ML17228B048: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
(One intermediate revision by the same user not shown) | |||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:FLORIDA POWER AND LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT P.O.Box 14000 Juno Beach, Florida 33408 St.Lucie Nuclear Power Plant Unit 2 ATTACHMENT 8 STRESSES FOR ST.LUG I E UNIT 2 PRESSURIZER LEFM Prepared by BBW NUCLEAR SERVICE COMPANY For St.Lucie Nuclear Power Plant 10 Miles South of Ft.Pierce on A1A Ft.Pierce, Florida 33034 Commercial Service Date: NRC Docket Number.Document Number. | {{#Wiki_filter:FLORIDA POWER AND LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT P.O. Box 14000 Juno Beach, Florida 33408 St. Lucie Nuclear Power Plant Unit 2 ATTACHMENT 8 STRESSES FOR ST. LUG I E UNIT 2 PRESSURIZER LEFM Prepared by BBW NUCLEAR SERVICE COMPANY For St. Lucie Nuclear Power Plant 10 Miles South of Ft. Pierce on A1A Ft. Pierce, Florida 33034 Commercial Service Date: August 8, 1983 NRC Docket Number. 50-389 Document Number. 32-1235127-01 Revision Number. 0 Date: February 15, 1995 FHQ: PSL1SNB.RPT Page 3 95030703&i 950302 PDR ADOCK 050003B9 P PDR | ||
BWNT-20697-2(11/89) | BWNT-20697-2(11/89) | ||
JllBBMINUCLFAH CALCULATlONAL | |||
==SUMMARY== | ==SUMMARY== | ||
SHEET (CSS)DOCUMENT IDENTIFIER 32-1235127-01 | SHEET (CSS) | ||
CM TECHNOI.OGIES DOCUMENT IDENTIFIER 32-1235127-01 Stresses for St. Lucie Unit 2, Pressurizer LEFM TITLE PREPARED BY'EVIEWED H.T. Harriso BY: | |||
A.M. MIller ~AME SIGNATUR SIGNATUR TITLE Engr. IV ~~ 9'5 TITLE Princi al En r. | |||
COST 41020 REF. 38 TM STATEMENT'EVIEWER PURPOSE AND | |||
==SUMMARY== | ==SUMMARY== | ||
OF RESULTS The purpose of this document was to determine enveloping Normal and Upset, Condition stresses for the seven 1" instrumentation/temperature sensing nozzles in the pressurizer at St.Lucie Unit 2.Results from this document were used as inputs to the fracture mechanics evaluation, Reference[7].e stress results are summarized in Tables 6-1 through 6.8 in Section 6.0.Note that thermal stratification effects were not considered in this analysis.**BWNT NON-PROPRIETARY** | OF RESULTS The purpose of this document was to determine enveloping Normal and Upset, Condition stresses for the seven 1" instrumentation/temperature sensing nozzles in the pressurizer at St. Lucie Unit 2. Results from this document were used as inputs to the fracture mechanics evaluation, Reference [7]. | ||
THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT: CODE I VERSION I REV CODE I VERSION I REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIRED PRIOR TO USE ON SAFETY-RELATED WORK YES()No(X)FAG~OF BGW NUCLEAR TECHNOLOGIES | e stress results are summarized in Tables 6-1 through 6.8 in Section 6.0. Note that thermal stratification effects were not considered in this analysis. | ||
**BWNT NON-PROPRIETARY** | **BWNT NON-PROPRIETARY** | ||
32-1235127-01 RECORD OF REVISIONS Revision | THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT: | ||
**BWNT NON-PROPRIETARY** | CODE I VERSION I REV CODE I VERSION I REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIRED PRIOR TO USE ON SAFETY-RELATED WORK YES( ) No( X | ||
32-1235127-01 1.0 Introduction 4 2.0 Assumptions 4 3.0 Design Inputs 3.1 Design Characteristics 3.2 Material Properties 3.3 Model Geometry | ) | ||
......................37 8.0 References 38 9.0 Microfiche | FAG ~ OF | ||
~~~~~~~~~~~~~~~39 Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: 2 95 | |||
**BWNT NON-PROPRIETARY** | BGW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 RECORD OF REVISIONS Pages Revision Added/ | ||
32"1235127-01 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle"C" of Florida Power&Light Company's St.Lucie Unit 2.Subsecpxent NDE identified indications on the J-welds for all four steam space instrument nozzles.Modifications were made and justifications performed to determine the potential for crack growth during plant operation. | Number Chanched Descri tion All Original issue 01 All Issue of Non-Proprietary Version Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 2 | ||
The evaluation performed at the time was conservatively limited to one cycle based on the design information available. | |||
The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all seven instrument/temperature 1" nozzles in the pressurizer. | BRW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 1.0 Introduction 4 | ||
Results | : 2. 0 Assumptions 4 3.0 Design Inputs ~ ~ ~ ~ 5 3.1 Design Characteristics 3.2 Material Properties ~ ~ 0 ~ 6 3.3 Model Geometry 8 4.0 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . 10 5.0 Thermal Analysis . . . . . . . . . . . . . . . . . . . ~ . . . . . 10 6.0 Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.0 ANSYS 5.0A Verification . . . . . . . . . . . . . . . . . . . . . . 37 8.0 References 38 9.0 Microfiche ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 39 Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 | ||
4)Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head. | |||
5)Effects of thermal stratification were not considered in this analysis.6)Hydrotest was assumed to be shop hydrotest only.Therefore, no future hydrotests are assumed to occur.Prepared By: A.M.Miller | B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32 "1235127-01 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power & Light Company's St. Lucie Unit 2. Subsecpxent NDE identified indications on the J-welds for all four steam space instrument nozzles. Modifications were made and justifications performed to determine the potential for crack growth during plant operation. The evaluation performed at the time was conservatively limited to one cycle based on the design information available. The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all seven instrument/temperature 1" nozzles in the pressurizer. | ||
**BWNT NON-PROPRIETARY** | Results from this document were used as inputs to the fracture mechanics evaluation, Reference [7]. The results were presented in the coordinate system of the postulated flaw as recpxired by Reference [7] since the fracture mechanics evaluation determined the postulated flaws, see Figure 6.2. The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS 5.0A finite element software. | ||
32-1235127" 01 3.0 Design Inputs 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference[8].Heatup Cooldown Operating Pressure Operating Temperature Minimum Pressure (Reactor Trip transient) | 2.0 Assumptions | ||
Maximum Pressure (Abnormal Loss of Load transient.) | : 1) Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell. | ||
: 2) The effects of the nozzle were neglected in determining the shell/head stresses (i.e. the nozzle was omitted from the finite element model) . | |||
**BWNT NON-PROPRIETARY** | : 3) The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be a specific hT'F for calculating the natural convection heat transfer coefficient. | ||
32-1235127-01 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis.The material types come from References | : 4) Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head. | ||
[8-10]and assumption 1.References for the material properties are given in the tables below.The material property designation and units are: KXX-thermal conductivity, btu/(hr-in-'F) | : 5) Effects of thermal stratification were not considered in this analysis. | ||
DENS-density, lb/in'-specific heat, btu/(lb-'F) | : 6) Hydrotest was assumed to be shop hydrotest only. Therefore, no future hydrotests are assumed to occur. | ||
C is a calculated value based on C KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX-Young's Modulus, psi x | Prepared By: A.M. Miller Date:~2 95 Reviewed By: H.T. Harrison Date: 2 95 | ||
TEMP | |||
**BWNT NON"PROPRIETARY** | B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127" 01 3.0 Design Inputs 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference | ||
32-1235127-01 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni) | [8] . | ||
TEMP 100 | Heatup 100'F/hr Cooldown 200'F/hr Operating Pressure 2250 psia Operating Temperature 653 F Minimum Pressure (Reactor Trip transient) 1740 psia (653-616 'F hT) | ||
**BWNT NON-PROPRIETARY** | Maximum Pressure (Abnormal Loss of Load transient.) 2400 psia (664-614 'F hT) | ||
32-1235127-01 3.3 Model Geometry To bound all instrument/temperature sensing nozzle locations in the pressurizer heads and shell, the radius of the modeled nozzle penetration was determined so that the total pressure stress would ecpxal or exceed the total pressure stress present at all nozzle locations. | Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date:~2 99 | ||
Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration. | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis. The material types come from References [8-10] and assumption 1. | |||
References for the material properties are given in the tables below. The material property designation and units are: | |||
KXX - thermal conductivity, btu/(hr-in-'F) | |||
DENS - density, lb/in' | |||
- specific heat, btu/(lb-'F) | |||
C is a calculated value based on C KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX - Young's Modulus, psi x | |||
- coefficient of thermal expansion, in/in/'F x 10'LPX 10~ | |||
Sm - design stress intensity, ksi Sy - yield strength, ksi Su - ultimate strength, ksi v - Poisson's ratio ~ .3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.SNi) | |||
TEMP DENS EX ALPX Sm Sy Su 100 .2839 1.8833 . 1079 29.3 7.06 26.7 50.0 80.0 200 . 2831 1. 9500 .1139 28.8 7.25 26.7 47.5 80.0 300 .2823 1. 9833 . 1196 28.3 7.43 26.7 46. 1 80.0 400 .2817 1.9833 .1257 27.7 7.58 26.7 45.1 80.0 500 .2809 1. 9583 .1323 27.3 7.70 26.7 44.5 80.0 600 .2802 1. 9167 .1389 26.7 7 '3 26.7 43.8 80.0 700 .2794 1. 8583 . 1448 25. 5 7. 94 26.7 43.1 80.0 REF Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 | |||
B&W NUCLEAR TECHNOLOGIES **BWNT NON"PROPRIETARY** 32-1235127-01 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni) | |||
TEMP DENS EX ALPX Sy Su 100 .2862 .7250 . 1157 28. 1 8.55 20.0 30. 0 75.0 200 .2853 .7750 . 1209 27.6 8.79 20.0 '25.0 71.0 300 .2844 .8167 . 1246 27.0 9.00 20.0 22.5 66.0 400 .2836 .8667 . 1286 26.5 9. 19 18.7 20.7 64.4 500 .2827 .9083 . 1313 25.8 9.37 17. 5 19.4 63.5 600 .2818 . 9417 .1334 25.3 9.53 16.4 18.2 63.5 700 .2810 .9833 . 1358 24.8 9.69 16. 0 17.7 63.5 REF Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 | |||
BGW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 3.3 Model Geometry To bound all instrument/temperature sensing nozzle locations in the pressurizer heads and shell, the radius of the modeled nozzle penetration was determined so that the total pressure stress would ecpxal or exceed the total pressure stress present at all nozzle locations. Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration. | |||
Penetrations in the cylindrical portion of the shell experience increased stress due to the larger hoop stress and the larger stress concentration effects due to the stress profile around the penetration. | Penetrations in the cylindrical portion of the shell experience increased stress due to the larger hoop stress and the larger stress concentration effects due to the stress profile around the penetration. | ||
The model inherently included stress to account for the hillside effect and the stress for the stress concentration effect at a hole in the cylindrical shell.Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: 2 95 | The model inherently included stress to account for the hillside effect and the stress for the stress concentration effect at a hole in the cylindrical shell. | ||
**BWNT NON"PROPRIETARY** | Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 | ||
32-1235127-01 IJJ CL 0-I-C)(U I CC CC I-D CC Figure 3.1, Finite Element Model Geometry and Materials (inches)Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: 2 95 | |||
**BWNT NON-PROPRIETARY** | BGW NUCLEAR TECHNOLOGIES **BWNT NON"PROPRIETARY** 32-1235127-01 IJJ CL 0-I- | ||
32-1235127-01 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference[6], was used to perform the axisymmetric thermal and stress analysis of the nozzle penetration. | C) | ||
A sufficient portion of the head/shell was modeled to attenuate the stress concentration effects at nozzle penetration. | (U I | ||
The head/shell and cladding were modeled using axisymmetric elements (PLANE 42 structural and PLANE 55 thermal).5.0 Thermal Analysis The transients in Ref.[8]were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference[7]).Based on the review, the following transients were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure 1740 psia)and a 53'F Step-up (pressure 2400 psia), and'oss of Secondary Pressure.The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche THERMAL.OUT) with Heatup from 70'F to 653'F (0 hours to 5.83 hours), 53'F Step-down (7 hr instantaneous), 53'F Step-up (8 hr instantaneous) and Cooldown from 653'F to 70'F (9 hours to 11.915 hours).The Loss of Secondary Pressure transient was run and the results are contained in microfiche LPTHERM.OUT. | CC CC I-D CC Figure 3.1, Finite Element Model Geometry and Materials (inches) | ||
Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures. | Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 | ||
Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1.All other surfaces were assumed to be insulated. | |||
A constant heat transfer coefficient was used to simplify the analysis in a conservative manner.Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference[7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer. | B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference [6], was used to perform the axisymmetric thermal and stress analysis of the nozzle penetration. A sufficient portion of the head/shell was modeled to attenuate the stress concentration effects at nozzle penetration. The head/shell and cladding were modeled using axisymmetric elements (PLANE 42 structural and PLANE 55 thermal). | ||
During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer. | 5.0 Thermal Analysis The transients in Ref. [8] were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference [7]). Based on the review, the following transients were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure 1740 psia) and a 53'F Step-up (pressure 2400 psia), | ||
Therefore, use of a low heat transfer coefficient results in conservative (tensile)stresses.Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile)stresses.Therefore, nozzles in Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: | and'oss of Secondary Pressure. The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche THERMAL.OUT) with Heatup from 70'F to 653'F (0 hours to 5.83 hours), 53'F Step-down (7 hr instantaneous), 53'F Step-up (8 hr instantaneous) and Cooldown from 653'F to 70'F (9 hours to 11.915 hours). The Loss of Secondary Pressure transient was run and the results are contained in microfiche LPTHERM.OUT. | ||
**BWNT NON-PROPRIETARY** | Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures. Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1. All other surfaces were assumed to be insulated. | ||
32-1235127-01 the steam space were conservatively represented using heat transfer coefficients in the water space (i.e.for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space).The heat transfer correlations in Ref.[2]were reviewed for horizontal and vertical plates.The correlation for a horizontal heating plate, face up (T>Tm)was selected as a representative heat transfer coefficient for the nozzles in the water space.The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred.The temperature at the inside surface of the pressurizer (essentially the bulk fluid temperature) and the radial hT are shown in Figures 5.2 through 5.5.The temperature distribution at times of extreme hT's were then used as inputs for the stress analyses since the extreme hT's resulted in extreme thermal stresses.Steady state temperature cases were also run at 653 F and 2250 psia without material discontinuity effects (T~T~microfiche STEADYST.OUT) and at 653'F and 2400 psia with material discontinuity effects (T , 70'F, microfiche STRESS.OUT) | A constant heat transfer coefficient was used to simplify the analysis in a conservative manner. Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference [7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer. | ||
During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer. Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses. | |||
The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.2 and the POST26 results are contained at the end of the thermal runs Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: 2 95 | Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile) stresses. Therefore, nozzles in Prepared By: A.M. Miller Date:~2 99 Reviewed By: H.T. Harrison Date: 2 95 Page: 10 | ||
**BWNT NON-PROPRIETARY** | |||
32-1235127-01 in the microfiche in Section 9.0.Note that although the node pair used for evaluating the radial hT was at a specified flaw angle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface is isothermal). | B6cW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space). | ||
TABLE 5.1, CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR)PRESSURE (PSIA)Heatup 5.83 2, 250 Step-down 7.0667 1, 740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown 9.5247 1, 028'ooldown 11.915 Steady | The heat transfer correlations in Ref. [2] were reviewed for horizontal and vertical plates. The correlation for a horizontal heating plate, face up (T > | ||
Tm) was selected as a representative heat transfer coefficient for the nozzles in the water space. | |||
The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred. The temperature at the inside surface of the pressurizer (essentially the bulk fluid temperature) and the radial hT are shown in Figures 5.2 through 5.5. The temperature distribution at times of extreme hT's were then used as inputs for the stress analyses since the extreme hT's resulted in extreme thermal stresses. Steady state temperature cases were also run at 653 F and 2250 psia without material discontinuity effects (T~ T~ microfiche STEADYST.OUT) and at 653'F and 2400 psia with material discontinuity effects (T , 70'F, microfiche STRESS.OUT) . | |||
The following table summarizes the critical transient times and identifies the associated pressures. The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.2 and the POST26 results are contained at the end of the thermal runs Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 11 | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 in the microfiche in Section 9.0. Note that although the node pair used for evaluating the radial hT was at a specified flaw angle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface is isothermal). | |||
TABLE 5.1, CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR) PRESSURE (PSIA) | |||
Heatup 5.83 2, 250 Step-down 7.0667 1, 740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown 9.5247 1, State',250 028'ooldown 11.915 Steady Loss of Secondary .051958 200 Pressure | |||
'The pressure was assumed to equal the saturation pressure at 548'F | |||
'Includes material discontinuity temperature effects (T, = 70'F). | |||
'Excludes material discontinuity temperature effects (T , = T~~ 653'F). | |||
Prepared By: A.M. Miller Date:~295 Reviewed By: H.T. Harrison Page: 12 | |||
gmmmlllll~~> | |||
lllIINllllllll Illllllmllllll INgNNllllll llllllllllll+>~ | lllIINllllllll Illllllmllllll INgNNllllll llllllllllll+>~ | ||
Illlllllllllllll Illllllllllleaa grmmmllllla IrlllEIIIINISa IllllllllllmiEa Illlllllllmllir susmnssacaarr IRIIIRllllllf ROE | Illlllllllllllll Illllllllllleaa grmmmllllla IrlllEIIIINISa IllllllllllmiEa Illlllllllmllir susmnssacaarr IRIIIRllllllf ROE lllllllllltlOSR llllllllllllI5%% | ||
~rrarrrrrrrrsQEar nrrrraraarkRssH ranrrraaraQsss karrrarrrrrrisoR raaanrrararrrra sarraarrrraasssà | ~ | ||
~arrrrraaraassRR | ~ rrarrrrrrrrsQEar nrrrraraarkRssH ranrrraaraQsss karrrarrrrrrisoR raaanrrararrrra sarraarrrraasssà | ||
~aaraaar ranee'a aaanrrnrrarrrr | ~ arrrrraaraassRR | ||
~rrarrnarraarrra | ~ aaraaar ranee'a aaanrrnrrarrrr | ||
~ rrarrnarraarrra | |||
B6W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 z | |||
LU D | |||
O K | |||
Q nu?nu)0 v- | |||
)-U | |||
~ | |||
Ill/ | |||
lf OOCiE U.U Uj NOX>.NO o | |||
K H | |||
I-V) | |||
I I (9 1 | |||
Uj O | |||
A1VA 0 I-Figure 5.2, Shell Radial hT Time History, Heatup, 53hT Steps 6 Cooldown Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 14 | |||
ANSYS 5.0 A OCT 25 1994 10:02:30 PLOT NO. 2 POST26 H ZV 1 DIST 0.75 0 | |||
XF 0.5 8 YF 0.5 ZF -0.5 CENTROID HIDDEN n | |||
i 5 | |||
0 0 | |||
0 I | |||
0 M | |||
TEMP RAD 12 16 20 10 18 M I | |||
00 TIME hl 0 4J Vl 0 STLUCIE1.IGS 0 h) | |||
I O | |||
6l | |||
: r. e8l 6l Ql 0 0 td W | |||
'C 'C ANSYS 5.0 A OCT 25 1994 n Ul 09:07:48 zV | |||
* PLOT NO. | |||
POST26 0 | |||
ZV 1 DIST 0.75 n XF 0.5 YF 0.5 0 ZF 05 El CENTROID HIDDEN 0 | |||
0 | |||
<C n g O | |||
0 RAD 0 I 0 | |||
H W | |||
(>> loca-l) 0.4 0.8 i+2 l.6 Oo2 0.6 4) | |||
M I | |||
TIME h> | |||
OJ Ul STLUCIE1.IGS W I | |||
O | |||
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 z | |||
LU D | |||
D CII X O | |||
Q~g)O~ ~u)u)n< | |||
gg<zol r OOOO Sl-op V) >~i a~+ | |||
0- s | |||
~4 I | |||
O X | |||
CO | |||
~4 bl K | |||
00 H | |||
0 O | |||
O N | |||
O (D | |||
(9 uj O | |||
A 1VA D e~ | |||
Figure 5.5, Inside Surface Temp and Radial hT, Loss of Secondary Pressure Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 17 | |||
B6cW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell. The pressure boundary conditions are shown in Figure 6.1. Since the fracture mechanics evaluation in Reference [7] requires stresses along a specified flaw plane, the ANSYS POST1 post processor was used to transform the stresses into the flaw plane coordinate system as shown in Figure 6.2. | |||
Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction. A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load = mr'(pressure) ~ w(.6875)'(pressure) ~ 1.4849(pressure)). The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest. | |||
Complete stress results are contained in the microfiche of Section 9.0. The stresses as required for the FM analysis are summarized in the Tables 6.1 through 6.8 and Figures 6.3 through 6.10. Note that the stresses are in psi. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 18 | |||
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY** 32-1235127-01 TABLE 6 1 g END OF HEATUP g P~2250 PSI | |||
~ | |||
S SX SY SZ 0.00000E+00 -7283.8 5973.2 60276. | |||
: 0. 11959 -2390.6 5126. 0 55404. | |||
0.23918 2348.7 4768.9 50677. | |||
0.35876 5917.8 5548.9 46241. | |||
0.47835 7064.7 6676.2 44495. | |||
0.59794 8210.2 7778.0 42714. | |||
: 0. 71753 9242.5 8839. 1 41030. | |||
0.83711 9868.3 9535.7 40141. | |||
0.95670 10502. 10230. 39242. | |||
1.0763 11084. 10889. 38404. | |||
: 1. 1959 11488. 11363. 37926. | |||
1.3155 11893. 11838. 37440. | |||
1.4351 12269. 12287. 36991. | |||
: 1. 5546 12553. 12640. 36728. | |||
1.6742 12834. 12991. 36456. | |||
: 1. 7938 13098. 13324. 36206. | |||
1.9134 13309. 13601. 36064. | |||
2.0330 13515. 13873. 35908. | |||
2.1526 13713. 14133. 35768. | |||
2.2722 13877. 14355. 35692. | |||
: 2. 3918 14037. 14571. 35604. | |||
: 2. 5113 14192. 14780. 35527. | |||
2.6309 14323. 14960. 35487. | |||
2.7505 14453. 15134. 35441. | |||
: 2. 8701 14580. 15304. 35400. | |||
2.9897 14686. 15450. 35380. | |||
: 3. 1093 14793. 15594. 35356. | |||
3.2289 14898. 15732. 35334. | |||
3.3485 14991. 15848. 35323. | |||
3.4680 15083. 15965. 35313 ~ | |||
3.5876 15141. 16109. 35295. | |||
3.7072 15163. 16263. 35291. | |||
3.8268 15188. 16413. 35286. | |||
3.9464 15246. 16513. 35264. | |||
4.0660 15305. 16610. 35241. | |||
4.1856 15354. 16701 ~ 35234. | |||
4.3052 15394. 16784. 35214. | |||
4.4247 15433. 16865. 35192. | |||
4.5443 15473. 16946. 35170. | |||
4.6639 15507. 17022. 35150. | |||
4.7835 15530. 17087. 35120. | |||
: 4. 9031 15553. 17152. 35090. | |||
5.0227 15577. 17217. 35060. | |||
: 5. 1423 15601. 17281. 35031. | |||
5.2619 15938. 16990. 34986. | |||
5.3814 16287. 16681. 34940. | |||
5.5010 16624. 16387. 34894. | |||
5.6206 16947. 16106. 34848. | |||
5.7402 17256. 15838. 34802. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date:~2 95 Page: 19 | |||
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY** 32-1235127-01, TABLE 6.2, 53F STEP DOWN, P~1740 PSI S SX SY SZ 0.00000E+00 -6913. 0 8348.2 70271. | |||
: 0. 11959 -1682. 6 6909.2 62772. | |||
0.23918 3307.9 5990.6 55758. | |||
0.35876 6953.4 6441. 3 49572. | |||
0.47835 7957.1 7527.8 46742. | |||
0.59794 8893.3 8532.9 43956. | |||
0.71753 9672.7 9420.0 41368. | |||
: 0. 83711 10050. 9888.7 39639. | |||
0.95670 10402. 10328. 37939. | |||
1.0763 10696. 10707. 36375. | |||
: 1. 1959 10819. 10889. 35178. | |||
1.3155 10932. 11060. 34011. | |||
1.4351 11024. 11203. 32937. | |||
: 1. 5546 11030. 11250. 32044. | |||
1.6742 11038. 11298. 31191. | |||
: 1. 7938 11037. 11332. 30394. | |||
: 1. 9134 10989. 11313. 29697. | |||
2.0330 10954. 11307. 29052. | |||
2 1526 | |||
~ 10912. 11290. 28434. | |||
2.2722 10846. 11246. 27886. | |||
: 2. 3918 10794. 11214. 27380. | |||
2.5113 10736. 11175. 26888. | |||
2.6309 10672. 11126. 26458. | |||
2.7505 10615. 11084. 26052. | |||
2.8701 10555. 11038. 25654. | |||
2.9897 10499. 10995. 25317. | |||
: 3. 1093 10444. 10953. 24988. | |||
3.2289 10391. 10911. 24670. | |||
3.3485 10346. 10872. 24402. | |||
3.4680 10299. 10834. 24135. | |||
3.5876 10238. 10823. 23884. | |||
3.7072 10162. 10828. 23665. | |||
3.8268 10088. 10831 23447. | |||
3.9464 10053. '0819. | |||
23257. | |||
4 '660 10020. 10807. 23071. | |||
4.1856 9980.3 10791. 22896. | |||
4.3052 9950.7 10789. 22751. | |||
4.4247 9923. 1 10789. 22611. | |||
4.5443 9895.9 10790. 22472. | |||
4.6639 9869.6 10791. 22345. | |||
4.7835 9852.2 10803. 22248. | |||
4.9031 9835.4 10816. 22152. | |||
5.0227 9819.1 10828. 22057. | |||
5.1423 9803.3 10839. 21962. | |||
5.2619 10004. 10650. 21903. | |||
5.3814 10214. 10452. 21846. | |||
5.5010 10416. 10263. 21791. | |||
5.6206 10609. 10081. 21736. | |||
5.7402 10794. 9908.0 21681. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 20 | |||
B&W NUCLEAR TECHNOLOGZES NON-PROPRZETARY** 32-1235127-01 TABLE 6.3, 53F STEP UP, P~2400 PSZ S SX SY SZ 0.00000E+00 -7254.5 5009.8 55366. | |||
: 0. 11959 -2602.9 4374.6 51513. | |||
: 0. 23918 1924.9 4204.6 47681. | |||
0.35876 5376.5 5068.2 43963. | |||
0.47835 6556.3 6184.4 42672. | |||
0.59794 7759. 1 7297.4 41314. | |||
0.71753 8874.0 8404 ' 40030. | |||
: 0. 83711 9593.9 9179.8 39507. | |||
0.95670 10334. 9966.4 38957. | |||
1.0763 11027. 10731. 38443. | |||
1.1959 11544. 11319. 38279. | |||
: 1. 3155 12066. 11914. 38091. | |||
1.4351 12554. 12486. 37914. | |||
: 1. 5546 12950. 12961. 37923. | |||
1.6742 13338. 13433. 37897. | |||
1.7938 13705. 13885. 37877. | |||
: 1. 9134 14019. 14279. 37966. | |||
2.0330 14316. 14658. 38007. | |||
: 2. 1526 14605. 15025. 38058. | |||
2.2722 14855. 15349. 38169. | |||
2.3918 15091. 15656. 38238. | |||
2.5113 15324. 15955. 38318. | |||
2.6309 15523. 16217. 38420. | |||
2.7505 15716. 16466. 38500. | |||
2.8701 15906. 16711. 38585. | |||
2.9897 16065. 16919. 38668. | |||
3.1093 16222. 17123 38744. | |||
3.2289 16377. '7319. | |||
38815. | |||
3.3485 16510. 17481. 38881. | |||
3.4680 16643. 17644. 38946. | |||
3.5876 16734. 17833. 38994. | |||
3.7072 16781. 18028. 39048. | |||
3.8268 16832. 18220. 39101. | |||
3.9464 16912. 18347. 39119. | |||
4.0660 16995. 18471. 39134. | |||
: 4. 1856 17065. 18589. 39167. | |||
4.3052 17121. 18691. 39173 ~ | |||
4.4247 17175 18790. 39175. | |||
4.5443 '7229. | |||
18889. 39176. | |||
4.6639 17276. 18981. 39177. | |||
4.7835 17306. 19056. 39158. | |||
: 4. 9031 17337. 19132. 39139. | |||
5.0227 17368. 19207. 39119. | |||
: 5. 1423 17400. 19282 39099. | |||
: 5. 2619 17777. '8956. | |||
39055. | |||
: 5. 3814 18168. 18611. 39009. | |||
5.5010 18544. 18281. 38962. | |||
5.6206 18905. 17966. 38915. | |||
5.7402 19251. 17668. 38867. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 21 | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.4, STEADY STATE, Tref 70F, Tunif 653F, P = 2400 PSIA S SX SY SZ 0.00000E+00 -8203.5 7687.1 72516. | |||
: 0. 11959 -2489.2 6501.0 66004. | |||
0.23918 3016.7 5884.8 59778. | |||
0.35876 7124. 0 6653.7 54082. | |||
0.47835 8389.6 7928.7 51714. | |||
0.59794 9630.6 9155.6 49332. | |||
0 71753 | |||
~ 10730. 10311. 47103. | |||
: 0. 83711 11367. 11033. 45809. | |||
0.95670 12002. 11745. 44517. | |||
: 1. 0763 12576. 12410. 43322. | |||
: 1. 1959 12950. 12859. 42543. | |||
1.3155 13321. 13306. 41766. | |||
1.4351 13659. 13723. 41049. | |||
1.5546 13895. 14028. 40544. | |||
1.6742 14127. 14332. 40042. | |||
1.7938 14342. 14617. 39574. | |||
: l. 9134 14499. 14837. 39228. | |||
2.0330 14653. 15055 38882. | |||
2.1526 14797. '5260. | |||
38558. | |||
2.2722 14906. 15424. 38308. | |||
2.3918 15014. 15585. 38058. | |||
2.5113 15116. 15737. 37821. | |||
2.6309 15196. 15861. 37634. | |||
2.7505 15275. 15983. 37446. | |||
2.8701 15351. 16099. 37266. | |||
2.9897 15411. 16195. 37121. | |||
3.1093 15471. 16289. 36975. | |||
3.2289 15531. 16379. 36833. | |||
3.3485 15582. 16451. 36717. | |||
3.4680 15632. 16524, 36600. | |||
3.5876 15649. 16627. 36483. | |||
3.7072 15633. 16743. 36387. | |||
3.8268 15620. 16857. 36292. | |||
3.9464 15646. 16924. 36193. | |||
4.0660 15675. 16989. 36094. | |||
4.1856 15693. 17048. 36012. | |||
4.3052 15708. 17106. 35931. | |||
4.4247 15724. 17164. 35851. | |||
4.5443 15739. 17221. 35772. | |||
4.6639 15751. 17276. 35699. | |||
4.7835 15759. 17327. 35631. | |||
4 ~ | |||
9031'.0227 15767 ~ 17377. 35565. | |||
15776. 17428 35498. | |||
5.1423 15785. '7478. | |||
35432. | |||
5.2619 16120. 17179. 35372. | |||
5.3814 16469. 16864. 35312. | |||
: 5. 5010 16804. 16563. 35253. | |||
5.6206 17126. 16275. 35193. | |||
5.7402 17434. 16001. 35134. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 22 | |||
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY** 32-1235127-01 TABLE 6.5, COOLDOWN, Psat=1028 PSIA S SX SY SZ 0.00000E+00 -4251. 9 5658.2 45637. | |||
: 0. 11959 -949.12 4628.9 40460. | |||
0.23918 2183.5 3925.5 35641. | |||
0.35876 4457.5 4126.6 31472. | |||
0.47835 5075.9 4801. 8 29573. | |||
0.59794 5642.0 5420. 1 27713. | |||
0.71753 6110.7 5958.3 26003. | |||
0.83711 6333.8 6232.9 24848. | |||
0.95670 6537.5 6488.4 23716. | |||
1.0763 6703.0 6707.9 22680. | |||
: 1. 1959 6763 ' 6802.5 21877. | |||
: 1. 3155 6815.3 6889.7 21094. | |||
1.4351 6851. 0 6958.5 20370. | |||
1.5546 6834.5 6965.9 19760. | |||
1.6742 6816.9 6972.4 19173. | |||
: 1. 7938 6791. 2 6968.3 18620. | |||
1 ~ 9134 6737.1 6931.0 18130. | |||
2.0330 6688.0 6898.1 17668. | |||
2.1526 6633. 1 6857.6 17222. | |||
2.2722 6563.8 6799.7 16818. | |||
: 2. 3918 6500.6 6746.8 16438. | |||
: 2. 5113 6433.4 6688.8 16067. | |||
2.6309 6361. 2 6624.2 15731. | |||
2.7505 6293.0 6562.5 15411. | |||
2.8701 6222.3 6497.9 15095. | |||
2.9897 6153. 7 6434.8 14816. | |||
3.1093 6085.9 6372.3 14542, 3.2289 6019. 0 6309.8 14276. | |||
3.3485 5957.7 6250.4 14041. | |||
3.4680 5895.3 6190.6 13807. | |||
3.5876 5825.5 6147.2 13586. | |||
3.7072 5749.1 6114.0 13386. | |||
3.8268 5673.4 6079.5 13186. | |||
3.9464 5623.6 6040.6 13011. | |||
4.0660 5575.3 6001. 6 12839. | |||
: 4. 1856 5523.1 5960.2 12674. | |||
4.3052 5481. 3 5932.0 12536. | |||
4.4247 5441.5 5906. 1 12403. | |||
4.5443 5402.0 5880.0 12271. | |||
4 '639 5364.6 5856.3 12149. | |||
4.7835 5338.6 5846.3 12059. | |||
4.9031 5313. 0 5835.9 11969. | |||
5.0227 5287.8 5825.3 11879. | |||
: 5. 1423 5263.0 5814.4 11791. | |||
5.2619 5363.8 5707.6 11743. | |||
5.3814 5470.8 5596.8 11699. | |||
: 5. 5010 5573.3 5490.3 11655. | |||
5.6206 5671.3 5388.1 11612. | |||
5.7402 5764.8 5290.2 11569. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 23 | |||
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.6, END OF COOLDOWN, P~O PSI S SX SY SZ 0.00000E+00 -519. 07 2077.7 12153. | |||
: 0. 11959 129. 63 1580.4 10004. | |||
0.23918 701.44 1144. 8 8066.5 0.35876 1078. 8 988.46 6563.8 0.47835 1148. 3 1099.8 5865.2 0.59794 1181. 9 1183. 7 5204.2 | |||
: 0. 71753 1182. 2 1219.9 4606.3 | |||
: 0. 83711 1146. 2 1190.4 4128.0 0.95670 1094 ' 1150. 6 3668.5 | |||
: 1. 0763 1031. 4 1098. 6 3253.8 1.1959 954.61 1021. 0 2882.4 | |||
: 1. 3155 871. 24 938.62 2526.7 1.4351 785.65 852 '8 754.86 2198. 2 1888.0 1.5546 694.22 | |||
: 1. 6742 602.49 657.42 1595. 4 | |||
: 1. 7938 510.30 558.39 1317. 9 | |||
: 1. 9134 415.58 454.90 1048. 9 2.0330 324. 91 355.00 800. 61 | |||
: 2. 1526 233.00 253.68 558 '6 2.2722 141. 57 152. 20 323 '1 2.3918 54.659 55.383 106. 80 | |||
: 2. 5113 -33.564 -42.486 -107 '4 2.6309 -117.81 -136.32 -310.33 2.7505 -199. 13 -226. 71 -501.66 | |||
: 2. 8701 -281.30 -317. 58 -691. 53 2.9897 -356.35 -400.69 "864.00 | |||
: 3. 1093 -430.77 -482.67 -1032. 2 3.2289 -504.36 -563. 15 -1196. 1 3.3485 -570.83 -635.20 -1343.4 3.4680 -637.84 | |||
-699.27 | |||
-707 '0 | |||
-777.36 | |||
-1490.0 | |||
-1626. 1 3.5876 3.7072 -754.44 -843.39 -1752.9 3.8268 -810. 04 -909.32 -1879.0 3.9464 -858.93 -963.51 -1984.9 4.0660 -907.49 -1016.9 -2088.8 | |||
: 4. 1856 -955.43 -1070.3 -2193. 2 4.3052 -994. 11 -1112. 6 -2276.2 4.4247 -1031.2 -1153. 1 -2355.1 4.5443 -1068.3 -1193. 7 -2433.4 4.6639 -1102. 5 -1231 03 -2506.0 4.7835 -1125.9 -1256.9 -2555.8 4.9031 -1149. 3 -1282.6 -2605. 1 5.0227 -1172. 6 -1308. 5 -2653 ' | |||
: 5. 1423 -1195. 7 -1334.6 -2702.2 5.2619 -1229.8 -1317. 7 -2720.1 5.3814 -1263. 7 -1298. 4 -2735.3 5.5010 "1296. 6 -1280.5 -2750.1 5.6206 -1328. 4 -1263. 8 -2764.5 5.7402 -1359.1 -1248.4 -2778.6 Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 24 | |||
B&W NUCLEAR TECHNOLOGZES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.7, STEADY STATE Tunif Tref 653, P=2250 PSI S SX SY SZ 0.00000E+00 -7698.3 7242 ' 68183. | |||
: 0. 11959 -2331.2 6121.4 62041. | |||
0.23918 2839.0 5535.2 56169. | |||
0.35876 6694.9 6252.4 50803. | |||
0.47835 7882.4 7449.3 48572. | |||
0.59794 9046.2 8600.7 46328. | |||
0.71753 10077. 9684.9 44230. | |||
: 0. 83711 10674. 10362. 43011. | |||
0.95670 11270. 11029. 41793. | |||
1.0763 11807. 11652. 40667. | |||
: 1. 1959 12157. 12072. 39932. | |||
: 1. 3155 12503. 12490. 39199. | |||
1.4351 12820. 12880. 38521. | |||
1.5546 13039. 13164. 38043. | |||
1.6742 13255. 13448. 37567. | |||
1.7938 13455. 13713. 37125. | |||
: l. 9134 13600. 13918. 36795. | |||
36467. | |||
2.0330 13743. 14121. | |||
: 2. 1526 13877. 14311. 36159. | |||
2.2722 13977. 14463. 35920. | |||
2.3918 14077. 14612. 35683. | |||
2.5113 14172. 14753 35457. | |||
2.6309 14245. '4868. | |||
35278. | |||
2.7505 14318. 14981. 35099. | |||
: 2. 8701 14388. 15088. 34927. | |||
2.9897 14443. 15177. 34788. | |||
: 3. 1093 14498. 15264. 34649. | |||
3.2289 14552. 15347. 34513. | |||
3.3485 14599. 15413. 34401. | |||
3.4680 14645. 15480. 34289. | |||
3.5876 14660. 15576. 34177. | |||
3.7072 14644. 15683. 34085. | |||
3.8268 14631. 15789. 33993. | |||
3.9464 14654. 15851. 33898. | |||
4.0660 14681. 15911. 33804. | |||
4.1856 14697. 15965. 33725. | |||
4.3052 14710. 16019. 33648. | |||
4.4247 14724. 16072.. 33572. | |||
4.5443 14738. 16125. 33496. | |||
4.6639 14749. 16176. 33426. | |||
4.7835 14755. 16223. 33362. | |||
: 4. 9031 14762. 16270. 33299. | |||
5.0227 14770. 16317. 33235. | |||
5.1423 14778. 16364. 33173. | |||
5.2619 15092. 16084. 33116. | |||
5.3814 15418 15788. 33060. | |||
: 5. 5010 '5732 15506. 33004. | |||
5.6206 . | |||
'6033 15237. 32948. | |||
5.7402 16321. 14980. 32892. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 25 | |||
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.8, LOSS OF SECONDARY PRESSURE, P=200 PSI S SX SY SZ 0.00000E+00 -5205.0 15781. 98478. | |||
: 0. 11959 587.39 12266. 82490. | |||
0.23918 5836.8 9310. 9 68060. | |||
0.35876 9361. 3 8486.6 56501. | |||
0.47835 9958.3 9430.2 50752. | |||
0.59794 10290. 10146. 45286. | |||
: 0. 71753 10363. 10524. 40344. | |||
0.83711 10092. 10362. 36430. | |||
0.95670 9703.6 10107. 32662. | |||
: 1. 0763 9218. 7 9732 ' 29217. | |||
: 1. 1959 8598.4 9133.3 26146. | |||
: 1. 3155 7929. 1 8489.4 23197. | |||
1.4351 7239.1 7802.1 20462. | |||
1.5546 6491.2 7019. 9 17888. | |||
: 1. 6742 5747.0 6235.6 15461. | |||
1.7938 5000.9 5437.8 13164. | |||
1.9134 4228.6 4599.9 10941. | |||
2.0330 3502.8 3801.6 8912.1 2.1526 2767.6 2992.4 6934.6 2 '722 2036.5 2182.8 5031.0 2.3918 1355. 7 1422.8 3296.1 | |||
: 2. 5113 663.80 654.06 1579. 5 2.6309 8. 7152 -76.898 -22.322 2.7505 -616.39 -773.97 -1522. 1 2.8701 -1248.7 -1474. 9 -3010. 1 2.9897 -1812.4 -2101.0 -4329.8 3.1093 -2368.7 -2715.4 -5611. 0 3.2289 -2915.8 -3315 1~ -6851. 7 3.3485 -3393.9 -3835.6 "7933. 1 3.4680 -3876.5 -4359.0 -9009.0 3.5876 -4314.1 -4853.0 -9994.7 3.7072 -4701. 6 -5312. 7 -10897. | |||
3.8268 -5092. 1 -5771.4 -11795. | |||
3.9464 -5422.5 -6135. 3 -12524. | |||
4.0660 -5749.9 -6492.4 -13236. | |||
4.1856 -6073.0 -6849.9 -13951 ~ | |||
4.3052 -6325.6 -7122. 2 -14503. | |||
4.4247 -6566.3 '-7380.6 -15023. | |||
4.5443 -6806.8 -7639.3 -15539. | |||
4.6639 -7026.7 -7877.5 -16014. | |||
4.7835 -7172. 2 -8031. 6 -16330. | |||
4.9031 -7316.9 -8186.8 -16643. | |||
5.0227 -7460.9 -8343 ' "16952. | |||
5.1423 -7604.2 -8500.8 -17257. | |||
: 5. 2619 -7816. 6 -8385.2 "17369. | |||
: 5. 3814 -8028.3 -8254.9 -17463. | |||
5.5010 -8233.2 -8132. 8 -17554. | |||
5.6206 -8431. 3 -8019.2 -17643. | |||
5.7402 -8622:6 -7913.9 -17729. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 26 | |||
llmml5lmlllll illlmmllm~< | |||
NINNIIIIIIII uNllllmlmll lllllllllllllN lllllllmlll+>~ | NINNIIIIIIII uNllllmlmll lllllllllllllN lllllllmlll+>~ | ||
IglllllllllÃ~~ | IglllllllllÃ~~ | ||
llllllllllllllla gllmlllllllESa gllllglNIIEEr IllllllmllNIER llllmmllllllmRNS | llllllllllllllla gllmlllllllESa gllllglNIIEEr IllllllmllNIER llllmmllllllmRNS XIXXXXXXXXXXlIOS Ql)llmXQXXi550 IfffffRffffIINSR rarararraaasssRQ raaararaaar! Rs88 Raarrrrrrra5%8%% | ||
Rs88 Raarrrrrrra5%8%% | |||
RrrraaaararassoR iaraaaaarraa558% | RrrraaaararassoR iaraaaaarraa558% | ||
raaaaraaaara sass~aaaararaarrsRRR srrrrrrarrrsw5%% | raaaaraaaara sass | ||
~rrrrraraaaarrar | ~ aaaararaarrsRRR srrrrrrarrrsw5%% | ||
~raarrrara armer e NNIIIIINNma BRW NUCLEAR TECHNOLOGIES | ~ rrrrraraaaarrar | ||
**BWNT NON"PROPRIETARY** | ~ raarrrara armer e NNIIIIINNma | ||
32"1235127-01"Intensionally Left Blank-Contains BWNT Proprietary Information" Figure 6.2, Stress Path for Flaw Plane Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: | |||
**BWNT NON-PROPRIETARY** | BRW NUCLEAR TECHNOLOGIES **BWNT NON"PROPRIETARY** 32"1235127-01 "Intensionally Left Blank - Contains BWNT Proprietary Information" Figure 6.2, Stress Path for Flaw Plane Prepared By: A.M. Miller Date: ~295 Reviewed By: H.T. Harrison Date: 2 95 Page: 28 | ||
32-1235127-01 m-e I- | |||
**BWNT NON-PROPRIETARY** | B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 Z | ||
32-1235127-01 | O 0 | ||
K | |||
**BWNT NON-PROPRIETARY** | -og m-e I- O gSgZ r~Q- I I ~ann/ | ||
32-1235127-01 CO geP)Z<cOQ.g g ZOg)9QI-D><QQ COSQ.Q.V)NI-Q.ZZ O O | CS ~ | ||
**BWNT NON-PROPRIETARY** | OOOO Q | ||
32-1235127-01 ZO"90I->K<00 c(0v-Q.o.cOU)I-0 zz | ~ | ||
**BWNT NON-PROPRIETARY** | 0- j'I-I-Q ~Z~g s~)sr~+ | ||
32-1235127-01 | ~ | ||
~X~f-%O~<~~i~CfCf ZO"BOf-OR<00 | cnl-cu0cnujm ZOe~OI-DR<00 40oQ.Q.cONI-Q.ZZ QBU.lLILLU 00 O | ||
<0 a.a.rnrnf=a.aa O | a 0) | ||
**BWNT NON-PROPRIETARY** | H ec O | ||
32-1235127-01 | 40 W | ||
**BWNT NON-PROPRIETARY** | O 0 CO X | ||
32-1235127-01 | P Figure 6.3, End of Heatup Stresses (psi) | ||
**BWNT NON-PROPRIETARY** | Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 29 | ||
32-1235127-01 | |||
<X" Rogg90PD><00 | BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 Z | ||
<0 O.O.COCOI-O.aa | ul O | ||
**BWNT NON-PROPRIETARY** | O K | ||
32-1235127-01 7.0 ANSYS 5.0A Verification The ANSYS analysis code, version 5.0A, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors.The following comparison of finite element (FE)stress results and closed form solutions indicated that the software provided accurate results.Therefore, ANSYS BOA was verified for this application. | O | ||
Finite Element Results from Table 6.7, Pressure 2250 psia Distance Hoo Stress Sz 0.0 4.3052 | +u)u) u)0 v- CSg OO(5P | ||
-1)(100%)1.6%Stress Concentration at Hole SCF=a,,/a,,>>68183/33648 2.026 (FE)Compared to 2 (from Section A3.3), h%(2.026/2-1)(100%)1.3%Prepared By: A.M.Miller Reviewed By: H.T.Harrison | ~ ~ | ||
**BWNT NON-PROPRIETARY** | Q Il I I IZ v)l-ol0v)ulcl+l- ) | ||
32-1235127-01 8.0 References 1)ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendices, 1986 Edition with no Addenda.2)BWNS Document No.51-1155656-00,"Standard Correlations for Natural Convection"."BWNT Proprietary Document." 3)BWNS Document No.NPGD-TM-500,"NPGD Material Properties Program User's Manual", Rev.D, March, 1985."BWNT Proprietary Document." 4)Not used.5)Young, W.C.,"Roark's Formulas for Stress&Strain", 6th Edition McGraw-Hill, New York, 1989.6)DeSalvo, G.J.and Gorman, R.W.,"ANSYS User's Manual for Revision 5.0", 1992, Swanson Analysis Systems, Houston, Pennsylvania. | ZO(yj~OI-Z <00 NOXO-NO 40oCLO.SNl-O.ZZ Bu.u.u.uj O | ||
7)BWNT Document 32-1235128-00,"FM Analysis of St.Lucie Pressurizer Instrument Nozzles"."BWNT Proprietary Document." 8)BWNT Document 38-1210588-00,"Pressurizer Instrument Nozzles, FM Design Input," for St.Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14). | N I-g) g H | ||
9)'Florida Power&Light Drawing No.2998-19321, Rev.0,"Top Head Instrument Nozzles Repair".10)'Florida Power&Light Drawing No.2998-18709, Rev.1,"Pressurizer General Arrangement". | ec CQ G. | ||
*References marked with an"asterisk" are retrievable from the Utilities Record System.uthorized Pro'ect Manager's Signature Prepared By: A.M.Miller Reviewed By: H.T.Harrison Date: 2 95 | O I o g O c | ||
**BWNT NON-PROPRIETARY** | CL ul 8 | ||
32-1235127-01 9.0 Microfiche Microfiche are not included in this document because they contain math model which is BWNT Proprietary. | Figure 6 ', 53'F Step-down Stresses (psi) | ||
However, for completeness the listing of the computer runs as contained in Rev.0 of the document ("BWNT Proprietary")are given below.FILE NAME THERMAL.OUT | Prepared By: A.M. Miller Date: 2 5 Reviewed By: H.T. Harrison Date: 2 95 Page: 30 | ||
', lt 8 A 0 0}} | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 O | |||
O CO x 0 | |||
geP)Z < cOQ. g g v | |||
CS ~ | |||
OOOO | |||
~ .Q spssag ZOg)9QI-D><QQ COSQ.Q.V)NI-Q.ZZ O | |||
a U) a ei O | |||
'V cv 00 Pi 5 5 cv 0'igure 6.5, 53'F Step-up Stresses (psi) | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 31 | |||
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 tll CI Q | |||
K O | |||
rIf+eee0 O OOO< | |||
I I I IP ZO"90I->K<00 c(0v-Q.o.cOU)I-0 zz N | |||
M CO n | |||
40 OI H | |||
ei O | |||
40 W | |||
O X n n Figure 6.6, Steady State 653'F (Tref 70'F) Stresses (psi) | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 32 | |||
BEcW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 O | |||
O | |||
~X ~ O v- CI . | |||
~ ~ Q'nnng f-%O~<~~ i~CfCf If OOCjP g | |||
I I lg ZO"BOf-OR<00 | |||
<0 a.a.rnrnf=a.aa N | |||
M V) | |||
O a | |||
N H | |||
CO Q. | |||
CO Ol O C) | |||
E5 0. | |||
O h 4 Pt z A | |||
5 0 9 | |||
0 0 | |||
O Figure 6.7, Cooldown Stresses (psi) | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 33 | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 z | |||
O O | |||
K O | |||
g~PAZ~ ~ t-~>+ I I ~ nu? u? u?OK I OOO | |||
)~sang | |||
)-U.U.U.Ul CZP-Q.Q.V) gP0. ZZ NOXO-NO 0-N (OM CO O | |||
~0 M | |||
H C4 V) | |||
CD I | |||
O Z 0 | |||
4O 9 o o cv 0 | |||
X O | |||
0 O | |||
Figure 6.8, End of Cooldown Stresses (psi) e Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 34 | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON- PROPRIETARY** 32-1235127-01 Z | |||
Lll O | |||
O K | |||
O O ~ ~ .g 5 | |||
I~OOQa g | |||
I I P ~ | |||
Z0~90gg><OQ COSQ.O.V)Nl-fLZZ N | |||
M a | |||
O 40 M | |||
H C5 O | |||
o 8 r g g e 959 Figure 6.9, Steady State 653'F (Tref = Tunif) Stresses (psi) | |||
Prepared By: A.M. Miller Date:~2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 35 | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 Z | |||
LU Cl O | |||
<X " K O | |||
~IAIALOQ | |||
~ OOO | |||
)~a I g | |||
Sg Rogg90PD><00 | |||
<0 O.O.COCOI-O.aa N 0-CO r | |||
a O | |||
CO CL H | |||
cv 8 | |||
I CL UJ K | |||
D CO CO LCj K | |||
O C 0 | |||
R 0 | |||
O Llj CO 0 | |||
CO CO 0 | |||
Figure 6.10, Loss of Secondary Pressure Stresses (psi) | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 36 | |||
BEcW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 7.0 ANSYS 5.0A Verification The ANSYS analysis code, version 5.0A, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors. The following comparison of finite element (FE) stress results and closed form solutions indicated that the software provided accurate results. Therefore, ANSYS BOA was verified for this application. | |||
Finite Element Results from Table 6.7, Pressure 2250 psia Distance Hoo Stress Sz 0.0 68183 4.3052 33648 Hoop Stress e ~ pr/2t Ref. [5, Table 28 case 3a.] | |||
e = 2250 (120. 5) / [2 (4. 094) ] ~ 33, 112 psi Compared to 33,648 psi (FE), h% = (33648/33112 - 1) (100%) 1.6% | |||
Stress Concentration at Hole SCF = a,,/a,,>> 68183/33648 2.026 (FE) | |||
Compared to 2 (from Section A3.3), h% (2.026/2 - 1)(100%) 1.3% | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 37 | |||
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 8.0 References | |||
: 1) ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendices, 1986 Edition with no Addenda. | |||
: 2) BWNS Document No. 51-1155656-00, "Standard Correlations for Natural Convection". "BWNT Proprietary Document." | |||
: 3) BWNS Document No. NPGD-TM-500, "NPGD Material Properties Program User's Manual", Rev. D, March, 1985. "BWNT Proprietary Document." | |||
: 4) Not used. | |||
: 5) Young, W. C., "Roark's Formulas for Stress & Strain", 6th Edition McGraw-Hill, New York, 1989. | |||
: 6) DeSalvo, G. J. and Gorman, R. W., "ANSYS User's Manual for Revision 5.0", 1992, Swanson Analysis Systems, Houston, Pennsylvania. | |||
: 7) BWNT Document 32-1235128-00, "FM Analysis of St. Lucie Pressurizer Instrument Nozzles". "BWNT Proprietary Document." | |||
: 8) BWNT Document 38-1210588-00, "Pressurizer Instrument Nozzles, FM Design Input," for St. Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14). | |||
: 9) 'Florida Power & Light Drawing No. 2998-19321, Rev. 0, "Top Head Instrument Nozzles Repair". | |||
: 10) 'Florida Power & Light Drawing No. 2998-18709, Rev. 1, "Pressurizer General Arrangement". | |||
*References marked with an "asterisk" are retrievable from the Utilities Record System. | |||
uthorized Pro'ect Manager's Signature Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 38 | |||
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 9.0 Microfiche Microfiche are not included in this document because they contain math model which is BWNT Proprietary. However, for completeness the listing of the computer runs as contained in Rev. 0 of the document ("BWNT Proprietary" ) are given below. | |||
FILE NAME DESCRIPTION THERMAL.OUT Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown STRESS . OUT Stress runs for the composite transient in "THERMAL.OUT" LPTHERM. OUT Loss of pressure thermal run LPSTRESS.OUT Stress run for the Loss of Pressure transient STEADYST.OUT Steady state stresses (Tref Tunif 653'F) | |||
ENDCD.OUT Stress run for the end of the 200 'F/hr Cooldown. | |||
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 39 | |||
', lt 8 A 0 | |||
0}} |
Latest revision as of 12:32, 4 February 2020
ML17228B048 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 02/15/1995 |
From: | Harrison H, Miller A BABCOCK & WILCOX CO. |
To: | |
Shared Package | |
ML17228B046 | List: |
References | |
32-1235127-01, 32-1235127-01-R01, 32-1235127-1, 32-1235127-1-R1, NUDOCS 9503070361 | |
Download: ML17228B048 (43) | |
Text
FLORIDA POWER AND LIGHT COMPANY NUCLEAR ENGINEERING DEPARTMENT P.O. Box 14000 Juno Beach, Florida 33408 St. Lucie Nuclear Power Plant Unit 2 ATTACHMENT 8 STRESSES FOR ST. LUG I E UNIT 2 PRESSURIZER LEFM Prepared by BBW NUCLEAR SERVICE COMPANY For St. Lucie Nuclear Power Plant 10 Miles South of Ft. Pierce on A1A Ft. Pierce, Florida 33034 Commercial Service Date: August 8, 1983 NRC Docket Number. 50-389 Document Number. 32-1235127-01 Revision Number. 0 Date: February 15, 1995 FHQ: PSL1SNB.RPT Page 3 95030703&i 950302 PDR ADOCK 050003B9 P PDR
BWNT-20697-2(11/89)
JllBBMINUCLFAH CALCULATlONAL
SUMMARY
SHEET (CSS)
CM TECHNOI.OGIES DOCUMENT IDENTIFIER 32-1235127-01 Stresses for St. Lucie Unit 2, Pressurizer LEFM TITLE PREPARED BY'EVIEWED H.T. Harriso BY:
A.M. MIller ~AME SIGNATUR SIGNATUR TITLE Engr. IV ~~ 9'5 TITLE Princi al En r.
COST 41020 REF. 38 TM STATEMENT'EVIEWER PURPOSE AND
SUMMARY
OF RESULTS The purpose of this document was to determine enveloping Normal and Upset, Condition stresses for the seven 1" instrumentation/temperature sensing nozzles in the pressurizer at St. Lucie Unit 2. Results from this document were used as inputs to the fracture mechanics evaluation, Reference [7].
e stress results are summarized in Tables 6-1 through 6.8 in Section 6.0. Note that thermal stratification effects were not considered in this analysis.
- BWNT NON-PROPRIETARY**
THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:
CODE I VERSION I REV CODE I VERSION I REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIRED PRIOR TO USE ON SAFETY-RELATED WORK YES( ) No( X
)
FAG ~ OF
BGW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 RECORD OF REVISIONS Pages Revision Added/
Number Chanched Descri tion All Original issue 01 All Issue of Non-Proprietary Version Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 2
BRW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 1.0 Introduction 4
- 2. 0 Assumptions 4 3.0 Design Inputs ~ ~ ~ ~ 5 3.1 Design Characteristics 3.2 Material Properties ~ ~ 0 ~ 6 3.3 Model Geometry 8 4.0 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . 10 5.0 Thermal Analysis . . . . . . . . . . . . . . . . . . . ~ . . . . . 10 6.0 Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.0 ANSYS 5.0A Verification . . . . . . . . . . . . . . . . . . . . . . 37 8.0 References 38 9.0 Microfiche ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 39 Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32 "1235127-01 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power & Light Company's St. Lucie Unit 2. Subsecpxent NDE identified indications on the J-welds for all four steam space instrument nozzles. Modifications were made and justifications performed to determine the potential for crack growth during plant operation. The evaluation performed at the time was conservatively limited to one cycle based on the design information available. The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all seven instrument/temperature 1" nozzles in the pressurizer.
Results from this document were used as inputs to the fracture mechanics evaluation, Reference [7]. The results were presented in the coordinate system of the postulated flaw as recpxired by Reference [7] since the fracture mechanics evaluation determined the postulated flaws, see Figure 6.2. The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS 5.0A finite element software.
2.0 Assumptions
- 1) Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell.
- 2) The effects of the nozzle were neglected in determining the shell/head stresses (i.e. the nozzle was omitted from the finite element model) .
- 3) The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be a specific hT'F for calculating the natural convection heat transfer coefficient.
- 4) Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head.
- 5) Effects of thermal stratification were not considered in this analysis.
- 6) Hydrotest was assumed to be shop hydrotest only. Therefore, no future hydrotests are assumed to occur.
Prepared By: A.M. Miller Date:~2 95 Reviewed By: H.T. Harrison Date: 2 95
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127" 01 3.0 Design Inputs 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference
[8] .
Heatup 100'F/hr Cooldown 200'F/hr Operating Pressure 2250 psia Operating Temperature 653 F Minimum Pressure (Reactor Trip transient) 1740 psia (653-616 'F hT)
Maximum Pressure (Abnormal Loss of Load transient.) 2400 psia (664-614 'F hT)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date:~2 99
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis. The material types come from References [8-10] and assumption 1.
References for the material properties are given in the tables below. The material property designation and units are:
KXX - thermal conductivity, btu/(hr-in-'F)
DENS - density, lb/in'
- specific heat, btu/(lb-'F)
C is a calculated value based on C KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX - Young's Modulus, psi x
- coefficient of thermal expansion, in/in/'F x 10'LPX 10~
Sm - design stress intensity, ksi Sy - yield strength, ksi Su - ultimate strength, ksi v - Poisson's ratio ~ .3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.SNi)
TEMP DENS EX ALPX Sm Sy Su 100 .2839 1.8833 . 1079 29.3 7.06 26.7 50.0 80.0 200 . 2831 1. 9500 .1139 28.8 7.25 26.7 47.5 80.0 300 .2823 1. 9833 . 1196 28.3 7.43 26.7 46. 1 80.0 400 .2817 1.9833 .1257 27.7 7.58 26.7 45.1 80.0 500 .2809 1. 9583 .1323 27.3 7.70 26.7 44.5 80.0 600 .2802 1. 9167 .1389 26.7 7 '3 26.7 43.8 80.0 700 .2794 1. 8583 . 1448 25. 5 7. 94 26.7 43.1 80.0 REF Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95
B&W NUCLEAR TECHNOLOGIES **BWNT NON"PROPRIETARY** 32-1235127-01 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni)
TEMP DENS EX ALPX Sy Su 100 .2862 .7250 . 1157 28. 1 8.55 20.0 30. 0 75.0 200 .2853 .7750 . 1209 27.6 8.79 20.0 '25.0 71.0 300 .2844 .8167 . 1246 27.0 9.00 20.0 22.5 66.0 400 .2836 .8667 . 1286 26.5 9. 19 18.7 20.7 64.4 500 .2827 .9083 . 1313 25.8 9.37 17. 5 19.4 63.5 600 .2818 . 9417 .1334 25.3 9.53 16.4 18.2 63.5 700 .2810 .9833 . 1358 24.8 9.69 16. 0 17.7 63.5 REF Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95
BGW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 3.3 Model Geometry To bound all instrument/temperature sensing nozzle locations in the pressurizer heads and shell, the radius of the modeled nozzle penetration was determined so that the total pressure stress would ecpxal or exceed the total pressure stress present at all nozzle locations. Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration.
Penetrations in the cylindrical portion of the shell experience increased stress due to the larger hoop stress and the larger stress concentration effects due to the stress profile around the penetration.
The model inherently included stress to account for the hillside effect and the stress for the stress concentration effect at a hole in the cylindrical shell.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95
BGW NUCLEAR TECHNOLOGIES **BWNT NON"PROPRIETARY** 32-1235127-01 IJJ CL 0-I-
C)
(U I
CC CC I-D CC Figure 3.1, Finite Element Model Geometry and Materials (inches)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference [6], was used to perform the axisymmetric thermal and stress analysis of the nozzle penetration. A sufficient portion of the head/shell was modeled to attenuate the stress concentration effects at nozzle penetration. The head/shell and cladding were modeled using axisymmetric elements (PLANE 42 structural and PLANE 55 thermal).
5.0 Thermal Analysis The transients in Ref. [8] were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference [7]). Based on the review, the following transients were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure 1740 psia) and a 53'F Step-up (pressure 2400 psia),
and'oss of Secondary Pressure. The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche THERMAL.OUT) with Heatup from 70'F to 653'F (0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> to 5.83 hours9.606481e-4 days <br />0.0231 hours <br />1.372354e-4 weeks <br />3.15815e-5 months <br />), 53'F Step-down (7 hr instantaneous), 53'F Step-up (8 hr instantaneous) and Cooldown from 653'F to 70'F (9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> to 11.915 hours0.0106 days <br />0.254 hours <br />0.00151 weeks <br />3.481575e-4 months <br />). The Loss of Secondary Pressure transient was run and the results are contained in microfiche LPTHERM.OUT.
Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures. Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1. All other surfaces were assumed to be insulated.
A constant heat transfer coefficient was used to simplify the analysis in a conservative manner. Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference [7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer.
During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer. Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses.
Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile) stresses. Therefore, nozzles in Prepared By: A.M. Miller Date:~2 99 Reviewed By: H.T. Harrison Date: 2 95 Page: 10
B6cW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space).
The heat transfer correlations in Ref. [2] were reviewed for horizontal and vertical plates. The correlation for a horizontal heating plate, face up (T >
Tm) was selected as a representative heat transfer coefficient for the nozzles in the water space.
The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred. The temperature at the inside surface of the pressurizer (essentially the bulk fluid temperature) and the radial hT are shown in Figures 5.2 through 5.5. The temperature distribution at times of extreme hT's were then used as inputs for the stress analyses since the extreme hT's resulted in extreme thermal stresses. Steady state temperature cases were also run at 653 F and 2250 psia without material discontinuity effects (T~ T~ microfiche STEADYST.OUT) and at 653'F and 2400 psia with material discontinuity effects (T , 70'F, microfiche STRESS.OUT) .
The following table summarizes the critical transient times and identifies the associated pressures. The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.2 and the POST26 results are contained at the end of the thermal runs Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 11
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 in the microfiche in Section 9.0. Note that although the node pair used for evaluating the radial hT was at a specified flaw angle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface is isothermal).
TABLE 5.1, CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR) PRESSURE (PSIA)
Heatup 5.83 2, 250 Step-down 7.0667 1, 740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown 9.5247 1, State',250 028'ooldown 11.915 Steady Loss of Secondary .051958 200 Pressure
'The pressure was assumed to equal the saturation pressure at 548'F
'Includes material discontinuity temperature effects (T, = 70'F).
'Excludes material discontinuity temperature effects (T , = T~~ 653'F).
Prepared By: A.M. Miller Date:~295 Reviewed By: H.T. Harrison Page: 12
gmmmlllll~~>
lllIINllllllll Illllllmllllll INgNNllllll llllllllllll+>~
Illlllllllllllll Illllllllllleaa grmmmllllla IrlllEIIIINISa IllllllllllmiEa Illlllllllmllir susmnssacaarr IRIIIRllllllf ROE lllllllllltlOSR llllllllllllI5%%
~
~ rrarrrrrrrrsQEar nrrrraraarkRssH ranrrraaraQsss karrrarrrrrrisoR raaanrrararrrra sarraarrrraasssÃ
~ arrrrraaraassRR
~ aaraaar ranee'a aaanrrnrrarrrr
~ rrarrnarraarrra
B6W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 z
LU D
O K
Q nu?nu)0 v-
)-U
~
Ill/
lf OOCiE U.U Uj NOX>.NO o
K H
I-V)
I I (9 1
Uj O
A1VA 0 I-Figure 5.2, Shell Radial hT Time History, Heatup, 53hT Steps 6 Cooldown Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 14
ANSYS 5.0 A OCT 25 1994 10:02:30 PLOT NO. 2 POST26 H ZV 1 DIST 0.75 0
XF 0.5 8 YF 0.5 ZF -0.5 CENTROID HIDDEN n
i 5
0 0
0 I
0 M
TEMP RAD 12 16 20 10 18 M I
00 TIME hl 0 4J Vl 0 STLUCIE1.IGS 0 h)
I O
6l
- r. e8l 6l Ql 0 0 td W
'C 'C ANSYS 5.0 A OCT 25 1994 n Ul 09:07:48 zV
- PLOT NO.
POST26 0
ZV 1 DIST 0.75 n XF 0.5 YF 0.5 0 ZF 05 El CENTROID HIDDEN 0
0
<C n g O
0 RAD 0 I 0
H W
(>> loca-l) 0.4 0.8 i+2 l.6 Oo2 0.6 4)
M I
TIME h>
OJ Ul STLUCIE1.IGS W I
O
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 z
LU D
D CII X O
Q~g)O~ ~u)u)n<
gg<zol r OOOO Sl-op V) >~i a~+
0- s
~4 I
O X
CO
~4 bl K
00 H
0 O
O N
O (D
(9 uj O
A 1VA D e~
Figure 5.5, Inside Surface Temp and Radial hT, Loss of Secondary Pressure Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 17
B6cW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell. The pressure boundary conditions are shown in Figure 6.1. Since the fracture mechanics evaluation in Reference [7] requires stresses along a specified flaw plane, the ANSYS POST1 post processor was used to transform the stresses into the flaw plane coordinate system as shown in Figure 6.2.
Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction. A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load = mr'(pressure) ~ w(.6875)'(pressure) ~ 1.4849(pressure)). The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest.
Complete stress results are contained in the microfiche of Section 9.0. The stresses as required for the FM analysis are summarized in the Tables 6.1 through 6.8 and Figures 6.3 through 6.10. Note that the stresses are in psi.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 18
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY** 32-1235127-01 TABLE 6 1 g END OF HEATUP g P~2250 PSI
~
S SX SY SZ 0.00000E+00 -7283.8 5973.2 60276.
- 0. 11959 -2390.6 5126. 0 55404.
0.23918 2348.7 4768.9 50677.
0.35876 5917.8 5548.9 46241.
0.47835 7064.7 6676.2 44495.
0.59794 8210.2 7778.0 42714.
- 0. 71753 9242.5 8839. 1 41030.
0.83711 9868.3 9535.7 40141.
0.95670 10502. 10230. 39242.
1.0763 11084. 10889. 38404.
- 1. 1959 11488. 11363. 37926.
1.3155 11893. 11838. 37440.
1.4351 12269. 12287. 36991.
- 1. 5546 12553. 12640. 36728.
1.6742 12834. 12991. 36456.
- 1. 7938 13098. 13324. 36206.
1.9134 13309. 13601. 36064.
2.0330 13515. 13873. 35908.
2.1526 13713. 14133. 35768.
2.2722 13877. 14355. 35692.
- 2. 3918 14037. 14571. 35604.
- 2. 5113 14192. 14780. 35527.
2.6309 14323. 14960. 35487.
2.7505 14453. 15134. 35441.
- 2. 8701 14580. 15304. 35400.
2.9897 14686. 15450. 35380.
- 3. 1093 14793. 15594. 35356.
3.2289 14898. 15732. 35334.
3.3485 14991. 15848. 35323.
3.4680 15083. 15965. 35313 ~
3.5876 15141. 16109. 35295.
3.7072 15163. 16263. 35291.
3.8268 15188. 16413. 35286.
3.9464 15246. 16513. 35264.
4.0660 15305. 16610. 35241.
4.1856 15354. 16701 ~ 35234.
4.3052 15394. 16784. 35214.
4.4247 15433. 16865. 35192.
4.5443 15473. 16946. 35170.
4.6639 15507. 17022. 35150.
4.7835 15530. 17087. 35120.
- 4. 9031 15553. 17152. 35090.
5.0227 15577. 17217. 35060.
- 5. 1423 15601. 17281. 35031.
5.2619 15938. 16990. 34986.
5.3814 16287. 16681. 34940.
5.5010 16624. 16387. 34894.
5.6206 16947. 16106. 34848.
5.7402 17256. 15838. 34802.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date:~2 95 Page: 19
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY** 32-1235127-01, TABLE 6.2, 53F STEP DOWN, P~1740 PSI S SX SY SZ 0.00000E+00 -6913. 0 8348.2 70271.
- 0. 11959 -1682. 6 6909.2 62772.
0.23918 3307.9 5990.6 55758.
0.35876 6953.4 6441. 3 49572.
0.47835 7957.1 7527.8 46742.
0.59794 8893.3 8532.9 43956.
0.71753 9672.7 9420.0 41368.
- 0. 83711 10050. 9888.7 39639.
0.95670 10402. 10328. 37939.
1.0763 10696. 10707. 36375.
- 1. 1959 10819. 10889. 35178.
1.3155 10932. 11060. 34011.
1.4351 11024. 11203. 32937.
- 1. 5546 11030. 11250. 32044.
1.6742 11038. 11298. 31191.
- 1. 7938 11037. 11332. 30394.
- 1. 9134 10989. 11313. 29697.
2.0330 10954. 11307. 29052.
2 1526
~ 10912. 11290. 28434.
2.2722 10846. 11246. 27886.
- 2. 3918 10794. 11214. 27380.
2.5113 10736. 11175. 26888.
2.6309 10672. 11126. 26458.
2.7505 10615. 11084. 26052.
2.8701 10555. 11038. 25654.
2.9897 10499. 10995. 25317.
- 3. 1093 10444. 10953. 24988.
3.2289 10391. 10911. 24670.
3.3485 10346. 10872. 24402.
3.4680 10299. 10834. 24135.
3.5876 10238. 10823. 23884.
3.7072 10162. 10828. 23665.
3.8268 10088. 10831 23447.
3.9464 10053. '0819.
23257.
4 '660 10020. 10807. 23071.
4.1856 9980.3 10791. 22896.
4.3052 9950.7 10789. 22751.
4.4247 9923. 1 10789. 22611.
4.5443 9895.9 10790. 22472.
4.6639 9869.6 10791. 22345.
4.7835 9852.2 10803. 22248.
4.9031 9835.4 10816. 22152.
5.0227 9819.1 10828. 22057.
5.1423 9803.3 10839. 21962.
5.2619 10004. 10650. 21903.
5.3814 10214. 10452. 21846.
5.5010 10416. 10263. 21791.
5.6206 10609. 10081. 21736.
5.7402 10794. 9908.0 21681.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 20
B&W NUCLEAR TECHNOLOGZES NON-PROPRZETARY** 32-1235127-01 TABLE 6.3, 53F STEP UP, P~2400 PSZ S SX SY SZ 0.00000E+00 -7254.5 5009.8 55366.
- 0. 11959 -2602.9 4374.6 51513.
- 0. 23918 1924.9 4204.6 47681.
0.35876 5376.5 5068.2 43963.
0.47835 6556.3 6184.4 42672.
0.59794 7759. 1 7297.4 41314.
0.71753 8874.0 8404 ' 40030.
- 0. 83711 9593.9 9179.8 39507.
0.95670 10334. 9966.4 38957.
1.0763 11027. 10731. 38443.
1.1959 11544. 11319. 38279.
- 1. 3155 12066. 11914. 38091.
1.4351 12554. 12486. 37914.
- 1. 5546 12950. 12961. 37923.
1.6742 13338. 13433. 37897.
1.7938 13705. 13885. 37877.
- 1. 9134 14019. 14279. 37966.
2.0330 14316. 14658. 38007.
- 2. 1526 14605. 15025. 38058.
2.2722 14855. 15349. 38169.
2.3918 15091. 15656. 38238.
2.5113 15324. 15955. 38318.
2.6309 15523. 16217. 38420.
2.7505 15716. 16466. 38500.
2.8701 15906. 16711. 38585.
2.9897 16065. 16919. 38668.
3.1093 16222. 17123 38744.
3.2289 16377. '7319.
38815.
3.3485 16510. 17481. 38881.
3.4680 16643. 17644. 38946.
3.5876 16734. 17833. 38994.
3.7072 16781. 18028. 39048.
3.8268 16832. 18220. 39101.
3.9464 16912. 18347. 39119.
4.0660 16995. 18471. 39134.
- 4. 1856 17065. 18589. 39167.
4.3052 17121. 18691. 39173 ~
4.4247 17175 18790. 39175.
4.5443 '7229.
18889. 39176.
4.6639 17276. 18981. 39177.
4.7835 17306. 19056. 39158.
- 4. 9031 17337. 19132. 39139.
5.0227 17368. 19207. 39119.
- 5. 1423 17400. 19282 39099.
- 5. 2619 17777. '8956.
39055.
- 5. 3814 18168. 18611. 39009.
5.5010 18544. 18281. 38962.
5.6206 18905. 17966. 38915.
5.7402 19251. 17668. 38867.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 21
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.4, STEADY STATE, Tref 70F, Tunif 653F, P = 2400 PSIA S SX SY SZ 0.00000E+00 -8203.5 7687.1 72516.
- 0. 11959 -2489.2 6501.0 66004.
0.23918 3016.7 5884.8 59778.
0.35876 7124. 0 6653.7 54082.
0.47835 8389.6 7928.7 51714.
0.59794 9630.6 9155.6 49332.
0 71753
~ 10730. 10311. 47103.
- 0. 83711 11367. 11033. 45809.
0.95670 12002. 11745. 44517.
- 1. 0763 12576. 12410. 43322.
- 1. 1959 12950. 12859. 42543.
1.3155 13321. 13306. 41766.
1.4351 13659. 13723. 41049.
1.5546 13895. 14028. 40544.
1.6742 14127. 14332. 40042.
1.7938 14342. 14617. 39574.
- l. 9134 14499. 14837. 39228.
2.0330 14653. 15055 38882.
2.1526 14797. '5260.
38558.
2.2722 14906. 15424. 38308.
2.3918 15014. 15585. 38058.
2.5113 15116. 15737. 37821.
2.6309 15196. 15861. 37634.
2.7505 15275. 15983. 37446.
2.8701 15351. 16099. 37266.
2.9897 15411. 16195. 37121.
3.1093 15471. 16289. 36975.
3.2289 15531. 16379. 36833.
3.3485 15582. 16451. 36717.
3.4680 15632. 16524, 36600.
3.5876 15649. 16627. 36483.
3.7072 15633. 16743. 36387.
3.8268 15620. 16857. 36292.
3.9464 15646. 16924. 36193.
4.0660 15675. 16989. 36094.
4.1856 15693. 17048. 36012.
4.3052 15708. 17106. 35931.
4.4247 15724. 17164. 35851.
4.5443 15739. 17221. 35772.
4.6639 15751. 17276. 35699.
4.7835 15759. 17327. 35631.
4 ~
9031'.0227 15767 ~ 17377. 35565.
15776. 17428 35498.
5.1423 15785. '7478.
35432.
5.2619 16120. 17179. 35372.
5.3814 16469. 16864. 35312.
- 5. 5010 16804. 16563. 35253.
5.6206 17126. 16275. 35193.
5.7402 17434. 16001. 35134.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 22
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY** 32-1235127-01 TABLE 6.5, COOLDOWN, Psat=1028 PSIA S SX SY SZ 0.00000E+00 -4251. 9 5658.2 45637.
- 0. 11959 -949.12 4628.9 40460.
0.23918 2183.5 3925.5 35641.
0.35876 4457.5 4126.6 31472.
0.47835 5075.9 4801. 8 29573.
0.59794 5642.0 5420. 1 27713.
0.71753 6110.7 5958.3 26003.
0.83711 6333.8 6232.9 24848.
0.95670 6537.5 6488.4 23716.
1.0763 6703.0 6707.9 22680.
- 1. 1959 6763 ' 6802.5 21877.
- 1. 3155 6815.3 6889.7 21094.
1.4351 6851. 0 6958.5 20370.
1.5546 6834.5 6965.9 19760.
1.6742 6816.9 6972.4 19173.
- 1. 7938 6791. 2 6968.3 18620.
1 ~ 9134 6737.1 6931.0 18130.
2.0330 6688.0 6898.1 17668.
2.1526 6633. 1 6857.6 17222.
2.2722 6563.8 6799.7 16818.
- 2. 3918 6500.6 6746.8 16438.
- 2. 5113 6433.4 6688.8 16067.
2.6309 6361. 2 6624.2 15731.
2.7505 6293.0 6562.5 15411.
2.8701 6222.3 6497.9 15095.
2.9897 6153. 7 6434.8 14816.
3.1093 6085.9 6372.3 14542, 3.2289 6019. 0 6309.8 14276.
3.3485 5957.7 6250.4 14041.
3.4680 5895.3 6190.6 13807.
3.5876 5825.5 6147.2 13586.
3.7072 5749.1 6114.0 13386.
3.8268 5673.4 6079.5 13186.
3.9464 5623.6 6040.6 13011.
4.0660 5575.3 6001. 6 12839.
- 4. 1856 5523.1 5960.2 12674.
4.3052 5481. 3 5932.0 12536.
4.4247 5441.5 5906. 1 12403.
4.5443 5402.0 5880.0 12271.
4 '639 5364.6 5856.3 12149.
4.7835 5338.6 5846.3 12059.
4.9031 5313. 0 5835.9 11969.
5.0227 5287.8 5825.3 11879.
- 5. 1423 5263.0 5814.4 11791.
5.2619 5363.8 5707.6 11743.
5.3814 5470.8 5596.8 11699.
- 5. 5010 5573.3 5490.3 11655.
5.6206 5671.3 5388.1 11612.
5.7402 5764.8 5290.2 11569.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 23
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.6, END OF COOLDOWN, P~O PSI S SX SY SZ 0.00000E+00 -519. 07 2077.7 12153.
- 0. 11959 129. 63 1580.4 10004.
0.23918 701.44 1144. 8 8066.5 0.35876 1078. 8 988.46 6563.8 0.47835 1148. 3 1099.8 5865.2 0.59794 1181. 9 1183. 7 5204.2
- 0. 71753 1182. 2 1219.9 4606.3
- 0. 83711 1146. 2 1190.4 4128.0 0.95670 1094 ' 1150. 6 3668.5
- 1. 0763 1031. 4 1098. 6 3253.8 1.1959 954.61 1021. 0 2882.4
- 1. 3155 871. 24 938.62 2526.7 1.4351 785.65 852 '8 754.86 2198. 2 1888.0 1.5546 694.22
- 1. 6742 602.49 657.42 1595. 4
- 1. 7938 510.30 558.39 1317. 9
- 1. 9134 415.58 454.90 1048. 9 2.0330 324. 91 355.00 800. 61
- 2. 1526 233.00 253.68 558 '6 2.2722 141. 57 152. 20 323 '1 2.3918 54.659 55.383 106. 80
- 2. 5113 -33.564 -42.486 -107 '4 2.6309 -117.81 -136.32 -310.33 2.7505 -199. 13 -226. 71 -501.66
- 2. 8701 -281.30 -317. 58 -691. 53 2.9897 -356.35 -400.69 "864.00
- 3. 1093 -430.77 -482.67 -1032. 2 3.2289 -504.36 -563. 15 -1196. 1 3.3485 -570.83 -635.20 -1343.4 3.4680 -637.84
-699.27
-707 '0
-777.36
-1490.0
-1626. 1 3.5876 3.7072 -754.44 -843.39 -1752.9 3.8268 -810. 04 -909.32 -1879.0 3.9464 -858.93 -963.51 -1984.9 4.0660 -907.49 -1016.9 -2088.8
- 4. 1856 -955.43 -1070.3 -2193. 2 4.3052 -994. 11 -1112. 6 -2276.2 4.4247 -1031.2 -1153. 1 -2355.1 4.5443 -1068.3 -1193. 7 -2433.4 4.6639 -1102. 5 -1231 03 -2506.0 4.7835 -1125.9 -1256.9 -2555.8 4.9031 -1149. 3 -1282.6 -2605. 1 5.0227 -1172. 6 -1308. 5 -2653 '
- 5. 1423 -1195. 7 -1334.6 -2702.2 5.2619 -1229.8 -1317. 7 -2720.1 5.3814 -1263. 7 -1298. 4 -2735.3 5.5010 "1296. 6 -1280.5 -2750.1 5.6206 -1328. 4 -1263. 8 -2764.5 5.7402 -1359.1 -1248.4 -2778.6 Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 24
B&W NUCLEAR TECHNOLOGZES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.7, STEADY STATE Tunif Tref 653, P=2250 PSI S SX SY SZ 0.00000E+00 -7698.3 7242 ' 68183.
- 0. 11959 -2331.2 6121.4 62041.
0.23918 2839.0 5535.2 56169.
0.35876 6694.9 6252.4 50803.
0.47835 7882.4 7449.3 48572.
0.59794 9046.2 8600.7 46328.
0.71753 10077. 9684.9 44230.
- 0. 83711 10674. 10362. 43011.
0.95670 11270. 11029. 41793.
1.0763 11807. 11652. 40667.
- 1. 1959 12157. 12072. 39932.
- 1. 3155 12503. 12490. 39199.
1.4351 12820. 12880. 38521.
1.5546 13039. 13164. 38043.
1.6742 13255. 13448. 37567.
1.7938 13455. 13713. 37125.
- l. 9134 13600. 13918. 36795.
36467.
2.0330 13743. 14121.
- 2. 1526 13877. 14311. 36159.
2.2722 13977. 14463. 35920.
2.3918 14077. 14612. 35683.
2.5113 14172. 14753 35457.
2.6309 14245. '4868.
35278.
2.7505 14318. 14981. 35099.
- 2. 8701 14388. 15088. 34927.
2.9897 14443. 15177. 34788.
- 3. 1093 14498. 15264. 34649.
3.2289 14552. 15347. 34513.
3.3485 14599. 15413. 34401.
3.4680 14645. 15480. 34289.
3.5876 14660. 15576. 34177.
3.7072 14644. 15683. 34085.
3.8268 14631. 15789. 33993.
3.9464 14654. 15851. 33898.
4.0660 14681. 15911. 33804.
4.1856 14697. 15965. 33725.
4.3052 14710. 16019. 33648.
4.4247 14724. 16072.. 33572.
4.5443 14738. 16125. 33496.
4.6639 14749. 16176. 33426.
4.7835 14755. 16223. 33362.
- 4. 9031 14762. 16270. 33299.
5.0227 14770. 16317. 33235.
5.1423 14778. 16364. 33173.
5.2619 15092. 16084. 33116.
5.3814 15418 15788. 33060.
- 5. 5010 '5732 15506. 33004.
5.6206 .
'6033 15237. 32948.
5.7402 16321. 14980. 32892.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 25
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 TABLE 6.8, LOSS OF SECONDARY PRESSURE, P=200 PSI S SX SY SZ 0.00000E+00 -5205.0 15781. 98478.
- 0. 11959 587.39 12266. 82490.
0.23918 5836.8 9310. 9 68060.
0.35876 9361. 3 8486.6 56501.
0.47835 9958.3 9430.2 50752.
0.59794 10290. 10146. 45286.
- 0. 71753 10363. 10524. 40344.
0.83711 10092. 10362. 36430.
0.95670 9703.6 10107. 32662.
- 1. 0763 9218. 7 9732 ' 29217.
- 1. 1959 8598.4 9133.3 26146.
- 1. 3155 7929. 1 8489.4 23197.
1.4351 7239.1 7802.1 20462.
1.5546 6491.2 7019. 9 17888.
- 1. 6742 5747.0 6235.6 15461.
1.7938 5000.9 5437.8 13164.
1.9134 4228.6 4599.9 10941.
2.0330 3502.8 3801.6 8912.1 2.1526 2767.6 2992.4 6934.6 2 '722 2036.5 2182.8 5031.0 2.3918 1355. 7 1422.8 3296.1
- 2. 5113 663.80 654.06 1579. 5 2.6309 8. 7152 -76.898 -22.322 2.7505 -616.39 -773.97 -1522. 1 2.8701 -1248.7 -1474. 9 -3010. 1 2.9897 -1812.4 -2101.0 -4329.8 3.1093 -2368.7 -2715.4 -5611. 0 3.2289 -2915.8 -3315 1~ -6851. 7 3.3485 -3393.9 -3835.6 "7933. 1 3.4680 -3876.5 -4359.0 -9009.0 3.5876 -4314.1 -4853.0 -9994.7 3.7072 -4701. 6 -5312. 7 -10897.
3.8268 -5092. 1 -5771.4 -11795.
3.9464 -5422.5 -6135. 3 -12524.
4.0660 -5749.9 -6492.4 -13236.
4.1856 -6073.0 -6849.9 -13951 ~
4.3052 -6325.6 -7122. 2 -14503.
4.4247 -6566.3 '-7380.6 -15023.
4.5443 -6806.8 -7639.3 -15539.
4.6639 -7026.7 -7877.5 -16014.
4.7835 -7172. 2 -8031. 6 -16330.
4.9031 -7316.9 -8186.8 -16643.
5.0227 -7460.9 -8343 ' "16952.
5.1423 -7604.2 -8500.8 -17257.
- 5. 2619 -7816. 6 -8385.2 "17369.
- 5. 3814 -8028.3 -8254.9 -17463.
5.5010 -8233.2 -8132. 8 -17554.
5.6206 -8431. 3 -8019.2 -17643.
5.7402 -8622:6 -7913.9 -17729.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 26
llmml5lmlllll illlmmllm~<
NINNIIIIIIII uNllllmlmll lllllllllllllN lllllllmlll+>~
IglllllllllÃ~~
llllllllllllllla gllmlllllllESa gllllglNIIEEr IllllllmllNIER llllmmllllllmRNS XIXXXXXXXXXXlIOS Ql)llmXQXXi550 IfffffRffffIINSR rarararraaasssRQ raaararaaar! Rs88 Raarrrrrrra5%8%%
RrrraaaararassoR iaraaaaarraa558%
raaaaraaaara sass
~ aaaararaarrsRRR srrrrrrarrrsw5%%
~ rrrrraraaaarrar
~ raarrrara armer e NNIIIIINNma
BRW NUCLEAR TECHNOLOGIES **BWNT NON"PROPRIETARY** 32"1235127-01 "Intensionally Left Blank - Contains BWNT Proprietary Information" Figure 6.2, Stress Path for Flaw Plane Prepared By: A.M. Miller Date: ~295 Reviewed By: H.T. Harrison Date: 2 95 Page: 28
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 Z
O 0
K
-og m-e I- O gSgZ r~Q- I I ~ann/
CS ~
OOOO Q
~
0- j'I-I-Q ~Z~g s~)sr~+
~
cnl-cu0cnujm ZOe~OI-DR<00 40oQ.Q.cONI-Q.ZZ QBU.lLILLU 00 O
a 0)
H ec O
40 W
O 0 CO X
P Figure 6.3, End of Heatup Stresses (psi)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 29
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 Z
ul O
O K
O
+u)u) u)0 v- CSg OO(5P
~ ~
Q Il I I IZ v)l-ol0v)ulcl+l- )
ZO(yj~OI-Z <00 NOXO-NO 40oCLO.SNl-O.ZZ Bu.u.u.uj O
N I-g) g H
ec CQ G.
O I o g O c
CL ul 8
Figure 6 ', 53'F Step-down Stresses (psi)
Prepared By: A.M. Miller Date: 2 5 Reviewed By: H.T. Harrison Date: 2 95 Page: 30
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 O
O CO x 0
geP)Z < cOQ. g g v
CS ~
OOOO
~ .Q spssag ZOg)9QI-D><QQ COSQ.Q.V)NI-Q.ZZ O
a U) a ei O
'V cv 00 Pi 5 5 cv 0'igure 6.5, 53'F Step-up Stresses (psi)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 31
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 tll CI Q
K O
rIf+eee0 O OOO<
I I I IP ZO"90I->K<00 c(0v-Q.o.cOU)I-0 zz N
M CO n
40 OI H
ei O
40 W
O X n n Figure 6.6, Steady State 653'F (Tref 70'F) Stresses (psi)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 32
BEcW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 O
O
~X ~ O v- CI .
~ ~ Q'nnng f-%O~<~~ i~CfCf If OOCjP g
I I lg ZO"BOf-OR<00
<0 a.a.rnrnf=a.aa N
M V)
O a
N H
CO Q.
CO Ol O C)
E5 0.
O h 4 Pt z A
5 0 9
0 0
O Figure 6.7, Cooldown Stresses (psi)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 33
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 z
O O
K O
g~PAZ~ ~ t-~>+ I I ~ nu? u? u?OK I OOO
)~sang
)-U.U.U.Ul CZP-Q.Q.V) gP0. ZZ NOXO-NO 0-N (OM CO O
~0 M
H C4 V)
CD I
O Z 0
4O 9 o o cv 0
X O
0 O
Figure 6.8, End of Cooldown Stresses (psi) e Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 34
BOW NUCLEAR TECHNOLOGIES **BWNT NON- PROPRIETARY** 32-1235127-01 Z
Lll O
O K
O O ~ ~ .g 5
I~OOQa g
I I P ~
Z0~90gg><OQ COSQ.O.V)Nl-fLZZ N
M a
O 40 M
H C5 O
o 8 r g g e 959 Figure 6.9, Steady State 653'F (Tref = Tunif) Stresses (psi)
Prepared By: A.M. Miller Date:~2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 35
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 Z
LU Cl O
<X " K O
~IAIALOQ
~ OOO
)~a I g
Sg Rogg90PD><00
<0 O.O.COCOI-O.aa N 0-CO r
a O
CO CL H
cv 8
I CL UJ K
D CO CO LCj K
O C 0
R 0
O Llj CO 0
CO CO 0
Figure 6.10, Loss of Secondary Pressure Stresses (psi)
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 36
BEcW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 7.0 ANSYS 5.0A Verification The ANSYS analysis code, version 5.0A, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors. The following comparison of finite element (FE) stress results and closed form solutions indicated that the software provided accurate results. Therefore, ANSYS BOA was verified for this application.
Finite Element Results from Table 6.7, Pressure 2250 psia Distance Hoo Stress Sz 0.0 68183 4.3052 33648 Hoop Stress e ~ pr/2t Ref. [5, Table 28 case 3a.]
e = 2250 (120. 5) / [2 (4. 094) ] ~ 33, 112 psi Compared to 33,648 psi (FE), h% = (33648/33112 - 1) (100%) 1.6%
Stress Concentration at Hole SCF = a,,/a,,>> 68183/33648 2.026 (FE)
Compared to 2 (from Section A3.3), h% (2.026/2 - 1)(100%) 1.3%
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Page: 37
B&W NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 8.0 References
- 1) ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendices, 1986 Edition with no Addenda.
- 2) BWNS Document No. 51-1155656-00, "Standard Correlations for Natural Convection". "BWNT Proprietary Document."
- 3) BWNS Document No. NPGD-TM-500, "NPGD Material Properties Program User's Manual", Rev. D, March, 1985. "BWNT Proprietary Document."
- 4) Not used.
- 5) Young, W. C., "Roark's Formulas for Stress & Strain", 6th Edition McGraw-Hill, New York, 1989.
- 6) DeSalvo, G. J. and Gorman, R. W., "ANSYS User's Manual for Revision 5.0", 1992, Swanson Analysis Systems, Houston, Pennsylvania.
- 7) BWNT Document 32-1235128-00, "FM Analysis of St. Lucie Pressurizer Instrument Nozzles". "BWNT Proprietary Document."
- 8) BWNT Document 38-1210588-00, "Pressurizer Instrument Nozzles, FM Design Input," for St. Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14).
- 9) 'Florida Power & Light Drawing No. 2998-19321, Rev. 0, "Top Head Instrument Nozzles Repair".
- 10) 'Florida Power & Light Drawing No. 2998-18709, Rev. 1, "Pressurizer General Arrangement".
- References marked with an "asterisk" are retrievable from the Utilities Record System.
uthorized Pro'ect Manager's Signature Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 38
BOW NUCLEAR TECHNOLOGIES **BWNT NON-PROPRIETARY** 32-1235127-01 9.0 Microfiche Microfiche are not included in this document because they contain math model which is BWNT Proprietary. However, for completeness the listing of the computer runs as contained in Rev. 0 of the document ("BWNT Proprietary" ) are given below.
FILE NAME DESCRIPTION THERMAL.OUT Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown STRESS . OUT Stress runs for the composite transient in "THERMAL.OUT" LPTHERM. OUT Loss of pressure thermal run LPSTRESS.OUT Stress run for the Loss of Pressure transient STEADYST.OUT Steady state stresses (Tref Tunif 653'F)
ENDCD.OUT Stress run for the end of the 200 'F/hr Cooldown.
Prepared By: A.M. Miller Date: 2 95 Reviewed By: H.T. Harrison Date: 2 95 Page: 39
', lt 8 A 0
0