give the ground level x = distance from point of release to the receptor; release atmospheric diffusion factors based on the other variables are as given in g(l). parameters given in g(3).

2

(3) The atmospheric diffusion model for ground level releases is based on the information in the following tabl

e.

D. IMPLEMENTATION

2 This model should be used until adequate site The revision to this guide (indicated by a line in the meteorological data are obtained. In some cases, available margin) reflects current Regulatory staff practice in the information, such as meteorology, topography and geographical review of construction permit applications; therefore, location, may dictate the use of a more restrictive model to this revision is effective immediately.

insure a conservative estimate of potential offsite exposures.

1.4-3

BUILDING WAKE DISPERSION CORRECTION FACTOR

0 cli

0 a'

W4

.44 * :1

-.T-71

-4 ---- * I

[-v T -T

77

_T_ ,-

Rat

-4- -4

1' ------ -- ----9

  • Lr

-t Lii F-I KY

-

H

ilL- 1--r H:, 1 ifif- *--7- -7 I

ýffHTq---

IW1ETýý T F I 'I

7----

-T 7-

-w

7- -+~1*~

U 4 F I I F -t -..

I

f-V

I

  • 1 - iI Ii I

'-

I..' . . . . . .A . . . . . . . . . . . . .

K 7 17.

"'III'

ii F.V-~2 H

__________________ +1j

4~~~t 4r~4

___414_____1___

J:r

-T4 LltIIII]I4J---I-1 1V

-14- - :4Ij4Th1 -

1-7.~I

-I w#tThJ 11ff

1-ý 4 Lt.] i-i

.10-40  ::R+

9 I I II'llill'44 - - ...

- . . " I aI I

H-Lik i -i-v-ti-ti r-i 4 TI I' I'

. F141 I .F.U., 7777!ý i 11111 iiiiiin::...,.!

ri-Ill ERH i ! ! I

t44 I

4 ER HIE 1.

FIGURE 2(AAMJ)

I

++H

fffl -t-ýft ttlt

1,

-t: r ##

-.4

44-J 11E

-. : 44- tLT

-

i--T-4-+I- zh 4444 i i i i !I-H

104 fjP +4-tiHi++ ftHl"

9 4- 7ý+ý

+

L-f+ý+' AL

-Lý V

TTlq4lRh- 4iý

E ýtv4 ft T,

TfFffliif t 4ý

'-4..,.

'-44

-1-il

4".

-I 4 T t

,j -:

4444 U. 44 1-4 4. 4 LV

+

1 2 T' -T

  1. 4-4 r! I L

-4=

74 1-t - 4 -4

-t L-T-

T

19-4 ý!J!ý 44-+ H.4 -+j J+/- 44

9 + 4-4-ý H

r' *ii

17

44 rr

44

6 V.r

444 - BE

1:

T!..TT

4

44 i-II

vT RE- r

3

14  ::1--, 4,

-T

1 I

A-

-I ý4, S114 1 I .1

4ft-6 I1Ilp - 5 Ili10,

I II 9l'o

'8 Distance from Structure (meters)

1.4-5

Disance fromt Structure (meter)

1.4-6