ML15154B079: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 16: Line 16:
| page count = 82
| page count = 82
}}
}}
=Text=
{{#Wiki_filter:Westinghouse Non-Proprietary Class 3A-1APPENDIX AVALIDATION OF THE RADIATION TRANSPORTMODELS BASED ON NEUTRON DOSIMETRYMEASUREMENTSA.1 NEUTRON DOSIMETRYComparisons of measured dosimetry results to both the calculated and least-squares adjusted values for allsurveillance capsules withdrawn from service to date at St. Lucie Unit 2 are described herein. The sensorsets from these capsules have been analyzed in accordance with the current dosimetry evaluationmethodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods forDetermining Pressure Vessel Neutron Fluence" [Reference A-1]. One of the main purposes for presentingthis material is to demonstrate that the overall measurements agree with the calculated and least-squaresadjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate thecalculated neutron exposures previously reported in Section 6.2 of this report.A.1.1 Sensor Reaction Rate DeterminationsIn this section, the results of the evaluations of the three surveillance capsules analyzed to date as part ofthe St. Lucie Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsuledesignation, location within the reactor, and time of withdrawal of each of these dosimetry sets were asfollows:Capsule Azimuthal Withdrawal Time Irradiation TimeLocation [EFPY]830 End of Cycle 1 1.112630 End of Cycle 9 11.07970 End of Cycle 20 25.55The passive neutron sensors- included in the evaluations of surveillance Capsules 83', 2630, and 970 aresummarized as follows:WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-2Reaction Of Capsule Capsule CapsuleSensor Material Interest 830 2630 970Copper (Cd) 63Cu(nu())6&deg;Co X X XTitanium 46Ti(n,p)46Sc X X XIron 54Fe(n,p)54Mn X X XNickel (Cd) 58Ni(n,p)58Co X X XUranium-238* 238U(n,f)FP X X XCobalt-Aluminum* 59C0(n Y)60 X X XNote:* The cobalt-aluminum and uranium monitors for this plant include both bare and cadmium-covered sensors.The capsules also contained sulfur monitors, which were not analyzed because of the short half-life of theactivation product isotope (32p, 14.3 days). Pertinent physical and nuclear characteristics of the passiveneutron sensors analyzed are listed in Table A-1.The use of passive monitors such as those listed above do not yield a direct measure of the energy-dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is ameasure of the integrated effect that the time- and energy-dependent neutron fluence rate has on the targetmaterial over the course of the irradiation period. An accurate assessment of the average neutron fluencerate level incident on the various monitors may be derived from the activation measurements only if theirradiation parameters are well known. In particular, the following variables are of interest:* the measured specific activity of each monitor,* the physical characteristics of each monitor,* the operating history of the reactor,a the energy response of each monitor, and* the neutron energy spectrum at the monitor location.The radiometric counting of the sensors from Capsule 970 was carried out by Pace Analytical Services,Inc. The radiometric counting followed established ASTM procedures.The irradiation history of the reactor over the irradiation periods experienced by Capsules 830, 2630, and970 was based on the monthly power generation of St. Lucie Unit 2 from initial reactor criticality throughthe end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, thehalf-lives of the product isotopes are long enough that a monthly histogram describing reactor operationhas proven to be an adequate representation for use in radioactive decay corrections for the reactions ofinterest in the exposure evaluations. The irradiation history applicable to Capsules 830, 263', and 970 isgiven in Table A-2.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-3Having the measured specific activities, the physical characteristics of the sensors, and the operatinghistory of the reactor, reaction rates referenced to full-power operation were determined from thefollowing equation:ANo F Y Y P' Cj [1- e- tj] [e-Xt&J]Prefwhere:R = Reaction rate averaged over the irradiation period and referenced to operationat a core power level of Pref (rps/nucleus).A = Measured specific activity (dps/g).No = Number of target element atoms per gram of sensor.F = Atom fraction of the target isotope in the target element.Y = Number of product atoms produced per reaction.Pi = Average core power level during irradiation period j (MW).Pref = Maximum or reference power level of the reactor (MW).C -= Calculated ratio of 4i(E > 1.0 MeV) during irradiation period j to the timeweighted average f(E > 1.0 MeV) over the entire irradiation period.= Decay constant of the product isotope (1/sec).tj = Length of irradiation period j (sec).tdj = Decay time following irradiation period j (sec).The summation is carried out over the total number of monthly intervals comprising the irradiationperiod.In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref] accounts for month-by-monthvariation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. Theratio Cj, which was calculated for each fuel cycle using the transport methodology discussed inSection 6.2, accounts for the change in sensor reaction rates caused by variations in fluence rate levelinduced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycleirradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional Cj termshould be employed. The impact of changing fluence rate levels for constant power operation can be quitesignificant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned fromWCAP- 1 7939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-4non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsulesthat have been moved from one capsule location to another. The fuel-cycle-specific neutron fluence ratevalues along with the computed values for Cj are listed in Table A-3. These fluence rate values representthe capsule- and cycle-dependent results at the radial and azimuthal center of the respective capsules atcore midplane.Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets,additional corrections were made to the 238U cadmium-covered measurements to account for the presenceof 23.U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the courseof the irradiation. Corrections were also made to the 238U sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the capsule irradiations. The correction factorscorresponding to the St. Lucie Unit 2 fission sensor reaction rates are summarized as follows:Correction Capsule 830 Capsule Capsule 9702630235U Impurity/Pu Build- 0.8786 0.8459 0.8010in238U(,,f) 0.8725 0.8757 0.8771Net 238U Correction 0.7666 0.7407 0.7026The correction factors for Capsules 830, 2630 and 970 were applied in a multiplicative fashion to thedecay-corrected cadmium-covered uranium fission sensor reaction rates.Results of the sensor reaction rate detenninations for Capsules 830, 263', and 970, are given in Table A-4.In Table A-4, the measured specific activities, decay-corrected saturated specific activities, and computedreaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed bothwith and without the applied corrections for 235U impurities, plutonium build-in, and gamma-ray-inducedfission effects in the cases of Capsule 830 and 97'.A.1.2 Least-Squares Evaluation of Sensor SetsLeast-squares adjustment methods provide the capability of combining the measurement data with thecorresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum withassociated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV)or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, theleast-squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile themeasured sensor reaction rate data, dosimetry reaction cross sections, and the calculated neutron energyspectrum within their respective uncertainties. For example,R i +/-6Ri ~(Cyig i p +/-~ )Qg6,pgWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-5relates a set of measured reaction rates, Ri, to a single neutron spectrum, kg, through the multigroupdosimeter reaction cross sections, c~ig, each with an uncertainty 5. The primary objective of the least-squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location ofthe measurement.For the least-squares evaluation of the St. Lucie Unit 2 surveillance capsule dosimetry, the FERRETcode [Reference A-2] was employed to combine the results of the plant-specific neutron transportcalculations and sensor set reaction rate measurements to determine best-estimate values of exposureparameters (fluence rate (E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules analyzed to date.The application of the least-squares methodology requires the following input:1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.2. The measured reaction rates and associated uncertainty for each sensor contained in the multiplefoil set.3. The energy-dependent dosimetry reaction cross sections and associated uncertainties for eachsensor contained in the multiple foil sensor set.For the St. Lucie Unit 2 application, the calculated neutron spectrum was obtained from the results ofplant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reactionrates were derived from the measured specific activities using the procedures described in Section A. 1.1.The dosimetry reaction cross sections and uncertainties were obtained from the SNLRML dosimetrycross-section library [Reference A-3]. The SNLRML library is an evaluated dosimetry reactioncross-section compilation recommended for use in LWR evaluations by ASTM Standard E1018,"Application of ASTM Evaluated Cross-Section Data File, Matrix E706 (IEB)" [Reference A-4].The uncertainties associated with the measured reaction rates, dosimetry cross sections, and calculatedneutron spectrum were input to the least-squares procedure in the form of variances and covariances. Theassignment of the input uncertainties followed the guidance provided in ASTM Standard E944,"Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Reference A-5].The following provides a summary of the uncertainties associated with the least-squares evaluation of theSt. Lucie Unit 2 surveillance capsule sensor sets.Reaction Rate UncertaintiesThe overall uncertainty associated with the measured reaction rates includes components due to the basicmeasurement process, irradiation history corrections, and corrections for competing reactions. A highlevel of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures thatconform to the ASTM National Consensus Standards for reaction rate determinations for each sensortype.WCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-6After combining all of these uncertainty components, the sensor reaction rates derived from the countingand data evaluation procedures were assigned the following net uncertainties for input to the least-squaresevaluation:Reaction Uncertainty63Cu(nl,(,)6&deg;Co 5%54Fe(n,p)54Mn 5%58Ni(n,p)58Co 5%46Ti(n,p)46Sc 5%238U(n,f)FP 10%59Co(n,y)6&deg;Co 5%These uncertainties are given at the l level.Dosimetry Cross-Section UncertaintiesThe reaction rate cross sections used in the least-squares evaluations were taken from the SNLRMLlibrary. This data library provides reaction cross sections and associated uncertainties, includingcovariances, for 66 dosimetry sensors in common use. Both cross sections and uncertainties are providedin a fine inultigroup structure for use in least-squares adjustment applications. These cross sections werecompiled from recent cross-section evaluations, and they have been tested for accuracy and consistencyfor least-squares evaluations. Further, the library has been empirically tested for use in fission spectradetermination, as well as in the fluence and energy characterization of 14 MeV neutron sources.For sensors included in the St. Lucie Unit 2 surveillance program, the following uncertainties in thefission spectrum averaged cross sections are provided in the SNLRML documentation package.Reaction Uncertainty63Cu(nct)60Co 4.08-4.16%54Fe(n,p)"4Mn 3.05-3.11%58Ni(n,p)58Co 4.49-4.56%46Ti(n,p)465c 4.50-4.87%238U(n,f)137Cs 0.54-0.64%59Co(n,y)60Co 0.79-3.59%These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated withthe sensor sets used in LWR irradiations.Calculated Neutron SnectrumWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-7The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from theresults of plant-specific transport calculations for each surveillance capsule irradiation period andlocation. The spectrum for each capsule was input in an absolute sense (rather than as simply a relativespectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data weretreated equally with the measurements.While the uncertainties associated with the reaction rates were obtained from the measurement proceduresand counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with theSNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the followingrelationship:Mgg, +Rg *Rgn *Pgg,where &1 specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg andRg, specify additional random groupwise uncertainties that are correlated with a correlation matrixgiven by:Pg9, =[1-0169g, +0eHwhereH (g-g')22y2The first term in the correlation matrix equation specifies purely random uncertainties, while the secondterm describes the short-range correlations over a group range y (0 specifies the strength of the latterterm). The value of 6 is 1.0 when g = g', and is 0.0 otherwise.The set of parameters defining the input covariance matrix for the St. Lucie Unit 2 calculated spectra wasas follows:Fluence Rate Normalization Uncertainty (R1) 15%Fluence Rate Group Uncertainties (Rg, Rg,)(E > 0.0055 MeV) 15%(0.68 eV < E < 0.0055 MeV) 25%(E < 0.68 eV) 50%Short Range Correlation (0)(E > 0.0055 MeV) 0.9(0.68 eV < E < 0.0055 MeV) 0.5WCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-8(E < 0.68 eV) 0.5Fluence Rate Group Correlation Range (y)(E > 0.0055 MeV) 6(0.68 eV < E < 0.0055 MeV) 3(E < 0.68 eV) 2A.1.3 Comparisons of Measurements and CalculationsResults of the least-squares evaluations of the dosimetry from the St. Lucie Unit 2 surveillance capsuleswithdrawn to date are provided in Tables A-5, A-6, and A-7 for Capsules 830, 2630, and 970, respectively.In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for eachcapsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculatedand least-squares adjusted reaction rates. These ratios of M/C and M/BE illustrate the consistency of thefit of the calculated neutron energy spectra to the measured reaction rates both before and afteradjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate(E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed foreach of the capsules.For Capsule 2630, the cadmium-covered uranium monitor was discarded. For all three capsules, both bareand cadmium-covered cobalt-aluminum monitors were discarded. For Capsule 970, the copper monitorwas discarded. The data for these dosimetry reactions were discarded because they were outside theexpected values. For all capsules, the bare uranium monitors were not included because the U-235impurity content and the thermal fluence rate on the capsule are not known with enough accuracy tocorrect the measurement readings.The data comparisons provided in Tables A-5 through A-7 show that the adjustments to the calculatedspectra are relatively small and well within the assigned uncertainties for the calculated spectra, measuredsensor reaction rates, and dosimetry reaction cross sections. Further, these results indicate that the use ofthe least-squares evaluation results in a reduction in the uncertainties associated with the exposure of thesurveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as 13% atthe 1cy level.Further comparisons of the measurement results with calculations are given in Tables A-8 and A-9. Thesecomparisons are given on two levels. In Table A-8, calculations of individual threshold sensor reactionrates are compared directly with the corresponding measurements. These threshold reaction ratecomparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculatedenergy spectra. In Table A-9, calculations of fast neutron exposure rates in terms of fluence rate(E > 1.0 MeV) and dpa/s are compared with the best-estimate results obtained from the least-squaresevaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similarresults with all measurement-to-calculation comparisons falling well within the 20% limits specified asthe acceptance criteria in Regulatory Guide 1.190.In the case of the direct comparison of measured and calculated sensor reaction rates, for the individualthreshold foils considered in the least-squares analysis, the average M/C comparisons for fast neutronWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-9reactions range from 0.77 to 1.24 in the data set. The overall average M/C ratio for the entire set ofSt. Lucie Unit 2 data is 1.07 with an associated standard deviation of 13.8%.In the comparisons of best-estimate and calculated fast neutron exposure parameters, the correspondingBE/C comparisons for the capsule data sets range from 0.96 to 1.09 for neutron fluence rate(E > 1.0 MeV) and from 0.97 to 1.09 for iron atom displacement rate. The overall average BE/C ratiosfor neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are 1.02 with a standard deviationof 6.4% and 1.03 with a standard deviation of 5.9%, respectively.Based on these comparisons, it is concluded that the calculated fast neutron exposures provided inSection 6.2 of this report are validated for use in the assessment of the condition of the materialscomprising the beltline region of the St. Lucie Unit 2 reactor pressure vessel.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-10Table A-I Nuclear Parameters Used in the Evaluation of Neutron Sensors90%Reaction Atomic Weight Target Product Fission Responseof A tomi Atom Half-life Yield Range(a)Interest [g/g-atomJ Fraction [days] [%] RneVa63Cu (na) 60Co 63.546 0.6917 1925.5 n/a 4.53- 11.046Ti (n,p) 46Sc 47.867 0.0825 83.79 n/a 3.70 -9.4354Fe (n,p) 54Mn 55.845 0.05845 312.11 n/a 2.27-7.5458Ni (n,p) 58Co 58.693 0.68077 70.82 n/a 1.98 -7.51238U (n,f) 137Cs 238.051 0.99958 10983.07 6.02 1.44-6.6959Co (n,y) 60Co 58.933 0.0017 1925.5 n/a non-thresholdNotes:(a) The 90% response range is defined such that, in the neutron spectrum characteristic of the St. Lucie Unit 2 surveillancecapsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutronswith energies above the upper limit (Reference A-6).WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-]lITable A-2 Monthly Thermal Generation during the First 20 Fuel Cycles of the St. Lucie Unit 2ReactorCycle 1 Cycle 2 Cycle 3 Cycle 4Month MWt-h Month MWt-h Month MWt-h Month MWt-hJun-83 77926.4 Nov-84 92205 Jun-86 1944000 Nov-87 44010Jul-83 449305.6 Dec-84 1137132 Jul-86 1767420 Dec-87 1717686Aug-83 1776204.8 Jan-85 1980612 Aug-86 1809675 Jan-88 2004831Sep-83 712576 Feb-85 1732374 Sep-86 1805706 Feb-88 1876149Oct-83 1759590.4 Mar-85 1668411 Oct-86 1940733 Mar-88 2005047Nov-83 1896012.8 Apr-85 1208763 Nov-86 504603 Apr-88 1968381Dec-83 1814732.8 May-85 1879416 Dec-86 1937385 May-88 1942731Jan-84 1525376 Jun-85 1944000 Jan-87 2001213 Jun-88 1988577Feb-84 1671398.4 Jul-85 1876581 Feb-87 1809918 Jul-88 1940463Mar-84 1903718.4 Aug-85 636444 Mar-87 1839456 Aug-88 1996110Apr-84 1843200 Sep-85 636471 Apr-87 1881387 Sep-88 1986417May-84 1834828.8 Oct-85 1921941 May-87 1880118 Oct-88 1844235Jun-84 1843200 Nov-85 1944000 Jun-87 2000862 Nov-88 1985391Jul-84 1840819.2 Dec-85 1767420 Jul-87 1708263 Dec-88 1943757Aug-84 1901286.4 Jan-86 1809675 Aug-87 1904904 Jan-89 2007369Sep-84 1216230.4 Feb-86 1805706 Sep-87 1942947 Feb-89 185814Oct-84 854195.2 Mar-86 1940733 Oct-87 224100 Mar-89 0Apr-86 504603May-86 0WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-12Table A-2 (Continued) Monthly Thermal Generation during the First 20 Fuel Cycles of theSt. Lucie Unit 2 ReactorCycle 5 Cycle 6 Cycle 7 Cycle 8Month MWt-h Month MWt-h Month MWt-h Month MWt-hApr-89 4104 Dec-90 1381455 Jun-92 55701 Apr-94 25758May-89 1759914 Jan-91 2007180 Jul-92 1589409 May-94 1862433Jun-89 1901313 Feb-91 1812861 Aug-92 1688445 Jun-94 1794069Jul-89 1943163 Mar-91 2005695 Sep-92 2007072 Jul-94 1784862Aug-89 1952694 Apr-91 2001969 Oct-92 1941273 Aug-94 1923669Sep-89 1728081 May-91 1868535 Nov-92 1696059 Sep-94 2003265Oct-89 1941246 Jun-91 1908360 Dec-92 1054836 Oct-94 1943055Nov-89 1965789 Jul-91 1943352 Jan-93 973647 Nov-94 2010636Dec-89 1919214 Aug-91 2008233 Feb-93 0 Dec-94 1878660Jan-90 1190835 Sep-91 1965492 Mar-93 0 Jan-95 2007909Feb-90 1804896 Oct-91 1900233 Apr-93 1715769 Feb-95 1615734Mar-90 2008800 Nov-91 1975995 May-93 1509597 Mar-95 1938141Apr-90 1992222 Dec-91 1918809 Jun-93 1998945 Apr-95 1965816May-90 1856385 Jan-92 1962414 Jul-93 1792800 May-95 1937871Jun-90 1985877 Feb-92 1848690 Aug-93 1754973 Jun-95 1973430Jul-90 1922562 Mar-92 1931121 Sep-93 1724598 Jul-95 1844829Aug-90 958149 Apr-92 1472364 Oct-93 1804491 Aug-95 1671489Sep-90 1752894 May-92 0 Nov-93 1004832 Sep-95 1927206Oct-90 121689 Dec-93 1311687 Oct-95 572130Nov-90 0 Jan-94 2006586 Nov-95 0Feb-94 995193 Dec-95 0Mar-94 0WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A- 13Table A-2 (Continued) Monthly Thermal Generation during the First 20 Fuel Cycles of theSt. Lucie Unit 2 ReactorCycle 9 Cycle 10 Cycle 11 Cycle 12Month MWt-h Month MWt-h Month MWt-h Month MWt-hJan-96 1295973 May-97 322002 Dec-98 1401975 May-00 858465.1Feb-96 1868589 Jun-97 1939032 Jan-99 2006856 Jun-00 1943271Mar-96 1994166 Jul-97 2005398 Feb-99 1797417 Jul-00 2006586Apr-96 1848393 Aug-97 2006181 Mar-99 2007720 Aug-00 1981287May-96 1922103 Sep-97 1929528 Apr-99 1797660 Sep-00 1941219Jun-96 1428354 Oct-97 2009340 May-99 2007612 Oct-00 2010096Jul-96 1942704 Nov-97 1941597 Jun-99 1356642 Nov-00 1941921Aug-96 2005317 Dec-97 2006748 Jul-99 2007504 Dec-00 2006181Sep-96 1995354 Jan-98 2003292 Aug-99 2007585 Jan-01 2007261Oct-96 1945269 Feb-98 1812483 Sep-99 1917378 Feb-01 1812942Nov-96 2002158 Mar-98 1882791 Oct-99 2009772 Mar-01 1756107Dec-96 1938546 Apr-98 1939329 Nov-99 1942218 Apr-01 1940490Jan-97 1977102 May-98 1988064 Dec-99 2006181 May-01 2007801Feb-97 1774494 Jun-98 1942623 Jan-00 2007072 Jun-01 1937790Mar-97 2006451 Jul-98 2006694 Feb-00 1877823 Jul-01 2008044Apr-97 1016928 Aug-98 2007585 Mar-00 2007747 Aug-01 2007774Sep-98 1941327 Apr-00 1010070 Sep-01 1942704Oct-98 2008260 Oct-01 2010582Nov-98 491076 Nov-01 1600533WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-14Table A-2 (Continued) Monthly Thermal Generation during the First Eighteen Fuel Cycles ofthe St. Lucie Unit 2 ReactorCycle 13 Cycle 14 Cycle 15 Cycle 16Month MWt-h Month MWt-h Month MWt-h Month MWt-hDec-01 277182 Jun-03 790587 Feb-05 777627 Jun-06 925398.1Jan-02 2008071 Jul-03 2007288 Mar-05 2007314 Jul-06 2006667Feb-02 1749789 Aug-03 2006612 Apr-05 1940409 Aug-06 2007584Mar-02 2008395 Sep-03 1926774 May-05 2007747 Sep-06 1941543Apr-02 1940706 Oct-03 2006667 Jun-05 1942083 Oct-06 1997082May-02 2004723 Nov-03 1942947 Jul-05 2007936 Nov-06 1942110Jun-02 .1943541 Dec-03 1418877 Aug-05 1920348 Dec-06 1949832Jul-02 2008368 Jan-04 2007126 Sep-05 1943190 Jan-07 2007288Aug-02 2006640 Feb-04 1849122 Oct-05 1737612 Feb-07 1813455Sep-02 1943433 Mar-04 2007558 Nov-05 1943271 Mar-07 2003022Oct-02 2011203 Apr-04 1940409 Dec-05 2007990 Apr-07 1942731Nov-02 1943163 May-04 2007423 Jan-06 1639440 May-07 2006289Dec-02 2006802 Jun-04 1943109 Feb-06 1812726 Jun-07 1942812Jan-03 2007774 Jul-04 2007774 Mar-06 2007530 Jul-07 2007531Feb-03 1813806 Aug-00 2007855 Apr-06 1430109 Aug-07 1154925Mar-03 2004102 Sep-04 639359.9 May-06 0 Sep-07 1898883Apr-03 923751 Oct-04 1745523 Oct-07 0May-03 0 Nov-04 1943028 Nov-07 0Dec-04 1572831 Dec-07 0Jan-05 94068WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-15Table A-2 (Continued) Monthly Thermal Generation during the First 20 Fuel Cycles of theSt. Lucie Unit 2 ReactorCycle 17 Cycle 18 Cycle 19 Cycle20Month MWt-h Month MWt-h Month MWt-h Month MWt-hJan-08 1508382 Jun-09 1009449 May- 11 1232037 Nov-12 274034.8Feb-08 1362879 Jul-09 931364.9 Jun-1 1 1850148 Dec-12 1950587Mar-08 1986390 Aug-09 1962522 Jul-i1 2005262 Jan-13 2244886Apr-08 1933362 Sep-09 644652 Aug-11 1833380 Feb-13 2027628May-08 2003643 Oct-09 2006937 Sep-11 1941597 Mar-13 2241625Jun-08 1671381 Nov-09 1939599 Oct-1 1 2006883 Apr-13 2172648Jul-08 2006775 Dec-09 2006910 Nov-11 1942704 May-13 2180742Aug-08 .2007018 Jan-10 1953072 Dec-11 2005452 Jun-13 1843589Sep-08 1941435 Feb-10 1811997 Jan-12 1997703 Jul-13 2245007Oct-08 2007180 Mar-10 2003454 Feb-12 1876635 Aug-13 2244826Nov-08 1945026 Apr-10 1466208 Mar-12 2000322 Sep-13 2172648Dec-08 2007153 May-10 2006478 Apr- 12 1939490 Oct- 13 2245038Jan-09 2007099 Jun-10 1941786 May-12 1857437 Nov-13 1975986Feb-09 1811403 Jul-10 1988685 Jun-12 1911330 Dec-13 2236491Mar-09 1929609 Aug-10 2006612 Jul- 12 1655451 Jan-14 2240296Apr-09 1446741 Sep-10 1907523 Aug- 12 207036 Feb-14 2027266May-09 0 Oct- 10 2006262 Sep-12 0 Mar- 14 125964.2Nov-10 1941003 Oct-12 0Dec-10 2006478Jan-11 83430.01Feb-11 0Mar-11 0Apr-11 0WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-16Table A-3 SurveillanceElevationCapsule Fluence Rate for Cj Factors Calculation, Core MidplaneCycle > 1.0 MeV) [n/cm 2slFuel Cycle Length Capsule 830 Capsule 2630 Capsule 9701 1.11 3.99E+ 10 3.99E+10 3.99E+ 102 1.12 3.74E+10 3.74E+103 1.22 3.37E+10 3.37E+104 1.16 2.48E+10 2.48E+105 1.3 2.45E+ 10 2.45E+106 1.35 2.41E+10 2.41E+107 1.21 2.60E+ 10 2.60E+ 108 1.38 1.60E+ 10 1.60E+109 1.22 2.44E+ 10 2.44E+1010 1.44 2.59E+1011 1.32 2.32E+1012 1.51 2.27E+1013 1.29 2.52E+1014 1.43 2.21E+1015 1.15 2.58E+1016 1.25 2.66E+1017 1.25 2.52E+1018 1.42 2.46E+ 1019 1.19 3.08E+1020 1.23 3.l5E+10Average(Cycle Length -3.99E+10 2.87E+10 2.79E+10Weighted)WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-17Table A-3 (Continued) Surveillance Capsule Cj Factors Calculation, Core Midplane ElevationCycle CiLength CapsuleFuel Cycle [EFPY] Capsule 830 2630 Capsule 9701 1.11 1.0 1.4 1.42 1.12 1.3 1.33 1.22 1.2 1.24 1.16 0.9 0.95 1.3 0.9 0.96 1.35 0.8 0.97 1.21 0.9 0.98 1.38 0.6 0.69 1.22 0.9 0.910 1.44 0.911 1.32 0.812 1.51 0.813 1.29 0.914 1.43 0.815 1.15 0.916 1.25 1.017 1.25 0.918 1.42 0.919 1.19 1.120 1.23 1.1WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A- 18Table A-4aMeasured Sensor Activities and Reaction Rates for Surveillance Capsule 830Radially CorrectedTarget Product Measured Corrected Reaction Reaction Corretare Product Activity Saturated Rate Rate ReactionIsotope Isotope (dps/g)") Activity (rps/atom) (rpsfatom)(dps/g) (rps/atom)Cu-63 Co-60 6.07E+04 4.49E+05 6.85E-17Cu-63 Co-60 6.59E+04 4.88E+05 7.44E- 17Cu-63 Co-60 6.48E+04 4.80E+05 7.32E- 17 7.20E- 17 7.20E- 17Ti-46 Sc-46 1.02E+06 1.13E+06 1.09E- 15Ti-46 Sc-46 9.22E+05 1.03E+06 9.87E-16Ti-46 Sc-46 9.08E+05 1.01E+06 9.72E-16 1.02E-15 1.02E-15Fe-54 Mn-54 2.06E+06 3.57E+06 5.67E- 15Fe-54 Mn-54 2.15E+06 3.73E+06 5.91E-15Fe-54 Mn-54 2.08E+06 3.61E+06 5.72E-15 5.77E-15 5.77E-15Ni-58 Co-58 4.88E+07 5.37E+07 7.68E-15Ni-58 Co-58 4.79E+07 5.27E+07 7.54E-15Ni-58 Co-58 4.78E+07 5.26E+07 7.52E-15 7.58E-15 7.58E-15U-238 Cs-137 7.22E+04 2.86E+06 1.88E-14U-238 Cs-137 7.51E+04 2.97E+06 1.95E-14U-238 Cs-137 5.70E+04 2.26E+06 1.48E-14 1.77E-14 1.36E-14Note:1. Measured activity decay corrected to October 12, 1984WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-19Table A-4b Measured Sensor Activities and Reaction Rates for Surveillance Capsule 263'Radially A CorrectedMeasured Corrected Reaction Reaction AverageTarget Product Activity Saturated Rate Reaction RatoIsotope Isotope Actiy AStiaityurpt Rate Rate(dps/g)Ati (rps/atom) (rps/atom) Rate(dps/g) (rps/atom)Cu-63 Co-60 1.91E+05 3.42E+05 5.22E-17Cu-63 Co-60 1.78E+05 3.19E+05 4.86E- 17Cu-63 Co-60 1.83E+05 3.28E+05 5.OOE-17 5.03E-17 5.03E-17Ti-46 Sc-46 8.45E+04 8.11E+05 7.81E-16Ti-46 Sc-46 8.04E+04 7.72E+05 7.43E-16Ti-46 Sc-46 7.89E+04 7.57E+05 7.30E-16 7.51E-16 7.51E-16Fe-54 Mn-54 1.13E+06 2.74E+06 4.35E-15Fe-54 Mn-54 1.09E+06 2.65E+06 4.20E- 15Fe-54 Mn-54 1.06E+06 2.57E+06 4.08E-15 4.21E-15 4.21E-15Ni-58 Co-58 2.74E+06 3.84E+07 5.50E-15Ni-58 Co-58 2.63E+06 3.69E+07 5.28E-15Ni-58 Co-58 2.58E+06 3.62E+07 5.18E-15 5.32E-15 5.32E-15Note:1. Measured activity, decay corrected to December 28, 1997WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-20Table A-4c Measured Sensor Activities and Reaction Rates for Surveillance Capsule 970Radially Average CorrectedTarget Product Measured Corrected Reaction Reaction AverageIsotope Isotope Activity Saturated Rate Rate Reaction(dps/g)"' Activity (rps/atom) (rps/atom) Rate(dps/g) (rps/atom)_(rps/atom)Cu-63 Co-60 4.86E+05 6.21E+05 9.47E- 17Cu-63 Co-60 4.50E+05 5.75E+05 8.77E- 17Cu-63 Co-60 4.43E+05 5.66E+05 8.63E- 17 8.96E- 17 8.96E- 17Ti-46 Sc-46 1.55E+05 7.88E+05 7.60E-16Ti-46 Sc-46 1.44E+05 .7.32E+05 7.06E-16Ti-46 Sc-46 1.37E+05 6.97E+05 6.71E-16 7.12E-16 7.12E-16Fe-54 Mn-54 1.61E+06 2.44E+06 3.87E-15Fe-54 Mn-54 1.56E+06 2.36E+06 3.75E-15Fe-54 Mn-54 1.54E+06 2.33E+06 3.70E- 15 3.77E-15 3.77E- 15Ni-58 Co-58 4.98E+06 3.54E+07 5.07E-15Ni-58 Co-58 4.81E+06 3.42E+07 4.90E-15Ni-58 Co-58 4.89E+06 3.48E+07 4.98E-15 4.98E-15 4.98E-15U-238 Cs-137 9.OOE+05 2.17E+06 1.42E-14U-238 Cs-137 8.45E+05 2.03E+06 1.34E-14U-238 Cs-137 9.01E+05 2.17E+06 1.42E-14 1.39E-14 9.79E-15Co-59 Co-60 1.40E+08 1.79E+08 1.03E- 11Co-59 Co-60 1.27E+08 1.62E+08 9.34E-12Co-59 Co-60 1.14E+08 1.46E+08 8.38E-12 9.34E-12 9.34E-12Co-592  Co-60 1.75E+07 2.24E+07 1.29E- 12Co-592  Co-60 1.69E+07 2.16E+07 1.24E- 12Co-592  Co-60 1.97E+07 2.52E+07 1.45E-12 1.33E-12 1.33E-12Notes:I. Measured activity decay corrected to October 15, 20142. Cadmium coveredWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-21Table A-5 Least-Squares Evaluation of Dosimetry in Surveillance Capsule 830 (7-DegreeAzimuth, Core Midplane) Cycle 1 IrradiationReaction Rate (rps/atom)Reaction Measured Calculated Best- M/C M/BE BE/C(M) (C) Estimate(M) (c)(BE)Cu-63(n,a)Co-60 7.20E-17 5.61E-17 6.88E-17 1.28 1.04 1.23Ti-46(n,p)Sc-46 1.02E-15 8.87E-16 1.03E-15 1.15 0.99 1.16Fe-54(n,p)Mn-54 5.77E-15 5.12E-15 5.69E-15 1.13 1.01 1.11Ni-58(n,p)Co-58 7.58E-15 6.69E-15 7.42E-15 1.13 1.02 1.11U-238(n,f)Cs-137 1.36E-14 1.78E-14 1.85E-14 0.76 0.74 1.04Average 1.09 0.96 1.13% standard deviation 17.9 12.9 6.2Calculated Best-Integral Quantity (C) % Unc. Estimate % Unc. BE/C(BE)Fluence rateE > 1.0 MeV 3.99E+10 13 4.04E+10 6 1.01(n/cmZ-s)Fluence rateE > 0.1 MeV 7.55E+10 -7.44E+10 9 0.98(n/cm2-s)dpa/s 5.74E- 11 13 5.88E- 11 6 1.02WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-22Table A-6 Least-Squares Evaluation of Dosimetry in Surveillance Capsule 2630 (7-DegreeAzimuth, Core Midplane) Cycles 1 Through 9 IrradiationReaction Rate (rps/atom)Reaction Measured Calculated Best- M/C M/BE BE/C(M) (C) Estimate(M) (C)(BE)Cu-63(n,a)Co-60 5.03E-17 4.21E-17 4.91E-17 1.19 1.02 1.17Ti-46(n,p)Sc-46 7.51E-16 6.57E-16 7.50E-16 1.14 1.00 1.14Fe-54(n,p)Mn-54 4.21E-15 3.74E-15 4.20E-15 1.13 1.00 1.12Ni-58(n,p)Co-58 5.32E-15 4.89E-15 5.43E-15 1.09 0.98 1.11Average 1.14 1.00 1.14% standard deviation 3.6 1.6 .:2.3Integral Calculated Best-Quantity (C) % Unc. Estimate % Unc. BE/CQuantiy (C)(BE)Fluence rate.E > 1.0 MeV 2.87E+10 13 3.13E+10 7 1.09(n/cm2-s)Fluence rateE > 0.1 MeV 5.41E+10 -5.82E+10 10 1.07(n/cm2-s)dpa/s 4.14E- 11 13 4.52E- 11 6 1.09WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-23Table A-7 Least-Squares Evaluation of Dosimetry in Surveillance Capsule 970 (7-DegreeAzimuth, Core Midplane) Cycles 1 Through 20 IrradiationReaction Rate (rps/atom)Reaction Measured Calculated Best- MIC MIBE BE/C(M) (C) Estimate(M) (C)(BE)Ti-46(n,p)Sc-46 7.12E-16 6.43E-16 6.91E-16 1.11 1.03 1.07Fe-54(n,p)Mn-54 3.77E-15 3.65E-15 3.75E-15 1.03 1.01 1.03Ni-58(n,p)Co-58 4.98E-15 4.77E-15 4.91E-15 1.05 1.02 1.03U-238(n,f)Cs-137 9.79E-15 1.25E-14 1.23E-14 0.78 0.79 0.99Average 0.99 0.96 1.03% standard deviation 14.7 12.0 3.2Best-CalculatedBetIntegral Quantity (C) % Unc. Estimate % Unc. BE/C(C) (BE)Fluence rateE > 1.0 MeV 2.79E+10 13 2.71E+10 6 0.96(l/Cm2-s)Fluence rateE > 0.1 MeV 5.26E+10 -5.01E+10 9 0.95(n/cm2-s)dpals 4.03E- 11 13 3.93E- 11 6 0.97WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-24Table A-8 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for FastNeutron Threshold ReactionsCapsule 63 46 54 8M/cCpu 6Cu(n,) 4Ti(n,p) Fe(n,p) SNi(n,p) U(n,f)830 1.28 1.15 1.13 1.13 0.762630 1.19 1.14 1.13 1.09 -970 -1.11 1.03 1.05 0.78Average 1.24 1.13 1.10 1.09 0.77%Standard 5.2 1.8 5.3 3.7 1.8DeviationAverage 1.07% Standard 13.8DeviationTable A-9 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate RatiosBE/CCapsule Neutron Fluence Rate(E> 1. MeV)Iron Atom Displacement Rate(E > 1.0 MeV)830 1.01 1.022630 1.09 1.09970 0.96 0.97Average 1.02 1.03% Standard deviation 6.4 5.9WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-25A.2 REFERENCESA-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetr,Methods for Determining Pressure Vessel Neutron Fluence, March 2001.A-2 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford EngineeringDevelopment Laboratory, Richland, WA, September 1979.A-3 RSICC Data Library Collection DLC-178, SNLRML Recommended Doshnetry Cross-SectionCompendium, July 1994.A-4 ASTM Standard E1018-09 (Reapproved 2013), Standard Guide for Application of ASTMEvaluated Cross Section Data File, Matrix E706 (JIB), 2014.A-5 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum AdjustmentMethods in Reactor Surveillance, E 706 (11A), 2014.A-6 ASTM Standard E844-09, Standard Guide for Sensor Set Design and Irradiation for ReactorSurveillance, E 706 (IIC), 2014.WCAP- 17939-NP May 2015WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-1APPENDIX BLOAD-TIME RECORDS FOR CHARPY SPECIMENTESTS* "IXX" denotes Intermediate Shell Plate M-605-1, longitudinal orientation* "2XX" denotes Intermediate Shell Plate M-605- 1, transverse orientation* "3XX" denotes weld material* "4XX" denotes heat-affected zone materialNote that the instrumented Charpy data is not required per ASTM Standards E 185-82 or E23-12c.WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-2Load-1 25.66 IbTime-1 -0.75 ms5O040030020C10C00.0010.0010.00i0.00-~~~L (I~AAIJ A AOAA.4 A A oAA..AA,. A. AAA &a.sep.A.. A.&0.001.002.00 3.00Time-1 (ms)15D: Tested at 700FTime-i -0.72 ms4.005.006.00Load-1 21-94 lb5000.004000.003000.002000.001000.00k hO 1 A A hM A -,A&. --A -A. A- A I-I , I I I A, m&#xfd; ,0.001.002.00 3.00Time-I (ms)14M: Tested at 95&deg;F4.005.006.005000.00f4000.003000.002000.001000.00J A n M A hAm j. N -A IIA. A. AA. &A., A.& A M A0.001.00200 3.00Time-1 (ms)124: Tested at 110OF4.005.006.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3 B-3Load-i 329.07 lb lime-1 0.85 ms5000.004000.003000.002000.001000.000.0 1 .. ., Oh0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)liD: Tested at 120OFLoad-1 36.65 lb Time-1 -0.75 ms5000.004000.003000.00o21000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)14D: Tested at 140OFLoad-i 36.65 lb Tire-1 -0.75 ms5000.004000.00'7 3000.00-0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)13K: Tested at 1501FWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-4'73000.W PII2000.001000.000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ms)117: Tested at 170'F5000.004000.00'7 3000,002000.001000.000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ins)13C: Tested at 200OF5000 .004000.00'7 3000.002000 .001000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ins)143: Tested at 200OFWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3B-5Load-1 36.53 lbTime-1 -0.75 ms8.J5000.004000.003000.002000.001000.000.000.001.002.00 3.00Time-1 (ms)15J: Tested at 260'F4.005.006.005000.(4000.('7 3000.(Time-1 (ms)12B: Tested at 300'FTime-I -0 72 m.Load-1 10.97 lb5000.004000.00'7 3000.00202000.001000.00N nJ nnJ I i i i i -..T ...0.001.002.00 3.00Time-1 (ms)127: Tested at 375&deg;F4.005.006.00WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-60.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)21B: Tested at 70'F6.005004003002001000.003.000.00"0.000 0fflIL2~~d4~Ak4JA.s AI.4~&M p A. NM4f A-. N0.001.002.00 3.00Time-i (ms)22K: Tested at 95&deg;F4005.006.005000.004000.003000.002000.001000.000.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)24M: Tested at 120'F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-75000.004000.00o,3000.00AAA&A1~ At.M ~ AA.ILL& A..e..u. a2000.001000.00^^^JOW A AA A AA Pm A k A ..nn I I .. .A .-4. 1 --.--0.001.002.00 3.00Time-1 (ms)25D: Tested at 140OF4.005.006.00"7Time-i (ms)24P: Tested at 150&deg;F3'7010.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)26E: Tested at 170'F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-8Load-I 1463 lbTime-I -fl 75 mcTime-1 -0 75 rns5000.004000.003000.002000.001000.00rAiuA'jALLIA IA. IALL.# IAL hA*I.A-.Le L Pkufiq -A&#xfd; m0.001.002.003.004.005.006.00Time-1 (ms)21U: Tested at 2001F0.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)21Y: Tested at 200OF6.002.00 3.00Time-i (ins)25M: Tested at 230&deg;F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-95000.00-4000.00'7 3000.002000.001000.001 30.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ms)23A: Tested at 2701F5000.004000.003000.002000.001000.000.00 .......0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)21D: Tested at 3001F5000.004000.003000.002000.001000.000,001 .. A .. ' &.A-0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ms)263: Tested at 3751FWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3B-10Load-1 21.95 IbTime-1 -0.75 ms5000.004000.003000.02000.001000.00I~fttfLA~lI~.A..A~iJ+/-1.A ARA.AAAAA. ) A.. .nfln t ................... d ....... a .......... ........................ ............ .... ..... .U .UU , ..0.001.002.00 3.00Tine-i (ms)36E: Tested at -60'F4.005.006.005000.004000.003000.002000.00000.00--- Ii ^eL .. AA .. .-,-- L .----h q .-.-.,0.00Lo5000.004000.003000.002000.001000.001.002.00 3.00Time-1 (ms)34U: Tested at -40'FTime-1 -0.75 ms4.005.00'ad-1 40.26 Ibs.00I6AJ k &A ,A A1 L.i A ,~ A~i/ LAtA &A, IAA, .A 4_A , -O &,A n.k00lnI nnl0.001 .002.00 3.00Time-1 (ms)32E: Tested at -30&deg;F4 005.006.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-110.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)31A: Tested at -250F6.000.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)355: Tested at -200F6.005000.004000.003000.002000.001000.00ft A /t N. .~&n nr) I0.001.002.003.004.005.006.00Time-i (ms)37P: Tested at 0&deg;FWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-12o=..aTime-I (ms)32A: Tested at 20&deg;F5000.004000.003000.002000.001000.00Time-1 (ms)32B: Tested at 70&deg;F95000.004000.003000.002000.001000.00n nnl ; : ; ;0.001.002.00 3.00Time-i (ms)354: Tested at 120'F4.005.006.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-135000.004000.003000.002000.0W1000.000.00.0.'5000.004000003000.002000,001000.00Time-1 (ms)37Y: Tested at 170'FTime-i -0.72 msload-I 21.92 Ibn Ufin ; 0.001.002.00 3.00Time-i (ms)311: Tested at 250'F4.005.006.00,%5000.004000.003000.002000.001000.0010.00 1.00 2.00 3.00 4.00 5.00Time-i (mw)32L: Tested at 300'F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-14Load-1 43.94 lbTime-1 -0.75 ms5000.004000.00S3000.002000.001000.00A. AA.J.LA AInnn I I I I ---, A- ..-.N- A , -,0.001.002.00 3.00Time-i (ms)425: Tested at 50'F4.005.006.0054'3Time-1 (ms)43D: Tested at 70'F0.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)41P: Tested at IOO&deg;F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-15Time-1 (ms)456: Tested at 120'F0.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)46Y: Tested at 130OF6.00n-i0.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)43K: Tested at 140OF6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-165000.004000.007 3000.00 .0,Time-1 (ms)47L: Tested at 150&deg;F"720.00 1..00 2.00 3.00 4.00 5.00Time-1 (ms)473: Tested at 170&deg;F6.005000.004000.003000.00"2000.001000.00.0.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)42C: Tested at 180&deg;F6.00WCAP- 17939-NP May 2015WCAP- I17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-17o,0.00 1.00 2.00 3.00 4.00 5.00Time-I (ms)42D: Tested at 250'F6.005000.004000.003000.00"2000-.00100i.000.000.15000.004000.003000.002000.001000.00Time-i (ms)46A: Tested at 300'FI P0.001.002.00 3.00Time-1 (ms)47D: Tested at 3750F4.005.006.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-1APPENDIX CCHARPY V-NOTCH PLOTS FOR EACH CAPSULEUSING SYMMETRIC HYPERBOLIC TANGENTCURVE-FITTING METHODC.1 METHODOLOGYContained in Table C-I are the upper-shelf energy (USE) values that are used as input for the generationof the Charpy V-notch plots using CVGRAPH, Version 6.0. The definition for USE is given in ASTME185-82 [Ref. C-I], Section 4.18, and reads as follows:"upper shelf energy level -the average energy value for all Charpy specimens (normally three)whose test temperature is above the upper end of the transition region. For specimens tested insets of three at each test temperature, the set having the highest average may be regarded asdefining the upper shelf energy."Westinghouse reports the average of all Charpy data (>_ 95% shear) as the USE, excluding any values thatare deemed outliers using engineering judgment. Hence, the Capsule 970 USE values reported inTable C-1 were determined by applying this methodology to the Charpy data tabulated in Tables 5-1through 5-4 of this report. USE values documented in Table C-I for the unirradiated material, as well asCapsules 830 and 263', were also determined by applying the methodology described above to theCharpy impact data reported in BAW-1880, Revision 0 [Ref. C-2], and WCAP-15040, Revision I[Ref. C-3]. The USE values reported in Table C-I were used in generation of the Charpy V-notch curves.The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf lateral expansionvalues were fixed at 1.0 mils in order to be consistent with the previous capsule analysis [Ref. C-3].Upper-shelf L.E. is not typically fixed in CVGRAPH; however, due to excessive data scatter for selectcapsule materials, the upper shelf L.E. value will be fixed in the summary plots, as documented inSection 5 of this report, for T-L and SRM materials in Capsule 263* and L-T and T-L materials in Capsule97*. The individual L.E. plots for these materials, as documented in this Appendix, will still allow theupper-shelf L.E. to float for comparison between the two methods. The fixed upper-shelf L.E. valueswere determined using the same Charpy V-Notch test specimens that were used for the upper-shelf energydeterminations and are shown in Table C-2.WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-2Westinghouse Non-Proprietary Class 3 C-2Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPHIntermediate Shell Plate M-605-1Longitudinal Orientation134119N/A108Intermediate Shell Plate M-605-1 103 102 79 78Transverse OrientationSurveillance Program Weld Metal 115 100 105 95(Heat # 83637)Heat-Affected Zone (HAZ) Material 105 119 130 93Standard Reference Material (SRM) 122 N/A 86 N/ATable C-2 Upper-Shelf L.E. Values (mils) Fixed in the CVGRAPHSummary PlotsIntermediate Shell Plate M-605-1 LongitudinalOrientation (see Figure 5-2 of this report)N/A87Intermediate Shell Plate M-605-1 7Transverse Orientation (see Figure 5-5 of this report)Standard Reference Material (SRM) 75 N/A(see Figure 5-14 of this report)CVGRAPH, Version 6.0 plots of all surveillance data are provided infollowing the reference list.this appendix, on the pagesC.2 REFERENCESC-1 ASTM E 185-82, Standard Practice for Conducting SurveillanceNuclear Power Reactor Vessels, E706(IF), ASTM, 1982.Tests for Light-Water CooledC-2 BAW-1880, Revision 0, Analysis of Capsule W-83 Florida Power and Light Company St. LuciePlant Unit No. 2 Reactor Vessel Materials Surveillance Program, September 1985.C-3 WCAP-15040, Revision 1, Analysis of Capsule 2630from the Florida Power & Light CompanySt. Lucie Unit 2 Reactor Vessel Radiation Surveillance Program, February 2010.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-3C.3 CVGRAPH VERSION 6.0 INDIVIDUAL PLOTSUNIRRADIATED IS PLATE M-605-1 (LONGrITUDINL)CVCih 6-0: Hypabalic Taqwd Qxive Primted an 1"215 635 AMA =6&14 B =65A9 C =UHO.ZTO =64-16D = OMCanelidion Coefficient = 0391Equdi~m is A + B
* gnIXC1-T0>'(C4D1Y))]Uppe~bffBmff 134 00 (ixedD Lo we S W ueff = 2 _0 Oized)TenVA30 ft-ba=-S.400F TempW5 ft-Ub--3A0P F Td 50 ithbs33_20- FFlait St. Lucie 2OkimntziozriTMAienal SA533B1Capa&uiUnirradHlat A-349-2Thxwe:160140120Qgo6040200 g--300-200 14000 100 200 300 400 50o 60OTemperature (0 F)CVzaph 60Page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-4Plmt St. lii 2 .Material- SA33BI Heat -14W0-LT Capsule: Unirrad Fhxmm-UNIZRADIATED IS PLATE M-605l- (LONGITUDINAL)Charpy V-Notch DataTemperatur (F) Inrut CVN' .camfwed CVN DiffenIal-40 15.0 19.5 -4.49-_'20 20.0 25.7 70-1 33.0 33.1 -01020 45.0 43.0 2.0140 51.0 53.8 -2.2450 40.0 59.6 -19.6350 1020 596 423750 46.0 59.6 -13.6360 54.0 65.6 -115660 35.0 65.6 -30.5660 860 65.6 20.4460 33.0 65,6 70 90.) 71.5 19,4770 89.0 71.5 17.4722 101.0 7&6 22-3985 87.0 80-4 6.65105 101.0 91.4 9,60150 73.0 111.0 -38.02122.0 123.6 -1.64250 141.0 129.6 1139300 136.0 132.2 3.81350 122.0 1333 -1126400 142.0 133,7 830450 139.0 133.9 5.12aCGraph 61001109,015psge!mWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-5Westinghouse Non-Proprietary Class 3 C-5UNIRRADLATED IS PLATE M-605-1 (LONGITUDINAL)CVCaph 6.0-. H13pedhc'Tangent Cmrve Pnnied ca 121/201410.16 AMA-= 43.24 B=42=-f C = S6. T = 30.0S D = .OConelatim Coelfident = 0.74Equatim is A + B -[anh(9TOX'(C+-Y1))jL'er Sbef LE. =5.4 Lower Shf LE. = 1.00 Fixd)TwV(35 mlh= 13. 10- FPlo~t St. Indie 2Orientztio LIT%fatexiaL S.AS3B1Capwk Uli-a1Hst A-9490-2Thxne-e: O.OOE-*W aknWiCC41~10090 70 -6050403020100-300-200 -100 0 100 200 300 400 500 600Temperature (0 F),Grzuqh 6-012/01/2014PapeV2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-6Plant St. IAcie 2 Makii[ SA533B ieat A-8490-2Onmtwr LT Capmie: Unirrad FbteL G.0E+N00 nkmeUNIRRADTATED IS PLATE M-605-1 (LONGITUDINAL)Char-py V-Notch DataTemperiture ('I) Innt L E. Com~puted L L Differcnial-40 16.0 14-9 1-10-20 22?0 21.1 0.85-1 31-0 2g.6 23520 A0.0 38.3 -3340 51.0 481 29250 41.0 52.8 -101.25D 7910 52-8 25.1850 42.0 518 -10o-260 49.0 57-3 3360 34,0 573 -23360 70.0 57.3 1216760 33,0 57-3 -243370 80 61.5 65070 79.0 61.5 17.5082 76.0 66.0 10.0285 71.0 67.0 4.00105 78.0 72.B 5.17150 67-0 80.5 -13,54200 86o 83.9 2.13250 90.0 5.0 M.04300 85.0 853 -032350 87.0 85.4 1.57400 8LO 855 -4.46450 K6.O 85.5 0.53CVGraph 6.012*.1(20141ae202WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-7UMRRADIATED IS PLATE M-605-1 (LONGJITUDINAL)CVGuph 6.0. Herbofc Tzmgent Cuve Prined an 124112014 10:18 AMA= 50.00 B = 50.00 C = 90.93 T0 = 88,3 D = 0.00Carrcoah~Coe5cieut= 0389Eqyutim is A + B *Tanh((r-TY(C+D1))1Shff %Shear 1 0000 t(F=4e Lower Shelf/ZShear 0.00 (Fhed)TfAhUE at -8130Plant St. Lade 2Orienialioz LTMaferijaL S.4533B1Cq:& UmdraBust A-490-2Fbience. 0.OIJEtO zdai110100s08070605040UI..'3020O0-300CV6ralmo0-200 -1000 100 200 300 400 500 600Temperature (0 F)12/01,2014Page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-8Plant St. Lade 2 Mateia: SA-53BI Heat A-4I-2Oiientmimo LT Capsde: Uuilrad Fhmm_. LOOE+40 UNIRRADIATED IS PLATE M-605-1 (LONGITUDINAL)Charpy V-Notch DataTempmautr, (t F) Inu "%km comput %Sh DiffenW-40 0.0 5.6 -5.62-20 10.0 85 154-1 10.0 123 -23020 10H0 18-2 -82140 20.0 25.7 -5.6950 10.0 30.1 -20.1050 700 301 39-9050 10.0 30.1 -20.1060 30.0 349 9260 10.0 34-9 -24.9260 60.0 349 25.0860 10.0 34.9 -24.9270 70.0 40.1 29.9370 40.0 40.1 -0107V 60.0 46-5 13-4685 60.0 48.2 11.82105 60.0 59.1 0.92150 50.0 79-5 53200 100.0 92.1 7.902 10D0.0 97.2 2.79300 100.0 99.1 0-94350 100.0 99.7 032400 100.0 99.9 0.11450 100.0 10O.0 0.04CVGrxph 60/0112014Page 211WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-9Westinghouse Non-Proprietary Class 3 C-9UNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)CVGtzh6.0: Hyperbolir Tangent Curve Punted an 12/1/2014 10-4 AMA = 52.60 B = 50.40 C = 95.21 TO = 76.33 D = 0.00Coaelatio Coeffcient = 0-931Eqtuadwis A + 9 frsW(r4DUY(41Jl))JUppfe fEnug = 103-00 (FnznD) LowuSheWfErnc = 220 (FireMTerfnp@M ft-bS= 30.40r F Terpn35 R-AW= 41.70F F Tm*Q_0 ft--= &#xfd;71.5T FFlait St. Lucic 2Oficntatim- TLMatenal: SA.W3BICapsule: UuirradHeat A-84902Hurmce, (0 9r+4000zaue120100(U'80604020-300CVGriq 6.0-200 -100 0 100 200 300 400 500 600Temperature (0 F)12/010014Page 1/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-10Plnt St. Lucie 2 NMterial: SA&5&3BI Heat A-490-2TL Captor Unimd HFu 0.OE+000 rtCm'UNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataTemperature 0F Input "-N Computed CN DiffereuWt-40 6-0 103 -4.25-20 23.0 14&#xfd;0 9032 2.0 19.7 3-3210 27.0 25.- 1.1740 31.0 343 -31550 44.0 39.0 4.9950 49.0 39.0 9.9950 42.0 39.0 2.9960 39.0 440 -5A460 37-0 44.0 -7.0460 29-0 44.0 -15X070 46-0 493 -3.2585 63.0 57.2 5.82105 71-0 673 3.67125 85.0 763 8.67150 44.0 853 -4132155 107-0 86- 20.20176 108.0 919 16.06200 108.0 960 1193250 83.0 100.4 -17.44300 100-0 102.1 -2.09350 10&.0 1027 5.32400 107-0 102.9 4.11450 105.0 103.0 2.04CV-Grmh 6.012/01,2014PaWe212WCAP-1 7939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-11U'NIRRADIATED IS PLATE M-605-1 (TRANSVERSE)CVGrqh 6.0: Hypeihc Tangent Curve Prnted on 1211/2014 10:51 AMA= 39.30 B =3830 C = 95.27 TO = 4M_88 D = 0.00Cmm atim Coefficiea= 0-937Equatio iA+ B * (TxDr-TGY(C4DT))]Uper Shb&LIE = 77.60 Lower sbkf LE E 100 oFmixeTen_35 mis= 3A20- FPlant SL Lucie 2Ofientation TLMatleiia. SA:-33BIC"&il. Uuin&#xfd;aHeat A-8*902FluKe- 0 OOE+000 iadcm?0,00,(U(U(U80706050403020o, LmI300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CvQxph6.012/01/2014Page 2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-12Plnt St. Txci 2 Mlatena SAS33BI. Heat A-8-90-2Ofienmio TL Cvme: Thn'md Fhwm O.OOE-4O AmcmnUNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataT" -tre e F) Intmt L E. Cmupted L L DifreuW-40 7.0 113 -427-20 23-0 15.6 7.402 24.0 21.8 2.1620 30.0 28.0 1-9740 35.0 35.7 -0.7450 43.0 39.8 3.2550 46.0 39.8 6-2550 42.0 39.8 22560 360 43.8 -7.7560 41.0 43.8 -2.7560 29.0 43.8 -14.7570 46.0 47.7 -1.6585 59.0 532 5.14105 020 59.6 2.43125 73.0 64.7 8.29150 46.0 69.4 -23.41155 79.0 70.1 8.85176 S3.0 72.6 103720 83.0 74.5 8,48250 75.0 76-5 -149300 79,0 772 0.79350 79.0 77-5 1.54400 71.0 77.6 -6.55450 73.0 77.6 4358VGraph 6.012101P.014Page i'2WCAP-1 7939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-13UNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)CVGiph 6.A Hypebi Tangnt Curve Pjfmd on 12/112014 10:.3 AMA= 5.0M B = 0.00 C-- 45.34 -D = 37.05 D = 0.0oCarelation Coefficaiet = 09V7Equatim i A +EB -C1xn Ty(C+D'))]Ugmer Shelf .SA r = 100.00 Fixec Lowe Shelf %.Sbear= 0.00 (FixeTemperature at 5W0 Shew= 87.10Plant SL Lucie 2tkiatation: TLMateriaL SA33BICapsule. UvirradHeat A-890-2Fhiaene O.OOE+M0 z/cmz1101009.$4.I-706050403020-10-0-300cVC=Oh6.0-200 -1000 100 200 300 400 500 600Temperature (0 F)12MI/M14Pag 1V2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C- 14Westinghouse Non-Proprietary Class 3 C-14Plant St Lade 2 NMahTal: SA5RklB1 Heat A-1490-iCkietaio IL Capsule: Un-ad Fhwam 0.00E+0Q0 ,,cm&#xfd;UNHUIIADLUTED IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataTempetmahm ( I) Input %Shear Computed %Siear Differrafial-40 0.0 OA -037-20 10.0 0.9 9.122 lO.0 23 7.7120 10.0 4.9 .5.0640 10-0 112 -1.1550 30.0 163 13.6750 20.0 16.3 3.6750 10.0 163 -633-60 0.o 23-3 -32760 30.0 233 6.7360 20.0 233 -32770 20.0 310 -120495 40.0 47.7 -7 34105 90.0 69-9 11.18125 90.0 841 5.79150 W0.0 94.1 -1414155 100.0 9512 4.75176 100.0 991 1.94200 100.0 993 0.63250 100.0 99.9 0.08300 100.0 100o0 0o01350 10o.0 1o00 O.o0400 1000. 100.O 0.00450 100.0 100.0 0.00CVGaph 6.012/01/2014PA212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-15IJNLRRADIATED SURVEILLANCE PROGRAM WELD METAILCVCuph6 fbpezbdc&,Twi uv~wePrin~d i 12/1/214 10:7 AMA=5S@B= 56AD C=911'= 1.89D= 0.00Cwebiatimu1Cafficdet=0199Eqwa1co is A+ B
* rWIT0Y)(C4M)IUpper SheV~mff= 115-00 (Fixed) Lawa Slhlffnemgy 21_0 (FixeTmq(43G ft-lbu-50.500 F TemV@35 ft-nb--3990aF Tenp50 ft-lb.-12500 FPlant St Lucie 2Orienbica6 NA,Mzen2L_ &S6WCapmle. UnirrdHleat &3637Fbxace- DAOE4400 ukmW140120100S 60z40200 =-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CVGaph 61012/01/2014Pipe V2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-16Plant St LAcf 2 MNfafial: SAW Heat 836370 P Capmle: Ugni-ad Fkezre O)00 E-00 nkiunUNIRRADIATED SURVEILLANCE PROGRAM WELD METALCharpy V-Notch DataTemefture IfD Input Computed CVN Diffrmt6l-40 10.0 35.0 -24.95-30 62.0 40.1 21.88-30 41.0 40-1 0.88-30 19to 401 -21.12-25 29.0 42-9 -13.85-25 61.0 42.9 19.15-25 38.0 429 -4.85--20 50.0 45.7 433-1 93.0 56.9 36.1410 61.0 69.4 -83640 60.0 803 -11.3470 74.0 93.6 -19,6285 118.0 996 1938105 95.0 103.7 -8.74i50 124.0 1104 13.59200 106.0 113.4 -738250 1N.0 114.4 &.56300 99.0 114.8 -16.81350 127.0 1149 12.07400 117.0 115.0 2.0245D 108.0 115.0 -6.99CVVGaph 6.012/01P2014Page.212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3CC-17UNIRRADIATED SURVEILLANCE PROGRAM WELD METALCVqapk64- Hypfbdic Tangent Curve Pzinid 121/2014 10-59 AMA=44.64 8=3M.6-C= 7.72 TO=-102 D =0.00CmOxiami Cef = 0.917Eutim is A+ B * -rJan(f-_roY(C+DI))J.2S Lwe, SheEL.E = 1.00 (FixeTereqa35 mfls-27.10 rFPlant St. Lude2IManigt &SAWCapwk: U~raHeat 833Fbrem0 .OOE+00 u/tin0100-80-706050-40302010 .0-300-200 -100 0 100 200 300 400 500 600Temperature (I F)cvcnvh 6_012/01/2014Page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-18Westinghouse Non-Proprietary Class 3 C-i 8Plant St. Luck 2 Makmia SAW Heat 8W63706mftb=NA Capsule: IUnirwr Fhnce: 0,00E+0O0 n/icUI.HRADIATED SURVEILLANCE PROGRAM WELD METALCharpy V-Notch DataTVWarU (r) Input L E. Computd LE. Dwffremnti-40 1.0 2&0 -101-30 49,0 33,4 15.61-30 31.0 33.4 39-30 16.0 33.4 -1739-25 270 362 -9.24-2 54.0 36.2 17.76-25 29,0 36.2 -7.24-20 45.0 39.2 5S4-1 73.0 50.5 22.5020 53.0 6-1I -9.1040 60.0 71,0 -109870 6-70 797 -117585 96.0 2.4 1356105 88.0 84.8 3.19150 93.0 872 536200 91.0 880 2.9925 92.0 88.2 3-79300 80.0 .983 -8.26350 88.0 883 -0.27400 86.0 883 -2.27450 87.01 83 -128Ca 6.01M12014Page 212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-19UNIRRADIATED SURVEILLANCE PROGRAM WELD METALCVGraph6.0 Hyperbolic Ta tCurve mPrin. 12/12014 11:01 AMA= 50.00 B = 50.00 C= 5.87 TO=L28 D = 0.00Onevfiicm C t=0.94gEquiwao is A + B *{Tz*Df-1WDC+mT)]Upper Sf.Shear= I0000 (FO Lower Shetf %Shear = 0.00 (FixecDTemehat iat50% Shear = 1.30Plaut St. Luk 2ofieutafijiX4,Malfenal SAWCapsule. t~nhrraHeat &%637Fhuaxe 0.O-00E0 u/au1110l0090801~AU70605040302o10-0--30OCVrp6.o-200 -1000 100 200 300 400 500 600Temperature (Q F)12/01/2014Page V2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-20Plant St. Lade 2 Matkmdx: SAW Heat S3637NA, Capszke Unirrad FlUmxe 0.OOE+000 akcm?UNIRRADIATED SURVEILLANCE PROGRAM WELD METALCharpy V-Notch DataTenpernare (I F) IRu $ -Samr Camputtd %Shear Differential-40 20.0 272 -720.30 50.0 32.2 17.83,30 30.0 322 -2.17-30 30.0 322 17-25 30.0 34.8 -4.1V-25 40.0 34.3 5.8-25 20.0 34.1 -14.82-20 30.0 37.6 -7,58-1 8OO 4&6 313620 50.0 61.0 -10.9840 i00 71&#xfd;6 -115770 80.0 83.7 -3.7395 100.0 88-0 1196105 90.0 922 -222150 100.0 9712 2.20200 100.0 99.1 0.87250 I00.0 99.7 026300 100.0 99.9 0.0o350 100.0 100.0 0,02400 100.0 100.0 0.01450 100.0 100.0 00012"DO120:14Pae 2"2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-21UNIRIIADLATED HEAT AFFECTED ZONECV&mph 6.0: Hf)Vbob Tangmt Cu-u Poizdoi 119115 6-42 AMA = 560 B = 5L40 C =119.75 TO=26-19 D) = 0.00Cxielali Coeftient= 0.497Equatizmis A +B
* ils(TI-7P)XC4{Y))1UjpW SlweffMw"= 105-00 (FimI ImwShelf EhuU= 2-0 (Fixe4)TTa3O fi 1bs=-33.1IrvF Ternp(35 ftD-900F TwpA50 ft-1lbw 17.W0 FPbht St. Lade 2~O NA20w175150J-. 100750 --300Matimuit &S&ASBL40:Uninad0Heit A-84902-M0 -1000 100 200 300 40N 500 600Temperature (0 F)CVcr~h6-001/0912015Page 1/WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-22?lant St. Lucie 2crimutatioa INAMatmiak SA53BiCapsuil T-irrad ThNace.UNURRADIATED HEAT AFFECTED ZONEfleat.A449W-2Charpy V-Notch DataTmuyratwre () I9%m C "N C~ompted CN7 Differen&Ia-40 170 27.7 -10.74-20 21,0 34.7 -7.67-1 90.0 411 47.9120 41.0 50.9 -99040 21.0 59.5 -38A650 67.0 63.6 3-3550 49,0 63.6 -14.550 16.0 636 -47.6560 59.0 6737 -8.7060 61.0 673 -6.7060 179.0 67.7 111.3070 62.0 71-6 5785 45,0 77.0 -31.96105 103.0 932 19.76150 !1.0 93.4 37.56200 5.0 99.6 -41.65250 111.0 1026 1.39300 68.0 103.9 95350 67.0 1045 -3754400 122O 104.1 17-20450 107.0 104.9 2.09CVGnph 6.001,'09!2015Page 2PWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-23UINIRADIATED HEAT AFFECTED ZONECV~rqt6,0: Hypffbo&i Twgft Curve Printed on 1,912015:53AMA=37.08S B=36.OS C=ILCA D=1&.460D=O.@C~aihm Coe~daA=O0.27E~quation is A +B~
* rad(Ct1DXC+D'fl)1UppfSheffLE_ =73.16 Lf~~efefLE LIOO{fiz4dTemp35ihl=&50 FPilot St. Lacie 2Odeabdon INAMateriaL- S.AM3BICquak Uimxrzd Th~wxeHeat A-8490-28070~60404302O10-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CVcraxph 6001F9/2015Page 1/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-24PAs= St. Luck!Orim3it~io1 NAMfitl SAA'3B1Capsule: UHAT A TNmE:UN'IRRADIATED HEAT AFFECTEDJ ZONqEHeat Charpy V-Notch DataTeperaur (IF) Ipt L E. Cmaputed L L DiffemtialAO 20.0 21.7 -1.66-20 2.0 268 -0.83-1 56.0 322 23.7820 31-0 31.4 -7A340 23.0 44-3 -212850 57.0 47.1 9.9250 41.0 47-1 -6.0850 17.0 47J1 -30.0960 49.0 49. -0.7560 51.0 49.8 1.2560 93.0 49.8 33.2570 52.0 523 -02885 41.0 55.7 -14.75105 75.0 5937 1528150 U2O 66.1 1593200 54.0 69-9 -15.97250 77,0 71,7 532300 66.0 725 -6.50350 68.0 72.9 -4.87400 16.0 73.0 Z97450 77.0 73.1 3.90mZVraii 6.001t09'15pate 2/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-25LTJNRRADIATED BEAT AFFECTED ZONECVC~ph6.0: Hypeboki Tngat Cuve Pdated am IiWM15 7: 10 AM~A = SOA B= SUO C =93,19 TV =552A6D =0.00Camiehfimi C4oefmcitt = 0.957Equatimis A+ +B -DY(T (C+DI))]Upper Sef %Slew=100.00 (Fhxe I~we %f %Mmr-OA (FzeD~Thiuarixne at 50 Sbw = 52.10Plant St Lwuc 2Or- 1n1- NAMfalimaL SA533BICap"Ik Unirrad FbumrEHeat A-40-21101009o80Sw 70fS&:&#xfd; 6050302010kq AW, k A% o .. .' o ... .%F 'It --T* /o-0---0-300 -200-1000 100 200 300 400 500Temperature (* F)600cvGrah 6.001/0912015Page 1/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-26PI~t St Lucie 2Oxieubtfioac NANfaitev SAW~BICqpmle: LUirrad Fbaxme.IJNIRRADLATED HLEAT AFFECTED ZONEHeat A-149-2Charpy V-Notch DataTemperature ? F) Input %Shem Computed %Sbear Differential-40 20.0 122 7.S3-20 20.0 17.6 2.45-1 40.0 24.2 15.7520 30.0 33.4 -3.4440 30.0 43.6 5550 70-0 48-9 21.1250 50.0 48.9 1.1250 20.0 48.9 -2,860 30.0 54.2 -24.2460 40.0 54-2 -142460 100.0 54- 45.7670 60.0 595 05085 40.0 67.0 -2%.96105 100.0 "57 24.31150 100.0 89.1 10.90200 100.0 96.0 4.01250 100.0 98.6 1.41300 i00.0 99.5 0.49350 100.0 99.8 0.17400 100.0 99.9 0.06450 100.0 100.0 0.02CVGnph 6.001/092_015Page 2X2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-27UNIRRADIATED STANDARD REFERENCE MATERIALCVGzh 6.0: Hypedvhi TangW Curve Pinoteda 12/1/2014 12:22 PMA=6210 B= 59.90 C = 6928 TO = 67.0 D = 0.00Caela-aum 0=989Euitia is A + B- t-r*(T-1DY(C+rD))]UTn SH Ememgy = 12200 (Fixd) f eSl=*F Ty2.20 (F-ze ."Tw4OMA-fl-L- 25.&#xfd;F TaIWj*,5 ft-Iis= 33.6ir F Tempg5O fl4b=153.100FFIXnt St.Lu~cie2Orieiubicmr LTMaitmikL S.453381CpuzIe- UnfirradHeat: BESSr-OLMFkzuwe: &00E4000 x/aazN-OU140-120 -_100 -6040 --* --20 =-300 -200 -1000 100 200 300 40W 500Temperature (I F)CVGph 6.012/01(2014Page wWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-28Westinghouse Non-Proprietary Class 3 C-28Plant St Lacie 2 Matera SA533BI Heat HSST-CIMYOdentafi-LT Capsuek tninad Thi.p O.o0E+0f00 koUNTIRRADIATED STANDARD REFERENCE MATERIALCharpy V-Notch DataTemperat-u F) Input CN CompNed CVN -Differeniial-40 10.0 7.4 2620 16.0 17.2 -1.2220 18.0 26-6 -8.5625 37.0 29.5 73235 27.0 360 -9.0340 51.0 39.6 113570 68.0 64.4 3.5785 66.0 77.1 -11.08105 99.0 91.8 7.19150 108.0 111.9 -3.92200 1260 119.5 6.54250 121.0 121.4 -039300 1220 121.9 0.14350 122.0 122-0 0.03400 130.0 122.0 8.01CVG-%ap 6.012/0L'2014Page 212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-29UNILRRADIATED STANDARD REFERENCE MATERIAL,CVC~ph 6,0 Hyperbolic Tmzgent Come Printed on 12/1/2014 12:27 PMA =39.06 B = MA0 C= 6L.78 TO = 44.58 D = 0.00ConebtficnCoeffiisent = 0977Equzatio is A +.H4 [Th(r.-0DY(C4D )l)U~pper wbffLE_=77.11 1owex SlrIfLE_= 1.00 Fied)TeimW5inlaW=39,000 FPlant St. Lucfr 2Orebi- LTMateraL- SA533BICapsmk-UnirraHeit HSST-OIMYThkerme 0.OOE4409 a/rm"'I090807060504030201001=-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)12/01/2014CVGraph 6.0Page 12WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-30Wetnhos o-Poretr lss3C3Plait St. Lade i2 Matra- &W4313B1 Heat HSST-OWMYOfientaiav LT Capume: Uirrad Fliea 0.OOE+OON Wcm1UINIRRADIATED STA-NDARD REFERENCE MATERIALCharpy V-Notch DataTempamtnr ( F) IutLE. Compuwyd L E DiffereuntaI-40 110 5.6 5370 18.0 15.5 2.4620 17-0 2437 -7.6725 31.0 27.4 3.6135 26.0 33-2 -72040 45.0 362 8.7670 55.0 53.9 1.1185 53.0 60-9 -7.92105 73.0 67.7 5.32150 92.0 74-7 732200 79.0 76.6 238250 71.0 77-0 -6.01300 74.0 77.1 -3,09350 78.0 77-1 0.29400 76.0 77.1 -111CVGraph 6,012/01,2014WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-31UNIRRADIATED STAN3DARD REFERENCE MATERILCVGph 6.0- Hypebok Tanget CAve Ptinted on 12W112014 12-30 MA =50.00 B-50.00 C5_65 T0 7S9SSD 0.00calas coeffctiag = o996Equatim is A + B
* lTan(T'-T0Y(QC+D))]Upper Sbelf %Sbear= 100.00 (Fixed) Lomw Shelf %.Sw = 0o00 (Fed)Tempermate at 50. Shear 79.00Plant St. Lucie 2Ornextatim- LTMatikiaL- SA533BIcapui1- Uin-adHent H35T-O1MYFhixe: DLUOE*40 zkWi110-1009080-7060504030 .20100-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CVGnqh6_01210112014Page V12WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-32Plant St. Luce 2 Matexial: SAO3B1 Heat: HSST-01MYOrientafton LT Capsule: Fluamce 0.OOE+000 UNIRRADIATED STANDARD REFERENCE MATERIALCharpy V-Notch DataTemperature C 'F) Input %Shear Computed %Shear Differential-40 0.0 11 -1.080 10.0 4.7 5-2520 10.0 9.6 03725 10.0 11.4 -1.4135 10.0 15.8 -5.8540 20.0 18.5 1.4570 50.0 41.6 8.4285 50.0 55.7 -5.72105 70.0 72.9 -2.90150 100.0 93.7 63010 100.0 99.0 1.00250 100.0 99.8 0.15300 100.0 100.0 0.02350 100.0 1000 0.00400 100.0 100.0 0.00CVGraph 6.012/01/2014Page 2/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-33CAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)CVGda 6.0 Hybolic Tagit Cuw Pdnted o 12/m 1- PMA = 60.60 B = A.40 C= 76.31 TO 81.38 D = 0.00Coarltkm Coefficient = 0-949Equaticuiis A + B- rTa*rn(WlY(C+IY1))]Upper ShelfYEW = 119-00 (Fixud Lower Sibyff ne 2-10 (FredDTmV* A-rbs= 36.70- F ThnpW35 .Ibg- 4530F F Tw@M50 fi-bs= 673_ FPlant St. LUC*e 2Ofieataliow LTMatffnal: &A533BI.Capsiwe SY 3umHeat A-490'2140120I.1008s604020a =-300-200 -100 0 100 200 300 400 So0 600Temperature (0 F)CVGraph 6.012/01/2014pwitWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-34Westinghouse Non-Proprietary Class 3 C-34Plant St. LuaciOrkutatimL Li2 Maleal- SA533B1Calm& B3Q FimpCAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)Charpy V-Notch Dataat A-U19-2Tnmrau re IF) i t CNw Computed CUN Differential1 10.0 15,0 -5.0225 6.0 241 -18.0735 48.0 29.1 18.9248 40.0 36.7 3-2960 43.0 44,9 -1.7578 61.0 5&0 7116 87.0 853 1-72140 71.0 9-2 -2715156 125.0 1044 20.64217 125.0 115.7 932300 112.0 11&.6 -6.61401 119.0 119.0 0.03CVGrph 6.0120112014Page 2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-35CAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)CVGrCh 6.0: Hyperbc Tangent Curve Pmftd ca 121b'2014 1:06 PMA = -4325 B=-42-5 C = 96.4 TO= 70.23 D = 0ACwelation Coefiait = 0940Equation is A +B
* fTanX(T-T0-(C4++1)]Upper SheffLE = 85.49 Lower~wef LE = 1.00 (F'ed)Terop@5 unl zo51.20 FPlant St. Lucie 2Orientation- LTMstenial: SAS33BLcapsule: BYHeat A-8490-2Fhuxmc10090800CuCu706050403020100=-300-200 -100 0 100 200 300 400 500 600Temperature (Q F)CVGrVh 6.012/01V2014page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-36Westinghouse Non-Proprietary Class 3 C-36Plout St. LucOnenttiwwL-2 Material SA:%3B1CAPSULE 830 IS PLATE M-605-I (LONGITUDINAL)Charpy V-Notch Dataeat A-8490-2Temperatre (OF) TnptL L Computed L E Diffemi1 26.0 17.2 8.7625 5.0 24.8 -19.7735 40.0 23.5 11"5343 35.0 3317 1-3260 37.0 38.8 -13878 43.0 46.6 136116 66.0 61.9 4.09140 56.0 69.4 -13.40156 810 733 7-72217 86.0 81,6 435300 85.0 84g 022401 82.0 85,4 -3.40C.rGrap- 6.01IM_-014Pape 2)2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-37CAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)CVGCirh 6A Hypibdi Taqxat Cmve Pinted an 1211M2014 1 10 PMA=5.400 B = 5000 C = 66.65 T = 12L91D =0.00Carehtm Coeeffieaft = 0.952is A + B
* ITat-1CTo+Dr1))]Upr& S f.S1ea= 100.00 -(Fnxed) Lowe ShefSbear = 0(00FixeTemperafwe at 50% Shear = 122.00IFlut St. Lade?Oic~iMLatoiLTMaitexiaL SMWBIRcapsule: 83'Heat A-4090-2Fkmwe:110100908070605040I-CD30-20 ....10-0-300CVcar60o-200 -1000 100 200 300 400 500 600Temperature (1 F)12/01/2014Page 12WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-38Plant St. Laid~VretimLI 2Uijal: S-W53B1 IBSCapse: 83 Fbince.CAPSULE 830 IS PLATE M-605-1 (LONGITUDI-NAL)Charpy V-Notch Dataeat A.-490-.Temmture ( Input h %sar Comutned %Shear Differential1 5.0 2.6 2.4125 0.0 5-2 -5.1835 10.0 6.9 3,.1442 10.0 9.8 0.1860 10.0 13-5 -3.5078 20.0 21.1 -1.12116 65.0 4516 19.42140 30.0 63.2 -33_25156 90.0 73.6 16.45217 100.0 94.5 5.45300 100.0 99.5 0.43401 100.0 100.0 0.02CVGraph 6.012/012014Page 122WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-39Westinghouse Non-Proprietary Class 3 C-39CAPSULE 830 IS PLATE M-605-1 (TRANSVERSE)6.0: Hypftbola Tangent C&#xfd;xw Pnted on 1211/2014 1:15 PMA= 5.1.0 B= 490 C = W.78 TO = I1344D =0.00Coefficient= 0972Equations A + B- [Tan( OT-Y(tC+DTI))]Upp S1eIfEmngy= 102.00 (Fixed Lower SlffEnrgy = 220 (FieTmozp30 A-lm-= 59-80 F Temp@35 ft-1b- 7320- F Tenj50 FPlant SL Lack 2OxemlinMiterijal SAW3BIcapswil: V3Heat A-8490-2Amhce:120100CAf4-I-604020*0u::-300-200 -4000 100 200 300 400 500 600Temperature (0 1)CVGraph 6.03121012014Page 1/2WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-40plant $tLuefr 2-kritm T1Liaterial: S&8533B1Cmpe: S3W FreCAPSULE 830 IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataHeat A-8490-2Temperature (F) 1U dt Computed CVN Differetial1 13-0 14- 1647 24.0 253 -1.6960 32-0 30.1 1.9278 44.0 36.9 7.09113 49.0 51.9 -3.90140 51.0 63.6 -12.64157 83.0 70.5 12.53217 78.0 88.3 -1028252 104.0 94.1 9.88300 106.0 98.5 7.52350 97,0 100.5 -3.52401 99.0 101A 39CVfiph 6.012/01M2014Page 2WCAP- 17939-NPMay 2015Revision 0}}

Revision as of 07:16, 11 June 2018

WCAP-17939-NP, Revision 0, Analysis of Capsule 97 Degrees from the Florida Power & Light Company St. Lucie, Unit 2, Reactor Vessel Radiation Surveillance Program, Part 2 of 3
ML15154B079
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 05/31/2015
From: Alpan A, Long E J
Westinghouse
To:
Document Control Desk, Office of Nuclear Reactor Regulation
Shared Package
ML15154B111 List:
References
L-2015-160 WCAP-17939-NP, Rev. 0
Download: ML15154B079 (82)


Text

Westinghouse Non-Proprietary Class 3A-1APPENDIX AVALIDATION OF THE RADIATION TRANSPORTMODELS BASED ON NEUTRON DOSIMETRYMEASUREMENTSA.1 NEUTRON DOSIMETRYComparisons of measured dosimetry results to both the calculated and least-squares adjusted values for allsurveillance capsules withdrawn from service to date at St. Lucie Unit 2 are described herein. The sensorsets from these capsules have been analyzed in accordance with the current dosimetry evaluationmethodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods forDetermining Pressure Vessel Neutron Fluence" [Reference A-1]. One of the main purposes for presentingthis material is to demonstrate that the overall measurements agree with the calculated and least-squaresadjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate thecalculated neutron exposures previously reported in Section 6.2 of this report.A.1.1 Sensor Reaction Rate DeterminationsIn this section, the results of the evaluations of the three surveillance capsules analyzed to date as part ofthe St. Lucie Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsuledesignation, location within the reactor, and time of withdrawal of each of these dosimetry sets were asfollows:Capsule Azimuthal Withdrawal Time Irradiation TimeLocation [EFPY]830 End of Cycle 1 1.112630 End of Cycle 9 11.07970 End of Cycle 20 25.55The passive neutron sensors- included in the evaluations of surveillance Capsules 83', 2630, and 970 aresummarized as follows:WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-2Reaction Of Capsule Capsule CapsuleSensor Material Interest 830 2630 970Copper (Cd) 63Cu(nu())6°Co X X XTitanium 46Ti(n,p)46Sc X X XIron 54Fe(n,p)54Mn X X XNickel (Cd) 58Ni(n,p)58Co X X XUranium-238* 238U(n,f)FP X X XCobalt-Aluminum* 59C0(n Y)60 X X XNote:* The cobalt-aluminum and uranium monitors for this plant include both bare and cadmium-covered sensors.The capsules also contained sulfur monitors, which were not analyzed because of the short half-life of theactivation product isotope (32p, 14.3 days). Pertinent physical and nuclear characteristics of the passiveneutron sensors analyzed are listed in Table A-1.The use of passive monitors such as those listed above do not yield a direct measure of the energy-dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is ameasure of the integrated effect that the time- and energy-dependent neutron fluence rate has on the targetmaterial over the course of the irradiation period. An accurate assessment of the average neutron fluencerate level incident on the various monitors may be derived from the activation measurements only if theirradiation parameters are well known. In particular, the following variables are of interest:* the measured specific activity of each monitor,* the physical characteristics of each monitor,* the operating history of the reactor,a the energy response of each monitor, and* the neutron energy spectrum at the monitor location.The radiometric counting of the sensors from Capsule 970 was carried out by Pace Analytical Services,Inc. The radiometric counting followed established ASTM procedures.The irradiation history of the reactor over the irradiation periods experienced by Capsules 830, 2630, and970 was based on the monthly power generation of St. Lucie Unit 2 from initial reactor criticality throughthe end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, thehalf-lives of the product isotopes are long enough that a monthly histogram describing reactor operationhas proven to be an adequate representation for use in radioactive decay corrections for the reactions ofinterest in the exposure evaluations. The irradiation history applicable to Capsules 830, 263', and 970 isgiven in Table A-2.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-3Having the measured specific activities, the physical characteristics of the sensors, and the operatinghistory of the reactor, reaction rates referenced to full-power operation were determined from thefollowing equation:ANo F Y Y P' Cj [1- e- tj] [e-Xt&J]Prefwhere:R = Reaction rate averaged over the irradiation period and referenced to operationat a core power level of Pref (rps/nucleus).A = Measured specific activity (dps/g).No = Number of target element atoms per gram of sensor.F = Atom fraction of the target isotope in the target element.Y = Number of product atoms produced per reaction.Pi = Average core power level during irradiation period j (MW).Pref = Maximum or reference power level of the reactor (MW).C -= Calculated ratio of 4i(E > 1.0 MeV) during irradiation period j to the timeweighted average f(E > 1.0 MeV) over the entire irradiation period.= Decay constant of the product isotope (1/sec).tj = Length of irradiation period j (sec).tdj = Decay time following irradiation period j (sec).The summation is carried out over the total number of monthly intervals comprising the irradiationperiod.In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref] accounts for month-by-monthvariation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. Theratio Cj, which was calculated for each fuel cycle using the transport methodology discussed inSection 6.2, accounts for the change in sensor reaction rates caused by variations in fluence rate levelinduced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycleirradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional Cj termshould be employed. The impact of changing fluence rate levels for constant power operation can be quitesignificant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned fromWCAP- 1 7939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-4non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsulesthat have been moved from one capsule location to another. The fuel-cycle-specific neutron fluence ratevalues along with the computed values for Cj are listed in Table A-3. These fluence rate values representthe capsule- and cycle-dependent results at the radial and azimuthal center of the respective capsules atcore midplane.Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets,additional corrections were made to the 238U cadmium-covered measurements to account for the presenceof 23.U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the courseof the irradiation. Corrections were also made to the 238U sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the capsule irradiations. The correction factorscorresponding to the St. Lucie Unit 2 fission sensor reaction rates are summarized as follows:Correction Capsule 830 Capsule Capsule 9702630235U Impurity/Pu Build- 0.8786 0.8459 0.8010in238U(,,f) 0.8725 0.8757 0.8771Net 238U Correction 0.7666 0.7407 0.7026The correction factors for Capsules 830, 2630 and 970 were applied in a multiplicative fashion to thedecay-corrected cadmium-covered uranium fission sensor reaction rates.Results of the sensor reaction rate detenninations for Capsules 830, 263', and 970, are given in Table A-4.In Table A-4, the measured specific activities, decay-corrected saturated specific activities, and computedreaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed bothwith and without the applied corrections for 235U impurities, plutonium build-in, and gamma-ray-inducedfission effects in the cases of Capsule 830 and 97'.A.1.2 Least-Squares Evaluation of Sensor SetsLeast-squares adjustment methods provide the capability of combining the measurement data with thecorresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum withassociated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV)or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, theleast-squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile themeasured sensor reaction rate data, dosimetry reaction cross sections, and the calculated neutron energyspectrum within their respective uncertainties. For example,R i +/-6Ri ~(Cyig i p +/-~ )Qg6,pgWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-5relates a set of measured reaction rates, Ri, to a single neutron spectrum, kg, through the multigroupdosimeter reaction cross sections, c~ig, each with an uncertainty 5. The primary objective of the least-squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location ofthe measurement.For the least-squares evaluation of the St. Lucie Unit 2 surveillance capsule dosimetry, the FERRETcode [Reference A-2] was employed to combine the results of the plant-specific neutron transportcalculations and sensor set reaction rate measurements to determine best-estimate values of exposureparameters (fluence rate (E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules analyzed to date.The application of the least-squares methodology requires the following input:1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.2. The measured reaction rates and associated uncertainty for each sensor contained in the multiplefoil set.3. The energy-dependent dosimetry reaction cross sections and associated uncertainties for eachsensor contained in the multiple foil sensor set.For the St. Lucie Unit 2 application, the calculated neutron spectrum was obtained from the results ofplant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reactionrates were derived from the measured specific activities using the procedures described in Section A. 1.1.The dosimetry reaction cross sections and uncertainties were obtained from the SNLRML dosimetrycross-section library [Reference A-3]. The SNLRML library is an evaluated dosimetry reactioncross-section compilation recommended for use in LWR evaluations by ASTM Standard E1018,"Application of ASTM Evaluated Cross-Section Data File, Matrix E706 (IEB)" [Reference A-4].The uncertainties associated with the measured reaction rates, dosimetry cross sections, and calculatedneutron spectrum were input to the least-squares procedure in the form of variances and covariances. Theassignment of the input uncertainties followed the guidance provided in ASTM Standard E944,"Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Reference A-5].The following provides a summary of the uncertainties associated with the least-squares evaluation of theSt. Lucie Unit 2 surveillance capsule sensor sets.Reaction Rate UncertaintiesThe overall uncertainty associated with the measured reaction rates includes components due to the basicmeasurement process, irradiation history corrections, and corrections for competing reactions. A highlevel of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures thatconform to the ASTM National Consensus Standards for reaction rate determinations for each sensortype.WCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-6After combining all of these uncertainty components, the sensor reaction rates derived from the countingand data evaluation procedures were assigned the following net uncertainties for input to the least-squaresevaluation:Reaction Uncertainty63Cu(nl,(,)6°Co 5%54Fe(n,p)54Mn 5%58Ni(n,p)58Co 5%46Ti(n,p)46Sc 5%238U(n,f)FP 10%59Co(n,y)6°Co 5%These uncertainties are given at the l level.Dosimetry Cross-Section UncertaintiesThe reaction rate cross sections used in the least-squares evaluations were taken from the SNLRMLlibrary. This data library provides reaction cross sections and associated uncertainties, includingcovariances, for 66 dosimetry sensors in common use. Both cross sections and uncertainties are providedin a fine inultigroup structure for use in least-squares adjustment applications. These cross sections werecompiled from recent cross-section evaluations, and they have been tested for accuracy and consistencyfor least-squares evaluations. Further, the library has been empirically tested for use in fission spectradetermination, as well as in the fluence and energy characterization of 14 MeV neutron sources.For sensors included in the St. Lucie Unit 2 surveillance program, the following uncertainties in thefission spectrum averaged cross sections are provided in the SNLRML documentation package.Reaction Uncertainty63Cu(nct)60Co 4.08-4.16%54Fe(n,p)"4Mn 3.05-3.11%58Ni(n,p)58Co 4.49-4.56%46Ti(n,p)465c 4.50-4.87%238U(n,f)137Cs 0.54-0.64%59Co(n,y)60Co 0.79-3.59%These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated withthe sensor sets used in LWR irradiations.Calculated Neutron SnectrumWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-7The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from theresults of plant-specific transport calculations for each surveillance capsule irradiation period andlocation. The spectrum for each capsule was input in an absolute sense (rather than as simply a relativespectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data weretreated equally with the measurements.While the uncertainties associated with the reaction rates were obtained from the measurement proceduresand counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with theSNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the followingrelationship:Mgg, +Rg *Rgn *Pgg,where &1 specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg andRg, specify additional random groupwise uncertainties that are correlated with a correlation matrixgiven by:Pg9, =[1-0169g, +0eHwhereH (g-g')22y2The first term in the correlation matrix equation specifies purely random uncertainties, while the secondterm describes the short-range correlations over a group range y (0 specifies the strength of the latterterm). The value of 6 is 1.0 when g = g', and is 0.0 otherwise.The set of parameters defining the input covariance matrix for the St. Lucie Unit 2 calculated spectra wasas follows:Fluence Rate Normalization Uncertainty (R1) 15%Fluence Rate Group Uncertainties (Rg, Rg,)(E > 0.0055 MeV) 15%(0.68 eV < E < 0.0055 MeV) 25%(E < 0.68 eV) 50%Short Range Correlation (0)(E > 0.0055 MeV) 0.9(0.68 eV < E < 0.0055 MeV) 0.5WCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-8(E < 0.68 eV) 0.5Fluence Rate Group Correlation Range (y)(E > 0.0055 MeV) 6(0.68 eV < E < 0.0055 MeV) 3(E < 0.68 eV) 2A.1.3 Comparisons of Measurements and CalculationsResults of the least-squares evaluations of the dosimetry from the St. Lucie Unit 2 surveillance capsuleswithdrawn to date are provided in Tables A-5, A-6, and A-7 for Capsules 830, 2630, and 970, respectively.In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for eachcapsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculatedand least-squares adjusted reaction rates. These ratios of M/C and M/BE illustrate the consistency of thefit of the calculated neutron energy spectra to the measured reaction rates both before and afteradjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate(E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed foreach of the capsules.For Capsule 2630, the cadmium-covered uranium monitor was discarded. For all three capsules, both bareand cadmium-covered cobalt-aluminum monitors were discarded. For Capsule 970, the copper monitorwas discarded. The data for these dosimetry reactions were discarded because they were outside theexpected values. For all capsules, the bare uranium monitors were not included because the U-235impurity content and the thermal fluence rate on the capsule are not known with enough accuracy tocorrect the measurement readings.The data comparisons provided in Tables A-5 through A-7 show that the adjustments to the calculatedspectra are relatively small and well within the assigned uncertainties for the calculated spectra, measuredsensor reaction rates, and dosimetry reaction cross sections. Further, these results indicate that the use ofthe least-squares evaluation results in a reduction in the uncertainties associated with the exposure of thesurveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as 13% atthe 1cy level.Further comparisons of the measurement results with calculations are given in Tables A-8 and A-9. Thesecomparisons are given on two levels. In Table A-8, calculations of individual threshold sensor reactionrates are compared directly with the corresponding measurements. These threshold reaction ratecomparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculatedenergy spectra. In Table A-9, calculations of fast neutron exposure rates in terms of fluence rate(E > 1.0 MeV) and dpa/s are compared with the best-estimate results obtained from the least-squaresevaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similarresults with all measurement-to-calculation comparisons falling well within the 20% limits specified asthe acceptance criteria in Regulatory Guide 1.190.In the case of the direct comparison of measured and calculated sensor reaction rates, for the individualthreshold foils considered in the least-squares analysis, the average M/C comparisons for fast neutronWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3A-9reactions range from 0.77 to 1.24 in the data set. The overall average M/C ratio for the entire set ofSt. Lucie Unit 2 data is 1.07 with an associated standard deviation of 13.8%.In the comparisons of best-estimate and calculated fast neutron exposure parameters, the correspondingBE/C comparisons for the capsule data sets range from 0.96 to 1.09 for neutron fluence rate(E > 1.0 MeV) and from 0.97 to 1.09 for iron atom displacement rate. The overall average BE/C ratiosfor neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are 1.02 with a standard deviationof 6.4% and 1.03 with a standard deviation of 5.9%, respectively.Based on these comparisons, it is concluded that the calculated fast neutron exposures provided inSection 6.2 of this report are validated for use in the assessment of the condition of the materialscomprising the beltline region of the St. Lucie Unit 2 reactor pressure vessel.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-10Table A-I Nuclear Parameters Used in the Evaluation of Neutron Sensors90%Reaction Atomic Weight Target Product Fission Responseof A tomi Atom Half-life Yield Range(a)Interest [g/g-atomJ Fraction [days] [%] RneVa63Cu (na) 60Co 63.546 0.6917 1925.5 n/a 4.53- 11.046Ti (n,p) 46Sc 47.867 0.0825 83.79 n/a 3.70 -9.4354Fe (n,p) 54Mn 55.845 0.05845 312.11 n/a 2.27-7.5458Ni (n,p) 58Co 58.693 0.68077 70.82 n/a 1.98 -7.51238U (n,f) 137Cs 238.051 0.99958 10983.07 6.02 1.44-6.6959Co (n,y) 60Co 58.933 0.0017 1925.5 n/a non-thresholdNotes:(a) The 90% response range is defined such that, in the neutron spectrum characteristic of the St. Lucie Unit 2 surveillancecapsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutronswith energies above the upper limit (Reference A-6).WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-]lITable A-2 Monthly Thermal Generation during the First 20 Fuel Cycles of the St. Lucie Unit 2ReactorCycle 1 Cycle 2 Cycle 3 Cycle 4Month MWt-h Month MWt-h Month MWt-h Month MWt-hJun-83 77926.4 Nov-84 92205 Jun-86 1944000 Nov-87 44010Jul-83 449305.6 Dec-84 1137132 Jul-86 1767420 Dec-87 1717686Aug-83 1776204.8 Jan-85 1980612 Aug-86 1809675 Jan-88 2004831Sep-83 712576 Feb-85 1732374 Sep-86 1805706 Feb-88 1876149Oct-83 1759590.4 Mar-85 1668411 Oct-86 1940733 Mar-88 2005047Nov-83 1896012.8 Apr-85 1208763 Nov-86 504603 Apr-88 1968381Dec-83 1814732.8 May-85 1879416 Dec-86 1937385 May-88 1942731Jan-84 1525376 Jun-85 1944000 Jan-87 2001213 Jun-88 1988577Feb-84 1671398.4 Jul-85 1876581 Feb-87 1809918 Jul-88 1940463Mar-84 1903718.4 Aug-85 636444 Mar-87 1839456 Aug-88 1996110Apr-84 1843200 Sep-85 636471 Apr-87 1881387 Sep-88 1986417May-84 1834828.8 Oct-85 1921941 May-87 1880118 Oct-88 1844235Jun-84 1843200 Nov-85 1944000 Jun-87 2000862 Nov-88 1985391Jul-84 1840819.2 Dec-85 1767420 Jul-87 1708263 Dec-88 1943757Aug-84 1901286.4 Jan-86 1809675 Aug-87 1904904 Jan-89 2007369Sep-84 1216230.4 Feb-86 1805706 Sep-87 1942947 Feb-89 185814Oct-84 854195.2 Mar-86 1940733 Oct-87 224100 Mar-89 0Apr-86 504603May-86 0WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-12Table A-2 (Continued) Monthly Thermal Generation during the First 20 Fuel Cycles of theSt. Lucie Unit 2 ReactorCycle 5 Cycle 6 Cycle 7 Cycle 8Month MWt-h Month MWt-h Month MWt-h Month MWt-hApr-89 4104 Dec-90 1381455 Jun-92 55701 Apr-94 25758May-89 1759914 Jan-91 2007180 Jul-92 1589409 May-94 1862433Jun-89 1901313 Feb-91 1812861 Aug-92 1688445 Jun-94 1794069Jul-89 1943163 Mar-91 2005695 Sep-92 2007072 Jul-94 1784862Aug-89 1952694 Apr-91 2001969 Oct-92 1941273 Aug-94 1923669Sep-89 1728081 May-91 1868535 Nov-92 1696059 Sep-94 2003265Oct-89 1941246 Jun-91 1908360 Dec-92 1054836 Oct-94 1943055Nov-89 1965789 Jul-91 1943352 Jan-93 973647 Nov-94 2010636Dec-89 1919214 Aug-91 2008233 Feb-93 0 Dec-94 1878660Jan-90 1190835 Sep-91 1965492 Mar-93 0 Jan-95 2007909Feb-90 1804896 Oct-91 1900233 Apr-93 1715769 Feb-95 1615734Mar-90 2008800 Nov-91 1975995 May-93 1509597 Mar-95 1938141Apr-90 1992222 Dec-91 1918809 Jun-93 1998945 Apr-95 1965816May-90 1856385 Jan-92 1962414 Jul-93 1792800 May-95 1937871Jun-90 1985877 Feb-92 1848690 Aug-93 1754973 Jun-95 1973430Jul-90 1922562 Mar-92 1931121 Sep-93 1724598 Jul-95 1844829Aug-90 958149 Apr-92 1472364 Oct-93 1804491 Aug-95 1671489Sep-90 1752894 May-92 0 Nov-93 1004832 Sep-95 1927206Oct-90 121689 Dec-93 1311687 Oct-95 572130Nov-90 0 Jan-94 2006586 Nov-95 0Feb-94 995193 Dec-95 0Mar-94 0WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A- 13Table A-2 (Continued) Monthly Thermal Generation during the First 20 Fuel Cycles of theSt. Lucie Unit 2 ReactorCycle 9 Cycle 10 Cycle 11 Cycle 12Month MWt-h Month MWt-h Month MWt-h Month MWt-hJan-96 1295973 May-97 322002 Dec-98 1401975 May-00 858465.1Feb-96 1868589 Jun-97 1939032 Jan-99 2006856 Jun-00 1943271Mar-96 1994166 Jul-97 2005398 Feb-99 1797417 Jul-00 2006586Apr-96 1848393 Aug-97 2006181 Mar-99 2007720 Aug-00 1981287May-96 1922103 Sep-97 1929528 Apr-99 1797660 Sep-00 1941219Jun-96 1428354 Oct-97 2009340 May-99 2007612 Oct-00 2010096Jul-96 1942704 Nov-97 1941597 Jun-99 1356642 Nov-00 1941921Aug-96 2005317 Dec-97 2006748 Jul-99 2007504 Dec-00 2006181Sep-96 1995354 Jan-98 2003292 Aug-99 2007585 Jan-01 2007261Oct-96 1945269 Feb-98 1812483 Sep-99 1917378 Feb-01 1812942Nov-96 2002158 Mar-98 1882791 Oct-99 2009772 Mar-01 1756107Dec-96 1938546 Apr-98 1939329 Nov-99 1942218 Apr-01 1940490Jan-97 1977102 May-98 1988064 Dec-99 2006181 May-01 2007801Feb-97 1774494 Jun-98 1942623 Jan-00 2007072 Jun-01 1937790Mar-97 2006451 Jul-98 2006694 Feb-00 1877823 Jul-01 2008044Apr-97 1016928 Aug-98 2007585 Mar-00 2007747 Aug-01 2007774Sep-98 1941327 Apr-00 1010070 Sep-01 1942704Oct-98 2008260 Oct-01 2010582Nov-98 491076 Nov-01 1600533WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-14Table A-2 (Continued) Monthly Thermal Generation during the First Eighteen Fuel Cycles ofthe St. Lucie Unit 2 ReactorCycle 13 Cycle 14 Cycle 15 Cycle 16Month MWt-h Month MWt-h Month MWt-h Month MWt-hDec-01 277182 Jun-03 790587 Feb-05 777627 Jun-06 925398.1Jan-02 2008071 Jul-03 2007288 Mar-05 2007314 Jul-06 2006667Feb-02 1749789 Aug-03 2006612 Apr-05 1940409 Aug-06 2007584Mar-02 2008395 Sep-03 1926774 May-05 2007747 Sep-06 1941543Apr-02 1940706 Oct-03 2006667 Jun-05 1942083 Oct-06 1997082May-02 2004723 Nov-03 1942947 Jul-05 2007936 Nov-06 1942110Jun-02 .1943541 Dec-03 1418877 Aug-05 1920348 Dec-06 1949832Jul-02 2008368 Jan-04 2007126 Sep-05 1943190 Jan-07 2007288Aug-02 2006640 Feb-04 1849122 Oct-05 1737612 Feb-07 1813455Sep-02 1943433 Mar-04 2007558 Nov-05 1943271 Mar-07 2003022Oct-02 2011203 Apr-04 1940409 Dec-05 2007990 Apr-07 1942731Nov-02 1943163 May-04 2007423 Jan-06 1639440 May-07 2006289Dec-02 2006802 Jun-04 1943109 Feb-06 1812726 Jun-07 1942812Jan-03 2007774 Jul-04 2007774 Mar-06 2007530 Jul-07 2007531Feb-03 1813806 Aug-00 2007855 Apr-06 1430109 Aug-07 1154925Mar-03 2004102 Sep-04 639359.9 May-06 0 Sep-07 1898883Apr-03 923751 Oct-04 1745523 Oct-07 0May-03 0 Nov-04 1943028 Nov-07 0Dec-04 1572831 Dec-07 0Jan-05 94068WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-15Table A-2 (Continued) Monthly Thermal Generation during the First 20 Fuel Cycles of theSt. Lucie Unit 2 ReactorCycle 17 Cycle 18 Cycle 19 Cycle20Month MWt-h Month MWt-h Month MWt-h Month MWt-hJan-08 1508382 Jun-09 1009449 May- 11 1232037 Nov-12 274034.8Feb-08 1362879 Jul-09 931364.9 Jun-1 1 1850148 Dec-12 1950587Mar-08 1986390 Aug-09 1962522 Jul-i1 2005262 Jan-13 2244886Apr-08 1933362 Sep-09 644652 Aug-11 1833380 Feb-13 2027628May-08 2003643 Oct-09 2006937 Sep-11 1941597 Mar-13 2241625Jun-08 1671381 Nov-09 1939599 Oct-1 1 2006883 Apr-13 2172648Jul-08 2006775 Dec-09 2006910 Nov-11 1942704 May-13 2180742Aug-08 .2007018 Jan-10 1953072 Dec-11 2005452 Jun-13 1843589Sep-08 1941435 Feb-10 1811997 Jan-12 1997703 Jul-13 2245007Oct-08 2007180 Mar-10 2003454 Feb-12 1876635 Aug-13 2244826Nov-08 1945026 Apr-10 1466208 Mar-12 2000322 Sep-13 2172648Dec-08 2007153 May-10 2006478 Apr- 12 1939490 Oct- 13 2245038Jan-09 2007099 Jun-10 1941786 May-12 1857437 Nov-13 1975986Feb-09 1811403 Jul-10 1988685 Jun-12 1911330 Dec-13 2236491Mar-09 1929609 Aug-10 2006612 Jul- 12 1655451 Jan-14 2240296Apr-09 1446741 Sep-10 1907523 Aug- 12 207036 Feb-14 2027266May-09 0 Oct- 10 2006262 Sep-12 0 Mar- 14 125964.2Nov-10 1941003 Oct-12 0Dec-10 2006478Jan-11 83430.01Feb-11 0Mar-11 0Apr-11 0WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-16Table A-3 SurveillanceElevationCapsule Fluence Rate for Cj Factors Calculation, Core MidplaneCycle > 1.0 MeV) [n/cm 2slFuel Cycle Length Capsule 830 Capsule 2630 Capsule 9701 1.11 3.99E+ 10 3.99E+10 3.99E+ 102 1.12 3.74E+10 3.74E+103 1.22 3.37E+10 3.37E+104 1.16 2.48E+10 2.48E+105 1.3 2.45E+ 10 2.45E+106 1.35 2.41E+10 2.41E+107 1.21 2.60E+ 10 2.60E+ 108 1.38 1.60E+ 10 1.60E+109 1.22 2.44E+ 10 2.44E+1010 1.44 2.59E+1011 1.32 2.32E+1012 1.51 2.27E+1013 1.29 2.52E+1014 1.43 2.21E+1015 1.15 2.58E+1016 1.25 2.66E+1017 1.25 2.52E+1018 1.42 2.46E+ 1019 1.19 3.08E+1020 1.23 3.l5E+10Average(Cycle Length -3.99E+10 2.87E+10 2.79E+10Weighted)WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-17Table A-3 (Continued) Surveillance Capsule Cj Factors Calculation, Core Midplane ElevationCycle CiLength CapsuleFuel Cycle [EFPY] Capsule 830 2630 Capsule 9701 1.11 1.0 1.4 1.42 1.12 1.3 1.33 1.22 1.2 1.24 1.16 0.9 0.95 1.3 0.9 0.96 1.35 0.8 0.97 1.21 0.9 0.98 1.38 0.6 0.69 1.22 0.9 0.910 1.44 0.911 1.32 0.812 1.51 0.813 1.29 0.914 1.43 0.815 1.15 0.916 1.25 1.017 1.25 0.918 1.42 0.919 1.19 1.120 1.23 1.1WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A- 18Table A-4aMeasured Sensor Activities and Reaction Rates for Surveillance Capsule 830Radially CorrectedTarget Product Measured Corrected Reaction Reaction Corretare Product Activity Saturated Rate Rate ReactionIsotope Isotope (dps/g)") Activity (rps/atom) (rpsfatom)(dps/g) (rps/atom)Cu-63 Co-60 6.07E+04 4.49E+05 6.85E-17Cu-63 Co-60 6.59E+04 4.88E+05 7.44E- 17Cu-63 Co-60 6.48E+04 4.80E+05 7.32E- 17 7.20E- 17 7.20E- 17Ti-46 Sc-46 1.02E+06 1.13E+06 1.09E- 15Ti-46 Sc-46 9.22E+05 1.03E+06 9.87E-16Ti-46 Sc-46 9.08E+05 1.01E+06 9.72E-16 1.02E-15 1.02E-15Fe-54 Mn-54 2.06E+06 3.57E+06 5.67E- 15Fe-54 Mn-54 2.15E+06 3.73E+06 5.91E-15Fe-54 Mn-54 2.08E+06 3.61E+06 5.72E-15 5.77E-15 5.77E-15Ni-58 Co-58 4.88E+07 5.37E+07 7.68E-15Ni-58 Co-58 4.79E+07 5.27E+07 7.54E-15Ni-58 Co-58 4.78E+07 5.26E+07 7.52E-15 7.58E-15 7.58E-15U-238 Cs-137 7.22E+04 2.86E+06 1.88E-14U-238 Cs-137 7.51E+04 2.97E+06 1.95E-14U-238 Cs-137 5.70E+04 2.26E+06 1.48E-14 1.77E-14 1.36E-14Note:1. Measured activity decay corrected to October 12, 1984WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-19Table A-4b Measured Sensor Activities and Reaction Rates for Surveillance Capsule 263'Radially A CorrectedMeasured Corrected Reaction Reaction AverageTarget Product Activity Saturated Rate Reaction RatoIsotope Isotope Actiy AStiaityurpt Rate Rate(dps/g)Ati (rps/atom) (rps/atom) Rate(dps/g) (rps/atom)Cu-63 Co-60 1.91E+05 3.42E+05 5.22E-17Cu-63 Co-60 1.78E+05 3.19E+05 4.86E- 17Cu-63 Co-60 1.83E+05 3.28E+05 5.OOE-17 5.03E-17 5.03E-17Ti-46 Sc-46 8.45E+04 8.11E+05 7.81E-16Ti-46 Sc-46 8.04E+04 7.72E+05 7.43E-16Ti-46 Sc-46 7.89E+04 7.57E+05 7.30E-16 7.51E-16 7.51E-16Fe-54 Mn-54 1.13E+06 2.74E+06 4.35E-15Fe-54 Mn-54 1.09E+06 2.65E+06 4.20E- 15Fe-54 Mn-54 1.06E+06 2.57E+06 4.08E-15 4.21E-15 4.21E-15Ni-58 Co-58 2.74E+06 3.84E+07 5.50E-15Ni-58 Co-58 2.63E+06 3.69E+07 5.28E-15Ni-58 Co-58 2.58E+06 3.62E+07 5.18E-15 5.32E-15 5.32E-15Note:1. Measured activity, decay corrected to December 28, 1997WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-20Table A-4c Measured Sensor Activities and Reaction Rates for Surveillance Capsule 970Radially Average CorrectedTarget Product Measured Corrected Reaction Reaction AverageIsotope Isotope Activity Saturated Rate Rate Reaction(dps/g)"' Activity (rps/atom) (rps/atom) Rate(dps/g) (rps/atom)_(rps/atom)Cu-63 Co-60 4.86E+05 6.21E+05 9.47E- 17Cu-63 Co-60 4.50E+05 5.75E+05 8.77E- 17Cu-63 Co-60 4.43E+05 5.66E+05 8.63E- 17 8.96E- 17 8.96E- 17Ti-46 Sc-46 1.55E+05 7.88E+05 7.60E-16Ti-46 Sc-46 1.44E+05 .7.32E+05 7.06E-16Ti-46 Sc-46 1.37E+05 6.97E+05 6.71E-16 7.12E-16 7.12E-16Fe-54 Mn-54 1.61E+06 2.44E+06 3.87E-15Fe-54 Mn-54 1.56E+06 2.36E+06 3.75E-15Fe-54 Mn-54 1.54E+06 2.33E+06 3.70E- 15 3.77E-15 3.77E- 15Ni-58 Co-58 4.98E+06 3.54E+07 5.07E-15Ni-58 Co-58 4.81E+06 3.42E+07 4.90E-15Ni-58 Co-58 4.89E+06 3.48E+07 4.98E-15 4.98E-15 4.98E-15U-238 Cs-137 9.OOE+05 2.17E+06 1.42E-14U-238 Cs-137 8.45E+05 2.03E+06 1.34E-14U-238 Cs-137 9.01E+05 2.17E+06 1.42E-14 1.39E-14 9.79E-15Co-59 Co-60 1.40E+08 1.79E+08 1.03E- 11Co-59 Co-60 1.27E+08 1.62E+08 9.34E-12Co-59 Co-60 1.14E+08 1.46E+08 8.38E-12 9.34E-12 9.34E-12Co-592 Co-60 1.75E+07 2.24E+07 1.29E- 12Co-592 Co-60 1.69E+07 2.16E+07 1.24E- 12Co-592 Co-60 1.97E+07 2.52E+07 1.45E-12 1.33E-12 1.33E-12Notes:I. Measured activity decay corrected to October 15, 20142. Cadmium coveredWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-21Table A-5 Least-Squares Evaluation of Dosimetry in Surveillance Capsule 830 (7-DegreeAzimuth, Core Midplane) Cycle 1 IrradiationReaction Rate (rps/atom)Reaction Measured Calculated Best- M/C M/BE BE/C(M) (C) Estimate(M) (c)(BE)Cu-63(n,a)Co-60 7.20E-17 5.61E-17 6.88E-17 1.28 1.04 1.23Ti-46(n,p)Sc-46 1.02E-15 8.87E-16 1.03E-15 1.15 0.99 1.16Fe-54(n,p)Mn-54 5.77E-15 5.12E-15 5.69E-15 1.13 1.01 1.11Ni-58(n,p)Co-58 7.58E-15 6.69E-15 7.42E-15 1.13 1.02 1.11U-238(n,f)Cs-137 1.36E-14 1.78E-14 1.85E-14 0.76 0.74 1.04Average 1.09 0.96 1.13% standard deviation 17.9 12.9 6.2Calculated Best-Integral Quantity (C) % Unc. Estimate % Unc. BE/C(BE)Fluence rateE > 1.0 MeV 3.99E+10 13 4.04E+10 6 1.01(n/cmZ-s)Fluence rateE > 0.1 MeV 7.55E+10 -7.44E+10 9 0.98(n/cm2-s)dpa/s 5.74E- 11 13 5.88E- 11 6 1.02WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-22Table A-6 Least-Squares Evaluation of Dosimetry in Surveillance Capsule 2630 (7-DegreeAzimuth, Core Midplane) Cycles 1 Through 9 IrradiationReaction Rate (rps/atom)Reaction Measured Calculated Best- M/C M/BE BE/C(M) (C) Estimate(M) (C)(BE)Cu-63(n,a)Co-60 5.03E-17 4.21E-17 4.91E-17 1.19 1.02 1.17Ti-46(n,p)Sc-46 7.51E-16 6.57E-16 7.50E-16 1.14 1.00 1.14Fe-54(n,p)Mn-54 4.21E-15 3.74E-15 4.20E-15 1.13 1.00 1.12Ni-58(n,p)Co-58 5.32E-15 4.89E-15 5.43E-15 1.09 0.98 1.11Average 1.14 1.00 1.14% standard deviation 3.6 1.6 .:2.3Integral Calculated Best-Quantity (C) % Unc. Estimate % Unc. BE/CQuantiy (C)(BE)Fluence rate.E > 1.0 MeV 2.87E+10 13 3.13E+10 7 1.09(n/cm2-s)Fluence rateE > 0.1 MeV 5.41E+10 -5.82E+10 10 1.07(n/cm2-s)dpa/s 4.14E- 11 13 4.52E- 11 6 1.09WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-23Table A-7 Least-Squares Evaluation of Dosimetry in Surveillance Capsule 970 (7-DegreeAzimuth, Core Midplane) Cycles 1 Through 20 IrradiationReaction Rate (rps/atom)Reaction Measured Calculated Best- MIC MIBE BE/C(M) (C) Estimate(M) (C)(BE)Ti-46(n,p)Sc-46 7.12E-16 6.43E-16 6.91E-16 1.11 1.03 1.07Fe-54(n,p)Mn-54 3.77E-15 3.65E-15 3.75E-15 1.03 1.01 1.03Ni-58(n,p)Co-58 4.98E-15 4.77E-15 4.91E-15 1.05 1.02 1.03U-238(n,f)Cs-137 9.79E-15 1.25E-14 1.23E-14 0.78 0.79 0.99Average 0.99 0.96 1.03% standard deviation 14.7 12.0 3.2Best-CalculatedBetIntegral Quantity (C) % Unc. Estimate % Unc. BE/C(C) (BE)Fluence rateE > 1.0 MeV 2.79E+10 13 2.71E+10 6 0.96(l/Cm2-s)Fluence rateE > 0.1 MeV 5.26E+10 -5.01E+10 9 0.95(n/cm2-s)dpals 4.03E- 11 13 3.93E- 11 6 0.97WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-24Table A-8 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for FastNeutron Threshold ReactionsCapsule 63 46 54 8M/cCpu 6Cu(n,) 4Ti(n,p) Fe(n,p) SNi(n,p) U(n,f)830 1.28 1.15 1.13 1.13 0.762630 1.19 1.14 1.13 1.09 -970 -1.11 1.03 1.05 0.78Average 1.24 1.13 1.10 1.09 0.77%Standard 5.2 1.8 5.3 3.7 1.8DeviationAverage 1.07% Standard 13.8DeviationTable A-9 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate RatiosBE/CCapsule Neutron Fluence Rate(E> 1. MeV)Iron Atom Displacement Rate(E > 1.0 MeV)830 1.01 1.022630 1.09 1.09970 0.96 0.97Average 1.02 1.03% Standard deviation 6.4 5.9WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3A-25A.2 REFERENCESA-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetr,Methods for Determining Pressure Vessel Neutron Fluence, March 2001.A-2 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford EngineeringDevelopment Laboratory, Richland, WA, September 1979.A-3 RSICC Data Library Collection DLC-178, SNLRML Recommended Doshnetry Cross-SectionCompendium, July 1994.A-4 ASTM Standard E1018-09 (Reapproved 2013), Standard Guide for Application of ASTMEvaluated Cross Section Data File, Matrix E706 (JIB), 2014.A-5 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum AdjustmentMethods in Reactor Surveillance, E 706 (11A), 2014.A-6 ASTM Standard E844-09, Standard Guide for Sensor Set Design and Irradiation for ReactorSurveillance, E 706 (IIC), 2014.WCAP- 17939-NP May 2015WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-1APPENDIX BLOAD-TIME RECORDS FOR CHARPY SPECIMENTESTS* "IXX" denotes Intermediate Shell Plate M-605-1, longitudinal orientation* "2XX" denotes Intermediate Shell Plate M-605- 1, transverse orientation* "3XX" denotes weld material* "4XX" denotes heat-affected zone materialNote that the instrumented Charpy data is not required per ASTM Standards E 185-82 or E23-12c.WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-2Load-1 25.66 IbTime-1 -0.75 ms5O040030020C10C00.0010.0010.00i0.00-~~~L (I~AAIJ A AOAA.4 A A oAA..AA,. A. AAA &a.sep.A.. A.&0.001.002.00 3.00Time-1 (ms)15D: Tested at 700FTime-i -0.72 ms4.005.006.00Load-1 21-94 lb5000.004000.003000.002000.001000.00k hO 1 A A hM A -,A&. --A -A. A- A I-I , I I I A, mý ,0.001.002.00 3.00Time-I (ms)14M: Tested at 95°F4.005.006.005000.00f4000.003000.002000.001000.00J A n M A hAm j. N -A IIA. A. AA. &A., A.& A M A0.001.00200 3.00Time-1 (ms)124: Tested at 110OF4.005.006.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3 B-3Load-i 329.07 lb lime-1 0.85 ms5000.004000.003000.002000.001000.000.0 1 .. ., Oh0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)liD: Tested at 120OFLoad-1 36.65 lb Time-1 -0.75 ms5000.004000.003000.00o21000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)14D: Tested at 140OFLoad-i 36.65 lb Tire-1 -0.75 ms5000.004000.00'7 3000.00-0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)13K: Tested at 1501FWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-4'73000.W PII2000.001000.000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ms)117: Tested at 170'F5000.004000.00'7 3000,002000.001000.000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ins)13C: Tested at 200OF5000 .004000.00'7 3000.002000 .001000.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ins)143: Tested at 200OFWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3B-5Load-1 36.53 lbTime-1 -0.75 ms8.J5000.004000.003000.002000.001000.000.000.001.002.00 3.00Time-1 (ms)15J: Tested at 260'F4.005.006.005000.(4000.('7 3000.(Time-1 (ms)12B: Tested at 300'FTime-I -0 72 m.Load-1 10.97 lb5000.004000.00'7 3000.00202000.001000.00N nJ nnJ I i i i i -..T ...0.001.002.00 3.00Time-1 (ms)127: Tested at 375°F4.005.006.00WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-60.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)21B: Tested at 70'F6.005004003002001000.003.000.00"0.000 0fflIL2~~d4~Ak4JA.s AI.4~&M p A. NM4f A-. N0.001.002.00 3.00Time-i (ms)22K: Tested at 95°F4005.006.005000.004000.003000.002000.001000.000.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)24M: Tested at 120'F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-75000.004000.00o,3000.00AAA&A1~ At.M ~ AA.ILL& A..e..u. a2000.001000.00^^^JOW A AA A AA Pm A k A ..nn I I .. .A .-4. 1 --.--0.001.002.00 3.00Time-1 (ms)25D: Tested at 140OF4.005.006.00"7Time-i (ms)24P: Tested at 150°F3'7010.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)26E: Tested at 170'F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-8Load-I 1463 lbTime-I -fl 75 mcTime-1 -0 75 rns5000.004000.003000.002000.001000.00rAiuA'jALLIA IA. IALL.# IAL hA*I.A-.Le L Pkufiq -Aý m0.001.002.003.004.005.006.00Time-1 (ms)21U: Tested at 2001F0.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)21Y: Tested at 200OF6.002.00 3.00Time-i (ins)25M: Tested at 230°F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-95000.00-4000.00'7 3000.002000.001000.001 30.000.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ms)23A: Tested at 2701F5000.004000.003000.002000.001000.000.00 .......0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-i (ms)21D: Tested at 3001F5000.004000.003000.002000.001000.000,001 .. A .. ' &.A-0.00 1.00 2.00 3.00 4.00 5.00 6.00Time-1 (ms)263: Tested at 3751FWCAP- 17939-NP May 2015Revision 0 Westinghouse Non-Proprietary Class 3B-10Load-1 21.95 IbTime-1 -0.75 ms5000.004000.003000.02000.001000.00I~fttfLA~lI~.A..A~iJ+/-1.A ARA.AAAAA. ) A.. .nfln t ................... d ....... a .......... ........................ ............ .... ..... .U .UU , ..0.001.002.00 3.00Tine-i (ms)36E: Tested at -60'F4.005.006.005000.004000.003000.002000.00000.00--- Ii ^eL .. AA .. .-,-- L .----h q .-.-.,0.00Lo5000.004000.003000.002000.001000.001.002.00 3.00Time-1 (ms)34U: Tested at -40'FTime-1 -0.75 ms4.005.00'ad-1 40.26 Ibs.00I6AJ k &A ,A A1 L.i A ,~ A~i/ LAtA &A, IAA, .A 4_A , -O &,A n.k00lnI nnl0.001 .002.00 3.00Time-1 (ms)32E: Tested at -30°F4 005.006.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-110.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)31A: Tested at -250F6.000.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)355: Tested at -200F6.005000.004000.003000.002000.001000.00ft A /t N. .~&n nr) I0.001.002.003.004.005.006.00Time-i (ms)37P: Tested at 0°FWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-12o=..aTime-I (ms)32A: Tested at 20°F5000.004000.003000.002000.001000.00Time-1 (ms)32B: Tested at 70°F95000.004000.003000.002000.001000.00n nnl ; : ; ;0.001.002.00 3.00Time-i (ms)354: Tested at 120'F4.005.006.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-135000.004000.003000.002000.0W1000.000.00.0.'5000.004000003000.002000,001000.00Time-1 (ms)37Y: Tested at 170'FTime-i -0.72 msload-I 21.92 Ibn Ufin ; 0.001.002.00 3.00Time-i (ms)311: Tested at 250'F4.005.006.00,%5000.004000.003000.002000.001000.0010.00 1.00 2.00 3.00 4.00 5.00Time-i (mw)32L: Tested at 300'F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-14Load-1 43.94 lbTime-1 -0.75 ms5000.004000.00S3000.002000.001000.00A. AA.J.LA AInnn I I I I ---, A- ..-.N- A , -,0.001.002.00 3.00Time-i (ms)425: Tested at 50'F4.005.006.0054'3Time-1 (ms)43D: Tested at 70'F0.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)41P: Tested at IOO°F6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-15Time-1 (ms)456: Tested at 120'F0.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)46Y: Tested at 130OF6.00n-i0.00 1.00 2.00 3.00 4.00 5.00Time-1 (ms)43K: Tested at 140OF6.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-165000.004000.007 3000.00 .0,Time-1 (ms)47L: Tested at 150°F"720.00 1..00 2.00 3.00 4.00 5.00Time-1 (ms)473: Tested at 170°F6.005000.004000.003000.00"2000.001000.00.0.00 1.00 2.00 3.00 4.00 5.00Time-i (ms)42C: Tested at 180°F6.00WCAP- 17939-NP May 2015WCAP- I17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3B-17o,0.00 1.00 2.00 3.00 4.00 5.00Time-I (ms)42D: Tested at 250'F6.005000.004000.003000.00"2000-.00100i.000.000.15000.004000.003000.002000.001000.00Time-i (ms)46A: Tested at 300'FI P0.001.002.00 3.00Time-1 (ms)47D: Tested at 3750F4.005.006.00WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-1APPENDIX CCHARPY V-NOTCH PLOTS FOR EACH CAPSULEUSING SYMMETRIC HYPERBOLIC TANGENTCURVE-FITTING METHODC.1 METHODOLOGYContained in Table C-I are the upper-shelf energy (USE) values that are used as input for the generationof the Charpy V-notch plots using CVGRAPH, Version 6.0. The definition for USE is given in ASTME185-82 [Ref. C-I], Section 4.18, and reads as follows:"upper shelf energy level -the average energy value for all Charpy specimens (normally three)whose test temperature is above the upper end of the transition region. For specimens tested insets of three at each test temperature, the set having the highest average may be regarded asdefining the upper shelf energy."Westinghouse reports the average of all Charpy data (>_ 95% shear) as the USE, excluding any values thatare deemed outliers using engineering judgment. Hence, the Capsule 970 USE values reported inTable C-1 were determined by applying this methodology to the Charpy data tabulated in Tables 5-1through 5-4 of this report. USE values documented in Table C-I for the unirradiated material, as well asCapsules 830 and 263', were also determined by applying the methodology described above to theCharpy impact data reported in BAW-1880, Revision 0 [Ref. C-2], and WCAP-15040, Revision I[Ref. C-3]. The USE values reported in Table C-I were used in generation of the Charpy V-notch curves.The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf lateral expansionvalues were fixed at 1.0 mils in order to be consistent with the previous capsule analysis [Ref. C-3].Upper-shelf L.E. is not typically fixed in CVGRAPH; however, due to excessive data scatter for selectcapsule materials, the upper shelf L.E. value will be fixed in the summary plots, as documented inSection 5 of this report, for T-L and SRM materials in Capsule 263* and L-T and T-L materials in Capsule97*. The individual L.E. plots for these materials, as documented in this Appendix, will still allow theupper-shelf L.E. to float for comparison between the two methods. The fixed upper-shelf L.E. valueswere determined using the same Charpy V-Notch test specimens that were used for the upper-shelf energydeterminations and are shown in Table C-2.WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-2Westinghouse Non-Proprietary Class 3 C-2Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPHIntermediate Shell Plate M-605-1Longitudinal Orientation134119N/A108Intermediate Shell Plate M-605-1 103 102 79 78Transverse OrientationSurveillance Program Weld Metal 115 100 105 95(Heat # 83637)Heat-Affected Zone (HAZ) Material 105 119 130 93Standard Reference Material (SRM) 122 N/A 86 N/ATable C-2 Upper-Shelf L.E. Values (mils) Fixed in the CVGRAPHSummary PlotsIntermediate Shell Plate M-605-1 LongitudinalOrientation (see Figure 5-2 of this report)N/A87Intermediate Shell Plate M-605-1 7Transverse Orientation (see Figure 5-5 of this report)Standard Reference Material (SRM) 75 N/A(see Figure 5-14 of this report)CVGRAPH, Version 6.0 plots of all surveillance data are provided infollowing the reference list.this appendix, on the pagesC.2 REFERENCESC-1 ASTM E 185-82, Standard Practice for Conducting SurveillanceNuclear Power Reactor Vessels, E706(IF), ASTM, 1982.Tests for Light-Water CooledC-2 BAW-1880, Revision 0, Analysis of Capsule W-83 Florida Power and Light Company St. LuciePlant Unit No. 2 Reactor Vessel Materials Surveillance Program, September 1985.C-3 WCAP-15040, Revision 1, Analysis of Capsule 2630from the Florida Power & Light CompanySt. Lucie Unit 2 Reactor Vessel Radiation Surveillance Program, February 2010.WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-3C.3 CVGRAPH VERSION 6.0 INDIVIDUAL PLOTSUNIRRADIATED IS PLATE M-605-1 (LONGrITUDINL)CVCih 6-0: Hypabalic Taqwd Qxive Primted an 1"215 635 AMA =6&14 B =65A9 C =UHO.ZTO =64-16D = OMCanelidion Coefficient = 0391Equdi~m is A + B

  • gnIXC1-T0>'(C4D1Y))]Uppe~bffBmff 134 00 (ixedD Lo we S W ueff = 2 _0 Oized)TenVA30 ft-ba=-S.400F TempW5 ft-Ub--3A0P F Td 50 ithbs33_20- FFlait St. Lucie 2OkimntziozriTMAienal SA533B1Capa&uiUnirradHlat A-349-2Thxwe:160140120Qgo6040200 g--300-200 14000 100 200 300 400 50o 60OTemperature (0 F)CVzaph 60Page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-4Plmt St. lii 2 .Material- SA33BI Heat -14W0-LT Capsule: Unirrad Fhxmm-UNIZRADIATED IS PLATE M-605l- (LONGITUDINAL)Charpy V-Notch DataTemperatur (F) Inrut CVN' .camfwed CVN DiffenIal-40 15.0 19.5 -4.49-_'20 20.0 25.7 70-1 33.0 33.1 -01020 45.0 43.0 2.0140 51.0 53.8 -2.2450 40.0 59.6 -19.6350 1020 596 423750 46.0 59.6 -13.6360 54.0 65.6 -115660 35.0 65.6 -30.5660 860 65.6 20.4460 33.0 65,6 70 90.) 71.5 19,4770 89.0 71.5 17.4722 101.0 7&6 22-3985 87.0 80-4 6.65105 101.0 91.4 9,60150 73.0 111.0 -38.02122.0 123.6 -1.64250 141.0 129.6 1139300 136.0 132.2 3.81350 122.0 1333 -1126400 142.0 133,7 830450 139.0 133.9 5.12aCGraph 61001109,015psge!mWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-5Westinghouse Non-Proprietary Class 3 C-5UNIRRADLATED IS PLATE M-605-1 (LONGITUDINAL)CVCaph 6.0-. H13pedhc'Tangent Cmrve Pnnied ca 121/201410.16 AMA-= 43.24 B=42=-f C = S6. T = 30.0S D = .OConelatim Coelfident = 0.74Equatim is A + B -[anh(9TOX'(C+-Y1))jL'er Sbef LE. =5.4 Lower Shf LE. = 1.00 Fixd)TwV(35 mlh= 13. 10- FPlo~t St. Indie 2Orientztio LIT%fatexiaL S.AS3B1Capwk Uli-a1Hst A-9490-2Thxne-e: O.OOE-*W aknWiCC41~10090 70 -6050403020100-300-200 -100 0 100 200 300 400 500 600Temperature (0 F),Grzuqh 6-012/01/2014PapeV2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-6Plant St. IAcie 2 Makii[ SA533B ieat A-8490-2Onmtwr LT Capmie: Unirrad FbteL G.0E+N00 nkmeUNIRRADTATED IS PLATE M-605-1 (LONGITUDINAL)Char-py V-Notch DataTemperiture ('I) Innt L E. Com~puted L L Differcnial-40 16.0 14-9 1-10-20 22?0 21.1 0.85-1 31-0 2g.6 23520 A0.0 38.3 -3340 51.0 481 29250 41.0 52.8 -101.25D 7910 52-8 25.1850 42.0 518 -10o-260 49.0 57-3 3360 34,0 573 -23360 70.0 57.3 1216760 33,0 57-3 -243370 80 61.5 65070 79.0 61.5 17.5082 76.0 66.0 10.0285 71.0 67.0 4.00105 78.0 72.B 5.17150 67-0 80.5 -13,54200 86o 83.9 2.13250 90.0 5.0 M.04300 85.0 853 -032350 87.0 85.4 1.57400 8LO 855 -4.46450 K6.O 85.5 0.53CVGraph 6.012*.1(20141ae202WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-7UMRRADIATED IS PLATE M-605-1 (LONGJITUDINAL)CVGuph 6.0. Herbofc Tzmgent Cuve Prined an 124112014 10:18 AMA= 50.00 B = 50.00 C = 90.93 T0 = 88,3 D = 0.00Carrcoah~Coe5cieut= 0389Eqyutim is A + B *Tanh((r-TY(C+D1))1Shff %Shear 1 0000 t(F=4e Lower Shelf/ZShear 0.00 (Fhed)TfAhUE at -8130Plant St. Lade 2Orienialioz LTMaferijaL S.4533B1Cq:& UmdraBust A-490-2Fbience. 0.OIJEtO zdai110100s08070605040UI..'3020O0-300CV6ralmo0-200 -1000 100 200 300 400 500 600Temperature (0 F)12/01,2014Page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-8Plant St. Lade 2 Mateia: SA-53BI Heat A-4I-2Oiientmimo LT Capsde: Uuilrad Fhmm_. LOOE+40 UNIRRADIATED IS PLATE M-605-1 (LONGITUDINAL)Charpy V-Notch DataTempmautr, (t F) Inu "%km comput %Sh DiffenW-40 0.0 5.6 -5.62-20 10.0 85 154-1 10.0 123 -23020 10H0 18-2 -82140 20.0 25.7 -5.6950 10.0 30.1 -20.1050 700 301 39-9050 10.0 30.1 -20.1060 30.0 349 9260 10.0 34-9 -24.9260 60.0 349 25.0860 10.0 34.9 -24.9270 70.0 40.1 29.9370 40.0 40.1 -0107V 60.0 46-5 13-4685 60.0 48.2 11.82105 60.0 59.1 0.92150 50.0 79-5 53200 100.0 92.1 7.902 10D0.0 97.2 2.79300 100.0 99.1 0-94350 100.0 99.7 032400 100.0 99.9 0.11450 100.0 10O.0 0.04CVGrxph 60/0112014Page 211WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-9Westinghouse Non-Proprietary Class 3 C-9UNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)CVGtzh6.0: Hyperbolir Tangent Curve Punted an 12/1/2014 10-4 AMA = 52.60 B = 50.40 C = 95.21 TO = 76.33 D = 0.00Coaelatio Coeffcient = 0-931Eqtuadwis A + 9 frsW(r4DUY(41Jl))JUppfe fEnug = 103-00 (FnznD) LowuSheWfErnc = 220 (FireMTerfnp@M ft-bS= 30.40r F Terpn35 R-AW= 41.70F F Tm*Q_0 ft--= ý71.5T FFlait St. Lucic 2Oficntatim- TLMatenal: SA.W3BICapsule: UuirradHeat A-84902Hurmce, (0 9r+4000zaue120100(U'80604020-300CVGriq 6.0-200 -100 0 100 200 300 400 500 600Temperature (0 F)12/010014Page 1/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-10Plnt St. Lucie 2 NMterial: SA&5&3BI Heat A-490-2TL Captor Unimd HFu 0.OE+000 rtCm'UNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataTemperature 0F Input "-N Computed CN DiffereuWt-40 6-0 103 -4.25-20 23.0 14ý0 9032 2.0 19.7 3-3210 27.0 25.- 1.1740 31.0 343 -31550 44.0 39.0 4.9950 49.0 39.0 9.9950 42.0 39.0 2.9960 39.0 440 -5A460 37-0 44.0 -7.0460 29-0 44.0 -15X070 46-0 493 -3.2585 63.0 57.2 5.82105 71-0 673 3.67125 85.0 763 8.67150 44.0 853 -4132155 107-0 86- 20.20176 108.0 919 16.06200 108.0 960 1193250 83.0 100.4 -17.44300 100-0 102.1 -2.09350 10&.0 1027 5.32400 107-0 102.9 4.11450 105.0 103.0 2.04CV-Grmh 6.012/01,2014PaWe212WCAP-1 7939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-11U'NIRRADIATED IS PLATE M-605-1 (TRANSVERSE)CVGrqh 6.0: Hypeihc Tangent Curve Prnted on 1211/2014 10:51 AMA= 39.30 B =3830 C = 95.27 TO = 4M_88 D = 0.00Cmm atim Coefficiea= 0-937Equatio iA+ B * (TxDr-TGY(C4DT))]Uper Shb&LIE = 77.60 Lower sbkf LE E 100 oFmixeTen_35 mis= 3A20- FPlant SL Lucie 2Ofientation TLMatleiia. SA:-33BIC"&il. UuinýaHeat A-8*902FluKe- 0 OOE+000 iadcm?0,00,(U(U(U80706050403020o, LmI300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CvQxph6.012/01/2014Page 2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-12Plnt St. Txci 2 Mlatena SAS33BI. Heat A-8-90-2Ofienmio TL Cvme: Thn'md Fhwm O.OOE-4O AmcmnUNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataT" -tre e F) Intmt L E. Cmupted L L DifreuW-40 7.0 113 -427-20 23-0 15.6 7.402 24.0 21.8 2.1620 30.0 28.0 1-9740 35.0 35.7 -0.7450 43.0 39.8 3.2550 46.0 39.8 6-2550 42.0 39.8 22560 360 43.8 -7.7560 41.0 43.8 -2.7560 29.0 43.8 -14.7570 46.0 47.7 -1.6585 59.0 532 5.14105 020 59.6 2.43125 73.0 64.7 8.29150 46.0 69.4 -23.41155 79.0 70.1 8.85176 S3.0 72.6 103720 83.0 74.5 8,48250 75.0 76-5 -149300 79,0 772 0.79350 79.0 77-5 1.54400 71.0 77.6 -6.55450 73.0 77.6 4358VGraph 6.012101P.014Page i'2WCAP-1 7939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-13UNIRRADIATED IS PLATE M-605-1 (TRANSVERSE)CVGiph 6.A Hypebi Tangnt Curve Pjfmd on 12/112014 10:.3 AMA= 5.0M B = 0.00 C-- 45.34 -D = 37.05 D = 0.0oCarelation Coefficaiet = 09V7Equatim i A +EB -C1xn Ty(C+D'))]Ugmer Shelf .SA r = 100.00 Fixec Lowe Shelf %.Sbear= 0.00 (FixeTemperature at 5W0 Shew= 87.10Plant SL Lucie 2tkiatation: TLMateriaL SA33BICapsule. UvirradHeat A-890-2Fhiaene O.OOE+M0 z/cmz1101009.$4.I-706050403020-10-0-300cVC=Oh6.0-200 -1000 100 200 300 400 500 600Temperature (0 F)12MI/M14Pag 1V2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C- 14Westinghouse Non-Proprietary Class 3 C-14Plant St Lade 2 NMahTal: SA5RklB1 Heat A-1490-iCkietaio IL Capsule: Un-ad Fhwam 0.00E+0Q0 ,,cmýUNHUIIADLUTED IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataTempetmahm ( I) Input %Shear Computed %Siear Differrafial-40 0.0 OA -037-20 10.0 0.9 9.122 lO.0 23 7.7120 10.0 4.9 .5.0640 10-0 112 -1.1550 30.0 163 13.6750 20.0 16.3 3.6750 10.0 163 -633-60 0.o 23-3 -32760 30.0 233 6.7360 20.0 233 -32770 20.0 310 -120495 40.0 47.7 -7 34105 90.0 69-9 11.18125 90.0 841 5.79150 W0.0 94.1 -1414155 100.0 9512 4.75176 100.0 991 1.94200 100.0 993 0.63250 100.0 99.9 0.08300 100.0 100o0 0o01350 10o.0 1o00 O.o0400 1000. 100.O 0.00450 100.0 100.0 0.00CVGaph 6.012/01/2014PA212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-15IJNLRRADIATED SURVEILLANCE PROGRAM WELD METAILCVCuph6 fbpezbdc&,Twi uv~wePrin~d i 12/1/214 10:7 AMA=5S@B= 56AD C=911'= 1.89D= 0.00Cwebiatimu1Cafficdet=0199Eqwa1co is A+ B
  • rWIT0Y)(C4M)IUpper SheV~mff= 115-00 (Fixed) Lawa Slhlffnemgy 21_0 (FixeTmq(43G ft-lbu-50.500 F TemV@35 ft-nb--3990aF Tenp50 ft-lb.-12500 FPlant St Lucie 2Orienbica6 NA,Mzen2L_ &S6WCapmle. UnirrdHleat &3637Fbxace- DAOE4400 ukmW140120100S 60z40200 =-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CVGaph 61012/01/2014Pipe V2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-16Plant St LAcf 2 MNfafial: SAW Heat 836370 P Capmle: Ugni-ad Fkezre O)00 E-00 nkiunUNIRRADIATED SURVEILLANCE PROGRAM WELD METALCharpy V-Notch DataTemefture IfD Input Computed CVN Diffrmt6l-40 10.0 35.0 -24.95-30 62.0 40.1 21.88-30 41.0 40-1 0.88-30 19to 401 -21.12-25 29.0 42-9 -13.85-25 61.0 42.9 19.15-25 38.0 429 -4.85--20 50.0 45.7 433-1 93.0 56.9 36.1410 61.0 69.4 -83640 60.0 803 -11.3470 74.0 93.6 -19,6285 118.0 996 1938105 95.0 103.7 -8.74i50 124.0 1104 13.59200 106.0 113.4 -738250 1N.0 114.4 &.56300 99.0 114.8 -16.81350 127.0 1149 12.07400 117.0 115.0 2.0245D 108.0 115.0 -6.99CVVGaph 6.012/01P2014Page.212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3CC-17UNIRRADIATED SURVEILLANCE PROGRAM WELD METALCVqapk64- Hypfbdic Tangent Curve Pzinid 121/2014 10-59 AMA=44.64 8=3M.6-C= 7.72 TO=-102 D =0.00CmOxiami Cef = 0.917Eutim is A+ B * -rJan(f-_roY(C+DI))J.2S Lwe, SheEL.E = 1.00 (FixeTereqa35 mfls-27.10 rFPlant St. Lude2IManigt &SAWCapwk: U~raHeat 833Fbrem0 .OOE+00 u/tin0100-80-706050-40302010 .0-300-200 -100 0 100 200 300 400 500 600Temperature (I F)cvcnvh 6_012/01/2014Page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-18Westinghouse Non-Proprietary Class 3 C-i 8Plant St. Luck 2 Makmia SAW Heat 8W63706mftb=NA Capsule: IUnirwr Fhnce: 0,00E+0O0 n/icUI.HRADIATED SURVEILLANCE PROGRAM WELD METALCharpy V-Notch DataTVWarU (r) Input L E. Computd LE. Dwffremnti-40 1.0 2&0 -101-30 49,0 33,4 15.61-30 31.0 33.4 39-30 16.0 33.4 -1739-25 270 362 -9.24-2 54.0 36.2 17.76-25 29,0 36.2 -7.24-20 45.0 39.2 5S4-1 73.0 50.5 22.5020 53.0 6-1I -9.1040 60.0 71,0 -109870 6-70 797 -117585 96.0 2.4 1356105 88.0 84.8 3.19150 93.0 872 536200 91.0 880 2.9925 92.0 88.2 3-79300 80.0 .983 -8.26350 88.0 883 -0.27400 86.0 883 -2.27450 87.01 83 -128Ca 6.01M12014Page 212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-19UNIRRADIATED SURVEILLANCE PROGRAM WELD METALCVGraph6.0 Hyperbolic Ta tCurve mPrin. 12/12014 11:01 AMA= 50.00 B = 50.00 C= 5.87 TO=L28 D = 0.00Onevfiicm C t=0.94gEquiwao is A + B *{Tz*Df-1WDC+mT)]Upper Sf.Shear= I0000 (FO Lower Shetf %Shear = 0.00 (FixecDTemehat iat50% Shear = 1.30Plaut St. Luk 2ofieutafijiX4,Malfenal SAWCapsule. t~nhrraHeat &%637Fhuaxe 0.O-00E0 u/au1110l0090801~AU70605040302o10-0--30OCVrp6.o-200 -1000 100 200 300 400 500 600Temperature (Q F)12/01/2014Page V2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-20Plant St. Lade 2 Matkmdx: SAW Heat S3637NA, Capszke Unirrad FlUmxe 0.OOE+000 akcm?UNIRRADIATED SURVEILLANCE PROGRAM WELD METALCharpy V-Notch DataTenpernare (I F) IRu $ -Samr Camputtd %Shear Differential-40 20.0 272 -720.30 50.0 32.2 17.83,30 30.0 322 -2.17-30 30.0 322 17-25 30.0 34.8 -4.1V-25 40.0 34.3 5.8-25 20.0 34.1 -14.82-20 30.0 37.6 -7,58-1 8OO 4&6 313620 50.0 61.0 -10.9840 i00 71ý6 -115770 80.0 83.7 -3.7395 100.0 88-0 1196105 90.0 922 -222150 100.0 9712 2.20200 100.0 99.1 0.87250 I00.0 99.7 026300 100.0 99.9 0.0o350 100.0 100.0 0,02400 100.0 100.0 0.01450 100.0 100.0 00012"DO120:14Pae 2"2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-21UNIRIIADLATED HEAT AFFECTED ZONECV&mph 6.0: Hf)Vbob Tangmt Cu-u Poizdoi 119115 6-42 AMA = 560 B = 5L40 C =119.75 TO=26-19 D) = 0.00Cxielali Coeftient= 0.497Equatizmis A +B
  • ils(TI-7P)XC4{Y))1UjpW SlweffMw"= 105-00 (FimI ImwShelf EhuU= 2-0 (Fixe4)TTa3O fi 1bs=-33.1IrvF Ternp(35 ftD-900F TwpA50 ft-1lbw 17.W0 FPbht St. Lade 2~O NA20w175150J-. 100750 --300Matimuit &S&ASBL40:Uninad0Heit A-84902-M0 -1000 100 200 300 40N 500 600Temperature (0 F)CVcr~h6-001/0912015Page 1/WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-22?lant St. Lucie 2crimutatioa INAMatmiak SA53BiCapsuil T-irrad ThNace.UNURRADIATED HEAT AFFECTED ZONEfleat.A449W-2Charpy V-Notch DataTmuyratwre () I9%m C "N C~ompted CN7 Differen&Ia-40 170 27.7 -10.74-20 21,0 34.7 -7.67-1 90.0 411 47.9120 41.0 50.9 -99040 21.0 59.5 -38A650 67.0 63.6 3-3550 49,0 63.6 -14.550 16.0 636 -47.6560 59.0 6737 -8.7060 61.0 673 -6.7060 179.0 67.7 111.3070 62.0 71-6 5785 45,0 77.0 -31.96105 103.0 932 19.76150 !1.0 93.4 37.56200 5.0 99.6 -41.65250 111.0 1026 1.39300 68.0 103.9 95350 67.0 1045 -3754400 122O 104.1 17-20450 107.0 104.9 2.09CVGnph 6.001,'09!2015Page 2PWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-23UINIRADIATED HEAT AFFECTED ZONECV~rqt6,0: Hypffbo&i Twgft Curve Printed on 1,912015:53AMA=37.08S B=36.OS C=ILCA D=1&.460D=O.@C~aihm Coe~daA=O0.27E~quation is A +B~
  • rad(Ct1DXC+D'fl)1UppfSheffLE_ =73.16 Lf~~efefLE LIOO{fiz4dTemp35ihl=&50 FPilot St. Lacie 2Odeabdon INAMateriaL- S.AM3BICquak Uimxrzd Th~wxeHeat A-8490-28070~60404302O10-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CVcraxph 6001F9/2015Page 1/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-24PAs= St. Luck!Orim3it~io1 NAMfitl SAA'3B1Capsule: UHAT A TNmE:UN'IRRADIATED HEAT AFFECTEDJ ZONqEHeat Charpy V-Notch DataTeperaur (IF) Ipt L E. Cmaputed L L DiffemtialAO 20.0 21.7 -1.66-20 2.0 268 -0.83-1 56.0 322 23.7820 31-0 31.4 -7A340 23.0 44-3 -212850 57.0 47.1 9.9250 41.0 47-1 -6.0850 17.0 47J1 -30.0960 49.0 49. -0.7560 51.0 49.8 1.2560 93.0 49.8 33.2570 52.0 523 -02885 41.0 55.7 -14.75105 75.0 5937 1528150 U2O 66.1 1593200 54.0 69-9 -15.97250 77,0 71,7 532300 66.0 725 -6.50350 68.0 72.9 -4.87400 16.0 73.0 Z97450 77.0 73.1 3.90mZVraii 6.001t09'15pate 2/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-25LTJNRRADIATED BEAT AFFECTED ZONECVC~ph6.0: Hypeboki Tngat Cuve Pdated am IiWM15 7: 10 AM~A = SOA B= SUO C =93,19 TV =552A6D =0.00Camiehfimi C4oefmcitt = 0.957Equatimis A+ +B -DY(T (C+DI))]Upper Sef %Slew=100.00 (Fhxe I~we %f %Mmr-OA (FzeD~Thiuarixne at 50 Sbw = 52.10Plant St Lwuc 2Or- 1n1- NAMfalimaL SA533BICap"Ik Unirrad FbumrEHeat A-40-21101009o80Sw 70fS&:ý 6050302010kq AW, k A% o .. .' o ... .%F 'It --T* /o-0---0-300 -200-1000 100 200 300 400 500Temperature (* F)600cvGrah 6.001/0912015Page 1/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-26PI~t St Lucie 2Oxieubtfioac NANfaitev SAW~BICqpmle: LUirrad Fbaxme.IJNIRRADLATED HLEAT AFFECTED ZONEHeat A-149-2Charpy V-Notch DataTemperature ? F) Input %Shem Computed %Sbear Differential-40 20.0 122 7.S3-20 20.0 17.6 2.45-1 40.0 24.2 15.7520 30.0 33.4 -3.4440 30.0 43.6 5550 70-0 48-9 21.1250 50.0 48.9 1.1250 20.0 48.9 -2,860 30.0 54.2 -24.2460 40.0 54-2 -142460 100.0 54- 45.7670 60.0 595 05085 40.0 67.0 -2%.96105 100.0 "57 24.31150 100.0 89.1 10.90200 100.0 96.0 4.01250 100.0 98.6 1.41300 i00.0 99.5 0.49350 100.0 99.8 0.17400 100.0 99.9 0.06450 100.0 100.0 0.02CVGnph 6.001/092_015Page 2X2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-27UNIRRADIATED STANDARD REFERENCE MATERIALCVGzh 6.0: Hypedvhi TangW Curve Pinoteda 12/1/2014 12:22 PMA=6210 B= 59.90 C = 6928 TO = 67.0 D = 0.00Caela-aum 0=989Euitia is A + B- t-r*(T-1DY(C+rD))]UTn SH Ememgy = 12200 (Fixd) f eSl=*F Ty2.20 (F-ze ."Tw4OMA-fl-L- 25.ýF TaIWj*,5 ft-Iis= 33.6ir F Tempg5O fl4b=153.100FFIXnt St.Lu~cie2Orieiubicmr LTMaitmikL S.453381CpuzIe- UnfirradHeat: BESSr-OLMFkzuwe: &00E4000 x/aazN-OU140-120 -_100 -6040 --* --20 =-300 -200 -1000 100 200 300 40W 500Temperature (I F)CVGph 6.012/01(2014Page wWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-28Westinghouse Non-Proprietary Class 3 C-28Plant St Lacie 2 Matera SA533BI Heat HSST-CIMYOdentafi-LT Capsuek tninad Thi.p O.o0E+0f00 koUNTIRRADIATED STANDARD REFERENCE MATERIALCharpy V-Notch DataTemperat-u F) Input CN CompNed CVN -Differeniial-40 10.0 7.4 2620 16.0 17.2 -1.2220 18.0 26-6 -8.5625 37.0 29.5 73235 27.0 360 -9.0340 51.0 39.6 113570 68.0 64.4 3.5785 66.0 77.1 -11.08105 99.0 91.8 7.19150 108.0 111.9 -3.92200 1260 119.5 6.54250 121.0 121.4 -039300 1220 121.9 0.14350 122.0 122-0 0.03400 130.0 122.0 8.01CVG-%ap 6.012/0L'2014Page 212WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-29UNILRRADIATED STANDARD REFERENCE MATERIAL,CVC~ph 6,0 Hyperbolic Tmzgent Come Printed on 12/1/2014 12:27 PMA =39.06 B = MA0 C= 6L.78 TO = 44.58 D = 0.00ConebtficnCoeffiisent = 0977Equzatio is A +.H4 [Th(r.-0DY(C4D )l)U~pper wbffLE_=77.11 1owex SlrIfLE_= 1.00 Fied)TeimW5inlaW=39,000 FPlant St. Lucfr 2Orebi- LTMateraL- SA533BICapsmk-UnirraHeit HSST-OIMYThkerme 0.OOE4409 a/rm"'I090807060504030201001=-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)12/01/2014CVGraph 6.0Page 12WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-30Wetnhos o-Poretr lss3C3Plait St. Lade i2 Matra- &W4313B1 Heat HSST-OWMYOfientaiav LT Capume: Uirrad Fliea 0.OOE+OON Wcm1UINIRRADIATED STA-NDARD REFERENCE MATERIALCharpy V-Notch DataTempamtnr ( F) IutLE. Compuwyd L E DiffereuntaI-40 110 5.6 5370 18.0 15.5 2.4620 17-0 2437 -7.6725 31.0 27.4 3.6135 26.0 33-2 -72040 45.0 362 8.7670 55.0 53.9 1.1185 53.0 60-9 -7.92105 73.0 67.7 5.32150 92.0 74-7 732200 79.0 76.6 238250 71.0 77-0 -6.01300 74.0 77.1 -3,09350 78.0 77-1 0.29400 76.0 77.1 -111CVGraph 6,012/01,2014WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-31UNIRRADIATED STAN3DARD REFERENCE MATERILCVGph 6.0- Hypebok Tanget CAve Ptinted on 12W112014 12-30 MA =50.00 B-50.00 C5_65 T0 7S9SSD 0.00calas coeffctiag = o996Equatim is A + B
  • lTan(T'-T0Y(QC+D))]Upper Sbelf %Sbear= 100.00 (Fixed) Lomw Shelf %.Sw = 0o00 (Fed)Tempermate at 50. Shear 79.00Plant St. Lucie 2Ornextatim- LTMatikiaL- SA533BIcapui1- Uin-adHent H35T-O1MYFhixe: DLUOE*40 zkWi110-1009080-7060504030 .20100-300-200 -100 0 100 200 300 400 500 600Temperature (0 F)CVGnqh6_01210112014Page V12WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-32Plant St. Luce 2 Matexial: SAO3B1 Heat: HSST-01MYOrientafton LT Capsule: Fluamce 0.OOE+000 UNIRRADIATED STANDARD REFERENCE MATERIALCharpy V-Notch DataTemperature C 'F) Input %Shear Computed %Shear Differential-40 0.0 11 -1.080 10.0 4.7 5-2520 10.0 9.6 03725 10.0 11.4 -1.4135 10.0 15.8 -5.8540 20.0 18.5 1.4570 50.0 41.6 8.4285 50.0 55.7 -5.72105 70.0 72.9 -2.90150 100.0 93.7 63010 100.0 99.0 1.00250 100.0 99.8 0.15300 100.0 100.0 0.02350 100.0 1000 0.00400 100.0 100.0 0.00CVGraph 6.012/01/2014Page 2/2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-33CAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)CVGda 6.0 Hybolic Tagit Cuw Pdnted o 12/m 1- PMA = 60.60 B = A.40 C= 76.31 TO 81.38 D = 0.00Coarltkm Coefficient = 0-949Equaticuiis A + B- rTa*rn(WlY(C+IY1))]Upper ShelfYEW = 119-00 (Fixud Lower Sibyff ne 2-10 (FredDTmV* A-rbs= 36.70- F ThnpW35 .Ibg- 4530F F Tw@M50 fi-bs= 673_ FPlant St. LUC*e 2Ofieataliow LTMatffnal: &A533BI.Capsiwe SY 3umHeat A-490'2140120I.1008s604020a =-300-200 -100 0 100 200 300 400 So0 600Temperature (0 F)CVGraph 6.012/01/2014pwitWCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-34Westinghouse Non-Proprietary Class 3 C-34Plant St. LuaciOrkutatimL Li2 Maleal- SA533B1Calm& B3Q FimpCAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)Charpy V-Notch Dataat A-U19-2Tnmrau re IF) i t CNw Computed CUN Differential1 10.0 15,0 -5.0225 6.0 241 -18.0735 48.0 29.1 18.9248 40.0 36.7 3-2960 43.0 44,9 -1.7578 61.0 5&0 7116 87.0 853 1-72140 71.0 9-2 -2715156 125.0 1044 20.64217 125.0 115.7 932300 112.0 11&.6 -6.61401 119.0 119.0 0.03CVGrph 6.0120112014Page 2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-35CAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)CVGrCh 6.0: Hyperbc Tangent Curve Pmftd ca 121b'2014 1:06 PMA = -4325 B=-42-5 C = 96.4 TO= 70.23 D = 0ACwelation Coefiait = 0940Equation is A +B
  • fTanX(T-T0-(C4++1)]Upper SheffLE = 85.49 Lower~wef LE = 1.00 (F'ed)Terop@5 unl zo51.20 FPlant St. Lucie 2Orientation- LTMstenial: SAS33BLcapsule: BYHeat A-8490-2Fhuxmc10090800CuCu706050403020100=-300-200 -100 0 100 200 300 400 500 600Temperature (Q F)CVGrVh 6.012/01V2014page 112WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-36Westinghouse Non-Proprietary Class 3 C-36Plout St. LucOnenttiwwL-2 Material SA:%3B1CAPSULE 830 IS PLATE M-605-I (LONGITUDINAL)Charpy V-Notch Dataeat A-8490-2Temperatre (OF) TnptL L Computed L E Diffemi1 26.0 17.2 8.7625 5.0 24.8 -19.7735 40.0 23.5 11"5343 35.0 3317 1-3260 37.0 38.8 -13878 43.0 46.6 136116 66.0 61.9 4.09140 56.0 69.4 -13.40156 810 733 7-72217 86.0 81,6 435300 85.0 84g 022401 82.0 85,4 -3.40C.rGrap- 6.01IM_-014Pape 2)2WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-37CAPSULE 830 IS PLATE M-605-1 (LONGITUDINAL)CVGCirh 6A Hypibdi Taqxat Cmve Pinted an 1211M2014 1 10 PMA=5.400 B = 5000 C = 66.65 T = 12L91D =0.00Carehtm Coeeffieaft = 0.952is A + B
  • ITat-1CTo+Dr1))]Upr& S f.S1ea= 100.00 -(Fnxed) Lowe ShefSbear = 0(00FixeTemperafwe at 50% Shear = 122.00IFlut St. Lade?Oic~iMLatoiLTMaitexiaL SMWBIRcapsule: 83'Heat A-4090-2Fkmwe:110100908070605040I-CD30-20 ....10-0-300CVcar60o-200 -1000 100 200 300 400 500 600Temperature (1 F)12/01/2014Page 12WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-38Plant St. Laid~VretimLI 2Uijal: S-W53B1 IBSCapse: 83 Fbince.CAPSULE 830 IS PLATE M-605-1 (LONGITUDI-NAL)Charpy V-Notch Dataeat A.-490-.Temmture ( Input h %sar Comutned %Shear Differential1 5.0 2.6 2.4125 0.0 5-2 -5.1835 10.0 6.9 3,.1442 10.0 9.8 0.1860 10.0 13-5 -3.5078 20.0 21.1 -1.12116 65.0 4516 19.42140 30.0 63.2 -33_25156 90.0 73.6 16.45217 100.0 94.5 5.45300 100.0 99.5 0.43401 100.0 100.0 0.02CVGraph 6.012/012014Page 122WCAP-17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-39Westinghouse Non-Proprietary Class 3 C-39CAPSULE 830 IS PLATE M-605-1 (TRANSVERSE)6.0: Hypftbola Tangent Cýxw Pnted on 1211/2014 1:15 PMA= 5.1.0 B= 490 C = W.78 TO = I1344D =0.00Coefficient= 0972Equations A + B- [Tan( OT-Y(tC+DTI))]Upp S1eIfEmngy= 102.00 (Fixed Lower SlffEnrgy = 220 (FieTmozp30 A-lm-= 59-80 F Temp@35 ft-1b- 7320- F Tenj50 FPlant SL Lack 2OxemlinMiterijal SAW3BIcapswil: V3Heat A-8490-2Amhce:120100CAf4-I-604020*0u::-300-200 -4000 100 200 300 400 500 600Temperature (0 1)CVGraph 6.03121012014Page 1/2WCAP- 17939-NP May 2015WCAP- 17939-NPMay 2015Revision 0 Westinghouse Non-Proprietary Class 3C-40plant $tLuefr 2-kritm T1Liaterial: S&8533B1Cmpe: S3W FreCAPSULE 830 IS PLATE M-605-1 (TRANSVERSE)Charpy V-Notch DataHeat A-8490-2Temperature (F) 1U dt Computed CVN Differetial1 13-0 14- 1647 24.0 253 -1.6960 32-0 30.1 1.9278 44.0 36.9 7.09113 49.0 51.9 -3.90140 51.0 63.6 -12.64157 83.0 70.5 12.53217 78.0 88.3 -1028252 104.0 94.1 9.88300 106.0 98.5 7.52350 97,0 100.5 -3.52401 99.0 101A 39CVfiph 6.012/01M2014Page 2WCAP- 17939-NPMay 2015Revision 0