ML18283B543: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:BROGANS FERRY NUCLEAR PLANT UNITS 1 AND 2 EMERGENCY CORE COOLING SYSTEMS LOW PRESSURE   COOLANT INJECTION MODIFICATIONS FOR PERFORMANCE IMPROVEMENT Ms@ 1977
{{#Wiki_filter:BROGANS FERRY NUCLEAR PLANT UNITS 1
AND 2 EMERGENCY CORE COOLING SYSTEMS LOW PRESSURE COOLANT INJECTION MODIFICATIONS FOR PERFORMANCE IMPROVEMENT Ms@ 1977


                      .. ~.....
TABLE OF CONTENTS Pacae 1
TABLE OF CONTENTS Pacae 1  0 INTRODUCTION
0
    ~                                                        2 2 '   BACKGROUND         .    -  ~ ~   ~ ~   -        -      3 3o 0 DISCUSSION     o o o       ~ a o o s ~   ~ o e o   o   4 3.1 Accident Descri tion 3.2 Modification                                       5 3.2.1 Suction Line Break .                         5 3.2.2 Dischar e Line Break .                       8
~ INTRODUCTION..~.....
: 3. 3 Model A     lication                               9 3.4 Safet     Anal sis                                 10
2 2 '
: 3. 4. 1   E ui ment Ca abilit to Perform as Anal zed                   10
BACKGROUND
: 3. 4.2      ui ment Interfaces                     14 3.4.3    Functional Interface                     17 3.4.4    Satisfaction of A ro riate. Standards     18 3.4.5      ualit Assurance and Control             18 4 0  
~
~
~
~
3
: 3. 4.2 3.4.3 3.4.4 3.4.5 3o 0 DISCUSSION o
o o
~
a o
o s
~
~
o e
o o
3.1 Accident Descri tion 3.2 Modification 3.2.1 Suction Line Break.
3.2.2 Dischar e Line Break.
: 3. 3 Model A lication 3.4 Safet Anal sis
: 3. 4. 1 E ui ment Ca abilit to Perform as Anal zed ui ment Interfaces Functional Interface Satisfaction of A ro riate. Standards ualit Assurance and Control 4
5 5
8 9
10 10 14 17 18 18 4
0


==SUMMARY==
==SUMMARY==
AND CONCLUSIONS                           .        19
AND CONCLUSIONS 19


==5.0   REFERENCES==
==5.0 REFERENCES==
  . . .      .  ~ . .  .  . . .    . .      20
~.
20


LIST OF TABLES Table                                 Title ECCS Pump   Configuration Local Peak Cladding Temperatures and Reflood Times Following a LOCA and Horst Single Failure LIST OF ILLUSTRATIONS Ficiure                             Title System Normal Operation System Mode   of Operation During Unit 1 LOCA (Suction Line Break) No Failures System Mode of Operation During Unit 1 LOCA (Suction Line Break) LPCI Injection Valve Failure System Mode   of Operation During Unit 1   LOCA (Suction Line Break) Diesel Failure System Mode of Operation During Unit 1     LOCA (Suction Line Break) Battery Failure System Mode   of Operation During Unit 1 LOCA (Suction Line Break) Opposite Unit Spurious Accident Signal System Mode of Operation During Unit, 1 LOCA (Discharge Line Break) - No Failure System Mode of Operation During Uni) 1 LOCA (Discharge Line Break) LPCI Injec)ion Valve Failure System Mode   of Operation During Unit 1 LOCA (Discharge Line Break)     Diesel Failure 10    System Mode of Operation During Unit 1 LOCA (Discharge Line Break) - Battery Failure Syst: em Mode of Operation During Unit 1 LOCA (Discharge Line Break) - Opposite Unit Spurious Accident Signal 12    Existing   System Valve Bus Arrangement 13    Modified System Valve     Bus Arrangement,
LIST OF TABLES Table Title ECCS Pump Configuration Local Peak Cladding Temperatures and Reflood Times Following a LOCA and Horst Single Failure LIST OF ILLUSTRATIONS Ficiure System Normal Operation Title 10 12 13 System Mode of Operation During Unit 1
LOCA (Suction Line Break)
No Failures System Mode of Operation During Unit 1
LOCA (Suction Line Break)
LPCI Injection Valve Failure System Mode of Operation During Unit 1 LOCA (Suction Line Break)
Diesel Failure System Mode of Operation During Unit 1
LOCA (Suction Line Break)
Battery Failure System Mode of Operation During Unit 1 LOCA (Suction Line Break)
Opposite Unit Spurious Accident Signal System Mode of Operation During Unit, 1
LOCA (Discharge Line Break) - No Failure System Mode of Operation During Uni) 1 LOCA (Discharge Line Break)
LPCI Injec)ion Valve Failure System Mode of Operation During Unit 1
LOCA (Discharge Line Break)
Diesel Failure System Mode of Operation During Unit 1
LOCA (Discharge Line Break) - Battery Failure Syst: em Mode of Operation During Unit 1
LOCA (Discharge Line Break) - Opposite Unit Spurious Accident Signal Existing System Valve Bus Arrangement Modified System Valve Bus Arrangement,


System Valve Control Power Arrangement 15 System RHR Pump Divisional Priorities Modified Unit 1 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (Without Backup Control) 17 Modified Unit 1 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (With Backup Control) 18 Modified Unit 1 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control) 19 Modified Unit 1 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control) 20 Modified Unit 1 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control) 21 Modified Unit 1 LPCI.Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control) 22 Modified Unit 2 Recirculation Discharge Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control) 23 Modified Unit 2 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (With Backup Control) 24 Modified Unit 2 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (>without Backup Control) 25 Modified Unit 2 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control) 26 Modified Unit 2 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control) 27 Modified Unit 2 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control) 28 Typical Schematic for Hydraulic-Pneumatic Operator
15 17 18 19 20 21 22 23 24 25 26 27 28 System Valve Control Power Arrangement System RHR Pump Divisional Priorities Modified Unit 1 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (Without Backup Control)
Modified Unit 1 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (With Backup Control)
Modified Unit 1 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)
Modified Unit 1 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)
Modified Unit 1 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)
Modified Unit 1 LPCI.Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)
Modified Unit 2 Recirculation Discharge Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)
Modified Unit 2 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (With Backup Control)
Modified Unit 2 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator
(>without Backup Control)
Modified Unit 2 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)
Modified Unit 2 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)
Modified Unit 2 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)
Typical Schematic for Hydraulic-Pneumatic Operator


1 0   INTRODUCTION Browns   Ferry Emergency Core Cooling System (ECCS) design and performance for Units 1 and 2 have been the subject of a recent review. This review led to a change in the system, which provided a significant reduction in the peak cladding temperature following a postulated recirculation line break. This reduction in   peak cladding temperature has been accomplished by elimination of the Low Pressure Coolant In jection (LPCI) System recirculation loop selection and keeping the Residual Heat Removal (RHR) cross-tie valve closed. A report on this previous modification was submitted to the Nuclear Regulatory Commission in a letter from J. E. Gilleland to Benard C. Rusche dated Fabruary 12, 1976.
1 0
INTRODUCTION Browns Ferry Emergency Core Cooling System (ECCS) design and performance for Units 1 and 2 have been the subject of a recent review.
This review led to a change in the system, which provided a significant reduction in the peak cladding temperature following a postulated recirculation line break.
This reduction in peak cladding temperature has been accomplished by elimination of the Low Pressure Coolant Injection (LPCI)
System recirculation loop selection and keeping the Residual Heat Removal (RHR) cross-tie valve closed.
A report on this previous modification was submitted to the Nuclear Regulatory Commission in a letter from J.
E. Gilleland to Benard C. Rusche dated Fabruary 12, 1976.
Portions of that previous report are presented here to give a coherent description and safety analysis.
Portions of that previous report are presented here to give a coherent description and safety analysis.
The proposed   additional modification changes the power supply to the recirculation pump discharge valves, LPCI injection valves, and LPCI minimum flow valves. The change adds sufficient independent power supplies to eliminate the peed for the existing swing-bus feature.
The proposed additional modification changes the power supply to the recirculation pump discharge valves, LPCI injection valves, and LPCI minimum flow valves.
Major areas of discussion   in this report include the proposed independent power supplies and a detailed safety analysis of the modification.
The change adds sufficient independent power supplies to eliminate the peed for the existing swing-bus feature.
Major areas of discussion in this report include the proposed independent power supplies and a detailed safety analysis of the modification.


==2.0   BACKGROUND==
==2.0 BACKGROUND==
With the advent 'of the Interim Acceptance Criteria, it became advisable to consider the simultaneous occurrence of spraying and flooding to meet the stringent new temperature limit of 2300 F.
The thermal-hydraulic models were refined to permit an accurate calculation of coolant remaining in the vessel following the blowdown, and of spray coolant reaching the lower plenum after the boiloff which takes place as it passes through the active fuel region.
These refinements permitted an accurate calculation of the flooding rate due to spray operation, and even with the new requirement of an active component failure anywhere in the
: ECCS, no jet pump BWR failed to meet the Interim Acceptance Criteria.
ECCS modifications which might have been suggested by the new evaluation models were therefore unnecessary.
The final ECCS acceptance criteria adopted by the AEC are more conservative than the interim acceptance criteria.
These new criteria reduce operating flexibilityand could result in power level restrictions.
To offset the effect of the new criteria, a
modification has been added to Units 1 and 2 which takes advantage of the credit given for the flooding effect achieved through the availability of additional LPCI pumps under certain single-failure conditions.
TVA commited to modify the power supply to the recirculation pump discharge valves, LPCI injection
: valves, and LPCI minimum flow valves to eliminate the need for the existing swing-bus feature before return to power operation following the second refueling outage of the respective units.


With the advent 'of the Interim Acceptance Criteria,  it became advisable to consider the simultaneous occurrence of spraying and flooding to meet the stringent new temperature limit of 2300 F.
3-'
The thermal-hydraulic models were refined to permit an accurate calculation of coolant remaining in the vessel following the blowdown, and of spray coolant reaching the lower plenum after the boiloff which takes place as    it passes through the active fuel region. These refinements permitted an accurate calculation of the flooding rate due to spray operation, and even with the new requirement of an active component failure anywhere in the ECCS, no jet pump BWR failed to meet the Interim Acceptance Criteria. ECCS  modifications which might have been suggested by the new  evaluation models were therefore unnecessary.
DISCUSSION, 3.1 Accident Descri tion The Design Basis Accident (DBA), Loss-of-Coolant Accident (LOCA),
The  final ECCS  acceptance  criteria adopted by the AEC are more conservative than the interim acceptance criteria. These new criteria reduce operating flexibility and could result in power level restrictions. To offset the effect of the new criteria, a modification has been added to Units 1 and 2 which takes advantage  of the credit given for the flooding effect achieved through the availability of additional LPCI pumps under certain single-failure conditions. TVA commited to modify the power supply to the recirculation pump discharge valves, LPCI injection valves, and LPCI minimum flow valves to eliminate the need for the existing swing-bus feature before return to power operation following the second refueling outage of the respective units.
 
3-'   DISCUSSION, 3.1   Accident Descri tion The Design Basis Accident (DBA), Loss-of-Coolant Accident (LOCA),
is one of several hypothesized events used to evaluate the ability of the plant to operate without undue hazard'to the health and safety of the public.
is one of several hypothesized events used to evaluate the ability of the plant to operate without undue hazard'to the health and safety of the public.
The overall initial assumptions   remain as described in Section 14.6.3.1 of the   FSAR:
The overall initial assumptions remain as described in Section 14.6.3.1 of the FSAR:
The reactor is operating at the most severe condition at the time of the LOCA, which maximizes the parameter of interest:
The reactor is operating at the most severe condition at the time of the LOCA, which maximizes the parameter of interest:
primary containment response, fission product release, or core standby cooling system requirements.
primary containment
A complete loss of normal AC power occurs simultaneously with the LOCA. This additional condition results in the longest delay time for the core standby cooling systems to become operational.
: response, fission product release, or core standby cooling system requirements.
The LOCA assumes   that a recirculation loop pipeline is instantly severed. This results in the most rapid coolant loss and depressurization with coolant discharged from both ends of the break.
A complete loss of normal AC power occurs simultaneously with the LOCA.
This additional condition results in the longest delay time for the core standby cooling systems to become operational.
The LOCA assumes that a recirculation loop pipeline is instantly severed.
This results in the most rapid coolant loss and depressurization with coolant discharged from both ends of the break.


Ig
Ig
.3.2   Modification Modification of the system requires the following hardware     and wiring changes on Units 1 and 2:
 
The auto-transfer feature of valve motive power is eliminated on RHR injection, recirculation pump discharge, and RHR pump minimum flow bypass valves. Motive power to these selected valves is provided by hydraulic-pneumatic operators.
.3.2 Modification Modification of the system requires the following hardware and wiring changes on Units 1 and 2:
Redundant power supplies to these actuators are provided for positioning the valves to the required LOCA configuration; 3.2. 1   Suction Line Break Figure 2 illustrates operation of the modified system for a break in the recirculation pump suction line. The break location producing the highest peak cladding temperature is, as before, at the nozzle on the pressure vessel. The other side of the postulated <<double-ended<< break is fed through the recirculation loop by the jet pump nozzles, whose small area limits flow to a low value and makes frictional losses negligible in the calculation.
The auto-transfer feature of valve motive power is eliminated on RHR injection, recirculation pump discharge, and RHR pump minimum flow bypass valves.
The discharge valves   of the recirculation loops will begin closing upon receipt of a permissive signal. The valves are capable of closing against a differential pressure of 200 psid.
Motive power to these selected valves is provided by hydraulic-pneumatic operators.
Redundant power supplies to these actuators are provided for positioning the valves to the required LOCA configuration; 3.2. 1 Suction Line Break Figure 2 illustrates operation of the modified system for a break in the recirculation pump suction line.
The break location producing the highest peak cladding temperature is, as before, at the nozzle on the pressure vessel.
The other side of the postulated
<<double-ended<<
break is fed through the recirculation loop by the jet pump nozzles, whose small area limits flow to a low value and makes frictional losses negligible in the calculation.
The discharge valves of the recirculation loops will begin closing upon receipt of a permissive signal.
The valves are capable of closing against a differential pressure of 200 psid.
To assure the recirculation system discharge valve is not required to close with a differential pressure greater than 200 psid, valve closures are delayed until reactor vessel pressure 4
To assure the recirculation system discharge valve is not required to close with a differential pressure greater than 200 psid, valve closures are delayed until reactor vessel pressure 4


has decreased to less than   225 psig. By the time the recirculation discharge valve has stroked sufficiently that     it could present a flow-limiting restriction, the vessel pressure will have decayed below 200 psig.
has decreased to less than 225 psig.
Valve closure is therefore effected in about   62 seconds, of which 29 seconds represents the reactor vessel .pressure permissive and 33 seconds the maximum valve closure time. The effect is isolation of the break from the LPCI system injection point.
By the time the recirculation discharge valve has stroked sufficiently that it could present a flow-limiting restriction, the vessel pressure will have decayed below 200 psig.
Approximately 46 seconds a fter the br eak, the LPCI startup sequence is complete and flow commences in both loops. Flow into P
Valve closure is therefore effected in about 62 seconds, of which 29 seconds represents the reactor vessel.pressure permissive and 33 seconds the maximum valve closure time.
the broken loop will not reach its expected value for an additional 16 seconds, when the recirculation discharge valve has fully closed. The LPCI pumps go   nearly to full runout flow, as limited by the additional resistance in the pump discharge line,
The effect is isolation of the break from the LPCI system injection point.
, because each pair of pumps is delivering flow to its own bank of jet pump nozzles rather than to one bank as would be the case of loop selection logic. Additional resistance has been added to the LPCI pump discharge lines. This replaces the resistance lost when only one or two pumps are discharging into a system designed
Approximately 46 seconds after the br eak, the LPCI startup sequence is complete and flow commences in both loops.
  .for three pump flow. The added resistance prevents insufficient Net Positive Suction Head (NPSH) in these modes of operation.
Flow into P
the broken loop will not reach its expected value for an additional 16 seconds, when the recirculation discharge valve has fully closed.
The LPCI pumps go nearly to full runout flow, as limited by the additional resistance in the pump discharge line,
, because each pair of pumps is delivering flow to its own bank of jet pump nozzles rather than to one bank as would be the case of loop selection logic.
Additional resistance has been added to the LPCI pump discharge lines.
This replaces the resistance lost when only one or two pumps are discharging into a system designed
.for three pump flow.
The added resistance prevents insufficient Net Positive Suction Head (NPSH) in these modes of operation.
In analyzing the single failures for a suction line break, both AC and DC power failures are considered (see Figures 4 and 5).
In analyzing the single failures for a suction line break, both AC and DC power failures are considered (see Figures 4 and 5).
For AC power considerations the most significant single failure for the modified system is a Diesel Generator failure. This failure results in two LPCI pumps operating in one loop, one LPCI
For AC power considerations the most significant single failure for the modified system is a Diesel Generator failure.
This failure results in two LPCI pumps operating in one loop, one LPCI


pump operating in the alternate loop, and two           CS pumps operating in one   CS system.
pump operating in the alternate loop, and two CS pumps operating in one CS system.
The most     significant   DC power   single failure would   be loss of a battery.     For a suction line break this failure results in two LPCI pumps     operating in one loop, one LPCI pump operating in the alternate loop,     and two   CS pumps operating in   one CS system.
The most significant DC power single failure would be loss of a battery.
Table   1   shows the   various   pump combinations for postulated single failures.
For a suction line break this failure results in two LPCI pumps operating in one loop, one LPCI pump operating in the alternate loop, and two CS pumps operating in one CS system.
The unique power arrangement         at Browns Ferry Units 1 and 2 requires examination of an opposite unit spurious accident signal. For this event one RHR pump in each loop of each reactor and one core spray system (two pumps) plus all required valves are available. (Figure     6)
Table 1 shows the various pump combinations for postulated single failures.
The limiting single failure is that failure         which   results in the longest reflood time and consequently the highest peak cladding temperature (PCT). Sensitivity studies have been performed which demonstrate that a typical limiting failure in the modified system is the failure of the LPCI injection yalve in the unbroken loop.     ,This failure results in four core spray pumps, two in each CS loop, and two LPCI pumps in one loop providi'ng ECCS flow to A
The unique power arrangement at Browns Ferry Units 1 and 2
the core. This combination gives a longer ref looding time than one core spray system (two pumps) and one LPCI pump in each loop which is available following an opposite unit spurious accident signal. This is due in part to the effects of counter current flow limiting (CCFL) on the amount of the core spray flow available for ref looding. The assumed occurrence of CCFL results
requires examination of an opposite unit spurious accident signal.
For this event one RHR pump in each loop of each reactor and one core spray system (two pumps) plus all required valves are available.
(Figure 6)
The limiting single failure is that failure which results in the longest reflood time and consequently the highest peak cladding temperature (PCT).
Sensitivity studies have been performed which demonstrate that a typical limiting failure in the modified system is the failure of the LPCI injection yalve in the unbroken loop.
,This failure results in four core spray pumps, two in each CS loop, and two LPCI pumps in one loop providi'ng ECCS flow to A
the core.
This combination gives a longer reflooding time than one core spray system (two pumps) and one LPCI pump in each loop which is available following an opposite unit spurious accident signal.
This is due in part to the effects of counter current flow limiting (CCFL) on the amount of the core spray flow available for reflooding.
The assumed occurrence of CCFL results


in there   being, only a slight improvement with four CS pumps when compared   to two CS pumps. Additionally, the two LPCI pumps feeding into one loop deliver significantly less than twice the flow delivered by a single pump feeding each loop due to the system orificing effects. Thus. the availability of one LPCI pump in each loop for the alternate unit spurious accident signal provides better reflood characteristics than two LPCI pumps into one loop even when supplemented by two additional CS pumps.
in there being, only a slight improvement with four CS pumps when compared to two CS pumps.
: 3. 2. 2   Di'schar e Line Break Figure 7 illustrates the operation of the modified system with     a break in the recirculation pump discharge line.
Additionally, the two LPCI pumps feeding into one loop deliver significantly less than twice the flow delivered by a single pump feeding each loop due to the system orificing effects.
When   the LPCI startup sequence is complete, the LPCI flow in the broken loop is lost through the break. With the modification, the worst-case single failures are failure during opening of the LPCI injection valve opposite the break and failure during opening of the LPCI minimum flow bypass valve serving the RHR pumps intended for injection i'nto the unbroken loop. Table 1 and Figures 8-11 show the pump combination which results from the postulated single failures.
Thus. the availability of one LPCI pump in each loop for the alternate unit spurious accident signal provides better reflood characteristics than two LPCI pumps into one loop even when supplemented by two additional CS pumps.
The   suction line break remains the design basis accident for the modified system, but with a lower calculated peak cladding temperature.
: 3. 2. 2 Di'schar e Line Break Figure 7 illustrates the operation of the modified system with a break in the recirculation pump discharge line.
When the LPCI startup sequence is complete, the LPCI flow in the broken loop is lost through the break.
With the modification, the worst-case single failures are failure during opening of the LPCI injection valve opposite the break and failure during opening of the LPCI minimum flow bypass valve serving the RHR pumps intended for injection i'nto the unbroken loop.
Table 1 and Figures 8-11 show the pump combination which results from the postulated single failures.
The suction line break remains the design basis accident for the modified system, but with a lower calculated peak cladding temperature.


A typical limiting single failure for the discharge line break is the LPCI injection valve failure. This failure results in four core spray pumps available for core reflooding. This condition results in a longer reflood time than the opposite unit spurious accident signal in which two core spray and one LPCI pumps are available for reflooding. As previously discussed one LPCI pump provides faster reflooding and, consequently lower PCT than two additional CS pumps.
A typical limiting single failure for the discharge line break is the LPCI injection valve failure.
Representative relative peak cladding temperature   for the two events described above is shown in Table 2.
This failure results in four core spray pumps available for core reflooding.
The present Browns Ferry Units 1 and 2 system utilizes two power supplies for the electrical distribution system providing power to the LPCI valves. Figure 12 shows the arrangement of the buses and the valves fed from these buses. Figure 13 shows the modified system which eliminates the auto-transfer feature for the electrical distribution system. Electrical interlocks will be maintained to prevent manual paralleling of the two AC sources. The AC power only supplies power for the non-essential hydraulic pumps on the valve operators. Figures 16 through 27 show the valve operator redundant DC power supplies to provide the motive power to produce the stored pneumatic energy.
This condition results in a longer reflood time than the opposite unit spurious accident signal in which two core spray and one LPCI pumps are available for reflooding.
3.3   Model A lication The core heatup calculations are performed using the approved Appendix K emergency core cooling evaluation models.
As previously discussed one LPCI pump provides faster reflooding and, consequently lower PCT than two additional CS pumps.
Representative relative peak cladding temperature for the two events described above is shown in Table 2.
The present Browns Ferry Units 1 and 2 system utilizes two power supplies for the electrical distribution system providing power to the LPCI valves.
Figure 12 shows the arrangement of the buses and the valves fed from these buses.
Figure 13 shows the modified system which eliminates the auto-transfer feature for the electrical distribution system.
Electrical interlocks will be maintained to prevent manual paralleling of the two AC sources.
The AC power only supplies power for the non-essential hydraulic pumps on the valve operators.
Figures 16 through 27 show the valve operator redundant DC power supplies to provide the motive power to produce the stored pneumatic energy.
3.3 Model A lication The core heatup calculations are performed using the approved Appendix K emergency core cooling evaluation models.


3.4     Safet   Anal sis The proposed     modification has been analyzed and evaluated to assure the changes do not introduce adverse effects to the overall plant. The areas evaluated are discussed in the balance of this section.
3.4 Safet Anal sis The proposed modification has been analyzed and evaluated to assure the changes do not introduce adverse effects to the overall plant.
3.4. 1   E ui ment Ca abilit to   Perform as Anal zed The major components     of the proposed modification are unchanged, except for the valve operators and the power supplies for selected valves. Each major element is considere'd below:
The areas evaluated are discussed in the balance of this section.
: 3. 4. 1. 1   Emer enc   Diesel-Generators The proposed     modification does not change any of the operating requirements of the diesel generators.
3.4. 1 E ui ment Ca abilit to Perform as Anal zed The major components of the proposed modification are unchanged, except for the valve operators and the power supplies for selected valves.
The   operating modes of the LPCI pumps were changed by the previous modification such that two'umps discharge to each injection header thereby changing the discharge flow characteristics from that previously established. Prior to reactor startup after the previous modification, flow tests were conducted to establish the pump discharge path characteristics from which pump flow curves were developed.       This information was used to determine the additional resistance to be added on the
Each major element is considere'd below:
: 3. 4. 1. 1 Emer enc Diesel-Generators The proposed modification does not change any of the operating requirements of the diesel generators.
The operating modes of the LPCI pumps were changed by the previous modification such that two'umps discharge to each injection header thereby changing the discharge flow characteristics from that previously established.
Prior to reactor startup after the previous modification, flow tests were conducted to establish the pump discharge path characteristics from which pump flow curves were developed.
This information was used to determine the additional resistance to be added on the


discharge side of each     pump to ensure satisfaction of     pump Net Positive Suction     Head (NPSH)   requirements.
discharge side of each pump to ensure satisfaction of pump Net Positive Suction Head (NPSH) requirements.
: 3. 4. 1.3   Control Circuitr All standards for     engineered   safeguards   control equipment are maintained. Additional relays     and wiring have been added to assure   single-failure capability.
: 3. 4. 1.3 Control Circuitr All standards for engineered safeguards control equipment are maintained.
3.4. 1.4   Recirculation Loo     E ualizer Valve and   LPCI S stem Cross-Tie. Valve Inadvertent opening of these valves could negate the LPCI system injection when needed, therefore one equalizer valve and the cross-tie valve were closed and motive power removed by the previous modification. An annunciator was added to indicate the LPCI cross-tie valve and/or equalizer valve are not fully closed.
Additional relays and wiring have been added to assure single-failure capability.
3.4. 1.5   Recirculation   Pum   Dischai   e Valves Closure of the recirculation pump discharge valves is of importance to the proper application of the proposed modification. Hydraulic-pneumatic operators will be added to these valves. Four aspects   of valve compatibility   have been investigated:
3.4. 1.4 Recirculation Loo E ualizer Valve and LPCI S stem Cross-Tie. Valve Inadvertent opening of these valves could negate the LPCI system injection when needed, therefore one equalizer valve and the cross-tie valve were closed and motive power removed by the previous modification.
: 3. 4. 1. 5. 1 Environment As reported in Section 5.2 of the Browns Ferry FSAR, the recirculation system valves are designed to operate under the environmental conditions associated with the DBA-LOCA. The added hydraulic-pneumatic operators are designed to operate under the same   conditions.
An annunciator was added to indicate the LPCI cross-tie valve and/or equalizer valve are not fully closed.
3.4. 1.5.2   Break Effects A study of the drywell geometry was performed prior to the previous modification to determine the effects of jet impingement resulting from a postulated recirculation line break. For the suction line break, re-routing of cable has been provided, to prevent discharge valve operator malfunction. Valve closure at the time of   a discharge line break is not considered in the   ECCS analysis. Also, closure of the discharge valve does not change the LPCI system input capability during a discharge line break (See Figure 7).
3.4. 1.5 Recirculation Pum Dischai e Valves Closure of the recirculation pump discharge valves is of importance to the proper application of the proposed modification.
For the break effects study, breaks were assumed at all terminals, branch lines, and at other locations based upon stress. Breaks were assumed at all locations where pressure plus dead load plus thermal plus earthquake     stresses exceed
Hydraulic-pneumatic operators will be added to these valves.
: 0. 8(1.2S>+S~) . Additionally, in piping runs   where no stresses occur in excess of 0.8(1.2S>+S>),     a minimum of two intermediate breaks were postulated based upon     the highest total stresses combined as above.
Four aspects of valve compatibility have been investigated:
: 3. 4. 1. 5. 1 Environment As reported in Section 5.2 of the Browns Ferry FSAR, the recirculation system valves are designed to operate under the environmental conditions associated with the DBA-LOCA.
The added hydraulic-pneumatic operators are designed to operate under the same conditions.
3.4. 1.5.2 Break Effects A study of the drywell geometry was performed prior to the previous modification to determine the effects of jet impingement resulting from a postulated recirculation line break.
For the suction line break, re-routing of cable has been provided, to prevent discharge valve operator malfunction.
Valve closure at the time of a discharge line break is not considered in the ECCS analysis.
Also, closure of the discharge valve does not change the LPCI system input capability during a discharge line break (See Figure 7).
For the break effects study, breaks were assumed at all terminals, branch lines, and at other locations based upon stress.
Breaks were assumed at all locations where pressure plus dead load plus thermal plus earthquake stresses exceed
: 0. 8(1.2S>+S~).
Additionally, in piping runs where no stresses occur in excess of 0.8(1.2S>+S>),
a minimum of two intermediate breaks were postulated based upon the highest total stresses combined as above.


3.4. 1. 5. 3 Valve Differential Pressure Recirculation valve closure requires both a LOCA initiation signal and a decrease in reactor pressure to the permissive setting. With valve closure initiation delayed until reactor pressure has decayed to less than 225 psig (approximately 29 seconds) the differential pressure across the closed valve will always be less than the maximum 200 psid. The sensor and permissive circuitry are designed to satisfy all requirements for engineered safeguards control systems.
3.4. 1. 5. 3 Valve Differential Pressure Recirculation valve closure requires both a LOCA initiation signal and a decrease in reactor pressure to the permissive setting.
3.4.1.6     Minimum Flow B ass Valve Minimum   flow bypass valves will be provided with hydraulic-pneumatic operators with redundant DC power supplies and flow switches to assure maximum pump protection under postulated accident conditions. This modification eliminates the need for the auto-transfer of power to these valves. AC power will only supply the nonessential hydraulic pump to the operators of these valves.
With valve closure initiation delayed until reactor pressure has decayed to less than 225 psig (approximately 29 seconds) the differential pressure across the closed valve will always be less than the maximum 200 psid.
3.4. 1. 7   Batteries DC power from   qualified station batteries will be the primary and redundant power sources to the hydraulic-pneumatic operator.
The sensor and permissive circuitry are designed to satisfy all requirements for engineered safeguards control systems.
3.4.1.6 Minimum Flow B ass Valve Minimum flow bypass valves will be provided with hydraulic-pneumatic operators with redundant DC power supplies and flow switches to assure maximum pump protection under postulated accident conditions.
This modification eliminates the need for the auto-transfer of power to these valves.
AC power will only supply the nonessential hydraulic pump to the operators of these valves.
3.4. 1. 7 Batteries DC power from qualified station batteries will be the primary and redundant power sources to the hydraulic-pneumatic operator.
Each source is selected such that no single battery failure inhibits redundant power sources or results in a configuration of ECCS pump availability that is less than adequate for core cooling.
Each source is selected such that no single battery failure inhibits redundant power sources or results in a configuration of ECCS pump availability that is less than adequate for core cooling.


3.4.1.8   H draulic 0 erators See Figure 28. Alarms will be provided in the main control room for non-standard accumulator parameters. Accumulator pressure indication will also be provided for operator verification and interpretation.
3.4.1.8 H draulic 0 erators See Figure 28.
3.4. 1.8.1   Seismic   uglification The operability of the hydraulic-pneumatic valve operators and all the appurtenances vital to their operation during and after a SSE is verified in accordance with IEEE 382 and 384 as applicable to the plant. If the installation of the hydraulic-pneumatic valve operators produce increased loading condition, the LPCI system and recirculation water system shall be requalified to the standards and codes which were applied to the original unmodified system.
Alarms will be provided in the main control room for non-standard accumulator parameters.
3.4.2     ui ment Interfaces The effects 'of the proposed     change on the various operating modes of the equipment have been 'evaluated and found to be acceptable, as described below:
Accumulator pressure indication will also be provided for operator verification and interpretation.
3.4.2. 1 Emer enc   Diesel-Generators The proposed   modification introduces     no new or different interfaces for this equipment.
3.4. 1.8.1 Seismic uglification The operability of the hydraulic-pneumatic valve operators and all the appurtenances vital to their operation during and after a SSE is verified in accordance with IEEE 382 and 384 as applicable to the plant. If the installation of the hydraulic-pneumatic valve operators produce increased loading condition, the LPCI system and recirculation water system shall be requalified to the standards and codes which were applied to the original unmodified system.
: 3. 4. 2. 2   Motor Control Centers and Control Panels l I Motor control centers     will be modified on those valves necessary for automatic operation for     LPCI injection (LPCI   injection, recirculation pump discharge, and RHR pump minimum flow bypass valves) in order to accomodate the addition of hydraulic-pneumatic operators. A control panel will be added for backup control to the hydraulic-pneumatic operators.           All standards for engineering safeguards control will be maintained.
3.4.2 ui ment Interfaces The effects 'of the proposed change on the various operating modes of the equipment have been 'evaluated and found to be acceptable, as described below:
: 3. 4. 2. 2. 1 Valve Power Existing Limitorque valve operators       will be   replaced by hydraulic-pneumatic operators on valves necessary for automatic operation for LPCI injection. This modification allows elimination of the valve motive power auto-transfer feature for redundant power supplies.       Physically and electrically separate, redundant DC power supplies are provided to the new operator to assure proper valve movement to the required position during a LOCA. Valve motion times are maintained in order for previous analyses to remain applicable.
3.4.2.
3.4. 2. 2. 2 Valve Motor Control To ensure     that a malfunction in the individual valve controller does not couple back to the other valve control circuits, the redundant A and B circuits were provided separate relays and contacts in the logic panels on a previous modification. This separated, redundant arrangement has been applied to the LPCI and 4
1 Emer enc Diesel-Generators The proposed modification introduces no new or different interfaces for this equipment.
: 3. 4. 2. 2 Motor Control Centers and Control Panels l
I Motor control centers will be modified on those valves necessary for automatic operation for LPCI injection (LPCI injection, recirculation pump discharge, and RHR pump minimum flow bypass valves) in order to accomodate the addition of hydraulic-pneumatic operators.
A control panel will be added for backup control to the hydraulic-pneumatic operators.
All standards for engineering safeguards control will be maintained.
: 3. 4. 2. 2. 1 Valve Power Existing Limitorque valve operators will be replaced by hydraulic-pneumatic operators on valves necessary for automatic operation for LPCI injection.
This modification allows elimination of the valve motive power auto-transfer feature for redundant power supplies.
Physically and electrically separate, redundant DC power supplies are provided to the new operator to assure proper valve movement to the required position during a LOCA.
Valve motion times are maintained in order for previous analyses to remain applicable.
3.4. 2. 2. 2 Valve Motor Control To ensure that a malfunction in the individual valve controller does not couple back to the other valve control circuits, the redundant A and B circuits were provided separate relays and contacts in the logic panels on a previous modification.
This separated, redundant arrangement has been applied to the LPCI and 4


recirculation system valves needed for operation as described.
recirculation system valves needed for operation as described.
System interfacing and protection as related to the valve motor control centers are unchanged except as noted in 3.4.2.2.
System interfacing and protection as related to the valve motor control centers are unchanged except as noted in 3.4.2.2.
3.4.2.2.3   DC Control Power As shown   in Figure   14 and Browns Ferry FSAR Figure 8. 6-3, 250 VDC from the station batteries provides control power to LPCI logic panels. After the proposed modification the same equipment receives power from this source as in the original design. These station batteries are also the power source for hydraulic-pneumatic operators. Failure of any one station battery does not cause interactions that exceed the limiting case-for   core cooling capabilities. See also 3.4. 1.7.
3.4.2.2.3 DC Control Power As shown in Figure 14 and Browns Ferry FSAR Figure 8. 6-3, 250 VDC from the station batteries provides control power to LPCI logic panels.
3.4.2.3   LPCI Lo ic Panels To provide the necessary redundancy required on the previous modification, changes were made to the LPCI logic panels. To preclude valve-to-valve interface, redundant and separate relays and contacts were provided for each LPCI and recirculation system. Each of the added redundant relays was provided full separation from all others by enclosure in a metal box. The wiring from redundant contacts between the two logic panels was provided separation by enclosure in flex conduit and       termination'n metal junction boxes. This logic scheme will be maintained in the new modification. The only changes to be made to the LPCI logic panels on this modification will be to add redundant flow information to the minimum flow bypass valves. Since redundant
After the proposed modification the same equipment receives power from this source as in the original design.
These station batteries are also the power source for hydraulic-pneumatic operators.
Failure of any one station battery does not cause interactions that exceed the limiting case-for core cooling capabilities.
See also 3.4. 1.7.
3.4.2.3 LPCI Lo ic Panels To provide the necessary redundancy required on the previous modification, changes were made to the LPCI logic panels.
To preclude valve-to-valve interface, redundant and separate relays and contacts were provided for each LPCI and recirculation system.
Each of the added redundant relays was provided full separation from all others by enclosure in a metal box.
The wiring from redundant contacts between the two logic panels was provided separation by enclosure in flex conduit and termination'n metal junction boxes.
This logic scheme will be maintained in the new modification.
The only changes to be made to the LPCI logic panels on this modification will be to add redundant flow information to the minimum flow bypass valves.
Since redundant


flow switches   will be added to each LPCI system,   and each circuit can be kept separate     to the new operators,   no new interfacing will be   necessary in the logic panels.
flow switches will be added to each LPCI system, and each circuit can be kept separate to the new operators, no new interfacing will be necessary in the logic panels.
: 3. 4.2.4   H draulic/Pneumatic 0 erators Physical and electrical separations are maintained on the operators to assure redundant features.
: 3. 4.2.4 H draulic/Pneumatic 0 erators Physical and electrical separations are maintained on the operators to assure redundant features.
3.4. 3   Functional Interface The RHR system,   as discussed   in this report, performs as a short-term post-LOCA     core cooling function. The system also provides a long-term containment cooling function which is described in Sections 4. 8. 6. 2 and 14.6.3.3.2 of the FSAR. The effects of the proposed change to the core cooling function on the containment cooling function were evaluated and found to be acceptable after modification as described below.
3.4. 3 Functional Interface The RHR system, as discussed in this report, performs as a
short-term post-LOCA core cooling function.
The system also provides a long-term containment cooling function which is described in Sections
: 4. 8. 6. 2 and 14.6.3.3.2 of the FSAR.
The effects of the proposed change to the core cooling function on the containment cooling function were evaluated and found to be acceptable after modification as described below.
In analyzing single failures which might influence long-term suppression pool cooling, both AC and DC control and emergency power failures as well as component failures in the RHR and RHRSW I
In analyzing single failures which might influence long-term suppression pool cooling, both AC and DC control and emergency power failures as well as component failures in the RHR and RHRSW I
(cooling water) systems were considered. The worst case single failure (Reactor MOV Board loss) with the modified system still leaves two   RHR heat exchangers,   two RHR pumps, and two RHR Service Water   pumps and associated valving available for suppression pool cooling. The suppression pool temperature versus time response for this combination of equipment is shown by curve C in FSAR Figure 14.6-12.
(cooling water) systems were considered.
The worst case single failure (Reactor MOV Board loss) with the modified system still leaves two RHR heat exchangers, two RHR pumps, and two RHR Service Water pumps and associated valving available for suppression pool cooling.
The suppression pool temperature versus time response for this combination of equipment is shown by curve C in FSAR Figure 14.6-12.


i
i
: 3. 4. 4 Satis faction of   A ro riate Standards The proposed   modification directly affects as .Engineered Safeguards   System and has been designed to Class I system standards. The standards and guides which were applicable to the original design have been reviewed to assure the modified system design, equipment, and installation meet or exceed the qualifications of the unmodified system.
: 3. 4. 4 Satis faction of A ro riate Standards The proposed modification directly affects as.Engineered Safeguards System and has been designed to Class I system standards.
3.4.5   ualit   Assurance and Control Quality assurance and control will be applied to this modification as detailed in Appendix D of the Browns Ferry FSAR.
The standards and guides which were applicable to the original design have been reviewed to assure the modified system
: design, equipment, and installation meet or exceed the qualifications of the unmodified system.
3.4.5 ualit Assurance and Control Quality assurance and control will be applied to this modification as detailed in Appendix D of the Browns Ferry FSAR.
A'ppendix D incorporates the requirement of 10CFR50, Appendix B.
A'ppendix D incorporates the requirement of 10CFR50, Appendix B.


4 0  
4 0


==SUMMARY==
==SUMMARY==
AND CONCLUSXONS The proposed   modification involves some physical 'changes to the plant to permit elimination of the swing-bus concept and adoption of the total system availability of the new design.
AND CONCLUSXONS The proposed modification involves some physical 'changes to the plant to permit elimination of the swing-bus concept and adoption of the total system availability of the new design.
The analytical methods used reflect the most recent
The analytical methods used reflect the most recent
, determinations of NRC staff and reactor suppliers for modeling the performance of Emergency Core Cooling Systems.
, determinations of NRC staff and reactor suppliers for modeling the performance of Emergency Core Cooling Systems.
The application of the proposed modification adds to the overall capability of the plant to continue operation in a manner that ensures the health and safety of the public while providing ben'efit in the production of electrical energy.
The application of the proposed modification adds to the overall capability of the plant to continue operation in a manner that ensures the health and safety of the public while providing ben'efit in the production of electrical energy.
                                    >>18-
>>18-


5 0 REFERENCES
5 0
.1. Interim Policy Statement, USAEC, dated June 19, 1971;
REFERENCES
.1.
Interim Policy Statement, USAEC, dated June 19, 1971;


==Subject:==
==Subject:==
AEC Adopted Interim Acceptance Criteria for Performance, of ECCS for'Light-Water Power Reactors.
AEC Adopted Interim Acceptance Criteria for Performance, of ECCS for'Light-Water Power Reactors.
: 2. NEDE-20973, Supplement   1.
2.
: 3. Letter from J. E- Gilleland (TVA) to Benard C. Rusche (NRC) dated February= 12, 1976.
NEDE-20973, Supplement 1.
3.
Letter from J.
E-Gilleland (TVA) to Benard C. Rusche (NRC) dated February= 12, 1976.
 
TABLE 1
ECC S PUMP CONFIGURATION Suction Side Break Pum s Available++
No Failures Opposite Unit Spurious Accident Signal LPCI Injection Valve Failure+
LPCI Minimum Valve Failure+
Recirculation Discharge Valve Failure-Break Side~
Diesel Failure Battery. Failure
~ 4 Core Spray, 2 LPCI in one Loop 4 Core Spray, 2
4 Core Spray, 2
LPCI in one Loop LPCI in one Loop 2 Core Spray, 2 LPCI in one Loop, 1 LPCI in other Loop 2 Core Spray, 2 LPCI in one Loop, 1 LPCI in other.Loop 4 Core Spray, 2 LPCI in each Loop 2 Core Spray, 1 LPCI in each Loop Dischar e Side Break No Failures LPCI Injection Valve Failure+
Pum s Available~*
4 Core Spray, 2 LPCI in one Loop 4 Core Spray
~ LPCI Minimum Flow Valve Failure+
4 Core Spray Diesel Failure Battery Failure
,Opposite Unit Spurious Accident Signal 2 Core Spray, 1 LPCI 2 Core Spray, 1 LPCI 2 Core Spray, 1 LPCI
+Limiting Sing3.e Failure
~>In Unbroken Loop TABLE 2 LOCAL PEAK CLADDING TEMPERATURES AND REFLOOD TIMES FOLLOWING A LOCA AND WORST SINGLE FAILURE Suction Line Break Discharge Line Break Peak Cladding Tem erature
~F 2200 2022 Flooding Time seconds 108 126
 
DIG A 0 IV I 0/G 8 0/G C DIV II 1A 1A 2A 2A f +~%
1 1C 1C 2C 2C 18 18 28 28 ID 1D 2D 20 CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 DISCH SUCTION 0ISCH RECIRC 8 RECIRC A NOT RUNNING RECIRC 8 RECIRC A Figure 1
System Normal Operation


TABLE    1 ECC S PUMP CONFIGURATION Suction Side Break                            Pum s  Available++
0/G A 0 IV I D/G 8 D/G C 0 IV II D/G 0 I
No Failures                            4  Core Spray, 2  LPCI in  each Loop Opposite Unit Spurious Accident        2  Core Spray,  1 LPCI in  each Loop Signal LPCI Injection Valve Failure+        ~ 4  Core Spray, 2  LPCI in  one Loop LPCI Minimum Valve Failure+            4  Core Spray, 2  LPCI in  one Loop Recirculation Discharge Valve          4   Core Spray, 2  LPCI in  one Loop Failure-Break Side~
~040 q
Diesel Failure                          2 Core  Spray, 2  LPCI in  one Loop, 1  LPCI in other Loop Battery. Failure                        2  Core Spray, 2 LPCI  in  one Loop, 1  LPCI in other .Loop Dischar  e Side Break                          Pum s  Available~*
1A IAi 2Ai 2A I L
No Failures                            4  Core Spray, 2  LPCI in one Loop LPCI  Injection Valve Failure+          4  Core Spray
C 1C 1CI 2CI 2C L
C
~ e-4 e
1B
~
~
LPCI Minimum Flow Valve    Failure+    4  Core Spray Diesel Failure                          2  Core Spray, 1  LPCI Battery Failure                        2  Core Spray, 1  LPCI
1B 2B 2B~
  ,Opposite Unit Spurious Accident        2  Core Spray, 1  LPCI Signal
L C
    +Limiting  Sing3.e Failure
C.';.
  ~>In Unbroken Loop TABLE 2 LOCAL PEAK CLADDING TEMPERATURES AND REFLOOD TIMES FOLLOWING A LOCA AND WORST SINGLE FAILURE Peak  Cladding        Flooding Time Tem erature  ~F          seconds Suction Line Break                 2200                  108 Discharge Line Break              2022                  126
!,::L~.:
I 10 10 20 2D' C
.C$
'ROSSTIE CROSSTIE LPCI A LPCI B LPCI A LPCI B BREAK DISCH SUCTION DISCH DISABLED OR NOT RUNNING RECIRC 8 RECIRC 4 RECIRC B RECIRC A Figure System Mode of Operation During Unit 1 LOCA (Suction Line Break),No Failures


0 IV I                                                       DIV II DIG A                          0/G 8                         0/G C 1A   1A    2A     2A       1C f  +~%
0/G A DIV I D/G 8 D/G C.
1C     2C     2C 1
0 IV II 0/G D IA IA 2A 2A 1C IC 2C 2C L
18   18     28   28           ID      1D   2D   20 CROSSTIE                                                                                 CROSSTIE LPCI A                                 LPCI 8                                         LPCI A                                 LPCI 8 DISCH      SUCTION     0ISCH NOT RUNNING RECIRC 8               RECIRC A                                                         RECIRC 8               RECIRC A Figure 1    System Normal Operation
C
':"',:C~g;:2g "~:
L C::bg:;"::,'.,L$:;::
18 18 28 28 I
10 1D 20 2D C:
.C,;:
CROSSTIE CRDSSTIE LPCI A LPCI 8 LPCI'A LPCI 8 BREAK OISCH SUCTION OISCH RECIRC 8 RECIRC A DISABLEDOR NDT RUNNING RECIRC 8 RECIRC A Figure 3 System Mode ofOperation During Unit 1 LOCA (Suction Line Breakj LPCI Injection Va/ve Failure
 
0/G A DIV I 0/G 8 D/G C OIV II D/G D 1A IA 2A 2A
.sr.'
::::,,"4';.-:.:::.
I ~~%
1 1C 1C 2C 2C
.I" 18 18 28 28 C,,:Ci.:.:
10 1D 2D 20 L
C
''"CP.
4'.1-~g "5::j':
CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 BREAK OISCH SUCTION OISCH RECIRC 8 RECIRC A DISABLEDOR NOT RUNNING RECIRC 8 RECIRC A Figure 4 System Mode of Operation During Unit 7 LOCA (Suction Line Break/ Diesel Failure


0 IV I                                                                           0 IV II 0/G A                                D/G 8                                  D/G C                                   D/G 0 1A
DIG A 0 IV I DIG 8 0/G C DIV II DIG 0 1A 1A 2A "2A 1C IC 2C 2C 18 18 28 28 I ~
        ~    0 4 IAi I
I 10
0 2Ai 2A q
. 10 2D 20 L
I        1C     1CI    2CI    2C               1B
C
                                                                                      ~ e-4
+'Cn:.4K%
                                                                                      ~  1B      2B e
CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 BREAK DISCH SUCTION DISCH RECIRC 8 RECIRC A 0 ISABLED 0 R NOT RUNNING RECIRC 8 RECIRC A Figure 5
2B~            10     10 I
System Mode ofOperarion During Unit 1 LOCA (Suction Line Break/ Battery Faiiure
20           2D' L     C                               L      C      C.';.  !,::L~.:                 C      .C$
L      C
                                                                                                                                              'ROSSTIE CROSSTIE LPCI A                                           LPCI B                                                        LPCI A                                           LPCI B BREAK DISCH       SUCTION       DISCH                               DISABLED OR NOT RUNNING RECIRC 8                   RECIRC 4                                                                            RECIRC B                      RECIRC A Figure                 System Mode   of Operation During Unit 1 LOCA (Suction Line Break),No Failures


DIV I                                                                    0 IV II 0/G A                               D/G 8                                  D/G C  .                            0/G D I
D/G A OIV I 0/G B OIG C OIV II D/G D I
IA     IA      2A         2A        1C    IC      2C      2C              18    18    28      28            10    1D      20      2D L      C    ':"',:C~g;:2g "~:       L    C::bg:;"::,'.,L:;::
0 q
C:     .C,;:
IA IAi 2Ai 2A I s
CROSSTIE                                                                                                   CRDSSTIE LPCI A                                         LPCI 8                                                    LPCI'A                                     LPCI 8 BREAK OISCH        SUCTION         OISCH DISABLED OR NDT RUNNING RECIRC 8                     RECIRC A                                                                     RECIRC 8                  RECIRC A System Mode   of Operation During Unit 1 LOCA (Suction Line Break j LPCI Injection  Va/ve Failure Figure 3
p'y.
c (c:.:-::::>I.',;.
f ~
+
1 1C IC I 2C I 2C
'.",L','1 C
';.C,~
L
.I
~ e~
o IB
~
18~
2BI 2B~
:.-;:C:1 C
I l
I 1D ID 2O 2O
:.'"C" C
L CROSSTIE CROSSTIE LPCI A LPCI B LPCI A LPCI B BREAK 0 ISCH SUCTION DISCH RECIRC 8 RECIRC A DISABLED OR NOT RUNNING RECIRC B RECIRC A Figure 6
system Mode of Operation During Unit 1 LOCA (Suction Line Breaki Opposite UnitSpurious Accident Signal


DIV I                                                                        OIV II 0/G A                                         0/G 8                                   D/G C                               D/G D 1A     IA    2A                 2A       1C I    ~~%
0/G A
1C     2C     2C 1
. DIV I D/G 8 D/G C DIV I I D/G 0 1A 1A 2A 2A 1C 1C 2C 2C C
18     18     28     28           10      1D     2D     20
g5gA'grr 18 18 28 28 I
                      .sr.'
C 1D ID 2D 2D L
::::,,"4';.-:.:::.                                                              C,,:Ci.:.:                  L      C      ''"CP. 4'.1-~g "5::j':
C CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 DISCH SUCTION DISCH RECIRC 8 RECIRC A
                                                                    . I" CROSSTIE                                                                                                               CROSSTIE LPCI A                                                 LPCI 8                                                       LPCI A                                       LPCI 8 BREAK OISCH        SUCTION               OISCH DISABLED OR NOT RUNNING RECIRC 8                           RECIRC A                                                                           RECIRC 8                   RECIRC A Figure 4                      System Mode   of Operation During Uni t 7 LOCA (Suction Line Break/ Diesel Failure
;.ge..:;.
DISABLED, NOT RUNNING
'Sj+c,'R NOT CONSIDERED IN ANALYSIS zjz~p;:
RECIRC 8 RECIRC A Figure System Mode ofOperation During Unit 1 LOCA (Discharge Line BreakJ.No Faf/urea


0 IV I                                                                  DIV II DIG A                            DIG 8                                 0/G C                             DIG 0 1A   1A     2A     "2A         1C     IC    2C     2C               18    18     28     28           10 I    ~
D/G A DIV I 0/G 8 0/G C DIVII 0/G 0 1A 1A 2A 2A 1C 1C 2C 2C
                                                                                                                  . 10     2D    20 I
..."5;:
L      C    +'Cn:.4K%
C i~Q@3;4':~g'8 18 28, 28 c
CROSSTIE                                                                                               CROSSTIE LPCI A                                   LPCI 8                                                   LPCI A                                   LPCI 8 BREAK DISCH     SUCTION       DISCH 0 ISAB LED 0 R NOT RUNNING RECIRC 8                 RECIRC A                                                                   RECIRC 8               RECIRC A Figure   5          System Mode of Operarion During Unit 1 LOCA (Suction Line Break/  Battery Faiiure
r'cj:..-:::'i;'".
1D 10 20 20
.=-I.'=.
C CROSSTIE CROSSTIE LPCI A 4c LPCI 8 LPCI A LPCI 8 DISCH SUCTION DISCH RECIRC 8 RECIRC A DISABLED,NOT RUNNING OR NOT CONSIDERED IN ANALYSIS RECIRC 8 RECIRC A Figure 8 stem Mode ofOperation During Unit 1 LOCA (Discharge Line Breakj LPCI Injection Valve Failure


OIV I                                                                      OIV II D/G A                                       0/G B                            OIG C                                 D/G D IA    IAi I
0/G A
0 2Ai s
'IVI 0/G 8 0/G C DIV II D/G D I ~~
2A q
I I ~~~
I p'y.
1 1A IA
1C f    ~IC I   2C
                                                                  +
I 2C 1
L IB
                                                                                    ~ e~  
                                                                                    ~ 18~
                                                                                                  .I o
2BI  2B~          1D l
ID
:.'"C" I
2O C
2O I
L c      (c:.:-::::>I.',;.      '.",L','1   C      ';.C,~                :.-;:C:1      C CROSSTIE                                                                                                      CROSSTIE LPCI A                                  LPCI B LPCI A                                                LPCI B BREAK 0 ISCH        SUCTION            DISCH DISABLED OR NOT RUNNING RECIRC 8                        RECIRC A                                                                    RECIRC B                RECIRC A system Mode of Operation During Unit 1 LOCA (Suction Line Breaki Opposite Unit Spurious Accident Signal Figure  6


                            . DIV I                                                                      DIV I I 0/G A                            D/G 8                                        D/G C                            D/G 0 1A    1A    2A     2A         1C   1C       2C     2C                     18     18     28 28             1D     ID    2D   2D C      g5g A'g    rr                  I      C                        L      C CROSSTIE                                                                                                   CROSSTIE LPCI A                                   LPCI 8                                                       LPCI A                                     LPCI 8 DISCH      SUCTION       DISCH zjz~p;:
2A 2A 1C 1C 2C 2C 18 18 28 28 1
                                                                    ;.ge..:;. DISABLED, NOT RUNNING
1D 10 2D 2D CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 0 ISCH SUCTION DISCH RECIRC 8 RECIRC A DISABLED,NOT RUNNING
                                                                  'Sj+c,'R NOT CONSIDERED IN ANALYSIS                           RECIRC 8               RECIRC A RECIRC 8                RECIRC A Figure             System Mode   of Operation During Unit 1 LOCA (Discharge  Line BreakJ. No Faf/urea
'';~~,::P'.
OR NOT CONSIDERED IN ANALYSIS RECIRC 8 RECIRC A Figure 9 System Mode ofOperation During Unit 1 LOCA fDischarge Line Breaki Diesel Failure


DIV I                                                                              DIV II D/G A                             0/G 8                                  0/G C                                         0/G 0 1A    1A      2A    2A      1C        1C      2C   2C                       18      28,        28              1D        10      20    20
0/G A DIY I 0/G B 0/G C DIV II 0/G 0
                                      ..."5;:
.:,L','--:-.C
C     i~Q@3;4':~g'8                    c    r'cj:..-:::'i;'".          .=-I.'=. C CROSSTIE                                                                                                           CROSSTIE LPCI A       4c                              LPCI 8                                                         LPCI A                                         LPCI 8 DISCH       SUCTION     DISCH DISABLED, NOT RUNNING OR NOT CONSIDERED IN ANALYSIS RECIRC 8                RECIRC A                                                                                RECIRC 8                  RECIRC A Figure 8            stem      Mode of Operation During Unit 1 LOCA (Discharge Line Breakj LPCI Injection            Valve Failure
.'jC~
IC
'IC 2C 2C
:~t.";:
C
'jg~ '";<<4>>'B 1B 2B 2B I
W l
10 1D 20 2D CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI B DISCH SUCTION DISCH RECIRC B RECIRC A DISABLED,NOTRUNNING
~$';~)'' OR NOT CONSIDERED IN ANALYSIS RECIRC B RECIRC A Figure QQ System Mode of Operation During Unit 1 LOCA (Disc/Iarge Line Break/ Battery Failure


                                'IVI                                                                        DIV II 0/G A                           0/G 8                                      0/G C                           D/G D 1A I    ~~IA 2A     2A I
0/G A DIV I 0/G B D/G C DIV II D/G 0 1A 1A 2A 2A 1C 1C 2C 2C I
1C I  ~~~
C+v 18 18 2B 2B I 10 1D 2D 2D x%
1C     2C     2C 1
w?
18     18     28  28          1D     10    2D   2D 1
CROSSTIE CROSSTIE LPCI A IL LPCI B LPCI A LPCI 8 DISCH SUCTION DISCH RECIRC B RECIRC A DISABLE, NOT RUNNING
CROSSTIE                                                                                                 CROSSTIE LPCI A                                       LPCI 8                                                        LPCI A                                   LPCI 8 0 ISCH        SUCTION     DISCH DISABLED, NOT RUNNING
',A,;;
                                                                    '';~~,::P'. OR NOT CONSIDERED IN ANALYSIS RECIRC 8                RECIRC A                                                                        RECIRC 8              RECIRC A Figure 9          System Mode   of Operation During Unit 1 LOCA fDischarge    Line Breaki  Diesel Failure
OR NOT CONSIDERED IN ANALYSIS RECIRC B RECIRC A Figure System Mode ofOperation During Unit 1 LOCA (Discharge Line Breakl Opposite UnitSpurious Accident Signal


DIY I                                                                            DIV II 0/G A                               0/G B                                      0/G C                              0/G 0 IC        'IC      2C     2C                         1B    2B    2B            10 I    W 1D     20    2D l
D/G A DIV I D/G C DIVII-D/G 8 OIV I O/G O DIV II k kV SBTDN BD A 4 kV SHTDN BD C
                .C
)NO 4 kV SHTDN
      .:,L','--:-      .'jC~           :~t.";:      C      'jg~   '";<<4>>'B CROSSTIE                                                                                                      CROSSTIE LPCI A                                           LPCI 8                                                        LPCI A                                    LPCI B DISCH      SUCTION    DISCH DISABLED,NOT RUNNING
.BDB
                                                                          ~$ ';~)'' OR NOT CONSIDERED IN ANALYSIS RECIRC B              RECIRC A                                                                              RECIRC B              RECIRC A Figure QQ          System Mode        of Operation During Unit 1 LOCA (Disc/Iarge Line Break/ Battery Failure
)NO 4 kV SPAN BDD
.0
)NC 1A IA
. 2A 2A 18 28 28 C
C L
1C 1C 2C 2C L
C C
L 10 1D 2D 2D L
C C
L
):
480V SHTON BO IA
) NC UNIT 1
)NC 480V SHTDN BO 18
)Nc
)'Nc
)Nc
)
NC 480V SHTDN BO 2A
) Nc UNIT2
) NC 480V SHTOiY, BD 28
)"'C
)NC
)N 4SOV RX MOV BD 10
)
NO 5 480VRX MOVBD tC
)
Nc
'O
)
NC 480V RX MOY BD 2D
)NO 3 480V RX
~ MOVBD2C
)
iiic NO
)Nc ) Nc
)NC
)Nc
)NC
)1C NC NC NC bC NC
~IC iC NC
)Nc
)Nc 2458 2.538 gp td N
0'K
~a o" UD Ir. 0 10.25 A z0I-0 o~
hz
'l0.1GA 263A 245A 0
z 10-258 10.168 2458 2-538
- ELECTRICAL lNTERLOCK 10-25 A 10 16A 243A 245A 0-258 10 168 Figure 3;2 Existing System Valve Bus Arrangement 1.
Valve closed and motive power removed.


DIV I                                                                    DIV II 0/G A                           0/G B                                    D/G C                              D/G 0 1A    1A    2A     2A       1C     1C     2C       2C               18     18    2B    2B I        10    1D     2D    2D I
0/G A DIY I 0/G C DIV II 0/G 8 OIV 1 D/G 0 0 IV II k kV SBKDK BD A 4 kV SHTDN BOO NO 4 kV SHTDN BD B KO 4 av SHTDN BD D KO lA IA 2A
C+ v                                                          x%    w?
) HC 2A 18 18 28 28
CROSSTIE                                                                                                CROSSTIE LPCI A                                    LPCI B                                                      LPCI A                                  LPCI 8 IL DISCH        SUCTION      DISCH DISABLE, NOT RUNNING
)KC L
                                                                  ',A,;; OR NOT CONSIDERED IN ANALYSIS RECIRC B                RECIRC A                                                                      RECIRC B                RECIRC A Figure             System Mode  of Operation  During Unit  1 LOCA (Discharge Line Breakl Opposite Unit Spurious Accident Signal
1C 1C 2C 2C NC 1D 1D 2D 20
)KC L
c c
T.
) N IJNIT1
) NC 480V SHTDN 480V SHTON BO IA 80 18
) NC
)KC
)NC
)KC UNIT2
~) KC 480V SHTDN BD 2A
)NC
.)KC 480V SHTON BD 28
)KC
)KC
)HC 48QV RX MOV BD 1D
)KO
)
NC NO 480V RX MOV BD 'IC 480Y RX MOV 80 20
)HO
~NC J
PBQV RX MOV BD 2C
)NC )HC NC NC
'C XC NC NC
)NC
)KC
)
KC
)VC PC
)NC
)KC ) HC 2458 2.538 gg KJ N
C
-o
~a o~
tt:a 1
2 10 25A z0 oIll 10.16A 0
z 243A 245A 10 258 IQ 168 2458 2438 10-25 A 10.16A 2.65A 243A 0.258 10 168 Figure 13 h/odified System Vabe Bvs Arrengemene 1.
Valve closed.
and motive power removed.
2.
Power for hydraulic pump - not required for valve closure.
Power for hydraulic ~mp - not required for valve opening.
Power for hydraulic pump - not required for one cycle of valve operation.


D/G A                                 D/G C                                         D/G 8                                    O/G O DIV I                                 DIV II-                                       OIV I                                    D IV II k kV          SBTDN                          4 kV SHTDN                              4 kV SHTDN                                  4 kV SPAN BD      A                                  BD C             )NO                    .BDB                  )NO                    BDD                .0 1A    IA    . 2A      2A                  18      28      28              1C      1C      2C      2C              10    1D      2D      2D C        C        L              L        C        C        L                L    C                L
LOGIC 8 250 YDC LOCA LOGIC 8 LOFTI FLDhf DiVI L06IC A LOW FLOQ DIV T LOGIC B RX PRESS C II50 PRIG OPE N AflNIFLOW BYPASS YLY IO-IbA OPEM LPC I VALVE.
  )NC                                                                                                                                ):                    C UNIT 1                )NC                                                            UNIT 2 480V SHTON              480V SHTDN
IO-258 LOGIC 8 RX PREM C 2.25 PRIG CLOSE DECI PHP.
                                                                                        ) NC480V SHTDN                  480V SHTOiY, BO IA                  BO 18                                                  BO 2A                        BD 28
D/SCAPI.
    )  NC
YALUE 2-$3 LOGIC B LOQ FLOW DIVZZ LOGIC A LOhf Flo Dll/2I LOGIC A RX PRESS K ISOPDIG OPEN MINIFLO4/
                            ) Nc  )'Nc          )Nc                                    ) Nc                ) NC        )"'C        )NC NC
BYPASS VLV.
    )N
IO-Ih8 L06'IC 4 RX PRES~
                                                            'O NO                                                                                  )NO
-< aP.SPSIS OPIUM LPC I VALVE IO-25 A LOSE DECI PHP. Orich'.
                                  )                                                    )
VLY. 2-53B LOGIC A LocA 2SOVS C RPuec IA 8QT..
Nc                                                                                    iiic              NO 4SOV RX                                        5 480VRX                              480V RX                                            3 480V RX MOV BD 10                        )                MOVBD tC                          MOY BD 2D                        )                ~ MOVBD2C
VALVE COMTZOL POlKE'CZAMGEHEAfT
  )Nc      ) Nc              )NC      )Nc    )NC    )1C                NC    NC        NC        bC                  NC    ~IC      iC      NC              )Nc )Nc 2458 2458                                'l0.1GA        263A          10-258                                                  10 16A            243A              0-258 2.538                10.25 A           245A                        10.168                2-538            10-25 A            245A                            10 168 gp        td 0'K                z        0 N                          0 I-0 UD
~a    o"                  o~
hz z                  - ELECTRICAL lNTERLOCK Ir. 0 Figure  3;2 Existing    System Valve Bus Arrangement
: 1.     Valve closed and motive power removed.


0/G A                                    0/G C                                     0/G 8                                      D/G 0 DIY I                                    DIV II                                    OIV 1                                      0 IV II k kV        SBKDK                            4 kV SHTDN                              4 kV SHTDN                                  4 av SHTDN BD    A                                    BOO                NO                  BD B                KO                    BD D                KO lA      IA    . 2A        2A            18      18      28      28          1C      1C      2C      2C                1D    1D      2D      20 L                                                                                  L      c        c
C 4
                                                )KC
    ) HC                                                                                  NC                                        )KC T.  )  N 480V SHTDN IJNIT1 480V SHTON
                                                ) NC                                ~)    KC 480V SHTDN UNIT 2 480V SHTON BO IA                    80 18                                                BD 2A                        BD 28
    )  NC                  )KC      )NC          )KC                                    )NC            .)KC            )KC          )KC
    )HC                            )KO                                                                                )HO NC            NO                                                                  ~NC                PBQV RX 48QV RX                                              480V RX                        480Y RX MOV BD 1D                          )                  MOV BD 'IC                    MOV 80 20                          J                  MOV BD 2C
                                                  'C
  )NC )HC                      NC      NC              XC                NC    NC    )NC      )KC
                                                                                                                  )  KC    )VC      PC      )NC              )KC    ) HC 2458 2458                                10.16A          243A            10 258                                              10.16A          243A              0.258 2.538              10 25A              245A                          IQ 168            2438            10-25 A            2.65A                            10 168 gg      KJ                z          0 N
C 0
o
~a -o Ill      z o~
tt:a 1      2 Figure 13 h/odified System Vabe Bvs Arrengemene
: 1. Valve closed. and motive power removed.
: 2. Power      for hydraulic pump - not required for valve closure.
Power      for hydraulic ~mp - not required for valve opening.
Power      for hydraulic pump - not required for one cycle of valve operation.


LOGIC  8 250 YDC LOCA LOGIC B                      OPEM LPC I RX PRESS C II50 PRIG VALVE.
UNIT 1 ACCIDENT INITIATINGCIRCUITS UNIT2 ACCIDENT INITIATINGCIRCUITS BLOCKS UNIT 'I RHR PUMP 1C
IO-258 D/SCAPI.
'LOCKS UNIT 1 RHR PUMP 1Doo BLOCKS UNIT2 RHR PUMP 2800 BLOCKS UNIT2 RHR PUMP 2A" RHR PUMPS 1A AND 1C RHR PUMPS 18 AND 10 RHR PUMPS 2A AND 2C RHR PUMPS 28 AND20
LOGIC  8                                                                    CLOSE DECI LOFTI FLDhf DiV  I                                                                     PHP.
'OR CORE SPRAY PUMP PRIORITIES. SEE BROWNS FERRY NUCLEAR PLANT FSAR, FIGURE BRAC
YALUE    2-$3 LOGIC    8 RX  PREM OPE N          C 2.25 PRIG AflNIFLOW L06IC A              BYPASS YLY LOW FLOQ IO- IbA DIV T LOGIC B                  OPEN LOQ FLOW              MINIFLO4/
~ ~ STOPS IF RUNNING Figure gg MO~ajSystem RHR Pump Divisional Priorities '
DIV ZZ              BYPASS VLV.
IO-Ih 8          L06'I C 4 RX PRES~    .
LOGIC A                                        -< aP.SPSIS LOSE DECI LOhf Flo PHP. Orich'.
Dll/2I                                                                      VLY. 2-53B OPIUM LPC I LOGIC A                        VALVE RX PRESS                        IO-25 A K ISOPDIG LOGIC A LocA 2SOVS  C 8QT.. VALVE COMTZOL RPuec IA                  POlKE'CZAMGEHEAfT


C 4
I


UNIT 1 UNIT 2 ACCIDENT INITIATINGCIRCUITS                                                    ACCIDENT INITIATINGCIRCUITS BLOCKS UNIT 'I RHR PUMP 1C
Aecv Ac RHov BOID UNIT 1 RECIRCULATION R/NP DISCHAR6E VALVE IWETHOUT eACK-UP CONTROL)
                                                                'LOCKS UNIT 1 RHR PUMP 1Doo BLOCKS UNIT 2 RHR PUMP 2800 BLOCKS UNIT 2 RHR PUMP 2A" RHR PUMPS                  RHR PUMPS                                          RHR PUMPS                  RHR PUMPS 1A AND 1C                  18 AND 10                                        2A AND 2C                  28 AND 20
FCV 68-T9 (24SB) 2$0Y DC AHOY 80 Id 2SOY OC RHOV 80
                                                                        'OR CORE SPRAY PUMP PRIORITIES. SEE BROWNS FERRY NUCLEAR PLANT FSAR, FIGURE BRAC
/A SYHBOLSI LOCAIEO LOCAL PAHfL C
                                                                      ~ ~
LOCATED HATH CONTROL ROCXI PANEL LOCAIEO 9.32 PANEL jt LOCATED 9-33 P/HEL N
STOPS IF RUNNING Figure gg MO~ajSystem RHR Pump Divisional Priorities  '
LOCATXO 9-2I PAHfL p
LOCATED HYU OP 8/CKUP OUHTCOC PANEL HUIES.
I. 2A.K6l, K63, K6A, KTI, Kro. Ket JOOOTHO CIRCUET
: e. IOA.A34 COCA b CX P&#xc3;XAA PERPIAMIVC 3.
RELAY ENCASED TN STEfL BOX FLEX CONDUIT PRON CONTACTS To EHCLOSEO JUNCTION BOX.
CAelf RUII IN FLEX COHOUET BETWEEN PANELS 9-32 8 9-33.
I IL lh TRAIH A CLOSE dOCEHOlo Va TRAIN 8 CLUE dOCEHOID VX TRNIJ b
OPEH dOL EHgID A
TRARI b OPEN dOLENOO j /Af re~
7FHI Aeo/If0 Nl 2A Nl 2A-Nl 2A 2
XC98
<<Igb gr/8 Tl
'll TI 2I H368.
Ir I
Hsgb-I OA.RBBA IXA TTA 1,
IDA-)gers j,
CX Ar 3
~ H36e TAA IOA-II38A I
0 IOA KSbd I
I
~J H368 TRA I FULLY OPE>>
L i CloSED wHEH ~
I OPENS UPON PISTON I CDHTAcr L ~
J
/
LSI
+CLOSED WHEN I v~lvf Hor I FULLr OPEN I
J CLOSED WHEN)
VALVE NOT FULLY CLOSED FCV 68-33 IT C
I VALVE FULLY OPEN I
I J
I OPENS FHEN 1
I )pro I
I CLOSES XHEN,)
I PRESSURE I c reo I
L IXIALTFrf0 ANN THSTRUHEHT BUS SUPPLY (Teo)
IpfsroH CDHTACTI I
I I
ANN BUS YR prl l$3 HYDRAULIC~
OPfRATDR 8
R 0
2A 2A-KBAS Kelb P
~fA-KBTD ACCUXULATOR PRf$$URf LOW P
Scr il.<
AccgvULATOR ACCUHULATOR HYDRAULICS HOT HYDRAULICS HOT FULLY CHARCED FULLY CHAROEO rgr 4p-rt Far Al /Y VALVESHONV OPEN C FIG. /4I )
ACCUHULATOR PRESSURE LOW rate'AV Tt RECIRCULATION PUMP DISCHARGE VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR 8ROWNS FERRY NUCLEAR PLANT UNIT 2


I SYHBOLSI LOCAIEO LOCAL PAHfL C  LOCATED HATH CONTROL ROCXI PANEL LOCAIEO  9.32 PANEL Aecv Ac RHov BOID                                                              UNIT 1                                                                                                                              jt  LOCATED  9-33 P/HEL N  LOCATXO 9-2I PAHfL RECIRCULATION R/NP DISCHAR6E VALVE                                                                                                                          LOCATED HYU OP      8/CKUP OUHTCOC PANEL p  HUIES.
480V AC RHOV BOK I
I WETHOUT eACK-UP CONTROL)
CB I
I. 2A.K6l, K63, K6A, KTI, Kro. Ket JOOOTHO CIRCUET FCV    68- T9                (24SB)                                                                                                                      e. IOA. A34 COCA b CX P&#xc3;XAA PERPIAMIVC 2SOY OC RHOV 80                                      3. RELAY ENCASED TN STEfL BOX FLEX CONDUIT PRON CONTACTS     To 2$ 0Y DC AHOY 80  Id                                              /A                                            EHCLOSEO JUNCTION BOX. CAelf RUII IN FLEX COHOUET BETWEEN PANELS 9-32 8 9-33.
L 480/l20 UNI71 RECIRCULATION POIMP DISCHARGE VALVE (tITH BACK UP CONTROL) rCIF fe.a (e-r~O 2$0V DC RNOV 80 lh bxsde-3 xsde-3 bXSde-3 250 VDC RTOV BD lb SVHBOLS f
lh  TRAIH A     CLOSE  dOCEHOlo Va  TRAIN 8     CLUE dOCEHOID VX    TRNIJ b    OPEH dOL EHgID I
LOCATEO LOCAL PANEL LOCATfb HAIN CONTROL IXX'ANEL l.OCATED 9-32 PANEL LOCATEO 9-33 PANfL 0
I L
LOCATfD 9-tl PANEL 9
1, j  A    TRARI b
LOCATED NCC 8
                                                                                                                                                                                                                              /Af re~
LOCATED HTD OP BACNVP CONTROL PANEL HOTES:
OPEN  dOLENOO 7FHI Aeo/If0 Nl 2A Nl 2A- Nl 2A        2 H368. Ir    I Hsgb- I    OA.RBBA
I.
                                                                                                                      <<Igb    gr/8      IXA XC98                                      TTA                    IDA-)gers Tl      'll    TI        2I                                                              j,
2A.XGI. X63. X6A. Xrl. XTO. X69-JOGGING CIRCUIT.
                                                                                                                                      ~ H36e              H368 TAA            TRA Ar 3      IOA-II38A CX I
t.
0  IOA KSbd I I
X$6d-
                                                                                                                                              ~J FCV  68-33 IT                                                                  IXIALTFrf0 C                                                        ANN      THSTRUHEHT                ANN BUS      SUPPLY (Teo)              BUS i CloSED  wHEH ~   OPENS UPON            +CLOSED WHEN        CLOSED WHEN)                                I OPENS FHEN  1          I CLOSES XHEN,)
-BACX-VP CONTROL TRANSFER.
I PISTON                I v~lvf Hor          VALVE NOT                I VALVE FULLY                              I PRESSURE                      IpfsroH CDHT ACTI I FULLY OPE>>                    I CDHTAcr                FULLr OPEN   I     FULLY CLOSED                  OPEN      I I )pro                  I c reo      I                I L                               L    ~        J        I J                                I             J  I                        L                                I I
3.
                                                                  /
lDA.X39.LOCA & RX PRfss PERNISSIVE.
LSI YR prl                                      l$3 HYDRAULIC f
A.
OP RATDR
RfLAV ENCASED I>> STEEL BOX.
                  ~
FLEX CONDUIT PRON CONTACTS TO fNCLOSED JUNCTION BOX.
8 R         0 P      ~                                                                                                                                       ACCUXULATOR                          AccgvULATOR      ACCUHULATOR 2A    2A-          fA-                                                                                                                                    PRf$ $ URf LOW                      HYDRAULICS HOT KBAS  Kelb          KBTD                                                                                                                                    Scr    il.<      P FULLY CHARCED rgr  4p-  rt HYDRAULICS HOT FULLY CHAROEO Far Al /Y ACCUHULATOR PRESSURE RECIRCULATION PUMP LOW rate'AV Tt          DISCHARGE VALVE VALVE SHONV OPEN CONTROL CIRCUIT WITH C FIG. /4I  )                                                                                                                      HYDRAULIC OPERATOR 8ROWNS FERRY NUCLEAR PLANT UNIT 2
CABLE RVN IN FLEX CONDUIT BETVEEN PANELS 9-32 8 9-33.
5.
DPEC4rlOHAL IHJTRUCTlONJ ALL IHCTATX'TCJE FIAJBJ 86 RSHN10 WHEN OPE thllHB tl BAC&#xc3;TAP CONTCOL PNME'.
8 Vg TBA/M h CLCVC JOLCllbrD Vt TERAI b CLOJE JOLflAHD Vl Tthdr A OPEN JOc,Ewer 8 TCAtll 0 OPKN JOLfmlb xl II-Nl tg-PI eh-rl rl'lxddher
~
g C
HJ68 31
's H$68-t
'IOA.K39A X$68- '
A
~ HJ 68.JA H$68 JA
-- CH VALVEoNor' I FULLV OPE>>
I L~
I CLOSED tHEN VALVE HOT I
FULLV CLCSED
/
OPENS UPON I
PIKE I
coxrmr L ~
J
~CLOSED NHEN vhuf Hor Ar J
I I
A L
Jr IOA.KJJB lOA-XJJAI I
HOTf A b
X$68 9 H
6 FCV68 33 I
VALVE FULlV I
OPEN I
I J
8 Xsdd-3 N
I Pwz spa 4A'
) rro I
L Hsdd-JC r.'9th CLOSES tHEN I
PRESSURE lxlALIFIEO INSTRUHENT SOURCf TBD I coxrhcr I
I ANN BVS V2 Lst LSJ lbORAVLIC
<</ OPERATOR a 6 24 ~
2A-X6HA XQA
~
~
Ct BC3A G
R R
e X$68 3 R
R a
8 X$68-3 8
II C
R R
3568 9
lV B
X$68 3 RfTVRH
~
K
\\
r, rat 9 ACCUHULATON PRESSURE LOV I
rrrst.A ACCUHUl.ATOR PRESSVRf LOVT rrrhl.j ACCUHULATOR HYDRAULICS NOT FULLV CHARGED rrrst P ACCUHULATON HYDRAULICS NOT FUl.l.r CHARGE0 RECIRCULATION PUMP DISCHARGE VALVE VALVE SHOSN OPEN (Fm. IV)
RETURN CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT l.


SVHBOLS f  LOCATEO LOCAL PANEL LOCATfb HAIN CONTROL IXX'ANEL l.OCATED 9-32 PANEL 480V AC RHOV BOK                                                              UNI71                                                                                                                                  LOCATEO 9-33 PANfL RECIRCULATION POIMP DISCHARGE VALVE                                                                                                                    0  LOCATfD    9-tl PANEL 9  LOCATED NCC (tITH BACK UP CONTROL)                                                                                                                    8  LOCATED HTD OP BACNVP CONTROL PANEL rCIF f e.a      (e-r~O                                                                                                                          HOTES:
I
250 VDC                                    I. 2A.XGI. X63. X6A. Xrl. XTO. X69- JOGGING CIRCUIT.
RTOV BD  lb 2$ 0V  DC RNOV  80  lh
: t. X$ 6d-  -BACX-VP CONTROL TRANSFER.
: 3. lDA.X39.LOCA & RX PRfss PERNISSIVE.
A. RfLAV ENCASED    I>> STEEL BOX. FLEX CONDUIT PRON CONTACTS TO fNCLOSED JUNCTION BOX. CABLE RVN IN FLEX CONDUIT BETVEEN PANELS 9-32 8 9-33.
: 5. DPEC4rlOHAL IHJTRUCTlONJ ALL IHCTATX'TCJE FIAJBJ      86 RSHN10 b                          b                                                                      WHEN OPE thllHB    tl  BAC&#xc3;TAP CONTCOL PNME'.
xsde-3                    XSde-3                                                          8      Vg    TBA/M  h  CLCVC JOLCllbrD I        CB    I L                                                                                                                                                                                                                            Vt Vl TERAI  b  CLOJE JOLflAHD Tthdr A OPEN JOc,Ewer 8 TCAtll 0 OPKN JOLfmlb xsde-3 480/l20 xl rl II- Nl rl  'l tg-PI  eh-xddher
                                                                                                                                    ~
HJ68 g
C H$ 68-  t
                                                                                                                                                                    's      X$68- '
                                                                                                                                                                                    'IOA.K39A 31 A ~ HJ    68.JA H$68 JA Ar                    Jr
                -- CH J      IOA.KJJB I
Hsdd-JC lOA -XJJAI I
I LA HOTf A b                                                          r.'9th X$ 68 9 H                8 Xsdd- 3 6      FCV68 33 N
lxlALIFIEO INSTRUHENT                                    ANN SOURCf TBD                                    BVS CLOSED tHEN      OPENS UPON        ~CLOSED NHEN                                                                                        CLOSES tHEN I              I  I            I VALVEoNor'      VALVE HOT        PIKE                vhuf Hor                                    I VALVE    FULlV      I  Pwz spa 4A' L~
I FULLV OPE>>  I  FULLV CLCSED      coxrmr J                                                      I OPEN              I      ) rro    I            I PRESSURE <
I coxrhcr        I
                                                    /            L  ~                                                              I                  J  L                                                              I Lst              LSJ V2 lbORAVLIC
    <</ OPERATOR a  6                                                                                                                                        8 R
a R                            II                                                        ~
K\
C
                                                ~    ~                                                                                      R      R                                                    r, rat  9                                r rrhl.j          rrrst P 24 ~  2A-                    Ct                                                                  3568                                                              ACCUHULATON                        ACCUHULATOR        ACCUHULA TON X6HA XQA              BC3A                                    R                                                                                                      PRESSURE                            HYDRAULICS        HYDRAULICS G          R                              9 LOV                                NOT FULLV          NOT FUl.l.r lV                                                                                                  CHARGED            CHARGE 0 I
e X$68 3 rrrst.A 8                        B ACCUHUl.A TOR PRESSVRf              RECIRCULATION PUMP X$68-3                                                          RfTVRH X$68  3                                                              LOVT DISCHARGE VALVE CONTROL CIRCUIT WITH RETURN HYDRAULIC OPERATOR VALVE SHOSN OPEN (Fm. IV)                                                                                                                          BROWNS FERRY NUCLEAR PLANT UNIT l.


I csv Arcldv dd re    Id                                                             SYNIdOLS 44O VAC RAIOV ADIT                                                                                                                                                                                      E    COCATED LOCAL PANEL NEAR VACVE UNIT'                                                                                                               LOCATED AIAIN CONTROL ROOAI PANfL LOCATED    t SE PANEL RHR INI30ARD INJECTION VALVE                                                                                                     If    CO4 TED S -SS PANEL (WITHOVT dACIIVP CONTIIOL)                                                                                                 CO4TED 4/dO 5WITCHOEAR FCV rV-SS IO-ZSA
44O VAC RAIOV ADIT Cd csv re Arcldv dd Id UNIT' RHR INI30ARD INJECTION VALVE (WITHOVT dACIIVP CONTIIOL)
                                                                                                                                                        ~
FCV rV-SS IO-ZSA I
ESO V DC RIAIIV dO
HS/I Ig SSd STOP HSrs-SSA HS/4 ~
                                                                                                                                                  ~/A                                                 d NOTES LOCATED AICC LOCA TED HYO OP dACIIVP CONTIIOL r%NEL i
SSA ESO V DC RIAIIV dO
I. RLl -N4T ~ COCA Rr FIIESS     PEIIIIIISSIVE'.
~/A~
IOA-RSS - PCIS ~g COW PRESS
/Ol T
: 5. V, TRAIN A CLOSE Vj TRAIN   d   CCDSE Vj   TRAIN   A OPfN YIIAIII d OPEN Cd HSrs-SSA              HS/I SSd I
ROTd SYNIdOLS E
Ig HS/4 ~
COCATED LOCAL PANEL NEAR VACVE LOCATED AIAIN CONTROL ROOAI PANfL LOCATED t SE PANEL If CO4 TED S -SS PANEL CO4TED 4/dO 5WITCHOEAR LOCATED AICC d
SSA T
LOCATED HYO OP dACIIVP CONTIIOL r%NEL NOTES I.
                                                                                                                                                          /Ol ROTd                                          pc ~   aAP       rAt STOP
RLl -N4T
                          ~/IED                                                                                                           IOA                II I(ISA                /OA E                         E Efrsd ccc                    I /ISII-g                      C  I   ssd CLOSE N                   0 HSTd                 HSTd Rd TA SSA                  SSA Cg                                                                                                                     AAdd R I
~
T    /OA                 IOA S    TOTE IfSSA                IfbTA ICP-HATA                                                                              /OA.
COCA iRr FIIESS PEIIIIIISSIVE'.
XLTa A/IN          OVALIF/fD              A/VII          ANN dVS          INS TRVLIENT            dVS            dVS SVPPLY (TSD) j/
IOA-RSS - PCIS ~g COW PRESS 5.
I Opf J v/jCW I CCOSED WHEN i CCOSED I/HEN I I PIS/fjj/
V, TRAIN A CLOSE Vj TRAIN d CCDSE Vj TRAIN A OPfN YIIAIII d OPEN pc ~ aAP rAt
C I OPENS W//EN I       r;-.;--.~                     r I
~/IED E
CCOsfS w/IENI I
g ccc E
I I f CcosES   Cw 1
I /ISII-I ssd C
I I VAlVE NUIT VAC,VE NOT                                                          PrIESMC'  l                    IPRESsvRE <                  I I PIS TO/I I Ccjj/rAC L
CLOSE IOA I(ISA II
7 I l I'VCCY OFcN L              FVCLY CLOSED                                l~N I
/OA Efrsd N
VALVE FVCCY j      ) rdO    I                                                      CO/V TACT LSI C5E I
Rd TA 0
AIDTOR                                                                                                                                     Vj    Vg I
HSTd SSA HSTd SSA Cg ICP-HATA T
jcro//ABULIC I   <~oPcruroe L   E R   0 FCV TN-55              FCV TII 59 P er/+-5$
S TOTE
I   '
/OA IfSSA IOA IfbTA AAdd RI
ACCVMVCA/f/R         ACCVjrIVCATfjR ACCVAIVCA Gjlt                          jrrMPvcIcg          jcrojc4uc/cs P/f4 S5VcVE                          rVCI/ FVCC  r        %01               FVLLY C/IlR4 EO            CIIAR4CO FCV 14 SS ACCVRVLAYOII            RHR        INBOARD VALVE SHONN CLOSED                                                                                                         Pcf ESS VRC COccc INJECTION            VALVE
/OA.
XLTa I Opfj/J v/jCW IPIS/fjj/
I I
Ccjj/rAC7 I
L I CCOSED WHEN i I VAlVE NUIT l I'VCCY OFcN L
CCOSED I/HEN I VAC,VE NOT FVCLY CLOSED C
I OPENS W//EN I VALVE FVCCY l~N I
j r;-.;--.~
PrIESMC' l
) rdO I
A/IN dVS r
I I CCOsfS w/IENI IPRESsvRE <
A/VII dVS OVALIF/fD INS TRVLIENT SVPPLY (TSD)
I I I CcosES Cw I f 1
PIS TO/I CO/VTACT ANN dVS I
AIDTOR I
jcro//ABULIC I
<~oPcruroe L E LSI Vj Vg C5E R
0 Per/+-5$ '
I ACCVAIVCAGjlt P/f4 S5VcVE FCV TN-55 ACCVMVCA/f/R jrrMPvcIcg rVCI/
FVCCr C/IlR4 EO FCV TII 59 ACCVjrIVCATfjR jcrojc4uc/cs
%01 FVLLY CIIAR4CO VALVE SHONN CLOSED
(,FI6. IB )
(,FI6. IB )
CONTROL CIRCUIT WITH AftVII HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT                     UNIT 1
AftVII FCV 14 SS ACCVRVLAYOII PcfESS VRC COccc RHR INBOARD INJECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 1


I 't srplooL 3:
I
                                                                                                  . LINIT'                                                                                                                                            C    LOCATED LOCAL PANEL NEAZ vALVE 6/8  IMIMAE'D IMTECTIOQ VALVE                                                                                                                                            LOCATED PAIN CONTROL ROON PAIVEL cvlTN BncK.Up coNreoa)                                                                                                                                              LOCATEO 9-32 PANEL vaoYAc ehIov  8o lc                                                                  FCV  7 I-67        (10-858)                                                                                                                                            LOCATED 9 SS PANEI.
't
Locnreo %leo sNITcA'GEAR 15OVDC RIRW BDIA    ~
                                                                                                                                                                                                                                                      +    LOCATED HCC g    LocATED HYD Dp 8ncKUP          courzol        pANEL NOTES 250 VOC                                                          I. XSTN-dr    BACA'UP COAflZOL TRAIVS FEZ ALARNS EI                8                                    RHOV DDI8                                                          IH CONTROL      ZOOM IN EMERGENCY POSITION.
K$ 7 I -CT                          XSTH  Cr                                                                                                              - Locn ex peessueE pERHlsslvE.
: e. Ion-Hcc 8
XPP-
: 3. Ion ~ Kcs    - pt/s + ex Low pzess IS re.ar                                            IVOTE q..... Vl- TRAIN A    CLOSE N                                                                                                                    YZ. TRAIN  8  CLOSE 5'OA-YS- TEAVT A OPEN e                                                                                                                                                      VLI TRAIN  6 OPEN I      CD      I                                                                                      Hs ru- crA                                    HSTg CT                        KCGA                                                        5. OPEZAIING INSTRVCTIONS WILL RQlUIZE REPIOYAL L                                                                                              2T                            usrH- CTS                                                                                                          OF rHESE FUSES <eI DUZIHB OPEZATION CN STOP                                                                                                              8ACIIUP CONTROL PIOOE.
                            'IOOI I20                                                                                                                                  IOA-                                                                                  id'-p g r/
E'                              E                  KCSD                            IOA  KQSA uSTv-                          rniV CTB OPEN      o            C  4    LOSE 5    HS TN.
HSTII CTC T                                  IIS TH-C7A              C7A 5T II5 TII-CI                                                                    CTC 7 d 5        Tu.co        IN  KS58 ISTIC-BT              eh  KCC'8 OL                                                                                                                            S 8
IOA-KCCA EI ID'-Cr N
aUALIFIED ANII      INSTRVHEKT                ANN BUaS    SUPPLr    C IlIDI          BVS              OV5 I
I,'
                                        +cpENs upou    +CLOSED WHEHI ~CLOSEN IIHEN I                                                IOPENS VHEu1          I opENs 5~NIzu~
                                                                                                                                                                          '                                  CLOSES  0I7I                  CLOSES ON
                                        'ISTON j                                                                                              pM$
I VALVE Hor                                                                  I vALVE. FULLVI                                                      I  PRESSURE                  I I VALVE HOT II                                                              I                                                                                  PISTO~
Co,v rnC r            OPEN '. 'FVLLr ULLY'LOSED~                                        I    OPEN        I      prao        I                              I  C  TDD J                f I  coNTAcr
                                            /                                      l                                                                J                                                    L LSI
                                                                                                                                                                                                                                ~se                                  Lse            LSS VII                                                    V5      VI                                  q IIroenvLIc
            ~< OPLRAroe EST'I.CT    II                              Ill B CT N
l)T1 9 z      e<oB                                  C FRv pl.cr      FCV      TN-Cr CI                                                                                                                                                                                                          lCQlNVIAT I5ru-cr                                                                                                                                                                    Hroc4ULes ACCUHULATOR'ITDRAULIC J
CX 8  EN                    c    e                                                                                                                                  Fcv  pf Gr                                NOT FULLr        IIOT FULLV G        C    R                                                                                                                                                  ACCUHULATOZ                                    CHARGE,D G                                                                                                                                                                                                                            CHARE ED XSI5                                                                            peE55URE OL cr                                                                                LOW N                                                                                                I l5 lf cr IDrvcr      L5TH  Br                                                      RETUeu szv    ru-cr      RHR INBOARD ACCUHVLATOZ N            E,                                                                                                    peEssURE I
LOLV              INJECTION              VALVE CONTROL CIRCUIT WITH RETURN NLVE QIIOWN CLOSED                                                                                                                                              HYDRAULIC OPERATOR
( FIG. 19)                                                                                                                                                    BROWNS FERRY NUCLEAR PLANT                            UNIT 1


J VN/7    I HHR PVACP MINIMVAIFLOW BYPASS VALVE                                                                                                                                 YhlbOLS dbO VAC llAC7V CID lb C v/I TNour /slee" ur courmu. )                   rsvp z~rv do r~    rd E    LOCATED LOClL PlHEL HEAR VALVE I.OCATED MAIN CONTROL ROOM PANE/.
vaoYAc ehIov 8o lc
FCV 74-7                      /0-ISA                                                                                                                    0      LOCATED 9 52 PANEL LOCATED 9 SS PANEL
. LINIT' 6/8 IMIMAE'D IMTECTIOQ VALVE cvlTN BncK.Up coNreoa)
                                                                                                                                                                                                                    ~
FCV 7 I-67 (10-858) 15OVDC RIRW BDIA ~
LOCATED lido SIIITCIIOEAR LOCATED  l/CC 250 VDC                                      d    lOCATED HYD Or.'ACKVP CONTROL /rAHEL
srplooL 3:
                                                                                                                                                ~IA'~
C LOCATED LOCAL PANEL NEAZ vALVE LOCATED PAIN CONTROL ROON PAIVEL LOCATEO 9-32 PANEL LOCATED 9 SS PANEI.
Rheo/ 8D NOTES:
Locnreo
                                                                                                                                                                                                /    IOA A'/OS    LOW FLOH sr + pep                                                          /Ol. K/09  LOW FACY IA                                                      S. Vj TRAIN   A CLOSE IDA KIOWA                                                                                                        V2  TRAIII  0  CLOSE VS  TRAIN A    OPEN Vg  TRAIN 0    OPEN E                        sr  PllP e                                                  9/  rDrt- ebs      r.eCR Cb                                                                          HS rf            IIS/f            /elf.       IC 2r                                  /r      rA 5          AIA.
%leo sNITcA'GEAR
S/r                              EN' f~l2O E
+
fax                    ass.                                  /OA g IVEN    0          C g CIOSE KA&b 5
LOCATED HCC g
HSI(              HSTI 14.2 rA                rl dr  + dT Is/P
LocATED HYD Dp 8ncKUP courzol pANEL I
                                                            /A      IC d
CD I
8                                                      IS TD 9.b 5EC d
L EI K$7 I -CT 8
TD PIJ                                                                                                            QUALIFIED IN5TRVMENT SUPPLY    CrbD)              ANN      A IVN b~I                               bIIS    b Lls OPENS UPON I I CLOSED WmP., CLOSED VIRENI                                  loPEHS wu7N I                                       ICLOSE5                              ICLOSES OV" I Ir asm' IOPENS WV7u~
XSTH Cr ISre.ar N
IP/5/ISN VlLVE NDT                                    IVALVE FIILLY I WRY'PAI.SSURE
e Hs ru-crA 2T CTS usrH-STOP HSTg CT 250 VOC RHOV DDI8 8 XPP-IVOTE 5'OA-KCGA NOTES I.
('lsroH c    IVlLVE NDT lard                  raD                          I   <Tbo                              IcoNTAcr L~            IFVLLYOPEI/        LLVCLOSE6 J                                               J    1  P          I L
XSTN-dr BACA'UP COAflZOL TRAIVSFEZ ALARNS IH CONTROL ZOOM IN EMERGENCY POSITION.
Ls/
e.
P52                            L52          LSS AloTOR                                                                                                                                    VV  Vk I
Ion-Hcc - Locn ex peessueE pERHlsslvE.
HTDRAIILA OPEJIA TO/I +
: 3. Ion ~ Kcs - pt/s + ex Low pzess q..... Vl-TRAINA CLOSE YZ. TRAIN 8 CLOSE YS-TEAVTA OPEN VLI TRAIN 6 OPEN
f    9   C                                                                                                           pcv rf r                                Fcv    rf -(    Fcv ri-r g      O    R  R                                                                                                            ACCllAIIILATDR PFESs VA'E ACCUNIKATOR HYDRAULIC5 NDT          l ACCI/lrvl IOR HYD/IAULICS NOT Lolv                                      FULLY CIIARGED  FIILLYCHARGED VALVE SHONN CVEN RE  TVIIII'cv                                    ri.r ACCUMULATOR PRE 5 SUIIE COPY RHR PUMP MINIMUM F OW BYPASS VALVE
: 5. OPEZAIING INSTRVCTIONS WILL RQlUIZE REPIOYAL OF rHESE FUSES <eI DUZIHB OPEZATION CN 8ACIIUP CONTROL PIOOE.
( FIS. ED)                                                                                                                           CONTROL CIRCUIT WITH HYDRAULIC OPERATOR PCI vRAr BROWNS FERRY NUCLEAR PLANT     UNIT I
id'-pgr/
'IOOII20 E'
uSTv-CTB OPEN o
E 4
rniV C
LOSE IOA-KCSD IOA KQSA CI OL
+cpENs upou I,'
'ISTON Co,vrnCr
/
+CLOSED WHEHI I VALVE Hor
'FVLLr OPEN j
~CLOSEN IIHENI VALVE HOT II ULLY'LOSED~
l T
II5TII-CTC 7
5 Tu.co 5
IIS TH-C7A 5T d IN KS58 S
ISTIC-BT IOPENS VHEu1 I vALVE. FULLVI I
OPEN I
J HS TN.
C7A eh KCC'8 EI ID'-Cr N
I opENs NIzu~
IpM$5~ '
prao I
HSTII CTC 8
IOA-KCCA ANII BUaS CLOSES 0I7 I
PRESSURE I
I C
TDD L
J aUALIFIED INSTRVHEKT SUPPLr C IlIDI I
CLOSES ON I I PISTO~
f I coNTAcr ANN BVS OV5 LSI VII V5 VI
~se q Lse LSS IIroenvLIc
~< OPLRAroe CX OL 8
G G
l5lf cr l)T1 9 CI EN C
R II EST'I.CT N
z e<oB I5ru-cr c
e Ill B CT C
XSI5 cr N
Fcv pf Gr ACCUHULATOZ peE55URE LOW I
FRv pl.cr lCQlNVIAT Hroc4ULes NOT FULLr CHARGE,D FCV TN-Cr ACCUHULATOR'ITDRAULICJ IIOT FULLV CHAREED IDrvcr L5TH Br N
E, RETURN NLVE QIIOWN CLOSED
( FIG. 19)
RETUeu szv ru-cr ACCUHVLATOZ peEssURE LOLV I
RHR INBOARD INJECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 1


I UNIT I RHR PVkP NININUM FLOW'YPASS VALVE fWITH BACK UP CONTROL J FCY 74-90                         /0-/88                                                                                                                 STAIBOLS:
J
C LOCATED LOCAL PAKEL FEAR VlLYE rso vlc RAIOY an e                                                                                                                                                                                                                        ~   LOClrED MAIN CONTROL R&#xb9;(PANEL dso vnc Rhlov BD/w                                                                                                                LOCl TED !-St PANEL LOCATED   t-tt   PlNEL LOCA TED rl60 SIVITCHGEAR LOCl TED AICC dSO VDC                                            8 LOClrED HI'D OR BlCKVP CIJNTROL PAh'EL ssrr        Asri-50 A'                                                  ~ ~
 
RAIOY BD IB                                          IVOTES:
dbO VAC llAC7V CID lb Cb VN/7 I HHR PVACP MINIMVAIFLOW BYPASS VALVE C v/ITNour /slee" ur courmu. )
L   A$68-90-BACKVP CON'TR'OL TRAIVSFE'R lLARAIS IN CONTROL Rooll IN EAIERCENCT POSITION Norrs 8                                        /OA-K/08-LOW FLOW
FCV 74-7
                                                                                                              /OA Kloda                8 Isrr-Jo PAIP /D IOA-Riot-LOWFLOW LOCA VI     TRAIN A CLOSE i
/0-ISA IDA KIOWA HSrf 2r rsvp r~
                                                                                                                                        /I                                                                                                          TRA/h' CLOSE 0
z~rv do rd sr
C
+ pep IA PllP IC sr
                                                                                                                                                  '    Nsrc-                                IOA-VZ VS   TRl/N  l  OPEh'r TRAIN 8 OPEIV
/elf.
        )        CB      I                                                                                        II5Pf Jdl      Hsrr-5oLb                                                                                                C  OPERlTlh'G I/'STRVCTIoh'S /YILL REOVIRE PAIPlP        IOA''Iodb                                                    REMOVAL OF rHESE ruSES fZJ DVRINC STOP                                                                                                        OPERATION /V BACIIVP CON'TROL hIODE.
EIIS/f
rd&'/20                                                                                                                                                                 /OA-C                       C Nsrr.                                                 K/0th Q  Sbb OPEN                  'LOSE h                    0 PAIP/B                                                 Nsrr sop             Hsll-I 30A       Tr.ds ST Cg 8'srr.so             8 Agrres0 Is     rrQL TD M SEC TDPV                                                                                                                  OVALIF/ED ANN BVS INsrRv/rEKT SVPPL lfTBDJ l/IN BIIS ANN BVS l
/r rA 5 S/r 250 VDC Rheo/ 8D
1 OPEIIS V/OT     ~CLOSED IVI/EN       CL OSED                                              ~OPENS VI/EN'~      COPENS WHEN                                                                  CLOSES 0/V I
~IA'~
PISTON      I  i YlLYE NOT     (            IVNEh'ALVE h'OT                                           i VALVE FVLLr '     I Pgc'Ssu&
e AIA.
i CONTlCT          FLLLT OPEN
EN' YhlbOLS E
                                                                      ~]    FVLLrCLOSED>                                            OPEN J
LOCATED LOClL PlHEL HEAR VALVE I.OCATED MAIN CONTROL ROOM PANE/.
I 7 F4FD lr                                                                                                                                                                I PS 5 I
0 LOCATED 9 52 PANEL LOCATED 9
0 LSI PSI                             Lsd                   LSS h/OTOR
~ SS PANEL LOCATED lido SIIITCIIOEAR LOCATED l/CC d
              ~TDRAVLIC'
lOCATED HYD Or.'ACKVP CONTROL /rAHEL NOTES:
          /L oPERlroR ysrl.so N
/
8   8 8     C     ~   i     C     8 v    Iv                                          Fcv r4 so
IOA A'/OS LOW FLOH
                                                                                                                                                                                                                  ~
/Ol. K/09 LOW FACY S.
ACC VAIVI.A TON FCY rr-So ACCIIRVLA/OR G    C     C     R     R     R ESTC-8y                                                                                               PRESS//RE                        HYDRAVLICS hTT N
Vj TRAIN A CLOSE V2 TRAIII 0 CLOSE VS TRAIN A OPEN Vg TRAIN 0 OPEN 9/ rDrt-ebs r.eCR f~l2O g
stir.s0                                                   NOTE S                                         FVLLT CHARGED NIDRAVLICSNOT IV                                                                                                                            I'VLLI'NARC D slrr    sb N
fax IVEN 0
FL'v rr-so Asrr~                                                        RETVRN                                  l ACCVAIVL TOR RHR PUMP MINIMUM N                                                                                                        PRESS VRE LOW FLOW BYPASS VALVE CONTROL CIRCUIT WITH RETVRN VALVE SHONN OPEN                                                                                                                            HYDRAULIC OPERATOR
E g
( Flax/)                                                                                                                                BROWNS FERRY NUCLEAR PLANT                 UNIT I
ass.
C CIOSE
/OA KA&b dr
+ dT Is/P
/A IC d
14.2 8
TD 9.b 5EC 5
HSI(
rA HSTIrl IS d
TD PIJ QUALIFIED IN5TRVMENT SUPPLY CrbD) b~I ANN bIIS AIVN b Lls OPENS UPON I
('lsroHc L~
ICLOSED WmP.,
IVlLVE NDT IFVLLYOPEI/
CLOSED VIRENI VlLVE NDT LLVCLOSE6J loPEHS wu7N I IVALVE FIILLYI lard J
IOPENS WV7u~
Irasm' 1
P raD I
ICLOSE5 WRY'PAI.SSURE I
<Tbo ICLOSES OV" I IP/5/ISN IcoNTAcr L
AloTOR Ls/
VV Vk P52 L52 LSS HTDRAIILA OPEJIA TO/I+
I f
9 C
g O
R R
pcv rf r ACCllAIIILATDR PFESs VA'E Lolv Fcv rf-(
Fcv ri-r ACCUNIKATOR ACCI/lrvllIOR HYDRAULIC5 NDT HYD/IAULICS NOT FULLYCIIARGED FIILLYCHARGED VALVE SHONN CVEN
( FIS. ED)
PCI vRAr RETVIIII'cvri.r ACCUMULATOR PRE 5 SUIIE COPY RHR PUMP MINIMUM F OW BYPASS VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT I
 
I
 
rso vlc RAIOYan e
)
CB I
ssrr Asri-50 A'
/OA Kloda 0
II5PfJdl 8Isrr-Jo
/I CHsrr-5oLb STOP UNITI RHR PVkP NININUM FLOW'YPASS VALVE fWITHBACK UP CONTROLJ FCY74-90
/0-/88 dso vnc Rhlov BD/w Nsrc-PAIP /D PAIPlP IOA''Iodb IOA-dSO VDC RAIOYBD
~ IB~
Norrs 8 STAIBOLS:
C LOCATED LOCAL PAKEL FEAR VlLYE
~
LOClrED MAIN CONTROL R&#xb9;(PANEL LOClTED !-St PANEL LOCATED t-tt PlNEL LOCATED rl60 SIVITCHGEAR LOClTED AICC 8
LOClrED HI'D OR BlCKVP CIJNTROL PAh'EL IVOTES:
L A$68-90-BACKVP CON'TR'OL TRAIVSFE'R lLARAIS IN CONTROL Rooll IN EAIERCENCT POSITION
/OA-K/08-LOWFLOW IOA-Riot-LOWFLOWiLOCA VI TRAIN A CLOSE VZ TRA/h' CLOSE VS TRl/Nl OPEh'r TRAIN8 OPEIV C
OPERlTlh'G I/'STRVCTIoh'S /YILL REOVIRE REMOVAL OF rHESE ruSES fZJ DVRINC OPERATION /V BACIIVPCON'TROL hIODE.
rd&'/20 C
OPEN C
Q Nsrr.
Sbb
'LOSE
/OA-K/0th PAIP/B hNsrr sop ST 0Hsll-I 30A Tr.ds
 
Cg TD MSEC 8'srr.so 8Agrres0 Is rrQL OPEIIS V/OT I
i PISTON I
CONTlCT
~CLOSED IVI/EN (
1 i YlLYE NOT FLLLT OPEN ~]
lr CLOSED IVNEh'ALVE h'OT FVLLrCLOSED>
TDPV
~OPENS VI/EN'~
i VALVE FVLLr '
OPEN J
COPENS WHEN I Pgc'Ssu&
I 7 F4FD PS 5 ANN BVS OVALIF/ED INsrRv/rEKT l/IN SVPPL lfTBDJ BIIS l
CLOSES 0/V I
I 0
ANN BVS h/OTOR LSI PSI Lsd LSS
~TDRAVLIC'
/L oPERlroR ysrl.so N
8 8
8 C
~
i C
8 G
C C
R R
R slrr sb N
ESTC-8y N
Asrr~
N RETVRN VALVE SHONN OPEN
( Flax/)
stir.s0 IV v Iv NOTE S RETVRN Fcv r4 ~ so ACCVAIVI.ATON PRESS//RE FL'v rr-so ACCVAIVLlTOR PRESS VRE LOW FCYrr-So ACCIIRVLA/OR HYDRAVLICS hTT FVLLTCHARGED NIDRAVLICSNOT I'VLLI'NARC D RHR PUMP MINIMUM FLOW BYPASS VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT I
 
i I


i I ST&#xc3;80LS l C   IDCATEO LIK:AL PNIEL LCCATED NAIN CIJITROL RNRI     PNffL LOCArf0 9-32 PANEL ARDY AC RNOY  80 2C                                                                  UNIT 2                                                                                                                                    LOCATfD 9-3J PNIEL
ARDY AC RNOY 80 2C UNIT 2 RECIRCULA7XN PUMP DISCHARGE VALVE IrfrHour eAGK-up ccHTROL)
                                                                                                                                                                                                                            ~   LIX'ATKO  9-tl PANEI.
FCV 68-8 (2-Qa) tsoV DC RHOV 8024 ST&#xc3;80LSl C
RECIRCULA7XN PUMP DISCHARGE VALVE                                                                                                                            g     LOCATE 0  Hflk OP M'%UP IRHTTNOL pANRL.
IDCATEO LIK:AL PNIEL LCCATED NAIN CIJITROL RNRI PNffL LOCArf0 9-32 PANEL LOCATfD 9-3J PNIEL
MTESl IrfrHour eAGK-up  ccHTROL)
~
I. tA.KSI,   Kds, KSA, Krt, <<10. K69-JDGDIK   CIMlfr.
LIX'ATKO9-tl PANEI.
FCV          68-8                (2-Qa)                                                                                                                        t. loA R39 LOCA.b RA tNKAS PEClfaLSIVC tsoV  DC RHOV  8024                                    J. RELAT ENCASED     IN STfEL 40K FLEK CO+III FROI CONTACTS TO fRcLDJED JUNGTIol 80K. cARLE RUN IN FLEK coNDUIT efrrffN PANELS   9.3t 8 9-JJ TRAIN A     CLOJC   DOLE IIOlo TRAIN 8     CUE         f JOL llolo VJ   rfle)   i   OPEN .DOLE hfUO TtARI ~ AKN JOCCAOO I        Ce    I L                                                                                                                                                                                                                              g Adorlto Nl   A Nl tA Nl tA- 2 H368         rr       I HJItb I IOA K394       I ~A)A A'39A A)A. 39A K49A    KTOA  A'TIA    AI        C TI  K  Tl    I      2 R
g LOCATE0 Hflk OP M'%UP IRHTTNOL pANRL.
Hsdd               Hsdd
MTESl I. tA.KSI, Kds, KSA, Krt, <<10.
                                                                                                                                                                            /Pit JA            Kdfe Ar                  JT 3       IOA-R398 CK                                                                                                            A I   3      IOA..NJIJA I                 I I A                I I
K69-JDGDIK CIMlfr.
IKITZ 4 FCY   68-33 0                                                                         OIALIF!Eo C                                                                      INSIRUN&r                   ARN                ANN S     SLPPLT   I f80)             8VS             ~ eus I VALVE Nor     I CLOSED lHEH YALYE Hor I I OPENS VPOf PISTON
: t. loA R39 LOCA.b RA tNKAS PEClfaLSIVC J.
                                                                                            +CLOSED KHEN I VALVE Hor CLOSED tHEN)
RELAT ENCASED IN STfEL 40K FLEK CO+III FROI CONTACTS TO fRcLDJED JUNGTIol 80K.
VALVE Nor
cARLE RUN IN FLEK coNDUIT efrrffN PANELS 9.3t 8 9-JJ IL Ce I
                                                                                                                                        ~OPENS r&~N I VAI.VE FULLY I   I rwzssL I                 I CLosfs rHEN I PRESSURf   )                Ipfsroa coNTAGII Lptdo JI I FULLY CLOSED  I coNrmr                                                                                                                I c reo L~
TRAIN A CLOJC DOLEIIOlo TRAIN 8 CUE JOLfllolo VJ rfle) i OPEN
I FVLLT OPfN  I                                              I FULLT OPE>>      FULLY CLOSED          ~
.DOLEhfUO TtARI ~ AKN JOCCAOO g
I OPEN          I  I                                            I              I                  I
Adorlto Nl A
                                                    /            L         ~      J                      J                                            J                                L
Nl tA Nl tA-2 H368 rr K49A KTOA A'TIA AI C
                                                                        /
TI K
LSI rsvp 1
Tl I
PSt V2                          Yl gn HTCRAUI.IC OPERATOR                                                                                                                                                                                                      I L
2 I
a t     4/.7               st S R      ~                                                                                      R                                                      AccuglLATDR                          ACC(PlULAIOR       ACCUwVLATOR 2A    2A                        +'CJA                                                                                                                              PRESSURE  LOT                        HYDRAULICS Nor     Hl'DRAULICS Ror KSAA  KSIA                                                                                                                                                                                              FULLl'HARGED        FULLT CHARGED
HJItb I IOA K394 I ~A)A 39A A)A.A'39A CK Ar 3
                                                                                                                                                                                                                    /C   tt 9 ACCUMULATOR PRESSURE RECIRCULATION PUMP RETURN                          Lor DISCHARGE VALVE VALVE SHONV OPEN CONTROL CIRCUIT WITH (Flo. ee )
A Hsdd JT IOA-R398 R
HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2
Hsdd JA
/Pit Kdfe I
3 I
I A
I IOA..NJIJA I
I IKITZ4 FCY 68-33 0
C OIALIF!Eo INSIRUN&r S
SLPPLT If80)
ARN 8VS ANN
~ eus HTCRAUI.IC OPERATOR L
I VALVE Nor I FVLLT OPfN I
L~
I CLOSED lHEH I
YALYE Hor I
FULLY CLOSED
/
I OPENS VPOf PISTON I coNrmr L ~
J
/
LSI
+CLOSED KHEN I VALVE Hor I FULLT OPE>>
J CLOSED tHEN)
VALVE Nor FULLY CLOSED
~OPENS r&~N I
VAI.VE FULLY I
~I OPEN IJ I rwzssL I
I ptdo I
L J
V2 I CLosfs rHEN)
I PRESSURf I c reo I
L rsvp 1
Yl PSt Ipfsroa coNTAGII I
I gn I
2A 2A KSAA KSIA R
~
+'CJA a
R AccuglLATDR PRESSURE LOT t
4/.7 ACC(PlULAIOR HYDRAULICS Nor FULLl'HARGED st S
ACCUwVLATOR Hl'DRAULICS Ror FULLT CHARGED VALVESHONV OPEN (Flo. ee )
RETURN
/C tt 9 ACCUMULATOR PRESSURE Lor RECIRCULATION PUMP DISCHARGE VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2


SYKBOLS E   LOCATEO lOCAL PANEL LOCA(ED HAIN CONTROL R(QK       PAKfL LOCAIED 9.37 PANEL
>>BOY AC PKCY BD 2D IL.
  >>BOY AC PKCY BD 2D                                                                  UNIT 2                                                                                                                                        (I LocarEO 9.S3 PANEL o Locarfo 9.2I pAKEL RECIRCULATION PUMP DISCHARG'E VALVE                                                                                                                                  LOCArfo KCC filrH BACK-UP CONTROL)                                                                                                                              g Loclrfo HTD     OP 4/CHVP CONneoL     PANEL FCV  6S-T9      (8-55@                                                                                                                                      HOTES:
Aeo/l20 UNIT 2 RECIRCULATION PUMP DISCHARG'E VALVE filrHBACK-UP CONTROL)
850 VOC                                I, 2A.<<6l.   <<63. <<6i. Krl. <<lb. <<69. AMINO       CIRCUIT.
FCV 6S-T9 (8-55@
RHOY BD 81
7SOV DC RKOV BD 28 e
: 2.   <<$ 68:t .BACK.UP CONTROL TRANSFfR 7SOV DC RKOV BD      28
XS68-T9 xs6e-r9 II X$6d Tb 850 VOC RHOY BD 81 SYKBOLS E
: 3. IOA KSB LOCA 8 RX PRESS PERKISSfVE A. RELAY ENCASfo IN Srffl. BOX       FLEX CONDUIT FROK CONTACTS TO ENCLOSED JVHCTTDK BCX       CAB(f RUK IH FLEX CONDUIT Bfrl'EEN PAKfLS 9 32 8 9.33.
LOCATEO lOCAL PANEL LOCA(ED HAIN CONTROL R(QK PAKfL LOCAIED 9.37 PANEL (I
LocarEO 9.S3 PANEL o
Locarfo 9.2I pAKEL LOCArfo KCC g
Loclrfo HTD OP 4/CHVP CONneoL PANEL HOTES:
I, 2A.<<6l. <<63. <<6i. Krl. <<lb. <<69. AMINO CIRCUIT.
2.
<<$68:t.BACK.UP CONTROL TRANSFfR 3.
IOA KSB LOCA 8 RX PRESS PERKISSfVE A.
RELAY ENCASfo IN Srffl. BOX FLEX CONDUIT FROK CONTACTS TO ENCLOSED JVHCTTDK BCX CAB(f RUK IH FLEX CONDUIT Bfrl'EEN PAKfLS 9 32 8 9.33.
Orc<<AT(DNAL IHsrevc Do+9 ALL frcTATE rrcsE F(L363 BE cft(DYED WHEN OPECATINt>> (N BACKUP CONi COL t90OC.
Orc<<AT(DNAL IHsrevc Do+9 ALL frcTATE rrcsE F(L363 BE cft(DYED WHEN OPECATINt>> (N BACKUP CONi COL t90OC.
e                            II XS68-T9                    X$6d Tb                                                            8     Vg   TCAlN A   CLOSC   SOLCN(KP I
8 Vg TCAlN A CLOSC SOLCN(KP Yl TCAAI 0 CLOSE SOLEtCK4 Vt TEA/N 1 Orftr SOLENC>>4 rcllu b opcN 30(Em' rm-a~ ngt'
L.                                                                                                                                                                                                                                          Yl   TCAAI   0 CLOSE   SOLEtCK4 Vt   TEA/N 1 Orftr SOLENC>>4 rcllu b opcN 30(Em' xs6e-r9 Aeo/l20                                                                                                                                                                                                              rm- a~       n gt' Nl   2A (Id NI 21- Nl ~21-IO4       94 2 >>          8          ~       I IOA XSQ Ir        Iy IOA-NSbb C                              xsee-N$ 68.
-- C>>
                                                                                                                                                                                              'le Tl         Tl       TI     2T                         H$ 68  2                    e 791                    TSIA                E R
Nl 2A NI 21-Nl 21-2 (Id IO4
usrb    T91 H$ 68-T9A Al     e              ST                fl
~
                    -- C>>
94 Tl Tl TI 2T Al 3
3      IOA-rab1 I 3                                             e H$ 8 I                                                    $
I 3
I A L
NOTE    6 fr xsde-79 H                  8 6      FCV68-33 xsee-H OUALIFIEO 8
                                                                                                                                                                                                                        'AKN        INSMVKENI 0                                            8 US      SOURCE    TBD 1
I CLOSED KPEH        OPEIIS UPON        +CLOSED YHEN          CLOSED tHEN                                                OPENS YHEH 1                  CLOSES YHEH I
VALVE Hor I
plsroH      I                                            I I VALVE FULLY I            /~ass~      I L~
IFVLLLY OPEN  I  FULLT CLOSED l            L cowrAcr
                                                                        ~          J VAI.VE HOT FULLT OPEN J
VALVE HOT I OPEN J
I I
I I
L   ) re       JI L
A L
PRESSURf <
8 C
TBD                            I CONTAcr P$ 3                         />>S9/
N$68.
LSI I   P$ 2                                 Lse               L$ 3 KOTOR                                                                                                                                                        Vl HVi.P>>VLIC p orf<<AICYI a
791 usrb T91 e
LS6rf T9       (S(T'I 19 e
ST IOA-rab1
t(                  R     R ff 7A ~
~
                                    <<6HO 7A
I IOA XSQ H$68 2
                                            <<Qb
TSIA R
                                                  ~     >>
H$68-T9A fl Ir Iy xsee-
                                                            ~ ~
'le e
Il630 C>>
E e H$$
8>>>>   0     R     R XST N
8 IOA-NSbb KOTOR IFVLLLY OPEN I
8-TS X568
L~
                                                                                                                                                -.re R      R                                                            >>/ ~
CLOSED KPEH I
AccvKULATDR PRESSURE
VALVE Hor FULLT CLOSED l
                                                                                                                                                                                                                                                            /., a/ tr ACCUKVLAICR HYDRAULICS
I OPEIIS UPON I
                                                                                                                                                                                                                                                                              /; ~   >>/ rr ACAIKVLAIOII Ht DR AV( IC $
plsroH cowrAcr L ~
L(HY                                Nor FULLY        NOI FULLY CHARCEO          CKARCE 0 I
J LSI
e X$6d-
+CLOSED YHEN VAI.VE HOT FULLT OPEN J
                                                                                                                                                                                                                                  /.,     +/. ~t 8
CLOSED tHEN I VALVE HOT NOTE 6 fr xsde-79 H
RECIRCULATION PUMP xs68-79                    <<$ 68 T9                                    RETURN E
6 FCV68-33 I
DISCHARGE VALVE CONTROL CIRCUIT WITH RETURN HYDRAULIC OPERATOR VALVE SHOSN OPEN (I:IC. a9 )                                                                                                                                  BROWNS FERRY NU(;LEAR PLANT UNIT '2
VALVE FULLY I I
OPEN IJ 8 xsee-H 8
0 OPENS YHEH 1 I /~ass~
I
)re I
L J
P$3 Vl KN US
'A 8
1 CLOSES YHEH PRESSURf TBD L
/>>S9/
I P$ 2 OUALIFIEO INSMVKENI SOURCE TBD I
I CONTAcr Lse L$3 HVi.P>>VLIC p orf<<AICYI a
LS6rf T9 t(
(S(T'I e
19 R
R ff 7A ~
7A
<<6HO
<<Qb
~
~
~
C>>
Il630 8>>>>
0 R
R e
X$6d-XST 8-TS N
R R
X568
-.re
>>/
~
AccvKULATDR PRESSURE L(HY I
/., a/ tr ACCUKVLAICR HYDRAULICS Nor FULLY CHARCEO
/; ~
>>/ rr ACAIKVLAIOII HtDRAV(IC $
NOI FULLY CKARCE0 8xs68-79 VALVE SHOSN OPEN (I:IC. a9 )
<<$68 T9 E
RETURN RETURN
/.,
+/. ~t RECIRCULATION PUMP DISCHARGE VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NU(;LEAR PLANT UNIT '2


a+Pe N roc CrO Z>
leo vlc RMov do ec Nroc a+Pe CrO Z>
SYMBOLS leo vlc RMov do ec                                                                                                                                                                                      E     LOCATED LOCAL PAIIEL HEAP VALVE UNI7 2                                                                                                        e     Loclrfo   MAIR coHTRBL RODE PAHEL LOCATED F St PAHEL RHR INBOARO INJECTION VALVE                                                                                                              LOCATED 7 Ss PlirEL LOCATED l'ISO SVRTCIIOEAR (YIITHOUT BACKUP COHTROQ FCV    8-GT /0-0'8                                                  PSO V DC RMOV  dogb                                          d LOCATED AtCC LOCAtED HYO OP BACh'CA+ CORTROL PAIIEL AC71&#xc3;5 I. AQ KSb         LOCA r Fp PRfSS PERAIISSIVE
UNI7 2 RHR INBOARO INJECTION VALVE (YIITHOUT BACKUP COHTROQ FCV 8-GT /0-0'8 PSO V DC RMOV dogb SYMBOLS E
: t. IDA-Res - Pcis ~g Low PRESS S V TRAII A CLOSE V,   TRAiH a CLOSE V)   TRAIH A OPfif Vy   7PAIH   g Cd IISIW-GTA E
LOCATED LOCAL PAIIEL HEAP VALVE e
HSTE HSTS CTA                Rebl S'. nv-A:ttI /dP       Icdv       TAP I                                                                                                                   IT                  T G7d STOP Ado IPD                                                                                                            iN
Loclrfo MAIR coHTRBL RODE PAHEL LOCATED F St PAHEL LOCATED 7 Ss PlirEL LOCATED l'ISO SVRTCIIOEAR LOCATED AtCC d
                                                                                                      'I                                  ReSS              IOA C                                                            X'4SA g  Nfl'PER e
LOCAtED HYO OP BACh'CA+ CORTROL PAIIEL Cd I
HSTS              HSTS-KESB CITA                4TA S
Ado IPD IISIW-GTA C
Cg 1
'I g
S       TS-4d     KSSB 4
Nfl'PER EHSTE IT G7d STOP HSTS CTA iN ReSS T
ASA ~
Rebl IOA X'4SA AC71&#xc3;5 I. AQ KSb LOCA r Fp PRfSS PERAIISSIVE
KS CsA lHH               OUA L Il'IED             AHR             AHH IRS TRUMEH1' r
: t. IDA-Res - Pcis ~g Low PRESS S
BUS  I                                        US            BUS Copcus upou I ~C I pisryu OSED    fH  CLOsfD WHEN~
V TRAII A CLOSE V,
C OPEHS WHEE
TRAiH a CLOSE V)
: l.                        a' CLOSES WafirI SUPPLY TBD)
TRAIH A OPfif Vy 7PAIH g S'. nv-A:tt /dP Icdv TAP I
I f
KESB HSTS CITA S
CLOSES I P/SI5W CW I
e HSTS-4TA Cg 1
I I VALTE HOT    VALVE HOT    I                              I VALVE FVLLY        P~SSaeCE                    IPRESSURf <
S TS-4d 4
KSSB ASA ~
KS CsA BUS I IRS TRUMEH1' US SUPPLY fTBD) lHH OUALIl'IED AHR AHH BUS Copcus upou I Ipisryu I
I Courlcr I
L~
L~
I  Courlcr J
J
I I IULLY OPfir J POLLY CLOSED                                 'pfir         J
~C OSED fH I VALTE HOT I IULLYOPfir I ~
                                                                                                                                  )re     I                                                   I Coir TACT I
J CLOsfD WHEN~
                                                  ~
VALVE HOT I
LSI LSE MOTOR                                                                                                                Ve                   VS     VE uroaAULIc
POLLY CLOSED C
        +opoRl rcNz R   0 Fcv ro-r r       rcv rv-f r C                                                                                                                        rC VIS-GT                                                    ACCULIULArOR CX G                                                                                                                            lTOR
OPEHS WHEE I VALVE FVLLY
                                                                                                                                                                                  'CCUMUL ACCUMULATOR uroa>UL/cs           uroaAULIcs PRSSSVaic                                IVVI FULL  r        uol FULLY Letu 1
'pfir J
cul Rsco              CA'ARCS AFrvau                                     PCV TS GT ACCUMULATOR                     RHR        INBOARD PRESS uRC VAC VZ    SHONN CLOSED                                                                                                      LEW                   INJECTION             VALVE (nd. eu)                                                                                                                                   CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT         UNIT 2
l.
P~SSaeCE
)re I
ra' CLOSES WafirI IPRESSURf <
I I
I CLOSES CW I
P/SI5W CoirTACT MOTOR LSI Ve VS VE LSE uroaAULIc
+opoRl rcNz R
0 CX C
G rC VIS-GT
'CCUMUL lTOR PRSSSVaic Letu 1
Fcv ro-r r rcv rv-fr ACCUMULATOR ACCULIULArOR uroa>UL/cs uroaAULIcs IVVI FULLr uol FULLY culRsco CA'ARCS VACVZ SHONN CLOSED (nd. eu)
AFrvau PCV TS GT ACCUMULATOR PRESS uRC LEW RHR INBOARD INJECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2
 
I
(\\
 
~(soxAC CAArY BO 20 UNIT 2 EVE INMAED IMTECTIOM VALVE
<N(ru blca-UP CavreoL)
FC V Tu-59 (IO-85'A)
I eddvdc eteeeddee esvs(ool es "
E LOCATE D LOCAl PANEL /eEAC VALVE.
LOCATED /IA(u CONTROL PUON PANEL LOCArKO 9-se Pll/EL LOCATF.O 9.JS PANE'L LOCArEo u(co OM(rcu6EAe LCCATEO
/ICC g
LOCATED HVD DP bACKUP COMTROL P>I/EL I
Cb e/00//20 KSTN -SS (F
HSTN-5SA zr g
e\\ee OPE o-8 XSTel.bs XJJre/.JJ N
i(sr'I.5sb II'rop g
Idle C
OSE KISI-KCSA 250 voc CHOV bD eh 8 XSTN-NOTE 5'S C
IOA-Kcrb (Oh K6sb 0
NOTES lsd. 5S BACKUP COMIROL TCAHJFER ALAC/FJ w courzoL Rood w E~ERCENCY pos/T(oM.
e.
(Oa-((c
- LOCA cx peEssueE FEe/rlsJNE.
IOA~ KCS - PC(S i CA LO(e/ Pec SJ
~I..... Vl-TlAINA CLOSE YZ TCAIN b CLOSE VJ TRAINA OPEN V(I TCAIN b OPEN
: 5. DFECAIINC wsreUcnous w(LL cf/LU(eE eE/rovAL C&#xc3; THESE FUSES Eel OUR(NC OPECATIOM IM bACIIUP CONTROL
/erOOE.
C.
rOe-/Cur in+. re~a rssr Cx IISTN 53C 8.
/OAeKCTA us TN-ssh.
ST NJ Tel 5SA 8
HJTN Ssc I OPENS UPON p(s Tou I
I covrAcr ICLDSED wkPI I
I VALVE Hor FULI.Y OPEN closEu uuful v~LvE uor FULLY CLOSED~
C
/OA-AC7 T
5 TN-52 b
IOA A'S5A C
XJTN-5S Copfus I/Nful I VALVE FULLYI OPE N J
0 IOA KCTA 8
XJTN-5S IV Io/Kus vms I-I rwrssrw I >rahu PSS N
IOA-/ICrb Aul/
BUeS CLOSES OM I
PRESSURE I
I
< rbo I
L J
IXUALIFIED wsreUHE((r JUPPLY C rbDI I
CLOSES OM I I PISTON t
I CONTACT AMN BUS
~ NYDCAUL(C
~ ~ opLel roe Cl LSI OL
/srr e 6
SS 8
P G
O C
C xsam se xsr5-5s N
C RTO xsr~-os E
e TITS e C
lslr SS N
VI e
]4 V'I V2 ede q
I FCV TN.SS ACEUNULATOC PCES JUCE L0le/
I LSC FCV re( 5J ACCUNUll H10EAULCJ NOT Il!U.Y CNARCLO rcv TN-5a ACCUMULAroe IIYOCAULICJ Nor FULLY CkARGEO l'S T'I.Sl QS r(I 5S H
C ef.rl/eu VALVE JIIOIA/N C'LOBED
( FIG. 25')
eE7I/Ru FLv TM-ss ACCUP!ULATOC PRESSURE LO LV RHR INBOARD INJ ECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2


I (\
4OO VAC ITALY /SD Zi I
esvs(ool es UNIT 2                                                                                                                                                E    LOCATE D      LOCAl PANEL /eEAC VALVE.
Cb I
EVE  INMAED IMTECTIOM VALVE                                                                                                                                                  LOCATED /IA(u CONTROL PUON PANEL
L 4+GO ViVIT2 RHR PUMP MININVAIFEDOS'YPASS VALVE (w/TNovr bAce:vr courex.)
                                                                              <N(ru  blca-UP CavreoL)                                                                                                                                                LOCArKO        9-se Pll/EL
FCV 74-30
~ (soxAC CAArY BO  20                                                        Tu-59        (IO-85'A)                                                                                                                                                LOCATF.O      9.JS  PANE'L FC V                                                                                                                                                                        LOCArEo u(co OM(rcu6EAe I                                 eddvdc eteeeddee                                                                                            LCCATEO /ICC g    LOCATED HVD DP bACKUP COMTROL P>I/EL NOTES 250 voc CHOV bD eh lsd. 5S      BACKUP COMIROL TCAHJFER ALAC/FJ 8                                                                                                          w courzoL Rood w E~ERCENCY pos/T(oM.
/0-168
KSTN -SS                              XS Tel.bs
/DA A'/Odb 2
: e. (Oa-((c        - LOCA cx peEssueE FEe/rlsJNE.
HS1-4S
8  XSTN-        NOTE IOA KCS - PC(S
-gy mt Prttdt'0 gA Sob sror ST
                                                                                                                                                                                                                                                          ~
+FVP I
                                                                                                                                                                                                                                                  ~ I..... Vl-TlAIN i CA LO(e/ Pec SJ Jre/.JJ XJ                                                                5'S A CLOSE N                                            C                                                                        YZ TCAIN b CLOSE VJ TRAIN A OPEN (F                                                                                    IOA-                                                          V(I TCAIN b OPEN I    Cb                                                                                    HSTN-5SA                                                                            Kcrb                                                    5. DFECAIINC wsreUcnous w(LL cf/LU(eE eE/rovAL zr                            i(sr'I.5sb      II'rop C&#xc3; THESE FUSES Eel OUR(NC OPECATIOM IM bACIIUP CONTROL /erOOE.
y sr PA/p AF$74 ED IT SOA
e/00//20                                                                                                                                  KISI-KCSA C. rOe-/Cur in+. re~a            rssr e\ee (Oh  K6sb Idle                                              0 g    OPE      o-          C  g          OSE
+A, /0
: 8.                                                                            8
///Odd
                                                                                                /OAeKCTA                                                  NJ Tel            HJTN Ssc us TN-ssh.                    5SA ST IISTN Cx                                                          53C T                              0 5       TN-52        IOA A'S5A                    IOA KCTA C                          b N >
/OA.
                                                                                          /OA-                                                                                                        IOA-/ICrb AC7 C                            8 XJTN-5S                      X JTN-5S IV IXUALIFIED Aul/       wsreUHE((r              AMN BUeS    JUPPLY C rbDI            BUS I
I/graf 250 VPC RAIOV gD
I OPENS   UPON  ICLDSED wkPI closEu uuful                                            Copf us    I/Nful            Io/Kus  vms I-                                CLOSES OM                      CLOSES OM p(s Tou        I VALVE Hor    v~LvE uor                                            I VALVE    FULLY I           I r wrssrw                                    I PRESSURE  I               I I PISTON I  < rbo     I I covrAcr      I I FULI.Y OPEN  FULLY CLOSED~                                                OPE N J
~26>>
I  >rahu                                      L           J                 t I CONTACT PSS LSI ede                                LSC VI                              V'I      V2                              q
SYA/dOLS l'OCATED LOCAL PAHEL HEAR VALVE LOCATED A/A/N CONTROL ROOAI PA4/EL LOCATED 9 32 PANE/
          ~ ~ opLel NYDCAUL(C roe xsr5-5s                                      TITS    e I
LOCATED 9 SS PANEL LOCATED 4/bo 3IIITCHGEAR lOCATED l/CC LOCATED NYD. 0o. dACIIVP CONTROL PANEL NOTES:
N                                                                                        e RTO                                    C C                                                                                                                                                                     FCV re(  5J      rcv TN- 5a
/
                                                      /srr  e    6 ACCUNUl  l        ACCUMULAroe
/OA g/Ob LOW FLOW IOL g/09 LOW FLOW Vj TRAIN A CLOSE Vg TRAIN b CLOSE Vy TRAIN A OPEII Vg TRAIN b OPEN
                                                                                                                                                              ]4 SS xsr~-os                                                                                                                                                                          H10EAUL  CJ      IIYOCAULICJ Cl            8    P              E  e                                                                                                                                          FCV   TN.SS ACE UNULATOC NOT   Il!U.Y      Nor FULLY G    O      C    C                                                                                                                                                                                              CNARCLO            CkARGEO lslr                                                                                  PCES JUCE SS                                                                                    L0 le/
~ rCAA l'
OL                                                                                                                                                                                            I N
IISII.
xsam se FLv TM-ss      RHR INBOARD l'S T'I.S l    QS r(I 5S                                                            eE7I/Ru                                  ACCUP!ULA TOC H                C                                                                                                          PRESSURE LO LV          INJ  ECTION              VALVE CONTROL CIRCUIT WITH ef.rl/eu HYDRAULIC OPERATOR VALVE JIIOIA/N C'LOBED
Sdd OPEN 0
( FIG. 25')                                                                                                                                                BROWNS FERRY NUCLEAR PLANT                     UNIT 2
E g
HEN C
Cldsf IDA~
/IIOOA C>>
4T
+ br FNF r
,J 2D d
b 74 25 14-34 5
HEN SOA HSII /
30l 74 23 JAO wf//IA R
TD 9.b SEC I OPENS VPOI/
IP/STOH COVDEII I
L~
J
+CLOSED WIIEV IVALVE NDT IFVLLY~<
I l
C'LOS ED WlfENI vALvE AArr I
LCFCLOSEDIJ d'D PV e
C lOCN Vd/EN l IVALVE I /ILLYI IornV I
J I OPENS WP~/~
) FdD AHN S/AS
~CLOSES W//&
IrmSSVRE I
<Tdo I
rs5
/2VALIF IEP
/NSTRVAIEIV 1'vrrLv
<rbo)
/CLOSES aA/ ~
IPISTON.
I IcoNrAcr I
L J
AHH blls ANN bl/S AIOTOR LSI VC Vg VS Vl P52 LSR HTDRAlfLA mcaaTOR ~
R C
G R
R FCV 1C.3g ACCCIAIVLATOR I'RESSVgeLOW'CV ra.aO ACCUAIULATOR HYDRAULICS NOT HYDRAULICy IIOT FVLLYC//ARGED FuLLY CHARGED VALVE SHONN OPEN (Fla. ea)
RETllJIV FCV 7C. SO ACCVAfVLA~
t'RES SV/IE LCVV RHR PUMP MINIMUM FLOW BYPASS VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 9


ViVIT 2 RHR PUMP MININVAIFEDOS'YPASS VALVE                                                                                                                                    SYA/dOLS (w/TNovr bAce:vr courex.)                              -gy mt l'OCATED            LOCAL PAHEL HEAR VALVE 4OO VAC ITALY /SD  Zi                                                                                  Prttdt'0                                                                                            LOCATED A/A/N CONTROL ROOAI PA4/EL FCV 74-30                      /0-168                                    gA LOCATED 9 32 PANE/
COO VAC RAIOV8D gD I
LOCATED 9 SS PANEL LOCATED 4/bo 3IIITCHGEAR lOCATED l/CC 250                                              LOCATED NYD. 0o. dACIIVP CONTROL PANEL VPC
ce I
                                                                                                                                                          ~26>>
daV<ZO Ui/ITZ RHR PUNP MINIMUMFLOVV BYPASS VALVE fWITH8ACA'-UP CDN'TROLI FCVF4-7
RAIOV  gD NOTES:
/0-/81 ZSO YDC RMOV 8D Z8 8
                                                                                                                                                                                                      /  /OA g/Ob L OW FLOW ST +FVP                                                        IOL g/09 LOW FLOW Vj TRAIN A CLOSE
JSTA''STA 7/H 7/F S
                                                                                      /DA  A'/Odb                                                                                                          Vg TRAIN        b  CLOSE Vy TRAIN A        OPEII Vg TRAIN        b  OPEN I
/OA-R/OJA L'PEN 8
Cb      I 2
A$7d 7/H CHsrd-78 STOP PAIP ZA PAIPZC h5rd.
HS1-I  y AF$74 sr  PA/p ED
Te
                                                                                                                                                                                                            ~        rCAA L                                                                                      4S                Sob        IT      SOA              +A, /0    /OA.
'LOSE Hsrc-Sr TA S
sror                                  ///Odd    I/graf 4+GO l'                          E IISII.                      HEN Sdd OPEN    0          C g Cldsf                                        IDA~
NOTES 8 IP IOA-
                                                                                                                                                                        /IIOOA 5
/LIDHA
HEN                    HSII /   74 23 SOA                    30l                      JAO wf//IA 74 25 4T +    br C>>                                    FNF
/OA.
                                                              ,J r2D d        b            14-34 R
rote
TD 9.b SEC d'D PV                                                                                                              /2VAL IF IEP
/OA-NIOJ8 Zso YDC RAIOV8D
                                                                                                                                                                                              /NSTRVAIEIV AHN                <rbo)1'vrrLv AHH        ANN e                                                                    S/AS blls      bl/S C
~ZA~
I OPENS  VPOI/ +CLOSED WIIEV  C'LOS ED WlfENI                                lOCN    Vd/EN  l    I OPENS  WP~/~                        ~CLOSES W//&                  /CLOSES aA/ ~
SI'AIBOLS:
IP/STOH COVDEII IVALVE NDT    vALvE AArr I                                    IVALVE  I /ILLY I                                            IrmSSVRE                      I PISTON .          I
C LoCATEOLOCAL PA//EL NEAR V~LvE
                                                    ~<                                                      IornV                    )                                        <Tdo                      IcoNrAcr l
~
IFVLLY      I                                                                  I                                            I            I L~          J I                  LCF CLOSEDI J                                                  J FdD rs5 L                  J I
LOCATED kMN CONTROL Rood/ PANEL 4
LSI P52                                  LSR AIOTOR                                                                                          VC                    Vg                        VS      Vl HTDRAlfLA mcaaTOR
LOClTED J.JZ PANEL LOCATED S JJ PANEL lOCATED A/do SWITCHOEAR LOClTED AICC 8
                  ~
LOCATED HTD OP.8ACNUP CONTROL PlNEL NOTES:
R      C G  R    R LOW'CV FCV 1C.3g ACCCIAIVLATOR I'RESSVge ACCUAIULATOR HYDRAULICS NOT FVLLYC//ARGED ra.aO HYDRAULICy IIOT FuLLY CHARGED FCV 7C.      SO            RHR PUMP MINIMUM RETllJIV                            A CCVAf VLA~
1$dd-7 -8ACA'VP CON'TROL TRANSFER lLARMS IN COA TROL Rood/ IN EMERCENCT POSIT/ON Z.
VALVE SHONN OPEN                                                                                                t'RES    SV/IE LCVV                          FLOW BYPASS VALVE (Fla. ea)                                                                                                                                  CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT    UNIT 9
/OA-N'/Od-LOW FLOW J,
IOA.EIOJ. LOWFL OW VI TRAIN A CLOSE VZ TRAIN 8 CLOSE VJ TRAIN A OPEN vi TRAINe OPEN S
OPERA Tlh'$ INSTRVCTIOI/S IYILL REOVIRE REMOVAL OF THESE FVSES fZI DVRINC OPERlr/ON /N eACNVP CONrROL MODE.
O w-<d4


Ui/IT Z RHR PUNP MINIMUM FLOVV BYPASS VALVE fWITH 8ACA'-UP CDN'TROLI FCV F4-7                  /0-/81                                                                                                                SI'AIBOLS:
Cg PMP ZA drd d
C    LoCATEOLOCAL PA//EL NEAR V~LvE COO VAC RAIOV 8D  gD                                                                                                                                                                                                              ~    LOCATED kMN CONTROL Rood/ PANEL ZSO YDC RMOV 8D      Z8                                                                                                      4    LOClTED J.JZ PANEL LOCATED S JJ PANEL 8                                                                                                                          lOCATED A/do SWITCHOEAR LOCl TED AICC Zso YDC                                                  8  LOCATED HTD OP.8ACNUP CONTROL PlNEL JSTA''STA 7/H          7/F
Td.Z d
                                                                                                                                                                          ~ ZA~
rd-IJ TD J.d SEC NSIA IA Jr A'Jrd 7/N 4
RAIOV 8D NOTES:
HSTd.
1$ dd-7 -8ACA'VP CON'TROL TRANSFER lLARMS IN COA TROL Rood/ IN EMERCENCT POSIT/ON S    /OA-                                                      PAIP NOTES  8                                          Z.  /OA-N'/Od-LOW FLOW R/OJA                    8                                ZA                                                                J,  IOA.EIOJ. LOW FL OW A$ 7d                      $                                                                          VI TRAIN A CLOSE 7/H                                                                                                VZ  TRAIN 8 CLOSE C
8A'$7A.
                                                                                                                                                '    Hsrc-Sr                  /OA.
1/4 TAZ ID TDPV OVALIFIED NN
VJ  TRAIN A OPEN vi TRAIN e OPEN I      ce      I                                                                                                      Hsrd-                TA S            IP rote                                                S OPERA Tlh'$ INSTRVCTIOI/S IYILL REOVIRE 78                            PAIPZC IOA-                                                              REMOVAL OF THESE FVSES fZI DVRINC STOP
/NSTRVNENT vs svPPLyfreDI lNN 8VS ANN 8VS hIOTOR OPENS VPON I p/sroN I
                                                                                                                                                                      /LIDHA                                                            OPERlr/ON /N eACNVP CONrROL MODE.
I CONTlCT L~
O  w-<d4 daV<ZO                                                                                                                                                      /OA-h5rd.                                      NIOJ8 L'PEN                      Te
J LSI CLOSED WI/EN II I
                                                                                                                                            'LOSE 4
I VALVE Nor FLCLT OPEN J I
PMP ZA                                            NSIA                  HSTd.
7 CLOSED IVHEN VALVE Nor FVLLYCLOSEDJ OPENS NNEN~
IA                              TAZ Td.Z                                  Jr drd    d Cg d      rd-IJ                      A'Jrd 8
I VlLVE FULLT I I OPEN I
A'$7A.
J iOPENS IYHENi Pussy i
7/N                  1/4 TD J.d SEC ID TDPV                                                                                                                   OVALIFIED NN     /NSTRVNENT             lNN            ANN vs     svPPLyfreDI             8VS           8VS OPENS VPON     CLOSED WI/EN           CL OSED IVHEN                                        OPENS NNEN~        iOPENS IYHENi                            CLOSES IV/IEN                CLOSL'$ ON I
> red I
p/sroN      I I VALVE   Nor       II I
VI CLOSES IV/IEN I PRESSURE I creD L
VALVE Nor                                         I VlLVE FULLT I       Pussy       i                       I PRESSURE creD I p/sroN         I I
J Y
                                                                                                                                                        > red L~              I FLCLT OPEN                                                                I OPEN I CONTlCT                                                                                                                                              I                            I CONTACT J                    J    FVLLYCLOSEDJ J
II 4
I L            J              L              J 7
PSI CLOSL'$ ON I p/sroN I
4 LSI PSI                            LSZ           LSJ Y      II hIOTOR                                                                                                                              VI HYDRAVL/C
I CONTACT L
            /OPERATOR I
J LSZ LSJ HYDRAVL/C
/OPERATOR I
rSrC<
rSrC<
N                                                                         C 8 8                                 8    R    O L     ~     e         a     8                                                                                                                    FCVrd.r ACCQAIVLATOR Fcv rd  r      Fcv rd ACCVMVLATOR O     O     R         R     R                                 +gv 'v                                                                               PRESSURE                      NyoRAVLICS Nor  ACCVQVLATOR l$74<                4v v)v+       ISA-7                                         /VOTE S                                               FVLLTPARSED HypRAVL/CS Nor
N 8
                                                                                                /V                                                                                                                                                    FVLLy CHARCED IV A'SAY'V Fcv Td-r           RHR PUMP MINIMUM ldrl 7                                                RETURN                                        l AccvAIUL TOR PRESSURE LOW                FLOW BYPASS VALVE CONTROL CIRCUIT 'WITH RETURN    ~
8 L
VALVE SHONN OPEN                                                                                                                              HYDRAULIC OPERATOR
~
( FID. er)                                                                                                                              BROWNS FERRY NUCLEAR PLANT               UNIT R
e a
O O
R R
8 R
8 R
O l$74<
/V
+gv 'v 4v v)v+
ISA-7 IV C
/VOTE S FCVrd.r ACCQAIVLATOR PRESSURE Fcv rd r Fcv rd ACCVMVLATOR ACCVQVLATOR NyoRAVLICSNor HypRAVL/CS Nor FVLLTPARSED FVLLyCHARCED A'SAY'V ldrl 7 RETURN
~
VALVE SHONN OPEN
( FID. er)
RETURN Fcv Td-r AccvAIULlTOR PRESSURE LOW RHR PUMP MINIMUM FLOW BYPASS VALVE CONTROL CIRCUIT 'WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT R


Pressure Transmi tte r                 Pneuma tic                        Electric (PS-l)                     Accumulator                        Motor PT Check     ~
Pressure Transmi tte r (PS-l)
Pressure
PT Check
      'alve                         Switch (PS-2)
~
Check        Hyd raulic External           r                          Valve          Pump I
'alve Pneuma tic Accumulator Pressure Switch (PS-2)
curn Gas             L      Pressure Supply                     Regulator                Relief (6000 psi)                                             Valve Level Switch (LS -l )                   Hyd raulic.,
Electric Motor External Gas Supply (6000 psi)
c     ula to Res ervoi r Level Swi tch (LS-2 h 3)
Level Switch (LS-l)
V                        V                                            V l                                                          low Solenoid Valve       ~  R  gulator (4 Plcs) 1                                                                         S Shuttle Valve                                       4 Way, 3 Pos   ition Valve (2  Plcs)
Level Switch (LS-2 h 3) r IL Pressure Regulator Hyd raulic.,
Hyd raulic Cylinder Open                                                                   Clos e Figure 28 Typical Schematic For lfydraulic - Pneumatic Operator}}
c curn ula to Check Valve Hyd raulic Pump Relief Valve Res ervoi r Vl V
Solenoid Valve (4 Plcs) low
~ R gulator V
1 Shuttle Valve (2 Plcs) 4 Way, 3 Pos ition Valve Hyd raulic Cylinder S
Open Clos e Figure 28 Typical Schematic For lfydraulic - Pneumatic Operator}}

Latest revision as of 12:23, 5 January 2025

Emergency Core Cooling Systems, Low Pressure Coolant Injection Modifications for Performance Improvement
ML18283B543
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 05/31/1977
From:
Tennessee Valley Authority
To:
Office of Nuclear Reactor Regulation
References
Download: ML18283B543 (71)


Text

BROGANS FERRY NUCLEAR PLANT UNITS 1

AND 2 EMERGENCY CORE COOLING SYSTEMS LOW PRESSURE COOLANT INJECTION MODIFICATIONS FOR PERFORMANCE IMPROVEMENT Ms@ 1977

TABLE OF CONTENTS Pacae 1

0

~ INTRODUCTION..~.....

2 2 '

BACKGROUND

~

~

~

~

3

3. 4.2 3.4.3 3.4.4 3.4.5 3o 0 DISCUSSION o

o o

~

a o

o s

~

~

o e

o o

3.1 Accident Descri tion 3.2 Modification 3.2.1 Suction Line Break.

3.2.2 Dischar e Line Break.

3. 3 Model A lication 3.4 Safet Anal sis
3. 4. 1 E ui ment Ca abilit to Perform as Anal zed ui ment Interfaces Functional Interface Satisfaction of A ro riate. Standards ualit Assurance and Control 4

5 5

8 9

10 10 14 17 18 18 4

0

SUMMARY

AND CONCLUSIONS 19

5.0 REFERENCES

~.

20

LIST OF TABLES Table Title ECCS Pump Configuration Local Peak Cladding Temperatures and Reflood Times Following a LOCA and Horst Single Failure LIST OF ILLUSTRATIONS Ficiure System Normal Operation Title 10 12 13 System Mode of Operation During Unit 1

LOCA (Suction Line Break)

No Failures System Mode of Operation During Unit 1

LOCA (Suction Line Break)

LPCI Injection Valve Failure System Mode of Operation During Unit 1 LOCA (Suction Line Break)

Diesel Failure System Mode of Operation During Unit 1

LOCA (Suction Line Break)

Battery Failure System Mode of Operation During Unit 1 LOCA (Suction Line Break)

Opposite Unit Spurious Accident Signal System Mode of Operation During Unit, 1

LOCA (Discharge Line Break) - No Failure System Mode of Operation During Uni) 1 LOCA (Discharge Line Break)

LPCI Injec)ion Valve Failure System Mode of Operation During Unit 1

LOCA (Discharge Line Break)

Diesel Failure System Mode of Operation During Unit 1

LOCA (Discharge Line Break) - Battery Failure Syst: em Mode of Operation During Unit 1

LOCA (Discharge Line Break) - Opposite Unit Spurious Accident Signal Existing System Valve Bus Arrangement Modified System Valve Bus Arrangement,

15 17 18 19 20 21 22 23 24 25 26 27 28 System Valve Control Power Arrangement System RHR Pump Divisional Priorities Modified Unit 1 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (Without Backup Control)

Modified Unit 1 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (With Backup Control)

Modified Unit 1 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)

Modified Unit 1 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)

Modified Unit 1 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)

Modified Unit 1 LPCI.Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)

Modified Unit 2 Recirculation Discharge Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)

Modified Unit 2 Recirculation Discharge Valve Circuit with Hydraulic-Pneumatic Operator (With Backup Control)

Modified Unit 2 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator

(>without Backup Control)

Modified Unit 2 LPCI Injection Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)

Modified Unit 2 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (Without Backup Control)

Modified Unit 2 LPCI Minimum Flow Valve Circuit With Hydraulic-Pneumatic Operator (With Backup Control)

Typical Schematic for Hydraulic-Pneumatic Operator

1 0

INTRODUCTION Browns Ferry Emergency Core Cooling System (ECCS) design and performance for Units 1 and 2 have been the subject of a recent review.

This review led to a change in the system, which provided a significant reduction in the peak cladding temperature following a postulated recirculation line break.

This reduction in peak cladding temperature has been accomplished by elimination of the Low Pressure Coolant Injection (LPCI)

System recirculation loop selection and keeping the Residual Heat Removal (RHR) cross-tie valve closed.

A report on this previous modification was submitted to the Nuclear Regulatory Commission in a letter from J.

E. Gilleland to Benard C. Rusche dated Fabruary 12, 1976.

Portions of that previous report are presented here to give a coherent description and safety analysis.

The proposed additional modification changes the power supply to the recirculation pump discharge valves, LPCI injection valves, and LPCI minimum flow valves.

The change adds sufficient independent power supplies to eliminate the peed for the existing swing-bus feature.

Major areas of discussion in this report include the proposed independent power supplies and a detailed safety analysis of the modification.

2.0 BACKGROUND

With the advent 'of the Interim Acceptance Criteria, it became advisable to consider the simultaneous occurrence of spraying and flooding to meet the stringent new temperature limit of 2300 F.

The thermal-hydraulic models were refined to permit an accurate calculation of coolant remaining in the vessel following the blowdown, and of spray coolant reaching the lower plenum after the boiloff which takes place as it passes through the active fuel region.

These refinements permitted an accurate calculation of the flooding rate due to spray operation, and even with the new requirement of an active component failure anywhere in the

ECCS, no jet pump BWR failed to meet the Interim Acceptance Criteria.

ECCS modifications which might have been suggested by the new evaluation models were therefore unnecessary.

The final ECCS acceptance criteria adopted by the AEC are more conservative than the interim acceptance criteria.

These new criteria reduce operating flexibilityand could result in power level restrictions.

To offset the effect of the new criteria, a

modification has been added to Units 1 and 2 which takes advantage of the credit given for the flooding effect achieved through the availability of additional LPCI pumps under certain single-failure conditions.

TVA commited to modify the power supply to the recirculation pump discharge valves, LPCI injection

valves, and LPCI minimum flow valves to eliminate the need for the existing swing-bus feature before return to power operation following the second refueling outage of the respective units.

3-'

DISCUSSION, 3.1 Accident Descri tion The Design Basis Accident (DBA), Loss-of-Coolant Accident (LOCA),

is one of several hypothesized events used to evaluate the ability of the plant to operate without undue hazard'to the health and safety of the public.

The overall initial assumptions remain as described in Section 14.6.3.1 of the FSAR:

The reactor is operating at the most severe condition at the time of the LOCA, which maximizes the parameter of interest:

primary containment

response, fission product release, or core standby cooling system requirements.

A complete loss of normal AC power occurs simultaneously with the LOCA.

This additional condition results in the longest delay time for the core standby cooling systems to become operational.

The LOCA assumes that a recirculation loop pipeline is instantly severed.

This results in the most rapid coolant loss and depressurization with coolant discharged from both ends of the break.

Ig

.3.2 Modification Modification of the system requires the following hardware and wiring changes on Units 1 and 2:

The auto-transfer feature of valve motive power is eliminated on RHR injection, recirculation pump discharge, and RHR pump minimum flow bypass valves.

Motive power to these selected valves is provided by hydraulic-pneumatic operators.

Redundant power supplies to these actuators are provided for positioning the valves to the required LOCA configuration; 3.2. 1 Suction Line Break Figure 2 illustrates operation of the modified system for a break in the recirculation pump suction line.

The break location producing the highest peak cladding temperature is, as before, at the nozzle on the pressure vessel.

The other side of the postulated

<<double-ended<<

break is fed through the recirculation loop by the jet pump nozzles, whose small area limits flow to a low value and makes frictional losses negligible in the calculation.

The discharge valves of the recirculation loops will begin closing upon receipt of a permissive signal.

The valves are capable of closing against a differential pressure of 200 psid.

To assure the recirculation system discharge valve is not required to close with a differential pressure greater than 200 psid, valve closures are delayed until reactor vessel pressure 4

has decreased to less than 225 psig.

By the time the recirculation discharge valve has stroked sufficiently that it could present a flow-limiting restriction, the vessel pressure will have decayed below 200 psig.

Valve closure is therefore effected in about 62 seconds, of which 29 seconds represents the reactor vessel.pressure permissive and 33 seconds the maximum valve closure time.

The effect is isolation of the break from the LPCI system injection point.

Approximately 46 seconds after the br eak, the LPCI startup sequence is complete and flow commences in both loops.

Flow into P

the broken loop will not reach its expected value for an additional 16 seconds, when the recirculation discharge valve has fully closed.

The LPCI pumps go nearly to full runout flow, as limited by the additional resistance in the pump discharge line,

, because each pair of pumps is delivering flow to its own bank of jet pump nozzles rather than to one bank as would be the case of loop selection logic.

Additional resistance has been added to the LPCI pump discharge lines.

This replaces the resistance lost when only one or two pumps are discharging into a system designed

.for three pump flow.

The added resistance prevents insufficient Net Positive Suction Head (NPSH) in these modes of operation.

In analyzing the single failures for a suction line break, both AC and DC power failures are considered (see Figures 4 and 5).

For AC power considerations the most significant single failure for the modified system is a Diesel Generator failure.

This failure results in two LPCI pumps operating in one loop, one LPCI

pump operating in the alternate loop, and two CS pumps operating in one CS system.

The most significant DC power single failure would be loss of a battery.

For a suction line break this failure results in two LPCI pumps operating in one loop, one LPCI pump operating in the alternate loop, and two CS pumps operating in one CS system.

Table 1 shows the various pump combinations for postulated single failures.

The unique power arrangement at Browns Ferry Units 1 and 2

requires examination of an opposite unit spurious accident signal.

For this event one RHR pump in each loop of each reactor and one core spray system (two pumps) plus all required valves are available.

(Figure 6)

The limiting single failure is that failure which results in the longest reflood time and consequently the highest peak cladding temperature (PCT).

Sensitivity studies have been performed which demonstrate that a typical limiting failure in the modified system is the failure of the LPCI injection yalve in the unbroken loop.

,This failure results in four core spray pumps, two in each CS loop, and two LPCI pumps in one loop providi'ng ECCS flow to A

the core.

This combination gives a longer reflooding time than one core spray system (two pumps) and one LPCI pump in each loop which is available following an opposite unit spurious accident signal.

This is due in part to the effects of counter current flow limiting (CCFL) on the amount of the core spray flow available for reflooding.

The assumed occurrence of CCFL results

in there being, only a slight improvement with four CS pumps when compared to two CS pumps.

Additionally, the two LPCI pumps feeding into one loop deliver significantly less than twice the flow delivered by a single pump feeding each loop due to the system orificing effects.

Thus. the availability of one LPCI pump in each loop for the alternate unit spurious accident signal provides better reflood characteristics than two LPCI pumps into one loop even when supplemented by two additional CS pumps.

3. 2. 2 Di'schar e Line Break Figure 7 illustrates the operation of the modified system with a break in the recirculation pump discharge line.

When the LPCI startup sequence is complete, the LPCI flow in the broken loop is lost through the break.

With the modification, the worst-case single failures are failure during opening of the LPCI injection valve opposite the break and failure during opening of the LPCI minimum flow bypass valve serving the RHR pumps intended for injection i'nto the unbroken loop.

Table 1 and Figures 8-11 show the pump combination which results from the postulated single failures.

The suction line break remains the design basis accident for the modified system, but with a lower calculated peak cladding temperature.

A typical limiting single failure for the discharge line break is the LPCI injection valve failure.

This failure results in four core spray pumps available for core reflooding.

This condition results in a longer reflood time than the opposite unit spurious accident signal in which two core spray and one LPCI pumps are available for reflooding.

As previously discussed one LPCI pump provides faster reflooding and, consequently lower PCT than two additional CS pumps.

Representative relative peak cladding temperature for the two events described above is shown in Table 2.

The present Browns Ferry Units 1 and 2 system utilizes two power supplies for the electrical distribution system providing power to the LPCI valves.

Figure 12 shows the arrangement of the buses and the valves fed from these buses.

Figure 13 shows the modified system which eliminates the auto-transfer feature for the electrical distribution system.

Electrical interlocks will be maintained to prevent manual paralleling of the two AC sources.

The AC power only supplies power for the non-essential hydraulic pumps on the valve operators.

Figures 16 through 27 show the valve operator redundant DC power supplies to provide the motive power to produce the stored pneumatic energy.

3.3 Model A lication The core heatup calculations are performed using the approved Appendix K emergency core cooling evaluation models.

3.4 Safet Anal sis The proposed modification has been analyzed and evaluated to assure the changes do not introduce adverse effects to the overall plant.

The areas evaluated are discussed in the balance of this section.

3.4. 1 E ui ment Ca abilit to Perform as Anal zed The major components of the proposed modification are unchanged, except for the valve operators and the power supplies for selected valves.

Each major element is considere'd below:

3. 4. 1. 1 Emer enc Diesel-Generators The proposed modification does not change any of the operating requirements of the diesel generators.

The operating modes of the LPCI pumps were changed by the previous modification such that two'umps discharge to each injection header thereby changing the discharge flow characteristics from that previously established.

Prior to reactor startup after the previous modification, flow tests were conducted to establish the pump discharge path characteristics from which pump flow curves were developed.

This information was used to determine the additional resistance to be added on the

discharge side of each pump to ensure satisfaction of pump Net Positive Suction Head (NPSH) requirements.

3. 4. 1.3 Control Circuitr All standards for engineered safeguards control equipment are maintained.

Additional relays and wiring have been added to assure single-failure capability.

3.4. 1.4 Recirculation Loo E ualizer Valve and LPCI S stem Cross-Tie. Valve Inadvertent opening of these valves could negate the LPCI system injection when needed, therefore one equalizer valve and the cross-tie valve were closed and motive power removed by the previous modification.

An annunciator was added to indicate the LPCI cross-tie valve and/or equalizer valve are not fully closed.

3.4. 1.5 Recirculation Pum Dischai e Valves Closure of the recirculation pump discharge valves is of importance to the proper application of the proposed modification.

Hydraulic-pneumatic operators will be added to these valves.

Four aspects of valve compatibility have been investigated:

3. 4. 1. 5. 1 Environment As reported in Section 5.2 of the Browns Ferry FSAR, the recirculation system valves are designed to operate under the environmental conditions associated with the DBA-LOCA.

The added hydraulic-pneumatic operators are designed to operate under the same conditions.

3.4. 1.5.2 Break Effects A study of the drywell geometry was performed prior to the previous modification to determine the effects of jet impingement resulting from a postulated recirculation line break.

For the suction line break, re-routing of cable has been provided, to prevent discharge valve operator malfunction.

Valve closure at the time of a discharge line break is not considered in the ECCS analysis.

Also, closure of the discharge valve does not change the LPCI system input capability during a discharge line break (See Figure 7).

For the break effects study, breaks were assumed at all terminals, branch lines, and at other locations based upon stress.

Breaks were assumed at all locations where pressure plus dead load plus thermal plus earthquake stresses exceed

0. 8(1.2S>+S~).

Additionally, in piping runs where no stresses occur in excess of 0.8(1.2S>+S>),

a minimum of two intermediate breaks were postulated based upon the highest total stresses combined as above.

3.4. 1. 5. 3 Valve Differential Pressure Recirculation valve closure requires both a LOCA initiation signal and a decrease in reactor pressure to the permissive setting.

With valve closure initiation delayed until reactor pressure has decayed to less than 225 psig (approximately 29 seconds) the differential pressure across the closed valve will always be less than the maximum 200 psid.

The sensor and permissive circuitry are designed to satisfy all requirements for engineered safeguards control systems.

3.4.1.6 Minimum Flow B ass Valve Minimum flow bypass valves will be provided with hydraulic-pneumatic operators with redundant DC power supplies and flow switches to assure maximum pump protection under postulated accident conditions.

This modification eliminates the need for the auto-transfer of power to these valves.

AC power will only supply the nonessential hydraulic pump to the operators of these valves.

3.4. 1. 7 Batteries DC power from qualified station batteries will be the primary and redundant power sources to the hydraulic-pneumatic operator.

Each source is selected such that no single battery failure inhibits redundant power sources or results in a configuration of ECCS pump availability that is less than adequate for core cooling.

3.4.1.8 H draulic 0 erators See Figure 28.

Alarms will be provided in the main control room for non-standard accumulator parameters.

Accumulator pressure indication will also be provided for operator verification and interpretation.

3.4. 1.8.1 Seismic uglification The operability of the hydraulic-pneumatic valve operators and all the appurtenances vital to their operation during and after a SSE is verified in accordance with IEEE 382 and 384 as applicable to the plant. If the installation of the hydraulic-pneumatic valve operators produce increased loading condition, the LPCI system and recirculation water system shall be requalified to the standards and codes which were applied to the original unmodified system.

3.4.2 ui ment Interfaces The effects 'of the proposed change on the various operating modes of the equipment have been 'evaluated and found to be acceptable, as described below:

3.4.2.

1 Emer enc Diesel-Generators The proposed modification introduces no new or different interfaces for this equipment.

3. 4. 2. 2 Motor Control Centers and Control Panels l

I Motor control centers will be modified on those valves necessary for automatic operation for LPCI injection (LPCI injection, recirculation pump discharge, and RHR pump minimum flow bypass valves) in order to accomodate the addition of hydraulic-pneumatic operators.

A control panel will be added for backup control to the hydraulic-pneumatic operators.

All standards for engineering safeguards control will be maintained.

3. 4. 2. 2. 1 Valve Power Existing Limitorque valve operators will be replaced by hydraulic-pneumatic operators on valves necessary for automatic operation for LPCI injection.

This modification allows elimination of the valve motive power auto-transfer feature for redundant power supplies.

Physically and electrically separate, redundant DC power supplies are provided to the new operator to assure proper valve movement to the required position during a LOCA.

Valve motion times are maintained in order for previous analyses to remain applicable.

3.4. 2. 2. 2 Valve Motor Control To ensure that a malfunction in the individual valve controller does not couple back to the other valve control circuits, the redundant A and B circuits were provided separate relays and contacts in the logic panels on a previous modification.

This separated, redundant arrangement has been applied to the LPCI and 4

recirculation system valves needed for operation as described.

System interfacing and protection as related to the valve motor control centers are unchanged except as noted in 3.4.2.2.

3.4.2.2.3 DC Control Power As shown in Figure 14 and Browns Ferry FSAR Figure 8. 6-3, 250 VDC from the station batteries provides control power to LPCI logic panels.

After the proposed modification the same equipment receives power from this source as in the original design.

These station batteries are also the power source for hydraulic-pneumatic operators.

Failure of any one station battery does not cause interactions that exceed the limiting case-for core cooling capabilities.

See also 3.4. 1.7.

3.4.2.3 LPCI Lo ic Panels To provide the necessary redundancy required on the previous modification, changes were made to the LPCI logic panels.

To preclude valve-to-valve interface, redundant and separate relays and contacts were provided for each LPCI and recirculation system.

Each of the added redundant relays was provided full separation from all others by enclosure in a metal box.

The wiring from redundant contacts between the two logic panels was provided separation by enclosure in flex conduit and termination'n metal junction boxes.

This logic scheme will be maintained in the new modification.

The only changes to be made to the LPCI logic panels on this modification will be to add redundant flow information to the minimum flow bypass valves.

Since redundant

flow switches will be added to each LPCI system, and each circuit can be kept separate to the new operators, no new interfacing will be necessary in the logic panels.

3. 4.2.4 H draulic/Pneumatic 0 erators Physical and electrical separations are maintained on the operators to assure redundant features.

3.4. 3 Functional Interface The RHR system, as discussed in this report, performs as a

short-term post-LOCA core cooling function.

The system also provides a long-term containment cooling function which is described in Sections

4. 8. 6. 2 and 14.6.3.3.2 of the FSAR.

The effects of the proposed change to the core cooling function on the containment cooling function were evaluated and found to be acceptable after modification as described below.

In analyzing single failures which might influence long-term suppression pool cooling, both AC and DC control and emergency power failures as well as component failures in the RHR and RHRSW I

(cooling water) systems were considered.

The worst case single failure (Reactor MOV Board loss) with the modified system still leaves two RHR heat exchangers, two RHR pumps, and two RHR Service Water pumps and associated valving available for suppression pool cooling.

The suppression pool temperature versus time response for this combination of equipment is shown by curve C in FSAR Figure 14.6-12.

i

3. 4. 4 Satis faction of A ro riate Standards The proposed modification directly affects as.Engineered Safeguards System and has been designed to Class I system standards.

The standards and guides which were applicable to the original design have been reviewed to assure the modified system

design, equipment, and installation meet or exceed the qualifications of the unmodified system.

3.4.5 ualit Assurance and Control Quality assurance and control will be applied to this modification as detailed in Appendix D of the Browns Ferry FSAR.

A'ppendix D incorporates the requirement of 10CFR50, Appendix B.

4 0

SUMMARY

AND CONCLUSXONS The proposed modification involves some physical 'changes to the plant to permit elimination of the swing-bus concept and adoption of the total system availability of the new design.

The analytical methods used reflect the most recent

, determinations of NRC staff and reactor suppliers for modeling the performance of Emergency Core Cooling Systems.

The application of the proposed modification adds to the overall capability of the plant to continue operation in a manner that ensures the health and safety of the public while providing ben'efit in the production of electrical energy.

>>18-

5 0

REFERENCES

.1.

Interim Policy Statement, USAEC, dated June 19, 1971;

Subject:

AEC Adopted Interim Acceptance Criteria for Performance, of ECCS for'Light-Water Power Reactors.

2.

NEDE-20973, Supplement 1.

3.

Letter from J.

E-Gilleland (TVA) to Benard C. Rusche (NRC) dated February= 12, 1976.

TABLE 1

ECC S PUMP CONFIGURATION Suction Side Break Pum s Available++

No Failures Opposite Unit Spurious Accident Signal LPCI Injection Valve Failure+

LPCI Minimum Valve Failure+

Recirculation Discharge Valve Failure-Break Side~

Diesel Failure Battery. Failure

~ 4 Core Spray, 2 LPCI in one Loop 4 Core Spray, 2

4 Core Spray, 2

LPCI in one Loop LPCI in one Loop 2 Core Spray, 2 LPCI in one Loop, 1 LPCI in other Loop 2 Core Spray, 2 LPCI in one Loop, 1 LPCI in other.Loop 4 Core Spray, 2 LPCI in each Loop 2 Core Spray, 1 LPCI in each Loop Dischar e Side Break No Failures LPCI Injection Valve Failure+

Pum s Available~*

4 Core Spray, 2 LPCI in one Loop 4 Core Spray

~ LPCI Minimum Flow Valve Failure+

4 Core Spray Diesel Failure Battery Failure

,Opposite Unit Spurious Accident Signal 2 Core Spray, 1 LPCI 2 Core Spray, 1 LPCI 2 Core Spray, 1 LPCI

+Limiting Sing3.e Failure

~>In Unbroken Loop TABLE 2 LOCAL PEAK CLADDING TEMPERATURES AND REFLOOD TIMES FOLLOWING A LOCA AND WORST SINGLE FAILURE Suction Line Break Discharge Line Break Peak Cladding Tem erature

~F 2200 2022 Flooding Time seconds 108 126

DIG A 0 IV I 0/G 8 0/G C DIV II 1A 1A 2A 2A f +~%

1 1C 1C 2C 2C 18 18 28 28 ID 1D 2D 20 CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 DISCH SUCTION 0ISCH RECIRC 8 RECIRC A NOT RUNNING RECIRC 8 RECIRC A Figure 1

System Normal Operation

0/G A 0 IV I D/G 8 D/G C 0 IV II D/G 0 I

~040 q

1A IAi 2Ai 2A I L

C 1C 1CI 2CI 2C L

C

~ e-4 e

1B

~

1B 2B 2B~

L C

C.';.

!,::L~.:

I 10 10 20 2D' C

.C$

'ROSSTIE CROSSTIE LPCI A LPCI B LPCI A LPCI B BREAK DISCH SUCTION DISCH DISABLED OR NOT RUNNING RECIRC 8 RECIRC 4 RECIRC B RECIRC A Figure System Mode of Operation During Unit 1 LOCA (Suction Line Break),No Failures

0/G A DIV I D/G 8 D/G C.

0 IV II 0/G D IA IA 2A 2A 1C IC 2C 2C L

C

':"',:C~g;:2g "~:

L C::bg:;"::,'.,L$:;::

18 18 28 28 I

10 1D 20 2D C:

.C,;:

CROSSTIE CRDSSTIE LPCI A LPCI 8 LPCI'A LPCI 8 BREAK OISCH SUCTION OISCH RECIRC 8 RECIRC A DISABLEDOR NDT RUNNING RECIRC 8 RECIRC A Figure 3 System Mode ofOperation During Unit 1 LOCA (Suction Line Breakj LPCI Injection Va/ve Failure

0/G A DIV I 0/G 8 D/G C OIV II D/G D 1A IA 2A 2A

.sr.'

,,"4';.-:.:::.

I ~~%

1 1C 1C 2C 2C

.I" 18 18 28 28 C,,:Ci.:.:

10 1D 2D 20 L

C

"CP.

4'.1-~g "5::j':

CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 BREAK OISCH SUCTION OISCH RECIRC 8 RECIRC A DISABLEDOR NOT RUNNING RECIRC 8 RECIRC A Figure 4 System Mode of Operation During Unit 7 LOCA (Suction Line Break/ Diesel Failure

DIG A 0 IV I DIG 8 0/G C DIV II DIG 0 1A 1A 2A "2A 1C IC 2C 2C 18 18 28 28 I ~

I 10

. 10 2D 20 L

C

+'Cn:.4K%

CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 BREAK DISCH SUCTION DISCH RECIRC 8 RECIRC A 0 ISABLED 0 R NOT RUNNING RECIRC 8 RECIRC A Figure 5

System Mode ofOperarion During Unit 1 LOCA (Suction Line Break/ Battery Faiiure

D/G A OIV I 0/G B OIG C OIV II D/G D I

0 q

IA IAi 2Ai 2A I s

p'y.

c (c:.:-::::>I.',;.

f ~

+

1 1C IC I 2C I 2C

'.",L','1 C

';.C,~

L

.I

~ e~

o IB

~

18~

2BI 2B~

.-;:C:1 C

I l

I 1D ID 2O 2O

.'"C" C

L CROSSTIE CROSSTIE LPCI A LPCI B LPCI A LPCI B BREAK 0 ISCH SUCTION DISCH RECIRC 8 RECIRC A DISABLED OR NOT RUNNING RECIRC B RECIRC A Figure 6

system Mode of Operation During Unit 1 LOCA (Suction Line Breaki Opposite UnitSpurious Accident Signal

0/G A

. DIV I D/G 8 D/G C DIV I I D/G 0 1A 1A 2A 2A 1C 1C 2C 2C C

g5gA'grr 18 18 28 28 I

C 1D ID 2D 2D L

C CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 DISCH SUCTION DISCH RECIRC 8 RECIRC A

.ge..
;.

DISABLED, NOT RUNNING

'Sj+c,'R NOT CONSIDERED IN ANALYSIS zjz~p;:

RECIRC 8 RECIRC A Figure System Mode ofOperation During Unit 1 LOCA (Discharge Line BreakJ.No Faf/urea

D/G A DIV I 0/G 8 0/G C DIVII 0/G 0 1A 1A 2A 2A 1C 1C 2C 2C

..."5;:

C i~Q@3;4':~g'8 18 28, 28 c

r'cj:..-:::'i;'".

1D 10 20 20

.=-I.'=.

C CROSSTIE CROSSTIE LPCI A 4c LPCI 8 LPCI A LPCI 8 DISCH SUCTION DISCH RECIRC 8 RECIRC A DISABLED,NOT RUNNING OR NOT CONSIDERED IN ANALYSIS RECIRC 8 RECIRC A Figure 8 stem Mode ofOperation During Unit 1 LOCA (Discharge Line Breakj LPCI Injection Valve Failure

0/G A

'IVI 0/G 8 0/G C DIV II D/G D I ~~

I I ~~~

1 1A IA

2A 2A 1C 1C 2C 2C 18 18 28 28 1

1D 10 2D 2D CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI 8 0 ISCH SUCTION DISCH RECIRC 8 RECIRC A DISABLED,NOT RUNNING

;~~,::P'.

OR NOT CONSIDERED IN ANALYSIS RECIRC 8 RECIRC A Figure 9 System Mode ofOperation During Unit 1 LOCA fDischarge Line Breaki Diesel Failure

0/G A DIY I 0/G B 0/G C DIV II 0/G 0

.:,L','--:-.C

.'jC~

IC

'IC 2C 2C

~t.";:

C

'jg~ '";<<4>>'B 1B 2B 2B I

W l

10 1D 20 2D CROSSTIE CROSSTIE LPCI A LPCI 8 LPCI A LPCI B DISCH SUCTION DISCH RECIRC B RECIRC A DISABLED,NOTRUNNING

~$';~) OR NOT CONSIDERED IN ANALYSIS RECIRC B RECIRC A Figure QQ System Mode of Operation During Unit 1 LOCA (Disc/Iarge Line Break/ Battery Failure

0/G A DIV I 0/G B D/G C DIV II D/G 0 1A 1A 2A 2A 1C 1C 2C 2C I

C+v 18 18 2B 2B I 10 1D 2D 2D x%

w?

CROSSTIE CROSSTIE LPCI A IL LPCI B LPCI A LPCI 8 DISCH SUCTION DISCH RECIRC B RECIRC A DISABLE, NOT RUNNING

',A,;;

OR NOT CONSIDERED IN ANALYSIS RECIRC B RECIRC A Figure System Mode ofOperation During Unit 1 LOCA (Discharge Line Breakl Opposite UnitSpurious Accident Signal

D/G A DIV I D/G C DIVII-D/G 8 OIV I O/G O DIV II k kV SBTDN BD A 4 kV SHTDN BD C

)NO 4 kV SHTDN

.BDB

)NO 4 kV SPAN BDD

.0

)NC 1A IA

. 2A 2A 18 28 28 C

C L

1C 1C 2C 2C L

C C

L 10 1D 2D 2D L

C C

L

):

480V SHTON BO IA

) NC UNIT 1

)NC 480V SHTDN BO 18

)Nc

)'Nc

)Nc

)

NC 480V SHTDN BO 2A

) Nc UNIT2

) NC 480V SHTOiY, BD 28

)"'C

)NC

)N 4SOV RX MOV BD 10

)

NO 5 480VRX MOVBD tC

)

Nc

'O

)

NC 480V RX MOY BD 2D

)NO 3 480V RX

~ MOVBD2C

)

iiic NO

)Nc ) Nc

)NC

)Nc

)NC

)1C NC NC NC bC NC

~IC iC NC

)Nc

)Nc 2458 2.538 gp td N

0'K

~a o" UD Ir. 0 10.25 A z0I-0 o~

hz

'l0.1GA 263A 245A 0

z 10-258 10.168 2458 2-538

- ELECTRICAL lNTERLOCK 10-25 A 10 16A 243A 245A 0-258 10 168 Figure 3;2 Existing System Valve Bus Arrangement 1.

Valve closed and motive power removed.

0/G A DIY I 0/G C DIV II 0/G 8 OIV 1 D/G 0 0 IV II k kV SBKDK BD A 4 kV SHTDN BOO NO 4 kV SHTDN BD B KO 4 av SHTDN BD D KO lA IA 2A

) HC 2A 18 18 28 28

)KC L

1C 1C 2C 2C NC 1D 1D 2D 20

)KC L

c c

T.

) N IJNIT1

) NC 480V SHTDN 480V SHTON BO IA 80 18

) NC

)KC

)NC

)KC UNIT2

~) KC 480V SHTDN BD 2A

)NC

.)KC 480V SHTON BD 28

)KC

)KC

)HC 48QV RX MOV BD 1D

)KO

)

NC NO 480V RX MOV BD 'IC 480Y RX MOV 80 20

)HO

~NC J

PBQV RX MOV BD 2C

)NC )HC NC NC

'C XC NC NC

)NC

)KC

)

KC

)VC PC

)NC

)KC ) HC 2458 2.538 gg KJ N

C

-o

~a o~

tt:a 1

2 10 25A z0 oIll 10.16A 0

z 243A 245A 10 258 IQ 168 2458 2438 10-25 A 10.16A 2.65A 243A 0.258 10 168 Figure 13 h/odified System Vabe Bvs Arrengemene 1.

Valve closed.

and motive power removed.

2.

Power for hydraulic pump - not required for valve closure.

Power for hydraulic ~mp - not required for valve opening.

Power for hydraulic pump - not required for one cycle of valve operation.

LOGIC 8 250 YDC LOCA LOGIC 8 LOFTI FLDhf DiVI L06IC A LOW FLOQ DIV T LOGIC B RX PRESS C II50 PRIG OPE N AflNIFLOW BYPASS YLY IO-IbA OPEM LPC I VALVE.

IO-258 LOGIC 8 RX PREM C 2.25 PRIG CLOSE DECI PHP.

D/SCAPI.

YALUE 2-$3 LOGIC B LOQ FLOW DIVZZ LOGIC A LOhf Flo Dll/2I LOGIC A RX PRESS K ISOPDIG OPEN MINIFLO4/

BYPASS VLV.

IO-Ih8 L06'IC 4 RX PRES~

-< aP.SPSIS OPIUM LPC I VALVE IO-25 A LOSE DECI PHP. Orich'.

VLY. 2-53B LOGIC A LocA 2SOVS C RPuec IA 8QT..

VALVE COMTZOL POlKE'CZAMGEHEAfT

C 4

UNIT 1 ACCIDENT INITIATINGCIRCUITS UNIT2 ACCIDENT INITIATINGCIRCUITS BLOCKS UNIT 'I RHR PUMP 1C

'LOCKS UNIT 1 RHR PUMP 1Doo BLOCKS UNIT2 RHR PUMP 2800 BLOCKS UNIT2 RHR PUMP 2A" RHR PUMPS 1A AND 1C RHR PUMPS 18 AND 10 RHR PUMPS 2A AND 2C RHR PUMPS 28 AND20

'OR CORE SPRAY PUMP PRIORITIES. SEE BROWNS FERRY NUCLEAR PLANT FSAR, FIGURE BRAC

~ ~ STOPS IF RUNNING Figure gg MO~ajSystem RHR Pump Divisional Priorities '

I

Aecv Ac RHov BOID UNIT 1 RECIRCULATION R/NP DISCHAR6E VALVE IWETHOUT eACK-UP CONTROL)

FCV 68-T9 (24SB) 2$0Y DC AHOY 80 Id 2SOY OC RHOV 80

/A SYHBOLSI LOCAIEO LOCAL PAHfL C

LOCATED HATH CONTROL ROCXI PANEL LOCAIEO 9.32 PANEL jt LOCATED 9-33 P/HEL N

LOCATXO 9-2I PAHfL p

LOCATED HYU OP 8/CKUP OUHTCOC PANEL HUIES.

I. 2A.K6l, K63, K6A, KTI, Kro. Ket JOOOTHO CIRCUET

e. IOA.A34 COCA b CX PÃXAA PERPIAMIVC 3.

RELAY ENCASED TN STEfL BOX FLEX CONDUIT PRON CONTACTS To EHCLOSEO JUNCTION BOX.

CAelf RUII IN FLEX COHOUET BETWEEN PANELS 9-32 8 9-33.

I IL lh TRAIH A CLOSE dOCEHOlo Va TRAIN 8 CLUE dOCEHOID VX TRNIJ b

OPEH dOL EHgID A

TRARI b OPEN dOLENOO j /Af re~

7FHI Aeo/If0 Nl 2A Nl 2A-Nl 2A 2

XC98

<<Igb gr/8 Tl

'll TI 2I H368.

Ir I

Hsgb-I OA.RBBA IXA TTA 1,

IDA-)gers j,

CX Ar 3

~ H36e TAA IOA-II38A I

0 IOA KSbd I

I

~J H368 TRA I FULLY OPE>>

L i CloSED wHEH ~

I OPENS UPON PISTON I CDHTAcr L ~

J

/

LSI

+CLOSED WHEN I v~lvf Hor I FULLr OPEN I

J CLOSED WHEN)

VALVE NOT FULLY CLOSED FCV 68-33 IT C

I VALVE FULLY OPEN I

I J

I OPENS FHEN 1

I )pro I

I CLOSES XHEN,)

I PRESSURE I c reo I

L IXIALTFrf0 ANN THSTRUHEHT BUS SUPPLY (Teo)

IpfsroH CDHTACTI I

I I

ANN BUS YR prl l$3 HYDRAULIC~

OPfRATDR 8

R 0

2A 2A-KBAS Kelb P

~fA-KBTD ACCUXULATOR PRf$$URf LOW P

Scr il.<

AccgvULATOR ACCUHULATOR HYDRAULICS HOT HYDRAULICS HOT FULLY CHARCED FULLY CHAROEO rgr 4p-rt Far Al /Y VALVESHONV OPEN C FIG. /4I )

ACCUHULATOR PRESSURE LOW rate'AV Tt RECIRCULATION PUMP DISCHARGE VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR 8ROWNS FERRY NUCLEAR PLANT UNIT 2

480V AC RHOV BOK I

CB I

L 480/l20 UNI71 RECIRCULATION POIMP DISCHARGE VALVE (tITH BACK UP CONTROL) rCIF fe.a (e-r~O 2$0V DC RNOV 80 lh bxsde-3 xsde-3 bXSde-3 250 VDC RTOV BD lb SVHBOLS f

LOCATEO LOCAL PANEL LOCATfb HAIN CONTROL IXX'ANEL l.OCATED 9-32 PANEL LOCATEO 9-33 PANfL 0

LOCATfD 9-tl PANEL 9

LOCATED NCC 8

LOCATED HTD OP BACNVP CONTROL PANEL HOTES:

I.

2A.XGI. X63. X6A. Xrl. XTO. X69-JOGGING CIRCUIT.

t.

X$6d-

-BACX-VP CONTROL TRANSFER.

3.

lDA.X39.LOCA & RX PRfss PERNISSIVE.

A.

RfLAV ENCASED I>> STEEL BOX.

FLEX CONDUIT PRON CONTACTS TO fNCLOSED JUNCTION BOX.

CABLE RVN IN FLEX CONDUIT BETVEEN PANELS 9-32 8 9-33.

5.

DPEC4rlOHAL IHJTRUCTlONJ ALL IHCTATX'TCJE FIAJBJ 86 RSHN10 WHEN OPE thllHB tl BACÃTAP CONTCOL PNME'.

8 Vg TBA/M h CLCVC JOLCllbrD Vt TERAI b CLOJE JOLflAHD Vl Tthdr A OPEN JOc,Ewer 8 TCAtll 0 OPKN JOLfmlb xl II-Nl tg-PI eh-rl rl'lxddher

~

g C

HJ68 31

's H$68-t

'IOA.K39A X$68- '

A

~ HJ 68.JA H$68 JA

-- CH VALVEoNor' I FULLV OPE>>

I L~

I CLOSED tHEN VALVE HOT I

FULLV CLCSED

/

OPENS UPON I

PIKE I

coxrmr L ~

J

~CLOSED NHEN vhuf Hor Ar J

I I

A L

Jr IOA.KJJB lOA-XJJAI I

HOTf A b

X$68 9 H

6 FCV68 33 I

VALVE FULlV I

OPEN I

I J

8 Xsdd-3 N

I Pwz spa 4A'

) rro I

L Hsdd-JC r.'9th CLOSES tHEN I

PRESSURE lxlALIFIEO INSTRUHENT SOURCf TBD I coxrhcr I

I ANN BVS V2 Lst LSJ lbORAVLIC

<</ OPERATOR a 6 24 ~

2A-X6HA XQA

~

~

Ct BC3A G

R R

e X$68 3 R

R a

8 X$68-3 8

II C

R R

3568 9

lV B

X$68 3 RfTVRH

~

K

\\

r, rat 9 ACCUHULATON PRESSURE LOV I

rrrst.A ACCUHUl.ATOR PRESSVRf LOVT rrrhl.j ACCUHULATOR HYDRAULICS NOT FULLV CHARGED rrrst P ACCUHULATON HYDRAULICS NOT FUl.l.r CHARGE0 RECIRCULATION PUMP DISCHARGE VALVE VALVE SHOSN OPEN (Fm. IV)

RETURN CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT l.

I

44O VAC RAIOV ADIT Cd csv re Arcldv dd Id UNIT' RHR INI30ARD INJECTION VALVE (WITHOVT dACIIVP CONTIIOL)

FCV rV-SS IO-ZSA I

HS/I Ig SSd STOP HSrs-SSA HS/4 ~

SSA ESO V DC RIAIIV dO

~/A~

/Ol T

ROTd SYNIdOLS E

COCATED LOCAL PANEL NEAR VACVE LOCATED AIAIN CONTROL ROOAI PANfL LOCATED t SE PANEL If CO4 TED S -SS PANEL CO4TED 4/dO 5WITCHOEAR LOCATED AICC d

LOCATED HYO OP dACIIVP CONTIIOL r%NEL NOTES I.

RLl -N4T

~

COCA iRr FIIESS PEIIIIIISSIVE'.

IOA-RSS - PCIS ~g COW PRESS 5.

V, TRAIN A CLOSE Vj TRAIN d CCDSE Vj TRAIN A OPfN YIIAIII d OPEN pc ~ aAP rAt

~/IED E

g ccc E

I /ISII-I ssd C

CLOSE IOA I(ISA II

/OA Efrsd N

Rd TA 0

HSTd SSA HSTd SSA Cg ICP-HATA T

S TOTE

/OA IfSSA IOA IfbTA AAdd RI

/OA.

XLTa I Opfj/J v/jCW IPIS/fjj/

I I

Ccjj/rAC7 I

L I CCOSED WHEN i I VAlVE NUIT l I'VCCY OFcN L

CCOSED I/HEN I VAC,VE NOT FVCLY CLOSED C

I OPENS W//EN I VALVE FVCCY l~N I

j r;-.;--.~

PrIESMC' l

) rdO I

A/IN dVS r

I I CCOsfS w/IENI IPRESsvRE <

A/VII dVS OVALIF/fD INS TRVLIENT SVPPLY (TSD)

I I I CcosES Cw I f 1

PIS TO/I CO/VTACT ANN dVS I

AIDTOR I

jcro//ABULIC I

<~oPcruroe L E LSI Vj Vg C5E R

0 Per/+-5$ '

I ACCVAIVCAGjlt P/f4 S5VcVE FCV TN-55 ACCVMVCA/f/R jrrMPvcIcg rVCI/

FVCCr C/IlR4 EO FCV TII 59 ACCVjrIVCATfjR jcrojc4uc/cs

%01 FVLLY CIIAR4CO VALVE SHONN CLOSED

(,FI6. IB )

AftVII FCV 14 SS ACCVRVLAYOII PcfESS VRC COccc RHR INBOARD INJECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 1

I

't

vaoYAc ehIov 8o lc

. LINIT' 6/8 IMIMAE'D IMTECTIOQ VALVE cvlTN BncK.Up coNreoa)

FCV 7 I-67 (10-858) 15OVDC RIRW BDIA ~

srplooL 3:

C LOCATED LOCAL PANEL NEAZ vALVE LOCATED PAIN CONTROL ROON PAIVEL LOCATEO 9-32 PANEL LOCATED 9 SS PANEI.

Locnreo

%leo sNITcA'GEAR

+

LOCATED HCC g

LocATED HYD Dp 8ncKUP courzol pANEL I

CD I

L EI K$7 I -CT 8

XSTH Cr ISre.ar N

e Hs ru-crA 2T CTS usrH-STOP HSTg CT 250 VOC RHOV DDI8 8 XPP-IVOTE 5'OA-KCGA NOTES I.

XSTN-dr BACA'UP COAflZOL TRAIVSFEZ ALARNS IH CONTROL ZOOM IN EMERGENCY POSITION.

e.

Ion-Hcc - Locn ex peessueE pERHlsslvE.

3. Ion ~ Kcs - pt/s + ex Low pzess q..... Vl-TRAINA CLOSE YZ. TRAIN 8 CLOSE YS-TEAVTA OPEN VLI TRAIN 6 OPEN
5. OPEZAIING INSTRVCTIONS WILL RQlUIZE REPIOYAL OF rHESE FUSES <eI DUZIHB OPEZATION CN 8ACIIUP CONTROL PIOOE.

id'-pgr/

'IOOII20 E'

uSTv-CTB OPEN o

E 4

rniV C

LOSE IOA-KCSD IOA KQSA CI OL

+cpENs upou I,'

'ISTON Co,vrnCr

/

+CLOSED WHEHI I VALVE Hor

'FVLLr OPEN j

~CLOSEN IIHENI VALVE HOT II ULLY'LOSED~

l T

II5TII-CTC 7

5 Tu.co 5

IIS TH-C7A 5T d IN KS58 S

ISTIC-BT IOPENS VHEu1 I vALVE. FULLVI I

OPEN I

J HS TN.

C7A eh KCC'8 EI ID'-Cr N

I opENs NIzu~

IpM$5~ '

prao I

HSTII CTC 8

IOA-KCCA ANII BUaS CLOSES 0I7 I

PRESSURE I

I C

TDD L

J aUALIFIED INSTRVHEKT SUPPLr C IlIDI I

CLOSES ON I I PISTO~

f I coNTAcr ANN BVS OV5 LSI VII V5 VI

~se q Lse LSS IIroenvLIc

~< OPLRAroe CX OL 8

G G

l5lf cr l)T1 9 CI EN C

R II EST'I.CT N

z e<oB I5ru-cr c

e Ill B CT C

XSI5 cr N

Fcv pf Gr ACCUHULATOZ peE55URE LOW I

FRv pl.cr lCQlNVIAT Hroc4ULes NOT FULLr CHARGE,D FCV TN-Cr ACCUHULATOR'ITDRAULICJ IIOT FULLV CHAREED IDrvcr L5TH Br N

E, RETURN NLVE QIIOWN CLOSED

( FIG. 19)

RETUeu szv ru-cr ACCUHVLATOZ peEssURE LOLV I

RHR INBOARD INJECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 1

J

dbO VAC llAC7V CID lb Cb VN/7 I HHR PVACP MINIMVAIFLOW BYPASS VALVE C v/ITNour /slee" ur courmu. )

FCV 74-7

/0-ISA IDA KIOWA HSrf 2r rsvp r~

z~rv do rd sr

+ pep IA PllP IC sr

/elf.

EIIS/f

/r rA 5 S/r 250 VDC Rheo/ 8D

~IA'~

e AIA.

EN' YhlbOLS E

LOCATED LOClL PlHEL HEAR VALVE I.OCATED MAIN CONTROL ROOM PANE/.

0 LOCATED 9 52 PANEL LOCATED 9

~ SS PANEL LOCATED lido SIIITCIIOEAR LOCATED l/CC d

lOCATED HYD Or.'ACKVP CONTROL /rAHEL NOTES:

/

IOA A'/OS LOW FLOH

/Ol. K/09 LOW FACY S.

Vj TRAIN A CLOSE V2 TRAIII 0 CLOSE VS TRAIN A OPEN Vg TRAIN 0 OPEN 9/ rDrt-ebs r.eCR f~l2O g

fax IVEN 0

E g

ass.

C CIOSE

/OA KA&b dr

+ dT Is/P

/A IC d

14.2 8

TD 9.b 5EC 5

HSI(

rA HSTIrl IS d

TD PIJ QUALIFIED IN5TRVMENT SUPPLY CrbD) b~I ANN bIIS AIVN b Lls OPENS UPON I

('lsroHc L~

ICLOSED WmP.,

IVlLVE NDT IFVLLYOPEI/

CLOSED VIRENI VlLVE NDT LLVCLOSE6J loPEHS wu7N I IVALVE FIILLYI lard J

IOPENS WV7u~

Irasm' 1

P raD I

ICLOSE5 WRY'PAI.SSURE I

<Tbo ICLOSES OV" I IP/5/ISN IcoNTAcr L

AloTOR Ls/

VV Vk P52 L52 LSS HTDRAIILA OPEJIA TO/I+

I f

9 C

g O

R R

pcv rf r ACCllAIIILATDR PFESs VA'E Lolv Fcv rf-(

Fcv ri-r ACCUNIKATOR ACCI/lrvllIOR HYDRAULIC5 NDT HYD/IAULICS NOT FULLYCIIARGED FIILLYCHARGED VALVE SHONN CVEN

( FIS. ED)

PCI vRAr RETVIIII'cvri.r ACCUMULATOR PRE 5 SUIIE COPY RHR PUMP MINIMUM F OW BYPASS VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT I

I

rso vlc RAIOYan e

)

CB I

ssrr Asri-50 A'

/OA Kloda 0

II5PfJdl 8Isrr-Jo

/I CHsrr-5oLb STOP UNITI RHR PVkP NININUM FLOW'YPASS VALVE fWITHBACK UP CONTROLJ FCY74-90

/0-/88 dso vnc Rhlov BD/w Nsrc-PAIP /D PAIPlP IOAIodb IOA-dSO VDC RAIOYBD

~ IB~

Norrs 8 STAIBOLS:

C LOCATED LOCAL PAKEL FEAR VlLYE

~

LOClrED MAIN CONTROL R¹(PANEL LOClTED !-St PANEL LOCATED t-tt PlNEL LOCATED rl60 SIVITCHGEAR LOClTED AICC 8

LOClrED HI'D OR BlCKVP CIJNTROL PAh'EL IVOTES:

L A$68-90-BACKVP CON'TR'OL TRAIVSFE'R lLARAIS IN CONTROL Rooll IN EAIERCENCT POSITION

/OA-K/08-LOWFLOW IOA-Riot-LOWFLOWiLOCA VI TRAIN A CLOSE VZ TRA/h' CLOSE VS TRl/Nl OPEh'r TRAIN8 OPEIV C

OPERlTlh'G I/'STRVCTIoh'S /YILL REOVIRE REMOVAL OF rHESE ruSES fZJ DVRINC OPERATION /V BACIIVPCON'TROL hIODE.

rd&'/20 C

OPEN C

Q Nsrr.

Sbb

'LOSE

/OA-K/0th PAIP/B hNsrr sop ST 0Hsll-I 30A Tr.ds

Cg TD MSEC 8'srr.so 8Agrres0 Is rrQL OPEIIS V/OT I

i PISTON I

CONTlCT

~CLOSED IVI/EN (

1 i YlLYE NOT FLLLT OPEN ~]

lr CLOSED IVNEh'ALVE h'OT FVLLrCLOSED>

TDPV

~OPENS VI/EN'~

i VALVE FVLLr '

OPEN J

COPENS WHEN I Pgc'Ssu&

I 7 F4FD PS 5 ANN BVS OVALIF/ED INsrRv/rEKT l/IN SVPPL lfTBDJ BIIS l

CLOSES 0/V I

I 0

ANN BVS h/OTOR LSI PSI Lsd LSS

~TDRAVLIC'

/L oPERlroR ysrl.so N

8 8

8 C

~

i C

8 G

C C

R R

R slrr sb N

ESTC-8y N

Asrr~

N RETVRN VALVE SHONN OPEN

( Flax/)

stir.s0 IV v Iv NOTE S RETVRN Fcv r4 ~ so ACCVAIVI.ATON PRESS//RE FL'v rr-so ACCVAIVLlTOR PRESS VRE LOW FCYrr-So ACCIIRVLA/OR HYDRAVLICS hTT FVLLTCHARGED NIDRAVLICSNOT I'VLLI'NARC D RHR PUMP MINIMUM FLOW BYPASS VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT I

i I

ARDY AC RNOY 80 2C UNIT 2 RECIRCULA7XN PUMP DISCHARGE VALVE IrfrHour eAGK-up ccHTROL)

FCV 68-8 (2-Qa) tsoV DC RHOV 8024 STÃ80LSl C

IDCATEO LIK:AL PNIEL LCCATED NAIN CIJITROL RNRI PNffL LOCArf0 9-32 PANEL LOCATfD 9-3J PNIEL

~

LIX'ATKO9-tl PANEI.

g LOCATE0 Hflk OP M'%UP IRHTTNOL pANRL.

MTESl I. tA.KSI, Kds, KSA, Krt, <<10.

K69-JDGDIK CIMlfr.

t. loA R39 LOCA.b RA tNKAS PEClfaLSIVC J.

RELAT ENCASED IN STfEL 40K FLEK CO+III FROI CONTACTS TO fRcLDJED JUNGTIol 80K.

cARLE RUN IN FLEK coNDUIT efrrffN PANELS 9.3t 8 9-JJ IL Ce I

TRAIN A CLOJC DOLEIIOlo TRAIN 8 CUE JOLfllolo VJ rfle) i OPEN

.DOLEhfUO TtARI ~ AKN JOCCAOO g

Adorlto Nl A

Nl tA Nl tA-2 H368 rr K49A KTOA A'TIA AI C

TI K

Tl I

2 I

HJItb I IOA K394 I ~A)A 39A A)A.A'39A CK Ar 3

A Hsdd JT IOA-R398 R

Hsdd JA

/Pit Kdfe I

3 I

I A

I IOA..NJIJA I

I IKITZ4 FCY 68-33 0

C OIALIF!Eo INSIRUN&r S

SLPPLT If80)

ARN 8VS ANN

~ eus HTCRAUI.IC OPERATOR L

I VALVE Nor I FVLLT OPfN I

L~

I CLOSED lHEH I

YALYE Hor I

FULLY CLOSED

/

I OPENS VPOf PISTON I coNrmr L ~

J

/

LSI

+CLOSED KHEN I VALVE Hor I FULLT OPE>>

J CLOSED tHEN)

VALVE Nor FULLY CLOSED

~OPENS r&~N I

VAI.VE FULLY I

~I OPEN IJ I rwzssL I

I ptdo I

L J

V2 I CLosfs rHEN)

I PRESSURf I c reo I

L rsvp 1

Yl PSt Ipfsroa coNTAGII I

I gn I

2A 2A KSAA KSIA R

~

+'CJA a

R AccuglLATDR PRESSURE LOT t

4/.7 ACC(PlULAIOR HYDRAULICS Nor FULLl'HARGED st S

ACCUwVLATOR Hl'DRAULICS Ror FULLT CHARGED VALVESHONV OPEN (Flo. ee )

RETURN

/C tt 9 ACCUMULATOR PRESSURE Lor RECIRCULATION PUMP DISCHARGE VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2

>>BOY AC PKCY BD 2D IL.

Aeo/l20 UNIT 2 RECIRCULATION PUMP DISCHARG'E VALVE filrHBACK-UP CONTROL)

FCV 6S-T9 (8-55@

7SOV DC RKOV BD 28 e

XS68-T9 xs6e-r9 II X$6d Tb 850 VOC RHOY BD 81 SYKBOLS E

LOCATEO lOCAL PANEL LOCA(ED HAIN CONTROL R(QK PAKfL LOCAIED 9.37 PANEL (I

LocarEO 9.S3 PANEL o

Locarfo 9.2I pAKEL LOCArfo KCC g

Loclrfo HTD OP 4/CHVP CONneoL PANEL HOTES:

I, 2A.<<6l. <<63. <<6i. Krl. <<lb. <<69. AMINO CIRCUIT.

2.

<<$68:t.BACK.UP CONTROL TRANSFfR 3.

IOA KSB LOCA 8 RX PRESS PERKISSfVE A.

RELAY ENCASfo IN Srffl. BOX FLEX CONDUIT FROK CONTACTS TO ENCLOSED JVHCTTDK BCX CAB(f RUK IH FLEX CONDUIT Bfrl'EEN PAKfLS 9 32 8 9.33.

Orc<<AT(DNAL IHsrevc Do+9 ALL frcTATE rrcsE F(L363 BE cft(DYED WHEN OPECATINt>> (N BACKUP CONi COL t90OC.

8 Vg TCAlN A CLOSC SOLCN(KP Yl TCAAI 0 CLOSE SOLEtCK4 Vt TEA/N 1 Orftr SOLENC>>4 rcllu b opcN 30(Em' rm-a~ ngt'

-- C>>

Nl 2A NI 21-Nl 21-2 (Id IO4

~

94 Tl Tl TI 2T Al 3

I 3

I I

A L

8 C

N$68.

791 usrb T91 e

ST IOA-rab1

~

I IOA XSQ H$68 2

TSIA R

H$68-T9A fl Ir Iy xsee-

'le e

E e H$$

8 IOA-NSbb KOTOR IFVLLLY OPEN I

L~

CLOSED KPEH I

VALVE Hor FULLT CLOSED l

I OPEIIS UPON I

plsroH cowrAcr L ~

J LSI

+CLOSED YHEN VAI.VE HOT FULLT OPEN J

CLOSED tHEN I VALVE HOT NOTE 6 fr xsde-79 H

6 FCV68-33 I

VALVE FULLY I I

OPEN IJ 8 xsee-H 8

0 OPENS YHEH 1 I /~ass~

I

)re I

L J

P$3 Vl KN US

'A 8

1 CLOSES YHEH PRESSURf TBD L

/>>S9/

I P$ 2 OUALIFIEO INSMVKENI SOURCE TBD I

I CONTAcr Lse L$3 HVi.P>>VLIC p orf<<AICYI a

LS6rf T9 t(

(S(T'I e

19 R

R ff 7A ~

7A

<<6HO

<<Qb

~

~

~

C>>

Il630 8>>>>

0 R

R e

X$6d-XST 8-TS N

R R

X568

-.re

>>/

~

AccvKULATDR PRESSURE L(HY I

/., a/ tr ACCUKVLAICR HYDRAULICS Nor FULLY CHARCEO

/; ~

>>/ rr ACAIKVLAIOII HtDRAV(IC $

NOI FULLY CKARCE0 8xs68-79 VALVE SHOSN OPEN (I:IC. a9 )

<<$68 T9 E

RETURN RETURN

/.,

+/. ~t RECIRCULATION PUMP DISCHARGE VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NU(;LEAR PLANT UNIT '2

leo vlc RMov do ec Nroc a+Pe CrO Z>

UNI7 2 RHR INBOARO INJECTION VALVE (YIITHOUT BACKUP COHTROQ FCV 8-GT /0-0'8 PSO V DC RMOV dogb SYMBOLS E

LOCATED LOCAL PAIIEL HEAP VALVE e

Loclrfo MAIR coHTRBL RODE PAHEL LOCATED F St PAHEL LOCATED 7 Ss PlirEL LOCATED l'ISO SVRTCIIOEAR LOCATED AtCC d

LOCAtED HYO OP BACh'CA+ CORTROL PAIIEL Cd I

Ado IPD IISIW-GTA C

'I g

Nfl'PER EHSTE IT G7d STOP HSTS CTA iN ReSS T

Rebl IOA X'4SA AC71Ã5 I. AQ KSb LOCA r Fp PRfSS PERAIISSIVE

t. IDA-Res - Pcis ~g Low PRESS S

V TRAII A CLOSE V,

TRAiH a CLOSE V)

TRAIH A OPfif Vy 7PAIH g S'. nv-A:tt /dP Icdv TAP I

KESB HSTS CITA S

e HSTS-4TA Cg 1

S TS-4d 4

KSSB ASA ~

KS CsA BUS I IRS TRUMEH1' US SUPPLY fTBD) lHH OUALIl'IED AHR AHH BUS Copcus upou I Ipisryu I

I Courlcr I

L~

J

~C OSED fH I VALTE HOT I IULLYOPfir I ~

J CLOsfD WHEN~

VALVE HOT I

POLLY CLOSED C

OPEHS WHEE I VALVE FVLLY

'pfir J

l.

P~SSaeCE

)re I

ra' CLOSES WafirI IPRESSURf <

I I

I CLOSES CW I

P/SI5W CoirTACT MOTOR LSI Ve VS VE LSE uroaAULIc

+opoRl rcNz R

0 CX C

G rC VIS-GT

'CCUMUL lTOR PRSSSVaic Letu 1

Fcv ro-r r rcv rv-fr ACCUMULATOR ACCULIULArOR uroa>UL/cs uroaAULIcs IVVI FULLr uol FULLY culRsco CA'ARCS VACVZ SHONN CLOSED (nd. eu)

AFrvau PCV TS GT ACCUMULATOR PRESS uRC LEW RHR INBOARD INJECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2

I

(\\

~(soxAC CAArY BO 20 UNIT 2 EVE INMAED IMTECTIOM VALVE

<N(ru blca-UP CavreoL)

FC V Tu-59 (IO-85'A)

I eddvdc eteeeddee esvs(ool es "

E LOCATE D LOCAl PANEL /eEAC VALVE.

LOCATED /IA(u CONTROL PUON PANEL LOCArKO 9-se Pll/EL LOCATF.O 9.JS PANE'L LOCArEo u(co OM(rcu6EAe LCCATEO

/ICC g

LOCATED HVD DP bACKUP COMTROL P>I/EL I

Cb e/00//20 KSTN -SS (F

HSTN-5SA zr g

e\\ee OPE o-8 XSTel.bs XJJre/.JJ N

i(sr'I.5sb II'rop g

Idle C

OSE KISI-KCSA 250 voc CHOV bD eh 8 XSTN-NOTE 5'S C

IOA-Kcrb (Oh K6sb 0

NOTES lsd. 5S BACKUP COMIROL TCAHJFER ALAC/FJ w courzoL Rood w E~ERCENCY pos/T(oM.

e.

(Oa-((c

- LOCA cx peEssueE FEe/rlsJNE.

IOA~ KCS - PC(S i CA LO(e/ Pec SJ

~I..... Vl-TlAINA CLOSE YZ TCAIN b CLOSE VJ TRAINA OPEN V(I TCAIN b OPEN

5. DFECAIINC wsreUcnous w(LL cf/LU(eE eE/rovAL CÃ THESE FUSES Eel OUR(NC OPECATIOM IM bACIIUP CONTROL

/erOOE.

C.

rOe-/Cur in+. re~a rssr Cx IISTN 53C 8.

/OAeKCTA us TN-ssh.

ST NJ Tel 5SA 8

HJTN Ssc I OPENS UPON p(s Tou I

I covrAcr ICLDSED wkPI I

I VALVE Hor FULI.Y OPEN closEu uuful v~LvE uor FULLY CLOSED~

C

/OA-AC7 T

5 TN-52 b

IOA A'S5A C

XJTN-5S Copfus I/Nful I VALVE FULLYI OPE N J

0 IOA KCTA 8

XJTN-5S IV Io/Kus vms I-I rwrssrw I >rahu PSS N

IOA-/ICrb Aul/

BUeS CLOSES OM I

PRESSURE I

I

< rbo I

L J

IXUALIFIED wsreUHE((r JUPPLY C rbDI I

CLOSES OM I I PISTON t

I CONTACT AMN BUS

~ NYDCAUL(C

~ ~ opLel roe Cl LSI OL

/srr e 6

SS 8

P G

O C

C xsam se xsr5-5s N

C RTO xsr~-os E

e TITS e C

lslr SS N

VI e

]4 V'I V2 ede q

I FCV TN.SS ACEUNULATOC PCES JUCE L0le/

I LSC FCV re( 5J ACCUNUll H10EAULCJ NOT Il!U.Y CNARCLO rcv TN-5a ACCUMULAroe IIYOCAULICJ Nor FULLY CkARGEO l'S T'I.Sl QS r(I 5S H

C ef.rl/eu VALVE JIIOIA/N C'LOBED

( FIG. 25')

eE7I/Ru FLv TM-ss ACCUP!ULATOC PRESSURE LO LV RHR INBOARD INJ ECTION VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 2

4OO VAC ITALY /SD Zi I

Cb I

L 4+GO ViVIT2 RHR PUMP MININVAIFEDOS'YPASS VALVE (w/TNovr bAce:vr courex.)

FCV 74-30

/0-168

/DA A'/Odb 2

HS1-4S

-gy mt Prttdt'0 gA Sob sror ST

+FVP I

y sr PA/p AF$74 ED IT SOA

+A, /0

///Odd

/OA.

I/graf 250 VPC RAIOV gD

~26>>

SYA/dOLS l'OCATED LOCAL PAHEL HEAR VALVE LOCATED A/A/N CONTROL ROOAI PA4/EL LOCATED 9 32 PANE/

LOCATED 9 SS PANEL LOCATED 4/bo 3IIITCHGEAR lOCATED l/CC LOCATED NYD. 0o. dACIIVP CONTROL PANEL NOTES:

/

/OA g/Ob LOW FLOW IOL g/09 LOW FLOW Vj TRAIN A CLOSE Vg TRAIN b CLOSE Vy TRAIN A OPEII Vg TRAIN b OPEN

~ rCAA l'

IISII.

Sdd OPEN 0

E g

HEN C

Cldsf IDA~

/IIOOA C>>

4T

+ br FNF r

,J 2D d

b 74 25 14-34 5

HEN SOA HSII /

30l 74 23 JAO wf//IA R

TD 9.b SEC I OPENS VPOI/

IP/STOH COVDEII I

L~

J

+CLOSED WIIEV IVALVE NDT IFVLLY~<

I l

C'LOS ED WlfENI vALvE AArr I

LCFCLOSEDIJ d'D PV e

C lOCN Vd/EN l IVALVE I /ILLYI IornV I

J I OPENS WP~/~

) FdD AHN S/AS

~CLOSES W//&

IrmSSVRE I

<Tdo I

rs5

/2VALIF IEP

/NSTRVAIEIV 1'vrrLv

<rbo)

/CLOSES aA/ ~

IPISTON.

I IcoNrAcr I

L J

AHH blls ANN bl/S AIOTOR LSI VC Vg VS Vl P52 LSR HTDRAlfLA mcaaTOR ~

R C

G R

R FCV 1C.3g ACCCIAIVLATOR I'RESSVgeLOW'CV ra.aO ACCUAIULATOR HYDRAULICS NOT HYDRAULICy IIOT FVLLYC//ARGED FuLLY CHARGED VALVE SHONN OPEN (Fla. ea)

RETllJIV FCV 7C. SO ACCVAfVLA~

t'RES SV/IE LCVV RHR PUMP MINIMUM FLOW BYPASS VALVE CONTROL CIRCUIT WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT 9

COO VAC RAIOV8D gD I

ce I

daV<ZO Ui/ITZ RHR PUNP MINIMUMFLOVV BYPASS VALVE fWITH8ACA'-UP CDN'TROLI FCVF4-7

/0-/81 ZSO YDC RMOV 8D Z8 8

JSTASTA 7/H 7/F S

/OA-R/OJA L'PEN 8

A$7d 7/H CHsrd-78 STOP PAIP ZA PAIPZC h5rd.

Te

'LOSE Hsrc-Sr TA S

NOTES 8 IP IOA-

/LIDHA

/OA.

rote

/OA-NIOJ8 Zso YDC RAIOV8D

~ZA~

SI'AIBOLS:

C LoCATEOLOCAL PA//EL NEAR V~LvE

~

LOCATED kMN CONTROL Rood/ PANEL 4

LOClTED J.JZ PANEL LOCATED S JJ PANEL lOCATED A/do SWITCHOEAR LOClTED AICC 8

LOCATED HTD OP.8ACNUP CONTROL PlNEL NOTES:

1$dd-7 -8ACA'VP CON'TROL TRANSFER lLARMS IN COA TROL Rood/ IN EMERCENCT POSIT/ON Z.

/OA-N'/Od-LOW FLOW J,

IOA.EIOJ. LOWFL OW VI TRAIN A CLOSE VZ TRAIN 8 CLOSE VJ TRAIN A OPEN vi TRAINe OPEN S

OPERA Tlh'$ INSTRVCTIOI/S IYILL REOVIRE REMOVAL OF THESE FVSES fZI DVRINC OPERlr/ON /N eACNVP CONrROL MODE.

O w-<d4

Cg PMP ZA drd d

Td.Z d

rd-IJ TD J.d SEC NSIA IA Jr A'Jrd 7/N 4

HSTd.

8A'$7A.

1/4 TAZ ID TDPV OVALIFIED NN

/NSTRVNENT vs svPPLyfreDI lNN 8VS ANN 8VS hIOTOR OPENS VPON I p/sroN I

I CONTlCT L~

J LSI CLOSED WI/EN II I

I VALVE Nor FLCLT OPEN J I

7 CLOSED IVHEN VALVE Nor FVLLYCLOSEDJ OPENS NNEN~

I VlLVE FULLT I I OPEN I

J iOPENS IYHENi Pussy i

> red I

VI CLOSES IV/IEN I PRESSURE I creD L

J Y

II 4

PSI CLOSL'$ ON I p/sroN I

I CONTACT L

J LSZ LSJ HYDRAVL/C

/OPERATOR I

rSrC<

N 8

8 L

~

e a

O O

R R

8 R

8 R

O l$74<

/V

+gv 'v 4v v)v+

ISA-7 IV C

/VOTE S FCVrd.r ACCQAIVLATOR PRESSURE Fcv rd r Fcv rd ACCVMVLATOR ACCVQVLATOR NyoRAVLICSNor HypRAVL/CS Nor FVLLTPARSED FVLLyCHARCED A'SAY'V ldrl 7 RETURN

~

VALVE SHONN OPEN

( FID. er)

RETURN Fcv Td-r AccvAIULlTOR PRESSURE LOW RHR PUMP MINIMUM FLOW BYPASS VALVE CONTROL CIRCUIT 'WITH HYDRAULIC OPERATOR BROWNS FERRY NUCLEAR PLANT UNIT R

Pressure Transmi tte r (PS-l)

PT Check

~

'alve Pneuma tic Accumulator Pressure Switch (PS-2)

Electric Motor External Gas Supply (6000 psi)

Level Switch (LS-l)

Level Switch (LS-2 h 3) r IL Pressure Regulator Hyd raulic.,

c curn ula to Check Valve Hyd raulic Pump Relief Valve Res ervoi r Vl V

Solenoid Valve (4 Plcs) low

~ R gulator V

1 Shuttle Valve (2 Plcs) 4 Way, 3 Pos ition Valve Hyd raulic Cylinder S

Open Clos e Figure 28 Typical Schematic For lfydraulic - Pneumatic Operator