ML111650563: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 06/14/2011
| issue date = 06/14/2011
| title = License Amendment Request to Include Alternate Method of Verifying Drywell Unidentified Leakage
| title = License Amendment Request to Include Alternate Method of Verifying Drywell Unidentified Leakage
| author name = Jesse M D
| author name = Jesse M
| author affiliation = Exelon Generation Co, LLC, Exelon Nuclear
| author affiliation = Exelon Generation Co, LLC, Exelon Nuclear
| addressee name =  
| addressee name =  
Line 13: Line 13:
| page count = 36
| page count = 36
| project =  
| project =  
| stage = Other
| stage = Request
}}
}}


=Text=
=Text=
{{#Wiki_filter:10 June 1 2011 U.S.Nuclear ATTN: Washington, Limerick Generating Station, Units 1 and 2 Facility Operating Nos.NPF-85 License Amendment Request to Include an Alternate Method of Verifying Drywell Unidentified LealKa(le 1)from P.R.Simpson (Exelon Generation Company, LLC for Dresden Nuclear Power Station)to U.S.NRC, IIRequest for Emergency License Amendment Regarding Drywell Floor Drain Sump Monitoring System,lI dated August 18, 2008 2)Letter from C.Gratton (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC), IIDresden Nuclear Power Station, Unit 3-Issuance of Emergency Amendment Regarding Drywell Floor Drain Sump Monitoring System (TAC No.MD9467)," August 2008 3)Letter from J.L.Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station)to U.S.NRC,"Request for LicenseAmendmentto Revise Technical Specification 3.4.5,"RCS Leakage Detection Instrumentation," to Allow Alternate Method of Verifying Drywell Leakage" dated August 28,2009 4)Letter from C.Gratton (U.S.NRC)to M.J.Pacilio (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2-Issuance of Amendments RE: Authorizing Alternative Methods of Verifying Leakage within the Drywell (TAC NOS.ME2148 thru ME2151)," dated August 16, 2010 In accordance with10 CFR 50.90,"Application for amendment of license, construction permit, or early site permit," Exelon Generation Company, LLC (EGC)requests an amendment to the Technical Specifications (TS)for Limerick Generating Station (LGS), Units 1 and 2.The proposed amendment revises Technical Specification (TS)3.4.3.1,"LEAKAGE DETECTION SYSTEMS," to support addition of an alternative method of verifying that unidentified leakage in the drywell is within limits.In Reference 1, EGC requested a temporary emergency license amendment for Dresden Nuclear Power Station (DNPS), Unit 3 to allow the reconfiguration of the drywell floor drain sump (DWFDS)flow monitoring system such that the drywell equipment drain sump (DWEDS)could be used as an alternate method to verify that Reactor Coolant System (RCS)leakage in the drywell is within TS limits.The emergency license amendment request was reviewed and approved by the NRC in Reference 2.Following the emergency license amendment approval by the NRC, EGC submitted a request for a permanentlicensechange for both DNPS and Quad Cities Nuclear Power Station (QCNPS)in Reference 3.The NRC approved the license u.s.Nuclear Regulatory Commission June 14, 2011 Page 2 amendment for both DNPS and QCNPS in the Reference 4 Safety Evaluation Report.The changes proposed in this license amendment request seek to incorporate the alternate method approved for DNPS and QCNPS into the LGS TS for Units 1 and 2.The changes proposed in this license amendment request have wording and justification similar to the changes approved for DNPS and QCNPS.The DNPS and QCNPS submittal and Safety Evaluation Report were verified for applicabilityandutilized as the template for this submittal.
{{#Wiki_filter:I 10 10 CFR 50.90 June 114, 2011 June       2011 Nuclear Regulatory Commission U.S. Nuclear U.S.
Attachment 1 provides a description of the proposed change.Attachment 2 provides the existing TS page markups showing the proposed changes.Attachment 3 provides the associated TS Bases markups for information only.There are two regulatory commitments contained in this letter, detailed in Attachment 4.Attachment 5 contains drywell sump level monitoring system configuration drawings for information only.The proposed changes have been reviewed by the LGS Plant Operations Review Committee and approved by the Nuclear Safety Review Board in accordance with the requirements of the EGC Quality Assurance Program.EGC requests approval of the proposed amendment by June 14, 2012.Once approved, the amendment shall be implemented within 60 days of issuance.In accordance with 10 CFR 50.91,"Notice for public comment;State consultation, II paragraph (b), EGC is notifying the Commonwealth of Pennsylvania of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Official.Should you have any questions concerning this letter, please contact Ms.Wendy E.Croft at (610)765-5726.I declare under penalty of perjury that the foregoing is true and correct.Executed on the 14 th day of June 2011.
ATTN: Document Control Desk ATTN:
Michael D.Je se Director, Licen On d Regulatory Affairs Exelon Generation Company, LLC Attachments:
Washington, DC 20555-0001 Washington, Limerick Generating Limerick    Generating Station, Units 11 and 2 Facility Operating Facility  Operating License Nos. Nos. NPF-39 and NPF-85 USNRC Docket Nos. 50-352 and 50-353
1.2.3.4.5.Evaluation of Proposed Changes Markup of Technical Specification Pages Markup of Technical Specifications Bases Pages (For Information Only)List of Commitments Drywell Sump Level Monitoring System Configuration Drawings (For Information Only)cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, LGS USNRC Project Manager, LGSR.R.Janati, Bureau of Radiation Protection u.s.Nuclear Regulatory Commission June 14, 2011 Page 2 amendment for both DNPS and QCNPS in the Reference 4 Safety Evaluation Report.The changes proposed in this license amendment request seek to incorporate the alternate method approved for DNPS and QCNPS into the LGS TS for Units 1 and 2.The changes proposed in this license amendment request have wording and justification similar to the changes approved for DNPS and QCNPS.The DNPS and QCNPS submittal and Safety Evaluation Report were verified for applicabilityandutilized as the template for this submittal.
Attachment 1 provides a description of the proposed change.Attachment 2 provides the existing TS page markups showing the proposed changes.Attachment 3 provides the associated TS Bases markups for information only.There are two regulatory commitments contained in this letter, detailed in Attachment 4.Attachment 5 contains drywell sump level monitoring system configuration drawings for information only.The proposed changes have been reviewed by the LGS Plant Operations Review Committee and approved by the Nuclear Safety Review Board in accordance with the requirements of the EGC Quality Assurance Program.EGC requests approval of the proposed amendment by June 14, 2012.Once approved, the amendment shall be implemented within 60 days of issuance.In accordance with 10 CFR 50.91,"Notice for public comment;State consultation, II paragraph (b), EGC is notifying the Commonwealth of Pennsylvania of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Official.Should you have any questions concerning this letter, please contact Ms.Wendy E.Croft at (610)765-5726.I declare under penalty of perjury that the foregoing is true and correct.Executed on the 14 th day of June 2011.
Michael D.Je se Director, Licen On d Regulatory Affairs Exelon Generation Company, LLC Attachments:
1.2.3.4.5.Evaluation of Proposed Changes Markup of Technical Specification Pages Markup of Technical Specifications Bases Pages (For Information Only)List of Commitments Drywell Sump Level Monitoring System Configuration Drawings (For Information Only)cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, LGS USNRC Project Manager, LGSR.R.Janati, Bureau of Radiation Protection ATTACHMENT 1 Evaluation of Proposed Changes Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 ATTACHMENT 1 Evaluation of Proposed Changes Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85


==Subject:==
==Subject:==
License Amendment Request to Include an Alternate Method of Verifying Drywell Unidentified Leakage 1.0
License Amendment Request to Include an Alternate Method of Verifying Drywell License Unidentified LealKa(le Unidentified    Leakage


==SUMMARY==
==References:==
DESCRIPTION
1)
: 1)        Letter from P. R. Simpson (Exelon Generation Company, LLC for Dresden Nuclear Power Station) to U.S. NRC, IIRequest Dresden                                                      Request for Emergency License Amendment Regarding Drywell Floor Drain Sump Monitoring System, dated August 18, 2008 System,lI
: 2)        Letter from C. Gratton (U.S. NRC) to C. G. Pardee (Exelon Generation Dresden Nuclear Power Station, Unit 3 -Issuance Company, LLC), IIDresden                                                    Issuance of Emergency Amendment Regarding Drywell Floor Drain Sump Monitoring MD9467), dated August 22, 2008 System (TAC No. MD9467),"
: 3)        Letter from J. L. Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station) to U.S.                  U.S.
Request for License Amendment to Revise Technical Specification NRC, "Request RCS Leakage Detection Instrumentation,"
3.4.5, "RCS                            Instrumentation, to Allow Alternate Method of Verifying Drywell Leakage"Leakage dated August 28,      28,2009 2009
: 4)        Letter from C. Gratton (U.S. NRC) to M. J. Pacilio (Exelon Generation Company, LLC), Dresden "Dresden Nuclear Power Station, Units 22 and            and 3,3, and and Quad Cities Nuclear Power Station, Units 11 and 2 - Issuance of  -
Amendments RE: Authorizing Alternative Methods      Methods of Verifying Verifying Leakage Leakage within the Drywell (TAC NOS. ME2148 thru ME2151),        ME2151)," dateddated August August 16, 16, 2010 In accordance with 10 CFR 50.90, Application "Application for amendment of        of license, license, construction construction permit, permit, or early site permit, permit,"  Exelon  Generation Generation    Company,      LLC  (EGC)
(EGC) requests requests an  an amendment amendment to    to the the Technical Specifications Specifications (TS) for Limerick Generating Station  Station (LGS), Units  Units 11 and and 2.2. The The proposed amendment revises Technical SpecificationSpecification (TS)
(TS) 3.4.3.1, 3.4.3.1, LEAKAGE "LEAKAGE DETECTION DETECTION
: SYSTEMS, SYSTEMS," to support addition of an      an alternative method method of of verifying verifying that that unidentified unidentified leakage leakage in in the drywell is within limits.
In Reference 1, 1, EGC requested aa temporary emergencyemergency license license amendment amendment for      for Dresden Dresden Nuclear Power Station (DNPS), Unit                allow Unit 33 to allow the reconfigurati reconfigurationon of of the the drywell drywell floor floor drain drain sump (DWFDS) flow monitoring monitoring system      such that system such      that the the drywell drywell equipment equipment drain  drain sump sump (DWEDS)
(DWEDS) could be used as    an alternate method as an              method to  to verify verify that that Reactor Reactor Coolant Coolant System System (RCS)
(RCS) leakage leakage inin the drywell  is within drywell is  within TS TS limits. The The emergency emergency license license amendment amendment request request waswas reviewed reviewed andand approved by the NRC NRC in in Reference 2.2. Following Following thethe emergency emergency license license amendment amendment approvalapproval by the NRC, EGC      submitted  a  request  for a  permanent      license EGC submitted a request for a permanent license change for    change      for both both DNPS DNPS and  and Quad Cities Nuclear Nuclear Power Power Station Station (QCNPS)
(QCNPS) in    in Reference Reference 3. 3. The The NRC NRC approved approved the  the license license


===2.0 DETAILED===
u.s.
DESCRIPTION
U.S. Nuclear Regulatory Commission June 14, 2011 Page 2 amendment for both DNPS and QCNPS in the Reference 4 Safety Evaluation Report. The changes proposed in this license amendment request seek to incorporate the alternate method approved for DNPS and QCNPS into the LGS TS for Units 11 and 2. The changes proposed in this license amendment request have wording and justification similar to the changes approved for DNPS and QCNPS. The DNPS and QCNPS submittal        submiffal and Safety Evaluation Report were verified for applicability and utilized as the template for this submittal. 1 provides a description of the proposed change. Attachment 2 provides the existing TS page markups showing the proposed changes. Attachment 3 provides the associated TS Bases markups for information only. There are two regulatory commitments contained in this letter, detailed in Attachment 4. Attachment 5 contains drywell sump level monitoring system configuration drawings for information only.
The proposed changes have been reviewed by the LGS Plant Operations Review Committee and approved by the Nuclear Safety Review Board in accordance with the requirements of the EGC Quality Assurance Program.
EGC requests approval of the proposed amendment by June 14, 2012. Once approved, the amendment shall be implemented within 60 days of issuance.
In accordance with 10  1 0 CFR 50.91, 50.91 , "Notice Notice for public comment; State consultation, consultation, paragraph II (b), EGC is notifying the Commonwealth of Pennsylvania of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Official.
Should you have any questions concerning this letter, please contact Ms. Wendy E. Croft at (61 (610)0) 765-5726.
th II declare under penalty of perjury that the foregoing is true and correct. Executed on the 14  14th dayof day  of June2011.
June 2011.
:;~~~~-_.~~-
Respectfully
    /
Michael D. Je se Director, Licen    On Licentn6d    d Regulatory Affairs Exelon Generation Company, LLC Attachments:      11.
                    . Evaluation of Proposed Changes
: 2. Markup of Technical Specification Pages
: 3. Markup of Technical Specifications Bases Pages (For Information Only)
: 4. List of Commitments
: 5. Drywell Sump Level Monitoring System Configuration Drawings (For Information Only) cc:      USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, Inspector, LGS USNRC Project Manager, LGS R. R. Janati, Bureau of Radiation Protection


===2.1 Background===
C, ATTACHMENT 1    m    -&
m        0)    0 Evaluation of Proposed Changes
                          -4i        0 0
Co CD
: 0. C,  0)        Cl)
Co Limerick Generating Station, Units 1 and 2                       za.
Om  00                        Co              cCO
                                                                    -or)
-n  0                          CD(,)    .0 Facility Operating License Nos. NPF-39 and NPF-85                    -p Co  ai


==3.0 TECHNICAL EVALUATION==
==Subject:==
License Amendment Request to Include an Alternate Method of Verifying Drywell Unidentified Leakage 1.0 1o   


===3.1 Drywell===
==SUMMARY==
Sump Level Monitoring
DESCRIPTION 2.0    DETAILED DESCRIPTION 2.1  Background
 
===System Description===
3.2 RCS Leakage Limits 3.3 RCS Leakage Detection While Filling the DWFDS 3.4 Summary


==4.0 REGULATORY EVALUATION==
==3.0   TECHNICAL EVALUATION==


===4.1 Applicable===
3.1   Drywell Sump Level Monitoring System Description 3.2  RCS Leakage Limits 3.3  RCS Leakage Detection While Filling the DWFDS 3.4  Summary
Regulatory Requirements/Criteria


===4.2 Precedent===
==4.0    REGULATORY EVALUATION==
4.3 No Significant Hazards Consideration


===4.4 Conclusions===
4.1  Applicable Regulatory Requirements/Criteria 4.2  Precedent 4.3  No Significant Hazards Consideration 4.4  Conclusions


==5.0 ENVIRONMENTAL==
==5.0   ENVIRONMENTAL CONSIDERATION==
CONSIDERATION


==6.0 REFERENCES==
==6.0   REFERENCES==


==Subject:==
Alternate Method Alternate                        Verifying Drywell Method of Verifying                         Unidentified Leakage Drywell Unidentified         Leakage Attachment 1:
License Amendment Request to Include an Alternate Method of Verifying Drywell Unidentified Leakage 1.0  
Attachment              Evaluation of Proposed 1 : Evaluation            Proposed Changes Changes Page 11 of 10 Page 1 .0 1.0        


==SUMMARY==
==SUMMARY==
DESCRIPTION
DESCRIPTION


===2.0 DETAILED===
==SUMMARY==
DESCRIPTION
DESCRIPTION This    evaluation supports This evaluation            supports a request request to amend        Operating Licenses amend Operating          Licenses NPF-39 NPF-39 and NPF-85 NPF-85 for Limerick      Generating Station Limerick Generating              Station (LGS)(LGS) Units                  respectively.
Units 11 and 2, respectively.
proposed changes The proposed            changes would would amend              Operating Licenses amend the Operating            Licenses by revising          Technical revising Technical Specification (TS) 3.4.3.1, Specification                3.4.3.1 , "LEAKAGE LEAKAGE DETECTION DETECTION SYSTEMS,"SYSTEMS, to add an alternative  alternative method method to verify    Reactor Coolant verify Reactor        Coolant SystemSystem (RCS)        unidentified leakage (RCS) unidentified        leakage in the drywell drywell is within within limits.
limits.
The proposed            amendment revises proposed amendment                                  3.4.3.1 , "LEAKAGE revises TS 3.4.3.1,        LEAKAGE DETECTION DETECTION SYSTEMS,"SYSTEMS, to support  support implementation of an alternate implementation                    alternate methodmethod to quantify quantify Reactor Reactor Coolant          System (RCS)
Coolant System        (RCS) leakage leakage in the primary        containment (Le.,
primary containment                                                proposed alternate drywell). The proposed (i.e., the drywell).                          alternate method method uses            installed uses the installed drywell      equipment drain drywell equipment            drain sumpsump (DWEDS)            mo (DWEDS) monitoringnitoring system, system, with the drywelldrywell floor draindrain sump sump (DWFDS)          overflowing to the DWEDS, (DWFDS) overflowing                          DWEDS, to verify verify that RCS        leakage in the drywell RCS leakage                drywell is within within TS 3.4.3.2,      OPERATIONAL LEAKAGE,"
3.4.3.2, "OPERATIONAL                    LEAKAGE, limits. limits. This    configuration would This configuration          would only be used          when the used when DWFDS monitoring DWFDS          monitoring system                unavailable.
system is unavailable.
purpose of the proposed The purpose                    proposed license          amendment is to increase license amendment                  increase operating operating flexibility flexibility and avoid avoid unn  ecessary plant unnecessary                    transients due to extended plant transients                                ino per extended inoperabilityability of the DWFDS DWFDS monitoring monitoring system system (e.g.,    inoperability caused (e.g., inoperability        caused by a componentcomponent failure).                proposed change failure). The proposed            change will enable enable each each unit reconfigure the DWFDS to reconfigure                DWFDS flow monitoring monitoring system system such                    overflowing into the DWEDS.
such that it is overflowing                    DWEDS.
reconfigured dryw The reconfigured            drywell ell sump      monitoring system sump monitoring        system can then be used      used to verif verify          drywell y that drywell leakage is with leakage          within          limitss spe in the limit                            3.4.3.2. Thi cified in TS 3.4.3.2.
specified                        Thiss operating      configuration is conservative operating configuration              conservative to the normal          configuration in that the TS 3.4.3.2.b normal configuration                                3.4.3.2.b unidentified unidentified leakage leakage limit of less than or equal            gallons per minute equal to 5 gallons                              (gpm) will be applied minute (gpm)                applied to tota totall leak leakage,        opposed to the TS age, as opposed 3.4. 3.2.c limit of less than or equal 3.4.3.2.c                                      equal to 30 gpm.gpm.
2.0         DETAILED DE DETAILED               SCRIPTION DESCRIPTION Thiss pro Thi          posed ame proposed              ndment is con amendment              consistent                License Am sistent with the License                            Request and sub endment Request Amendment                            subsequent sequent NRC Saf  Safetyety Eva    luation Rep Evaluation        Report          Dresden Nuc ort for Dresden      Nuclear lear  Pow Power  er  Sta Station tion  (DN (DNPS)
PS)    and  Quad    Cities Quad Cities Nuc    lear Pow Nuclear      Power  er Sta  tion (QC Station    (QCNPS)NPS) per    taining to an alte pertaining                  rnate met alternate          hod of verif method              ying dryw verifying    drywellell leak leakage, age, Ref  erences 6.1 and 6.2, resp References                                    ectively.
respectively.
The pro      posed TS and TS Bas proposed                          Baseses cha    nges are:
changes
.*          TS Lim      iting Con Limiting            dition for Ope Condition            Operation    (LCO)) 3.4.
ration (LCO            3.1 .b is rev 3.4.3.1.b            ised to stat revised        statee that    "the dryw that,, the  drywell ell sum sump      mo  nitoring sys p monitoring              tem is req system"            uired to be ope required                  rable.
operable.
* TS 3.4. 3.1,, Acti 3.4.3.1    Action            revised to rem on B is revised                ove the spe remove                cific refe specific          rences to the DW references                DWFDSFDS mo  nitoring sys monitoring            tem and rep system                  laces this with a refe replaces                        rence to the dryw reference              drywell    sump ell sum  p mo monitoring nitoring sys  tem.
system.
* TS BA BASESSES 3/4      .4.3.1 is rev 3/4.4.3.1              ised to def revised          ine the dryw define                ell sum drywell    sump  p mo  nitoring sys monitoring        tem as eith system        either er the DWF DWFDS    DS mo    nitoring sys monitoring            tem or the DW system            DWEDS EDS mo      nitoring sys monitoring          tem with the DW system                DWFDSFDS ove  rflowing to the DWE overflowing                  DWEDS. DS.
A mar markupkup of the pro        posed TS and TS Bas proposed                        Baseses pag page e cha    nges are pro changes                vided in Att provided            achments 2 and Attachments resp  ecti vely 3, respectively..          The    TS    Bas Bases      pag es page      cha              pro nges are provided e changes                              info vided for information rmation only only..


===2.1 Background===
Drywefl Unidentified Leakage Alternate Method of Verifying Drywell : 1 : Evaluation of Proposed Changes Page 2 of 10 2.1     Backciround


==3.0 TECHNICAL EVALUATION==
===Background===
On August 16, 2008, at approximately 2000 hours, operations personnel at DNPS attempted to pump the DNPS Unit 3 DWFDS utilizing Dresden Operating Procedure (DOP) 2000-24, "Drywell          Drywell Operation. Successful completion of DOP 2000-24 is used, in part, to satisfy DNPS Sump Operation. II 3.4.4.1 "Verify Surveillance Requirement (SR) 3.4.4.1,    , Verify RCS unidentified and total LEAKAGE and unidentified LEAKAGE increase are within limits."limits. The pumps started as expected; however, the integrator indicated no flow. During a second attempt to operate the pumps, DNPS operations personnel observed the position indicators for the two containment isolation valves, which indicated that the valves were in their proper position. DNPS maintenance personnel also inspected the pump breakers and measured pump motor current, with no abnormalities identified. The drywell floor drain sump pumps had been successfully pumped previously at 1 600 hours, and every four hours prior.
1600 DNPS conducted troubleshooting actions to identify possible malfunctions. These troubleshooting actions indicated that the containment isolation valve (Le., (i.e., one of two drywell floor drain sump pump discharge valves) may have failed closed. Since the drywell floor drain sump could not be pumped, DNPS was not able to satisfy the acceptance criteria of SR 3.4.4.1 for DNPS Unit 3. Therefore, TS LCO 3.4.4 for unidentified leakage could not be verified to be within limits. The applicable TS action requires that  thatthe the unit be placed in Mode 3 within 12 hours and Mode 4 within 36 hours.
In that the containment isolation valve is part of primary containment, the valve could not be repaired during unit operation. As such, DNPS requested, and the U.S. Nuclear Regulatory Commission (USNRC) granted, a Notice of Enforcement Discretion (NOED) for TS 3.4.4, Condition C and TS 3.4.5, Condition C (Le.,(i.e., References 6.3 and 6.4, respectively). Specifically, the NOED provided a seven-day extension to the TS Completion Times to place the unit in Mode 3 within 12 hours and Mode 4 within 36 hours.
The extension provided sufficient time to reconfigure the DWFDS monitoring system such that the DWEDS monitoring system could be physically utilized to quantify unidentified drywell leakage. In addition, the seven-day extension provided sufficient time for DNPS to request, and the USNRC to review and approve, an emergency license amendment to revise TS 3.4.5, on a temporary basis, to approve the use of the DWEDS monitoring system as an alternate method to quantify unidentified leakage (i.e.,
(Le., References 6.5 and 6.6, respectively).
Subsequently, DNPS and Quad Cities Nuclear Power Station (QCNPS) submitted an additional license amendment request, Reference 6.1    6.1, requesting the emergency license amendment changes be made permanent for both stations. The USNRC requested additional information to support the license amendment request review in the Reference 6.7 letter. The DNPS and QCNPS responses were provided in the Reference 6.8 and 6.9 submittals. The license amendment request was approved by the USNRC in August 2010 (Reference 6.2).
To prevent the need for a similar emergency license amendment, the changes proposed in this request seek to incorporate the alternate method of verifying drywell leakage into the LGS TS for Unit 11 and Unit 2.


===3.1 Drywell===
Alternate Method Alternate    Method of Ver  Verifying ifying Drywell        Unidentified Leakage Drywell Unidentified            Leakage :
Sump Level Monitoring
Attachment          Evaluation of Proposed 1 : Evaluation          Proposed Changes Changes Page 3 of 10 Page 3.0      TEC                EVALUATION HNICAL EVALUATION TECHNICAL 3.1       pjy well Sump Drywell     Sump Level          Monitoring System Level Monitoring                       DescriOtQfl


===System Description===
===System Description===
3.2 RCS Leakage Limits 3.3 RCS Leakage Detection While Filling the DWFDS 3.4 Summary  
DWEDS at LGS The DWEDS              LGS is located          immediately adjacent located immediately            adjacent to the DWFDS, DWFDS, wit  withh the top of bothboth sumps sumps (tanks) at the same (tanks)            same elevation,          app  roximately seven elevation, approximately                              apart. The seven feet apart.        There              obstructions re are no obstructions between the two sumps between                sumps to preventprevent or divert        drywell floo divert drywell              drain sump floorr drain          overflow from reaching sump overflow                reaching the drywell  equipment drain drywell equipment        drain sump.
sump. Based  Based on the sump  sump configurations,              engineering com configurations, an engineering            computation putation determined            approximately 550 gallons determined that approximately                        gallons are required required in the DWFDS DWFDS for overflowoverflow into the DWEDS.        Attachment 5 contains DWEDS. Attachment                  contains dra  drawings      detailing the physical wings detailing                        configuration of the sumps.
physical configuration                  sumps.
LGS has ver LGS              ified that the sump verified                          con  figuration and sum sump configuration                    sump    volumes for LGS p volumes          LGS Units Units 1  1 and 2 (i.e.,
(i.e.,
both  DWEDS and DWFDS) both DWEDS                DWFDS) are equ        equivalent ivalent to the DNPS  DNPS Unit 3 DWFDS DWFDS and DWEDS    DWEDS sump  sump configuration and vol configuration            volume ume (Le.,        approximately 1000 (i.e., approximately          1000 gallons          capacity each).
gallons full capacity      each).
leakage from Reactor All leakage            Reactor Coolant          Pressure Bou Coolant Pressure            Boundary                  components inside (RCPB) components ndary (RCPB)                                        drywell, inside the drywell, wit        exception of leak h the exception with                          leakageage from the Main  Main Steam Steam ReliefRelief Val Valves  (MSRV5) (Updated ves (MSRVs)          (Updated Final Final Safety  Analysis Report Safety Analysis        Report (UFSAR)
(UFSAR) Section              5.2.5.2.1 .8), flow Section 5.2.5.2.1.8),                  directly to either flowss directly                      drywell either the drywell equipment drain equipment      drain sum sump              drywell floo p or the drywell                  drain sump.
floorr drain    sump. The Therere are no othotherer rese  rvoirs in the reservoirs drywell      sufficient capacity drywell of sufficient      capacity to preventprevent leakage leakage from drainingdraining directly directly to either either of thesthesee sumps.
sumps.
Both dra Both  drain in sumps            identically sized, sumps are identically            sized, hor                cylindrical tank izontal cylindrical horizontal                            located inside tankss located                    reactor inside the reactor ves      pedestal below sel pedestal vessel                                diaphragm slab and vented below the diaphragm                            vented to the drywell        atmosphere.
drywell atmosphere.
Leakage from RCPS Leakage                      components insi RCPB components              inside de the primary        containment whi primary containment          which                normally subject ch are not normally        subject leakage is collected to leakage        collected by the DWFDS. DWFDS. Thi            leakage, whi Thiss leakage,      which          originate from any number ch may originate                    number of sources wit sources    within        drywell, is tran hin the drywell,                sported to the sump transported                sump via the floo                network wit drain network floorr drain                within hin the drywell. Thu drywell. Thus,    separation of unidentified s, separation          unidentified leakage leakage from the iden        tifiable leak identifiable    leakage      routed to the age routed equipment drain equipment      drain sump      ensures that a small sump ensures                            unidentified leakage small unidentified        leakage that is of concern concern will not be masked by a larger, masked                      acceptable, identified larger, acceptable,          identified leakage.
leakage.
The DWEDS          monitoring system DWEDS monitoring              system is similar similar to the DWFDS            monitoring system.
DWFDS monitoring          system. CertainCertain RCPB RCPB com  ponents wit components        within        drywell are, by the natu hin the drywell                          naturere of thei theirr design,  normally subject design, normally        subject to a lim limited ited amount of leak amount              age. The leakage.      These      components include se components          include pump pump seals, seals, valv              packings, and other valvee stem packings,                other equipment that can equipment            cannot    practicably be made not practicably                                completely leak made to be completely                -tight. The leak-tight. These      leakages are se leakages piped directly piped  directly to the drywell          equipment drain drywell equipment                    sump. All of the var drain sump.                    various    drains are open ious drains            open only only to equipment they serve, the equipment              serve, therthereby      receiving leakage eby receiving        leakage only              identified sou only from identified      sources.      Background rces. Background leakage to this sump leakage                          determined during sump is determined            during initia      plant ope initiall plant  operation. Rates of leakage ration. Rates                      collection in leakage collection exc excess        bac  kgr ess of background          ind ound indicates          abn icates abnormalormal RCPBRC        leakage.
PB leakage.
control circuits The control                                  monitoring systems circuits for the two monitoring                            pertorm the same systems perform              same fun functions, ctions, and sumpsump instrumentation consists instrumentation        consists of the same            components and performs same components                    performs a similar similar funfunction. Instruments ction. Instruments for both  monitoring systems both monitoring                            calibrated using systems are calibrated                        similar plant using similar            procedures to satisfy plant procedures            satisfy TS Surveillance      Requirements (SRs)
Surveillance Requirements                (SR5) for fun    ctional test functional      testing        calibration.
ing and calibration.
Each sump Each  sump tank has its own level        level tran    smitter whi transmitter      which        monitored by a dedicated ch is monitored                              processing unit.
dedicated processing          unit.
Normally closed Normally    closed drain drain valv valves            provided, enabling es are provided,        enabling the level level in each                increase as each tank to increase leakage drains leakage    drains into them.                  processing unit them. The processing                      calculates an average unit calculates          average leak rate for a given    given measurement period measurement                        establishing the amount period by establishing                amount of increase increase in leve            occurred during levell that occurred        during the period,          converting that valu period, and converting                  value e into vol    umetric term volumetric      termss (gpm).            processing units (gpm). The processing                    provide an units provide alarm in the main alarm                    control room main control      room eacheach time            average leak rate changes time the average                                            predetermined changes by a predetermined valu value  since the last tim e since              timee that alarmalarm was reset.reset. The setpoint setpoint is a 11 gpm change                unidentified change in unidentified
 
Alternate Method of Verifying Drywell Unidentified Leakage :  1 : Evaluation of Proposed Changes Page 4 4of of 10 leakage collected in the drywell floor drain sump tank, and a 2 gpm change in identified leakage collected in the drywell equipment drain tank.
Alarms are also generated in the main control room for high total average leak rate. The high total average leak rate alarm setpoints can be adjusted at the processing unit, which is located in the main control room, as the amount of acceptable identified leakage changes during operation. Indication of the leakage rates is provided in the main control room on panel-mounted indicators. Sump tank levels (in gallons) are provided on monitors from the Plant Monitoring System.
Level switches, which are independent of the level transmitters, open the sump tank drain valves when the level increases to an upper setpoint value and keep them open until the level decreases to the lower setpoint value. The level switches then close the drain valves and reset the processing units to start a new measurement period. The measurement period must be long enough to ensure that the level transmitter loop can adequately detect the increase in level that would correspond to the 1    1 gpm and 2 gpm changes in leak rates described above, and yet short enough to ensure that such a leak rate will be detected within an hour. The measurement period will be less than 1  1 hour.
The transmitters which are located in the reactor enclosure and the processing units which are located in the main control room are accessible during normal plant operation for calibration.
The transmitters can be isolated from the sump tanks by existing bypass manifolds. Zero and span adjustments can be made using portable test equipment. The processing unit functions can be calibrated by applying known input levels at the unit and observing the response.
The Drywell Sump Level Monitoring System (DSLMS) is comprised of the processing units, level transmitters, control room leakage flow indicators and interconnecting raceway and cables.
The DSLMS has been demonstrated to remain operational after a Safe Shutdown Earthquake.
The DSLMS is energized by Class 1E      1 E power. The Class 1E 1 E power to the panel is provided with a Class 1E1 E fuse and circuit breaker in series to meet separation requirements. The DSLMS is automatically shed from the Class 1E  1 E power in the event of a Loss of Coolant Accident (the load shedding relay, however, is not qualified for Class 1E  1 E service).
additionto In addition, to the sump level monitoring system described above, the discharge from each sump is monitored by a flow element. The measured flow rate is integrated and recorded in the control room. A control room alarm is also provided to indicate excessive discharge rates.
These indications and alarms are provided in accordance with Regulatory Guide 1.45.
3.2     RCS Leakage Limits OPERATIONAL LEAKAGE,"
TS 3.4.3.2, "OPERATIONAL          LEAKAGE, specifies the leakage limits for the RCS. The leakage LEAKAGE,II limits require, in part, unidentified leakage to be less than or equal to 5 gpm, total leakage averaged over the previous 24-hour period to be less than or equal to 25 gpm, and the increase in unidentified leakage within the previous 24-hour period to be less than 2 gpm. Section 5.2.5 of the LGS UFSAR describes the methods used for detection of leakage through the RCPS,      RCPB, and specifies use of the drywell sumps (Le.,(i.e., DWFDS and DWEDS) as the primary methods that can be used. The leakage collected in the DWEDS is identified leakage, and the leakage collected in the DWFDS is unidentified leakage.
TS 3.4.3.1 currently requires the DWFDS be operable as a RCS leakage detection system. The proposed change revises TS 3.4.3.1 to support the addition of an alternative method to use the
 
Alternate Method Alternate    Method of Verify                Drywell Unidentified ing Drywell Verifying                  Unidentified Leakage Leakage :
Attachment            Evaluation of Proposed 1 : Evaluation          Proposed Changes Changes Page 5 of 10 installed DWEDS installed  DWEDS in the situation  situation that the DWFDS  DWFDS is inoperable inoperable and the DWEDS    DWEDS is operable.
operable. In this situation            inoperable DWFDS situation the inoperable            DWFDS would overflow  overflow into the DWEDS  DWEDS which would be capable    capable quantifying total RCS leakage of quantifying                      leakage (Le.,          unidentified plus identified (i e , unidentified            identified leakage).              resultant value leakage) The resultant of total RCS leakage                            conservatively verified leakage would be conservatively                  verified to be less than the TS 3.4.3.2.b  3.4.3.2.b unidentified leakage unidentified      leakage limit of 5 gpm and TS 3.4.3.2.1          4 3 3    2 f  uniden unidentified tified    leaka leakage ge  incre increase ase limit of 2 gpm within the previous previous 24 hours.
3.3      13_c_s                Detection While Filling the DWFDS Leakacie Detection RCS Leakage                                                    DWFL 4.4.3.2.1 .b requires LGS TS SR 4.4.3.2.1.b              requires the verific        ation every 8 hours that RCS leakage verification                                                  measured by leakage measured DWFDS and DWEDS the DWFDS                DWEDS is within the specified                                              (unidentified leakage specified limits of TS 3.4.3.2 (unidentified              leakage to be less than or equal to 5 gpm and the increase            increase in unidentified unidentified leakage                      previous 24 hour leakage within the previous period to be less than 2 gpm).
described above, after the DWFDS As described                                                        overflowing into the DWEDS, DWFDS begins overflowing                              DWEDS, the DWEDS DWEDS can be measure total leakage used to measure                  leakage (Le.,          unidentified plus identified (i.e., unidentified            identified leakage).          Overflow into the leakage). Overflow DWEDS was determined DWEDS                determined by an engineeringengineering evaluation evaluation to occur after accumulation accumulation of approx  imatel    y approximately 550 gallonss  gallon      in  the  DWFD DWFDS. S. In  order              DWFD for the DWFDS              overflow into the S to overflow DWEDS, LGS personnel DWEDS,                personnel would either have to manually      manually fill the DWFDS  DWFDS with an externalexternal water unidentified RCS leakage source or allow unidentified source                                                                      DWFDS. The use of unidentified leakage to fill the DWFDS.                              unidentified RCS leakage to fill the DWFDS leakage                    DWFDS at or above                    gallons in an 8 hour time period would require:
above 550 gallons                                                    require:
: 1.            minimum unidentified A minimum          unidentified leakage                      approximately 1.14 gpm, and leakage rate of approximately
: 2.        The regulatory        commitments delineated regulatory commitments                delineated in this submittal submittal for LGS, Units 11 and 2 (Le.,    (i.e.,
verific    ation of flow from the DWFDS verification                                DWFDS to the DWEDS,  DWEDS, prior to the initial use of the alternate      monitoring method alternate monitoring            method for a specific specific unit) have been satisfied. satisfied.
minimum unidentified The minimum          unidentified leakage                    approximately 1.14 leakage rate of approximately                1 .14 gpm is basedbased on the leakage leakage rate required              approximately 550 gallons required to fill approximately                    gallons in the DWFDSDWFDS in 8 hours. The 8 hour period represents            TS-required surveillance represents the TS-required                surveillance interval interval as specified                  4.4.3.2.1 .b but does not specified in SR 4.4.3.2.1.b included            additio included the additional      nal 25%      grace, or 2 hours, allowed 25% grace,                          allowed by SR 4.0.2. This minimum      minimum leakage leakage rate 1 .14 gpm would cause 1.14                    cause the DWFDS DWFDS to overflow overflow into the DWEDS  DWEDS within the required  required SR 4.4.3.2.1 .b interval.
4.4.3.2.1.b      interval.
3.4.3.2.f requires TS 3.4.3.2.1      requires that a'2  a2 gpm increaseincrease in unidentified unidentified leakage leakage over a 24-hour24-hour period is able to be detected.          Conservatively assuming detected. Conservatively                assuming an empty DWFDS      DWFDS and a minimum,  minimum, immediate immediate incre  ase  in  uniden increase unidentified      tified  leak    rate  of  2  gpm  the  DWFD DWFDS      S would    fill        approx  imately 550 up to approximately gallons and begin to overflow  overflow to the DWEDS    DWEDS in 4.6 hours. As stated                  above in Section 3.1 of this stated above Attachment, the level switches Attachment,                    switches will detect  detect a 2 gpm changechange in leak rates in the DWEDS      DWEDS and provide an alarm in the main control provide                                      control room. This meets                        3.4.3.2.f requirement meets the TS 3.4.3.2.1          requirement to detect detect a 2 gpm increase              unidentified leakage increase in unidentified              leakage over a 24-hour24-hour period.
period.
3.4.3.2.b imposes TS 3.4.3.2.b        imposes a leakage leakage limit of 5 gpm of unidentifiedunidentified leakage.          Conservatively assuming leakage. Conservatively          assuming an empty DWFDSDWFD                  minim S and a minimum,              immediate increase um, immediate        increase in unidentified unidentified leak rate of 5 gpm the DWFDS                              approximately 550 gallons and begin to overflow DWFDS would fill up to approximately                                                            overflow to the DWEDS DWEDS in 1.83 hours. As statedstated above in Section 3.1 of this Attachment,    Attachment, the level switches  switches will detect detect a 2 gpm change in leak rates in the DWEDS change                                  DWEDS and provide  provide an alarm in the main control      control room. This amount of time is less than the TS Completion amount                                                Completion Time for TS 3.4.3.2,    3.4.3.2, Action B which reducesreduces unidentified leakage unidentified      leakage rate to within limits in 4 hours and the completion          completion time for TS 3.4.3.1 ,,
Action B which restores restores the drywell drywell sump monitoring monitoring system to Operable  Operable status status within 30 days.
 
Alternate Method of Verifying Drywell Unidentified Leakage : 1 Evaluation of Proposed Changes Page 6 of 10 Therefore, depending upon the specific operational circumstances, filling of the DWFDS and ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage. In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times.
3.4    Summary By allowing the drywell floor drain sump to overflow into the drywell equipment drain sump, Operations personnel are not able to differentiate between the identified and unidentified leakage inputs. As such, all leakage in the drywell sumps will be conservatively treated as unidentified leakage in accordance with the TS 3.4.3.2 limits.
Ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage. In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times.
Therefore, the addition of an alternative method to quantify unidentified leakage in the drywell is conservative with respect to the current TS limits.
 
==4.0    REGULATORY EVALUATION==
 
4.1    Arplicable Regulatory Requirements /I Criteria Applicable LGS Units 1 1 and 2 were originally designed and constructed following the issuance of the General Design Criteria (GDC). The GDC proposed criteria were adopted as regulatory requirements at both LGS Units.
Details regarding the reactor coolant system leakage detection systems are provided in UFSAR System.1I One of the 5.2.5, Reactor Coolant Pressure Boundary Leak Detection System.
Section 5.2.5,11 (i.e., DWFDS and DWEDS). The leakage detection systems discussed is the drywell sumps (Le.,
UFSAR states that various leak detection systems and capabilities collectively detect reactor coolant pressure boundary leakage, both identified and unidentified. These indications and alarms are provided in accordance with Regulatory Guide 1.45.
The proposed change does not involve physical changes to the RCS leakage detection systems. Rather, the proposed change allows use of the drywell equipment drain monitoring system to perform the function of the drywell floor drain monitoring system in quantifying unidentified leakage within the LGS Units 11 and 2 drywells. The design function of the RCS leakage detection systems is not affected by the proposed change. In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage.
EGGs ability to meet the applicable regulatory requirements Therefore, there is no impact to EGC's discussed above.
4.2    Precedent The proposed alternate method has been incorporated into the TSs for the Monticello Nuclear Generating Plant (References 6.10 and 6.11), the Peach Bottom Atomic Power Station, Unit 2 and Unit 3 (References 6.12 and 6.13). In addition, the NRC has previously approved similar
 
Method of Veri Alternate Method Alternate                    Verifying fying Drywell    Unidentified Leakage Drywell Unidentified        Leakage :  : Evaluation        Proposed Changes Evaluation of Proposed          Changes Page 7 of 10 amendment requests amendment        requests to the TS for Dresden            Nuclear Power Dresden Nuclear          Power Station, Station, Units Units 2 and 3 and Quad Cities  Nuclear Power Cities Nuclear      Power Station, Station, Units              (References 6.1 and 6.3).
Units 11 and 2 (References                                  subject license 6.3 ). The subject      license amendment request amendment                    proposes to adopt request proposes                                  consistent with those revisions consistent adopt revisions                          those proposed                previously proposed in the previously amendments.
approved amendments.
approved 4.3          Significant Hazards No Significant Nc                                ConsideratiQil Hazards Consideration accordance with 10 CFR 50.90, In accordance                                  ApplicatiOn for amendment 50.90, "Application            amendment of license,        construction permit, license, construction      permit, Generation Company, Exelon Generation permit, Exelon or early site permit,      II                          Company, LLC (EGC)                            amendment to requests an amendment (EGC) requests Operating License Facility Operating Facility                                    NPF-39 and NPF-85 License Nos. NPF-39                                Limerick Generating NPF-85 for Limerick        Generating Station Station (LGS),
(LGS),
Units 11 and 2, respectively.
Units                                  Specifically, the proposed respectively. Specifically,              proposed change                        Technical revises the Technical change revises Specifications (TS) to support Specifications                            implementation of an alternative support implementation                alternative method          verifying that leakage method of verifying            leakage drywell floor drain sump into the drywell                              within limits.
sump is within                    alternative method limits. The alternative      method involves involves use of the equipment drain sump drywell equipment installed drywell installed                                            monitoring system sump monitoring        system to quantify      unidentified leakage quantify unidentified      leakage in the drywell.
drywell.
evaluated whether EGC has evaluated            whether or not a significant significant hazards      consideration is involved hazards consideration          involved with the proposed    amendment by focu proposed amendment                  focusing                    standards set forth in 10 sing on the three standards                                            Issuance 50.92, "lssuance 1 0 CFR 50.92, amendment, as discussed of amendment,        II    discussed below:
below:
(1 )
(1)                      proposed change Does the proposed          change involve          significant increase involve a significant                        probability or increase in the probability consequences of an accident consequences                              previously evaluated?
accident previously        evaluated?
Response: No.


==4.0 REGULATORY EVALUATION==
===Response===
proposed change The proposed          change does not involve          physical changes involve physical                          plant structure, changes to any plant      structure, system, system, component. As a result, or component.                result, no new failure failure modes            Reactor Coolant modes of the Reactor                    System (RCS)
Coolant System        (RCS) detection systems leakage detection leakage                    systems are being being introduced.        Additionally, the RCS leakage introduced. Additionally,                  leakage detection systems detection      systems have no impact impact on any initiating initiating event  frequency.
event frequency.
The consequences                  previously analyzed consequences of a previously                                          dependent on the initial accident are dependent analyzed accident                                    initial conditions assumed conditions      assumed for the analysis,                behavior of the fuel during analysis, the behavior                    during the analyzed analyzed accident, the availability accident,                                successful func availability and successful                              equipment assumed tioning of the equipment functioning                          assumed to operate in response operate        response to the analyzed          event, and the setpoints analyzed event,                  setpoints at whic which            actions are h these actions initiated. The ReS initiated.                              detection systems leakage detection RCS leakage                                        perform an accident systems do not perform                        mitigating accident mitigating function.      Emergency Core Cooling function. Emergency                              System, Reactor Cooling System,        Reactor Protection Protection System,            primary System, and primary containment isolation secondary containment and secondary                          isolation actuations actuations are not affected                proposed affected by the proposed change. The proposed change.              proposed change change has no impact                  setpoints or functions impact on any setpoints            functions related related to actuations. Ther these actuations.          There            changes in the type e are no changes                          significant increase typess or significant    increase in the amounts of any effluents amounts                            released offsite.
effluents released      offsite.
Therefore, the proposed Therefore,            proposed change change does not involveinvolve a significant significant increase              probability increase in the probability cons    equences of an accident or consequences                              prev accident previously        evalu iously evaluated.
ated.
(2)                      proposed change Does the proposed          change create            possibility of a new or different create the possibility                                        accident different kind of accident previously evaluated?
accident previously from any accident                        evaluated?
Response: No.


===4.1 Applicable===
===Response===
Regulatory Requirements/Criteria
proposed change The proposed          change allows allows use of the drywell        equipment drain system drywell equipment              system as an alternative method alternative                    quantifying unidentified method of quantifying        unidentified leakage              drywell. The drywell leakage in the drywell.            drywell


===4.2 Precedent===
Alternate Method of Verifying Drywell Unidentified Leakage :  1 : Evaluation of Proposed Changes Page 8 of 10 equipment drain system will continue to be used for leakage collection and quantification. There is no alteration to the parameters within which the plant is actions As a normally operated or in the setpoints that initiate protective or mitigative actions.
4.3 No Significant Hazards Consideration
result, no  new  failure modes are  being introduced.
Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.
(3)        Does the proposed change involve a significant reduction in a margin of safety?
Response: No.
The current TS require a periodic measurement of RCS leakage. The proposed change maintains the existing level of safety by allowing use of the drywell equipment drain sump system to quantify unidentified leakage in the drywell. No changes are being made to any of the RCS leakage limits specified in the TS. The impact of the change is that measured unidentified and identified leakage within the drywell will be quantified as equivalent values since the drywell equipment drain sump monitoring system will also be used to measure leakage into the drywell floor drain sump. In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage.
Therefore, the proposed change does not involve a significant reduction in a margin of safety.
Based on the above, EGC concludes that the proposed amendment does not involve a significant hazards consideration under the standards set  setforth forth in 10 CFR 50.92(c), and, accordingly, a finding of no significant hazards consideration is justified.
4.4      Conclusions In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's Commissions regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or the health and safety of the public.
5.0      ENVI RONMENTAL CONSIDERATION ENVIRONMENTAL A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10              Standards for Protection Against Radiation."
1 0 CFR 20, "Standards                            Radiation. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure.
Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set pursuant to 10 CFR 51.22(b), no environmental impact 51 .22(c)(9). Therefore, purs.uant forth in 10 CFR 51.22(c)(9).
statement or environmental assessment needs to be prepared in connection with the proposed amendment.


===4.4 Conclusions===
Alternate Method of Verifying Drywell Unidentified Leakage :1 : Evaluation of Proposed Changes Page 9 of 10


==5.0 ENVIRONMENTAL==
==6.0     REFERENCES==
CONSIDERATION


==6.0 REFERENCES==
6i 6.1.. Letter from J. L. Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station) to U.S. NRC, "RequestRequest for License Amendment to Revise Technical Specification 3.4.5, IIRCS RCS Leakage Detection Instrumentation, to Allow Alternate Method of Verifying Drywell Leakage" Instrumentation,1I                                                    Leakage dated August 28, 2009 28,2009 6.2. Letter from C. Gratton (U.S. NRC) to M. J. Pacilio (Exelon Generation Company, LLC),
Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, "Dresden Units 11 and 2 -Issuance of Amendments RE: Authorizing Alternative Methods of Verifying Leakage within the Drywell (TAC NOS. ME2148ME21 48 THRU ME2151 ME21 51 ),"
                                                                                      ), dated 16, 2010 August 16,2010 6.3. Letter from D. B. Wozniak (Exelon Generation Company, LLC for Dresden Nuclear Request for Enforcement Discretion for Technical Power Station) to U.S. NRC, IIRequest l
RCS Operational Leakage Specifications (TS) 3.4.4, IRCS                Leakage and TS 3.4.5, IRCS RCS Leakage Instrumentation, dated August 19, Detection Instrumentation:"                  1 9, 2008 6.4. Letter from C. Pederson (U.S. NRC) to C. G. Pardee (Exelon Generation Company, Notice of Enforcement Discretion for Exelon Generation Company LLC Regarding LLC), "Notice Station, Unit 3 (NOED 08-3-002),
Dresden Nuclear Power Station;                      08-3-002), dated August 21 ,, 2008 II 6.5. Letter from P. R. Simpson (Exelon Generation Company, LLC for Dresden Nuclear Request for Emergency License Amendment Regarding Power Station) to U.S. NRC, "Request System, dated August 18, 2008 Drywell Floor Drain Sump Monitoring System,"
6.6. Letter from C. Gratton (U.S. NRC) to C. G. Pardee (Exelon Generation Company, LLC),
Dresden Nuclear Power Station, Unit 3 - Issuance of Emergency Amendment "Dresden Regarding Drywell Floor Drain Sump Monitoring System (TAC No. MD9467),"  MD9467), dated August    22, 2008 August22,2008 6.7. Letter from C. Gratton (U.S. NRC) to C. G. Pardee (Exelon Generation Company, LLC),
Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, "Dresden Units 11 and 2 - Request for Additional Information Related to Alternate Method of ME2151), dated January 15, 2010.
Verifying Drywell Leakage (TAC Nos. ME2148 thru ME2151),"
6.8. Letter from J. L. Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Supplemental Information Station and Quad Cities Nuclear Power Station) to U.S. NRC, "Supplemental Concerning Request for License Amendment to Revise Technical Specification 3.4.5,
      'RCS                        Instrumentation, dated February 5,2010 RCS Leakage Detection Instrumentation"',                        5, 2010 6.9. Letter from J. L. Hansen (Exelon Generation Company, LLC for Quad Cities Nuclear Power Station) to U.S. NRC, Supplemental Information Concerning Request for License Amendment to Revise Technical Specification 3.4.5, "RCS  RCS Leakage Detection Instrumentation dated June 2, 2010 Instrumentation" 6.10. Letter from L. M. Padovan (U.S. NRC) to D. L. Wilson (Nuclear Management Company, Monticello Nuclear Generating Plant - Issuance of Amendment Re: Drywell LLC), "Monticello Leakage and Sump Monitoring Detection System (TAC No. MB7945),1I MB7945), dated August 21, 2003


Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 1 of 10 1.0
Alternate Method of Verifying Drywell Unidentified Leakage 1:: Evaluation of Proposed Changes Page 110 0 of 10 10 6.1 1 Letter from T. A. Beltz (U.S. NRC) to J. T. Conway (Nuclear Management Company, 6.11..
IIMonticelio Nuclear Generating Plant (MGNP) - Issuance of Amendment for the LLC), Monticello Conversion to the Improved Technical Specifications with Beyond-Scope Issues (TAC Nos. MC7505, MC7597, through MC761MC7611,  ,    MC8887),1I dated June 5, 1 and MC8887),                2006 5,2006 (U.S. NRC) to E. G. Bauer (Philadelphia Electric Company),
6.12. Letter from G. Gears (US.
IITechnical Specification Amendments Pertaining to the Monitoring of Coolant Leakage Technical and the Providing of Limitations on Iodine Concentrations in the Reactor Coolant, Coolant, II dated February 27, 1985 6.13. Letter from J. W Shea (U.S. NRC) to G. A. Hunger, Jr., (PECO Energy Company, Issuance of Improved Technical Specifications, Peach Bottom Atomic Power Station, IIlssuance M90747), dated August 30, 1995 (TAG Nos. M90746 and M90747),1I Unit Nos. 2 and 3, (TAC


==SUMMARY==
C, ATTACHMENT 2      I 0    -4 Markup of Technical Specifications Pages
DESCRIPTION This evaluation supports a request to amend Operating Licenses NPF-39 and NPF-85 for Limerick Generating Station (LGS)Units 1 and 2, respectively.
                      -4%            C,                  o*      1 CD                              p Limerick Generating Station, Units 1 and 2 CDC                                          cC1)
The proposed changes would amend the Operating Licenses by revising Technical Specification (TS)3.4.3.1,"LEAKAGE DETECTION SYSTEMS," to add an alternative method to verify Reactor Coolant System (RCS)unidentified leakage in the drywell is within limits.The proposed amendment revises TS 3.4.3.1,"LEAKAGE DETECTION SYSTEMS," to support implementation of an alternate method to quantify Reactor Coolant System (RCS)leakage in theprimarycontainment (Le., the drywell).The proposed alternate method uses the installed drywell equipment drain sump (DWEDS)monitoring system, with the drywell floor drain sump (DWFDS)overflowing to the DWEDS, to verify that RCS leakage in the drywell is within TS 3.4.3.2,"OPERATIONAL LEAKAGE," limits.This configuration would only be used when the DWFDS monitoring system is unavailable.
Facility Operating License Nos. NPF-39 and NPF-85
The purpose of the proposed license amendment is to increase operating flexibility and avoid unnecessary plant transients due to extended inoperability of the DWFDS monitoring system (e.g., inoperability caused by a component failure).Theproposedchange will enable each unit to reconfigure the DWFDS flowmonitoringsystem such that it is overflowing into the DWEDS.The reconfigured drywell sumpmonitoringsystem can then be used to verify that drywell leakage is within the limits specified in TS 3.4.3.2.This operating configuration is conservative to the normal configuration in that the TS 3.4.3.2.b unidentified leakage limit of less than or equal to 5 gallons per minute (gpm)will be applied to total leakage, as opposed to the TS 3.4.3.2.c limit of less than or equal to 30 gpm.2.0 DETAILED DESCRIPTION This proposed amendment is consistent with the License Amendment Request and subsequent NRC Safety Evaluation Report for Dresden Nuclear Power Station (DNPS)and Quad CitiesNuclearPower Station (QCNPS)pertaining to an alternate method of verifying drywell leakage, References 6.1 and 6.2, respectively.
-n    2                                       CD m
The proposed TS and TS Bases changes are:*TS Limiting Condition for Operation (LCO)3.4.3.1.b is revised to state that,"the drywell sump monitoring system" is required to be operable.*TS 3.4.3.1 , Action B is revised to remove the specific references to the DWFDS monitoring system and replaces this with a reference to the drywell sump monitoring system.*TS BASES 3/4.4.3.1 is revised to define the drywell sump monitoring system as either the DWFDS monitoring system or the DWEDS monitoring system with the DWFDS overflowing to the DWEDS.A markup of the proposed TS and TS Bases page changes are provided in Attachments 2 and 3, respectively.
:JJ          i  m C)      z        ci)        o  o REVISED TECHNICAL SPECIFICATIONS PAGES (ri m                                  -o            z 3/44-8
The TS Bases page changes are provided for information only.Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 1 of 10 1.0


==SUMMARY==
BEACTOR COQLANTSYSTEM
DESCRIPTION This evaluation supports a request to amend Operating Licenses NPF-39 and NPF-85 for Limerick Generating Station (LGS)Units 1 and 2, respectively.
.3/4.4.3
The proposed changes would amend the Operating Licenses by revising Technical Specification (TS)3.4.3.1,"LEAKAGE DETECTION SYSTEMS," to add an alternative method to verify Reactor Coolant System (RCS)unidentified leakage in the drywell is within limits.The proposed amendment revises TS 3.4.3.1,"LEAKAGE DETECTION SYSTEMS," to support implementation of an alternate method to quantify Reactor Coolant System (RCS)leakage in theprimarycontainment (Le., the drywell).The proposed alternate method uses the installed drywell equipment drain sump (DWEDS)monitoring system, with the drywell floor drain sump (DWFDS)overflowing to the DWEDS, to verify that RCS leakage in the drywell is within TS 3.4.3.2,"OPERATIONAL LEAKAGE," limits.This configuration would only be used when the DWFDS monitoring system is unavailable.
.314.4.,,3 REACTQR      COOLANT SYSTEM flEAC[Q!JQOLANT      SYSIEM LEAKAGE LEAKAGE LEAKAGE DETECrION EAKAGE      UEFECIIQN SYSTEMS SYS EEMS 34.3.1 3.4.3.1           The following following reactor coolant leakage detection systems shall be OPERABLE:
The purpose of the proposed license amendment is to increase operating flexibility and avoid unnecessary plant transients due to extended inoperability of the DWFDS monitoring system (e.g., inoperability caused by a component failure).Theproposedchange will enable each unit to reconfigure the DWFDS flowmonitoringsystem such that it is overflowing into the DWEDS.The reconfigured drywell sumpmonitoringsystem can then be used to verify that drywell leakage is within the limits specified in TS 3.4.3.2.This operating configuration is conservative to the normal configuration in that the TS 3.4.3.2.b unidentified leakage limit of less than or equal to 5 gallons per minute (gpm)will be applied to total leakage, as opposed to the TS 3.4.3.2.c limit of less than or equal to 30 gpm.2.0 DETAILED DESCRIPTION This proposed amendment is consistent with the License Amendment Request and subsequent NRC Safety Evaluation Report for Dresden Nuclear Power Station (DNPS)and Quad CitiesNuclearPower Station (QCNPS)pertaining to an alternate method of verifying drywell leakage, References 6.1 and 6.2, respectively.
: a.       The pr'imary primary containment atmosphere gaseous radioactivity monitoring system,
The proposed TS and TS Bases changes are:*TS Limiting Condition for Operation (LCO)3.4.3.1.b is revised to state that,"the drywell sump monitoring system" is required to be operable.*TS 3.4.3.1 , Action B is revised to remove the specific references to the DWFDS monitoring system and replaces this with a reference to the drywell sump monitoring system.*TS BASES 3/4.4.3.1 is revised to define the drywell sump monitoring system as either the DWFDS monitoring system or the DWEDS monitoring system with the DWFDS overflowing to the DWEDS.A markup of the proposed TS and TS Bases page changes are provided in Attachments 2 and 3, respectively.
: b.        The drywell +I-tor    dr-kisump ~onitoring floor draiNJsump        flow-onitoring system,
The TS Bases page changes are provided for information only.
: c.        The drywell unit coo'l    ers condensate flow rate monitoring system, and coolers
Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 2 of 10 2.1 Background On August 16, 2008, at approximately 2000 hours, operations personnel at DNPS attempted to pump the DNPS Unit 3 DWFDS utilizing Dresden Operating Procedure (DOP)2000-24,"Drywell Sump Operation.
: d.       The primary containment pressure and temperature monitoring system.
II Successful completion of DOP 2000-24 is used, in part, to satisfy DNPS Surveillance Requirement (SR)3.4.4.1,"Verify RCS unidentified and total LEAKAGE and unidentified LEAKAGE increase are within limits." The pumps started as expected;however, the integrator indicated no flow.During a second attempt to operate the pumps, DNPS operations personnel observed the position indicators for the two containment isolation valves, which indicated that the valves were in their proper position.DNPS maintenance personnel also inspected the pump breakers and measured pump motor current, with no abnormalities identified.
APPLICABILITY; APPLI.CAIULLFY; OPERATIONAL CONDITIONS 1, 2, and 3.*                3,*
The drywell floor drain sump pumps had been successfully pumped previously at 1600 hours, and every four hours prior.DNPS conducted troubleshooting actions to identify possible malfunctions.
The   primary    containment    gaseous radioactivity monitor is not required to be operable until Operational Condition 2.
These troubleshooting actions indicated that the containment isolation valve (Le., one of two drywell floor drain sump pump discharge valves)may have failed closed.Since the drywell floor drain sump could not be pumped, DNPS was not able to satisfy the acceptance criteria of SR 3.4.4.1 for DNPS Unit 3.Therefore, TS LCO 3.4.4 for unidentified leakage could not be verified to be within limits.The applicable TS action requires that the unit be placed in Mode 3 within 12 hours and Mode 4 within 36 hours.In that the containment isolation valve is part of primary containment, the valve could not be repaired during unit operation.
ACTIONS.:
As such, DNPS requested, and the U.S.Nuclear Regulatory Commission (USNRC)granted, a Notice of Enforcement Discretion (NO ED)for TS 3.4.4, Condition C and TS 3.4.5, Condition C (Le., References 6.3 and 6.4, respectively).
ACTIONS:
Specifically, the NOED provided a seven-day extension to the TS Completion Times to place the unit in Mode 3 within 12 hours and Mode 4 within 36 hours.The extension provided sufficient time to reconfigure the DWFDS monitoring system such that the DWEDS monitoring system could be physically utilized to quantify unidentified drywell leakage.In addition, the seven-day extension provided sufficient time for DNPS to request, and the USNRC to review and approve, an emergency license amendment to revise TS 3.4.5, on a temporary basis, to approve the use of the DWEDS monitoring system as an alternate method to quantify unidentified leakage (Le., References 6.5 and 6.6, respectively).
A. With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days.
Subsequently, DNPS and Quad Cities Nuclear Power Station (QCNPS)submitted an additional license amendment request, Reference 6.1, requesting the emergency license amendment changes be made permanent for both stations.The USNRC requested additional information to support the license amendment request review in the Reference 6.7 letter.The DNPS and QCNPS responses were provided in the Reference 6.8 and 6.9 submittals.
B.                           floor drai~ump With the drywell +oordrain-um                ~monitoring p f+ewmonitor        ing system inoperable, restore the drai~sump,f1-ew'monitoring drywell floor ra-itsump          #+wmonitoring system to OPERABLE status within 30 days AND increase monitoring frequency of dryweli        drywel'l unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 88 hours.
The license amendment request was approved by the USNRC in August 2010 (Reference 6.2).To prevent the need for a similar emergency license amendment, the changes proposed in this request seek to incorporate the alternate method of verifying drywell leakage into the LGS TS for Unit 1 and Unit 2.Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 2 of 10 2.1 Background On August 16, 2008, at approximately 2000 hours, operations personnel at DNPS attempted to pump the DNPS Unit 3 DWFDS utilizing Dresden Operating Procedure (DOP)2000-24,"Drywell Sump Operation.
c.
II Successful completion of DOP 2000-24 is used, in part, to satisfy DNPS Surveillance Requirement (SR)3.4.4.1,"Verify RCS unidentified and total LEAKAGE and unidentified LEAKAGE increase are within limits." The pumps started as expected;however, the integrator indicated no flow.During a second attempt to operate the pumps, DNPS operations personnel observed the position indicators for the two containment isolation valves, which indicated that the valves were in their proper position.DNPS maintenance personnel also inspected the pump breakers and measured pump motor current, with no abnormalities identified.
C. With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform aa channel check of the primary containment atmosphere gaseous radioactivity monitoring system (SR       CSR 4.4.3.1.a) once per 88 hours.
The drywell floor drain sump pumps had been successfully pumped previously at 1600 hours, and every four hours prior.DNPS conducted troubleshooting actions to identify possible malfunctions.
D. With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days. NOTE: All other Tech Spec Limiting Operation and Surveillance.
These troubleshooting actions indicated that the containment isolation valve (Le., one of two drywell floor drain sump pump discharge valves)may have failed closed.Since the drywell floor drain sump could not be pumped, DNPS was not able to satisfy the acceptance criteria of SR 3.4.4.1 for DNPS Unit 3.Therefore, TS LCO 3.4.4 for unidentified leakage could not be verified to be within limits.The applicable TS action requires that the unit be placed in Mode 3 within 12 hours and Mode 4 within 36 hours.In that the containment isolation valve is part of primary containment, the valve could not be repaired during unit operation.
Conditions For Qperation              Surveillance Requirement ReqUirementss associated with the primary containment priinary    containment pressure/tem pressure/temperature peraturemon  monitoring itoring system stillstill apply. Affected Affected Tech Spec Sections TechSpecSec                            3/4.3.7.5, 4.4.3.2.1.
As such, DNPS requested, and the U.S.Nuclear Regulatory Commission (USNRC)granted, a Notice of Enforcement Discretion (NO ED)for TS 3.4.4, Condition C and TS 3.4.5, Condition C (Le., References 6.3 and 6.4, respectively).
tions include: 3/4.3.7.5.             4.4.3.2.1, 3/4.6.L6.
Specifically, the NOED provided a seven-day extension to the TS Completion Times to place the unit in Mode 3 within 12 hours and Mode 4 within 36 hours.The extension provided sufficient time to reconfigure the DWFDS monitoring system such that the DWEDS monitoring system could be physically utilized to quantify unidentified drywell leakage.In addition, the seven-day extension provided sufficient time for DNPS to request, and the USNRC to review and approve, an emergency license amendment to revise TS 3.4.5, on a temporary basis, to approve the use of the DWEDS monitoring system as an alternate method to quantify unidentified leakage (Le., References 6.5 and 6.6, respectively).
3/4.6.1.6, and 3/4.6.1.7.
Subsequently, DNPS and Quad Cities Nuclear Power Station (QCNPS)submitted an additional license amendment request, Reference 6.1, requesting the emergency license amendment changes be made permanent for both stations.The USNRC requested additional information to support the license amendment request review in the Reference 6.7 letter.The DNPS and QCNPS responses were provided in the Reference 6.8 and 6.9 submittals.
3/4.6.1.7.
The license amendment request was approved by the USNRC in August 2010 (Reference 6.2).To prevent the need for a similar emergency license amendment, the changes proposed in this request seek to incorporate the alternate method of verifying drywell leakage into the LGS TS for Unit 1 and Unit 2.
E. With With the primary containment containment atmosphere atmosphere gaseous radioactivity radioactivity monitoring system inoperable AND the drywell drywel1 unit coolers coolers condensate condensate flow rate monitoring monitoring system inoperable, inoperable, restore the primary primary containment atmosphere atmosphere gaseous gaseous radioactivity monitoring monitoring system system toto OPERABLE status status within within 3030 days days OROR restore the the drywell unit coolers condensate condensate flow rate monitoring monitoring systemsystem to to OPERABLE OPERABLE status status within within 30 30 days.
Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 3 of 10
days.
With With thethe primary primary containment containment atmosphere atmosphere gaseous gaseous radioactivity radioactivity monitoring monitoring system system inoperable, inoperable, analyze analyze grab grab samples samples ofof primary primary containment containment atmosphere atmosphere at at least least once once per per 1212 hours.
hours.
LIMERICK LIMERICK - uNIT UNIT 11                                  3/4 4-8 3/4   4-8                              ++/-, 14Q, Amendment 4, Amendment            ~, ~


==3.0 TECHNICAL EVALUATION==
REACTOR COOLANTV SSYSTEM JjA(II1iLCQOLAN          YST LN
:3/1. ..4 J REACTOR J:OOLANI .SYSTEM.LEAKAGE JLAK8GE DETECTION SYSTEMS 3.4.3.1 3.43.1            The following reactor coolant leakage    leakage detection systems shall be OPERABLE:
: a.      The primary containment atmosphere gaseous radioactivity  rad'; oacti vi ty monitoring rnonitor'ing system,
: b.            drywe-Il1 floci dt The drywel                ~i I~ump~oni tori ng system, Cc.. The drywel The            un'j t cool drywe'll1 urn    coolers  condensate ers condensa      f'low te fl            rna nittor (3W rate riion          n9 system, and 0 ri1 fl
: d.      The primary containment pressure arid                              monitor"jng system.
and temperature monitoring APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3k APPLICABILITY:                                                      3.*
* - The primary containment gaseous radioactivity monitor is not required to be k
operable until Operational Condition 2.
ACTIONS; ACT.I  ONS A.      With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days.
B.      With the drywell frr+isump  dt elirt'sump ~monitoring floc" d'              9-rWionitoring system inoperable, restore the drywell ~~eor    draiMasump ~mon;toring
                  +eed-t-4-risump      ++wmonitoring system to OPERABLE status within 30 days AND increase monitoring frequency of drywell unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 88 hours.
c.
C.      With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform aa channel check of the primary containment atmosphere gaseous radioactivity monitoring system (SR 4.4.3.1.a) once per 8 hours.
D.      With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days. Note: All other Tech Spec Limiting Conditions For Operation and Surveillance Requirements associated with the primary containment pressure/temperature monitoring system sti))                still apply. Affected Tech Spec Sections include: 3/4.3.7.5. 4.4.3.2.1. 3/4.6.1.6. and 3/4.6.1.7.
E.      With the primary containment atmosphere gaseous radioactivity monitoring system inoperable AND the drywell unit coolers condensate flow rate monitoring system inoperable, restore the primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days OR restore the drywell unit coolers condensate flow rate monitoring system to OPERABLE status within 30 days.
With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours.
LIMERICK - UNIT 22
                -                                                3/4 4-8                Amendment No. J4,
                                                                                                        ,  ~, ~, ~


===3.1 Drywell===
ATTACHMENT 3 Markup of Technical Specifications Bases Pages (For Information Only)
Sump Level Monitoring
Limerick Generating Station,        1 and 2 Station Units 1 Facility Operating License Nos. NPF-39 and NPF-85 REVISED TECHNICAL SPECIFICATIONS BASES PAGES B 3/44-3 3/4 4-3 3/4 4-3a B 3/44-3a 3/4 4-3b B 3/44-3b


===System Description===
f<EACTOR  COQ.LANF SYSTEM EAcroR COOLANT        SYStEM 3/4,4.3 3/L43      REACTOR REACtOR COOLANT COOLANF SYSTEM LEAKAGE 3/4.4.3.1 3/443          LEAKAGE    DETECTION SYSTEMS L.EAKAGEDETECTION BACK(JROUND BACKGROUND UFSAR
The DWEDS at LGS is located immediately adjacent to the DWFDS, withthetop of both sumps (tanks)at the same elevation, approximately seven feet apart.There are no obstructions between the two sumps to prevent or divert drywell floor drain sump overflow from reaching the drywell equipment drain sump.Based on the sump configurations, an engineering computation determined that approximately 550 gallons are required in the DWFDS for overflow into the DWEDS.Attachment 5 contains drawings detailing the physical configuration of the sumps.LGS has verified that the sump configuration and sump volumes for LGS Units 1 and 2 (i.e., both DWEDS and DWFDS)are equivalent to the DNPS Unit 3 DWFDS and DWEDS sump configuration and volume (Le., approximately 1000 gallons full capacity each).All leakage from Reactor Coolant Pressure Boundary (RCPB)components inside the drywell, with the exception of leakage from the Main Steam Relief Valves (MSRVs)(Updated Final Safety Analysis Report (UFSAR)Section 5.2.5.2.1.8), flows directly to either the drywell equipment drain sump orthedrywell floor drain sump.There are no other reservoirs in the drywell of sufficient capacity to prevent leakage from draining directly to either of these sumps.Both drain sumps are identically sized, horizontal cylindrical tanks located inside the reactor vessel pedestal below the diaphragm slab and vented to the drywell atmosphere.
[JESAR Safety Sa1ety Design Basis Bdsis (J{ef.
Leakage from RCPS components inside the primary containment which are not normally subject to leakage is collected by the DWFDS.This leakage, which may originate from any number of sources within the drywell, is transported to the sump via the floor drain network within the drywell.Thus, separation of unidentified leakage from the identifiable leakage routed to the equipment drain sump ensures that a small unidentified leakage that is of concern will not be masked by a larger, acceptable, identified leakage.The DWEDS monitoring system is similar to the DWFDS monitoring system.Certain RCPB components within the drywell are, by the nature of their design, normally subject to a limited amount of leakage.These components include pump seals, valve stem packings, and other equipment that cannot practicably be made to be completely leak-tight.
(Ref. 1),
These leakages are piped directly tothedrywell equipment drain sump.All of the various drains are open only to the equipment they serve, thereby receiving leakage only from identified sources.Background leakage to this sump is determined during initial plant operation.
1), requires meansmedlis for detecting and, to the extent practical, prdctical, identifying the location of ttle              the source of Heactor Reactor Cootant CooIint System (ReS) (RCS)
Rates of leakage collection in excess of background indicates abnormal RCPB leakage.The control circuits for the two monitoring systems perform the same functions, and sump instrumentation consists of the same components and performs a similar function.Instruments for both monitoring systems are calibrated using similar plant procedures to satisfy TS Surveillance Requirements (SRs)for functional testing and calibration.
PRESSURE BOUNDARY BOUN[)ARY LEAKAGE. Regulatory Guide 1.45          145 (Ref. 2) describes acceptable dcceptable methods for selecting leakage eokaqe detection systems.
Each sump tank has its own level transmitter which is monitored by a dedicated processing unit.Normally closed drain valves are provided, enabling the level in each tank to increase as leakage drains into them.The processing unit calculates an average leak rate for a given measurement period by establishing the amount of increase in level that occurred during the period, and converting that value into volumetric terms (gpm).The processing units provide an alarm in the main control room each time the average leak rate changes by a predetermined value since the last time that alarm was reset.The setpoint isa1 gpm change in unidentified Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 3 of 10
ledkaqe from the reactor coolant pressure boundary (RePB)
Limits on leakage                                                                   (RCPB) are required so that appropriate approprHlte action can be      he taken before the integrity of the RepS        RCPB is impaired (Ref.
2). Leakage detection systems for the ReS              RCS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply quantitative quantitativ~                  nt of leakage rates.
                                ~f~"l1 Systems forl\~
forsepara          the leakage of    o        identifid sOblPce aA identified  ourc from n          unidntifid iO'lrC~
Qn blnidQntifiQd    ourc are (we necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action. Leakage from the RepS                  RCPB inside Inside the drywell is detected by at least one of four (4) independently monitored variables which include
~1I'J$!<Ti
/N56p.:7i :-*fPY'14CII  drain 5Uffl~
ktrywell draifl            )evel eMdrt'de:3 ev~r time sump level gaseous radioactivity, drywel1 4me yield;n~
yi&dinj d-roi dr6;'''t fow  16te~ ~drywel flow rate drywell unit cooler condensate flow rate and drywel1 pressure/temperature levels. The primary means of quantifying leakage in the drywell pressure/temperaturelevels.TheP.rimarymeans idrywellJ drywell drail't"9$ump ~on;toring
      @ is J\aJthe t5 &#the drywell floor dra+/-m-ump the drywel lowonitoring system for UN[OENTIEIED drywellI equipment drain tank flow monitoring system for IDENTIFIED LEAKAGE.
UN[DENTIFIED LEAKAGE and IDENTIFIED leakage is not germane to this Tech Spec and the associated drywel                    drywellI equipment drain tank flow monitoring system is not included.
The drywell floor drain sump flow monitoring system monitors UNIDENTIFIED LEAKAGE cot lected in the floor drain sump. UNIDENTIFIED LEAKAGE consists of leakage from RCPB collected components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump.             sump, The primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system. [he      fhe floor drain sump level transmitters are associated with High/Low level switches that open/close the sump tank drain valves automatical                automatically.
ly. The Ehe level instrument processing unit calculates an average leak rate (gpm) for aa given measurement period which resets whenever the sump drain valve closes. The level processing unit provides an alarm to the main control room each time the average leak rate changes by aa predetermined value since the last time the alarm was reset. For the drywell floor drain sump flow monitoring system, the setpoint basis is aa 11 gpm change in IJNIDENTIFIED UNIDENTIFIED LEAKAGE.
[&sect;f3 IN5E1<.T 2. ...,
(N5EIZTZ    -
In add'; t on to the drywe 1'1 In addition i      to the drywell ROiJi                        ~oni tori ng systerTdescribed d raj ,,'Sump turonitoring
("loor dair/ump                            sys terl\\ descri bed above, the discharge of each sump is monitored by an independent flow element. The measured flow rate from the flow element is integrated and recorded. AA main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flow element. This system, referred to as the drywell          "drywell floor drain flow totalizer, tota'lizer", is not credited for drywell floor drain sump flow monitoring system operability.          operabi lity.
LIMERICK - UNIT 11
                          -                                    BB 3/4 4-3                              Amendment 44, Amendment    ~, i4,
                                                                                                                            ~, ~I


==3.0 TECHNICAL EVALUATION==
gE/\c*rOB REAC      I OR COOLANT SYS rEtl 3/1.4.3 3/4                REACTOR COOLAN 4.,JiIEAGrQR                  COOLANt1SYS    sysrEM      LEAKAGE rELLLAKAGE 3J4L3 i IJAKAGE OEJECrJVlL 5Y5IEP1 13ACKGRQUND OA(;K(:1ROuNj)
U1:SAR UFSAR SLitety Safety Des        DesiqnI qn Basis          Ref 1),
3as s ((H(~f. . 1 ) requl                        detecting res means for deecti requires                                  and, to the extent nq and  ,
practicdl.
practi        c I identifying
                            ,    idcnti        yi      nq the 1location octi on ot    of the source of ke(ctor Heactor Coo      1 rint System ((HCS)
Coolant              RCS)
PRESSURE BOUNDARY LEAKAGE. Regulatory Guide 1.45 PRESSURE                                                                              1.4 (Ref. 2) describes acceptable methods for selecting leakage            Iekaqe detection systcms.        sy terns.
limits Limi      ts on Ikdqe  t~~dkdqe troin    from the reactor rector coolant pressure prl~ssur'e boundary (RCPB)  (RepS) re are required so that appropriate action                  iction C]fl  can hebe taken before the integrity of the RCPB is impaired (Ref.
2). Lekge  Leakage detection systems for the RCS                            ReS (we are provided to otert  alert the operators when leakage rates hove 1ekoqe                          above normal b3ckqround  background levels ore      are detected and also to supply qU d n t ; tdti qudnti                  ve iin I~
t d t 'j ye                  ,:') r nt n t of 0f 1  ed kaq era ledkaqe        t es.
rctes.
                                    'f. lA."'l-tl '  I Systems forA.
* the leakage of ,3M idel,t;f;~d source flnil' dn uJiidefiLlfred sourc~
are re necessary to provide prompt and quantitative information to the operators to permit them to take immedite          immediate corrective action. Leakage from                    rrom the RCPB  RepS inside the drywell is detected by at              it least one of four (4) independently monitored variables whch                                wh'ch include
/N5ET        yw&}-&r-ir-          . , urnpFetet- ehnqe              .      over ' time .    .,"
yi&c14nqdra-ftf-oi            rates,,        drywell gaseous radioactivity, dryweli qaseous                                              drywell unit cooler condensate flow rate and drywell pre    s sur e/ temp era t ur e )levels.
pressure/temperature                              eve Is. The primary means of quantifying  qua n t i f yin glleakage eakage 1n in the dr ywe 'III drywel fViSi,,~he 5  .43ithe drywell  dryweli ~Ioo,.      ordroirtump  (1raiFl"sump HWmonitoring f-4-ewFnonitoring system for UNIDENTIFIED LEAKAGE and
  ~ the drywel 1                1 equipment drain tank flow                  Iow monitoring system for lDENTIFIED    IDENTIFIED LEAKAGE.
IDENTIFIED leakage      leakoge is not germane to this Tech Spec and the associated drywell t~ q U 'j Prn en t dr e(luiprnent                a in ttank drain          d nk fl        moni ow mo flow      nitturing      system 0 r 'j n9 sYs          nott iincluded.
t emiiss no    nc 1uded .
The drywell drywel 1 floor drain            drum sump flow monitoring system monitors UNIDENTIFIED LEAKAGE collected in the floor drain sump. UNIDENTIFIED LEAKAGE consists of leakage from RCPS                                                      RCPB components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump. fhe                                      Ihe primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system. The floor drain sump level transmitters are associated with High/Low level switches that open/close the sump                                    surnp tank drain valves automatically. The level instrument processing unit calculates an average leak rate (gpm) for a given leve) measurement period which resets whenever the sump drain valve closes. The level processing unit provides an alarm to the main control room each time the average leak rate changes by aa predetermined value since the last time the alarm was reset. For the drywell dryweli floor drain sump flow monitoring system, the setpoint basis is a 1                                                    1 gpm change in UNIDENTIFIED LEAKAGE.
~~              addition to the drywell Floci                      floor dl      ~;n"sump ~monitoring drsumpf+omonitoring system described above, the discharge of each sump is monitored by an independent flow element. The measured flow rate from the flow element is                            is integrated and recorded. A              A main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flow eelement.
1eme nt . rFhis      h; s ssystem, y s t em ~ ref      erredtto0 as the "dr referred                        yw ell fl drywell      00 r dr floor        a i n flow tot drain              ali ze r", iiss not totalizer, credited for drywel1            drywell floor drain sump              sumo flow monitoring system operability.
LIMERICK - UNIT 22  -                                                      B 3/4 4-3 B                                                      414, ~
Amendment -14,


===3.1 Drywell===
Insert 11 drywell sump flow monitoring equipment with the required RCS ReS leakage detection (Le., the drywell floor drain sump flow monitoring system, or, the drywell instrumentation (i.e.,
Sump Level Monitoring
equipment drain sump monitoring system with the drywell floor drain sump overflowing to the drywell equipment drain sump),
Insert 22 An alternate to the drywell floor drain sump flow monitoring system for quantifying UNIDENTIFIED LEAKAGE is the drywell equipment drain sump monitoring system, if the drywell floor drain sump is overflowing to the drywell equipment drain sump. In this configuration, the drywell equipment drain sump collects all leakage into the drywell equipment drain sump and the overflow from the drywell floor drain sump. Therefore, if the drywell floor drain sump is overflowing to the drywell equipment drain sump, the drywell equipment drain sump monitoring system can be used to quantify UNIDENTIFIED LEAKAGE. In this condition, all leakage measured by the drywell equipment drain sump monitoring system is assumed to be UNIDENTIFIED LEAKAGE. The leakage determination process, including the transition to and use of the alternate method is described in station procedures. The alternate method would only be used when the drywell floor drain sump flow monitoring system is unavailable.


===System Description===
REACTOR fEACTOR COOLANT SYSTEM  SYSFEM BACKGROUND (Continued)
The DWEDS at LGS is located immediately adjacent to the DWFDS, withthetop of both sumps (tanks)at the same elevation, approximately seven feet apart.There are no obstructions between the two sumps to prevent or divert drywell floor drain sump overflow from reaching the drywell equipment drain sump.Based on the sump configurations, an engineering computation determined that approximately 550 gallons are required in the DWFDS for overflow into the DWEDS.Attachment 5 contains drawings detailing the physical configuration of the sumps.LGS has verified that the sump configuration and sump volumes for LGS Units 1 and 2 (i.e., both DWEDS and DWFDS)are equivalent to the DNPS Unit 3 DWFDS and DWEDS sump configuration and volume (Le., approximately 1000 gallons full capacity each).All leakage from Reactor Coolant Pressure Boundary (RCPB)components inside the drywell, with the exception of leakage from the Main Steam Relief Valves (MSRVs)(Updated Final Safety Analysis Report (UFSAR)Section 5.2.5.2.1.8), flows directly to either the drywell equipment drain sump orthedrywell floor drain sump.There are no other reservoirs in the drywell of sufficient capacity to prevent leakage from draining directly to either of these sumps.Both drain sumps are identically sized, horizontal cylindrical tanks located inside the reactor vessel pedestal below the diaphragm slab and vented to the drywell atmosphere.
(Continuedi The primary containment atmospheric gaseous radioactivity monitoring system continuously monitors the primary containment atmosphere for gaseous radioactivity levels. A      A sudden increase of radioactivity, which may be attributed to RCPB steam or reactor water leakage, is annunciated in the main control room. The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 11 gpm within 11 hour. Larger changes in leakage rates are detected in proportionally shorter times (Ref. 4).
Leakage from RCPS components inside the primary containment which are not normally subject to leakage is collected by the DWFDS.This leakage, which may originate from any number of sources within the drywell, is transported to the sump via the floor drain network within the drywell.Thus, separation of unidentified leakage from the identifiable leakage routed to the equipment drain sump ensures that a small unidentified leakage that is of concern will not be masked by a larger, acceptable, identified leakage.The DWEDS monitoring system is similar to the DWFDS monitoring system.Certain RCPB components within the drywell are, by the nature of their design, normally subject to a limited amount of leakage.These components include pump seals, valve stem packings, and other equipment that cannot practicably be made to be completely leak-tight.
Condensate from the eight drywell air coolers is routed to the drywell floor drain sump and is monitored by aa series of flow transmitters that provide indication and alarms in the main control room. The outputs from the flow transmitters are added together by summing units to provide aa total continuous condensate drain flow rate. The high flow alarm setpoint is based on condensate drain flow rate in excess of 11 gpm over the currently identified preset leak rate. The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS UNIDENTIFIED LEAKAGE (Ref. 5).
These leakages are piped directly tothedrywell equipment drain sump.All of the various drains are open only to the equipment they serve, thereby receiving leakage only from identified sources.Background leakage to this sump is determined during initial plant operation.
The drywe'll dryweil temperature and pressure monitoring system provide an indirect method for detecting RepS  RCPB "Ieakge.
Rates of leakage collection in excess of background indicates abnormal RCPB leakage.The control circuits for the two monitoring systems perform the same functions, and sump instrumentation consists of the same components and performs a similar function.Instruments for both monitoring systems are calibrated using similar plant procedures to satisfy TS Surveillance Requirements (SRs)for functional testing and calibration.
ieakge. A  A temperature and/or pressure rise in the drywell above normal levels may be indicative of aa reactor coolant or steam leakage (Ref. 6).
Each sump tank has its own level transmitter which is monitored by a dedicated processing unit.Normally closed drain valves are provided, enabling the level in each tank to increase as leakage drains into them.The processing unit calculates an average leak rate for a given measurement period by establishing the amount of increase in level that occurred during the period, and converting that value into volumetric terms (gpm).The processing units provide an alarm in the main control room each time the average leak rate changes by a predetermined value since the last time that alarm was reset.The setpoint isa1 gpm change in unidentified Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 4 of 10 leakage collected in the drywell floor drain sump tank, anda2 gpm change in identified leakage collected in the drywell equipment drain tank.Alarms are also generated in the main control room for high total average leak rate.The high total average leak rate alarm setpoints can be adjusted at the processing unit, which is located in the main control room, as the amount of acceptable identified leakage changes during operation.
APPLICABLE SAFETY ANALYSES A
Indication of the leakage rates is provided in the main control room onmounted indicators.
A threat of significant compromise to the RCPS            RCPB exists if the barrier contains a       a crack that is large enough to propagate rapidly. Leakage rate limits are set low enough to detect the leakage emitted from a           a single crack in the RCPB (Refs. 7      7 and 8). Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room.
Sump tank levels (in gallons)are provided on monitors from the Plant Monitoring System.Level switches, which are independent of the level transmitters, open the sump tank drain valves when the level increases to an upper setpoint value and keep them open until the level decreases to the lower setpoint value.The level switches then close the drain valves and reset the processing units to start a new measurement period.The measurement period must be long enough to ensure that the level transmitter loop can adequately detect the increase in level that would correspond to the 1 gpm and 2 gpm changes in leak rates described above, and yet short enough to ensure that such a leak rate will be detected within an hour.The measurement period will be less than 1 hour.The transmitters which are located in the reactor enclosure and the processing units which are located in the main control room are accessible during normal plant operation for calibration.
AA control room alarm allows the operators to evaluate the significance of the indicated leakage and, if necessary, shut down the reactor for further investigation and corrective action. The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref. 8). Therefore, these actions provide adequate responses before aa significant break in the RCPB        RCPS can occur.
The transmitters can be isolated from the sump tanks by existing bypass manifolds.
RCS leakage detection instrumentation satisfies (Criterion 1                 1 of the NRC Policy Statement.
Zero and span adjustments can be made using portable test equipment.
LIMITING CONDITION FOR          OPERATIQ~ (LCD)
The processing unit functions can be calibrated by applying known input levels at the unit and observing the response.The Drywell Sump Level Monitoring System (DSLMS)is comprised of the processing units, level transmitters, control room leakage flow indicators and interconnecting raceway and cables.The DSLMS has been demonstrated to remain operational after a Safe Shutdown Earthquake.
FOR OPERATION      (LCO) ~11 T-e-rhe drywell dlywell fl-rflC~t drpin dl ~in sunip
The DSLMS is energized by Class1E power.The Class1E power to the panel is provided with a Class1E fuse and circuit breaker in series to meet separation requirements.
                                  ~ump flow flow monitoring mo"itol*il,g system 3Y3tem is 15 regtrFred I equireei to quantify qual9tifythe"...J2-the-bJN I DE~rT I FI ED LLAI(AGL
The DSLMS is automatically shed from the Class1E power in the event of a Loss of Coolant Accident (the load shedding relay, however, is not qualified for Class1E service).In addition, to the sump level monitoring system described above, the discharge from each sump is monitored by a flow element.The measured flow rate is integrated and recorded in the control room.A control room alarm is also provided to indicate excessive discharge rates.These indications and alarms are provided in accordance with Regulatory Guide 1.45.3.2 RCS Leakage Limits TS 3.4.3.2,"OPERATIONAL LEAKAGE,II specifies the leakage limits for the RCS.The leakage limits require, in part, unidentified leakage to be less than or equal to 5 gpm, total leakage averaged over the previous 24-hour period to be less than or equal to 25 gpm, and the increase in unidentified leakage within the previous 24-hour period to be less than 2 gpm.Section 5.2.5 of the LGS UFSAR describes the methods used for detection of leakage through the RCPS, and specifies use of the drywell sumps (Le., DWFDS and DWEDS)as the primary methods that can be used.The leakage collected in the DWEDS is identified leakage, and the leakage collected in the DWFDS is unidentified leakage.TS 3.4.3.1 currently requires the DWFDS be operable as a RCS leakage detection system.Theproposedchange revises TS 3.4.3.1 to support the addition of an alternative method to use the Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 4 of 10 leakage collected in the drywell floor drain sump tank, anda2 gpm change in identified leakage collected in the drywell equipment drain tank.Alarms are also generated in the main control room for high total average leak rate.The high total average leak rate alarm setpoints can be adjusted at the processing unit, which is located in the main control room, as the amount of acceptable identified leakage changes during operation.
-UN-IDEN-IIFIED      LEAKAGE from the RCS RCS-!- The other monitoring mon; tori ng systems provide provi de early ea rl y alarms a1arms to the operator so closer examination of other detection systems will be made to determine the extent of any corrective action that my be required. With any leakage detection system inoperable, monitoring for leakage in the RCPB              RepS is degraded.
Indication of the leakage rates is provided in the main control room onmounted indicators.
LIMERICK - UNIT I1
Sump tank levels (in gallons)are provided on monitors from the Plant Monitoring System.Level switches, which are independent of the level transmitters, open the sump tank drain valves when the level increases to an upper setpoint value and keep them open until the level decreases to the lower setpoint value.The level switches then close the drain valves and reset the processing units to start a new measurement period.The measurement period must be long enough to ensure that the level transmitter loop can adequately detect the increase in level that would correspond to the 1 gpm and 2 gpm changes in leak rates described above, and yet short enough to ensure that such a leak rate will be detected within an hour.The measurement period will be less than 1 hour.The transmitters which are located in the reactor enclosure and the processing units which are located in the main control room are accessible during normal plant operation for calibration.
                -                                BB 3/ 44 4-3a                                  Amendment    M1fI
The transmitters can be isolated from the sump tanks by existing bypass manifolds.
Zero and span adjustments can be made using portable test equipment.
The processing unit functions can be calibrated by applying known input levels at the unit and observing the response.The Drywell Sump Level Monitoring System (DSLMS)is comprised of the processing units, level transmitters, control room leakage flow indicators and interconnecting raceway and cables.The DSLMS has been demonstrated to remain operational after a Safe Shutdown Earthquake.
The DSLMS is energized by Class1E power.The Class1E power to the panel is provided with a Class1E fuse and circuit breaker in series to meet separation requirements.
The DSLMS is automatically shed from the Class1E power in the event of a Loss of Coolant Accident (the load shedding relay, however, is not qualified for Class1E service).In addition, to the sump level monitoring system described above, the discharge from each sump is monitored by a flow element.The measured flow rate is integrated and recorded in the control room.A control room alarm is also provided to indicate excessive discharge rates.These indications and alarms are provided in accordance with Regulatory Guide 1.45.3.2 RCS Leakage Limits TS 3.4.3.2,"OPERATIONAL LEAKAGE," specifies the leakage limits for the RCS.The leakage limits require, in part, unidentified leakage to be less than or equal to 5 gpm, total leakage averaged over the previous 24-hour period to be less than or equal to 25 gpm, and the increase in unidentified leakage within the previous 24-hour period to be less than 2 gpm.Section 5.2.5 of the LGS UFSAR describes the methods used for detection of leakage through the RCPS, and specifies use of the drywell sumps (Le., DWFDS and DWEDS)as the primary methods that can be used.The leakage collected in the DWEDS is identified leakage, and the leakage collected in the DWFDS is unidentified leakage.TS 3.4.3.1 currently requires the DWFDS be operable as a RCS leakage detection system.Theproposedchange revises TS 3.4.3.1 to support the addition of an alternative method to use the Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 5 of 10 installed DWEDS in the situation that the DWFDS is inoperable and the DWEDS is operable.In this situation the inoperable DWFDS would overflow into the DWEDS which would be capable of quantifying total RCS leakage (Le., unidentified plus identified leakage).The resultant value of total RCS leakage would be conservatively verified to be less than the TS 3.4.3.2.b unidentified leakage limit of 5 gpm and TS 3.4.3.2.1 unidentified leakage increase limit of 2 gpm within the previous 24 hours.3.3 RCS Leakage Detection While Filling the DWFDS LGS TS SR 4.4.3.2.1.b requires the verification every 8 hours that RCS leakage measured by the DWFDS and DWEDS is within the specified limits of TS 3.4.3.2 (unidentified leakage to be less than or equal to 5 gpm and the increase in unidentified leakage within the previous 24 hour period to be less than 2 gpm).As described above, after the DWFDS begins overflowing into the DWEDS, the DWEDS can be used to measure total leakage (Le., unidentified plus identified leakage).Overflow into the DWEDS was determined by an engineering evaluation tooccurafter accumulation of approximately 550 gallons in the DWFDS.In order for the DWFDS to overflow into the DWEDS, LGS personnel would either have to manually fill the DWFDS with an external water source or allow unidentified RCS leakage to fill the DWFDS.The use of unidentified RCS leakage to fill the DWFDS at or above 550 gallons in an 8 hour time period would require: 1.A minimum unidentified leakage rate of approximately 1.14gpm,and 2.The regulatory commitments delineated in this submittal for LGS, Units 1 and 2 (Le., verification of flow from the DWFDS to the DWEDS, prior to the initial use of the alternate monitoring method for a specific unit)have been satisfied.
The minimum unidentified leakage rate of approximately 1.14 gpm is based on the leakage rate required to fill approximately 550 gallons in the DWFDS in 8 hours.The 8 hour period represents the TS-required surveillance interval as specified in SR 4.4.3.2.1.b but does not included the additional 25%grace, or 2 hours, allowed by SR 4.0.2.This minimum leakage rate 1.14 gpm would cause the DWFDS to overflow into the DWEDS within the required SR 4.4.3.2.1.b interval.TS 3.4.3.2.1 requires that a'2 gpm increase in unidentified leakage over a 24-hour period is able to be detected.Conservatively assuming an empty DWFDS and a minimum, immediate increase in unidentified leak rate of 2 gpm the DWFDS would fill up to approximately 550 gallons and begin to overflow to the DWEDS in 4.6 hours.As stated above in Section 3.1 of this Attachment, the level switches will detecta2 gpm change in leak rates in the DWEDS and provide an alarm in the main control room.This meets the TS 3.4.3.2.1 requirement to detect a 2 gpm increase in unidentified leakage over a 24-hour period.TS 3.4.3.2.b imposes a leakage limit of 5 gpm of unidentified leakage.Conservatively assuming an empty DWFDS and a minimum, immediate increase in unidentified leak rate of 5 gpm the DWFDS would fill up to approximately 550 gallons and begin to overflow to the DWEDS in 1.83 hours.As stated above in Section 3.1 of this Attachment, the level switches will detecta2 gpm change in leak rates in the DWEDS and provide an alarm in the main control room.This amount of time is less than the TS Completion Time for TS 3.4.3.2, Action B which reduces unidentified leakage rate to within limits in 4 hours and the completion time for TS 3.4.3.1 , Action B which restores the drywell sump monitoring system to Operable status within 30 days.Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 5 of 10 installed DWEDS in the situation that the DWFDS is inoperable and the DWEDS is operable.In this situation the inoperable DWFDS would overflow into the DWEDS which would be capable of quantifying total RCS leakage (Le., unidentified plus identified leakage).The resultant value of total RCS leakage would be conservatively verified to be less than the TS 3.4.3.2.b unidentified leakage limit of 5 gpm and TS 3.4.3.2.1 unidentified leakage increase limit of 2 gpm within the previous 24 hours.3.3 RCS Leakage Detection While Filling the DWFDS LGS TS SR 4.4.3.2.1.b requires the verification every 8 hours that RCS leakage measured by the DWFDS and DWEDS is within the specified limits of TS 3.4.3.2 (unidentified leakage to be less than or equal to 5 gpm and the increase in unidentified leakage within the previous 24 hour period to be less than 2 gpm).As described above, after the DWFDS begins overflowing into the DWEDS, the DWEDS can be used to measure total leakage (Le., unidentified plus identified leakage).Overflow into the DWEDS was determined by an engineering evaluation tooccurafter accumulation of approximately 550 gallons in the DWFDS.In order for the DWFDS to overflow into the DWEDS, LGS personnel would either have to manually fill the DWFDS with an external water source or allow unidentified RCS leakage to fill the DWFDS.The use of unidentified RCS leakage to fill the DWFDS at or above 550 gallons in an 8 hour time period would require: 1.A minimum unidentified leakage rate of approximately 1.14gpm,and 2.The regulatory commitments delineated in this submittal for LGS, Units 1 and 2 (Le., verification of flow from the DWFDS to the DWEDS, prior to the initial use of the alternate monitoring method for a specific unit)have been satisfied.
The minimum unidentified leakage rate of approximately 1.14 gpm is based on the leakage rate required to fill approximately 550 gallons in the DWFDS in 8 hours.The 8 hour period represents the TS-required surveillance interval as specified in SR 4.4.3.2.1.b but does not included the additional 25%grace, or 2 hours, allowed by SR 4.0.2.This minimum leakage rate 1.14 gpm would cause the DWFDS to overflow into the DWEDS within the required SR 4.4.3.2.1.b interval.TS 3.4.3.2.1 requires that a'2 gpm increase in unidentified leakage over a 24-hour period is able to be detected.Conservatively assuming an empty DWFDS and a minimum, immediate increase in unidentified leak rate of 2 gpm the DWFDS would fill up to approximately 550 gallons and begin to overflow to the DWEDS in 4.6 hours.As stated above in Section 3.1 of this Attachment, the level switches will detecta2 gpm change in leak rates in the DWEDS and provide an alarm in the main control room.This meets the TS 3.4.3.2.1 requirement to detect a 2 gpm increase in unidentified leakage over a 24-hour period.TS 3.4.3.2.b imposes a leakage limit of 5 gpm of unidentified leakage.Conservatively assuming an empty DWFDS and a minimum, immediate increase in unidentified leak rate of 5 gpm the DWFDS would fill up to approximately 550 gallons and begin to overflow to the DWEDS in 1.83 hours.As stated above in Section 3.1 of this Attachment, the level switches will detecta2 gpm change in leak rates in the DWEDS and provide an alarm in the main control room.This amount of time is less than the TS Completion Time for TS 3.4.3.2, Action B which reduces unidentified leakage rate to within limits in 4 hours and the completion time for TS 3.4.3.1 , Action B which restores the drywell sump monitoring system to Operable status within 30 days.
Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 6 of 10 Therefore, depending upon the specific operational circumstances, filling of the DWFDS and ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage.In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times.3.4 Summary By allowing the drywell floor drain sump to overflow into the drywell equipment drain sump, Operations personnel are not able to differentiate between the identified and unidentified leakage inputs.As such, all leakage in the drywell sumps will be conservatively treated asunidentifiedleakage in accordance with the TS 3.4.3.2 limits.Ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage.In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times.Therefore, the addition of an alternative method to quantify unidentified leakage in the drywell is conservative with respect to the current TS limits.


==4.0 REGULATORY EVALUATION==
13ASLS BACKGROUND
.aAC.K ... &ROUND ((Continued)
Gon.t nued).
containment atmospheric The primary containment            a          ic gaseous radioactivity moni monitoring toring system continuously monitors the primary containment atmosphere for qaseous        gaseous radioactivity levels. AA sudden increase of radioactivity, which may be attributed to RCPB            RCPS steam or reactor water leakage, is annunciated in the main control room. The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 1              1 gpm within 11 hour. Larger changes in leakage rates are detected in proportionally shorter times (Ref.(I~ef. 4).
                    '1.).
Condensate from the eight dryweil    drywell air coolers is routed to the drywell floor drain sump and is  ;s monitored by aa series of flow transmitters that provide indication and alarms in the main control room. The      Trle outputs from the trle flow transmitter's transmitters are added together by summing units to provide aa total continuous condensate drain flow rate. The high flow alarm setpoint is based on condensate drain flow rate in excess of 1              1 gpm over the currently identified preset leak rate. The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS            ReS UNIDENTIFIED LEAKAGE (Ref. 5).
The drywell temperature and pressure monitoring systems provide an indirect method for detecting RCPB    RepS leakage. AA temperature and/or pressure rise in the dryweil  drywell above normal levels may be indicative of aa reactor coolant or steam leakage (Ref. 6).
APPLICABLE SAFETY ANALYSES AA threat of significant compromise to the RePB        RCPB exists if the barrier contains aa crack that is large enough to propagate rapidly. Leakage rate limits are set low enough to detect the leakage emitted from aa single crack in the RePB        RCPB (Refs. 7 7 and 8). Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room.
A control room alarm allow the operators to evaluate the significance of the indicated A
leakage and, if necessary, shut down the reactor for further investigation and corrective action. The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref. 8). Therefore, these actions provide adequate response before aa significant break in the RePB      RCPB can occur.
Res RCS leakage detection instrumentation satisfies Criterion 1            1 of the NRC Policy Statement.
  ~~:I::::e~~N::~::Nd:~~nO::::T~~:\~(~::~t~~ui                              red to quanti f1 th~
LIMITING CONDITION FOR OPERATION (LCO)
                                                      /NST 3 T4edrywcl1floordrainsurnp fow montormngsys                    i.3 required to- guantifyth I:JNIDENTIFIED U-N4-DLN-TIFIL LEAKAGE fro,,,      Llle RC~~
Furii tti  RC. The other monitoring systems provide early alarms to the operators so closer examination of other detection systems will be made to determine the extent of any corrective action that may be required. With any leakage detection system inoperable, monitoring for leakage in the RepS          RCPB is degraded.
LIMERICK - UNIT 22
                -                                  B B 3/4 4-3a                                Amendment ~


===4.1 Applicable===
Insert 33 Insert instrumentation to The required instrumentation The                                             UNIDENTIFIED LEAKAGE quantify UNIDENTIFIED to quantify                    LEAKAGE from from the the RCS   consists of ReS consists  of either the drywell either                                        monitoring system, sump flow monitoring drain sump drywell floor drain                         system, or,or, the drywell             drain sump drywell equipment drain    sump monitoring                      drywell floor drain sump overflowing system with the drywell monitoring system                                                            the drywell equipment drain overflowing to the                       drain sump.
Regulatory Requirements
sump. For For  either  system system  to to be be considered considered  operable, the flow  monitoring monitoring  portion portion of of the the system system must be operable.
/Criteria LGS Units 1 and 2 were originally designed and constructed following the issuance of the General Design Criteria (GDC).The GDC proposed criteria were adopted as regulatory requirements at both LGS Units.Details regarding the reactor coolant system leakage detection systems are provided in UFSAR Section 5.2.5,11 Reactor Coolant Pressure Boundary Leak Detection System.1I One of the leakage detection systems discussed is the drywell sumps (Le., DWFDS and DWEDS).The UFSAR states that various leak detection systems and capabilities collectively detect reactor coolant pressure boundary leakage, both identified and unidentified.
must
These indications and alarms are provided in accordance with Regulatory Guide 1.45.The proposed change does not involve physical changes to the RCS leakage detection systems.Rather, the proposed change allows use of the drywell equipment drain monitoring system to perform the function of the drywell floor drain monitoring system in quantifying unidentified leakage within the LGS Units 1 and 2 drywells.The design function of the RCS leakage detection systems is not affected by the proposed change.In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage.Therefore, there is no impact to EGC's ability to meet the applicable regulatory requirements discussed above.4.2 Precedent The proposed alternate method has been incorporated into the TSs for the Monticello Nuclear Generating Plant (References 6.10 and 6.11), the Peach Bottom Atomic Power Station, Unit 2 and Unit 3 (References 6.12 and 6.13).In addition, the NRC has previously approved similar Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 6 of 10 Therefore, depending upon the specific operational circumstances, filling of the DWFDS and ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage.In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times.3.4 Summary By allowing the drywell floor drain sump to overflow into the drywell equipment drain sump, Operations personnel are not able to differentiate between the identified and unidentified leakage inputs.As such, all leakage in the drywell sumps will be conservatively treated asunidentifiedleakage in accordance with the TS 3.4.3.2 limits.Ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage.In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times.Therefore, the addition of an alternative method to quantify unidentified leakage in the drywell is conservative with respect to the current TS limits.


==4.0 REGULATORY EVALUATION==
l~. EAC[OR PLA(;      r0Reo        0LAN Fr SYS
(;OOLAN          s y s rEM EM AI\PPLlC;\B[Llry P P L [ CAB I L I 1 V I[n  () PEH1\ Fr[I ONAL n oPERA              0NALe(::OND 0 NDII T                        nd :3, Iled
[ () NS I1, 22, () rid E IONS        ,    ,        ,      kd qe (1(tC eCik(qe    c1 e tee tt i 011
(] n SYS sy s terns t ems ()1 re rerequi    r e (j t&#xf8; requi r(j    to hbe OPERABLE to OPERABLE              to support support LEO      LCD 34.3. 3.4.3.2. [his  fhis applicabi Ippi icibi litylity is consistent consistent with  with thdt that Eorfor LEO LCO
.3:).4.3.2.
      . 4 3 ACTION ACEION A.          With Ehe    the primary containment atmosphere (j(seous                qaseous monitoring system inoperable, grab                    lJrdb
            ~;drnp dITIpII es S at of Lh(?
the prriary                      nmen t atmosphere conta i nment pri rna fy COfltai              d tmosptlere must rnus t be takenta ken and      dnd lyzed dnd aria                prov i de 1y led to provide periodic pen                leakage information.
odi C I((]kage              i nformati on. [Provided aa sample is                      obtained i s obtal                analyzed dnd ana ned arid        lyzed once everyevery 12 12    ~10urs hours,    f  the trle    p I ant plant        may  be he  operated    for up    to    30  (jays days      to  d 11 allowow  restorat restorationi on oE of the radioactivity monitoring system. rhe plant may continue operation since other forms radioactivit.y of drywel at-                      t~ d k age detection are avai d r yw e I I11leakage                                  ava i lable.]
1ab 1e * ]
rhe 12 hour interval provides periodic information that iiss adequate to detect Flie leakage. fhe      rhe 30 day Completion Time              rifle for Restoration recognizes other ftrms                  forms of leakaqe ~
leakage          d            I~
* e available.
the~
IN5t?,              I B.
B.        With the
* drill" 5ump Flow rnonitci ;l1g "ystem-'inoperable. no other form oor--df-umpf1owmonitoringsystminoperabie, of sampling can provide the equivalent information to quantify leakage at the required 1        1 gpm/hour sensitivity. However, the primary containment atmospheric gaseous monitor [and the primary containment air cooler condensate flow rate monitor]
monitor] wil                    rovide indication of changes in leakage.
                          ,NSer<TS
                          ,NSE7zTS With : e* r we-fToordai-n ttmpfiow monitorin ys-teWinoperable,                                          inoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref. SR 4.43.2.l.h) operation may continue for 30 days. To the extent practical, the 4.4.3.2.1.b) surveillance frequency      Frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor                                          Floor drain monitoring system which had aa normal surveillance requirement to monitor leakage every 8 hours.
Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b. fhe                              The 30 day Completion Time of                oF the required ACTION is acceptable, based on operating experience, considering the                                                the multiple forms of leakage leakage detection that are still available.
LIMERICK LIMERICK - UNIT    -  UNIT 11                                      BB 3/4  4-3b 3/4 4-3b                                            Amendment ~, ~
Amendment      ,


===4.1 Applicable===
REACTOR COOLANLSXSJLM
Regulatory Requirements
                        --=                                =====_  -* --= -                  - --.-..- .--
/Criteria LGS Units 1 and 2 were originally designed and constructed following the issuance of the General Design Criteria (GDC).The GDC proposed criteria were adopted as regulatory requirements at both LGS Units.Details regarding the reactor coolant system leakage detection systems are provided in UFSAR Section 5.2.5,11 Reactor Coolant Pressure Boundary Leak Detection System.1I One of the leakage detection systems discussed is the drywell sumps (Le., DWFDS and DWEDS).The UFSAR states that various leak detection systems and capabilities collectively detect reactor coolant pressure boundary leakage, both identified and unidentified.
&.___==
These indications and alarms are provided in accordance with Regulatory Guide 1.45.The proposed change does not involve physical changes to the RCS leakage detection systems.Rather, the proposed change allows use of the drywell equipment drain monitoring system to perform the function of the drywell floor drain monitoring system in quantifying unidentified leakage within the LGS Units 1 and 2 drywells.The design function of the RCS leakage detection systems is not affected by the proposed change.In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage.Therefore, there is no impact to EGC's ability to meet the applicable regulatory requirements discussed above.4.2 Precedent The proposed alternate method has been incorporated into the TSs for the Monticello Nuclear Generating Plant (References 6.10 and 6.11), the Peach Bottom Atomic Power Station, Unit 2 and Unit 3 (References 6.12 and 6.13).In addition, the NRC has previously approved similar Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 7 of 10 amendment requests to the TS for Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Units 1 and 2 (References 6.1 and 6.3).The subject license amendment request proposes to adopt revisions consistent with those proposed in the previously approved amendments.
~PPLICABILITY iPPLICAt3I  LITY.
4.3 No Significant Hazards Consideration In accordance with 10 CFR 50.90,"Application for amendment of license, construction permit, or early site permit, II Exelon Generation Company, LLC (EGC)requests an amendment to Facility Operating License Nos.NPF-39 and NPF-85 for Limerick Generating Station (LGS), Units 1 and 2, respectively.
In OPERATIONAL In  OPERATIONAL CONDitONS CONDITIONS 1,    1, 2, 2, and 3,   3, leakage leakage detection detection systems systems are are required required to    to be be OPERABLE OPERABLE    to     upport support      LCO LCO    3.4.3.2.
Specifically, the proposed change revises the Technical Specifications (TS)to support implementation of an alternative method of verifying that leakage intothedrywell floor drain sump is within limits.The alternative method involves use of the installed drywell equipment drain sump monitoring system to quantify unidentified leakage in the drywell.EGC has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92,"lssuance of amendment, II as discussed below: (1)Does the proposed change involve a significant increase in the probability or consequences of an accident previously evaluated?
:3.4.3.2.       This This    applicability        is is  consistent consistent with with  that that      for LCO LCO 3.4.3.2.
Response: No.The proposed change does not involve physical changes to any plant structure, system, or component.
3.4.3.2.
As a result, no new failure modes of the Reactor Coolant System (RCS)leakage detection systems are being introduced.
_cIi OiS A. With the primary containment With                      containment atmosphere gaseous monitoring            monitoring system inoperable, grab samples of the primary containment atmosphere must he                              be taken and analyzed to provide periodic leakage information. [Provided aa sample is obtained and analyzed once every 12 hours, the plant may be operated for up to 30 days to allow restoration of the 12 radioactivity monitoring system. The plant may continue operation since other forms of dryweil of drywell leakage detection are available.]
Additionally, the RCS leakage detection systems have no impact on any initiating event frequency.
The 12 hours interval provides periodic information that is adequate to detect leakage. the   fhe 30 day Completion Time for Restoration recognizes other forms of leak~
The consequences of a previously analyzed accident are dependent on the initial conditions assumed for the analysis, the behavior of the fuel during the analyzed accident, the availability andsuccessfulfunctioning of the equipment assumed to operate in response to the analyzed event, and the setpoints at which these actions are initiated.
leak            e
The ReS leakage detection systems do not perform an accident mitigating function.Emergency Core Cooling System, Reactor Protection System, and primary and secondary containment isolation actuations are not affected by the proposed change.The proposed change has no impact on any setpoints or functions related to these actuations.
* n are available.
There are no changes inthetypes or significant increase in the amounts of any effluents released offsite.Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.
(t%lsErrj (N$~T4 8.
(2)Does the proposed change create the possibility of a new or different kind of accident from any accident previously evaluated?
: 13. WithA~
Response: No.The proposed change allows use of the drywell equipment drain system as an alternative method of quantifying unidentified leakage in the drywell.The drywell Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 7 of 10 amendment requests to the TS for Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Units 1 and 2 (References 6.1 and 6.3).The subject license amendment request proposes to adopt revisions consistent with those proposed in the previously approved amendments.
With,
4.3 No Significant Hazards Consideration In accordance with 10 CFR 50.90,"Application for amendment of license, construction permit, or early site permit, II Exelon Generation Company, LLC (EGC)requests an amendment to Facility Operating License Nos.NPF-39 and NPF-85 for Limerick Generating Station (LGS), Units 1 and 2, respectively.
* r*        Floor    dt f1; 1'1 ~UfflP fl O~4 !ftOfll fl OCI drainumpfow fl te-ri ng ysteWinoper monitoiing      systeR1i noperabl e, no other form able, of sampling can provide the equivalent information to quantify leakage at the required 11 gpm/hour sensitivity. However, the primary containment atmospheric required gaseous monitor [and the primary containment air cooler condensate flow rate moni~ide monitor]      will rovide indication of changes in leakage.
Specifically, the proposed change revises the Technical Specifications (TS)to support implementation of an alternative method of verifying that leakage intothedrywell floor drain sump is within limits.The alternative method involves use of the installed drywell equipment drain sump monitoring system to quantify unidentified leakage in the drywell.EGC has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92,"lssuance of amendment, II as discussed below: (1)Does the proposed change involve a significant increase in the probability or consequences of an accident previously evaluated?
INSE1<T
Response: No.The proposed change does not involve physical changes to any plant structure, system, or component.
              /NSr5          5 Withl\~loor 4;
As a result, no new failure modes of the Reactor Coolant System (RCS)leakage detection systems are being introduced.
WithA                              drain SUFAJ3 floor 4rai-n-        surnflow        Iflonitoring systeH1inoperable, flo'iJ rnon4toning      systeiwinoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref: SR 4.4.3.2.1.b) operation may continue for 30 days. To the extent practical,                        practical the ,
Additionally, the RCS leakage detection systems have no impact on any initiating event frequency.
surveillance frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor drain sump monitoring system which had aa normal surveillance requirement to monitor leakage every 8 hours.
The consequences of a previously analyzed accident are dependent on the initial conditions assumed for the analysis, the behavior of the fuel during the analyzed accident, the availability andsuccessfulfunctioning of the equipment assumed to operate in response to the analyzed event, and the setpoints at which these actions are initiated.
Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b. The 30 day Completion Time of the required ACTION is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available.
The ReS leakage detection systems do not perform an accident mitigating function.Emergency Core Cooling System, Reactor Protection System, and primary and secondary containment isolation actuations are not affected by the proposed change.The proposed change has no impact on any setpoints or functions related to these actuations.
LIMERICK LIMERICK - UNIT
There are no changes inthetypes or significant increase in the amounts of any effluents released offsite.Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.
            -  UNIT 22                                            BB 3/4    4-3b 3/4 4-3b                            Amendment ~,
(2)Does the proposed change create the possibility of a new or different kind of accident from any accident previously evaluated?
Amendment        4-Q, ~
Response: No.The proposed change allows use of the drywell equipment drain system as an alternative method of quantifying unidentified leakage in the drywell.The drywell Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 8 of 10 equipment drain system will continue to be used for leakage collection and quantification.
There is no alteration to the parameterswithinwhich the plant is normally operated or in the setpoints that initiate protective or mitigative actions.As a result, no new failure modes are being introduced.
Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.
(3)Does the proposed change involve a significant reduction in a margin of safety?Response: No.The current TS require a periodic measurement of RCS leakage.The proposed change maintains the existing level of safety by allowing use of the drywell equipment drain sump system to quantifyunidentifiedleakage in the drywell.No changes are being made to any of the RCS leakage limits specified in the TS.The impact of the change is that measured unidentified and identified leakage within the drywell will be quantified as equivalent values sincethedrywell equipment drain sumpmonitoringsystem will also be used to measure leakage into the drywell floor drain sump.In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage.Therefore, the proposed change does not involve a significant reduction in a margin of safety.Based on the above, EGC concludes that the proposed amendment does not involve a significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of no significant hazards consideration is justified.


===4.4 Conclusions===
Insert 4 Insert4 drywell sump required drywell      monitoring system sump monitoring system Insert 55 Insert monitoring system required drywell sump monitoring  system
In conclusion, based on the considerations discussed above, (1)there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2)such activities will be conducted in compliance with the Commission's regulations, and (3)the issuance of the amendment will not be inimical to the common defense and security or the health and safety of the public.5.0 ENVIRONMENTAL CONSIDERATION A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20,"Standards for Protection Against Radiation." However, the proposed amendment does not involve (i)a significant hazards consideration, (ii)a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii)a significant increase in individual or cumulative occupational radiation exposure.Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9).
Therefore, purs.uant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment needs to be prepared in connection with the proposed amendment.
Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 8 of 10 equipment drain system will continue to be used for leakage collection and quantification.
There is no alteration to the parameterswithinwhich the plant is normally operated or in the setpoints that initiate protective or mitigative actions.As a result, no new failure modes are being introduced.
Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.
(3)Does the proposed change involve a significant reduction in a margin of safety?Response: No.The current TS require a periodic measurement of RCS leakage.The proposed change maintains the existing level of safety by allowing use of the drywell equipment drain sump system to quantifyunidentifiedleakage in the drywell.No changes are being made to any of the RCS leakage limits specified in the TS.The impact of the change is that measured unidentified and identified leakage within the drywell will be quantified as equivalent values sincethedrywell equipment drain sumpmonitoringsystem will also be used to measure leakage into the drywell floor drain sump.In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage.Therefore, the proposed change does not involve a significant reduction in a margin of safety.Based on the above, EGC concludes that the proposed amendment does not involve a significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of no significant hazards consideration is justified.


===4.4 Conclusions===
ATTACHMENT 4   z m
In conclusion, based on the considerations discussed above, (1)there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2)such activities will be conducted in compliance with the Commission's regulations, and (3)the issuance of the amendment will not be inimical to the common defense and security or the health and safety of the public.5.0 ENVIRONMENTAL CONSIDERATION A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20,"Standards for Protection Against Radiation." However, the proposed amendment does not involve (i)a significant hazards consideration, (ii)a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii)a significant increase in individual or cumulative occupational radiation exposure.Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9).
0-4 List of Commitments 3
Therefore, purs.uant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment needs to be prepared in connection with the proposed amendment.
3 m
Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 9 of 10
0+/-      -oc                za.
0I)
Limerick Generating Station, Units 1 and 2 Cm                                    71  CDCI) 0
-n 0)C)     00              Cl)           z Facility Operating License Nos. NPF-39 and NPF-85              -p CD Cl


==6.0 REFERENCES==
those actions committed to identifies those The following table identifies The                                                                by EGC to by          Limerick Generating EGG for Limerick  Generating Station  (LGS),  Units Station (LGS), Units and1 1  and  2 2  as as  part part of of the License License Amendment      Request Request. Any  other statements other  statements in this submittal in      submittal are                    information purposes and provided for information are provided                                  and are are not not regulatory commitments.
Commitment                  Commitment                    Commitment                      Event Number Number                                                      Date          One-Time      Programmatic Action        (Yes/No)
(Yes/No)
CM-1 CM-i        EGG will verify through EGC                                    Prior to initial        Yes              No historical or new test data that use of the the drywell floor drain sump          alternate sump overflows into the drywell            monitoring equipment drain sump at                method for LGS, LGS, Unit 1. 1 .                      Unit 1.
CM-2        EGG EGC    will verify  through          Prior to initial        Yes              No historical or new test data that use of the the drywell floor drain sump          alternate sump overflows into the drywell            monitoring equipment drain sump at                method for LGS, LGS, Unit 2.                          Unit 2.


6.1.Letter from J.L.Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station)to U.S.NRC,"Request for License AmendmenttoRevise Technical Specification 3.4.5, IIRCS Leakage Detection Instrumentation,1I to Allow Alternate Method of Verifying Drywell Leakage" dated August 28,2009 6.2.Letter from C.Gratton (U.S.NRC)to M.J.Pacilio (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2-Issuance of Amendments RE: Authorizing Alternative Methods of Verifying Leakage within the Drywell (TAC NOS.ME2148 THRU ME2151)," dated August 16,2010 6.3.Letter from D.B.Wozniak (Exelon Generation Company, LLC for Dresden Nuclear Power Station)to U.S.NRC, IIRequest for Enforcement Discretion for Technical Specifications (TS)3.4.4, IRCS Operational Leakage l and TS 3.4.5, IRCS Leakage Detection Instrumentation:" dated August 19, 2008 6.4.Letter from C.Pederson (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC),"Notice of Enforcement Discretion for Exelon Generation Company LLC Regarding Dresden Nuclear Power Station;Unit 3 (NOED 08-3-002), II dated August 21 , 2008 6.5.Letter from P.R.Simpson (Exelon Generation Company, LLC for Dresden Nuclear Power Station)to U.S.NRC,"Request for Emergency License Amendment Regarding Drywell Floor Drain Sump Monitoring System," dated August 18, 2008 6.6.Letter from C.Gratton (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Unit3-Issuance of Emergency Amendment Regarding Drywell Floor Drain Sump Monitoring System (TAC No.MD9467)," dated August22,2008 6.7.Letter from C.Gratton (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and2-Request for Additional Information Related to Alternate Method of Verifying Drywell Leakage (TAC Nos.ME2148 thru ME2151)," dated January 15, 2010.6.8.Letter from J.L.Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station)to U.S.NRC,"Supplemental Information Concerning Request for License Amendment to Revise Technical Specification 3.4.5,'RCS Leakage Detection Instrumentation"', dated February 5,2010 6.9.Letter from J.L.Hansen (Exelon Generation Company, LLC for Quad Cities Nuclear Power Station)to U.S.NRC, Supplemental Information Concerning Request for License Amendment to Revise Technical Specification 3.4.5,"RCS Leakage Detection Instrumentation" dated June 2, 2010 6.10.Letter from L.M.Padovan (U.S.NRC)to D.L.Wilson (Nuclear Management Company, LLC),"Monticello Nuclear Generating Plant-Issuance of Amendment Re: Drywell Leakage and Sump Monitoring Detection System (TAC No.MB7945),1I dated August 21, 2003 Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 9 of 10
ATTACHMENT 5 Drywell Sump Level Monitoring System Configuration Drawings (For Information Only)
Stationg Units 11 and 2 Limerick Generating Station, Facility Operating License Nos. NPF-39 and NPF-85 Drywell Sump Sumo Level Monitoring System Configuration Drawings HBB-163-1, HBB-1 63-1, "Reactor                                    Unit-i , Revision 4 BIdg Liquid & Solid Radwaste - Unit-1,"
Reactor Bld'g HBB-263-1, Liquid &
HBB-263-i, "Liquid  & Solid Radwaste Reactor Building Unit 2," 2, Revision 6 8031-M-61, 8031 -M-61, Sheet 1, 1, Liquid "Liquid Radwaste  Collection (Unit 1),
1)," Revision 37 8031-M-61, 8031 -M-61, Sheet 4, "Liquid                              2), Revision 15 Liquid Radwaste Collection (Unit 2),"
Reactor Bldg. Unit No. 11 Misc. Plans & Sections - Area 11 & 12,"
M-247, "Reactor                                                          12, Revision 23 M-328, "Reactor            No. 2 Misc. Plans &
Reactor Bldg. Unit No.2               & Sections - Area 13 &
14, Revision 11
                                                                        & 14,"


==6.0 REFERENCES==
4 LF.
14      L.r:.
1-.F.
m ICCNCCN REVJ2. REV_Q...
REVJ2..
CALC.
CALC.
NO43zQ?
NO i-43-0CP  i-43*0Co f(.ev. 4 f(ev.
EV          4 NiNOTE:
AOO~O 1Z.~F'~utJ.::.e Ar12r2 AI?OEO            12.~F'~UtJ"e' ~'"      ~'" M-~"JZ~f', "M-~~Z~f, 11oJ.GOiZ.p. ~k:.
ll,1ol0 11o.LGOlZ.p.
Atoll?                      f'O'lC. ~Iolr"..\.If. 1JI UN*U>J. 77. 7*
                                        ~
                                        ,.;rJl 01)11'
                        ~:/ t:~p
              -{'..J~ ""Uti 012 Ir-J*
012 /'0,,1.:1-10'('"
                                                                                    ~
                                                                                            '                1" O**{P'b iD
                                                                                                !j.'l-
                                                                              >( -V  ,Jp~l.-'
                                              ~
                                                                          ~
1'-6>"
y                                                                          ~EFERct-JCE 'DRoIl.WI"'''''e, E1CE 1<EI'ERENCE                  DRAWIMS
                                                                                                                                                                      'DR.o.WIt-JGf:,
                                                                                                                                ~Hpl 1-1          P4IL) pdlD PelD
                                                                                                                                *247
                                                                                                                                ~1' Z47 PIPING Ivl*          PIPIkJ& PLAN PLAN ARU,      ARE AREI', II.;    H t, 12 II SK-M-6411 5Tii:ESS SK-M-64IL SK-M-6412.          STRESS ISO STI<:ESS  ISO I2eYDI2eVD fCIZ-" M'              ~'!)'Z?      f Il* v wP d1          frLj siiE1                                                        -
i/?dSSUED              FOR FA.        iT    J I o*iL I                        I      I c4i            tRtR        am SEISMIC- CLASS I 5EI5>IV1IC 2aAu    1      aiaw Cjt SE1SPA1CCLSI                                                            BECHTEL BECHTEL FRANCISCO SAN FRANCISCO SAN FabcaiecI Bv:
Fabricated Fabricaled  By:                      .                                GENERATING STATION LIMERICK GENERAnNG LIMERICK                                        STATION SOUTHWEST FABRICATING SOUTHWEST AND ANO  WELDING FA8RICATING FABRICATING AND WELDING COMPANY  COMPANY                                        UNITS 1      1.2.2    COMPANY ELECTRIC COMPANY PHILADELPHIA ELECmlC PHI~AOELPHIA
__ .\_. -s__
J ._    *...
                                                                                                                        *.*.                      PHI!.AllELPHIA    ELECTP.IC 1SOv1.TR1C-150ME.
ISOME            TR\C TR1C - REACTOR  REACTOR RE.AC.        TOR BLD'G.      BLD.
LIQUiD ~&#xa3; SOLID LIQUiD              SOLID RADWASTE RADWATE - UNIT-I            -  UNIT-I t LiJ....            ML 143*"r::>
                                                                                                                                                                                ..........            I ...
tl9 [
I 8031 8031          I    BB-1-I HBB'I~~-I HBB'I~::'-I              144
                                                                ,S,PooL    SH&#xe9;7 IJ' SPccL 5Hce:r          2 9/3 29J                                                                        -
                                                                                                                                                                                              \l'i<.-({


6.1.Letter from J.L.Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station)to U.S.NRC,"Request for License AmendmenttoRevise Technical Specification 3.4.5, IIRCS Leakage Detection Instrumentation,1I to Allow Alternate Method of Verifying Drywell Leakage" dated August 28,2009 6.2.Letter from C.Gratton (U.S.NRC)to M.J.Pacilio (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2-Issuance of Amendments RE: Authorizing Alternative Methods of Verifying Leakage within the Drywell (TAC NOS.ME2148 THRU ME2151)," dated August 16,2010 6.3.Letter from D.B.Wozniak (Exelon Generation Company, LLC for Dresden Nuclear Power Station)to U.S.NRC, IIRequest for Enforcement Discretion for Technical Specifications (TS)3.4.4, IRCS Operational Leakage l and TS 3.4.5, IRCS Leakage Detection Instrumentation:" dated August 19, 2008 6.4.Letter from C.Pederson (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC),"Notice of Enforcement Discretion for Exelon Generation Company LLC Regarding Dresden Nuclear Power Station;Unit 3 (NOED 08-3-002), II dated August 21 , 2008 6.5.Letter from P.R.Simpson (Exelon Generation Company, LLC for Dresden Nuclear Power Station)to U.S.NRC,"Request for Emergency License Amendment Regarding Drywell Floor Drain Sump Monitoring System," dated August 18, 2008 6.6.Letter from C.Gratton (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Unit3-Issuance of Emergency Amendment Regarding Drywell Floor Drain Sump Monitoring System (TAC No.MD9467)," dated August22,2008 6.7.Letter from C.Gratton (U.S.NRC)to C.G.Pardee (Exelon Generation Company, LLC),"Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and2-Request for Additional Information Related to Alternate Method of Verifying Drywell Leakage (TAC Nos.ME2148 thru ME2151)," dated January 15, 2010.6.8.Letter from J.L.Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station)to U.S.NRC,"Supplemental Information Concerning Request for License Amendment to Revise Technical Specification 3.4.5,'RCS Leakage Detection Instrumentation"', dated February 5,2010 6.9.Letter from J.L.Hansen (Exelon Generation Company, LLC for Quad Cities Nuclear Power Station)to U.S.NRC, Supplemental Information Concerning Request for License Amendment to Revise Technical Specification 3.4.5,"RCS Leakage Detection Instrumentation" dated June 2, 2010 6.10.Letter from L.M.Padovan (U.S.NRC)to D.L.Wilson (Nuclear Management Company, LLC),"Monticello Nuclear Generating Plant-Issuance of Amendment Re: Drywell Leakage and Sump Monitoring Detection System (TAC No.MB7945),1I dated August 21, 2003 Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 10 of 10 6.11.Letter from T.A.Beltz (U.S.NRC)to J.T.Conway (Nuclear Management Company, LLC), IIMonticelio Nuclear Generating Plant (MGNP)-Issuance of Amendment for the Conversion to the Improved Technical Specifications with Beyond-Scope Issues (TAC Nos.MC7505, MC7597, through MC7611, and MC8887),1I dated June 5,2006 6.12.Letter from G.Gears (U.S.NRC)to E.G.Bauer (Philadelphia Electric Company), IITechnical Specification Amendments Pertaining to the Monitoring of Coolant Leakage and the Providing of Limitations on Iodine Concentrations in the Reactor Coolant, II dated February 27, 1985 6.13.Letter from J.W Shea (U.S.NRC)to G.A.Hunger, Jr., (PECO Energy Company, IIlssuance of Improved Technical Specifications, Peach Bottom Atomic Power Station, Unit Nos.2 and 3, (TAG Nos.M90746 and M90747),1I dated August 30, 1995 Alternate Method of Verifying Drywell Unidentified Leakage Attachment 1: Evaluation of Proposed Changes Page 10 of 10 6.11.Letter from T.A.Beltz (U.S.NRC)to J.T.Conway (Nuclear Management Company, LLC), IIMonticelio Nuclear Generating Plant (MGNP)-Issuance of Amendment for the Conversion to the Improved Technical Specifications with Beyond-Scope Issues (TAC Nos.MC7505, MC7597, through MC7611, and MC8887),1I dated June 5,2006 6.12.Letter from G.Gears (U.S.NRC)to E.G.Bauer (Philadelphia Electric Company), IITechnical Specification Amendments Pertaining to the Monitoring of Coolant Leakage and the Providing of Limitations on Iodine Concentrations in the Reactor Coolant, II dated February 27, 1985 6.13.Letter from J.W Shea (U.S.NRC)to G.A.Hunger, Jr., (PECO Energy Company, IIlssuance of Improved Technical Specifications, Peach Bottom Atomic Power Station, Unit Nos.2 and 3, (TAG Nos.M90746 and M90747),1I dated August 30, 1995 ATTACHMENT 2 Markup of Technical Specifications Pages Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 REVISED TECHNICAL SPECIFICATIONS PAGES 3/44-8 ATTACHMENT 2 Markup of Technical Specifications Pages Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 REVISED TECHNICAL SPECIFICATIONS PAGES 3/44-8 BEACTOR COQLANTSYSTEM
I S/U 2-6'30 S/li 2-690 2-63U  II LAST WELD "3 I LAST WELD -3
.3/4.4.3 REACTQR COOLANT SYSTEM LEAKAGE LEAKAGE DETECrION SYSTEMS 3.4.3.1 The following reactor coolant leakage detection systems shall be OPERABLE: a.The pr'imary containment atmosphere gaseous radioactivity monitoring system, b.The drywell floor draiNJsump system, c.The drywell unit coo'l ers condensate flow rate monitoring system, and d.The primary containment pressure and temperature monitoring system.APPLICABILITY; OPERATIONAL CONDITIONS 1, 2, and 3.**-The primary containment gaseous radioactivity monitor is not required to be operable until Operational Condition 2.ACTIONS: A.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days.B.With the drywell floor system inoperable, restore the drywell floor system to OPERABLE status within 30 days AND increase monitoring frequency of drywel'l unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 8 hours.c.With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform a channel check of the primary containment atmosphere gaseous radioactivity monitoring system CSR 4.4.3.1.a) once per 8 hours.D.With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days.NOTE: All other Tech Spec Limiting Conditions For Operation and Surveillance ReqUirements associated with the primary containment pressure/temperature monitoring system still apply.Affected Tech Spec Sections include: 3/4.3.7.5, 4.4.3.2.1, 3/4.6.1.6, and 3/4.6.1.7.
                                  #3                                                                                                                                                                                       14 14              L.F.
E.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable AND the drywel1 unit coolers condensate flow rate monitoring system inoperable, restore the primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days OR restore the drywell unit coolers condensate flow rate monitoring system to OPERABLE status within 30 days.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours.LIMERICK-UNIT 1 3/4 4-8 Amendment++/-, 14Q,BEACTOR COQLANTSYSTEM
LF.
.3/4.4.3 REACTQR COOLANT SYSTEM LEAKAGE LEAKAGE DETECrION SYSTEMS 3.4.3.1 The following reactor coolant leakage detection systems shall be OPERABLE: a.The pr'imary containment atmosphere gaseous radioactivity monitoring system, b.The drywell floor draiNJsump system, c.The drywell unit coo'l ers condensate flow rate monitoring system, and d.The primary containment pressure and temperature monitoring system.APPLICABILITY; OPERATIONAL CONDITIONS 1, 2, and 3.**-The primary containment gaseous radioactivity monitor is not required to be operable until Operational Condition 2.ACTIONS: A.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days.B.With the drywell floor system inoperable, restore the drywell floor system to OPERABLE status within 30 days AND increase monitoring frequency of drywel'l unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 8 hours.c.With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform a channel check of the primary containment atmosphere gaseous radioactivity monitoring system CSR 4.4.3.1.a) once per 8 hours.D.With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days.NOTE: All other Tech Spec Limiting Conditions For Operation and Surveillance ReqUirements associated with the primary containment pressure/temperature monitoring system still apply.Affected Tech Spec Sections include: 3/4.3.7.5, 4.4.3.2.1, 3/4.6.1.6, and 3/4.6.1.7.
ur LAST SPOOL 1 - - - - - - ' LAST LAST SPOOL -1B SPOOL        #18 "IB REV.
E.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable AND the drywel1 unit coolers condensate flow rate monitoring system inoperable, restore the primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days OR restore the drywell unit coolers condensate flow rate monitoring system to OPERABLE status within 30 days.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours.LIMERICK-UNIT 1 3/4 4-8 Amendment++/-, 14Q, REACTOR COOLANT SYSTEM JLAK8GE DETECTION SYSTEMS 3.4.3.1 The following reactor coolant leakage detection systems shall be OPERABLE: a.The primary containment atmosphere gaseous rad';oacti vi ty rnonitor'ing system, b.The drywe-Il floci dt tori ng system, c.The drywe'll un'j t coolers condensate f'low rate rna nit 0 ri n 9 system, and d.The primary containment pressure and temperature monitor"jng system.APPLICABILITY:
REV. 1       NOTE:
OPERATIONAL CONDITIONS 1, 2, and 3.**-The primary containment gaseous radioactivity monitor is not required to be operable until Operational Condition 2.ACTIONS;A.B.c.D.E.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days.With the drywell floc" dt elirt'sump system inoperable, restore the drywell draiMasump system to OPERABLE status within 30 days AND increase monitoring frequency of drywell unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 8 hours.With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform a channel check of the primary containment atmosphere gaseous radioactivity monitoring system (SR 4.4.3.1.a) once per 8 hours.With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days.Note: All other Tech Spec Limiting Conditions For Operation and Surveillance Requirements associated with the primary containment pressure/temperature monitoring system sti]]apply.Affected Tech Spec Sections include: 3/4.3.7.5.
I1 NOTE:
4.4.3.2.1.
ADDED SPOOL.
3/4.6.1.6.
ADDED          SPOOL, FW&M      FW&M \JU!"!BERS    \JU~!BERS NUMBERS ISSUED ISSUED FOR    FOR CONSTRUCTION CONSTRUCTiON REV.2 NOTE:  NOTE:
and 3/4.6.1.7.
                                                          "'\\<ii                                                                                                      ISSUED ISSUED FOR      OR 'HOLD'PER
With the primary containment atmosphere gaseous radioactivity monitoring system inoperable AND the drywell unit coolers condensate flow rate monitoring system inoperable, restore the primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days OR restore the drywell unit coolers condensate flow rate monitoring system to OPERABLE status within 30 days.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours.LIMERICK-UNIT 2 3/4 4-8 Amendment No.J4,REACTOR COOLANT SYSTEM JLAK8GE DETECTION SYSTEMS 3.4.3.1 The following reactor coolant leakage detection systems shall be OPERABLE: a.The primary containment atmosphere gaseous rad';oacti vi ty rnonitor'ing system, b.The drywe-Il floci dt tori ng system, c.The drywe'll un'j t coolers condensate f'low rate rna nit 0 ri n 9 system, and d.The primary containment pressure and temperature monitor"jng system.APPLICABILITY:
                                                                                                                                                                                                  'HOLO'PER HOLU PER EMF-1961 EMF-I961 10-13-75  10-13-75 REV.3 NOTE:   NO-:-E:
OPERATIONAL CONDITIONS 1, 2, and 3.**-The primary containment gaseous radioactivity monitor is not required to be operable until Operational Condition 2.ACTIONS;A.B.c.D.E.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days.With the drywell floc" d'elirt'sump system inoperable, restore the drywell draiMasump system to OPERABLE status within 30 days AND increase monitoring frequency of drywell unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 8 hours.With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform a channel check of the primary containment atmosphere gaseous radioactivity monitoring system (SR 4.4.3.1.a) once per 8 hours.With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days.Note: All other Tech Spec Limiting Conditions For Operation and Surveillance Requirements associated with the primary containment pressure/temperature monitoring system sti]]apply.Affected Tech Spec Sections include: 3/4.3.7.5.
NOTE:
4.4.3.2.1.
                                                                  "'\9..                                                                                               RELEASED ':-iOLC'    -iDLC PER Et~F-4667
3/4.6.1.6.
                                                                                                                                                                                              '~DLC'                          EMF-4667 DATED DATED 6-15-79 REV.4 REV.4 NOTE:  NOTE:
and 3/4.6.1.7.
REVIEWED REVIEWED P:::R      PER UNIT 1,1 AS 6UIL P"R                                        BUILT 6UIl      T CONDITION CONDITION "lND        AND P8<lD    P&IO M-6:
With the primary containment atmosphere gaseous radioactivity monitoring system inoperable AND the drywell unit coolers condensate flow rate monitoring system inoperable, restore the primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days OR restore the drywell unit coolers condensate flow rate monitoring system to OPERABLE status within 30 days.With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours.LIMERICK-UNIT 2 3/4 4-8 Amendment No.J4, ATTACHMENT 3 Markup of Technical Specifications Bases Pages (For Information Only)Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 REVISED TECHNICAL SPECIFICATIONS BASES PAGES B 3/44-3 B 3/44-3a B 3/44-3b ATTACHMENT 3 Markup of Technical Specifications Bases Pages (For Information Only)Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 REVISED TECHNICAL SPECIFICATIONS BASES PAGES B 3/44-3 B 3/44-3a B 3/44-3b f<EACTOR COOLANT SYSTEM 3/4,4.3 REACTOR COOLANT SYSTEM LEAKAGE 3/4.4.3.1 LEAKAGE DETECTION SYSTEMS BACK(JROUND UFSAR Safety Design Basis (J{ef.1), requires means for detecting and, to the extent practical, identifying the location of ttle source of Heactor Cootant System (ReS)PRESSURE BOUNDARY LEAKAGE.Regulatory Guide 1.45 (Ref.2)describes acceptable methods for selecting leakage detection systems.Limits on leakage from the reactor coolant pressure boundary (RePB)are required so that appropriate action can be taken before the integrity of the RepS is impaired (Ref.2).Leakage detection systems for the ReS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply of leakage rates.
F&ID              M-S: REV.1?
Systems the leakage of aA identified sOblPce from Qn blnidQntifiQd are necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action.Leakage from the RepS inside the drywell isdetected by at least one of four (4)independently monitored variables which include 1I'J$*!<Ti
1'1-6:       REV.l?
:-*fPY'14CII draifl level eMdrt'de:3 time dr6;'''t flow J gaseous radioactivity, drywel1 unit cooler condensate flow rate and drywel1@pressure/temperaturelevels.TheP.rimarymeans of quantifying leakage in the drywell is J\aJthe drywell floor drail't"9$ump system for UN[DENTIFIED LEAKAGE and the drywel I equipment drain tank flow monitoring system for IDENTIFIED LEAKAGE.IDENTIFIED leakage is not germane to this Tech Spec and the associated drywel I equipment drain tank flow monitoring system is not included.The drywell floor drain sump flow monitoring system monitors UNIDENTIFIED LEAKAGE cot lected in the floor drain sump.UNIDENTIFIED LEAKAGE consists of leakage from RCPB components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump.The primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system.fhe floor drain sump level transmitters are associated with High/Low level switches that open/close the sump tank drain valves automatically.
REV.17
The level instrument processing unit calculates an average leak rate (gpm)for a given measurement period which resets whenever the sump drain valve closes.The level processing unit provides an alarm to the main control room each time the average leak rate changes by a predetermined value since the last time the alarm was reset.For the drywell floor drain sump flow monitoring system, the setpoint basis is a 1 gpm change[&sect;f3 in UNIDENTIFIED LEAKAGE.IN5E1<.T 2....,In add';t i on to the drywe 1'1 ("loor d raj ,,'Sump tori ng sys terl\\descri bed above, the discharge of each sump is monitored by an independent flow element.The measured flow rate from the flow element is integrated and recorded.A main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flow element.This system, referred to as the"drywell floor drain flow tota'lizer", is not credited for drywell floor drain sump flow monitoring system operabi lity.LIMERICK-UNIT 1 B 3/4 4-3 Amendment f<EACTOR COOLANT SYSTEM 3/4,4.3 REACTOR COOLANT SYSTEM LEAKAGE 3/4.4.3.1 LEAKAGE DETECTION SYSTEMS BACK(JROUND UFSAR Safety Design Basis (J{ef.1), requires means for detecting and, to the extent practical, identifying the location of ttle source of Heactor Cootant System (ReS)PRESSURE BOUNDARY LEAKAGE.Regulatory Guide 1.45 (Ref.2)describes acceptable methods for selecting leakage detection systems.Limits on leakage from the reactor coolant pressure boundary (RePB)are required so that appropriate action can be taken before the integrity of the RepS is impaired (Ref.2).Leakage detection systems for the ReS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply of leakage rates.
                        ....\ 't-
Systems the leakage of aA identified sOblPce from Qn blnidQntifiQd are necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action.Leakage from the RepS inside the drywell isdetected by at least one of four (4)independently monitored variables which include 1I'J$*!<Ti
                      ~h                                                                                                                                                REV.5 REV. 5 NOTE:     NOTE:
:-*fPY'14CII draifl level eMdrt'de:3 time dr6;'''t flow J gaseous radioactivity, drywel1 unit cooler condensate flow rate and drywel1@pressure/temperaturelevels.TheP.rimarymeans of quantifying leakage in the drywell is J\aJthe drywell floor drail't"9$ump system for UN[DENTIFIED LEAKAGE and the drywel I equipment drain tank flow monitoring system for IDENTIFIED LEAKAGE.IDENTIFIED leakage is not germane to this Tech Spec and the associated drywel I equipment drain tank flow monitoring system is not included.The drywell floor drain sump flow monitoring system monitors UNIDENTIFIED LEAKAGE cot lected in the floor drain sump.UNIDENTIFIED LEAKAGE consists of leakage from RCPB components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump.The primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system.fhe floor drain sump level transmitters are associated with High/Low level switches that open/close the sump tank drain valves automatically.
ADDEO S/U SYS~EM ADDED                    SYSEM NO.
The level instrument processing unit calculates an average leak rate (gpm)for a given measurement period which resets whenever the sump drain valve closes.The level processing unit provides an alarm to the main control room each time the average leak rate changes by a predetermined value since the last time the alarm was reset.For the drywell floor drain sump flow monitoring system, the setpoint basis is a 1 gpm change[&sect;f3 in UNIDENTIFIED LEAKAGE.IN5E1<.T 2...., I n add';t i on to the drywe 1'1 ("loor d raj ,,'Sump tori ng sys terl\\descri bed above, the discharge of each sump is monitored by an independent flow element.The measured flow rate from the flow element is integrated and recorded.A main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flow element.This system, referred to as the"drywell floor drain flow tota'lizer", is not credited for drywell floor drain sump flow monitoring system operabi lity.LIMERICK-UNIT 1 B 3/4 4-3 Amendment gE/\c*rOB COOLANT SYS r Etl 3/1.4.3 REACTOR COOLANt sysrEM LEAKAGE 13ACKGRQUND UFSAR Safety Desiqn Basis 1), requires means for detecting and, to the extent practicdl.
SYS"'EM REDRAWN !\ND        AND REISSUED FOR CONSTRUCTICN.
identifying the location of the source of Heactor Coolant System (HCS)PRESSURE BOUNDARY LEAKAGE.Regulatory Guide 1.45 (Ref.2)describes acceptable methods for selecting leakage detection sy terns.limits on from the reactor coolant boundary (RepS)are required so that appropriate action can be taken before the integrity of the RCPB is impaired (Ref.2).Leakage detection systems for the ReS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply qUd nt;t d t'jve n,:')rn t 0 f 1 e d k a q era tes.'f.lA."'l-tl'I Systems forA.*the leakage of ,3M source flnil'dn uJiidefiLlfred are necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action.Leakage from the RepS inside the drywell is detected by at least one of four (4)independently monitored variables wh'ch include.,.'..," , drywell gaseous radioactivity, drywell unit cooler condensate flow rate and drywell pre s sure/temp era ture)eve Is.The primary means of qua n t i f yin gleak age1n thedr ywe'II drywell (1raiFl"sump HWmonitoring system for UNIDENTIFIED LEAKAGE andthe drywel 1 equipment drain tank flow monitoring system for lDENTIFIED LEAKAGE.IDENTIFIED leakage is not germane to this Tech Spec and the associated drywellq U'j P rn en tdra in t dnk fl ow mo nit 0 r'jn9sYs t e mi s no tinc1u ded.The drywell floor drain sump flow monitoring system monitors UNIDENTIFIED LEAKAGE collected in the floor drain sump.UNIDENTIFIED LEAKAGE consists of leakage from RCPS components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump.fhe primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system.The floor drain sump level transmitters are associated with High/Low level switches that open/close the sump tank drain valves automatically.
(\r,D                                                  coNsTRucT:CN.
The leve)instrument processing unit calculates an average leak rate (gpm)for a given measurement period which resets whenever the sump drain valve closes.The level processing unit provides an alarm to the main control room each time the average leak rate changes by a predetermined value since the last time the alarm was reset.For the drywell floor drain sump flow monitoring system, the setpoint basis isa1 gpm change in UNIDENTIFIED LEAKAGE.addition to the drywell Floci dl system described above, the discharge of each sump is monitored by an independent flow element.The measured flow rate from the flow element is integrated and recorded.A main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flowe1e me nt.r h;ss y s t emref err edt 0as the"dr yw ell fl 00rdra i n flow tot alize r", i s not credited for drywel1 floor drain sump flow monitoring system operability.
SUPERSEDES ALL PREVIOUS ::lEVISIONS,                                  i1EVISIONS.
LIMERICK-UNIT 2 B 3/4 4-3 Amendment-14,gE/\c*rOB COOLANT SYS r Etl 3/1.4.3 REACTOR COOLANt sysrEM LEAKAGE 13ACKGRQUND UFSAR Safety Desiqn Basis 1), requires means for detecting and, to the extent practicdl.
REVISIONS.
identifying the location of the source of Heactor Coolant System (HCS)PRESSURE BOUNDARY LEAKAGE.Regulatory Guide 1.45 (Ref.2)describes acceptable methods for selecting leakage detection sy terns.limits on from the reactor coolant boundary (RepS)are required so that appropriate action can be taken before the integrity of the RCPB is impaired (Ref.2).Leakage detection systems for the ReS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply qUd nt;t d t'jve n,:')rn t 0 f 1 e d k a q era tes.'f.lA."'l-tl'I Systems forA.*the leakage of ,3M source flnil'dn uJiidefiLlfred are necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action.Leakage from the RepS inside the drywell is detected by at least one of four (4)independently monitored variables wh'ch include.,.'..," , drywell gaseous radioactivity, drywell unit cooler condensate flow rate and drywell pre s sure/temp era t u re)eve Is.The primary means of qua n t i f yin gleak age 1 n thedr ywe'II drywell (1raiFl"sump HWmonitoring system for UNIDENTIFIED LEAKAGE andthe drywel 1 equipment drain tank flow monitoring system for lDENTIFIED LEAKAGE.IDENTIFIED leakage is not germane to this Tech Spec and the associated drywellq U'j P rn en t dra in t dnk fl ow mo nit 0 r'jn9sYs t e mi s no tinc1u de d.The drywell floor drain sump flow monitoring system monitors UNIDENTIFIED LEAKAGE collected in the floor drain sump.UNIDENTIFIED LEAKAGE consists of leakage from RCPS components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump.fhe primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system.The floor drain sump level transmitters are associated with High/Low level switches that open/close the sump tank drain valves automatically.
REV.5Fl REV. SF1 NOTE:
The leve)instrument processing unit calculates an average leak rate (gpm)for a given measurement period which resets whenever the sump drain valve closes.The level processing unit provides an alarm to the main control room each time the average leak rate changes by a predetermined value since the last time the alarm was reset.For the drywell floor drain sump flow monitoring system, the setpoint basis isa1 gpm change in UNIDENTIFIED LEAKAGE.addition to the drywell Floci dl system described above, the discharge of each sump is monitored by an independent flow element.The measured flow rate from the flow element is integrated and recorded.A main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flowe1e me nt.r h;ss y s t emref err edt 0as the"dr yw ell fl 00rdra i n flow tot alize r", i s not credited for drywel1 floor drain sump flow monitoring system operability.
REV.5F1 ADDED LAST WELD 8<                            &
LIMERICK-UNIT 2 B 3/4 4-3 Amendment-14, Insert 1 drywell sump flow monitoring equipment with the required ReS leakage detection instrumentation (Le., the drywell floor drain sump flow monitoring system, or, the drywell equipment drain sump monitoring system with the drywell floor drain sump overflowing to the drywell equipment drain sump), Insert 2 An alternate to the drywell floor drain sump flow monitoring system for quantifying UNIDENTIFIED LEAKAGE is the drywell equipment drain sump monitoring system, if the drywell floor drain sump is overflowing to the drywell equipment drain sump.In this configuration, the drywell equipment drain sump collects all leakage into the drywell equipment drain sump and the overflow from the drywell floor drain sump.Therefore, if the drywell floor drain sump is overflowing to the drywell equipment drain sump, the drywell equipment drain sump monitoring system can be used to quantify UNIDENTIFIED LEAKAGE.In this condition, all leakage measured by the drywell equipment drain sump monitoring system is assumed to be UNIDENTIFIED LEAKAGE.The leakage determination process, including the transition to and use of the alternate method is described in station procedures.
                                                                                                                                                                                                                      & SPDOL",ADDED SPOOL".
The alternate method would only be used when the drywell floor drain sump flow monitoring system is unavailable.
                                                                                                                                                                                                                              . ADDED 4
Insert 1 drywell sump flow monitoring equipment with the required ReS leakage detection instrumentation (Le., the drywell floor drain sump flow monitoring system, or, the drywell equipment drain sump monitoring system with the drywell floor drain sump overflowing to the drywell equipment drain sump), Insert 2 An alternate to the drywell floor drain sump flow monitoring system for quantifying UNIDENTIFIED LEAKAGE is the drywell equipment drain sump monitoring system, if the drywell floor drain sump is overflowing to the drywell equipment drain sump.In this configuration, the drywell equipment drain sump collects all leakage into the drywell equipment drain sump and the overflow from the drywell floor drain sump.Therefore, if the drywell floor drain sump is overflowing to the drywell equipment drain sump, the drywell equipment drain sump monitoring system can be used to quantify UNIDENTIFIED LEAKAGE.In this condition, all leakage measured by the drywell equipment drain sump monitoring system is assumed to be UNIDENTIFIED LEAKAGE.The leakage determination process, including the transition to and use of the alternate method is described in station procedures.
SPOOL PSI/lSI PSI/ISI SCOPE BLOCK.             BLODK.
The alternate method would only be used when the drywell floor drain sump flow monitoring system is unavailable.
REV. 6 NOTE:
REACTOR COOLANT SYSTEM BACKGROUND (Continued)
INCORP.
The primary containment atmospheric gaseous radioactivity monitoring system continuously monitors the primary containment atmosphere for gaseous radioactivity levels.A sudden increase of radioactivity, which may be attributed to RCPB steam or reactor water leakage, is annunciated in the main control room.The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 1 gpm within 1 hour.Larger changes in leakage rates are detected in proportionally shorter times (Ref.4).Condensate from the eight drywell air coolers is routed to the drywell floor drain sump and is monitored by a series of flow transmitters that provide indication and alarms in the main control room.The outputs from the flow transmitters are added together by summing units to provide a total continuous condensate drain flow rate.The high flow alarm setpoint is based on condensate drain flow rate in excess of 1 gpm over the currently identified preset leak rate.The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS UNIDENTIFIED LEAKAGE (Ref.5).The drywe'll temperature and pressure monitoring system provide an indirect method for detecting RepS"Ieakge.A temperature and/or pressure rise in the drywell above normal levels may be indicative of a reactor coolant or steam leakage (Ref.6).APPLICABLE SAFETY ANALYSES A threat of significant compromise to the RCPS exists if the barrier contains a crack that is large enough to propagate rapidly.Leakage rate limits are set low enough to detect the leakage emitted from a single crack in the RCPB (Refs.7 and 8).Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room.A control room alarm allows the operators to evaluate the significance of the indicated leakage and, if necessary, shut down the reactor for further investigation and corrective action.The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref.8).Therefore, these actions provide adequate responses before a significant break in the RCPS can occur.RCS leakage detection instrumentation satisfies (Criterion 1 of the NRC Policy Statement.
INCORP,FCN    FCN PA-572 REF. REDLINE                          REOL1NE 1.ADDEC  I.ADDEC
LIMITING CONDITION FOR(LCO) rhe dlywell dl flow mo"itol*il,g 3Y3tem 15 I equireei to qual9tifythe"...J2-bJN I I FI ED LEAKAGE from the RCS-!-The other mon;tori ng systems provi de ea rlya 1 arms to the operator so closer examination of other detection systems will be made to determine the extent of any corrective action that my be required.With any leakage detection system inoperable, monitoring for leakage in the RepS is degraded.LIMERICK-UNIT 1 B 3/4 4-3a Amendment M1fI REACTOR COOLANT SYSTEM BACKGROUND (Continued)
: 1. ADDED FW -3   3 & SPOOL **S "3                             45 1A      lA AND 1B            lB (WAS SPOOL 18
The primary containment atmospheric gaseous radioactivity monitoring system continuously monitors the primary containment atmosphere for gaseous radioactivity levels.A sudden increase of radioactivity, which may be attributed to RCPB steam or reactor water leakage, is annunciated in the main control room.The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 1 gpm within 1 hour.Larger changes in leakage rates are detected in proportionally shorter times (Ref.4).Condensate from the eight drywell air coolers is routed to the drywell floor drain sump and is monitored by a series of flow transmitters that provide indication and alarms in the main control room.The outputs from the flow transmitters are added together by summing units to provide a total continuous condensate drain flow rate.The high flow alarm setpoint is based on condensate drain flow rate in excess of 1 gpm over the currently identified preset leak rate.The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS UNIDENTIFIED LEAKAGE (Ref.5).The drywe'll temperature and pressure monitoring system provide an indirect method for detecting RepS"Ieakge.A temperature and/or pressure rise in the drywell above normal levels may be indicative of a reactor coolant or steam leakage (Ref.6).APPLICABLE SAFETY ANALYSES A threat of significant compromise to the RCPS exists if the barrier contains a crack that is large enough to propagate rapidly.Leakage rate limits are set low enough to detect the leakage emitted from a single crack in the RCPB (Refs.7 and 8).Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room.A control room alarm allows the operators to evaluate the significance of the indicated leakage and, if necessary, shut down the reactor for further investigation and corrective action.The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref.8).Therefore, these actions provide adequate responses before a significant break in the RCPS can occur.RCS leakage detection instrumentation satisfies (Criterion 1 of the NRC Policy Statement.
                                                                                                                                                          ",\'.:0      ll.
LIMITING CONDITION FOR(LCO) rhe dlywell dl flow mo"itol*il,g 3Y3tem 15 I equireei to qual9tifythe"...J2-bJN I I FI ED LEAKAGE from the RCS-!-The other mon;tori ng systems provi de ea rlya 1 arms to the operator so closer examination of other detection systems will be made to determine the extent of any corrective action that my be required.With any leakage detection system inoperable, monitoring for leakage in the RepS is degraded.LIMERICK-UNIT 1 B 3/4 4-3a Amendment M1fI BACKGROUND (Continued)
U. AS BUlL D.           BUILTT FOR PIPE.
The primary containment a ic gaseous radioactivity monitoring system continuously monitors the primary containment atmosphere for gaseous radioactivity levels.A sudden increase of radioactivity, which may be attributed to RCPS steam or reactor water leakage, is annunciated in the main control room.The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 1 gpm within 1 hour.Larger changes in leakage rates are detected in proportionally shorter times
BUll                        PIPE, ADDED STRESS CALC
'1.).Condensate from the eight drywell air coolers is routed to the drywell floor drain sump and;s monitored by a series of flow transmitters that provide indication and alarms in the main control room.Trle outputs from trle flow transmitter's are added together by summing units to provide a total continuous condensate drain flow rate.The high flow alarm setpoint is based on condensate drain flow rate in excess of 1 gpm over the currently identified preset leak rate.The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of ReS UNIDENTIFIED LEAKAGE (Ref.5).The drywell temperature and pressure monitoring systems provide an indirect method for detecting RepS leakage.A temperature and/or pressure rise in the drywell above normal levels may be indicative of a reactor coolant or steam leakage (Ref.6).APPLICABLE SAFETY ANALYSES A threat of significant compromise to the RePB exists if the barrier contains a crack that is large enough to propagate rapidly.Leakage rate limits are set low enough to detect the leakage emitted from a single crack in the RePB (Refs.7 and 8).Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room.A control room alarm allow the operators to evaluate the significance of the indicated leakage and, if necessary, shut down the reactor for further investigation and corrective action.The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref.8).Therefore, these actions provide adequate response before a significant break in the RePB can occur.Res leakage detection instrumentation satisfies Criterion 1 of the NRC Policy Statement.n red to quanti f1I:JNIDENTIFIED LEAKAGE fro,,, LlleThe other monitoring systems provide early alarms to the operators so closer examination of other detection systems will be made to determine the extent of any corrective action that may be required.With any leakage detection system inoperable, monitoring for leakage in the RepS is degraded.LIMERICK-UNIT 2 B 3/4 4-3a AmendmentBACKGROUND (Continued)
                                                                                                                                                    ~}:O              NO. 8< &
The primary containment a ic gaseous radioactivity monitoring system continuously monitors the primary containment atmosphere for gaseous radioactivity levels.A sudden increase of radioactivity, which may be attributed to RCPS steam or reactor water leakage, is annunciated in the main control room.The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 1 gpm within 1 hour.Larger changes in leakage rates are detected in proportionally shorter times
                                                                                                                                                                              & Q-LISTED.
'1.).Condensate from the eight drywell air coolers is routed to the drywell floor drain sump and;s monitored by a series of flow transmitters that provide indication and alarms in the main control room.Trle outputs from trle flow transmitter's are added together by summing units to provide a total continuous condensate drain flow rate.The high flow alarm setpoint is based on condensate drain flow rate in excess of 1 gpm over the currently identified preset leak rate.The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of ReS UNIDENTIFIED LEAKAGE (Ref.5).The drywell temperature and pressure monitoring systems provide an indirect method for detecting RepS leakage.A temperature and/or pressure rise in the drywell above normal levels may be indicative of a reactor coolant or steam leakage (Ref.6).APPLICABLE SAFETY ANALYSES A threat of significant compromise to the RePB exists if the barrier contains a crack that is large enough to propagate rapidly.Leakage rate limits are set low enough to detect the leakage emitted from a single crack in the RePB (Refs.7 and 8).Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room.A control room alarm allow the operators to evaluate the significance of the indicated leakage and, if necessary, shut down the reactor for further investigation and corrective action.The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref.8).Therefore, these actions provide adequate response before a significant break in the RePB can occur.Res leakage detection instrumentation satisfies Criterion 1 of the NRC Policy Statement.n red to quanti f1I:JNIDENTIFIED LEAKAGE fro,,, LlleThe other monitoring systems provide early alarms to the operators so closer examination of other detection systems will be made to determine the extent of any corrective action that may be required.With any leakage detection system inoperable, monitoring for leakage in the RepS is degraded.LIMERICK-UNIT 2 B 3/4 4-3a Amendment Insert 3 The required instrumentation to quantify UNIDENTIFIED LEAKAGE from the ReS consists of either the drywell floor drain sump flow monitoring system, or, the drywell equipment drain sump monitoring system with the drywell floor drain sump overflowing to the drywell equipment drain sump.For either system to be considered operable, the flow monitoring portion of the system must be operable.Insert 3 The required instrumentation to quantify UNIDENTIFIED LEAKAGE from the ReS consists of either the drywell floor drain sump flow monitoring system, or, the drywell equipment drain sump monitoring system with the drywell floor drain sump overflowing to the drywell equipment drain sump.For either system to be considered operable, the flow monitoring portion of the system must be operable.
0-LISTED.
EAC r 0 Reo 0 LANrs y s rEM I\PPLlC;\B[Llry
                                                                                                                ...,,,,~)    .... /                "1-
[n ()PEH 1\r[0N ALe0NDIT[()NS 1, 2, ()n d 3, led k dqe c1 e tee t i (]n syst ems ()r ere quire (j to be OPERABLE to support LCD 3.4.3.2.fhis applicabi lity is consistent with that for LCO:).4.3.2.ACTION A.With the primary containment atmosphere qaseous monitoring system inoperable, lJrdb I es of the pri rna fy conta i nmen t d tmosptlere rnus t be ta ken dnd dnd 1 y led to prov i de periodic leakage information.
                                                      ~~~.                                   e~11rl          /~/                           ~/~
[Provided a sample is obtained dnd analyzed once every 12 f trle p I ant may be operated for up to 30 days to d 11 ow restorat i on of the radioactivity monitoring system.rhe plant may continue operation since other forms of d r yw e I 11d k age detection are a va i1ab1e*]form B.rhe 12 hour interval provides periodic information that is adequate to detect leakage.fhe 30 day Completion Time for Restoration recognizes other forms of leakaqeavailable.
                                                                  ~      (tIet-;IJ~Pg()IJ!p#r*
Withdrill" 5ump Flow rnonitci;l1g"ystem-'inoperable.
2 j.....         .,;>",~                      ..
no other of sampling can provide the equivalent information to quantify leakage at the required 1 gpm/hour sensitivity.
                                                                                                                                                  * ,..~          REFERENCE        .                       DRAWINGS DRAWINGS d                   o~ll1~
However, the primary containment atmospheric gaseous monitor[and the primary containment air cooler condensate flow rate monitor]wil rovide indication of changes in leakage.,NSer<TS With inoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref.SR 4.4.3.2.1.b) operation may continue for 30 days.To the extent practical, the surveillance frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor drain monitoring system which had a normal surveillance requirement to monitor leakage every 8 hours.Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b.
D~                                                            &.                           ~=~~8 N-SI M-328 SK-M-2812
fhe 30 day Completion Time of the required ACTION is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available.
                                                                                                                                                                              .                       P 8< ID P&ID PIPING PIPING PLAN STRESS ISOMETRIC PLAN AREA    AREA 13    13 8<& 14 14 RECEtVED RECEfVED RECEIVED SEP 02 1986 S:fP S:EP                1966 BECHTEl, BEtHTEI.,
LIMERICK-UNIT 1 B 3/4 4-3b AmendmentE A C r 0 Reo 0 LAN r s y s rEM I\PPLlC;\B[Llry
BECHTEL I
[n ()P E H 1\r[0N ALe0NDIT[()NS 1, 2, ()n d 3, led k d q e c1 e tee t i (]n syst ems ()r ere qui r e (j to be OPERABLE to support LCD 3.4.3.2.fhis applicabi lity is consistent with that for LCO:).4.3.2.ACTION A.With the primary containment atmosphere qaseous monitoring system inoperable, lJrdb I es of the pri rna fy conta i nmen t d tmosptlere rnus t be ta ken dnd dnd 1 y led to prov i de periodic leakage information.
SEE REV. S6 NOTE.                         i.       JRC No. I      I                                        I SPOCL NUMBER SPOOL                SOURCE          -EAT NUMBER HEAT                                                      (___        I  SEISMIC CLASS                      I I.             sa      NONE                              a.&i4          CADO/REC
[Provided a sample is obtained dnd analyzed once every 12 f trle p I ant may be operated for up to 30 days to d 11 ow restorat i on of the radioactivity monitoring system.rhe plant may continue operation since other forms of d r yw e I 11d k age detection are a va i 1 ab1e*]form B.rhe 12 hour interval provides periodic information that is adequate to detect leakage.fhe 30 day Completion Time for Restoration recognizes other forms of leakaqeavailable.
                                                                                              /)
Withdrill" 5ump Flow rnonitci;l1g"ystem-'inoperable.
STRESS STRESS CALC 2-43-006
no other of sampling can provide the equivalent information to quantify leakage at the required 1 gpm/hour sensitivity.
                                                                                                                                                                    )
However, the primary containment atmospheric gaseous monitor[and the primary containment air cooler condensate flow rate monitor]wil rovide indication of changes in leakage.,NSer<TS With inoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref.SR 4.4.3.2.1.b) operation may continue for 30 days.To the extent practical, the surveillance frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor drain monitoring system which had a normal surveillance requirement to monitor leakage every 8 hours.Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b.
BECHTEL BECHTEL FA ICATE.O  ICATE.D BY:                                 I-                           ~SA..;;N.:....;.,F.:.:.R..;;AN.:.:C:.:.:IS:.:C:.:O SAN FRANCISCO                                                    _
fhe 30 day Completion Time of the required ACTION is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available.
                                                                                                        ~~~b~~5S!o~tgmCA SOUTHWEST WELDING FABRICATING &
LIMERICK-UNIT 1 B 3/4 4-3b Amendment
COMPANY TlNG &
8<    I---L-IM-E-R-'-C-K-G-E-N-E-R-A-T-IN-G-S-T-A....
LIMERICK GENERATING STATION                                              TI-O-N---
UNITS II & 22 PHD..ADEl.PHJA PHILAllELPHlA Fi.ECTRIC PNLADELPi4IA              ELECTRiC EI.ECTRIC COUPANY    COUPAIfY COlIPAHY FEVISION REVISION AFFECTS PSI/lSI                  PSI/ISI SCb1  SCOPE:
I      YESs                                                          I                                                ISOMETRIC D4a
                                                                                          ~t~
R:7;;J 1F1
                                                                                        ~
0  ND NO
                                                                                            .7":: L___J BLOCK ORIGINATOR INITIAL CORRECT BLOCK CORRECT                                  LIQUID &
tSOMETRIC
                                                                                                                                                                                                        & SOLID RDwSTE                    RADWASTE
                                                                                      ~-E&sect; REV.
                                                                                      -RE-Efl E-           REV, REV. No.                           ~
10                                        REACTOR BUILDING UNIT 2 I         ce
                                                                                                                                                                          ~
1&#xa3;1.
REVIEWED RE VIEWED BY:      BY:'_FI:JL,"-,(J.j!J.~I..&..t~.,),~
BY :._F;:;:L~C'p;YI7;Jr.';::''-;:-:===,::
FLi..>                      _ I                                                     s                                  AV2C N
[E:  DATE: //        //          PS&II PSI'I151 ENGINJ PSfllSI            ENGINEER                                                                                                              6 8031                              HBB-263-I R          S        BOP SPOOL SHEET 4953 SPOOL                              "953
                                                                                                                                        "'353


In OPERATIONAL CONDITIONS 1, 2, and 3, leakage detection systems are required to be OPERABLE to upport LCO 3.4.3.2.This applicability is consistent with that for LCO 3.4.3.2.A.8.With the primary containment atmosphere gaseous monitoring system inoperable, grab samples of the primary containment atmosphere must be taken and analyzed to provide periodic leakage information.
8         I 7       6                                                                                                                     2 8031-M-G1 SH.1 8031-M-6I OF NOTO
[Provided a sample is obtained and analyzed once every 12 hours, the plant may be operated for up to 30 days to allow restoration of the radioactivity monitoring system.The plant may continue operation since other forms of drywell leakage detection are available.]
                                                                                                                                                        ~
The 12 hours interval provides periodic information that is adequate to detect leakage.fhe 30 day Completion Time for Restoration recognizes other forms of are available.
                                                                                                                                                        \. T1&#xa3;tUL!CT:ON5T5T&#xa3;J,l1S iSEISllICa.ASS 1I5niTN T1&#xa3;tUL!CT:ON5T5T&#xa3;U1S EXCD'T AS IIOTED. SElSIIlC CUSS l CUSSlfICA1UIN SHAIJ.
fl OCI dt fl f1;1'1 fl!ftOfll te-ri ng systeR1i noperabl e, no other form of sampling can provide the equivalent information to quantify leakage at the required 1 gpm/hour sensitivity.
EXmlD Ul' TO 1li&#xa3; nliST L'IOtJR POlltT eE"f0tll 1llE iSll"AnOHYJ.L\lES iSll"AnOHYJ.\.YES 'Mil THtartlfaLSlIIil'S. AU.
However, the primary containment atmosphericgaseousmonitor
                                                                                                                                                              ~l1&T.J.5:,~.ii;~cuss CDNEeTIOHSTOTl&#xa3;llIITftllSUil'S,;1lCt.1lllDIi
[and the primary containment air cooler condensate flow rate indication of changes in leakage.INSE1<T 5 drain SUFAJ3 flo'iJ Iflonitoring systeH1inoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref: SR 4.4.3.2.1.b) operation may continue for 30 days.To the extent practical, the surveillance frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor drain sump monitoring system which had a normal surveillance requirement to monitor leakage every 8 hours.Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b.
* DRYmL CQOlER CCHlElISA1EDRAINSIV2It,"-1T1                                                                                              msflUob1'A11at           All) O'f9FI..l:as,AaE SU5/IllC CUSS I.
The 30 day Completion Time of the required ACTION is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available.
I:: STW STWl VAlVE LUUGE IW-411                                                                                                              r&#xa3;,.tTE1),
LIMERICK-UNIT 2 B 3/4 4-3b Amendment In OPERATIONAL CONDITIONS 1, 2, and 3, leakage detection systems are required to be OPERABLE to upport LCO 3.4.3.2.This applicability is consistent with that for LCO 3.4.3.2.A.8.With the primary containment atmosphere gaseous monitoring system inoperable, grab samples of the primary containment atmosphere must be taken and analyzed to provide periodic leakage information.
t!JEl.tTED, o
[Provided a sample is obtained and analyzed once every 12 hours, the plant may be operated for up to 30 days to allow restoration of the radioactivity monitoring system.The plant may continue operation since other forms of drywell leakage detection are available.]
o  C!lDFlAliil!lWAGEIW-4TI C!lDFlANil!lWAGEIW-4TI C&#xa3;SUiN.FAU:le.ultk.iIo\TillU,-~,El!U'":DH>>a CESUiN.FAU:le.ultk.iIo\TillU,-~,El!U'":DH>>a
The 12 hours interval provides periodic information that is adequate to detect leakage.fhe 30 day Completion Time for Restoration recognizes other forms of are available.
* FlOOfl FlOOf! OIWJI$                                                                                                                                      Fll1il AU. ":l'm:.Y'l.~ Jill EQlJII7:iiE){f,ua:n TE:STI'<CFll1ilJoU.":l'::lIC,Y'l.~JillEQlJII7:iiE){f.lxa:FT TE:STI'<C nIlSE$lfJIHw:TlllJIli&#xa3;ST\III!I1lt-IiOTt3IOhTIl%S ME$ETS                                                                              "":O,lIIAya&#xa3;IHACCl:IlDN.:::EWIn1'1\l[~TS::E PIPIHGCUSSCCiIQli.TIl:lIl,llUJG!lCCD&#xa3;'O'.mHTlC FOWlIlIlC &#xa3;XCEI'TlOMS; lclICl.EJ<lIllG!lEllIJIRDlElfTSSHliLl.llEnRTI&#xa3;~
fl OCI dt fl f1;1'1 fl!ftOfll te-ri ng systeR1i noperabl e, no other form of sampling can provide the equivalent information to quantify leakage at the required 1 gpm/hour sensitivity.
LINECUSSD~IGlMTllllII LINE     CUSS D~IGHUllllll IbI II&#xa3;LDUlCPl'lOCEIlU!lES TO SilJStDStlAU.II&#xa3;AS 1IEQUF&#xa3;J PERnEQRl\iUW.lIHECUSStlESIGlilATUlH.
However, the primary containment atmosphericgaseousmonitor
4.~R1~~FllR.u:TUJ.Ll.llCATIDNOFlII-LIlESlQlT
[and the primary containment air cooler condensate flow rate indication of changes in leakage.INSE1<T 5 drain SUFAJ3 flo'iJ Iflonitoring systeH1inoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref: SR 4.4.3.2.1.b) operation may continue for 30 days.To the extent practical, the surveillance frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor drain sump monitoring system which had a normal surveillance requirement to monitor leakage every 8 hours.Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b.
: 4. SitRlSEROIAGaAloIS FOR .lCT1JAl.l.llCATIDN OF lII-LIlE SIGH R.lllIIlOUSS&#xa3;S.
The 30 day Completion Time of the required ACTION is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available.
THESTM3DL. CEND1lSFll&#xa3;OUEJIT DllC4NTII<<JOUS IN'\1n TO
LIMERICK-UNIT 2 B 3/4 4-3b Amendment Insert 4 required drywell sump monitoring system Insert 5 required drywell sump monitoring system Insert 4 required drywell sump monitoring system Insert 5 required drywell sump monitoring system ATTACHMENT 4 List of Commitments Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 ATTACHMENT 4 List of Commitments Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 The following table identifies those actions committed to by EGG for Limerick Generating Station (LGS), Units 1 and 2 as part of the License Amendment Request.Any other statements in this submittal are provided for information purposes and are not regulatory commitments.
                                                                                    !__II&.                                                                    T!ltllaulD~DIA:;rESYSTOICURlIIGNDl!HIJ.I'L\HT T!ltllaulD~DIA:;rESYSTOICURlIICNDI!HIJ.I'L\HT 0
Commitment Commitment Commitment Event Number Date One-Time Programmatic Action (Yes/No)(Yes/No)CM-1 EGG will verify through Prior to initial Yes No historical or new test data that use of thethedrywell floor drain sump alternate sump overflows into the drywell monitoring equipment drain sump at method for LGS, LGS, Unit 1.Unit 1.CM-2 EGG will verify through Prior to initial Yes No historical or new test data that use of thethedrywell floor drain sump alternate sump overflows into the drywell monitoring equipment drain sump at method for LGS, LGS, Unit 2.Unit 2.The following table identifies those actions committed to by EGG for Limerick Generating Station (LGS), Units 1 and 2 as part of the License Amendment Request.Any other statements in this submittal are provided for information purposes and are not regulatory commitments.
Ol'(IlATlOlllS. ll&#xa3; sneol 0 lIENlTES ~T Oft Ol'&#xa3;IlATlOlllS.
Commitment Commitment Commitment Event Number Date One-Time Programmatic Action (Yes/No)(Yes/No)CM-1 EGG will verify through Prior to initial Yes No historical or new test data that use of thethedrywell floor drain sump alternate sump overflows into the drywell monitoring equipment drain sump at method for LGS, LGS, Unit 1.Unit 1.CM-2 EGG will verify through Prior to initial Yes No historical or new test data that use of thethedrywell floor drain sump alternate sump overflows into the drywell monitoring equipment drain sump at method for LGS, LGS, Unit 2.Unit 2.
P&#xa3;RIOOlCDI'llUtJl;lTDPu>>T5IIJltJllloi.ECUll"WDIT DRYWELLOOR IWNTEIlAHCt.ETC.
ATTACHMENT 5 Drywell Sump Level Monitoring System Configuration Drawings (For Information Only)Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 Drywell Sump Level Monitoring System Configuration Drawings HBB-163-1,"Reactor Bld'g Liquid&Solid Radwaste-Unit-1," Revision 4 HBB-263-1,"Liquid&Solid Radwaste Reactor Building Unit 2," Revision 6 8031-M-61, Sheet1,"Liquid Radwaste Collection (Unit 1)," Revision 37 8031-M-61, Sheet 4,"Liquid Radwaste Collection (Unit 2)," Revision 15 M-247,"Reactor Bldg.Unit No.1 Misc.Plans&Sections-Area 11&12," Revision 23 M-328,"Reactor Bldg.Unit No.2 Misc.Plans&Sections-Area 13&14," Revision 11 ATTACHMENT 5 Drywell Sump Level Monitoring System Configuration Drawings (For Information Only)Limerick Generating Station, Units 1 and 2 Facility Operating License Nos.NPF-39 and NPF-85 Drywell Sump Level Monitoring System Configuration Drawings HBB-163-1,"Reactor Bld'g Liquid&Solid Radwaste-Unit-1," Revision 4 HBB-263-1,"Liquid&Solid Radwaste Reactor Building Unit 2," Revision 6 8031-M-61, Sheet1,"Liquid Radwaste Collection (Unit 1)," Revision 37 8031-M-61, Sheet 4,"Liquid Radwaste Collection (Unit 2)," Revision 15 M-247,"Reactor Bldg.Unit No.1 Misc.Plans&Sections-Area 11&12," Revision 23 M-328,"Reactor Bldg.Unit No.2 Misc.Plans&Sections-Area 13&14," Revision 11 14 L.r:.f(ev.4 NOTE: AI?OEO Atoll?11o.LGOlZ.p.
                                                                                                                                                        .. CElETEO.
J UN*7.1<EI'ERENCE
8
'DRoIl.WI"'''''e, pdlD Ivl*Z47 PIPING PLAN ARU, II.;12 SK-M-64IL 5Tii:ESS ISO I2eYD,.;rJl..01)11'
                                                                                                                                                        "     C:Fl'DASAF~COI(IEM;fJVK)LDl.i'PIPE;.OQPSEAlIS C:Fl'DASAF~COI()EhSfJVK)LDl.i'PIPE;.OQPSEAlIS
""Uti 0 12 Ir-J*0 12/'0,,1.:1-1 0'('"".....y1"'-6>'"1" O**{P'b!j.'l->(
                                                                                                                                                                                              &#xa3;M:UISlJ'E:&#xa3;llU:REIiillllUl SUIiIl'.
--, ,--.-....-._--_.CCN REVJ2..CALC.NO i-43-0CP m 5EI5>IV1IC CLASS I Fabricated Bv: SOUTHWEST FABRICATING ANO WELDING COMPANY__.\_.J._*.*.fCIZ-" M' f BECHTEL SAN FRANCISCO LIMERICK GENERAnNG STATION UNITS 1.2 ELECmlC COMPANY 150ME.TR\C-REACTOR BLD'G.LIQUiDSOLID RADWASTE-UNIT-I ,S,PooL 5Hce:r IJ'29/3 tl9 J....143*"r::>..........
I!C>TAIJ.El) IIIl&#xa3;ACT1l1l &#xa3;M:UISlJ'E:&#xa3;llU:REhillllUl S&#xa3;El'llJ)lH'JF'CIRDETAn..s.
I...8031 I 14\l'i<.-(14 1-.F..-.-.....-"---_..CCN REV_Q...CALC.NO i-43*0Co f(.ev.4 NOTE: ll,1ol0 11oJ.GOiZ.p.
I                                      10. ~~':r~~e~~Ofori~lifil=!Z&#xa3;6EF~~'11
f'O'lC."..\.If.I U>J.7*
: 10.  ~~*:r~~e~~Ofori~lifil=UE.6EF~~Y1 p
'DR.o.WIt-JGf:, PelDZ47 PIPING PLAN AREI', II t, 12 SK-M-6412.
1 iI            r fCNUlhclF                          ilESlST~TH&#xa3;r"'.Il.Y~IWC.FO;'JSIW.l8i:LllCATW ilESlST~ THE r ....Il.y~ IWlI.FO~J SIW.l iii: LllCATW s
STI<:ESS ISO I2eVD SEISMIC-CLASS I Fabricaled Bv: SOUTHWEST FABRICATING AND WELDING COMPANY-_.,-_.-s__*...''''''...BECHTEL SAN FRANCISCO LIMERICK GENERAnNG STATION UNITS 1.2 PHI!.AllELPHIA ELECTP.IC COMPANY ISOME TR1C-RE.AC.TOR BLD'G.LIQUiDSOLID RADWASTE-UNIT-I 8031 4
7 j                        1~~I tk;l;NTRClSi'llIJtT\.flE!lN tk;l;NTRCLSi'llIJtT\.flE!lN "2.li&#xa3;IWil"ClDSH.Il.lIlEWAW-I8NDoI1Ii VCLIJol&#xa3; OF CDKTiKO TO I8NDoI1IiVCLIJol&#xa3;OF "2.li&#xa3;IWil"DLDSH.Il.lIlEWAW-CDKTiKD UTili 5Il'U.IIEUlCATiIlASCUIS&#xa3;.AS~roFlDJR 5Il'U.IIEUlCATiIlASCUIS&#xa3;.AS~TDFlDJR nT~ AIIOULYE AIIO ULYE IllS I r-1j:EJZ ili'iATlCINlllO'.
ur I S/U 2-690 I LAST WELD-3 LAST SPOOL-1B 14 L.F.ADDED S/U NO.REDRAWN!\ND REISSUED FOR CONSTRUCTICN.
Il.olSS-I04IHlHSS-I24S'ri.lU$<.UlCATEDIHTI&#xa3;CCNTflOl Il.-GS*I04IHlHSS-I24S'ri.lU$<.UlCATEDIHTI&#xa3;CCNTflOl STRLClURi:ONDRl&#xa3;AItElEVJ.T1DHlec'.
SUPERSEDES ALL PREVIOUS::lEVISIONS, REV.5Fl NOTE: ADDED LAST WELD 8<SPDOL",ADDED PSI/lSI SCOPE BLOCK.REV.6 NOTE: INCORP.FCN PA-572 REF.REDLINE 1.ADDEC FW-3&SPOOL**S 1A AND 1B (WAS SPOOL ll.AS BUlL T FOR PIPE.ADDED STRESS CALC NO.8<Q-LISTED.REV.1 NOTE: ADDED SPOOL.FW&M ISSUED FOR CONSTRUCTION REV.2 NOTE: ISSUED FOR'HOLD'PER EMF-1961 10-13-75 REV.3 NOTE: RELEASED':-iOLC'PER DATED 6-15-79 REV.4 NOTE: REVIEWED P:::R UNIT 1 AS 6UIL T CONDITION"lND P8<lD M-6: REV.1?REV.5 NOTE: "'\9..",\'.:0
IL    PE~ CRA.'IIlHG CRA.Y1lHG 1ol-513.I'CSTAll "'OU"'0lA fU.I'PtR TTI't CHECI
..../"1-g()IJ!p#r*
                                                                                                              --ir;2:;/
2 j.........REFERENCE DRAWINGS
YA.l.\Ii:S   IJH T,&#xa3; INFUlEIfT DlWIi U!IfS:II n&#xa3;fUlOR 0lWIi VA.l.\li:SIJHT"&#xa3;INFUlEIfTDlWIiU!lfS:Mll&#xa3;fUlOROlWIi YAl.YE:Sl. OUJO[ OISClH&#xa3;CT r..ua 51..,.., lA TCTAI. IF 11 YAl.YE:Sl,                              r"ua cP                                                                                                    :DilPI.1IIiS 'Illllf US&#xa3;l) TO F~C1..1TATE YII...V&#xa3; REllDVIJ.~.TIl&#xa3;c::HW:YAl.~ESSilt.l1.1!&#xa3;1UIlEJEl
.,;*.
                                                                                                                                                              ~~i~~O:t~ES
.P 8<ID&.
PIPING PLAN AREA 13 8<14 SK-M-2812 STRESS ISOMETRIC"'\\<iid.... RECEtVED S:fP 02 1986 BECHTEl,..6 1&#xa3;1.ISOMETRIC LIQUID&SOLID RADWASTE REACTOR BUILDING UNIT 2SEISMIC CLASS I.STRESS CALC 2-43-006 BECHTEL FA ICATE.O BY: I-
_SOUTHWEST FABRICATING 8<WELDING COMPANY LIMERICK GENERATING STATION UNITS I&2 PHD..ADEl.PHJA ELECTRiC COUPAIfY SPOOL SHEET"953 REVISION AFFECTS PSI/lSI SCOPE: D4a s NO ORIGINATOR0 INITIAL CORRECT.7":: BLOCK-RE-Efl REV, No.10 REVIEWED
_DATE://PSI'I151 ENGINEER HEAT NUMBER SOURCE SPOOL NUMBER S/U 2-6'30 LAST WELD"3 1------'LAST SPOOL"IB 14 L.F.REV.I NOTE: ADDED SPOOL.FW&M\JU!"!BERS ISSUED FOR CONSTRUCTION REV.2 NOTE: ISSUED FOR'HOLO'PER EMF-I961 10-13-75 REV.3 NO-:-E: RELEASED PER EMF-4667 DATED 6-15-79 REV.4 NOTE: REVIEWED P"R UNIT , AS 6UIl T CONDITION"lND F&ID 1'1-6: REV.l?REV.5 NOTE: ADDED S/U SYS"'EM NO.REDRAWN (\r,D REISSUED FOR CONSTRUCTICN.
SUPERSEDES ALL PREVIOUS i1EVISIONS.
REV.5F1 NOTE: ADDED LAST WELD&SPOOL".ADDED PSI/lSI SCOPE BLOCK.REV.6 NOTE: INCORP,FCN PA-572 REF.REDLINE I.ADDEC FW"3&SPOOL**S lA AND 18 (WAS SPOOL D.AS BUll T FOR PIPE.ADDED STRESS CALC NO.&Q-LISTED.DRAWINGS 14 RECEfVED S:EP 02 1986 BEtHTEI., SEE REV.6 NOTE.ISOMETRIC LIQUID&SOLID RADWASTE REACTOR BUILDING UNIT 2 SEISMIC CLASS I.STRESS CALC 2-43-006 BECHTEL FA ICATE.D BY: SAN FRANCISCO TlNG&I---L-IM-E-R-'-C-K-G-E-N-E-R-A-T-IN-G-S-T-A
....TI-O-N---UNITS I&2 PHILAllELPHlA EI.ECTRIC COlIPAHY SPOOL SHEET"'353 REVISION AFFECTS PSI/lSI SCOPE: YES NO ORIGINATOR R:7;;J 0 INITIAL CORRECTBLOCKREV.No.RE VIEWED BY DATE://PSfllSI ENGINEER HEAT NUMBER SOURCE SPOOL NUMBER E o B 8031-M-G1 SH.1 OF*DRYmL CQOlER CCHlElISA1EDRAINSIV2It,"-1T1 I:: STW VAlVE LUUGE IW-411 o C!lDFlAliil!lWAGEIW-4TI
*FlOOfl OIWJI$*RECIllC.PlJIoIP SEAl.$I PllCI,II-.43I C RPV MAlH
)C HIGH I'RfSSURE SEA!.l.EAKOFf'l
......,1 C 1lI'Y'SlEAW UNEVEttT 11oH11 C REACTlJlll'ElllllWlfS I Ii-53'o IlEFlJEl1.NG mulWS WlIAGE lM-S3)C PIPING VENTS AJi)llflAltlS OViRFlO'<<S'
--'I I fCNUlhclF I I I I C&#xa3;Q2III 131 I--II I CllNTAlHNEHTl I I SICKAI.IlUI I i I I I\.T1&#xa3;tUL!CT:ON5T5T&#xa3;J,l1S iSEISllICa.ASS 1I5niTN EXCD'T AS IIOTED.SElSIIlC CUSS l CUSSlfICA1UIN SHAIJ.EXmlD Ul'TO 1li&#xa3;nliST L'IOtJR POlltT eE"f0tll 1llE iSll"AnOHYJ.L\lES
'Mil THtartlfaLSlIIil'S.
AU.CDNEeTIOHSTOTl&#xa3;llIITftllSUil'S,;1lCt.1lllDIi msflUob1'A11at All)O'f9FI..l:as,AaE SU5/IllC CUSS I.t!JEl.tTED, TE:STI'<C Fll1il AU.
Jil*l EQlJII7:iiE){f,ua:n nIlSE$lfJIHw:TlllJIli&#xa3;ST\III!I1lt-IiOTt3IOhTIl%S PIPIHGCUSSCCiIQli.TIl:lIl,llUJG!lCCD&#xa3;'O'.mHTlC FOWlIlIlC&#xa3;XCEI'TlOMS; LINE CUSS IbI II&#xa3;LDUlCPl'lOCEIlU!lES TO SilJStDStlAU.II&#xa3;AS 1IEQUF&#xa3;J PERnEQRl\iUW.lIHECUSStlESIGlilATUlH.
4.SitRlSEROIAGaAloIS FOR.lCT1JAl.l.llCATIDN OF lII-LIlE SIGH R.lllIIlOUSS&#xa3;S.
THESTM3DL.
CEND1lSFll&#xa3;OUEJIT DllC4NTII<<JOUS IN'\1n TO Ol'(IlATlOlllS.
ll&#xa3;sneol 0 lIENlTES Oft P&#xa3;RIOOlCDI'llUtJl;lTDPu>>T5IIJltJllloi.ECUll"WDIT IWNTEIlAHCt.ETC.
"
I!C>TAIJ.El)
IIIl&#xa3;ACT1l1l
&#xa3;M:UISlJ'E:&#xa3;llU:REhillllUl SUIiIl'.S&#xa3;El'llJ)lH'JF'CIRDETAn..s.
10.
tk;l;NTRCLSi'llIJtT\.flE!lN TO I8NDoI1Ii VCLIJol&#xa3;OF CDKTiKDAIIO ULYE IllS I ili'iATlCINlllO'.
Il.olSS-I04IHlHSS-I24S'ri.lU$<.UlCATEDIHTI&#xa3;CCNTflOl STRLClURi:ONDRl&#xa3;AItElEVJ.T1DHlec'.
ILCRA.'IIlHG 1ol-513.I'CSTAll
"'OU fU.I'PtR TTI't CHECI YA.l.\Ii:S IJH T,&#xa3;INFUlEIfT DlWIi U!IfS:II n&#xa3;fUlOR 0lWIi 51..,.., lA TCTAI.IF 11 YAl.YE:Sl.
OUJO[OISClH&#xa3;CT r"ua:DilPI.1IIiS
'Illllf US&#xa3;l)TO YII...V&#xa3;
::DII5ECUT1'tt!..'tFlOlIO&OT0107D.
::DII5ECUT1'tt!..'tFlOlIO&OT0107D.
13.
: 13. ~ttPWENr ilRA.1K lINES ;eiH4~*3 VII...V&#xa3; w.u.l!&#xa3; IUI!OEl
ilRA.1K lINES
                                                                                                                                                                                              ;eiH4~*3 .. -S IJ&#xa3; PR/l'tmCIl WIf" F
..-S IJ&#xa3;PR/l'tmCIl WIf" lSO-"JUU'.FlAHC&#xa3;$Alf)BL:NllFUllC&#xa3;T:)llflJ5&#xa3;l)4$
lSO-"JUU'.FlAHC&#xa3;$Alf)BL:NllFUllC&#xa3;T:)llflJ5&#xa3;l)4$
HlllriPQlllT1IEHTSFOllll'/tlflO.
lSO-"JUU'.FI.AHC&#xa3;$AlCBL:NllFUllC&#xa3;T:)llflJ5&#xa3;l)4$
14, COlN:CTlOH$SHAU!&#xa3;BAafj)LI'liYSULlIEI.iIIoll.
w HlllriPQlllT1IEHTSFOllll'/tlflO.
HlllriPQlllT1IEHTSFOllH'/tlflO.
14,   ~Y-tl-0s3l'1lOYIllESAl!lClllPQ;"T.IRY&#xa3;lITJJIllSlW.Li&#xa3;
                                                                                                                                                              ~Y-tl-0s3l'1lOYIIlESAl!lClllPQ;"T4IRY&#xa3;lITJJIllSlW.Li&#xa3; 1lC5TAll.fllJ.!!)'o&#xa3;:l'HIlC-22.:lL&#xa3;T~lI;l1'l.n~ED 1lC5TAll.fllJ.!!)'o&#xa3;3'HIlC-22.:lL&#xa3;T~lI;'l1'l.n~ED COlI&#xa3;T]OH$SHAU!&#xa3;BAafj)LI'liYSULlIELiIIoll.
COlN:CTlOH$SHAU!&#xa3;BAafj)LI'liYSULlIEI.iIIoll.
X43*
f    1 j
lS.ilE~
15.ilEl.ETlIl.
15.ilEl.ETlIl.
Ii.2'C';;:CX YAl.YES
L!LZ                                      t!                                &deg; Ii. 2' Ci-Etx      VALVES C01!~ &.
&.a.00151...e.lOOSA..S,IOO'JA lB.1Cll......ID2l.tlllAJIDIll22A1BARESWlNGTl"&#xa3; OliQl:VALV&#xa3;S.
C';;:CX YAl.YES                 a. 00151. .. 8.IOOSA lB.1Cl1 ...... 1D21.l1llAJIDIll22A1BARESWlNGTl"&#xa3; lB.1Cll OliQl:VALV&#xa3;S.
IT.JE'J:rCIl 19.!'UIS!I lIE",.llV:D6l uN SUL Pl.ATE.REf.lSDIoETRlC JIli.HU-l43 fI>>l OETAll.REf'ER&#xa3;NCE DRAW".NCS:
OlitxYALV&#xa3;S.
:l&#xa3;tom.IlEcrraHO.
IT.JE'J:rCIl e.lOOSA .. S,IOO'JA ID2l.tlllAJIDIll22A1BARESWlNGTl"&#xa3; 1a.~~'FOflVJ.LVEIlV-ilI.:azIS~Gml:
---I.IllCI.EAI'lllllll&#xa3;R Fet>l&IES57AO o c E o B 8031-M-G1 SH.1 OF*DRYmL CQOlER CCHlElISA1EDRAINSIV2It,"-1T1 I:: STWl VAlVE LUUGE IW-411 o C!lDFlANil!lWAGEIW-4TI
1a.~~'FOflVAl.VEIlY-ilI.:azIS~Gml:
*FlOOf!OIWJI$*RECIllC.PlJIoIP
Y E                              L                                                -
$EAl.$I PllCI,II-.43I C RPV MAlH
: 19. !'UIS!I CONI.II~T lIE ",.llV:D6\
)C HIGH I'RfSSURE SEALl.EAKOFf'l
                                                                                                                                                                                          ",.llV:D6l uN 4"~-143 AllC~ SUL Pl.ATE.REf.lSDIoETRlC JIli.HU-l43 fI>>l OETAll..
......,1 C 1lI'Y'SlEAW UNEVEttT IIoHl1 C REACTlJlll'ElllllWlfS I W-53 , o IlEFlJEllNG mulWS WlIAGE lM-S3)C PIPING VENTS AJi)llflAltlS OViRFlO'llS' I C&#xa3;Q2III 131 I--II I CllNTAlHNEHTl I I SICKAI.!lUI I i I I I\.T1&#xa3;tUL!CT:ON5T5T&#xa3;U1S iSEISllICa.ASS 1I5niTN EXCD'T AS IIOTED.SElSIIlC CUSS l CUSSlfICA1UIN SHAIJ.EXmlD Ul'TO 1li&#xa3;nliST L'IOtJR POlltT eE"f0tll 1llE iSll"AnOHYJ.\.YES
PLlTE.REf.lSDIoETRlC                                OETAll.
'Mil THtartlfaLSlIIil'S.
C 1 __                                        I O.F4CE REf'ER&#xa3;NCE DRAW".NCS:
AU.
1.
I.r&#xa3;,.tTE1),
ORAW24UN I. IllCI.EAI'lllllll&#xa3;R Fet>
nIlSE$lfJIHw:TlllJIli&#xa3;ST\III!I1lt-IiOTt3IOhTIl%S PIPIHGCUSSCCiIQli.TIl:lIl,llUJG!lCCD&#xa3;'O'.mHTlC FOWlIlIlC&#xa3;XCEI'TlOMS; IbI II&#xa3;LDUlCPl'lOCEIlU!lES TO SilJStDStlAU.II&#xa3;AS 1IEQUF&#xa3;J PERnEQRl\iUW.lIHECUSStlESIGlilATUlH.
                                                                                                                                                                                                    -:l&#xa3;tom.
THESTM3DL.
l&IES57AO IlEcrraHO.
CEND1lSFll&#xa3;OUEJIT DllC4NTII<<JOUS IN'\1n TO Ol'&#xa3;IlATlOlllS.
a:JRt'~j;~30 a:J~~t'~j;~30 I
ll&#xa3;sneol 0 lIENlTES Oft P&#xa3;RIOOlCDI'llUtJl;lTDPu>>T5IIJltJllloi.ECUll"WDIT IWNTEIlAHCt.ETC.
I
..CElETEO."
* RECIllC.PlJIoIP SEAl.$
I!C>TAIJ.El)
                                              $EAl.$ I PllCI,II-.43I C RPV MAlH ~M-43 )
IIIl&#xa3;ACT1l1l
C HIGH I'RfSSURE SEA!.l.EAKOFf'l SEALl.EAKOFf'l ......,1 C  1lI'Y'    SlEAW UNEVEttT 11oH11 IIoHl1 C REACTlJlll'ElllllWlfS I Ii-53' W-53 ,
&#xa3;M:UISlJ'E:&#xa3;llU:REIiillllUl SUIiIl'.S&#xa3;El'llJ)lH'JF'CIRDETAn..s.
o o
10.
IlEFlJEl1.NG mulWS WlIAGE lM-S3 )
THE r...
IlEFlJEllNG C PIPING VENTS AJi)llflAltlS                                                                                                                                                                                oC cJH.Lb~J~ffy
SIW.l iii: LllCATW tk;l;NTRClSi'llIJtT\.flE!lN TO I8NDoI1IiVCLIJol&#xa3;OF CDKTiKO UTili AIIOULYE IllS I ili'iATlCINlllO'.
                                                                                                                                          ~~~~
Il.-GS*I04IHlHSS-I24S'ri.lU$<.UlCATEDIHTI&#xa3;CCNTflOl STRLClURi:ONDRl&#xa3;AItElEVJ.T1DHlec'.
                                                                                                                                          ~~
ILCRA.Y1lHG 1ol-513.I'CSTAll
                                                                                                                                          ~'f I C&#xa3;Q2    I I
"'0lA fU.I'PtR TTI't CHECI VA.l.\li:SIJHT"&#xa3;INFUlEIfTDlWIiU!lfS:Mll&#xa3;fUlOROlWIi 51..,.., lA TCTAI.IF 11 YAl.YE:Sl, OUJO[OISClH&#xa3;CT r..ua:DilPI.1IIiS
                                                                                                                                ~=::::"-_J
'Illllf US&#xa3;l)TO VII...V&#xa3; w.u.l!&#xa3;IUI!OEl 13.
                        =
ilRA.1K lINES
OViRFlO'llS' OViRFlO'<<S'
..-S IJ&#xa3;PR/l'tmCIl WIf" lSO-"JUU'.FI.AHC&#xa3;$AlCBL:NllFUllC&#xa3;T:)llflJ5&#xa3;l)4$
                                                                                                                .                                                                                                                        c
HlllriPQlllT1IEHTSFOllH'/tlflO.
                                                                                                              ~
14, COlI&#xa3;T]OH$SHAU!&#xa3;BAafj)LI'liYSULlIELiIIoll.
I 131              I
Ii.2'Ci-Etx VALVES
                                                                                                            -- I                 I SouTloN 3
&.a.00151...8.IOOSA..S,IOO'JA lB.1Cl1......1D21.l1llAJIDIll22A1BARESWlNGTl"&#xa3; OlitxYALV&#xa3;S.
L_
IT.JE'J:rCIl 19.!'UIS!I lIE",.llV:D6\
I:
uN SUL PLlTE.REf.lSDIoETRlC JIli.HU-l43 fI>>l OETAll..:l&#xa3;tom.IlEcrraHO.
I I
1.IllCI.EAI'lllllll&#xa3;R Fet>l&IES57AO o c
I IlUI
...------------,------::,.------,------:-:----.-----;:;----,...----;::0----,-------;,0,.------,------:.,;:------,:----
                                                                                                                      !lUI I
...,'o ,"-'UC::\IQ-R...------------,------::,.------,------:-:----.-----;:;----,...----;::0----,-------;,0,.------,------:.,;:------,:----
CllNTAlHNEHTl
...,'o ,"-'UC::\IQ-R H........".
                                                                                                                  ~ISOLA11CH SICKAI.
-0...--......f""""''!loe&,..,.......
i I
T KEY PL"'N D E G1....:.fOIl uzu R'lIi;)I1,," 5R
E 4__1              E.
.\..."".!Q!;:fl.L'7*lt.'&#xa5;J 1 I,i fl.f',.,*..-......
I B
c:.',
H
....>...'[,,J:',::
                                                                                                \&#xe7;J II t                        I I?un                                                                      D F-ll2-1 I Z jUNI      I  ioi+                                          uTED GESCRtPTION Nrt&
.
TsT
*:-**f/J*1**..*:***.,*..**,..'''..,...--1'.'.I'"1"L i':':''10c.L.rrr-c'*
:t-                                    MECHANICAL P&ID LIGUID RAWASTE COLLECTION (UNITII V                                                          L1NERI OE1RATINU STATON PfUE EEY TO.
..'...-:.:>..,;:\\,:';'
8                                                                          5                                        --        I      3  9 IHEOT 1 I ------.
".:.';.1 c: l: I;'.'i_.*_
OF            I 8031M61 I TATFTflRY Al III 37
..
 
_...,._l...1,'(i7)r>LVG-V'jI-__10 iii
...------------,------::,.------,------:-:----.-----;:;----,...----;::0----,-------;,0,.------,------:.,;:------,:---- ..
...\I.,..,..',:., ,.', I'.,"T'"I"'" S-o'-r--III J:.'.._.-,'.;_:-.,_'_""<.&, r**
NcE DAWDGS
#.'*t..*...*:.'.,.:\;,.:,::'.':..'-.",i';_D G H...,;':....247':.:,2.3 UMWa
                                                                                                            +
*"'1&#xa3;II!\IiSC fUNSt iii I:!2'Best Copy Available{.t'4;";1!j ,;SECTION E-E I I I'Ii
on
;:;C-U1r.:
                                              \*+
I ir;:-Hi.u.u;".
FP:3-_/
" I.I).,-.if),":/'.1M-THli[MG.6..:_,.-.....Iol).'..SECTION B*B c A D H G KEY Pl"'N@MATCH..,..:.':"'''"'''''',''";,1'',1,.:,'*'
pG:LsU 2(*ii            I i#J                                n.             (
':..l:'..':..*.,.1"1,,'J'I'",T',r-.:-..':.
1 I
,..'&#xa5;1 I I.',.i,':"".'1*.','Y:.,:..*
rZl!:*
......'ii**l...,L.!,!!'-
IDRL c$TfRA ::i tlB7                                YCLL I
...L,..
o
**D G H c A f.6 SECTION B-B'--;+-1'1;-:SECTiON E-E 4.t'Best Copy AVailable2*
                                                                                                                      ,  "-'UC::\ IQ-R
H o G I"''''T I 1 , I!*KEY PLAN PoOL SWELt i.'",:.'.,"[.II, I.:ffl.;! I
 
,_......,....1M I I....'.*....." ,..,.::"'.::'I.''.t., ,:!T-:,....SECTIO"!J!*J!
                                                                                                                                                                                                                                                                                                                                                                                                                        ~.
.....'..:":.:1@
LVG-V'j H
L-....**IHi"""I'd",,,-
                                                                                                                                            ~
..-F:'.-=,,:l
H                                                                            (i7) r                                                                                                                                                    @
'__F','".:.-.:"\'" i o H G c A
lI!:!~ ~;R~CO~~:I i~~T10N SEf.fl'.! YI! !G.;M~'&#xa3;2!.i '5~,                                                          . ,':..,*. -.i.*~. .,*I.i"~;7'i'*S~,.::,~,:-:.' c: .', !~Ei.U'1' ,..'&#xa5;1 i
--_...---.--..
                                                                                                            .M.~~CH ~I~,~~_ ~.;~~C~~;1:j~.1T~?~ . ~~~-?~.?,~-.~I~                                                                                                                                            !Q!;:fl.L'7*lt.'&#xa5;J I,i fl. f'
f.....",: II&#xa5;t(*-...:."'1': Best Copy Available
_ .*  _ MATCH                                                                  _....,..:
:;,.."':..L
                                                                                                                                                                                      ':.. l:' ..'.: .*.,.1"1,, '                   ',r-.:-
*.loo.C""1'.;::::.o..
                                                                                                                                                                                    ~I                                                            ':"".'1*. ','Y:.,:. **~ .*.\\,O'~-'
-""..J,Jt;,c",1'..';
                                                                                                                                                                                                  ' "l' ' '... 1,'
LlIlWEll.III Fe;;'
                                                                                                                                                                                                          ,' ";,1'',1,.:,'*'
Ow.T...!................::
1J'I'",T
'-"'10.,..**.!f<1/1..f-......\*.r-<1 BECHTEL L1MElICK GENERATING STATION UNITS I&2 PIPlNG I>NO M&#xa3;C>tANICAL REACTOR 8LOG.UNIT N02 MISC.PLANst SECTIONS-AREA 6(14 A.QdIi!!I'1 8031[ ,;1 6 5 4 ,: i.
                                                            ~~.~~r                                                                                I I****.!~f~"'ii**l
"..'J**'#" H G Dfl l'>::*Go-;I 1-, i PoOL SWELL f---'f---'f-.+++++-----7+-----------'---
                                                                                                                                                                                      ...,L      '~'
I;..'l\*KEY PLAN H G D="-1'='.--'-
                                                                                                                                                                                                  .',.i,
lIMUICK GENERATING STATtON UNITS I&2
                                                                                                                                                                                                            .!,!!'- J*m*;****;,;~~n
.....BECHTEl$A/tfilAHCISCO PIPlNG IWO MEQiANICAL REACTOR 8L.DG..UNIT2 I-M:.;;I:;:SC:::.;.PLAN.::;..:.::S:..:("S:;:E",CT:.;'ONS=,---.::AREA=.:.;"::.'.:..(:..:'4_.--1 A ,IlJ 8031 ,
                                                                                                                                                                                                                                  . . ~-.~_              ~it                                        "'~1,,",'U
;.;*.:, Jo,C
                                                                                                                                                                                                                                                                                                                                                                                      ~"r T
.......,.....:;::o...-...."'.r>..,;""':'".....::I'11(;'-
L,. .                                       **
I;o.I.T..).-1.
                                                                                                                                                                                                                                                          $-~1.                                                                                                                          KEY PL"'N Pl"'N G                                                                                                                                                                                                                                                                                                      ~POOl..$Nl.U.a..m*d G
,>,;o.-",::::-l lW>e.&t.o.>c::
                                                                                                                                                                                                                                                                                                                                                            ~
...
: 1. ...~.$  ~~ :. fOIl          uzu        R'l ~. Ii;)I1 ~
i...<-..'II';:..'".)'I:'Best Copy i\vailabia c c A 1 6 5 ,: L.-:':".'_.**._.}}
                                                                                                                                                                                                                                                                                                                                                                  ,," 5R          ~P*M#ZA7.
t_~ ~                        ........".  - 0 . . . - - . ..... f""""'
                "O~A                                        10          iii                                                                                                                                                                                                                                                                                  i'!loe&    ,..,.. .....  ",..e.~,"#w.
l!'""''dt~'~l4:20:---
I                    - __                                                                                                                                                                                                                                                                                                                                    C
~
          ,.. , . . ',:.,     ...\ m=1 , I.                                ~
                                '                      ,                                                                                    I
                                                                          ~~~
                                                                                                                                                                                                                                                                                      ~.:::..t:,             ..."".
o                    '-r--   III J:.''.,                                                                                                 "T'"I
                                                                                                                                                                                                                                                                        /J
                                                                                                                                                                                                                                        '[
S-
        -~1?~':9~::                                                                                                                                                                                                                                                                        .
                                                                                                                                                                                                                                                                                                      "k~'="''''''''~
                                                                                                                                                                                                                                                                                                        *1**.. *:***.,*.*:-**f
:~t"'-'-'
c:                                                        ,,J
                                ~
                                  ~/
                                ~ _:-.,
l:                                                                                              ~-,
                                                                                                                                                                                                                                                                                    --1'. '.
IL*
                                                                                                                                                                                                                                                                                            .. '''..,...                                                                                                                                    E "1"L I;'.'                                                                                                        I'
_'_""<.&,            r**
                                                                                                                                                                                                                            '-'-<,...r~                                                i':':'
                                                                                                                                                                                                                                                                                      ~;~.                                 '
                                                        ~  >
                                                                                                                                                                                                                                                                                                      ~{      10c.L.rrr-c'*
D t.. *...*:. '.'/'::(';'~;:::'!,:;::',., '., .:\;,                            .:,: .~.: :'.':.. '-. " , i ' ; _                                    .~: ~.~.: #.'      *
:',::                ....>...            ..'...-:. :>..,;:\\,:';' ". ~.. :. ';.1 D
w m
C)  C)
SECTION 0z      B-B B*B w
                                                                                                                                                                                          '--;+-1'         1;-:     (r-\-.~~---:r-t-~-/:/-/:,,"""""'"                      ;";1
                                                                                                                                                                                                                                                                        ,;!j c                                                                                                                                                                                                                          l~- ~'/
                                                                                                                                                                                                                                    .,:;~'.;e/            f~
I I
M-THli[MG.
I                                      'Ii lK~:_ ~.~l~?~:~~. 1'~n'~jOJll
                                                                                                                                                                                                                                                ;:;C-U1r.:
I
                                                                                                                                                                                                                        ,"~:,if ),I.                                                                 _'~~'",
ir;:-Hi.u.u;".
Best Copy Available AVailable C)
                                                                                                                                                                                            "                                                                                   I                                                     C,,    C          CD UMWa            GI~_~,=--                            *"' 1&#xa3; '~
                                                                                                                                                                                    ).,-.                                                                                                                       ":/'.1
                                                                                                                                                                                                                                                                                                                                                                          ~~i A                                                                                                                                                                                                                                                                                                                                                        \IiSC    fUNSt SE.CT1OolIr~ iii I:!
U)    C-)
SECTION SECTiON rn          0 z      E-E II!
                                                                                                                                                                                                                                              -C
                                                                                                                                                                                                                                                                                                                                                                                                          ...247 ':.:,2.3 ~.,
                      ..f.                .... Iol).'                                         ..:_,.-.     6
                                                                                                                                                                      ~                                                                                4                                                      .t'              {
2 '*
2                                                          ,;':     .            ,..... ~;
 
dc:
8c~:-~
4:-
                                                                                                                                                                                                                                                                                                                                                                                                            ~
HH
                                                          @                                                                                                                                                                                                                                                                                                                                                              H H
                                                                  ~ \'H~  fl  l'>::*Go- ;~i>
                                                                                                                                                                                                                                                                                                                                        ;;                          "''''T I;.. 'l\
I         \l~IT I
I 1
                                                                                                                                                                                                                                                                                                                                                                        ~
KEY PLAN KEY          PLAN
* GG                                                                                                                                                                                                                                                                                                                                                                                                                        G
                                                                                                                                                                                                            ~\,.q(d i
i II, PoOL SWELt      SWELL I.
F
:ffl.                                                                                                                                                                                                                                     F m:m',~-"
          *,,~*,>***tf~~:It"OP""1IH41L-....**IHi """I'd",,,- ..-
f---'f---'f-.+++++-----7+-----------'---
F:'.-=,,:l                              ' __ F'                                           !
I l,u""~i' E
                          .:.-.:"\
i T                [.
                                                                                                                                                                              ,_...... ,J~                                                                                                                                                                                                                                  E
                                                                                                                                                                        ,,~7.&#xa5;--j I ~~~
                                                                                                                                                                                  , ....1M I
                                                                ..... ' ..    -:,     .              ;"'~)";",
                                                                                                                            ,..,.::"'.:               :' I.'              '            .t.,
oD
:":.:1
                                                                              ...     -':*.*.c4~,***:'::***                                 .~.       I 1-,            '., "                  . '", :.
oDD SECTIO"!J!*J!
SECTION
:-L
                                                                                                                                                                                                                                                                                                                                                                                                                    !f<1/1 cC                                                                                                                                                                                                                                                                                                                                                                                                                  ~cCc f...i...<-.. ",:
:. e~
t(*-
                                                                                                                                                                                                                                                                                                ..'           II II';   &#xa5; :~
                                                                                                                                                                                                                                                                                                            ...'":.".) '1':
                                                                                                                                                                                                                                                                                                                        'I:' u_____
B
                                                                                                                                  ~~    T....>:..::T-~
T1PIC,L
                                                                                                                                            .---  .--.. 1l*s.:~;~'lC B
Best Copy AvaUabie                          Available i\vailabia                                                                                                A--
                                                                                                                                                                                                                                                                                                                                .. f -                                                          "-1'='.--'-
                                                                                                                                                                                                              ~,,-~
                                                                                                                                                                                                              ~,,-~    :;,..
                                                                                                                                                                                                                ~'i">';"!':,~.""
                                                                                                                                                                                                                "':..L r:i"""'~!",:;".:.,:                  ;&#xa3;~~t'i:.,,':.~,>.,*
                                                                                                                                                                                                                                                      *.:, U'~ML"-~;;o.
                                                                                                                                                                                                                                                                                                                                ...... \*.r-<1 BECHTEl BECHTEL
                                                                                                                                                                                                                                                                                                                                                                                                            =
Jo,C r;.o.~~
                                                                                                                                                                                                                .loo.C  c...-~ ;;"~::!'lN
                                                                                                                                                                                                                                      ~;:"iN ~    ..... ""1'
                                                                                                                                                                                                                                                        ..,.... .;::::.o
                                                                                                                                                                                                                                                                .:;::o... ::t>.~I<;
:t-,~~,"                                                                               $A/tfilAHCISCO
::rr~'i<
OT~i" -""    - .... ~ ..J,Jt;,c "'.r> ..,; ""':'" .....::
                                                                                                                                                                                                                                        --*~ ",1' ..'; ~'="."~ LlIlWEll.     ~
III  11(;'- .li~~iOfI':;<!
I' Fe;;'      1l!"'L~<H.;i Ow.T.
I;o.I.T.
                                                                                                                                                                                                              ~""i.T:::!J,r
                                                                                                                                                                                                              ~ .).-1. T~~T""""!        ~ .. ! ':~'I<Go~
:.~ ... "'~ .......      ,..,~.,j ,~
                                                                                                                                                                                                                                                                      ,>,;o.-",::::-l          ..... "",J~,
c...;.."",J~,
L1MElICK lIMUICK GENERATING LIMERICK          GENERATING STATION          STATtON UNITS    UNITS II &  & 22
                                                                                                                                                                                                                ~lW>e.&t.o.>c::...
                                                                                                                                                                                                                          ~ .::            ,:-;~      ~ ~1<,.;; '-"'10., ..**.
                                                                                                                                                                                                                                          ,:"'i~~~,.,.,~.:.O::"'>;<.,.-;-
                                                                                                                                                                                                                                                                                                                                                              ~-..:ftCClllWwr
                                                                                                                                                                                                                                                                                                                                                              .,....,...aJr;Jui;~              .....
PIPlNG AND PIPING          I>NO      M&#xa3;C>tANICAL IWO MEI-IANICAL MEQiANICAL REACTOR BLDG.            8LOG.
8L.DG.. UNIT NQ2        ~2 N02 A
A                                                                                                                                                                                                                                                                                                                                MISC. PLANS MISC        PLANst SECTIONS-AREA I-M:.;;I:;:SC:::.;.PLAN.::;..:.::S:..:("S:;:E",CT:.;'                    6(.:..(:..:'4_.--1 AE ONS=,---.::AREA=.:.;"::.'  14 4          A A
A
                                                                                                                                                                                                                                                                                                                                  .Qd                      -~                              -~                        ~.
                                                                                                                                                                                                                                                                                                                                  ,IlJ Ii!!I'1                8031 [,                         M:~2l',                    ,;1 8              J                  71                        1                    66                    55                            -              44                                          3                              ,:  !
                                                                                                                                                                                                                                            ,: i.
L.-:':".'
                                                                                                                                                                                                                                                      ._~.... "_.**.
                                                                                                                                                                                                                                                                  .. 'J * * '_.     #"
2}}

Latest revision as of 00:36, 21 March 2020

License Amendment Request to Include Alternate Method of Verifying Drywell Unidentified Leakage
ML111650563
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 06/14/2011
From: Jesse M
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML111650563 (36)


Text

{{#Wiki_filter:I 10 10 CFR 50.90 June 114, 2011 June 2011 Nuclear Regulatory Commission U.S. Nuclear U.S. ATTN: Document Control Desk ATTN: Washington, DC 20555-0001 Washington, Limerick Generating Limerick Generating Station, Units 11 and 2 Facility Operating Facility Operating License Nos. Nos. NPF-39 and NPF-85 USNRC Docket Nos. 50-352 and 50-353

Subject:

License Amendment Request to Include an Alternate Method of Verifying Drywell License Unidentified LealKa(le Unidentified Leakage

References:

1)

1) Letter from P. R. Simpson (Exelon Generation Company, LLC for Dresden Nuclear Power Station) to U.S. NRC, IIRequest Dresden Request for Emergency License Amendment Regarding Drywell Floor Drain Sump Monitoring System, dated August 18, 2008 System,lI
2) Letter from C. Gratton (U.S. NRC) to C. G. Pardee (Exelon Generation Dresden Nuclear Power Station, Unit 3 -Issuance Company, LLC), IIDresden Issuance of Emergency Amendment Regarding Drywell Floor Drain Sump Monitoring MD9467), dated August 22, 2008 System (TAC No. MD9467),"
3) Letter from J. L. Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station) to U.S. U.S.

Request for License Amendment to Revise Technical Specification NRC, "Request RCS Leakage Detection Instrumentation," 3.4.5, "RCS Instrumentation, to Allow Alternate Method of Verifying Drywell Leakage"Leakage dated August 28, 28,2009 2009

4) Letter from C. Gratton (U.S. NRC) to M. J. Pacilio (Exelon Generation Company, LLC), Dresden "Dresden Nuclear Power Station, Units 22 and and 3,3, and and Quad Cities Nuclear Power Station, Units 11 and 2 - Issuance of -

Amendments RE: Authorizing Alternative Methods Methods of Verifying Verifying Leakage Leakage within the Drywell (TAC NOS. ME2148 thru ME2151), ME2151)," dateddated August August 16, 16, 2010 In accordance with 10 CFR 50.90, Application "Application for amendment of of license, license, construction construction permit, permit, or early site permit, permit," Exelon Generation Generation Company, LLC (EGC) (EGC) requests requests an an amendment amendment to to the the Technical Specifications Specifications (TS) for Limerick Generating Station Station (LGS), Units Units 11 and and 2.2. The The proposed amendment revises Technical SpecificationSpecification (TS) (TS) 3.4.3.1, 3.4.3.1, LEAKAGE "LEAKAGE DETECTION DETECTION

SYSTEMS, SYSTEMS," to support addition of an an alternative method method of of verifying verifying that that unidentified unidentified leakage leakage in in the drywell is within limits.

In Reference 1, 1, EGC requested aa temporary emergencyemergency license license amendment amendment for for Dresden Dresden Nuclear Power Station (DNPS), Unit allow Unit 33 to allow the reconfigurati reconfigurationon of of the the drywell drywell floor floor drain drain sump (DWFDS) flow monitoring monitoring system such that system such that the the drywell drywell equipment equipment drain drain sump sump (DWEDS) (DWEDS) could be used as an alternate method as an method to to verify verify that that Reactor Reactor Coolant Coolant System System (RCS) (RCS) leakage leakage inin the drywell is within drywell is within TS TS limits. The The emergency emergency license license amendment amendment request request waswas reviewed reviewed andand approved by the NRC NRC in in Reference 2.2. Following Following thethe emergency emergency license license amendment amendment approvalapproval by the NRC, EGC submitted a request for a permanent license EGC submitted a request for a permanent license change for change for both both DNPS DNPS and and Quad Cities Nuclear Nuclear Power Power Station Station (QCNPS) (QCNPS) in in Reference Reference 3. 3. The The NRC NRC approved approved the the license license

u.s. U.S. Nuclear Regulatory Commission June 14, 2011 Page 2 amendment for both DNPS and QCNPS in the Reference 4 Safety Evaluation Report. The changes proposed in this license amendment request seek to incorporate the alternate method approved for DNPS and QCNPS into the LGS TS for Units 11 and 2. The changes proposed in this license amendment request have wording and justification similar to the changes approved for DNPS and QCNPS. The DNPS and QCNPS submittal submiffal and Safety Evaluation Report were verified for applicability and utilized as the template for this submittal. 1 provides a description of the proposed change. Attachment 2 provides the existing TS page markups showing the proposed changes. Attachment 3 provides the associated TS Bases markups for information only. There are two regulatory commitments contained in this letter, detailed in Attachment 4. Attachment 5 contains drywell sump level monitoring system configuration drawings for information only. The proposed changes have been reviewed by the LGS Plant Operations Review Committee and approved by the Nuclear Safety Review Board in accordance with the requirements of the EGC Quality Assurance Program. EGC requests approval of the proposed amendment by June 14, 2012. Once approved, the amendment shall be implemented within 60 days of issuance. In accordance with 10 1 0 CFR 50.91, 50.91 , "Notice Notice for public comment; State consultation, consultation, paragraph II (b), EGC is notifying the Commonwealth of Pennsylvania of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Official. Should you have any questions concerning this letter, please contact Ms. Wendy E. Croft at (61 (610)0) 765-5726. th II declare under penalty of perjury that the foregoing is true and correct. Executed on the 14 14th dayof day of June2011. June 2011.

~~~~-_.~~-

Respectfully

   /

Michael D. Je se Director, Licen On Licentn6d d Regulatory Affairs Exelon Generation Company, LLC Attachments: 11.

                    . Evaluation of Proposed Changes
2. Markup of Technical Specification Pages
3. Markup of Technical Specifications Bases Pages (For Information Only)
4. List of Commitments
5. Drywell Sump Level Monitoring System Configuration Drawings (For Information Only) cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, Inspector, LGS USNRC Project Manager, LGS R. R. Janati, Bureau of Radiation Protection

C, ATTACHMENT 1 m -& m 0) 0 Evaluation of Proposed Changes

                         -4i        0 0

Co CD

0. C, 0) Cl)

Co Limerick Generating Station, Units 1 and 2 za. Om 00 Co cCO

                                                                    -or)

-n 0 CD(,) .0 Facility Operating License Nos. NPF-39 and NPF-85 -p Co ai

Subject:

License Amendment Request to Include an Alternate Method of Verifying Drywell Unidentified Leakage 1.0 1o

SUMMARY

DESCRIPTION 2.0 DETAILED DESCRIPTION 2.1 Background

3.0 TECHNICAL EVALUATION

3.1 Drywell Sump Level Monitoring System Description 3.2 RCS Leakage Limits 3.3 RCS Leakage Detection While Filling the DWFDS 3.4 Summary

4.0 REGULATORY EVALUATION

4.1 Applicable Regulatory Requirements/Criteria 4.2 Precedent 4.3 No Significant Hazards Consideration 4.4 Conclusions

5.0 ENVIRONMENTAL CONSIDERATION

6.0 REFERENCES

Alternate Method Alternate Verifying Drywell Method of Verifying Unidentified Leakage Drywell Unidentified Leakage Attachment 1: Attachment Evaluation of Proposed 1 : Evaluation Proposed Changes Changes Page 11 of 10 Page 1 .0 1.0

SUMMARY

DESCRIPTION

SUMMARY

DESCRIPTION This evaluation supports This evaluation supports a request request to amend Operating Licenses amend Operating Licenses NPF-39 NPF-39 and NPF-85 NPF-85 for Limerick Generating Station Limerick Generating Station (LGS)(LGS) Units respectively. Units 11 and 2, respectively. proposed changes The proposed changes would would amend Operating Licenses amend the Operating Licenses by revising Technical revising Technical Specification (TS) 3.4.3.1, Specification 3.4.3.1 , "LEAKAGE LEAKAGE DETECTION DETECTION SYSTEMS,"SYSTEMS, to add an alternative alternative method method to verify Reactor Coolant verify Reactor Coolant SystemSystem (RCS) unidentified leakage (RCS) unidentified leakage in the drywell drywell is within within limits. limits. The proposed amendment revises proposed amendment 3.4.3.1 , "LEAKAGE revises TS 3.4.3.1, LEAKAGE DETECTION DETECTION SYSTEMS,"SYSTEMS, to support support implementation of an alternate implementation alternate methodmethod to quantify quantify Reactor Reactor Coolant System (RCS) Coolant System (RCS) leakage leakage in the primary containment (Le., primary containment proposed alternate drywell). The proposed (i.e., the drywell). alternate method method uses installed uses the installed drywell equipment drain drywell equipment drain sumpsump (DWEDS) mo (DWEDS) monitoringnitoring system, system, with the drywelldrywell floor draindrain sump sump (DWFDS) overflowing to the DWEDS, (DWFDS) overflowing DWEDS, to verify verify that RCS leakage in the drywell RCS leakage drywell is within within TS 3.4.3.2, OPERATIONAL LEAKAGE," 3.4.3.2, "OPERATIONAL LEAKAGE, limits. limits. This configuration would This configuration would only be used when the used when DWFDS monitoring DWFDS monitoring system unavailable. system is unavailable. purpose of the proposed The purpose proposed license amendment is to increase license amendment increase operating operating flexibility flexibility and avoid avoid unn ecessary plant unnecessary transients due to extended plant transients ino per extended inoperabilityability of the DWFDS DWFDS monitoring monitoring system system (e.g., inoperability caused (e.g., inoperability caused by a componentcomponent failure). proposed change failure). The proposed change will enable enable each each unit reconfigure the DWFDS to reconfigure DWFDS flow monitoring monitoring system system such overflowing into the DWEDS. such that it is overflowing DWEDS. reconfigured dryw The reconfigured drywell ell sump monitoring system sump monitoring system can then be used used to verif verify drywell y that drywell leakage is with leakage within limitss spe in the limit 3.4.3.2. Thi cified in TS 3.4.3.2. specified Thiss operating configuration is conservative operating configuration conservative to the normal configuration in that the TS 3.4.3.2.b normal configuration 3.4.3.2.b unidentified unidentified leakage leakage limit of less than or equal gallons per minute equal to 5 gallons (gpm) will be applied minute (gpm) applied to tota totall leak leakage, opposed to the TS age, as opposed 3.4. 3.2.c limit of less than or equal 3.4.3.2.c equal to 30 gpm.gpm. 2.0 DETAILED DE DETAILED SCRIPTION DESCRIPTION Thiss pro Thi posed ame proposed ndment is con amendment consistent License Am sistent with the License Request and sub endment Request Amendment subsequent sequent NRC Saf Safetyety Eva luation Rep Evaluation Report Dresden Nuc ort for Dresden Nuclear lear Pow Power er Sta Station tion (DN (DNPS) PS) and Quad Cities Quad Cities Nuc lear Pow Nuclear Power er Sta tion (QC Station (QCNPS)NPS) per taining to an alte pertaining rnate met alternate hod of verif method ying dryw verifying drywellell leak leakage, age, Ref erences 6.1 and 6.2, resp References ectively. respectively. The pro posed TS and TS Bas proposed Baseses cha nges are: changes .* TS Lim iting Con Limiting dition for Ope Condition Operation (LCO)) 3.4. ration (LCO 3.1 .b is rev 3.4.3.1.b ised to stat revised statee that "the dryw that,, the drywell ell sum sump mo nitoring sys p monitoring tem is req system" uired to be ope required rable. operable.

  • TS 3.4. 3.1,, Acti 3.4.3.1 Action revised to rem on B is revised ove the spe remove cific refe specific rences to the DW references DWFDSFDS mo nitoring sys monitoring tem and rep system laces this with a refe replaces rence to the dryw reference drywell sump ell sum p mo monitoring nitoring sys tem.

system.

  • TS BA BASESSES 3/4 .4.3.1 is rev 3/4.4.3.1 ised to def revised ine the dryw define ell sum drywell sump p mo nitoring sys monitoring tem as eith system either er the DWF DWFDS DS mo nitoring sys monitoring tem or the DW system DWEDS EDS mo nitoring sys monitoring tem with the DW system DWFDSFDS ove rflowing to the DWE overflowing DWEDS. DS.

A mar markupkup of the pro posed TS and TS Bas proposed Baseses pag page e cha nges are pro changes vided in Att provided achments 2 and Attachments resp ecti vely 3, respectively.. The TS Bas Bases pag es page cha pro nges are provided e changes info vided for information rmation only only..

Drywefl Unidentified Leakage Alternate Method of Verifying Drywell : 1 : Evaluation of Proposed Changes Page 2 of 10 2.1 Backciround

Background

On August 16, 2008, at approximately 2000 hours, operations personnel at DNPS attempted to pump the DNPS Unit 3 DWFDS utilizing Dresden Operating Procedure (DOP) 2000-24, "Drywell Drywell Operation. Successful completion of DOP 2000-24 is used, in part, to satisfy DNPS Sump Operation. II 3.4.4.1 "Verify Surveillance Requirement (SR) 3.4.4.1, , Verify RCS unidentified and total LEAKAGE and unidentified LEAKAGE increase are within limits."limits. The pumps started as expected; however, the integrator indicated no flow. During a second attempt to operate the pumps, DNPS operations personnel observed the position indicators for the two containment isolation valves, which indicated that the valves were in their proper position. DNPS maintenance personnel also inspected the pump breakers and measured pump motor current, with no abnormalities identified. The drywell floor drain sump pumps had been successfully pumped previously at 1 600 hours, and every four hours prior. 1600 DNPS conducted troubleshooting actions to identify possible malfunctions. These troubleshooting actions indicated that the containment isolation valve (Le., (i.e., one of two drywell floor drain sump pump discharge valves) may have failed closed. Since the drywell floor drain sump could not be pumped, DNPS was not able to satisfy the acceptance criteria of SR 3.4.4.1 for DNPS Unit 3. Therefore, TS LCO 3.4.4 for unidentified leakage could not be verified to be within limits. The applicable TS action requires that thatthe the unit be placed in Mode 3 within 12 hours and Mode 4 within 36 hours. In that the containment isolation valve is part of primary containment, the valve could not be repaired during unit operation. As such, DNPS requested, and the U.S. Nuclear Regulatory Commission (USNRC) granted, a Notice of Enforcement Discretion (NOED) for TS 3.4.4, Condition C and TS 3.4.5, Condition C (Le.,(i.e., References 6.3 and 6.4, respectively). Specifically, the NOED provided a seven-day extension to the TS Completion Times to place the unit in Mode 3 within 12 hours and Mode 4 within 36 hours. The extension provided sufficient time to reconfigure the DWFDS monitoring system such that the DWEDS monitoring system could be physically utilized to quantify unidentified drywell leakage. In addition, the seven-day extension provided sufficient time for DNPS to request, and the USNRC to review and approve, an emergency license amendment to revise TS 3.4.5, on a temporary basis, to approve the use of the DWEDS monitoring system as an alternate method to quantify unidentified leakage (i.e., (Le., References 6.5 and 6.6, respectively). Subsequently, DNPS and Quad Cities Nuclear Power Station (QCNPS) submitted an additional license amendment request, Reference 6.1 6.1, requesting the emergency license amendment changes be made permanent for both stations. The USNRC requested additional information to support the license amendment request review in the Reference 6.7 letter. The DNPS and QCNPS responses were provided in the Reference 6.8 and 6.9 submittals. The license amendment request was approved by the USNRC in August 2010 (Reference 6.2). To prevent the need for a similar emergency license amendment, the changes proposed in this request seek to incorporate the alternate method of verifying drywell leakage into the LGS TS for Unit 11 and Unit 2.

Alternate Method Alternate Method of Ver Verifying ifying Drywell Unidentified Leakage Drywell Unidentified Leakage : Attachment Evaluation of Proposed 1 : Evaluation Proposed Changes Changes Page 3 of 10 Page 3.0 TEC EVALUATION HNICAL EVALUATION TECHNICAL 3.1 pjy well Sump Drywell Sump Level Monitoring System Level Monitoring DescriOtQfl

System Description

DWEDS at LGS The DWEDS LGS is located immediately adjacent located immediately adjacent to the DWFDS, DWFDS, wit withh the top of bothboth sumps sumps (tanks) at the same (tanks) same elevation, app roximately seven elevation, approximately apart. The seven feet apart. There obstructions re are no obstructions between the two sumps between sumps to preventprevent or divert drywell floo divert drywell drain sump floorr drain overflow from reaching sump overflow reaching the drywell equipment drain drywell equipment drain sump. sump. Based Based on the sump sump configurations, engineering com configurations, an engineering computation putation determined approximately 550 gallons determined that approximately gallons are required required in the DWFDS DWFDS for overflowoverflow into the DWEDS. Attachment 5 contains DWEDS. Attachment contains dra drawings detailing the physical wings detailing configuration of the sumps. physical configuration sumps. LGS has ver LGS ified that the sump verified con figuration and sum sump configuration sump volumes for LGS p volumes LGS Units Units 1 1 and 2 (i.e., (i.e., both DWEDS and DWFDS) both DWEDS DWFDS) are equ equivalent ivalent to the DNPS DNPS Unit 3 DWFDS DWFDS and DWEDS DWEDS sump sump configuration and vol configuration volume ume (Le., approximately 1000 (i.e., approximately 1000 gallons capacity each). gallons full capacity each). leakage from Reactor All leakage Reactor Coolant Pressure Bou Coolant Pressure Boundary components inside (RCPB) components ndary (RCPB) drywell, inside the drywell, wit exception of leak h the exception with leakageage from the Main Main Steam Steam ReliefRelief Val Valves (MSRV5) (Updated ves (MSRVs) (Updated Final Final Safety Analysis Report Safety Analysis Report (UFSAR) (UFSAR) Section 5.2.5.2.1 .8), flow Section 5.2.5.2.1.8), directly to either flowss directly drywell either the drywell equipment drain equipment drain sum sump drywell floo p or the drywell drain sump. floorr drain sump. The Therere are no othotherer rese rvoirs in the reservoirs drywell sufficient capacity drywell of sufficient capacity to preventprevent leakage leakage from drainingdraining directly directly to either either of thesthesee sumps. sumps. Both dra Both drain in sumps identically sized, sumps are identically sized, hor cylindrical tank izontal cylindrical horizontal located inside tankss located reactor inside the reactor ves pedestal below sel pedestal vessel diaphragm slab and vented below the diaphragm vented to the drywell atmosphere. drywell atmosphere. Leakage from RCPS Leakage components insi RCPB components inside de the primary containment whi primary containment which normally subject ch are not normally subject leakage is collected to leakage collected by the DWFDS. DWFDS. Thi leakage, whi Thiss leakage, which originate from any number ch may originate number of sources wit sources within drywell, is tran hin the drywell, sported to the sump transported sump via the floo network wit drain network floorr drain within hin the drywell. Thu drywell. Thus, separation of unidentified s, separation unidentified leakage leakage from the iden tifiable leak identifiable leakage routed to the age routed equipment drain equipment drain sump ensures that a small sump ensures unidentified leakage small unidentified leakage that is of concern concern will not be masked by a larger, masked acceptable, identified larger, acceptable, identified leakage. leakage. The DWEDS monitoring system DWEDS monitoring system is similar similar to the DWFDS monitoring system. DWFDS monitoring system. CertainCertain RCPB RCPB com ponents wit components within drywell are, by the natu hin the drywell naturere of thei theirr design, normally subject design, normally subject to a lim limited ited amount of leak amount age. The leakage. These components include se components include pump pump seals, seals, valv packings, and other valvee stem packings, other equipment that can equipment cannot practicably be made not practicably completely leak made to be completely -tight. The leak-tight. These leakages are se leakages piped directly piped directly to the drywell equipment drain drywell equipment sump. All of the var drain sump. various drains are open ious drains open only only to equipment they serve, the equipment serve, therthereby receiving leakage eby receiving leakage only identified sou only from identified sources. Background rces. Background leakage to this sump leakage determined during sump is determined during initia plant ope initiall plant operation. Rates of leakage ration. Rates collection in leakage collection exc excess bac kgr ess of background ind ound indicates abn icates abnormalormal RCPBRC leakage. PB leakage. control circuits The control monitoring systems circuits for the two monitoring pertorm the same systems perform same fun functions, ctions, and sumpsump instrumentation consists instrumentation consists of the same components and performs same components performs a similar similar funfunction. Instruments ction. Instruments for both monitoring systems both monitoring calibrated using systems are calibrated similar plant using similar procedures to satisfy plant procedures satisfy TS Surveillance Requirements (SRs) Surveillance Requirements (SR5) for fun ctional test functional testing calibration. ing and calibration. Each sump Each sump tank has its own level level tran smitter whi transmitter which monitored by a dedicated ch is monitored processing unit. dedicated processing unit. Normally closed Normally closed drain drain valv valves provided, enabling es are provided, enabling the level level in each increase as each tank to increase leakage drains leakage drains into them. processing unit them. The processing calculates an average unit calculates average leak rate for a given given measurement period measurement establishing the amount period by establishing amount of increase increase in leve occurred during levell that occurred during the period, converting that valu period, and converting value e into vol umetric term volumetric termss (gpm). processing units (gpm). The processing provide an units provide alarm in the main alarm control room main control room eacheach time average leak rate changes time the average predetermined changes by a predetermined valu value since the last tim e since timee that alarmalarm was reset.reset. The setpoint setpoint is a 11 gpm change unidentified change in unidentified

Alternate Method of Verifying Drywell Unidentified Leakage : 1 : Evaluation of Proposed Changes Page 4 4of of 10 leakage collected in the drywell floor drain sump tank, and a 2 gpm change in identified leakage collected in the drywell equipment drain tank. Alarms are also generated in the main control room for high total average leak rate. The high total average leak rate alarm setpoints can be adjusted at the processing unit, which is located in the main control room, as the amount of acceptable identified leakage changes during operation. Indication of the leakage rates is provided in the main control room on panel-mounted indicators. Sump tank levels (in gallons) are provided on monitors from the Plant Monitoring System. Level switches, which are independent of the level transmitters, open the sump tank drain valves when the level increases to an upper setpoint value and keep them open until the level decreases to the lower setpoint value. The level switches then close the drain valves and reset the processing units to start a new measurement period. The measurement period must be long enough to ensure that the level transmitter loop can adequately detect the increase in level that would correspond to the 1 1 gpm and 2 gpm changes in leak rates described above, and yet short enough to ensure that such a leak rate will be detected within an hour. The measurement period will be less than 1 1 hour. The transmitters which are located in the reactor enclosure and the processing units which are located in the main control room are accessible during normal plant operation for calibration. The transmitters can be isolated from the sump tanks by existing bypass manifolds. Zero and span adjustments can be made using portable test equipment. The processing unit functions can be calibrated by applying known input levels at the unit and observing the response. The Drywell Sump Level Monitoring System (DSLMS) is comprised of the processing units, level transmitters, control room leakage flow indicators and interconnecting raceway and cables. The DSLMS has been demonstrated to remain operational after a Safe Shutdown Earthquake. The DSLMS is energized by Class 1E 1 E power. The Class 1E 1 E power to the panel is provided with a Class 1E1 E fuse and circuit breaker in series to meet separation requirements. The DSLMS is automatically shed from the Class 1E 1 E power in the event of a Loss of Coolant Accident (the load shedding relay, however, is not qualified for Class 1E 1 E service). additionto In addition, to the sump level monitoring system described above, the discharge from each sump is monitored by a flow element. The measured flow rate is integrated and recorded in the control room. A control room alarm is also provided to indicate excessive discharge rates. These indications and alarms are provided in accordance with Regulatory Guide 1.45. 3.2 RCS Leakage Limits OPERATIONAL LEAKAGE," TS 3.4.3.2, "OPERATIONAL LEAKAGE, specifies the leakage limits for the RCS. The leakage LEAKAGE,II limits require, in part, unidentified leakage to be less than or equal to 5 gpm, total leakage averaged over the previous 24-hour period to be less than or equal to 25 gpm, and the increase in unidentified leakage within the previous 24-hour period to be less than 2 gpm. Section 5.2.5 of the LGS UFSAR describes the methods used for detection of leakage through the RCPS, RCPB, and specifies use of the drywell sumps (Le.,(i.e., DWFDS and DWEDS) as the primary methods that can be used. The leakage collected in the DWEDS is identified leakage, and the leakage collected in the DWFDS is unidentified leakage. TS 3.4.3.1 currently requires the DWFDS be operable as a RCS leakage detection system. The proposed change revises TS 3.4.3.1 to support the addition of an alternative method to use the

Alternate Method Alternate Method of Verify Drywell Unidentified ing Drywell Verifying Unidentified Leakage Leakage : Attachment Evaluation of Proposed 1 : Evaluation Proposed Changes Changes Page 5 of 10 installed DWEDS installed DWEDS in the situation situation that the DWFDS DWFDS is inoperable inoperable and the DWEDS DWEDS is operable. operable. In this situation inoperable DWFDS situation the inoperable DWFDS would overflow overflow into the DWEDS DWEDS which would be capable capable quantifying total RCS leakage of quantifying leakage (Le., unidentified plus identified (i e , unidentified identified leakage). resultant value leakage) The resultant of total RCS leakage conservatively verified leakage would be conservatively verified to be less than the TS 3.4.3.2.b 3.4.3.2.b unidentified leakage unidentified leakage limit of 5 gpm and TS 3.4.3.2.1 4 3 3 2 f uniden unidentified tified leaka leakage ge incre increase ase limit of 2 gpm within the previous previous 24 hours. 3.3 13_c_s Detection While Filling the DWFDS Leakacie Detection RCS Leakage DWFL 4.4.3.2.1 .b requires LGS TS SR 4.4.3.2.1.b requires the verific ation every 8 hours that RCS leakage verification measured by leakage measured DWFDS and DWEDS the DWFDS DWEDS is within the specified (unidentified leakage specified limits of TS 3.4.3.2 (unidentified leakage to be less than or equal to 5 gpm and the increase increase in unidentified unidentified leakage previous 24 hour leakage within the previous period to be less than 2 gpm). described above, after the DWFDS As described overflowing into the DWEDS, DWFDS begins overflowing DWEDS, the DWEDS DWEDS can be measure total leakage used to measure leakage (Le., unidentified plus identified (i.e., unidentified identified leakage). Overflow into the leakage). Overflow DWEDS was determined DWEDS determined by an engineeringengineering evaluation evaluation to occur after accumulation accumulation of approx imatel y approximately 550 gallonss gallon in the DWFD DWFDS. S. In order DWFD for the DWFDS overflow into the S to overflow DWEDS, LGS personnel DWEDS, personnel would either have to manually manually fill the DWFDS DWFDS with an externalexternal water unidentified RCS leakage source or allow unidentified source DWFDS. The use of unidentified leakage to fill the DWFDS. unidentified RCS leakage to fill the DWFDS leakage DWFDS at or above gallons in an 8 hour time period would require: above 550 gallons require:

1. minimum unidentified A minimum unidentified leakage approximately 1.14 gpm, and leakage rate of approximately
2. The regulatory commitments delineated regulatory commitments delineated in this submittal submittal for LGS, Units 11 and 2 (Le., (i.e.,

verific ation of flow from the DWFDS verification DWFDS to the DWEDS, DWEDS, prior to the initial use of the alternate monitoring method alternate monitoring method for a specific specific unit) have been satisfied. satisfied. minimum unidentified The minimum unidentified leakage approximately 1.14 leakage rate of approximately 1 .14 gpm is basedbased on the leakage leakage rate required approximately 550 gallons required to fill approximately gallons in the DWFDSDWFDS in 8 hours. The 8 hour period represents TS-required surveillance represents the TS-required surveillance interval interval as specified 4.4.3.2.1 .b but does not specified in SR 4.4.3.2.1.b included additio included the additional nal 25% grace, or 2 hours, allowed 25% grace, allowed by SR 4.0.2. This minimum minimum leakage leakage rate 1 .14 gpm would cause 1.14 cause the DWFDS DWFDS to overflow overflow into the DWEDS DWEDS within the required required SR 4.4.3.2.1 .b interval. 4.4.3.2.1.b interval. 3.4.3.2.f requires TS 3.4.3.2.1 requires that a'2 a2 gpm increaseincrease in unidentified unidentified leakage leakage over a 24-hour24-hour period is able to be detected. Conservatively assuming detected. Conservatively assuming an empty DWFDS DWFDS and a minimum, minimum, immediate immediate incre ase in uniden increase unidentified tified leak rate of 2 gpm the DWFD DWFDS S would fill approx imately 550 up to approximately gallons and begin to overflow overflow to the DWEDS DWEDS in 4.6 hours. As stated above in Section 3.1 of this stated above Attachment, the level switches Attachment, switches will detect detect a 2 gpm changechange in leak rates in the DWEDS DWEDS and provide an alarm in the main control provide control room. This meets 3.4.3.2.f requirement meets the TS 3.4.3.2.1 requirement to detect detect a 2 gpm increase unidentified leakage increase in unidentified leakage over a 24-hour24-hour period. period. 3.4.3.2.b imposes TS 3.4.3.2.b imposes a leakage leakage limit of 5 gpm of unidentifiedunidentified leakage. Conservatively assuming leakage. Conservatively assuming an empty DWFDSDWFD minim S and a minimum, immediate increase um, immediate increase in unidentified unidentified leak rate of 5 gpm the DWFDS approximately 550 gallons and begin to overflow DWFDS would fill up to approximately overflow to the DWEDS DWEDS in 1.83 hours. As statedstated above in Section 3.1 of this Attachment, Attachment, the level switches switches will detect detect a 2 gpm change in leak rates in the DWEDS change DWEDS and provide provide an alarm in the main control control room. This amount of time is less than the TS Completion amount Completion Time for TS 3.4.3.2, 3.4.3.2, Action B which reducesreduces unidentified leakage unidentified leakage rate to within limits in 4 hours and the completion completion time for TS 3.4.3.1 ,, Action B which restores restores the drywell drywell sump monitoring monitoring system to Operable Operable status status within 30 days.

Alternate Method of Verifying Drywell Unidentified Leakage : 1 Evaluation of Proposed Changes Page 6 of 10 Therefore, depending upon the specific operational circumstances, filling of the DWFDS and ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage. In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times. 3.4 Summary By allowing the drywell floor drain sump to overflow into the drywell equipment drain sump, Operations personnel are not able to differentiate between the identified and unidentified leakage inputs. As such, all leakage in the drywell sumps will be conservatively treated as unidentified leakage in accordance with the TS 3.4.3.2 limits. Ensuring flow from the DWFDS to the DWEDS would be established either manually with an external water source, or remotely, using the existing unidentified RCS leakage. In both circumstances the TS SR and TS Requirements in TS SR 3.4.3.2.1 and TS 3.4.3.2 will be met within the allotted completion times. Therefore, the addition of an alternative method to quantify unidentified leakage in the drywell is conservative with respect to the current TS limits.

4.0 REGULATORY EVALUATION

4.1 Arplicable Regulatory Requirements /I Criteria Applicable LGS Units 1 1 and 2 were originally designed and constructed following the issuance of the General Design Criteria (GDC). The GDC proposed criteria were adopted as regulatory requirements at both LGS Units. Details regarding the reactor coolant system leakage detection systems are provided in UFSAR System.1I One of the 5.2.5, Reactor Coolant Pressure Boundary Leak Detection System. Section 5.2.5,11 (i.e., DWFDS and DWEDS). The leakage detection systems discussed is the drywell sumps (Le., UFSAR states that various leak detection systems and capabilities collectively detect reactor coolant pressure boundary leakage, both identified and unidentified. These indications and alarms are provided in accordance with Regulatory Guide 1.45. The proposed change does not involve physical changes to the RCS leakage detection systems. Rather, the proposed change allows use of the drywell equipment drain monitoring system to perform the function of the drywell floor drain monitoring system in quantifying unidentified leakage within the LGS Units 11 and 2 drywells. The design function of the RCS leakage detection systems is not affected by the proposed change. In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage. EGGs ability to meet the applicable regulatory requirements Therefore, there is no impact to EGC's discussed above. 4.2 Precedent The proposed alternate method has been incorporated into the TSs for the Monticello Nuclear Generating Plant (References 6.10 and 6.11), the Peach Bottom Atomic Power Station, Unit 2 and Unit 3 (References 6.12 and 6.13). In addition, the NRC has previously approved similar

Method of Veri Alternate Method Alternate Verifying fying Drywell Unidentified Leakage Drywell Unidentified Leakage :  : Evaluation Proposed Changes Evaluation of Proposed Changes Page 7 of 10 amendment requests amendment requests to the TS for Dresden Nuclear Power Dresden Nuclear Power Station, Station, Units Units 2 and 3 and Quad Cities Nuclear Power Cities Nuclear Power Station, Station, Units (References 6.1 and 6.3). Units 11 and 2 (References subject license 6.3 ). The subject license amendment request amendment proposes to adopt request proposes consistent with those revisions consistent adopt revisions those proposed previously proposed in the previously amendments. approved amendments. approved 4.3 Significant Hazards No Significant Nc ConsideratiQil Hazards Consideration accordance with 10 CFR 50.90, In accordance ApplicatiOn for amendment 50.90, "Application amendment of license, construction permit, license, construction permit, Generation Company, Exelon Generation permit, Exelon or early site permit, II Company, LLC (EGC) amendment to requests an amendment (EGC) requests Operating License Facility Operating Facility NPF-39 and NPF-85 License Nos. NPF-39 Limerick Generating NPF-85 for Limerick Generating Station Station (LGS), (LGS), Units 11 and 2, respectively. Units Specifically, the proposed respectively. Specifically, proposed change Technical revises the Technical change revises Specifications (TS) to support Specifications implementation of an alternative support implementation alternative method verifying that leakage method of verifying leakage drywell floor drain sump into the drywell within limits. sump is within alternative method limits. The alternative method involves involves use of the equipment drain sump drywell equipment installed drywell installed monitoring system sump monitoring system to quantify unidentified leakage quantify unidentified leakage in the drywell. drywell. evaluated whether EGC has evaluated whether or not a significant significant hazards consideration is involved hazards consideration involved with the proposed amendment by focu proposed amendment focusing standards set forth in 10 sing on the three standards Issuance 50.92, "lssuance 1 0 CFR 50.92, amendment, as discussed of amendment, II discussed below: below: (1 ) (1) proposed change Does the proposed change involve significant increase involve a significant probability or increase in the probability consequences of an accident consequences previously evaluated? accident previously evaluated? Response: No.

Response

proposed change The proposed change does not involve physical changes involve physical plant structure, changes to any plant structure, system, system, component. As a result, or component. result, no new failure failure modes Reactor Coolant modes of the Reactor System (RCS) Coolant System (RCS) detection systems leakage detection leakage systems are being being introduced. Additionally, the RCS leakage introduced. Additionally, leakage detection systems detection systems have no impact impact on any initiating initiating event frequency. event frequency. The consequences previously analyzed consequences of a previously dependent on the initial accident are dependent analyzed accident initial conditions assumed conditions assumed for the analysis, behavior of the fuel during analysis, the behavior during the analyzed analyzed accident, the availability accident, successful func availability and successful equipment assumed tioning of the equipment functioning assumed to operate in response operate response to the analyzed event, and the setpoints analyzed event, setpoints at whic which actions are h these actions initiated. The ReS initiated. detection systems leakage detection RCS leakage perform an accident systems do not perform mitigating accident mitigating function. Emergency Core Cooling function. Emergency System, Reactor Cooling System, Reactor Protection Protection System, primary System, and primary containment isolation secondary containment and secondary isolation actuations actuations are not affected proposed affected by the proposed change. The proposed change. proposed change change has no impact setpoints or functions impact on any setpoints functions related related to actuations. Ther these actuations. There changes in the type e are no changes significant increase typess or significant increase in the amounts of any effluents amounts released offsite. effluents released offsite. Therefore, the proposed Therefore, proposed change change does not involveinvolve a significant significant increase probability increase in the probability cons equences of an accident or consequences prev accident previously evalu iously evaluated. ated. (2) proposed change Does the proposed change create possibility of a new or different create the possibility accident different kind of accident previously evaluated? accident previously from any accident evaluated? Response: No.

Response

proposed change The proposed change allows allows use of the drywell equipment drain system drywell equipment system as an alternative method alternative quantifying unidentified method of quantifying unidentified leakage drywell. The drywell leakage in the drywell. drywell

Alternate Method of Verifying Drywell Unidentified Leakage : 1 : Evaluation of Proposed Changes Page 8 of 10 equipment drain system will continue to be used for leakage collection and quantification. There is no alteration to the parameters within which the plant is actions As a normally operated or in the setpoints that initiate protective or mitigative actions. result, no new failure modes are being introduced. Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated. (3) Does the proposed change involve a significant reduction in a margin of safety? Response: No. The current TS require a periodic measurement of RCS leakage. The proposed change maintains the existing level of safety by allowing use of the drywell equipment drain sump system to quantify unidentified leakage in the drywell. No changes are being made to any of the RCS leakage limits specified in the TS. The impact of the change is that measured unidentified and identified leakage within the drywell will be quantified as equivalent values since the drywell equipment drain sump monitoring system will also be used to measure leakage into the drywell floor drain sump. In addition, the alternative method conservatively assumes that all leakage in the drywell is unidentified leakage. Therefore, the proposed change does not involve a significant reduction in a margin of safety. Based on the above, EGC concludes that the proposed amendment does not involve a significant hazards consideration under the standards set setforth forth in 10 CFR 50.92(c), and, accordingly, a finding of no significant hazards consideration is justified. 4.4 Conclusions In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's Commissions regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or the health and safety of the public. 5.0 ENVI RONMENTAL CONSIDERATION ENVIRONMENTAL A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 Standards for Protection Against Radiation." 1 0 CFR 20, "Standards Radiation. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure. Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set pursuant to 10 CFR 51.22(b), no environmental impact 51 .22(c)(9). Therefore, purs.uant forth in 10 CFR 51.22(c)(9). statement or environmental assessment needs to be prepared in connection with the proposed amendment.

Alternate Method of Verifying Drywell Unidentified Leakage :1 : Evaluation of Proposed Changes Page 9 of 10

6.0 REFERENCES

6i 6.1.. Letter from J. L. Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Station and Quad Cities Nuclear Power Station) to U.S. NRC, "RequestRequest for License Amendment to Revise Technical Specification 3.4.5, IIRCS RCS Leakage Detection Instrumentation, to Allow Alternate Method of Verifying Drywell Leakage" Instrumentation,1I Leakage dated August 28, 2009 28,2009 6.2. Letter from C. Gratton (U.S. NRC) to M. J. Pacilio (Exelon Generation Company, LLC), Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, "Dresden Units 11 and 2 -Issuance of Amendments RE: Authorizing Alternative Methods of Verifying Leakage within the Drywell (TAC NOS. ME2148ME21 48 THRU ME2151 ME21 51 ),"

                                                                                     ), dated 16, 2010 August 16,2010 6.3. Letter from D. B. Wozniak (Exelon Generation Company, LLC for Dresden Nuclear Request for Enforcement Discretion for Technical Power Station) to U.S. NRC, IIRequest l

RCS Operational Leakage Specifications (TS) 3.4.4, IRCS Leakage and TS 3.4.5, IRCS RCS Leakage Instrumentation, dated August 19, Detection Instrumentation:" 1 9, 2008 6.4. Letter from C. Pederson (U.S. NRC) to C. G. Pardee (Exelon Generation Company, Notice of Enforcement Discretion for Exelon Generation Company LLC Regarding LLC), "Notice Station, Unit 3 (NOED 08-3-002), Dresden Nuclear Power Station; 08-3-002), dated August 21 ,, 2008 II 6.5. Letter from P. R. Simpson (Exelon Generation Company, LLC for Dresden Nuclear Request for Emergency License Amendment Regarding Power Station) to U.S. NRC, "Request System, dated August 18, 2008 Drywell Floor Drain Sump Monitoring System," 6.6. Letter from C. Gratton (U.S. NRC) to C. G. Pardee (Exelon Generation Company, LLC), Dresden Nuclear Power Station, Unit 3 - Issuance of Emergency Amendment "Dresden Regarding Drywell Floor Drain Sump Monitoring System (TAC No. MD9467)," MD9467), dated August 22, 2008 August22,2008 6.7. Letter from C. Gratton (U.S. NRC) to C. G. Pardee (Exelon Generation Company, LLC), Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, "Dresden Units 11 and 2 - Request for Additional Information Related to Alternate Method of ME2151), dated January 15, 2010. Verifying Drywell Leakage (TAC Nos. ME2148 thru ME2151)," 6.8. Letter from J. L. Hansen (Exelon Generation Company, LLC for Dresden Nuclear Power Supplemental Information Station and Quad Cities Nuclear Power Station) to U.S. NRC, "Supplemental Concerning Request for License Amendment to Revise Technical Specification 3.4.5,

      'RCS                        Instrumentation, dated February 5,2010 RCS Leakage Detection Instrumentation"',                        5, 2010 6.9. Letter from J. L. Hansen (Exelon Generation Company, LLC for Quad Cities Nuclear Power Station) to U.S. NRC, Supplemental Information Concerning Request for License Amendment to Revise Technical Specification 3.4.5, "RCS  RCS Leakage Detection Instrumentation dated June 2, 2010 Instrumentation" 6.10. Letter from L. M. Padovan (U.S. NRC) to D. L. Wilson (Nuclear Management Company, Monticello Nuclear Generating Plant - Issuance of Amendment Re: Drywell LLC), "Monticello Leakage and Sump Monitoring Detection System (TAC No. MB7945),1I MB7945), dated August 21, 2003

Alternate Method of Verifying Drywell Unidentified Leakage 1:: Evaluation of Proposed Changes Page 110 0 of 10 10 6.1 1 Letter from T. A. Beltz (U.S. NRC) to J. T. Conway (Nuclear Management Company, 6.11.. IIMonticelio Nuclear Generating Plant (MGNP) - Issuance of Amendment for the LLC), Monticello Conversion to the Improved Technical Specifications with Beyond-Scope Issues (TAC Nos. MC7505, MC7597, through MC761MC7611, , MC8887),1I dated June 5, 1 and MC8887), 2006 5,2006 (U.S. NRC) to E. G. Bauer (Philadelphia Electric Company), 6.12. Letter from G. Gears (US. IITechnical Specification Amendments Pertaining to the Monitoring of Coolant Leakage Technical and the Providing of Limitations on Iodine Concentrations in the Reactor Coolant, Coolant, II dated February 27, 1985 6.13. Letter from J. W Shea (U.S. NRC) to G. A. Hunger, Jr., (PECO Energy Company, Issuance of Improved Technical Specifications, Peach Bottom Atomic Power Station, IIlssuance M90747), dated August 30, 1995 (TAG Nos. M90746 and M90747),1I Unit Nos. 2 and 3, (TAC

C, ATTACHMENT 2 I 0 -4 Markup of Technical Specifications Pages

                     -4%            C,                  o*      1 CD                              p Limerick Generating Station, Units 1 and 2 CDC                                           cC1)

Facility Operating License Nos. NPF-39 and NPF-85 -n 2 CD m

JJ i m C) z ci) o o REVISED TECHNICAL SPECIFICATIONS PAGES (ri m -o z 3/44-8

BEACTOR COQLANTSYSTEM .3/4.4.3 .314.4.,,3 REACTQR COOLANT SYSTEM flEAC[Q!JQOLANT SYSIEM LEAKAGE LEAKAGE LEAKAGE DETECrION EAKAGE UEFECIIQN SYSTEMS SYS EEMS 34.3.1 3.4.3.1 The following following reactor coolant leakage detection systems shall be OPERABLE:

a. The pr'imary primary containment atmosphere gaseous radioactivity monitoring system,
b. The drywell +I-tor dr-kisump ~onitoring floor draiNJsump flow-onitoring system,
c. The drywell unit coo'l ers condensate flow rate monitoring system, and coolers
d. The primary containment pressure and temperature monitoring system.

APPLICABILITY; APPLI.CAIULLFY; OPERATIONAL CONDITIONS 1, 2, and 3.* 3,* The primary containment gaseous radioactivity monitor is not required to be operable until Operational Condition 2. ACTIONS.: ACTIONS: A. With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days. B. floor drai~ump With the drywell +oordrain-um ~monitoring p f+ewmonitor ing system inoperable, restore the drai~sump,f1-ew'monitoring drywell floor ra-itsump #+wmonitoring system to OPERABLE status within 30 days AND increase monitoring frequency of dryweli drywel'l unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 88 hours. c. C. With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform aa channel check of the primary containment atmosphere gaseous radioactivity monitoring system (SR CSR 4.4.3.1.a) once per 88 hours. D. With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days. NOTE: All other Tech Spec Limiting Operation and Surveillance. Conditions For Qperation Surveillance Requirement ReqUirementss associated with the primary containment priinary containment pressure/tem pressure/temperature peraturemon monitoring itoring system stillstill apply. Affected Affected Tech Spec Sections TechSpecSec 3/4.3.7.5, 4.4.3.2.1. tions include: 3/4.3.7.5. 4.4.3.2.1, 3/4.6.L6. 3/4.6.1.6, and 3/4.6.1.7. 3/4.6.1.7. E. With With the primary containment containment atmosphere atmosphere gaseous radioactivity radioactivity monitoring system inoperable AND the drywell drywel1 unit coolers coolers condensate condensate flow rate monitoring monitoring system inoperable, inoperable, restore the primary primary containment atmosphere atmosphere gaseous gaseous radioactivity monitoring monitoring system system toto OPERABLE status status within within 3030 days days OROR restore the the drywell unit coolers condensate condensate flow rate monitoring monitoring systemsystem to to OPERABLE OPERABLE status status within within 30 30 days. days. With With thethe primary primary containment containment atmosphere atmosphere gaseous gaseous radioactivity radioactivity monitoring monitoring system system inoperable, inoperable, analyze analyze grab grab samples samples ofof primary primary containment containment atmosphere atmosphere at at least least once once per per 1212 hours. hours. LIMERICK LIMERICK - uNIT UNIT 11 3/4 4-8 3/4 4-8 ++/-, 14Q, Amendment 4, Amendment ~, ~

REACTOR COOLANTV SSYSTEM JjA(II1iLCQOLAN YST LN

3/1. ..4 J REACTOR J:OOLANI .SYSTEM.LEAKAGE JLAK8GE DETECTION SYSTEMS 3.4.3.1 3.43.1 The following reactor coolant leakage leakage detection systems shall be OPERABLE:
a. The primary containment atmosphere gaseous radioactivity rad'; oacti vi ty monitoring rnonitor'ing system,
b. drywe-Il1 floci dt The drywel ~i I~ump~oni tori ng system, Cc.. The drywel The un'j t cool drywe'll1 urn coolers condensate ers condensa f'low te fl rna nittor (3W rate riion n9 system, and 0 ri1 fl
d. The primary containment pressure arid monitor"jng system.

and temperature monitoring APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3k APPLICABILITY: 3.*

* - The primary containment gaseous radioactivity monitor is not required to be k

operable until Operational Condition 2. ACTIONS; ACT.I ONS A. With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours AND restore primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days. B. With the drywell frr+isump dt elirt'sump ~monitoring floc" d' 9-rWionitoring system inoperable, restore the drywell ~~eor draiMasump ~mon;toring

                  +eed-t-4-risump       ++wmonitoring system to OPERABLE status within 30 days AND increase monitoring frequency of drywell unit cooler condensate flow rate (SR 4.4.3.2.1.c) to once every 88 hours.

c. C. With the drywell unit coolers condensate flow rate monitoring system inoperable, AND the primary containment atmosphere gaseous radioactivity monitoring system OPERABLE, perform aa channel check of the primary containment atmosphere gaseous radioactivity monitoring system (SR 4.4.3.1.a) once per 8 hours. D. With the primary containment pressure and temperature monitoring system inoperable, restore the primary containment pressure and temperature monitoring system to OPERABLE status within 30 days. Note: All other Tech Spec Limiting Conditions For Operation and Surveillance Requirements associated with the primary containment pressure/temperature monitoring system sti)) still apply. Affected Tech Spec Sections include: 3/4.3.7.5. 4.4.3.2.1. 3/4.6.1.6. and 3/4.6.1.7. E. With the primary containment atmosphere gaseous radioactivity monitoring system inoperable AND the drywell unit coolers condensate flow rate monitoring system inoperable, restore the primary containment atmosphere gaseous radioactivity monitoring system to OPERABLE status within 30 days OR restore the drywell unit coolers condensate flow rate monitoring system to OPERABLE status within 30 days. With the primary containment atmosphere gaseous radioactivity monitoring system inoperable, analyze grab samples of primary containment atmosphere at least once per 12 hours. LIMERICK - UNIT 22

               -                                                3/4 4-8                 Amendment No. J4,
                                                                                                        ,  ~, ~, ~

ATTACHMENT 3 Markup of Technical Specifications Bases Pages (For Information Only) Limerick Generating Station, 1 and 2 Station Units 1 Facility Operating License Nos. NPF-39 and NPF-85 REVISED TECHNICAL SPECIFICATIONS BASES PAGES B 3/44-3 3/4 4-3 3/4 4-3a B 3/44-3a 3/4 4-3b B 3/44-3b

f<EACTOR COQ.LANF SYSTEM EAcroR COOLANT SYStEM 3/4,4.3 3/L43 REACTOR REACtOR COOLANT COOLANF SYSTEM LEAKAGE 3/4.4.3.1 3/443 LEAKAGE DETECTION SYSTEMS L.EAKAGEDETECTION BACK(JROUND BACKGROUND UFSAR [JESAR Safety Sa1ety Design Basis Bdsis (J{ef. (Ref. 1), 1), requires meansmedlis for detecting and, to the extent practical, prdctical, identifying the location of ttle the source of Heactor Reactor Cootant CooIint System (ReS) (RCS) PRESSURE BOUNDARY BOUN[)ARY LEAKAGE. Regulatory Guide 1.45 145 (Ref. 2) describes acceptable dcceptable methods for selecting leakage eokaqe detection systems. ledkaqe from the reactor coolant pressure boundary (RePB) Limits on leakage (RCPB) are required so that appropriate approprHlte action can be he taken before the integrity of the RepS RCPB is impaired (Ref. 2). Leakage detection systems for the ReS RCS are provided to alert the operators when leakage rates above normal background levels are detected and also to supply quantitative quantitativ~ nt of leakage rates.

                                ~f~"l1 Systems forl\~

forsepara the leakage of o identifid sOblPce aA identified ourc from n unidntifid iO'lrC~ Qn blnidQntifiQd ourc are (we necessary to provide prompt and quantitative information to the operators to permit them to take immediate corrective action. Leakage from the RepS RCPB inside Inside the drywell is detected by at least one of four (4) independently monitored variables which include ~1I'J$!<Ti

/N56p.:7i :-*fPY'14CII  drain 5Uffl~

ktrywell draifl )evel eMdrt'de:3 ev~r time sump level gaseous radioactivity, drywel1 4me yield;n~ yi&dinj d-roi dr6;t fow 16te~ ~drywel flow rate drywell unit cooler condensate flow rate and drywel1 pressure/temperature levels. The primary means of quantifying leakage in the drywell pressure/temperaturelevels.TheP.rimarymeans idrywellJ drywell drail't"9$ump ~on;toring

      @ is J\aJthe t5 &#the drywell floor dra+/-m-ump the drywel lowonitoring system for UN[OENTIEIED drywellI equipment drain tank flow monitoring system for IDENTIFIED LEAKAGE.

UN[DENTIFIED LEAKAGE and IDENTIFIED leakage is not germane to this Tech Spec and the associated drywel drywellI equipment drain tank flow monitoring system is not included. The drywell floor drain sump flow monitoring system monitors UNIDENTIFIED LEAKAGE cot lected in the floor drain sump. UNIDENTIFIED LEAKAGE consists of leakage from RCPB collected components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump. sump, The primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system. [he fhe floor drain sump level transmitters are associated with High/Low level switches that open/close the sump tank drain valves automatical automatically. ly. The Ehe level instrument processing unit calculates an average leak rate (gpm) for aa given measurement period which resets whenever the sump drain valve closes. The level processing unit provides an alarm to the main control room each time the average leak rate changes by aa predetermined value since the last time the alarm was reset. For the drywell floor drain sump flow monitoring system, the setpoint basis is aa 11 gpm change in IJNIDENTIFIED UNIDENTIFIED LEAKAGE. [§f3 IN5E1<.T 2. ..., (N5EIZTZ - In add'; t on to the drywe 1'1 In addition i to the drywell ROiJi ~oni tori ng systerTdescribed d raj ,,'Sump turonitoring ("loor dair/ump sys terl\\ descri bed above, the discharge of each sump is monitored by an independent flow element. The measured flow rate from the flow element is integrated and recorded. AA main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flow element. This system, referred to as the drywell "drywell floor drain flow totalizer, tota'lizer", is not credited for drywell floor drain sump flow monitoring system operability. operabi lity. LIMERICK - UNIT 11

                          -                                     BB 3/4 4-3                               Amendment 44, Amendment    ~, i4,
                                                                                                                           ~, ~I

gE/\c*rOB REAC I OR COOLANT SYS rEtl 3/1.4.3 3/4 REACTOR COOLAN 4.,JiIEAGrQR COOLANt1SYS sysrEM LEAKAGE rELLLAKAGE 3J4L3 i IJAKAGE OEJECrJVlL 5Y5IEP1 13ACKGRQUND OA(;K(:1ROuNj) U1:SAR UFSAR SLitety Safety Des DesiqnI qn Basis Ref 1), 3as s ((H(~f. . 1 ) requl detecting res means for deecti requires and, to the extent nq and , practicdl. practi c I identifying

                            ,    idcnti         yi       nq the 1location octi on ot    of the source of ke(ctor Heactor Coo       1 rint System ((HCS)

Coolant RCS) PRESSURE BOUNDARY LEAKAGE. Regulatory Guide 1.45 PRESSURE 1.4 (Ref. 2) describes acceptable methods for selecting leakage Iekaqe detection systcms. sy terns. limits Limi ts on Ikdqe t~~dkdqe troin from the reactor rector coolant pressure prl~ssur'e boundary (RCPB) (RepS) re are required so that appropriate action iction C]fl can hebe taken before the integrity of the RCPB is impaired (Ref. 2). Lekge Leakage detection systems for the RCS ReS (we are provided to otert alert the operators when leakage rates hove 1ekoqe above normal b3ckqround background levels ore are detected and also to supply qU d n t ; tdti qudnti ve iin I~ t d t 'j ye ,:') r nt n t of 0f 1 ed kaq era ledkaqe t es. rctes.

                                   'f. lA."'l-tl '   I Systems forA.
  • the leakage of ,3M idel,t;f;~d source flnil' dn uJiidefiLlfred sourc~

are re necessary to provide prompt and quantitative information to the operators to permit them to take immedite immediate corrective action. Leakage from rrom the RCPB RepS inside the drywell is detected by at it least one of four (4) independently monitored variables whch wh'ch include /N5ET yw&}-&r-ir- . , urnpFetet- ehnqe . over ' time . .," yi&c14nqdra-ftf-oi rates,, drywell gaseous radioactivity, dryweli qaseous drywell unit cooler condensate flow rate and drywell pre s sur e/ temp era t ur e )levels. pressure/temperature eve Is. The primary means of quantifying qua n t i f yin glleakage eakage 1n in the dr ywe 'III drywel fViSi,,~he 5 .43ithe drywell dryweli ~Ioo,. ordroirtump (1raiFl"sump HWmonitoring f-4-ewFnonitoring system for UNIDENTIFIED LEAKAGE and

  ~ the drywel 1                1 equipment drain tank flow                   Iow monitoring system for lDENTIFIED    IDENTIFIED LEAKAGE.

IDENTIFIED leakage leakoge is not germane to this Tech Spec and the associated drywell t~ q U 'j Prn en t dr e(luiprnent a in ttank drain d nk fl moni ow mo flow nitturing system 0 r 'j n9 sYs nott iincluded. t emiiss no nc 1uded . The drywell drywel 1 floor drain drum sump flow monitoring system monitors UNIDENTIFIED LEAKAGE collected in the floor drain sump. UNIDENTIFIED LEAKAGE consists of leakage from RCPS RCPB components inside the drywell which are not normally subject to leakage and otherwise routed to the drywell equipment drain sump. fhe Ihe primary containment floor drain sump has transmitters that supply level indication to the main control room via the plant monitoring system. The floor drain sump level transmitters are associated with High/Low level switches that open/close the sump surnp tank drain valves automatically. The level instrument processing unit calculates an average leak rate (gpm) for a given leve) measurement period which resets whenever the sump drain valve closes. The level processing unit provides an alarm to the main control room each time the average leak rate changes by aa predetermined value since the last time the alarm was reset. For the drywell dryweli floor drain sump flow monitoring system, the setpoint basis is a 1 1 gpm change in UNIDENTIFIED LEAKAGE. ~~ addition to the drywell Floci floor dl ~;n"sump ~monitoring drsumpf+omonitoring system described above, the discharge of each sump is monitored by an independent flow element. The measured flow rate from the flow element is is integrated and recorded. A A main control room alarm is also provided to indicate an excessive sump discharge rate measured via the flow eelement. 1eme nt . rFhis h; s ssystem, y s t em ~ ref erredtto0 as the "dr referred yw ell fl drywell 00 r dr floor a i n flow tot drain ali ze r", iiss not totalizer, credited for drywel1 drywell floor drain sump sumo flow monitoring system operability. LIMERICK - UNIT 22 - B 3/4 4-3 B 414, ~ Amendment -14,

Insert 11 drywell sump flow monitoring equipment with the required RCS ReS leakage detection (Le., the drywell floor drain sump flow monitoring system, or, the drywell instrumentation (i.e., equipment drain sump monitoring system with the drywell floor drain sump overflowing to the drywell equipment drain sump), Insert 22 An alternate to the drywell floor drain sump flow monitoring system for quantifying UNIDENTIFIED LEAKAGE is the drywell equipment drain sump monitoring system, if the drywell floor drain sump is overflowing to the drywell equipment drain sump. In this configuration, the drywell equipment drain sump collects all leakage into the drywell equipment drain sump and the overflow from the drywell floor drain sump. Therefore, if the drywell floor drain sump is overflowing to the drywell equipment drain sump, the drywell equipment drain sump monitoring system can be used to quantify UNIDENTIFIED LEAKAGE. In this condition, all leakage measured by the drywell equipment drain sump monitoring system is assumed to be UNIDENTIFIED LEAKAGE. The leakage determination process, including the transition to and use of the alternate method is described in station procedures. The alternate method would only be used when the drywell floor drain sump flow monitoring system is unavailable.

REACTOR fEACTOR COOLANT SYSTEM SYSFEM BACKGROUND (Continued) (Continuedi The primary containment atmospheric gaseous radioactivity monitoring system continuously monitors the primary containment atmosphere for gaseous radioactivity levels. A A sudden increase of radioactivity, which may be attributed to RCPB steam or reactor water leakage, is annunciated in the main control room. The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 11 gpm within 11 hour. Larger changes in leakage rates are detected in proportionally shorter times (Ref. 4). Condensate from the eight drywell air coolers is routed to the drywell floor drain sump and is monitored by aa series of flow transmitters that provide indication and alarms in the main control room. The outputs from the flow transmitters are added together by summing units to provide aa total continuous condensate drain flow rate. The high flow alarm setpoint is based on condensate drain flow rate in excess of 11 gpm over the currently identified preset leak rate. The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS UNIDENTIFIED LEAKAGE (Ref. 5). The drywe'll dryweil temperature and pressure monitoring system provide an indirect method for detecting RepS RCPB "Ieakge. ieakge. A A temperature and/or pressure rise in the drywell above normal levels may be indicative of aa reactor coolant or steam leakage (Ref. 6). APPLICABLE SAFETY ANALYSES A A threat of significant compromise to the RCPS RCPB exists if the barrier contains a a crack that is large enough to propagate rapidly. Leakage rate limits are set low enough to detect the leakage emitted from a a single crack in the RCPB (Refs. 7 7 and 8). Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room. AA control room alarm allows the operators to evaluate the significance of the indicated leakage and, if necessary, shut down the reactor for further investigation and corrective action. The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref. 8). Therefore, these actions provide adequate responses before aa significant break in the RCPB RCPS can occur. RCS leakage detection instrumentation satisfies (Criterion 1 1 of the NRC Policy Statement. LIMITING CONDITION FOR OPERATIQ~ (LCD) FOR OPERATION (LCO) ~11 T-e-rhe drywell dlywell fl-rflC~t drpin dl ~in sunip

                                  ~ump flow flow monitoring mo"itol*il,g system 3Y3tem is 15 regtrFred I equireei to quantify qual9tifythe"...J2-the-bJN I DE~rT I FI ED LLAI(AGL

-UN-IDEN-IIFIED LEAKAGE from the RCS RCS-!- The other monitoring mon; tori ng systems provide provi de early ea rl y alarms a1arms to the operator so closer examination of other detection systems will be made to determine the extent of any corrective action that my be required. With any leakage detection system inoperable, monitoring for leakage in the RCPB RepS is degraded. LIMERICK - UNIT I1

                -                                 BB 3/ 44 4-3a                                  Amendment    M1fI

13ASLS BACKGROUND .aAC.K ... &ROUND ((Continued) Gon.t nued). containment atmospheric The primary containment a ic gaseous radioactivity moni monitoring toring system continuously monitors the primary containment atmosphere for qaseous gaseous radioactivity levels. AA sudden increase of radioactivity, which may be attributed to RCPB RCPS steam or reactor water leakage, is annunciated in the main control room. The primary containment atmospheric gaseous radioactivity monitoring system is not capable of quantifying leakage rates, but is sensitive enough to detect increased leakage rates of 1 1 gpm within 11 hour. Larger changes in leakage rates are detected in proportionally shorter times (Ref.(I~ef. 4).

                    '1.).

Condensate from the eight dryweil drywell air coolers is routed to the drywell floor drain sump and is ;s monitored by aa series of flow transmitters that provide indication and alarms in the main control room. The Trle outputs from the trle flow transmitter's transmitters are added together by summing units to provide aa total continuous condensate drain flow rate. The high flow alarm setpoint is based on condensate drain flow rate in excess of 1 1 gpm over the currently identified preset leak rate. The drywell air cooler condensate flow rate monitoring system serves as an added indicator, but not quantifier, of RCS ReS UNIDENTIFIED LEAKAGE (Ref. 5). The drywell temperature and pressure monitoring systems provide an indirect method for detecting RCPB RepS leakage. AA temperature and/or pressure rise in the dryweil drywell above normal levels may be indicative of aa reactor coolant or steam leakage (Ref. 6). APPLICABLE SAFETY ANALYSES AA threat of significant compromise to the RePB RCPB exists if the barrier contains aa crack that is large enough to propagate rapidly. Leakage rate limits are set low enough to detect the leakage emitted from aa single crack in the RePB RCPB (Refs. 7 7 and 8). Each of the leakage detection systems inside the drywell is designed with the capability of detecting leakage less than the established leakage rate limits and providing appropriate alarms of excess leakage in the control room. A control room alarm allow the operators to evaluate the significance of the indicated A leakage and, if necessary, shut down the reactor for further investigation and corrective action. The allowed leakage rates are well below the rates predicted for critical crack sizes (Ref. 8). Therefore, these actions provide adequate response before aa significant break in the RePB RCPB can occur. Res RCS leakage detection instrumentation satisfies Criterion 1 1 of the NRC Policy Statement.

 ~~:I::::e~~N::~::Nd:~~nO::::T~~:\~(~::~t~~ui                              red to quanti f1 th~

LIMITING CONDITION FOR OPERATION (LCO)

                                                     /NST 3 T4edrywcl1floordrainsurnp fow montormngsys                     i.3 required to- guantifyth I:JNIDENTIFIED U-N4-DLN-TIFIL LEAKAGE fro,,,       Llle RC~~

Furii tti RC. The other monitoring systems provide early alarms to the operators so closer examination of other detection systems will be made to determine the extent of any corrective action that may be required. With any leakage detection system inoperable, monitoring for leakage in the RepS RCPB is degraded. LIMERICK - UNIT 22

                -                                  B B 3/4 4-3a                                 Amendment ~

Insert 33 Insert instrumentation to The required instrumentation The UNIDENTIFIED LEAKAGE quantify UNIDENTIFIED to quantify LEAKAGE from from the the RCS consists of ReS consists of either the drywell either monitoring system, sump flow monitoring drain sump drywell floor drain system, or,or, the drywell drain sump drywell equipment drain sump monitoring drywell floor drain sump overflowing system with the drywell monitoring system the drywell equipment drain overflowing to the drain sump. sump. For For either system system to to be be considered considered operable, the flow monitoring monitoring portion portion of of the the system system must be operable. must

l~. EAC[OR PLA(; r0Reo 0LAN Fr SYS (;OOLAN s y s rEM EM AI\PPLlC;\B[Llry P P L [ CAB I L I 1 V I[n () PEH1\ Fr[I ONAL n oPERA 0NALe(::OND 0 NDII T nd :3, Iled [ () NS I1, 22, () rid E IONS , , , kd qe (1(tC eCik(qe c1 e tee tt i 011 (] n SYS sy s terns t ems ()1 re rerequi r e (j tø requi r(j to hbe OPERABLE to OPERABLE to support support LEO LCD 34.3. 3.4.3.2. [his fhis applicabi Ippi icibi litylity is consistent consistent with with thdt that Eorfor LEO LCO

.3:).4.3.2.
     . 4 3 ACTION ACEION A.          With Ehe    the primary containment atmosphere (j(seous                 qaseous monitoring system inoperable, grab                    lJrdb
            ~;drnp dITIpII es S at of Lh(?

the prriary nmen t atmosphere conta i nment pri rna fy COfltai d tmosptlere must rnus t be takenta ken and dnd lyzed dnd aria prov i de 1y led to provide periodic pen leakage information. odi C I((]kage i nformati on. [Provided aa sample is obtained i s obtal analyzed dnd ana ned arid lyzed once everyevery 12 12 ~10urs hours, f the trle p I ant plant may be he operated for up to 30 (jays days to d 11 allowow restorat restorationi on oE of the radioactivity monitoring system. rhe plant may continue operation since other forms radioactivit.y of drywel at- t~ d k age detection are avai d r yw e I I11leakage ava i lable.] 1ab 1e * ] rhe 12 hour interval provides periodic information that iiss adequate to detect Flie leakage. fhe rhe 30 day Completion Time rifle for Restoration recognizes other ftrms forms of leakaqe ~ leakage d I~

  • e available.

the~ IN5t?, I B. B. With the

  • drill" 5ump Flow rnonitci ;l1g "ystem-'inoperable. no other form oor--df-umpf1owmonitoringsystminoperabie, of sampling can provide the equivalent information to quantify leakage at the required 1 1 gpm/hour sensitivity. However, the primary containment atmospheric gaseous monitor [and the primary containment air cooler condensate flow rate monitor]

monitor] wil rovide indication of changes in leakage.

                         ,NSer<TS
                         ,NSE7zTS With : e* r we-fToordai-n ttmpfiow monitorin ys-teWinoperable,                                           inoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref. SR 4.43.2.l.h) operation may continue for 30 days. To the extent practical, the 4.4.3.2.1.b) surveillance frequency       Frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor                                          Floor drain monitoring system which had aa normal surveillance requirement to monitor leakage every 8 hours.

Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b. fhe The 30 day Completion Time of oF the required ACTION is acceptable, based on operating experience, considering the the multiple forms of leakage leakage detection that are still available. LIMERICK LIMERICK - UNIT - UNIT 11 BB 3/4 4-3b 3/4 4-3b Amendment ~, ~ Amendment ,

REACTOR COOLANLSXSJLM

                        --=                                 =====_   -* --=  -                   - --.-..- .--

&.___== ~PPLICABILITY iPPLICAt3I LITY. In OPERATIONAL In OPERATIONAL CONDitONS CONDITIONS 1, 1, 2, 2, and 3, 3, leakage leakage detection detection systems systems are are required required to to be be OPERABLE OPERABLE to upport support LCO LCO 3.4.3.2.

3.4.3.2. This This applicability is is consistent consistent with with that that for LCO LCO 3.4.3.2.

3.4.3.2. _cIi OiS A. With the primary containment With containment atmosphere gaseous monitoring monitoring system inoperable, grab samples of the primary containment atmosphere must he be taken and analyzed to provide periodic leakage information. [Provided aa sample is obtained and analyzed once every 12 hours, the plant may be operated for up to 30 days to allow restoration of the 12 radioactivity monitoring system. The plant may continue operation since other forms of dryweil of drywell leakage detection are available.] The 12 hours interval provides periodic information that is adequate to detect leakage. the fhe 30 day Completion Time for Restoration recognizes other forms of leak~ leak e

  • n are available.

(t%lsErrj (N$~T4 8.

13. WithA~

With,

  • r* Floor dt f1; 1'1 ~UfflP fl O~4 !ftOfll fl OCI drainumpfow fl te-ri ng ysteWinoper monitoiing systeR1i noperabl e, no other form able, of sampling can provide the equivalent information to quantify leakage at the required 11 gpm/hour sensitivity. However, the primary containment atmospheric required gaseous monitor [and the primary containment air cooler condensate flow rate moni~ide monitor] will rovide indication of changes in leakage.

INSE1<T

             /NSr5          5 Withl\~loor 4;

WithA drain SUFAJ3 floor 4rai-n- surnflow Iflonitoring systeH1inoperable, flo'iJ rnon4toning systeiwinoperable, drywell condensate flow rate monitoring frequency increased from 12 to every 8 hours, and UNIDENTIFIED LEAKAGE and total leakage being determined every 8 hours (Ref: SR 4.4.3.2.1.b) operation may continue for 30 days. To the extent practical, practical the , surveillance frequency change associated with the drywell condensate flow rate monitoring system, makes up for the loss of the drywell floor drain sump monitoring system which had aa normal surveillance requirement to monitor leakage every 8 hours. Also note that in this instance, the drywell floor drain tank flow totalizer will be used to comply with SR 4.4.3.2.1.b. The 30 day Completion Time of the required ACTION is acceptable, based on operating experience, considering the multiple forms of leakage detection that are still available. LIMERICK LIMERICK - UNIT

            -  UNIT 22                                            BB 3/4    4-3b 3/4 4-3b                            Amendment ~,

Amendment 4-Q, ~

Insert 4 Insert4 drywell sump required drywell monitoring system sump monitoring system Insert 55 Insert monitoring system required drywell sump monitoring system

ATTACHMENT 4 z m 0-4 List of Commitments 3 3 m 0+/- -oc za. 0I) Limerick Generating Station, Units 1 and 2 Cm 71 CDCI) 0 -n 0)C) 00 Cl) z Facility Operating License Nos. NPF-39 and NPF-85 -p CD Cl

those actions committed to identifies those The following table identifies The by EGC to by Limerick Generating EGG for Limerick Generating Station (LGS), Units Station (LGS), Units and1 1 and 2 2 as as part part of of the License License Amendment Request Request. Any other statements other statements in this submittal in submittal are information purposes and provided for information are provided and are are not not regulatory commitments. Commitment Commitment Commitment Event Number Number Date One-Time Programmatic Action (Yes/No) (Yes/No) CM-1 CM-i EGG will verify through EGC Prior to initial Yes No historical or new test data that use of the the drywell floor drain sump alternate sump overflows into the drywell monitoring equipment drain sump at method for LGS, LGS, Unit 1. 1 . Unit 1. CM-2 EGG EGC will verify through Prior to initial Yes No historical or new test data that use of the the drywell floor drain sump alternate sump overflows into the drywell monitoring equipment drain sump at method for LGS, LGS, Unit 2. Unit 2.

ATTACHMENT 5 Drywell Sump Level Monitoring System Configuration Drawings (For Information Only) Stationg Units 11 and 2 Limerick Generating Station, Facility Operating License Nos. NPF-39 and NPF-85 Drywell Sump Sumo Level Monitoring System Configuration Drawings HBB-163-1, HBB-1 63-1, "Reactor Unit-i , Revision 4 BIdg Liquid & Solid Radwaste - Unit-1," Reactor Bld'g HBB-263-1, Liquid & HBB-263-i, "Liquid & Solid Radwaste Reactor Building Unit 2," 2, Revision 6 8031-M-61, 8031 -M-61, Sheet 1, 1, Liquid "Liquid Radwaste Collection (Unit 1), 1)," Revision 37 8031-M-61, 8031 -M-61, Sheet 4, "Liquid 2), Revision 15 Liquid Radwaste Collection (Unit 2)," Reactor Bldg. Unit No. 11 Misc. Plans & Sections - Area 11 & 12," M-247, "Reactor 12, Revision 23 M-328, "Reactor No. 2 Misc. Plans & Reactor Bldg. Unit No.2 & Sections - Area 13 & 14, Revision 11

                                                                       & 14,"

4 LF. 14 L.r:. 1-.F. m ICCNCCN REVJ2. REV_Q... REVJ2.. CALC. CALC. NO43zQ? NO i-43-0CP i-43*0Co f(.ev. 4 f(ev. EV 4 NiNOTE: AOO~O 1Z.~F'~utJ.::.e Ar12r2 AI?OEO 12.~F'~UtJ"e' ~'" ~'" M-~"JZ~f', "M-~~Z~f, 11oJ.GOiZ.p. ~k:. ll,1ol0 11o.LGOlZ.p. Atoll? f'O'lC. ~Iolr"..\.If. 1JI UN*U>J. 77. 7*

                                       ~
                                       ,.;rJl 01)11'
                        ~:/ t:~p
              -{'..J~ ""Uti 012 Ir-J*

012 /'0,,1.:1-10'('"

                                                                                   ~
                                                                                            '                1" O**{P'b iD
                                                                                               !j.'l-
                                                                              >( -V  ,Jp~l.-'
                                              ~
                                                                          ~

1'-6>" y ~EFERct-JCE 'DRoIl.WI"e, E1CE 1<EI'ERENCE DRAWIMS

                                                                                                                                                                      'DR.o.WIt-JGf:,
                                                                                                                               ~Hpl 1-1           P4IL) pdlD PelD
                                                                                                                               *247
                                                                                                                               ~1' Z47 PIPING Ivl*           PIPIkJ& PLAN PLAN ARU,      ARE AREI', II.;     H t, 12 II SK-M-6411 5Tii:ESS SK-M-64IL SK-M-6412.           STRESS ISO STI<:ESS   ISO I2eYDI2eVD fCIZ-" M'              ~'!)'Z?      f Il* v wP d1           frLj siiE1                                                         -

i/?dSSUED FOR FA. iT J I o*iL I I I c4i tRtR am SEISMIC- CLASS I 5EI5>IV1IC 2aAu 1 aiaw Cjt SE1SPA1CCLSI BECHTEL BECHTEL FRANCISCO SAN FRANCISCO SAN FabcaiecI Bv: Fabricated Fabricaled By: . GENERATING STATION LIMERICK GENERAnNG LIMERICK STATION SOUTHWEST FABRICATING SOUTHWEST AND ANO WELDING FA8RICATING FABRICATING AND WELDING COMPANY COMPANY UNITS 1 1.2.2 COMPANY ELECTRIC COMPANY PHILADELPHIA ELECmlC PHI~AOELPHIA __ .\_. -s__ J ._ *...

                                                                                                                       *.*.                      PHI!.AllELPHIA    ELECTP.IC 1SOv1.TR1C-150ME.

ISOME TR\C TR1C - REACTOR REACTOR RE.AC. TOR BLD'G. BLD. LIQUiD ~£ SOLID LIQUiD SOLID RADWASTE RADWATE - UNIT-I - UNIT-I t LiJ.... ML 143*"r::>

                                                                                                                                                                                ..........            I ...

tl9 [ I 8031 8031 I BB-1-I HBB'I~~-I HBB'I~::'-I 144

                                                               ,S,PooL    SHé7 IJ' SPccL 5Hce:r          2 9/3 29J                                                                        -
                                                                                                                                                                                             \l'i<.-({

I S/U 2-6'30 S/li 2-690 2-63U II LAST WELD "3 I LAST WELD -3

                                  #3                                                                                                                                                                                       14 14              L.F.

LF. ur LAST SPOOL 1 - - - - - - ' LAST LAST SPOOL -1B SPOOL #18 "IB REV. REV. 1 NOTE: I1 NOTE: ADDED SPOOL. ADDED SPOOL, FW&M FW&M \JU!"!BERS \JU~!BERS NUMBERS ISSUED ISSUED FOR FOR CONSTRUCTION CONSTRUCTiON REV.2 NOTE: NOTE:

                                                          "'\\<ii                                                                                                      ISSUED ISSUED FOR      OR 'HOLD'PER
                                                                                                                                                                                                  'HOLO'PER HOLU PER EMF-1961 EMF-I961 10-13-75  10-13-75 REV.3 NOTE:   NO-:-E:

NOTE:

                                                                  "'\9..                                                                                               RELEASED ':-iOLC'     -iDLC PER Et~F-4667
                                                                                                                                                                                             '~DLC'                          EMF-4667 DATED DATED 6-15-79 REV.4 REV.4 NOTE:  NOTE:

REVIEWED REVIEWED P:::R PER UNIT 1,1 AS 6UIL P"R BUILT 6UIl T CONDITION CONDITION "lND AND P8<lD P&IO M-6: F&ID M-S: REV.1? 1'1-6: REV.l? REV.17

                        ....\ 't-
                     ~h                                                                                                                                                REV.5 REV. 5 NOTE:     NOTE:

ADDEO S/U SYS~EM ADDED SYSEM NO. SYS"'EM REDRAWN !\ND AND REISSUED FOR CONSTRUCTICN. (\r,D coNsTRucT:CN. SUPERSEDES ALL PREVIOUS ::lEVISIONS, i1EVISIONS. REVISIONS. REV.5Fl REV. SF1 NOTE: REV.5F1 ADDED LAST WELD 8< &

                                                                                                                                                                                                                      & SPDOL",ADDED SPOOL".
                                                                                                                                                                                                                              . ADDED 4

SPOOL PSI/lSI PSI/ISI SCOPE BLOCK. BLODK. REV. 6 NOTE: INCORP. INCORP,FCN FCN PA-572 REF. REDLINE REOL1NE 1.ADDEC I.ADDEC

1. ADDED FW -3 3 & SPOOL **S "3 45 1A lA AND 1B lB (WAS SPOOL 18
                                                                                                                                                          ",\'.:0       ll.

U. AS BUlL D. BUILTT FOR PIPE. BUll PIPE, ADDED STRESS CALC

                                                                                                                                                    ~}:O               NO. 8< &
                                                                                                                                                                              & Q-LISTED.

0-LISTED.

                                                                                                               ...,,,,~)    .... /                "1-
                                                     ~~~.                                   e~11rl          /~/                            ~/~
                                                                  ~       (tIet-;IJ~Pg()IJ!p#r*

2 j..... .,;>",~ ..

                                                                                                                                                 * ,..~           REFERENCE        .                       DRAWINGS DRAWINGS d                   o~ll1~

D~ &. ~=~~8 N-SI M-328 SK-M-2812

                                                                                                                                                                             .                        P 8< ID P&ID PIPING PIPING PLAN STRESS ISOMETRIC PLAN AREA     AREA 13     13 8<& 14 14 RECEtVED RECEfVED RECEIVED SEP 02 1986 S:fP S:EP                 1966 BECHTEl, BEtHTEI.,

BECHTEL I SEE REV. S6 NOTE. i. JRC No. I I I SPOCL NUMBER SPOOL SOURCE -EAT NUMBER HEAT (___ I SEISMIC CLASS I I. sa NONE a.&i4 CADO/REC

                                                                                             /)

STRESS STRESS CALC 2-43-006

                                                                                                                                                                   )

BECHTEL BECHTEL FA ICATE.O ICATE.D BY: I- ~SA..;;N.:....;.,F.:.:.R..;;AN.:.:C:.:.:IS:.:C:.:O SAN FRANCISCO _

                                                                                                       ~~~b~~5S!o~tgmCA SOUTHWEST WELDING FABRICATING &

COMPANY TlNG & 8< I---L-IM-E-R-'-C-K-G-E-N-E-R-A-T-IN-G-S-T-A.... LIMERICK GENERATING STATION TI-O-N--- UNITS II & 22 PHD..ADEl.PHJA PHILAllELPHlA Fi.ECTRIC PNLADELPi4IA ELECTRiC EI.ECTRIC COUPANY COUPAIfY COlIPAHY FEVISION REVISION AFFECTS PSI/lSI PSI/ISI SCb1 SCOPE: I YESs I ISOMETRIC D4a

                                                                                         ~t~

R:7;;J 1F1

                                                                                        ~

0 ND NO

                                                                                           .7":: L___J BLOCK ORIGINATOR INITIAL CORRECT BLOCK CORRECT                                  LIQUID &

tSOMETRIC

                                                                                                                                                                                                       & SOLID RDwSTE                    RADWASTE
                                                                                      ~-E§ REV.
                                                                                      -RE-Efl E-           REV, REV. No.                            ~

10 REACTOR BUILDING UNIT 2 I ce

                                                                                                                                                                          ~

1£1. REVIEWED RE VIEWED BY: BY:'_FI:JL,"-,(J.j!J.~I..&..t~.,),~ BY :._F;:;:L~C'p;YI7;Jr.';::-;:-:===,:: FLi..> _ I s AV2C N [E: DATE: // // PS&II PSI'I151 ENGINJ PSfllSI ENGINEER 6 8031 HBB-263-I R S BOP SPOOL SHEET 4953 SPOOL "953

                                                                                                                                       "'353

8 I 7 6 2 8031-M-G1 SH.1 8031-M-6I OF NOTO

                                                                                                                                                       ~
                                                                                                                                                        \. T1£tUL!CT:ON5T5T£J,l1S iSEISllICa.ASS 1I5niTN T1£tUL!CT:ON5T5T£U1S EXCD'T AS IIOTED. SElSIIlC CUSS l CUSSlfICA1UIN SHAIJ.

EXmlD Ul' TO 1li£ nliST L'IOtJR POlltT eE"f0tll 1llE iSll"AnOHYJ.L\lES iSll"AnOHYJ.\.YES 'Mil THtartlfaLSlIIil'S. AU.

                                                                                                                                                              ~l1&T.J.5:,~.ii;~cuss CDNEeTIOHSTOTl£llIITftllSUil'S,;1lCt.1lllDIi
  • DRYmL CQOlER CCHlElISA1EDRAINSIV2It,"-1T1 msflUob1'A11at All) O'f9FI..l:as,AaE SU5/IllC CUSS I.

I:: STW STWl VAlVE LUUGE IW-411 r£,.tTE1), t!JEl.tTED, o o C!lDFlAliil!lWAGEIW-4TI C!lDFlANil!lWAGEIW-4TI C£SUiN.FAU:le.ultk.iIo\TillU,-~,El!U'":DH>>a CESUiN.FAU:le.ultk.iIo\TillU,-~,El!U'":DH>>a

  • FlOOfl FlOOf! OIWJI$ Fll1il AU. ":l'm:.Y'l.~ Jill EQlJII7:iiE){f,ua:n TE:STI'<CFll1ilJoU.":l'::lIC,Y'l.~JillEQlJII7:iiE){f.lxa:FT TE:STI'<C nIlSE$lfJIHw:TlllJIli£ST\III!I1lt-IiOTt3IOhTIl%S ME$ETS "":O,lIIAya£IHACCl:IlDN.:::EWIn1'1\l[~TS::E PIPIHGCUSSCCiIQli.TIl:lIl,llUJG!lCCD£'O'.mHTlC FOWlIlIlC £XCEI'TlOMS; lclICl.EJ<lIllG!lEllIJIRDlElfTSSHliLl.llEnRTI£~

LINECUSSD~IGlMTllllII LINE CUSS D~IGHUllllll IbI II£LDUlCPl'lOCEIlU!lES TO SilJStDStlAU.II£AS 1IEQUF£J PERnEQRl\iUW.lIHECUSStlESIGlilATUlH. 4.~R1~~FllR.u:TUJ.Ll.llCATIDNOFlII-LIlESlQlT

4. SitRlSEROIAGaAloIS FOR .lCT1JAl.l.llCATIDN OF lII-LIlE SIGH R.lllIIlOUSS£S.

THESTM3DL. CEND1lSFll£OUEJIT DllC4NTII<<JOUS IN'\1n TO

                                                                                   !__II&.                                                                    T!ltllaulD~DIA:;rESYSTOICURlIIGNDl!HIJ.I'L\HT T!ltllaulD~DIA:;rESYSTOICURlIICNDI!HIJ.I'L\HT 0

Ol'(IlATlOlllS. ll£ sneol 0 lIENlTES ~T Oft Ol'£IlATlOlllS. P£RIOOlCDI'llUtJl;lTDPu>>T5IIJltJllloi.ECUll"WDIT DRYWELLOOR IWNTEIlAHCt.ETC.

                                                                                                                                                       .. CElETEO.

8

                                                                                                                                                       "      C:Fl'DASAF~COI(IEM;fJVK)LDl.i'PIPE;.OQPSEAlIS C:Fl'DASAF~COI()EhSfJVK)LDl.i'PIPE;.OQPSEAlIS
                                                                                                                                                                                             £M:UISlJ'E:£llU:REIiillllUl SUIiIl'.

I!C>TAIJ.El) IIIl£ACT1l1l £M:UISlJ'E:£llU:REhillllUl S£El'llJ)lH'JF'CIRDETAn..s. I 10. ~~':r~~e~~Ofori~lifil=!Z£6EF~~'11

10. ~~*:r~~e~~Ofori~lifil=UE.6EF~~Y1 p

1 iI r fCNUlhclF ilESlST~TH£r"'.Il.Y~IWC.FO;'JSIW.l8i:LllCATW ilESlST~ THE r ....Il.y~ IWlI.FO~J SIW.l iii: LllCATW s 7 j 1~~I tk;l;NTRClSi'llIJtT\.flE!lN tk;l;NTRCLSi'llIJtT\.flE!lN "2.li£IWil"ClDSH.Il.lIlEWAW-I8NDoI1Ii VCLIJol£ OF CDKTiKO TO I8NDoI1IiVCLIJol£OF "2.li£IWil"DLDSH.Il.lIlEWAW-CDKTiKD UTili 5Il'U.IIEUlCATiIlASCUIS£.AS~roFlDJR 5Il'U.IIEUlCATiIlASCUIS£.AS~TDFlDJR nT~ AIIOULYE AIIO ULYE IllS I r-1j:EJZ ili'iATlCINlllO'. Il.olSS-I04IHlHSS-I24S'ri.lU$<.UlCATEDIHTI£CCNTflOl Il.-GS*I04IHlHSS-I24S'ri.lU$<.UlCATEDIHTI£CCNTflOl STRLClURi:ONDRl£AItElEVJ.T1DHlec'. IL PE~ CRA.'IIlHG CRA.Y1lHG 1ol-513.I'CSTAll "'OU"'0lA fU.I'PtR TTI't CHECI

                                                                                                             --ir;2:;/

YA.l.\Ii:S IJH T,£ INFUlEIfT DlWIi U!IfS:II n£fUlOR 0lWIi VA.l.\li:SIJHT"£INFUlEIfTDlWIiU!lfS:Mll£fUlOROlWIi YAl.YE:Sl. OUJO[ OISClH£CT r..ua 51..,.., lA TCTAI. IF 11 YAl.YE:Sl, r"ua cP :DilPI.1IIiS 'Illllf US£l) TO F~C1..1TATE YII...V£ REllDVIJ.~.TIl£c::HW:YAl.~ESSilt.l1.1!£1UIlEJEl

                                                                                                                                                             ~~i~~O:t~ES
DII5ECUT1'tt!..'tFlOlIO&OT0107D.
13. ~ttPWENr ilRA.1K lINES ;eiH4~*3 VII...V£ w.u.l!£ IUI!OEl
                                                                                                                                                                                              ;eiH4~*3 .. -S IJ£ PR/l'tmCIl WIf" F

lSO-"JUU'.FlAHC£$Alf)BL:NllFUllC£T:)llflJ5£l)4$ lSO-"JUU'.FI.AHC£$AlCBL:NllFUllC£T:)llflJ5£l)4$ w HlllriPQlllT1IEHTSFOllll'/tlflO. HlllriPQlllT1IEHTSFOllH'/tlflO. 14, ~Y-tl-0s3l'1lOYIllESAl!lClllPQ;"T.IRY£lITJJIllSlW.Li£

                                                                                                                                                              ~Y-tl-0s3l'1lOYIIlESAl!lClllPQ;"T4IRY£lITJJIllSlW.Li£ 1lC5TAll.fllJ.!!)'o£:l'HIlC-22.:lL£T~lI;l1'l.n~ED 1lC5TAll.fllJ.!!)'o£3'HIlC-22.:lL£T~lI;'l1'l.n~ED COlI£T]OH$SHAU!£BAafj)LI'liYSULlIELiIIoll.

COlN:CTlOH$SHAU!£BAafj)LI'liYSULlIEI.iIIoll. X43* f 1 j lS.ilE~ 15.ilEl.ETlIl. L!LZ t! ° Ii. 2' Ci-Etx VALVES C01!~ &. C';;:CX YAl.YES a. 00151. .. 8.IOOSA lB.1Cl1 ...... 1D21.l1llAJIDIll22A1BARESWlNGTl"£ lB.1Cll OliQl:VALV£S. OlitxYALV£S. IT.JE'J:rCIl e.lOOSA .. S,IOO'JA ID2l.tlllAJIDIll22A1BARESWlNGTl"£ 1a.~~'FOflVJ.LVEIlV-ilI.:azIS~Gml: 1a.~~'FOflVAl.VEIlY-ilI.:azIS~Gml: Y E L -

19. !'UIS!I CONI.II~T lIE ",.llV:D6\
                                                                                                                                                                                         ",.llV:D6l uN 4"~-143 AllC~ SUL Pl.ATE.REf.lSDIoETRlC JIli.HU-l43 fI>>l OETAll..

PLlTE.REf.lSDIoETRlC OETAll. C 1 __ I O.F4CE REf'ER£NCE DRAW".NCS: 1. ORAW24UN I. IllCI.EAI'lllllll£R Fet>

                                                                                                                                                                                                   -:l£tom.

l&IES57AO IlEcrraHO. a:JRt'~j;~30 a:J~~t'~j;~30 I I

  • RECIllC.PlJIoIP SEAl.$
                                              $EAl.$ I PllCI,II-.43I C RPV MAlH ~M-43 )

C HIGH I'RfSSURE SEA!.l.EAKOFf'l SEALl.EAKOFf'l ......,1 C 1lI'Y' SlEAW UNEVEttT 11oH11 IIoHl1 C REACTlJlll'ElllllWlfS I Ii-53' W-53 , o o IlEFlJEl1.NG mulWS WlIAGE lM-S3 ) IlEFlJEllNG C PIPING VENTS AJi)llflAltlS oC cJH.Lb~J~ffy

                                                                                                                                          ~~~~
                                                                                                                                          ~~
                                                                                                                                          ~'f I C£Q2     I I
                                                                                                                               ~=::::"-_J
                       =

OViRFlO'llS' OViRFlO'<<S'

                                                                                                               .                                                                                                                         c
                                                                                                              ~

I 131 I

                                                                                                           -- I                  I SouTloN 3

L_ I: I I I IlUI

                                                                                                                     !lUI I

CllNTAlHNEHTl

                                                                                                                 ~ISOLA11CH SICKAI.

i I E 4__1 E. I B H

                                                                                                \çJ II t                         I I?un                                                                       D F-ll2-1 I Z jUNI       I   ioi+                                          uTED GESCRtPTION Nrt&

TsT

t- MECHANICAL P&ID LIGUID RAWASTE COLLECTION (UNITII V L1NERI OE1RATINU STATON PfUE EEY TO.

8 5 -- I 3 9 IHEOT 1 I ------. OF I 8031M61 I TATFTflRY Al III 37

...------------,------::,.------,------:-:----.-----;:;----,...----;::0----,-------;,0,.------,------:.,;:------,:---- ..

NcE DAWDGS

                                                                                                            +

on

                                             \*+

FP:3-_/ pG:LsU 2(*ii I i#J n. ( 1 I rZl!:* IDRL c$TfRA ::i tlB7 YCLL I o

                                                                                                                      ,   "-'UC::\ IQ-R
                                                                                                                                                                                                                                                                                                                                                                                                                        ~.

LVG-V'j H

                                                                                                                                           ~

H (i7) r @ lI!:!~ ~;R~CO~~:I i~~T10N SEf.fl'.! YI! !G.;M~'£2!.i '5~, . ,':..,*. -.i.*~. .,*I.i"~;7'i'*S~,.::,~,:-:.' c: .', !~Ei.U'1' ,..'¥1 i

                                                                                                           .M.~~CH ~I~,~~_ ~.;~~C~~;1:j~.1T~?~ . ~~~-?~.?,~-.~I~                                                                                                                                            !Q!;:fl.L'7*lt.'¥J I,i fl. f'

_ .* _ MATCH _....,..:

                                                                                                                                                                                      ':.. l:' ..'.: .*.,.1"1,, '                   ',r-.:-
                                                                                                                                                                                    ~I                                                            ':"".'1*. ','Y:.,:. **~ .*.\\,O'~-'
                                                                                                                                                                                                 ' "l' ' '... 1,'
                                                                                                                                                                                                          ,' ";,1,1,.:,'*'

1J'I'",T

                                                            ~~.~~r                                                                                 I I****.!~f~"'ii**l
                                                                                                                                                                                      ...,L      '~'
                                                                                                                                                                                                  .',.i,
                                                                                                                                                                                                           .!,!!'- J*m*;****;,;~~n
                                                                                                                                                                                                                                 . . ~-.~_               ~it                                         "'~1,,",'U
                                                                                                                                                                                                                                                                                                                                                                                     ~"r T

L,. . **

                                                                                                                                                                                                                                                         $-~1.                                                                                                                           KEY PL"'N Pl"'N G                                                                                                                                                                                                                                                                                                       ~POOl..$Nl.U.a..m*d G
                                                                                                                                                                                                                                                                                                                                                            ~
1. ...~.$ ~~ :. fOIl uzu R'l ~. Ii;)I1 ~
                                                                                                                                                                                                                                                                                                                                                                 ,," 5R          ~P*M#ZA7.

t_~ ~ ........". - 0 . . . - - . ..... f""""'

                "O~A                                         10           iii                                                                                                                                                                                                                                                                                  i'!loe&    ,..,.. .....   ",..e.~,"#w.

l!'""dt~'~l4:20:--- I - __ C ~

         ,.. , . . ',:.,     ...\ m=1 , I.                                ~
                                '                       ,                                                                                    I
                                                                          ~~~
                                                                                                                                                                                                                                                                                      ~.:::..t:,              ..."".

o '-r-- III J:.., "T'"I

                                                                                                                                                                                                                                                                        /J
                                                                                                                                                                                                                                       '[

S-

       -~1?~':9~::                                                                                                                                                                                                                                                                         .
                                                                                                                                                                                                                                                                                                      "k~'="'''~
                                                                                                                                                                                                                                                                                                       *1**.. *:***.,*.*:-**f
~t"'-'-'

c: ,,J

                                ~
                                 ~/
                                ~ _:-.,

l: ~-,

                                                                                                                                                                                                                                                                                   --1'. '.

IL*

                                                                                                                                                                                                                                                                                           .. ..,...                                                                                                                                     E "1"L I;'.'                                                                                                         I'

_'_""<.&, r**

                                                                                                                                                                                                                           '-'-<,...r~                                                i':':'
                                                                                                                                                                                                                                                                                      ~;~.                                  '
                                                        ~   >
                                                                                                                                                                                                                                                                                                      ~{      10c.L.rrr-c'*

D t.. *...*:. '.'/'::(';'~;:::'!,:;::',., '., .:\;, .:,: .~.: :'.':.. '-. " , i ' ; _ .~: ~.~.: #.' *

',:: ....>... ..'...-:. :>..,;:\\,:';' ". ~.. :. ';.1 D

w m C) C) SECTION 0z B-B B*B w

                                                                                                                                                                                         '--;+-1'          1;-:     (r-\-.~~---:r-t-~-/:/-/:,,"""""'"                       ;";1
                                                                                                                                                                                                                                                                        ,;!j c                                                                                                                                                                                                                           l~- ~'/
                                                                                                                                                                                                                                   .,:;~'.;e/            f~

I I M-THli[MG. I 'Ii lK~:_ ~.~l~?~:~~. 1'~n'~jOJll

                                                                                                                                                                                                                                                ;:;C-U1r.:

I

                                                                                                                                                                                                                       ,"~:,if ),I.                                                                  _'~~'",

ir;:-Hi.u.u;". Best Copy Available AVailable C)

                                                                                                                                                                                           "                                                                                   I                                                     C,,    C          CD UMWa             GI~_~,=--                            *"' 1£ '~
                                                                                                                                                                                    ).,-.                                                                                                                       ":/'.1
                                                                                                                                                                                                                                                                                                                                                                         ~~i A                                                                                                                                                                                                                                                                                                                                                        \IiSC    fUNSt SE.CT1OolIr~ iii I:!

U) C-) SECTION SECTiON rn 0 z E-E II!

                                                                                                                                                                                                                                              -C
                                                                                                                                                                                                                                                                                                                                                                                                         ...247 ':.:,2.3 ~.,
                     ..f.                 .... Iol).'                                          ..:_,.-.      6
                                                                                                                                                                      ~                                                                                4                                                       .t'               {

2 '* 2 ,;': . ,..~ ... ~;

dc: 8c~:-~ 4:-

                                                                                                                                                                                                                                                                                                                                                                                                            ~

HH

                                                          @                                                                                                                                                                                                                                                                                                                                                               H H
                                                                 ~ \'H~   fl  l'>::*Go- ;~i>
                                                                                                                                                                                                                                                                                                                                        ;;                          "'T I;.. 'l\

I \l~IT I I 1

                                                                                                                                                                                                                                                                                                                                                                        ~

KEY PLAN KEY PLAN

  • GG G
                                                                                                                                                                                                           ~\,.q(d i

i II, PoOL SWELt SWELL I. F

ffl. F m:m',~-"
          *,,~*,>***tf~~:It"OP""1IH41L-....**IHi """I'd",,,- ..-

f---'f---'f-.+++++-----7+-----------'--- F:'.-=,,:l ' __ F'  ! I l,u""~i' E

                          .:.-.:"\

i T [.

                                                                                                                                                                             ,_...... ,J~                                                                                                                                                                                                                                   E
                                                                                                                                                                        ,,~7.¥--j I ~~~
                                                                                                                                                                                  , ....1M I
                                                               ..... ' ..    -:,     .               ;"'~)";",
                                                                                                                            ,..,.::"'.:                :' I.'               '            .t.,

oD

":.:1
                                                                             ...      -':*.*.c4~,***:'::***                                 .~.        I 1-,             '., "                  . '", :.

oDD SECTIO"!J!*J! SECTION

-L
                                                                                                                                                                                                                                                                                                                                                                                                                   !f<1/1 cC                                                                                                                                                                                                                                                                                                                                                                                                                  ~cCc f...i...<-.. ",:
. e~

t(*-

                                                                                                                                                                                                                                                                                               ..'           II II';    ¥ :~
                                                                                                                                                                                                                                                                                                            ...'":.".) '1':
                                                                                                                                                                                                                                                                                                                        'I:' u_____

B

                                                                                                                                  ~~    T....>:..::T-~

T1PIC,L

                                                                                                                                            .---   .--.. 1l*s.:~;~'lC B

Best Copy AvaUabie Available i\vailabia A--

                                                                                                                                                                                                                                                                                                                                .. f -                                                          "-1'='.--'-
                                                                                                                                                                                                              ~,,-~
                                                                                                                                                                                                              ~,,-~     :;,..
                                                                                                                                                                                                               ~'i">';"!':,~.""
                                                                                                                                                                                                                "':..L r:i"""'~!",:;".:.,:                   ;£~~t'i:.,,':.~,>.,*
                                                                                                                                                                                                                                                      *.:, U'~ML"-~;;o.
                                                                                                                                                                                                                                                                                                                               ...... \*.r-<1 BECHTEl BECHTEL
                                                                                                                                                                                                                                                                                                                                                                                                            =

Jo,C r;.o.~~

                                                                                                                                                                                                                .loo.C   c...-~ ;;"~::!'lN
                                                                                                                                                                                                                                     ~;:"iN ~    ..... ""1'
                                                                                                                                                                                                                                                        ..,.... .;::::.o
                                                                                                                                                                                                                                                                .:;::o... ::t>.~I<;
t-,~~," $A/tfilAHCISCO
rr~'i<

OT~i" -"" - .... ~ ..J,Jt;,c "'.r> ..,; ""':'" .....::

                                                                                                                                                                                                                                       --*~ ",1' ..'; ~'="."~ LlIlWEll.      ~

III 11(;'- .li~~iOfI':;<! I' Fe;;' 1l!"'L~<H.;i Ow.T. I;o.I.T.

                                                                                                                                                                                                              ~""i.T:::!J,r
                                                                                                                                                                                                              ~ .).-1. T~~T""""!         ~ .. ! ':~'I<Go~
.~ ... "'~ ....... ,..,~.,j ,~
                                                                                                                                                                                                                                                                      ,>,;o.-",::::-l           ..... "",J~,

c...;.."",J~, L1MElICK lIMUICK GENERATING LIMERICK GENERATING STATION STATtON UNITS UNITS II & & 22

                                                                                                                                                                                                                ~lW>e.&t.o.>c::...
                                                                                                                                                                                                                         ~ .::            ,:-;~      ~ ~1<,.;; '-"'10., ..**.
                                                                                                                                                                                                                                          ,:"'i~~~,.,.,~.:.O::"'>;<.,.-;-
                                                                                                                                                                                                                                                                                                                                                              ~-..:ftCClllWwr
                                                                                                                                                                                                                                                                                                                                                              .,....,...aJr;Jui;~               .....

PIPlNG AND PIPING I>NO M£C>tANICAL IWO MEI-IANICAL MEQiANICAL REACTOR BLDG. 8LOG. 8L.DG.. UNIT NQ2 ~2 N02 A A MISC. PLANS MISC PLANst SECTIONS-AREA I-M:.;;I:;:SC:::.;.PLAN.::;..:.::S:..:("S:;:E",CT:.;' 6(.:..(:..:'4_.--1 AE ONS=,---.::AREA=.:.;"::.' 14 4 A A A

                                                                                                                                                                                                                                                                                                                                  .Qd                      -~                               -~                        ~.
                                                                                                                                                                                                                                                                                                                                 ,IlJ Ii!!I'1                8031 [,                         M:~2l',                     ,;1 8              J                  71                        1                    66                    55                            -              44                                          3                               ,:  !
                                                                                                                                                                                                                                            ,: i.

L.-:':".'

                                                                                                                                                                                                                                                     ._~.... "_.**.
                                                                                                                                                                                                                                                                 .. 'J * * '_.     #"

2}}