ML20024G359: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
| number = ML20024G359
| number = ML20024G359
| issue date = 05/05/1976
| issue date = 05/05/1976
| title = Request for Exemption from Certain Requirements of 10CFR50, App J, Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors.
| title = Request for Exemption from Certain Requirements of 10CFR50, App J, Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors
| author name = Wachter L
| author name = Wachter L
| author affiliation = NORTHERN STATES POWER CO.
| author affiliation = NORTHERN STATES POWER CO.
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:-         -        -.          -                    . _ . .                            . - .    . - . .
{{#Wiki_filter:-
4
4 UNITED STATES NGCLEAR REGULATORY COMMISSION NORDIERN STATES POWER COMPANY MONTICELLO NUCLEAR GENERATING PLANT i
    -.;      ,
Docket No. 50-263 License No. DPR-22 Request for Exemption from Certain Requirements of 10CFR50, Appendix J, " Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors" Northern States Power Company, a Minnesota corporation,- by_ this {{letter dated|date=May 5, 1976|text=letter dated May 5,1976}} -hereby submits a request for exeaption from a number of require-ments of 10CFR50, Appendix J.
UNITED STATES NGCLEAR REGULATORY COMMISSION
This request is made in-accordance with Section 50.12 of 10CFRSC.
                                                                                                                ;
NORDIERN STATES POWER COMPANY MONTICELLO NUCLEAR GENERATING PLANT                                                               i Docket No. 50-263 License No. DPR-22 Request for Exemption from Certain Requirements of 10CFR50, Appendix J, " Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors" Northern States Power Company, a Minnesota corporation,- by_ this letter dated May 5,1976 -hereby submits a request for exeaption from a number of require-ments of 10CFR50, Appendix J. This request is made in-accordance with Section 50.12 of 10CFRSC.
This request contains no restricted or other defense information.
This request contains no restricted or other defense information.
NORTHERN STATES POWER COMPANY By     d M dmo-       ~
NORTHERN STATES POWER COMPANY By d M dmo-L JAFachter
L JAFachter Vice President, Power Ptsduction
~
                                                                      & System Operation On this 5th day of May,1976, before me a notary public in and for said County,
Vice President, Power Ptsduction
& System Operation On this 5th day of May,1976, before me a notary public in and for said County,
_ personally appeared _ L J Wachter, Vicu President, Power Production ard System Operation, ~and being first duly sworn acknculedged that he is authorized to execute this docunent on behalf of Northern States Power Company, that he
_ personally appeared _ L J Wachter, Vicu President, Power Production ard System Operation, ~and being first duly sworn acknculedged that he is authorized to execute this docunent on behalf of Northern States Power Company, that he
          - knows the contents thereof and that to the best of his knowledge, informa tion and belief, the statements made in it are rue and that it is not interposed for delay. _
- knows the contents thereof and that to the best of his knowledge, informa tion and belief, the statements made in it are rue and that it is not interposed for delay. _
AMD                         AAb'
AMD AAb'
                ; '#'S       DENISE E. BRANAll l7           WM Puntsc ~ mnnon -
; '#'S DENISE E. BRANAll l7 WM Puntsc ~ mnnon -
HENNEPIN CO(JPny     l l 1
HENNEPIN CO(JPny l l mmis % hphs Oct.10,IM1 g 1
                  ,.,,,%        mmis % hphs Oct.10,IM1 g
..=
                                                . .=
9102110365 7'>0505 PDR ADOCK 05000263 P
9102110365 7'>0505 PDR     ADOCK 05000263 P                     PDR l
PDR l


l MONTICELLO NUCLEAR GENERATING PLANT DOCKET No. 50-263 May 5, 1976 REQUEST FOR EXEMPTION FRCH CERTAIN REQUIREMENTS OF 10CFR50, APPENDIX J Pursusnt to 10CFR50.12, the holders of Provisional Operating License DPR-22 hereby request the following exemptions from the requirements of Appendix J to 10CFR50,
l MONTICELLO NUCLEAR GENERATING PLANT DOCKET No. 50-263 May 5, 1976 REQUEST FOR EXEMPTION FRCH CERTAIN REQUIREMENTS OF 10CFR50, APPENDIX J Pursusnt to 10CFR50.12, the holders of Provisional Operating License DPR-22 hereby request the following exemptions from the requirements of Appendix J to 10CFR50, 1.
: 1. Appendix J Section III. B.1, Type B Testing of Instrument Lines Exemption Requested Section III.B.1, under the definition contained in Section II.G.4, can be con-strued to require testing of inst rument lines not equipped with excess flow check valves. No provision for testing these instrument lines was provided in the original plant design.
Appendix J Section III. B.1, Type B Testing of Instrument Lines Exemption Requested Section III.B.1, under the definition contained in Section II.G.4, can be con-strued to require testing of inst rument lines not equipped with excess flow check valves.
We ask exemption from this requirement.                                                                   The affected penetrations are:
No provision for testing these instrument lines was provided in the original plant design.
X-29E                                                                       Drywell Pressure Sensing Line X-29F                                                                       Drywell Pressure Sensing Line X-32C                                                                       Drywell Ficod Level Switch Tap X-50E                                                                       Drywell Pressure Sensing Line X-50F                                                                       Drywell Pressure Sensing Line X-206A - X-206D                                                             Torus Instrumentation X-209A - X-209D                                                             Torus Instrumentation
We ask exemption from this requirement.
The affected penetrations are:
X-29E Drywell Pressure Sensing Line X-29F Drywell Pressure Sensing Line X-32C Drywell Ficod Level Switch Tap X-50E Drywell Pressure Sensing Line X-50F Drywell Pressure Sensing Line X-206A - X-206D Torus Instrumentation X-209A - X-209D Torus Instrumentation


===Reason for Request===
===Reason for Request===
These instrument penetrations are required to sense drywc11 and torus pressure, temperature, and water level. The small diameter instrument piping outside containment connects to a scaled transducer. In the case of the pressure instruments, safeguard signals are generated.
These instrument penetrations are required to sense drywc11 and torus pressure, temperature, and water level. The small diameter instrument piping outside containment connects to a scaled transducer.
In the case of the pressure instruments, safeguard signals are generated.
There is no practicable method of testing these penetrations using Type B testing.
There is no practicable method of testing these penetrations using Type B testing.
Each penetration is tested as part of the Type A test program. The probability of rupture of an associated instrument line outside containment and the resulting leakage to the environs of the post accident containment gaseous atmosphere is low. Manual isolation valves are provided to isolate a Icaking instrument.
Each penetration is tested as part of the Type A test program.
The probability of rupture of an associated instrument line outside containment and the resulting leakage to the environs of the post accident containment gaseous atmosphere is low. Manual isolation valves are provided to isolate a Icaking instrument.
Any addition or modification (such as isolation velves) to permit testing these penetrations could result in a degradation in performance of their safety related function.
Any addition or modification (such as isolation velves) to permit testing these penetrations could result in a degradation in performance of their safety related function.
l
l


l                     .
l 2-I 2.
2-I
Appendix J Section III.B.2, Type B Test Pressure for Drywell Air Lock Exemption Requested This section requires all Type B tests to be conducted at Pa (41 psig).
: 2. Appendix J Section III .B.2, Type B Test Pressure for Drywell Air Lock Exemption Requested This section requires all Type B tests to be conducted at Pa (41 psig).
We request exemption from this requirement in the case of the drywell air lock.
We request exemption from this requirement in the case of the drywell air lock.
We ask that we be permitted to use the current 10 psig air lock test pressure specified in the Monticello Technical Specifications.
We ask that we be permitted to use the current 10 psig air lock test pressure specified in the Monticello Technical Specifications.


===Reason for Request===
===Reason for Request===
The Monticello drywell air lock utilitee two heavy steel single-gasketed doors designed to seal with pressure applied frem the drywell side. The only method available to leakage test the air lock is to pressurize the volume between the inner and cuter doors. This requires installing temporary bracing on the inner door to assist in holding it closed (test pressure tends to open the door).
The Monticello drywell air lock utilitee two heavy steel single-gasketed doors designed to seal with pressure applied frem the drywell side.
We believe that 10 psig is a test pressure which permits a valid and safe test to be performed.                     Increasing the test pressure to 41 psig increases the force on the inner door thereby reducing the design margin of the temporary bracing. The higher test pressure also leads to an artificially high measured leakage due to increased leakage past the inner door.
The only method available to leakage test the air lock is to pressurize the volume between the inner and cuter doors.
: 3. Appendix J Section III.C.1. Type C Testing of Torus Spray Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be con-strued to require testing of the Loop A and Loop B Suppression Chamber Spray valves (Figure 1).                     No provision for conducting local leakage tests was provided in the original plant design.
This requires installing temporary bracing on the inner door to assist in holding it closed (test pressure tends to open the door).
We believe that 10 psig is a test pressure which permits a valid and safe test to be performed.
Increasing the test pressure to 41 psig increases the force on the inner door thereby reducing the design margin of the temporary bracing. The higher test pressure also leads to an artificially high measured leakage due to increased leakage past the inner door.
3.
Appendix J Section III.C.1. Type C Testing of Torus Spray Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be con-strued to require testing of the Loop A and Loop B Suppression Chamber Spray valves (Figure 1).
No provision for conducting local leakage tests was provided in the original plant design.
We request that these valves be excluded from Type C testing.
We request that these valves be excluded from Type C testing.


===Reason for Request===
===Reason for Request===
These valves are normally closed, remote-manual motor operated valves. They can be intermittently opened by the Control Room Operator to reduce the temperature and pressure in the torus during the latter stages of a loss of coolant accident.
These valves are normally closed, remote-manual motor operated valves.
They can be intermittently opened by the Control Room Operator to reduce the temperature and pressure in the torus during the latter stages of a loss of coolant accident.
Both valves are located outside of containment.
Both valves are located outside of containment.
These lines would be pressurized by the RHR pumps during all stages of the accident. This pressure is well above the peak suppression chamber pressure following a loss of coolant accident preventing any outleckage of the sup-pression chamber gaseous atmosphere.                     There is no single active failure which could prevent pressurization of these lines by the RIIR pumps.
These lines would be pressurized by the RHR pumps during all stages of the accident. This pressure is well above the peak suppression chamber pressure following a loss of coolant accident preventing any outleckage of the sup-pression chamber gaseous atmosphere.
There is no single active failure which could prevent pressurization of these lines by the RIIR pumps.
Since the Torus Spray lines cannot constitute a containment Icakage path, testing of the isolation valves in these lines is unnecessary.
Since the Torus Spray lines cannot constitute a containment Icakage path, testing of the isolation valves in these lines is unnecessary.
l L_--------------------------------------------------------------------------------------------- --
l L_---------------------------------------------------------------------------------------------


      . r
r.
: 4. Appendix J. Section III.C.1, Direction of Test Pressure
: 4. Appendix J. Section III.C.1, Direction of Test Pressure
_ Exemption Reques ted This section requires that test pressure for Type C testing be applied in the same direction as that when the valve would be required to perform its safety related function, unless it can be determined that the results from the t ests for a pressure applied in a different direction will provide equivalent or more conservative results.
_ Exemption Reques ted This section requires that test pressure for Type C testing be applied in the same direction as that when the valve would be required to perform its safety related function, unless it can be determined that the results from the t ests for a pressure applied in a different direction will provide equivalent or more conservative results.
We request that we be permitted to test all of the following penetrations, except X-39A and X-39B, with test pressure in the reverue direction. There is no Provision for testing these penetrations in the correct direction.
We request that we be permitted to test all of the following penetrations, except X-39A and X-39B, with test pressure in the reverue direction.
There is no Provision for testing these penetrations in the correct direction.
We request that we be exempted fran the requirement to test penetrations X-39A and X-39B.
We request that we be exempted fran the requirement to test penetrations X-39A and X-39B.
Penetration No.     Description of Service     Type Valve X-18                 Floor Drain Sump             Globe X-19                 Equipment Drain Sump         Globe X-25                 Drywell Ventilation         Butterfly X-26                 Drywell Ventilation         Butterfly X-27D - X-27F         0xygen Analyzer             Globe X-39A                 Drywell Spray               Gate - Wedge Type X-39B                 Drywell Spray               Gate - Wedge Type X-41                 Coolant Sample               Globe X-48                 Nitrogen Pumpback           Globe X-205                 Torus ventilation           Butterfly X-214                 0xygen Analyzer             Globe X-220                 0xygen Analyzer             Globe
Penetration No.
Description of Service Type Valve X-18 Floor Drain Sump Globe X-19 Equipment Drain Sump Globe X-25 Drywell Ventilation Butterfly X-26 Drywell Ventilation Butterfly X-27D - X-27F 0xygen Analyzer Globe X-39A Drywell Spray Gate - Wedge Type X-39B Drywell Spray Gate - Wedge Type X-41 Coolant Sample Globe X-48 Nitrogen Pumpback Globe X-205 Torus ventilation Butterfly X-214 0xygen Analyzer Globe X-220 0xygen Analyzer Globe


===Reason for Request===
===Reason for Request===
Test connections at Monticello have generally been provided in the connecting volume between the inboard and outboard isolation valves. The connecting volume is pressurized and the pressure decay rate is measured. These penetrations have no other provision for testing the inboard isolation valve.       In this test the inboard valve is pressurized in a direction opposite to the pressure it would experience following an accident.
Test connections at Monticello have generally been provided in the connecting volume between the inboard and outboard isolation valves.
Except for penetrations X-39A and X-39B, testing of these valves in the reverse direction is permissible under the provisions of Section XI, Subsection IWV, of the ASME Code. In these cases the leak tightness of the valve is not dependent upon direction of pressurization.
The connecting volume is pressurized and the pressure decay rate is measured. These penetrations have no other provision for testing the inboard isolation valve.
The valves in penetrations X-39A and X-39B are normally closed, remote-manual motor operated valves. They can be intermittently opened by the Control Room Operator to reduce the Temperature and pressure in the drywell during the later stages of a loss of coolant accident. X-39A and X-39B would be pressurized by the RHR pumps during all stages of the accident. This pressure is well above the peak drywell accident pressure preventing any outleakage of the drywell gaseous a tmosphere. There is no single active failure which could prevent pressurization of these lines. Since these lines cannot constitute a containment leakage path, testing of the isolation valves in these lines is unnecessary (Figure 2).
In this test the inboard valve is pressurized in a direction opposite to the pressure it would experience following an accident.
: 5. Appendix J Section III.C.1, Type C Testing of Core Spray Testat le Check Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be construed to require testing of the Loop A and Loop B Core Spray Testable Check valves (Fig are 3).
Except for penetrations X-39A and X-39B, testing of these valves in the reverse direction is permissible under the provisions of Section XI, Subsection IWV, of the ASME Code.
In these cases the leak tightness of the valve is not dependent upon direction of pressurization.
The valves in penetrations X-39A and X-39B are normally closed, remote-manual motor operated valves.
They can be intermittently opened by the Control Room Operator to reduce the Temperature and pressure in the drywell during the later stages of a loss of coolant accident. X-39A and X-39B would be pressurized by the RHR pumps during all stages of the accident.
This pressure is well above the peak drywell accident pressure preventing any outleakage of the drywell gaseous a tmosphere.
There is no single active failure which could prevent pressurization of these lines.
Since these lines cannot constitute a containment leakage path, testing of the isolation valves in these lines is unnecessary (Figure 2).
5.
Appendix J Section III.C.1, Type C Testing of Core Spray Testat le Check Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be construed to require testing of the Loop A and Loop B Core Spray Testable Check valves (Fig are 3).
We request that these valves be excluded f rom Type C testing and that the two motor operated gate valves in each line located outside containment be subjected to Type C testing in their place.
We request that these valves be excluded f rom Type C testing and that the two motor operated gate valves in each line located outside containment be subjected to Type C testing in their place.


===Reason for Request===
===Reason for Request===
The testable check valve in each Core Spray line was not intended to meet gas leakage acceptance criteria. These valves exhibit moderate leakage when re-quired to seal against a low pressure gas, but are leak tight in their normal environment.                                     These valves consistently fail to meet the individual valve Tech-nical Specification maximum allowable leakage rate. Maintenance performed on them to meet the criteria applied to containment isolation valves involves many hours of work in an area where high radiation and contamination levels prevail. Any Dmprovement in leak tightness is temporary.
The testable check valve in each Core Spray line was not intended to meet gas leakage acceptance criteria. These valves exhibit moderate leakage when re-quired to seal against a low pressure gas, but are leak tight in their normal environment.
In the event of a loss of coolant accident combined vidi a failure of one core spray pump to start, the potential exists for containment leakage to pass through the Core Spray line associated with the non-operating loop. Barriers to this leakage include the testable check valve located inside containment and two motor operated remote-manual valves located outside containment.                                   In the event of a failure of a Core Spray pump, the tuo motor operated valves could be closed to eliminate this potential leakage path.
These valves consistently fail to meet the individual valve Tech-nical Specification maximum allowable leakage rate. Maintenance performed on them to meet the criteria applied to containment isolation valves involves many hours of work in an area where high radiation and contamination levels prevail. Any Dmprovement in leak tightness is temporary.
Provisions have been provided in the original plant design to test the two motor operated valves in each Core Spray line. This testing would be conducted in accordance with Appendix J.
In the event of a loss of coolant accident combined vidi a failure of one core spray pump to start, the potential exists for containment leakage to pass through the Core Spray line associated with the non-operating loop.
All components of the Core Spray System are protected from seismic events and potential missiles. Failure of bo'h motor operated gate valves located outside containment in each Core Spray line is highly bnprobable.
Barriers to this leakage include the testable check valve located inside containment and two motor operated remote-manual valves located outside containment.
In the event of a failure of a Core Spray pump, the tuo motor operated valves could be closed to eliminate this potential leakage path.
Provisions have been provided in the original plant design to test the two motor operated valves in each Core Spray line.
This testing would be conducted in accordance with Appendix J.
All components of the Core Spray System are protected from seismic events and potential missiles.
Failure of bo'h motor operated gate valves located outside containment in each Core Spray line is highly bnprobable.
I
I


                                        .                -      ..    - - . =     ._  .
=
5
5
: 6. Appendix J Section III.C.1, Type C Testing of Low Pressure Coolant Injection Testable check Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be con-strued to require testing of the Loop A and Loop B Low Pressure Coolant Injection (LPCI) testable check valves (Figure 4).
: 6. Appendix J Section III.C.1, Type C Testing of Low Pressure Coolant Injection Testable check Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be con-strued to require testing of the Loop A and Loop B Low Pressure Coolant Injection (LPCI) testable check valves (Figure 4).
Line 97: Line 121:
===Reason for Request===
===Reason for Request===
The testable check valve in each LPCI supply line was not intended to meet gas leakage acceptance criteria. These valves exhibit moderate leakage when required to seal against a low pressure gas, but are leak tight in their normal environment. These valves consistently fail to meet the individual valve Technical Specification maximum allowable leakage rate. Maintenance performed on them to enable them to meet the criteria applied to containment isolation valves involves umny hours of work in an area where high rndiation and contamination levels prevail. Any improvement in leak tightness is temporary.
The testable check valve in each LPCI supply line was not intended to meet gas leakage acceptance criteria. These valves exhibit moderate leakage when required to seal against a low pressure gas, but are leak tight in their normal environment. These valves consistently fail to meet the individual valve Technical Specification maximum allowable leakage rate. Maintenance performed on them to enable them to meet the criteria applied to containment isolation valves involves umny hours of work in an area where high rndiation and contamination levels prevail. Any improvement in leak tightness is temporary.
These lines would be pressurized by the RHR pumps in the post accident condition and would supply LPCI flow to the recirculation loops. There is no single active failure which could prevent pressurization of these lines above the calculated peak contain-ment pressure.
These lines would be pressurized by the RHR pumps in the post accident condition and would supply LPCI flow to the recirculation loops.
It may be necessary, however, in the long t rm period following an accident to isolate an RHR loop to perform maintenance.     Under these conditions, the barriers to contain-ment leakage include the testable check valve located inside containment and two motor operated remote-manual (for containment isolation purposes) valves located outside con-tainment. The two motor operated valves are closed to eliminate a potential Icakage path in this situa tion.
There is no single active failure which could prevent pressurization of these lines above the calculated peak contain-ment pressure.
Provisions have been provided in the original plant design to test the two motor operated valves in each LPCI supply line. This testing would be conducted in accord-ance with Appendix J.
It may be necessary, however, in the long t rm period following an accident to isolate an RHR loop to perform maintenance.
Under these conditions, the barriers to contain-leakage include the testable check valve located inside containment and two motor ment operated remote-manual (for containment isolation purposes) valves located outside con-tainment. The two motor operated valves are closed to eliminate a potential Icakage path in this situa tion.
Provisions have been provided in the original plant design to test the two motor operated valves in each LPCI supply line.
This testing would be conducted in accord-ance with Appendix J.
All components of the RHR System are protected from seismic events and potential missiles. Failure of both motor operated valves located outside containment in each LPCI supply line is highly hnprobable.
All components of the RHR System are protected from seismic events and potential missiles. Failure of both motor operated valves located outside containment in each LPCI supply line is highly hnprobable.
    '7.     Appendix 3 Section III.C.2. Type C Test Pressure for Main Steam Isolation Valves Exemption Requested Section III.C.2 requires all Type C tests to be conducted at Pa (41 psig).
'7.
We request exemption from this requirement in the case of the Main Steam Isolation Valves (MSIV's). We ask that we be permitted to use the current 25 poig MSIV test pressure specified in the Monticello Technical Specifications.
Appendix 3 Section III.C.2. Type C Test Pressure for Main Steam Isolation Valves Exemption Requested Section III.C.2 requires all Type C tests to be conducted at Pa (41 psig).
 
We request exemption from this requirement in the case of the Main Steam Isolation Valves (MSIV's).
1
We ask that we be permitted to use the current 25 poig MSIV test pressure specified in the Monticello Technical Specifications.


===Reason for Request===
===1 Reason for Request===
Main Steam Isolation Valves are normally tested each refueling outage. After the vessel head has been removed, these valves must be tested by pressurizing the connecting volume between the two valves in each line (Figure 4). The inboard Main Steam isolation valve is subjected to test pressure in a direction that is opposite to that existing following an accident. During testing, test pressure tends to unseat the valve and can lead to an invalid measurement. For this reason, the test pressure has been limited to 25 psig for main steam isolation valve testing and the allowable leakage has been stated in terms of a 25 psig test pressure in the current Technical Specifications.
Main Steam Isolation Valves are normally tested each refueling outage. After the vessel head has been removed, these valves must be tested by pressurizing the connecting volume between the two valves in each line (Figure 4).
: 8. Appendix J Section III.D.2, Frequency of Drywell Air Lock Testing Exemption Requested Section 111.D.2 requires that air locks shall be tested each six months or after each opening, whichever occurs first.
The inboard Main Steam isolation valve is subjected to test pressure in a direction that is opposite to that existing following an accident.
We request that an exemption be granted f rom the requirement to conduct a Type B test of the air lock af ter each opening. We ask that we be permitted to perform this testing every three days ducing periods the drywell air lock is in use while contain-ment integrity is required.
During testing, test pressure tends to unseat the valve and can lead to an invalid measurement.
Reason for Exemption The Monticello air lock does not have double-gasketed door seals. All leakage tests must  be conducted by pressurizing the space between the inner and outer doors. This test requires at least four hours to perform.
For this reason, the test pressure has been limited to 25 psig for main steam isolation valve testing and the allowable leakage has been stated in terms of a 25 psig test pressure in the current Technical Specifications.
8.
Appendix J Section III.D.2, Frequency of Drywell Air Lock Testing Exemption Requested Section 111.D.2 requires that air locks shall be tested each six months or after each opening, whichever occurs first.
We request that an exemption be granted f rom the requirement to conduct a Type B test of the air lock af ter each opening.
We ask that we be permitted to perform this testing every three days ducing periods the drywell air lock is in use while contain-ment integrity is required.
Reason for Exemption The Monticello air lock does not have double-gasketed door seals. All leakage tests be conducted by pressurizing the space between the inner and outer doors.
This must test requires at least four hours to perform.
Overall pressure testing of the air lock every three days is a reasonable surveillance requirement to verify leak tightness when the air lock is actually in use.
Overall pressure testing of the air lock every three days is a reasonable surveillance requirement to verify leak tightness when the air lock is actually in use.
l I
l I


                                          ,i            ,                s!i        , .
?
  ?                    1 !! ! I   I             ~                   '      t.         bEii
1 I
: i.                               !
I
              ;
,i
I e .
~
              ~
i.
                                                            .                        6
s!i t.
                                                                                  . 2 6
bEii I
e r
e
u g
~
R                                    i I
6
I                              .F RB R
. 2
mp                               A oo                               S FI  rc                               F 4                                         :
-6 erug R
e c
i I
7                                      n 0                                     e 0                                     r 2                                     e f
. F IRB R
O                                       a M                                   B s
mp A
n 1   9 o
oo S
i 1   0                 t 0   0                 a 2   2                 r t
rc F
O   O                 e M   M                 n A                               e 1                              P 1          p'                 t 2
FI 4
X n
:ec 7
7               e f             -
n 0
m
e 0
                                                ~                 n                              1 i
r 2
                                                =                 a t
e f
                                                    -    _        n o
O a
H'
M B
                                                =              C I
sno 1
1
9 i
                                                  -              y                              i 1
1 0
a 2-                         r 2=                         p S
t 0
0 s
0 a
                                              .8 0
2 2
u               .
r t
                                        . 1 0                       r 2
O O
0                 o 2                 T
e M
                                        .O   O.
M ne A
-                                        M   M                     .
P 11 p'
1 e
t 2
r 6                  u 0                 g 0                 i 2     -
n X
F
7 em f
_                                              O
n 1
_                                              M R
~
                                            >HRA mp oo ro FL t
i
=
a t
n C
o
=
H' y
i 1
I a
1 2-r 2 =
S p
s 0
.8 u
. 1 0
r 0
0 o
2 2
T
.O O.
M M
1 er 6
u 0
g 0
i 2
F O
M R
> HRA mp oo ro FL t
l 5
1!
l Id'


  - =... ..._ . . _ . , . --
- =......_.. _.,. --
                                    ..      .        .      . ~ .
. ~.
i MO-2022 MO-2TO h RHR     t         --
i MO-2022 MO-2TO h RHR t
C                         MO-2023 M0-2021 Icop A                       X39B O'       ()                                 ,
C MO-2023 M0-2021 Icop A X39B O'
s O         O   X39A                     IDOP 3
()
                                                                                  -2                     ::                    ,
O O
                                                -LJ I
X39A IDOP 3 s
M TET                                     .                b g
-2
                                                                  ]               N                   un; TEST.
-LJ I
F-         Drywell Spray Containment Penetrations
M TET bg
]
N un; t
TEST.
F-Drywell Spray Containment Penetrations


==Reference:==
==Reference:==
FSAR Figure 6-2-6 4
FSAR Figure 6-2-6 i
                                                                                                ,..W-p,
4
,..W-p,


l Testable . Check AO-14-13A Testable Check AO-1 1+-13B                                             kn6B From Cor;e n
l Testable. Check AO-14-13A Testable Check kn6B 1
y
AO-1 +-13B
                  '                  f                              ..
><1-
                                                                    ')
=
U
n f
                                                                              ><1-L.O.      *
[
[
                                                                                                                          =
MO 1753 MO 1751 From Core
MO 1753 MO 1751 From Core M6A I_.,,                                   ,        ,      <                    Spray A L.O.                                           (
')
f d                 d Spray 3    MO 1752  MO 1754                                                          a f
U L.O.
l        Y Yf                                           }           {
From Cor;e y
LEAK       LEAK TEST       TEST LEAK         LEAK TEST         TEST Figure 3     Core Spray Icops A and B
M6A I_.,,
f
(
Spray A f
Spray 3 MO 1752 MO 1754 L.O.
d d
a l
Yf
}
{
Y LEAK LEAK TEST TEST LEAK LEAK TEST TEST Figure 3 Core Spray Icops A and B


==Reference:==
==Reference:==
FSAR Figure 6-2-2
FSAR Figure 6-2-2


                                                                                                                                                                                  .:i -
.:i
                                                                                                                                                                  . ..'          :. ;
~
                                                                                                                                                                          -;-
                                                                                                                                                                      ~
r t
r t
                                                                                                                                                                                .      i i
i i
Testable Check                                                 Testable Check Ao-10 h6B                                                       AO-10-h6A X13A /                                                                                   3B i
Testable Check Testable Check Ao-10 h6B AO-10-h6A X13A /
f I                                                                                                       %
3B i
From RER No 2013 Mo 2015 Loop B k
f I
* L.o.
1 From RER No 2013 Mo 2015 k
(               L.o.
+'[
                                                                                                                                +'[  1 Mo 201 Mo 2012 From RHH Ioop A-3       3         3                                                           '
L.o.
(
L.o.
Mo 201 Mo 2012 From RHH Loop B Ioop A-3 3
3
[
[
                                                                                    'B Pacirculating A Becirculatiry; i
' [
                                                                                                                                            ' [                                        +
i l
l
'B Pacirculating A Becirculatiry; l
'                                                                      l              Pump             Pump
+
                                                    -3           %                                                              H           [
Pump Pump
                                                    ,,          o o         ,,
- 3 H
                                                  . LEAK       LEAK                                                           LEAK       LEAK TEST         TEST                                                           TET       TEST J
[
Figure k.     Low Pressure Coolant Injection loops A and B
o o
. LEAK LEAK LEAK LEAK TEST TEST TET TEST J
Figure k.
Low Pressure Coolant Injection loops A and B


==Reference:==
==Reference:==
FSAR Figure 6-2-6                           l i
FSAR Figure 6-2-6 l
9 m                         _      a                                                     =
i 9
m a
=


l STEAM LINE   PENETRATION INBOARD   OUTBOARI NO.       MSIV     MSIV A           X-7A     A0-2-BOA A0-2-66A B           X-7B     AO-2-80B A0-2-8(B C           X-7C     A0-2-80C AO-2-8f
l STEAM LINE PENETRATION INBOARD OUTBOARI NO.
                                                                      ,            D          X-7D     A0-2-80D A0-2-86u I
MSIV MSIV A
A                     C A0-2-86A     A0-2-80A       &
X-7A A0-2-BOA A0-2-66A B
h    B D
X-7B AO-2-80B A0-2-8(B C
xuf      ,x       _-
X-7C A0-2-80C AO-2-8f D
TYPIC /LL OF ALL FOUR STEAM LINES l
X-7D A0-2-80D A0-2-86u I
LEAK TEST Figure 5 Main Sterun Line Isolation Valves Reference : FSAR Figure 4-4-1
A C
                                  ~~
A0-2-86A A0-2-80A h
B D
x u f, x TYPIC /LL OF ALL l
FOUR STEAM LINES LEAK TEST Figure 5 Main Sterun Line Isolation Valves Reference : FSAR Figure 4-4-1
~~


                                                                                  -                          u.s. aucu. An nt cutniony                                                   vui.aion               ovcat i Nuune.n                                 '
u.s. aucu. An nt cutniony vui.aion ovcat i Nuune.n Irisc19nm 10s 50- Rio'$
Irisc19nm 10s                                                                                                                                                                                                       50- Rio'$
+ tu NHC Ol".TRIDUTION ron PAllT 50 DOCV.ET MATElllAL e
      + tu                       ;,                                                                                                                                                    _
I-ilOM: NORTHERN STATES POWER CO oATE OF DOCUMLNT 10:
e          NHC Ol".TRIDUTION ron PAllT 50 DOCV.ET MATElllAL
i N
              -%                                                                              I-ilOM: NORTHERN STATES POWER CO                                                                                   oATE OF DOCUMLNT 10:
MINNEAIOLI$, MINN....
i                   N                                                                                   MINNEAIOLI$, MINN. . . .                                                                                   5-5-%
5-5-%
1 MR V STEI,AO,
1 MR V STEI,AO.,,
                                                .,,                                                       L 0 MAY ER. . . . .                                                                                   oATc nectivco
L 0 MAY ER.....
                                  ~,
oATc nectivco 5-n-7L
5- n-7L PnOP                             INPUT F ORM                                                                     NUMDCH OF CoplES HCCCIVED MTTon                                              Jkf!oTOniz c o
~,
                                                                                                                                                                                                                                                          ;-
MTTon Jkf!oTOniz c o PnOP INPUT F ORM NUMDCH OF CoplES HCCCIVED Rf6RIGIN AL MNC L ASSIFit o 3 SIGN 37CC=40W/ ENCL.....
Rf6RIGIN AL                                 MNC L ASSIFit o                                                                                                                                         3 SIGN O cOev                                                      .
O cOev
37CC=40W/ ENCL.....
' OCDC RIP TION E N C LOSU RE I
E N C LOSU RE                                                                                                               ;
LTR N0'IORIZED 5-5-76,....TRANS THE R$UEST FOR EXEMPTION FROM CERTAIN RMUIREMENTS FOLIDWING.......
    ' OCDC RIP TION I              LTR N0'IORIZED 5-5-76 , . . . .TRANS THE                                                           R$UEST FOR EXEMPTION FROM CERTAIN RMUIREMENTS FOLIDWING. . . . . . .                                                                             OF 10CFR50, APPENDIX J, . " PRIMARY. REACTOR . CON-l                                                                                                                 TAINMENT LEAKAGE NINalDR WATER-C00 LEO TOWER REACTORS"............                                                                                        .
OF 10CFR50, APPENDIX J,. " PRIMARY. REACTOR. CON-l TAINMENT LEAKAGE NINalDR WATER-C00 LEO TOWER REACTORS"............
a 1
a 1
i
\\
                                                                                                      \
i ACKNOWIpvam 4
                                                                    ;
I DONOT r>%
ACKNOWIpvam 4
1 O
I
I PLANT NAME.
      !                                                              1
MONTICELLO SAFEIY F OR ACT!C'. INFO R'' ATIC'J L:iVIRO E-M-%
                                                                              .                                                                                                        DONOT r>%O                                           .
i ASSIGNr?D AD :
I PLANT NAME.                                     MONTICELLO             .
T ASSIC:,T.D AD :
SAFEIY                                                             F OR ACT!C'. INFO R'' ATIC'J                                                                           L:iVIRO E- M-%
/
i     ASSIGNr?D AD :                                                                                     T         ASSIC:,T.D AD :
BRS@i~di1FF :
        /             BRS@i~di1FF :                                           i ZI_EMANN                                     1mA::Cli C:1IE? :                                                                                           _
i ZI_EMANN 1mA::Cli C:1IE? :
IROJECT 1;ANAGER:                                                                                             PROJECT MANAGER .                                                           '
IROJECT 1;ANAGER:
LIC. AS N. :
PROJECT MANAGER.'
                                  ~
'2" 1.IC. AS'$?. :~~~
DIGGS
DIGGS LIC. AS N. :
  '2" 1.IC. AS'$?. :~~~                                                                                                                                                                                                                                     _
~
    ~_ I w                                                    INT EilN AL DIS T RIEUTION
~_ I INT EilN AL DIS T RIEUTION
_[h= y G7FII.E )                                                             Sy :iTJ".S_S AI'EIE                     I PLA."1 SYSTFES                                                                             _EID'Ino__TEc1L.__                       _
_[h= y 7 w
151HE'M'i                               [._TEDESCO                                                                       __
G FII.E
il[GSI NRC I & E. PUR_M)                                              SCHE 0ZDER                    _
)
                                                                                                                            ' UCUALOYE                                                                            .
Sy :iTJ".S_S AI'EIE I PLA."1 SYSTFES
_ Lh AT .I. AI' D.               . , .
_EID'Ino__TEc1L.__
il[GSI 151HE'M'i
[._TEDESCO
_ Lh AT.I. AI' D.
NRC PUR_M)
' UCUALOYE I & E.
SCHE 0ZDER
_d_L3I@
SPASGLER
SPASGLER
_d_L3I@
_y__QET D GOSSICK & STAFP ENCIj;E r'11_;iG IPPOLITO SITE. TEcll
_y__QET D                                                                                                                                                                                 _
. _ ____.MIEC nAccARY
GOSSICK & STAFP                                             ENCIj;E r'11_;iG                             IPPOLITO
_QASL KMIMll OP!: RATING REAC10".S L_.. con:ILt
            . _ ____.MIEC                                                           nAccARY                                                                                                                                   SITE. TEcll
_}MNAUFR SIEiEIL STELLO 1
_QASL                                                         KMIMll                                       OP!: RATING REAC10".S                                                               L_.. con:ILt SIEiEIL                                     STELLO                                                                               1       STEPP
STEPP I
_}MNAUFR                                                                                                                                                                                        I        iWl '1All PAWLICKI
iWl '1All
          ..d __llAELESS                                                                                             l         OPERATING TEC11 FROJECT MANAGE > TENT                                       REACTOR SAFETY                     I *T ETSFnit r                                                                                         SITE ANALYSIS VOLLMER BOYD                                                       R_0SS                                 /' SUA0_
..d __llAELESS PAWLICKI l
P. C0i, LINS                                               NOVAK                                 /     BAER                                                                                         BUNCll                       ._
OPERATING TEC11 FROJECT MANAGE > TENT REACTOR SAFETY I *T ETSFnit r SITE ANALYSIS VOLLMER BOYD R_0SS
c                 __
/' SUA0_
llOUSTO:1                                                  ROSZTOCZY                              / S    C.lf M. :MC.E..R                                                  _.
P. C0i, LINS NOVAK
                                                                                                                                                                                                                          / - . . . .J. COLLINS                --
/
BAER BUNCll c
g.-
g.-
KREGER PETERS 0;l                                                 CllECK                                 / CRIMP.S MELTZ                                                                                           j                                     __                                    _ , _ _          _  _
C.lf M. :MC.E..R
llELTEMi'.S                                                 AT & I                                       SITr. SAFETY & ENVIRr                                                                                                               __
-....J. COLLINS
SKOVl10LT                                                   SAllr7 MAN                                   At!Al.YSIS RinTZnG                                     1)t MT O'! 4 M U1.J r.R EX I LN idt Ul;il H h,U llOM                                                                                                                   L:UN T ilOL NUf.'.L H I.PDR,U nGQAtolt'# M                                       IIATL LAB                                     UROUEllAVCh MATI IM                                                                                                                   ,
/ S
w annoN(onut) tic m1c 9LB Rec. v-tZ mm CON.'; O! .T A NTS a h-                                    I ACRS.__ Ho'.DIMG/SDa*                                                                                                                                         - _ .._._._ _.
/
w___-_               _        __                                                          ___                                  . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                  -          ___}}
llOUSTO:1 ROSZTOCZY KREGER PETERS 0;l CllECK
/ CRIMP.S MELTZ j
llELTEMi'.S AT & I SITr. SAFETY & ENVIRr SKOVl10LT SAllr7 MAN At!Al.YSIS RinTZnG 1)t MT O'! 4 M U1.J r.R EX I LN idt Ul;il H h,U llOM L:UN T ilOL NUf.'.L H I.PDR,U nGQAtolt'# M _
IIATL LAB UROUEllAVCh MATI IM a h-I tic Rec. v-tZ w annoN(onut) m1c mm 9LB CON.'; O!.T A NTS ACRS.__ Ho'.DIMG/SDa*
w___-_
___}}

Latest revision as of 22:50, 20 December 2024

Request for Exemption from Certain Requirements of 10CFR50, App J, Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors
ML20024G359
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 05/05/1976
From: Wachter L
NORTHERN STATES POWER CO.
To:
Shared Package
ML20024G357 List:
References
A00L-760505, AL-760505, NUDOCS 9102110365
Download: ML20024G359 (12)


Text

-

4 UNITED STATES NGCLEAR REGULATORY COMMISSION NORDIERN STATES POWER COMPANY MONTICELLO NUCLEAR GENERATING PLANT i

Docket No. 50-263 License No. DPR-22 Request for Exemption from Certain Requirements of 10CFR50, Appendix J, " Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors" Northern States Power Company, a Minnesota corporation,- by_ this letter dated May 5,1976 -hereby submits a request for exeaption from a number of require-ments of 10CFR50, Appendix J.

This request is made in-accordance with Section 50.12 of 10CFRSC.

This request contains no restricted or other defense information.

NORTHERN STATES POWER COMPANY By d M dmo-L JAFachter

~

Vice President, Power Ptsduction

& System Operation On this 5th day of May,1976, before me a notary public in and for said County,

_ personally appeared _ L J Wachter, Vicu President, Power Production ard System Operation, ~and being first duly sworn acknculedged that he is authorized to execute this docunent on behalf of Northern States Power Company, that he

- knows the contents thereof and that to the best of his knowledge, informa tion and belief, the statements made in it are rue and that it is not interposed for delay. _

AMD AAb'

'#'S DENISE E. BRANAll l7 WM Puntsc ~ mnnon -

HENNEPIN CO(JPny l l mmis % hphs Oct.10,IM1 g 1

..=

9102110365 7'>0505 PDR ADOCK 05000263 P

PDR l

l MONTICELLO NUCLEAR GENERATING PLANT DOCKET No. 50-263 May 5, 1976 REQUEST FOR EXEMPTION FRCH CERTAIN REQUIREMENTS OF 10CFR50, APPENDIX J Pursusnt to 10CFR50.12, the holders of Provisional Operating License DPR-22 hereby request the following exemptions from the requirements of Appendix J to 10CFR50, 1.

Appendix J Section III. B.1, Type B Testing of Instrument Lines Exemption Requested Section III.B.1, under the definition contained in Section II.G.4, can be con-strued to require testing of inst rument lines not equipped with excess flow check valves.

No provision for testing these instrument lines was provided in the original plant design.

We ask exemption from this requirement.

The affected penetrations are:

X-29E Drywell Pressure Sensing Line X-29F Drywell Pressure Sensing Line X-32C Drywell Ficod Level Switch Tap X-50E Drywell Pressure Sensing Line X-50F Drywell Pressure Sensing Line X-206A - X-206D Torus Instrumentation X-209A - X-209D Torus Instrumentation

Reason for Request

These instrument penetrations are required to sense drywc11 and torus pressure, temperature, and water level. The small diameter instrument piping outside containment connects to a scaled transducer.

In the case of the pressure instruments, safeguard signals are generated.

There is no practicable method of testing these penetrations using Type B testing.

Each penetration is tested as part of the Type A test program.

The probability of rupture of an associated instrument line outside containment and the resulting leakage to the environs of the post accident containment gaseous atmosphere is low. Manual isolation valves are provided to isolate a Icaking instrument.

Any addition or modification (such as isolation velves) to permit testing these penetrations could result in a degradation in performance of their safety related function.

l

l 2-I 2.

Appendix J Section III.B.2, Type B Test Pressure for Drywell Air Lock Exemption Requested This section requires all Type B tests to be conducted at Pa (41 psig).

We request exemption from this requirement in the case of the drywell air lock.

We ask that we be permitted to use the current 10 psig air lock test pressure specified in the Monticello Technical Specifications.

Reason for Request

The Monticello drywell air lock utilitee two heavy steel single-gasketed doors designed to seal with pressure applied frem the drywell side.

The only method available to leakage test the air lock is to pressurize the volume between the inner and cuter doors.

This requires installing temporary bracing on the inner door to assist in holding it closed (test pressure tends to open the door).

We believe that 10 psig is a test pressure which permits a valid and safe test to be performed.

Increasing the test pressure to 41 psig increases the force on the inner door thereby reducing the design margin of the temporary bracing. The higher test pressure also leads to an artificially high measured leakage due to increased leakage past the inner door.

3.

Appendix J Section III.C.1. Type C Testing of Torus Spray Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be con-strued to require testing of the Loop A and Loop B Suppression Chamber Spray valves (Figure 1).

No provision for conducting local leakage tests was provided in the original plant design.

We request that these valves be excluded from Type C testing.

Reason for Request

These valves are normally closed, remote-manual motor operated valves.

They can be intermittently opened by the Control Room Operator to reduce the temperature and pressure in the torus during the latter stages of a loss of coolant accident.

Both valves are located outside of containment.

These lines would be pressurized by the RHR pumps during all stages of the accident. This pressure is well above the peak suppression chamber pressure following a loss of coolant accident preventing any outleckage of the sup-pression chamber gaseous atmosphere.

There is no single active failure which could prevent pressurization of these lines by the RIIR pumps.

Since the Torus Spray lines cannot constitute a containment Icakage path, testing of the isolation valves in these lines is unnecessary.

l L_---------------------------------------------------------------------------------------------

r.

4. Appendix J.Section III.C.1, Direction of Test Pressure

_ Exemption Reques ted This section requires that test pressure for Type C testing be applied in the same direction as that when the valve would be required to perform its safety related function, unless it can be determined that the results from the t ests for a pressure applied in a different direction will provide equivalent or more conservative results.

We request that we be permitted to test all of the following penetrations, except X-39A and X-39B, with test pressure in the reverue direction.

There is no Provision for testing these penetrations in the correct direction.

We request that we be exempted fran the requirement to test penetrations X-39A and X-39B.

Penetration No.

Description of Service Type Valve X-18 Floor Drain Sump Globe X-19 Equipment Drain Sump Globe X-25 Drywell Ventilation Butterfly X-26 Drywell Ventilation Butterfly X-27D - X-27F 0xygen Analyzer Globe X-39A Drywell Spray Gate - Wedge Type X-39B Drywell Spray Gate - Wedge Type X-41 Coolant Sample Globe X-48 Nitrogen Pumpback Globe X-205 Torus ventilation Butterfly X-214 0xygen Analyzer Globe X-220 0xygen Analyzer Globe

Reason for Request

Test connections at Monticello have generally been provided in the connecting volume between the inboard and outboard isolation valves.

The connecting volume is pressurized and the pressure decay rate is measured. These penetrations have no other provision for testing the inboard isolation valve.

In this test the inboard valve is pressurized in a direction opposite to the pressure it would experience following an accident.

Except for penetrations X-39A and X-39B, testing of these valves in the reverse direction is permissible under the provisions of Section XI, Subsection IWV, of the ASME Code.

In these cases the leak tightness of the valve is not dependent upon direction of pressurization.

The valves in penetrations X-39A and X-39B are normally closed, remote-manual motor operated valves.

They can be intermittently opened by the Control Room Operator to reduce the Temperature and pressure in the drywell during the later stages of a loss of coolant accident. X-39A and X-39B would be pressurized by the RHR pumps during all stages of the accident.

This pressure is well above the peak drywell accident pressure preventing any outleakage of the drywell gaseous a tmosphere.

There is no single active failure which could prevent pressurization of these lines.

Since these lines cannot constitute a containment leakage path, testing of the isolation valves in these lines is unnecessary (Figure 2).

5.

Appendix J Section III.C.1, Type C Testing of Core Spray Testat le Check Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be construed to require testing of the Loop A and Loop B Core Spray Testable Check valves (Fig are 3).

We request that these valves be excluded f rom Type C testing and that the two motor operated gate valves in each line located outside containment be subjected to Type C testing in their place.

Reason for Request

The testable check valve in each Core Spray line was not intended to meet gas leakage acceptance criteria. These valves exhibit moderate leakage when re-quired to seal against a low pressure gas, but are leak tight in their normal environment.

These valves consistently fail to meet the individual valve Tech-nical Specification maximum allowable leakage rate. Maintenance performed on them to meet the criteria applied to containment isolation valves involves many hours of work in an area where high radiation and contamination levels prevail. Any Dmprovement in leak tightness is temporary.

In the event of a loss of coolant accident combined vidi a failure of one core spray pump to start, the potential exists for containment leakage to pass through the Core Spray line associated with the non-operating loop.

Barriers to this leakage include the testable check valve located inside containment and two motor operated remote-manual valves located outside containment.

In the event of a failure of a Core Spray pump, the tuo motor operated valves could be closed to eliminate this potential leakage path.

Provisions have been provided in the original plant design to test the two motor operated valves in each Core Spray line.

This testing would be conducted in accordance with Appendix J.

All components of the Core Spray System are protected from seismic events and potential missiles.

Failure of bo'h motor operated gate valves located outside containment in each Core Spray line is highly bnprobable.

I

=

5

6. Appendix J Section III.C.1, Type C Testing of Low Pressure Coolant Injection Testable check Valves Exemption Requested Section III.C.1, under the definition contained in Section II.H.3, can be con-strued to require testing of the Loop A and Loop B Low Pressure Coolant Injection (LPCI) testable check valves (Figure 4).

We request that these valves be excluded from Type C testing and that the two motor operated gate valves in each line located outside containment be subjected to Type C testing in their place.

Reason for Request

The testable check valve in each LPCI supply line was not intended to meet gas leakage acceptance criteria. These valves exhibit moderate leakage when required to seal against a low pressure gas, but are leak tight in their normal environment. These valves consistently fail to meet the individual valve Technical Specification maximum allowable leakage rate. Maintenance performed on them to enable them to meet the criteria applied to containment isolation valves involves umny hours of work in an area where high rndiation and contamination levels prevail. Any improvement in leak tightness is temporary.

These lines would be pressurized by the RHR pumps in the post accident condition and would supply LPCI flow to the recirculation loops.

There is no single active failure which could prevent pressurization of these lines above the calculated peak contain-ment pressure.

It may be necessary, however, in the long t rm period following an accident to isolate an RHR loop to perform maintenance.

Under these conditions, the barriers to contain-leakage include the testable check valve located inside containment and two motor ment operated remote-manual (for containment isolation purposes) valves located outside con-tainment. The two motor operated valves are closed to eliminate a potential Icakage path in this situa tion.

Provisions have been provided in the original plant design to test the two motor operated valves in each LPCI supply line.

This testing would be conducted in accord-ance with Appendix J.

All components of the RHR System are protected from seismic events and potential missiles. Failure of both motor operated valves located outside containment in each LPCI supply line is highly hnprobable.

'7.

Appendix 3 Section III.C.2. Type C Test Pressure for Main Steam Isolation Valves Exemption Requested Section III.C.2 requires all Type C tests to be conducted at Pa (41 psig).

We request exemption from this requirement in the case of the Main Steam Isolation Valves (MSIV's).

We ask that we be permitted to use the current 25 poig MSIV test pressure specified in the Monticello Technical Specifications.

1 Reason for Request

Main Steam Isolation Valves are normally tested each refueling outage. After the vessel head has been removed, these valves must be tested by pressurizing the connecting volume between the two valves in each line (Figure 4).

The inboard Main Steam isolation valve is subjected to test pressure in a direction that is opposite to that existing following an accident.

During testing, test pressure tends to unseat the valve and can lead to an invalid measurement.

For this reason, the test pressure has been limited to 25 psig for main steam isolation valve testing and the allowable leakage has been stated in terms of a 25 psig test pressure in the current Technical Specifications.

8.

Appendix J Section III.D.2, Frequency of Drywell Air Lock Testing Exemption Requested Section 111.D.2 requires that air locks shall be tested each six months or after each opening, whichever occurs first.

We request that an exemption be granted f rom the requirement to conduct a Type B test of the air lock af ter each opening.

We ask that we be permitted to perform this testing every three days ducing periods the drywell air lock is in use while contain-ment integrity is required.

Reason for Exemption The Monticello air lock does not have double-gasketed door seals. All leakage tests be conducted by pressurizing the space between the inner and outer doors.

This must test requires at least four hours to perform.

Overall pressure testing of the air lock every three days is a reasonable surveillance requirement to verify leak tightness when the air lock is actually in use.

l I

?

1 I

I

,i

~

i.

s!i t.

bEii I

e

~

6

. 2

-6 erug R

i I

. F IRB R

mp A

oo S

rc F

FI 4

ec 7

n 0

e 0

r 2

e f

O a

M B

sno 1

9 i

1 0

t 0

0 a

2 2

r t

O O

e M

M ne A

P 11 p'

t 2

n X

7 em f

n 1

~

i

=

a t

n C

o

=

H' y

i 1

I a

1 2-r 2 =

S p

s 0

.8 u

. 1 0

r 0

0 o

2 2

T

.O O.

M M

1 er 6

u 0

g 0

i 2

F O

M R

> HRA mp oo ro FL t

l 5

1!

l Id'

- =......_.. _.,. --

. ~.

i MO-2022 MO-2TO h RHR t

C MO-2023 M0-2021 Icop A X39B O'

()

O O

X39A IDOP 3 s

-2

-LJ I

M TET bg

]

N un; t

TEST.

F-Drywell Spray Containment Penetrations

Reference:

FSAR Figure 6-2-6 i

4

,..W-p,

l Testable. Check AO-14-13A Testable Check kn6B 1

AO-1 +-13B

><1-

=

n f

[

MO 1753 MO 1751 From Core

')

U L.O.

From Cor;e y

M6A I_.,,

f

(

Spray A f

Spray 3 MO 1752 MO 1754 L.O.

d d

a l

Yf

}

{

Y LEAK LEAK TEST TEST LEAK LEAK TEST TEST Figure 3 Core Spray Icops A and B

Reference:

FSAR Figure 6-2-2

.:i

~

r t

i i

Testable Check Testable Check Ao-10 h6B AO-10-h6A X13A /

3B i

f I

1 From RER No 2013 Mo 2015 k

+'[

L.o.

(

L.o.

Mo 201 Mo 2012 From RHH Loop B Ioop A-3 3

3

[

' [

i l

'B Pacirculating A Becirculatiry; l

+

Pump Pump

- 3 H

[

o o

. LEAK LEAK LEAK LEAK TEST TEST TET TEST J

Figure k.

Low Pressure Coolant Injection loops A and B

Reference:

FSAR Figure 6-2-6 l

i 9

m a

=

l STEAM LINE PENETRATION INBOARD OUTBOARI NO.

MSIV MSIV A

X-7A A0-2-BOA A0-2-66A B

X-7B AO-2-80B A0-2-8(B C

X-7C A0-2-80C AO-2-8f D

X-7D A0-2-80D A0-2-86u I

A C

A0-2-86A A0-2-80A h

B D

x u f, x TYPIC /LL OF ALL l

FOUR STEAM LINES LEAK TEST Figure 5 Main Sterun Line Isolation Valves Reference : FSAR Figure 4-4-1

~~

u.s. aucu. An nt cutniony vui.aion ovcat i Nuune.n Irisc19nm 10s 50- Rio'$

+ tu NHC Ol".TRIDUTION ron PAllT 50 DOCV.ET MATElllAL e

I-ilOM: NORTHERN STATES POWER CO oATE OF DOCUMLNT 10:

i N

MINNEAIOLI$, MINN....

5-5-%

1 MR V STEI,AO.,,

L 0 MAY ER.....

oATc nectivco 5-n-7L

~,

MTTon Jkf!oTOniz c o PnOP INPUT F ORM NUMDCH OF CoplES HCCCIVED Rf6RIGIN AL MNC L ASSIFit o 3 SIGN 37CC=40W/ ENCL.....

O cOev

' OCDC RIP TION E N C LOSU RE I

LTR N0'IORIZED 5-5-76,....TRANS THE R$UEST FOR EXEMPTION FROM CERTAIN RMUIREMENTS FOLIDWING.......

OF 10CFR50, APPENDIX J,. " PRIMARY. REACTOR. CON-l TAINMENT LEAKAGE NINalDR WATER-C00 LEO TOWER REACTORS"............

a 1

\\

i ACKNOWIpvam 4

I DONOT r>%

1 O

I PLANT NAME.

MONTICELLO SAFEIY F OR ACT!C'. INFO R ATIC'J L:iVIRO E-M-%

i ASSIGNr?D AD :

T ASSIC:,T.D AD :

/

BRS@i~di1FF :

i ZI_EMANN 1mA::Cli C:1IE? :

IROJECT 1;ANAGER:

PROJECT MANAGER.'

'2" 1.IC. AS'$?. :~~~

DIGGS LIC. AS N. :

~

~_ I INT EilN AL DIS T RIEUTION

_[h= y 7 w

G FII.E

)

Sy :iTJ".S_S AI'EIE I PLA."1 SYSTFES

_EID'Ino__TEc1L.__

il[GSI 151HE'M'i

[._TEDESCO

_ Lh AT.I. AI' D.

NRC PUR_M)

' UCUALOYE I & E.

SCHE 0ZDER

_d_L3I@

SPASGLER

_y__QET D GOSSICK & STAFP ENCIj;E r'11_;iG IPPOLITO SITE. TEcll

. _ ____.MIEC nAccARY

_QASL KMIMll OP!: RATING REAC10".S L_.. con:ILt

_}MNAUFR SIEiEIL STELLO 1

STEPP I

iWl '1All

..d __llAELESS PAWLICKI l

OPERATING TEC11 FROJECT MANAGE > TENT REACTOR SAFETY I *T ETSFnit r SITE ANALYSIS VOLLMER BOYD R_0SS

/' SUA0_

P. C0i, LINS NOVAK

/

BAER BUNCll c

g.-

C.lf M. :MC.E..R

-....J. COLLINS

/ S

/

llOUSTO:1 ROSZTOCZY KREGER PETERS 0;l CllECK

/ CRIMP.S MELTZ j

llELTEMi'.S AT & I SITr. SAFETY & ENVIRr SKOVl10LT SAllr7 MAN At!Al.YSIS RinTZnG 1)t MT O'! 4 M U1.J r.R EX I LN idt Ul;il H h,U llOM L:UN T ilOL NUf.'.L H I.PDR,U nGQAtolt'# M _

IIATL LAB UROUEllAVCh MATI IM a h-I tic Rec. v-tZ w annoN(onut) m1c mm 9LB CON.'; O!.T A NTS ACRS.__ Ho'.DIMG/SDa*

w___-_

___