ML22181B159: Difference between revisions
StriderTol (talk | contribs) (StriderTol Bot insert) |
StriderTol (talk | contribs) (StriderTol Bot change) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:KP-NRC-2206-014 | {{#Wiki_filter:KP-NRC-2206-014 Changes to PSAR Chapters 3, 4, and 6 (Non-Proprietary) | ||
PreliminarySafetyAnalysisReport | |||
DesignofStructures,Systems,andComponents | |||
KairosPowerHermesReactor 332 Revision0 SSCsthatarenonsafetyrelatedareclassifiedasSDC2.SDC2SSCsaresubjecttotheseismicdesign requirementsofthelocalbuildingcode,ASCE/SEI710(Reference3). | |||
3.6.2.2.1 SeismicQualificationbyAnalysis SeismicqualificationbyanalysisfollowsSection8.2ofASCE4319.Dependingonthecharacteristicsand complexitiesofthesubsystemorequipment,qualificationbyanalysisisaccomplishedbyeither equivalentstaticanalysismethodsordynamicanalysismethods. | |||
Therearelimitationstoqualificationbyanalysis.PerASCE4319: | |||
Qualificationofactiveelectricalequipmentbyanalysisisnotperformed. | |||
Qualificationofactivemechanicalequipmentbyanalysismaybepermittedifthecomponentissuch thatthefunctionalityduringanearthquakecanbeestablishedandamarginoflossoffunctionality duringanearthquakecanbequantified. | |||
Qualificationofactivemechanicalcomponentsbyanalysisshallbejustified. | |||
Seismicqualificationbyanalysisistypicallyimplementedforsubsystemsandequipmentstructural integrityrelatedcapacities(e.g.anchorage,pressureboundary/rupture,serviceabilitydeformations, etc.). | |||
3.6.2.2.2 SeismicQualificationbyTesting SeismicqualificationbytestingfollowsSection8.3ofASCE4319.Qualificationbytestistypicallyused forSSCsforwhichqualificationbyanalysisisnotpermittedandforSSCswheredynamicbehaviorsare notsufficientlyunderstoodtosupportqualificationbyanalysis. | |||
3.6.2.3 QualityClassification ThequalityclassificationforSSCsconformswiththerequirementsofKairosPowersQualityAssurance ProgramfortheHermesReactor,whichisdiscussedinSection12.9.SafetyrelatedSSCsareclassifiedas QualityRelated,whilenonsafetyrelatedSSCsareclassifiedasNotQualityRelated.Theseclassifications areshowninTable3.61. | |||
3.6.3 References | |||
: 1. KairosPower,LLC,RegulatoryAnalysisfortheKairosPowerSaltCooled,HighTemperature Reactor,KPTR004P,Revision2.July2020. | |||
: 2. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019. | |||
: 3. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011. | |||
: 4. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,SectionIII, Division5,HighTemperatureReactors.20179. | |||
: 5. ASME,BoilerandPressureVesselCode,SectionVIII,Divisions1and2,RulesforConstructionof PressureVessels,NewYork,NY.July2017. | |||
: 6. ASMEStandardB31.1,PowerPiping,1999Edition,NewYork,NY.A9. | |||
: 7. ASMEStandardB31.3,ProcessPiping,2016Edition,NewYork,NY. | |||
: 8. AmericanPetroleumInstitute,610,CentrifugalPumpsforPetroleum,HeavyDutyChemical,and GasIndustryServices,1995. | |||
: 9. AmericanPetroleumInstitute,674,PositiveDisplacementPumpsReciprocating.1995. | |||
: 10. AmericanPetroleumInstitute,675,PositiveDisplacementPumpsControlledVolume.1994. | |||
: 11. AmericanPetroleumInstitute,650,WeldedSteelTanksforOilStorage.1998. | |||
PreliminarySafetyAnalysisReport | |||
ReactorDescription | |||
: 1. | |||
: 2. | KairosPowerHermesReactor | ||
: 3. | |||
: 4. | Revision0 433 ofirradiation.Thefastneutronfluencereceivedbythereactorvesselfromthereactorcoreandpebble insertionandextractionlinesisattenuatedbythecorebarrel,thereflector,andthereactorcoolant. | ||
: 5. | Coolantpuritydesignlimitsarealsoestablishedinconsiderationoftheeffectsofchemicalattackand foulingofthereactorvessel.ThesefeaturesdemonstrateconformancewithPDC31. | ||
TheMSSutilizescouponsandcomponentmonitoringtoconfirmthatirradiationaffectedcorrosionis nonexistentormanageable.The316HSSreactorvesselandER1682weldmaterial,asapartofthe reactorcoolantboundary,willbeinspectedforstructuralintegrityandleaktightness.Asdetailedin Reference3,fracturetoughnessissufficientlyhighin316HSSunderreactoroperatingconditionsthat additionaltensileorfracturetoughnessmonitoringandtestingprogramsareunnecessary.These featuresdemonstrateconformancetoPDC32. | |||
Fluidicdiodesareusedtoestablishaflowpathforcontinuousnaturalcirculationofcoolantinthecore duringpostulatedeventstoremoveresidualheatfromthereactorcoretothevesselwall.Duringand followingapostulatedevent,thehotcoolantfromthecoreflowsfromtheupperplenumthroughthe lowflowresistancedirectionofthefluidicdiodetothecoolerdowncomervianaturalcirculation, therebycoolingthecorepassively.Continuouscoolantflowthroughthereactorcorepreventspotential damagetothevesselinternalsduetooverheatingtherebyensuringthecoolablegeometryofthecoreis maintained.Theantisiphonfeaturealsolimitsthelossofreactorcoolantinventoryfrominsidethe reactorvesselintheeventofaPHTSbreach.ThesefeaturesdemonstratecompliancewithPDC35. | |||
Thereactorvesselreflectorblockspermitinsertionofthereactivitycontrolandshutdownelements.The ETU10gradegraphiteofthereflectorblocksiscompatiblewiththereactorcoolantchemistryandwill notdegradeduetomechanicalwear,thermalstressesandirradiationimpactsduringthereflectorblock lifetime.ThegraphitereflectormaterialisqualifiedasdescribedintheKairosPowertopicalreport GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHighTemperatureReactor, KPTR014(Reference4).Toprecludedamagetothereflectorduetoentrainedmoistureinthegraphite, thereflectorblocksarebaked(i.e.,heateduniformly)priortocomingintocontactwithcoolantand thereactorvesselisdesigntoprecludeairingress.Thereflectors,whichactasaheatsinkinthecore, arespacedtoaccommodatethermalexpansionandhydraulicforcesduringnormaloperationand postulatedevents.Thegapsbetweenthegraphiteblocksalsoallowforcoolanttoprovidecoolingtothe reflectorblocks.Thereactorvesselpermitstheinsertionofthereactivitycontrolandshutdown elementsaswell.ThevesselisclassifiedasSDC3perASCE4319andwillmaintainitsgeometryto ensuretheRCSSelementscanbeinsertedduringpostulatedeventsincludingadesignbasisearthquake. | |||
ThesefeaturesdemonstratecompliancewithPDC74. | |||
4.3.4 TestingandInspection Thereactorvesselandinternalswillbeincludedinaninserviceinspectionprogramwhichwillbe submittedatthetimeoftheOperatingLicenseApplication. | |||
4.3.5 References | |||
: 1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII,Division 5(2019),HighTemperatureReactors.2017. | |||
: 2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclearFacilities. | |||
: 3. KairosPower,LLC,MetallicMaterialsQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR013P,Revision1. | |||
: 4. KairosPower,LLC,GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR014P,Revision1. | |||
PreliminarySafetyAnalysisReport | |||
ReactorDescription | |||
KairosPowerHermesReactor | |||
Revision0 457 4.7 REACTORVESSELSUPPORTSYSTEM 4.7.1 Description Thereactorvesselsupportsystem(RVSS)providesstructuralsupporttothereactorvesselsupportthe fullweightofthereactorvesselwithfuelandcoolant,vesselinternals,andallheadmounted components.Thesystemtransmitspressure,seismic,andthermalloadstothecavitystructuresduring normaloperationanddesignbasisearthquakes.TheRVSSprovidesadequatethermalmanagementto supportthevesselsthermalexpansionwhiletransitioningfromroomtemperatureatassemblyto nominaloperatingtemperatureforprimarycoolantfill.TheRVSSalsosupportsthevesselsthermal expansionduringpostulatedevents. | |||
TheRVSSinterfaceswiththereactorvessel(seeSection4.3),thereactorthermalmanagementsystem (RTMS)(SeeSection9.1.5),andthesafetyrelatedportionoftheReactorBuilding(seeSection3.5).The safetyrelatedportionoftheReactorBuildingisseismicallyisolatedtoreduceseismicloads(seeSection 3.5.3). | |||
Thebottomsupportconsistsofasupporttray,ledge,supportcolumns,supportpads,baseplate,vessel connector,andanchoringconnectorasshowninFigure4.71.Allthecomponentsaremadeof316H stainlesssteel.Thereactorvesselbottomheadsitsdirectlyontopofthetrayandisconnectedtothe traybythevesselconnectortopreventupliftandshear.Theledgearoundtheedgeofthetraycontains spilledFlibeincaseofleakage.Thetrayisreinforcedby316HSSsupportcolumnswhicharesizedand spacedappropriatelytoprovidestructuralsupportforthetotalweightofthevessel,vesselinternals, headcomponents,coolant,andfuel.Thesupportcolumnsareweldedontothesupportpadwhich allowsrelativeslidingwiththeunderlyingbaseplatetoaccommodatethermalexpansion.Thesupport padshaveslottedholestoallowrelativeslidingwiththeanchoringconnectors.Theanchoring connectorspreventthereactorvesselandRVSSfromupliftandshear.TheRVSSisdesignedand fabricatedperASMEBPVCSectionIII,Division5(20179)(Reference1). | |||
TheRTMSprovidesthermalmanagementforthebottomsupportwithaloadbearingmetallicinsulation materialwhichactsasathermalbreakthatreducesheatlossandcoolingloadfortheRVSSsupport columns.ThebottominsulationoftheRTMS,asshowninFigure4.71,protectsthereactorbuilding cavityconcretefromthermaleffects.TheRVSSisalsoverticallyanchoredtothefoundationthroughthe bottominsulation.Thebottomsupportinsulationinterfaceaccommodatesrelativethermalexpansion betweenthesupportcolumnsandtheinsulationmaterial. | |||
Therearenolateralseismicrestraintsforthereactorvesselandtheheadmountedcomponents.The RVSSisdesignedtokeepthereactorvesselfromupliftandshearduringseismicevents.Thedesignalso leveragesseismicisolationoftheReactorBuildingtoreduceseismiceffectsonthereactorvessel,RVSS, andtheheadmountedcomponents(seeSection4.3). | |||
4.7.2 DesignBasis ConsistentwithPDC2,theRVSScanwithstandtheeffectsofnaturalphenomenaandtoperformits safetyfunctionintheeventofadesignbasisearthquake. | |||
ConsistentwithPDC4,theRVSSaccommodatestheenvironmentalconditionsassociatedwithnormal operation,maintenance,testing,andpostulatedevents. | |||
ConsistentwithPDC74,thedesignofthereactorstructuralsupportsystemensurestheintegrityofthe reactorvesselduringpostulatedeventstosupportthegeometryforpassiveremovalofresidualheat fromthecoreandtopermitsufficientinsertionofthecontrolandshutdownelementsprovidingfor reactorshutdown. | |||
PreliminarySafetyAnalysisReport | |||
ReactorDescription | |||
KairosPowerHermesReactor | |||
Revision0 458 4.7.3 SystemEvaluation TheRVSSsupportsthereactorvesselintheeventofanearthquakeorothernaturalphenomenonthus ensuringtheintegrityofthereactorvesselanditsabilitytoretainreactorcoolant.Thebottomsupport meetsASCE4319(2019)(Reference2)andprecludeslinearbucklinginthevesselsupportcolumns understaticanddesignbasisearthquakeloads.Thebottomsupportisalsoverticallyanchoredtothe cavitytopreventthevesselfromupliftduringadesignbasisearthquake.Thevesselconnectorsmeet Reference2andprovidesufficientlateralandupliftsupporttothevesselandthevesseltophead components.Thereactorcavityisalsoseismicallyisolatedtoreduceseismicloads.Thesedesign featuresdemonstratecompliancewithPDC2fortheRVSS. | |||
TheRVSSisprotectedfromdischargingfluidsbycatchbasins.Sensorsandprobesinstalledoncatch basinsincludingthebottomsupporttraycanbeusedasameansofleakdetectiontoprecludedamage totheRVSS.TherearenopressurizedpipingsystemsinproximitytotheRVSSthusprecludingbydesign anyimpactsfromhighenergylineconsiderations.TheRVSSaccommodatesthereactorvessel temperatureloadingcyclesincombinationwithrelevantmechanicalloadingcyclestoensurecreep fatiguedamagesareprecluded.TheRVSScanalsoaccommodatethegrowthofthereactorvesseldueto thermalexpansionbetweenstartupandequilibriumconditions.ThesedesignfeaturessatisfyPDC4for theRVSS. | |||
PDC74statesrequiresthedesignofthereactorvesselandreactorsystemshallbesuchthattheir integrityismaintainedduringpostulatedevents(1)toensurethegeometryforpassiveremovalof residualheatfromthereactorcoretotheultimateheatsinkand(2)topermitsufficientinsertionofthe neutronabsorberstoprovideforreactorshutdown.TheRVSSmaintainstheintegrityofthereactor vesselbyremovingheatviatheRTMS,activelyduringnormaloperationandpassivelyduringpostulated events.Fissionproductdecayheatandotherresidualheatfromthereactorcoreistransferredtothe reactorvessel;thentotheanchoredsurfacebytheRVSS.ThesupportcolumnsoftheRVSSaresizedand spacedtomaximizeheattransferbetweenthebottomsupportandtheenvironment.Thethermalbreak betweentheRVSSandthereactorbuildingprovidedbythebottomsupportinsulationensuresthe concreteintegritymeetsACI34913tosupportmaintenanceandinspectionofthevesselbottom head/vesselshellweldandtoensureconditionsinthesurroundingcavitydonotexceedmaximum allowableparameters.ThisdemonstratescompliancewithPDC74fortheRVSS. | |||
4.7.4 TestingandInspection TheRVSStemperaturewillbemonitoredduringoperationforconformancewithdesignlimits.TheRVSS willbeincludedinaninserviceinspectionprogramwhichwillbesubmittedatthetimeoftheOperating LicenseApplication. | |||
4.7.5 References | |||
: 1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII, Division5,(2019)HighTemperatureReactors.2017. | |||
: 2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclear Facilities. | |||
: 3. ACI34913,CodeRequirementsforNuclearSafetyRelatedConcreteStructuresand Commentary | |||
PreliminarySafetyAnalysisReport | |||
EngineeredSafetyFeatures | |||
KairosPowerHermesReactor 69 Revision0 6.3.5 References | |||
: 1. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.IIIDiv.5, BPVCSectionIIIRulesforConstructionofNuclearFacilityComponentsDivision5High TemperatureReactors,20179. | |||
: 2. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.XIDiv.1and 2,BPVSSectionXIRulesforInserviceInspectionofNuclearPowerPlantComponents,2019. | |||
: 3. AmericanSocietyofCivilEngineers,ASCE/SEI4319,SeismicDesignCriteriaforStructures,Systems, andComponentsinNuclearFacilities,2020. | |||
: 4. AmericanSocietyofCivilEngineers,ASCE/SEI416,SeismicAnalysisofSafetyRelatedNuclear Structures,2017. | |||
: 5. AmericanConcreteInstitute,ACI34913,CodeRequirementsforNuclearSafetyRelatedConcrete StructuresandCommentary,2014.}} | |||
Latest revision as of 16:35, 27 November 2024
| ML22181B159 | |
| Person / Time | |
|---|---|
| Site: | 99902069, Hermes File:Kairos Power icon.png |
| Issue date: | 06/30/2022 |
| From: | Kairos Power |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML22181B157 | List: |
| References | |
| KP-NRC-2206-014 | |
| Download: ML22181B159 (6) | |
Text
KP-NRC-2206-014 Changes to PSAR Chapters 3, 4, and 6 (Non-Proprietary)
PreliminarySafetyAnalysisReport
DesignofStructures,Systems,andComponents
KairosPowerHermesReactor 332 Revision0 SSCsthatarenonsafetyrelatedareclassifiedasSDC2.SDC2SSCsaresubjecttotheseismicdesign requirementsofthelocalbuildingcode,ASCE/SEI710(Reference3).
3.6.2.2.1 SeismicQualificationbyAnalysis SeismicqualificationbyanalysisfollowsSection8.2ofASCE4319.Dependingonthecharacteristicsand complexitiesofthesubsystemorequipment,qualificationbyanalysisisaccomplishedbyeither equivalentstaticanalysismethodsordynamicanalysismethods.
Therearelimitationstoqualificationbyanalysis.PerASCE4319:
Qualificationofactiveelectricalequipmentbyanalysisisnotperformed.
Qualificationofactivemechanicalequipmentbyanalysismaybepermittedifthecomponentissuch thatthefunctionalityduringanearthquakecanbeestablishedandamarginoflossoffunctionality duringanearthquakecanbequantified.
Qualificationofactivemechanicalcomponentsbyanalysisshallbejustified.
Seismicqualificationbyanalysisistypicallyimplementedforsubsystemsandequipmentstructural integrityrelatedcapacities(e.g.anchorage,pressureboundary/rupture,serviceabilitydeformations, etc.).
3.6.2.2.2 SeismicQualificationbyTesting SeismicqualificationbytestingfollowsSection8.3ofASCE4319.Qualificationbytestistypicallyused forSSCsforwhichqualificationbyanalysisisnotpermittedandforSSCswheredynamicbehaviorsare notsufficientlyunderstoodtosupportqualificationbyanalysis.
3.6.2.3 QualityClassification ThequalityclassificationforSSCsconformswiththerequirementsofKairosPowersQualityAssurance ProgramfortheHermesReactor,whichisdiscussedinSection12.9.SafetyrelatedSSCsareclassifiedas QualityRelated,whilenonsafetyrelatedSSCsareclassifiedasNotQualityRelated.Theseclassifications areshowninTable3.61.
3.6.3 References
- 1. KairosPower,LLC,RegulatoryAnalysisfortheKairosPowerSaltCooled,HighTemperature Reactor,KPTR004P,Revision2.July2020.
- 2. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019.
- 3. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011.
- 4. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,SectionIII, Division5,HighTemperatureReactors.20179.
- 5. ASME,BoilerandPressureVesselCode,SectionVIII,Divisions1and2,RulesforConstructionof PressureVessels,NewYork,NY.July2017.
- 6. ASMEStandardB31.1,PowerPiping,1999Edition,NewYork,NY.A9.
- 7. ASMEStandardB31.3,ProcessPiping,2016Edition,NewYork,NY.
- 8. AmericanPetroleumInstitute,610,CentrifugalPumpsforPetroleum,HeavyDutyChemical,and GasIndustryServices,1995.
- 9. AmericanPetroleumInstitute,674,PositiveDisplacementPumpsReciprocating.1995.
- 10. AmericanPetroleumInstitute,675,PositiveDisplacementPumpsControlledVolume.1994.
- 11. AmericanPetroleumInstitute,650,WeldedSteelTanksforOilStorage.1998.
PreliminarySafetyAnalysisReport
ReactorDescription
KairosPowerHermesReactor
Revision0 433 ofirradiation.Thefastneutronfluencereceivedbythereactorvesselfromthereactorcoreandpebble insertionandextractionlinesisattenuatedbythecorebarrel,thereflector,andthereactorcoolant.
Coolantpuritydesignlimitsarealsoestablishedinconsiderationoftheeffectsofchemicalattackand foulingofthereactorvessel.ThesefeaturesdemonstrateconformancewithPDC31.
TheMSSutilizescouponsandcomponentmonitoringtoconfirmthatirradiationaffectedcorrosionis nonexistentormanageable.The316HSSreactorvesselandER1682weldmaterial,asapartofthe reactorcoolantboundary,willbeinspectedforstructuralintegrityandleaktightness.Asdetailedin Reference3,fracturetoughnessissufficientlyhighin316HSSunderreactoroperatingconditionsthat additionaltensileorfracturetoughnessmonitoringandtestingprogramsareunnecessary.These featuresdemonstrateconformancetoPDC32.
Fluidicdiodesareusedtoestablishaflowpathforcontinuousnaturalcirculationofcoolantinthecore duringpostulatedeventstoremoveresidualheatfromthereactorcoretothevesselwall.Duringand followingapostulatedevent,thehotcoolantfromthecoreflowsfromtheupperplenumthroughthe lowflowresistancedirectionofthefluidicdiodetothecoolerdowncomervianaturalcirculation, therebycoolingthecorepassively.Continuouscoolantflowthroughthereactorcorepreventspotential damagetothevesselinternalsduetooverheatingtherebyensuringthecoolablegeometryofthecoreis maintained.Theantisiphonfeaturealsolimitsthelossofreactorcoolantinventoryfrominsidethe reactorvesselintheeventofaPHTSbreach.ThesefeaturesdemonstratecompliancewithPDC35.
Thereactorvesselreflectorblockspermitinsertionofthereactivitycontrolandshutdownelements.The ETU10gradegraphiteofthereflectorblocksiscompatiblewiththereactorcoolantchemistryandwill notdegradeduetomechanicalwear,thermalstressesandirradiationimpactsduringthereflectorblock lifetime.ThegraphitereflectormaterialisqualifiedasdescribedintheKairosPowertopicalreport GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHighTemperatureReactor, KPTR014(Reference4).Toprecludedamagetothereflectorduetoentrainedmoistureinthegraphite, thereflectorblocksarebaked(i.e.,heateduniformly)priortocomingintocontactwithcoolantand thereactorvesselisdesigntoprecludeairingress.Thereflectors,whichactasaheatsinkinthecore, arespacedtoaccommodatethermalexpansionandhydraulicforcesduringnormaloperationand postulatedevents.Thegapsbetweenthegraphiteblocksalsoallowforcoolanttoprovidecoolingtothe reflectorblocks.Thereactorvesselpermitstheinsertionofthereactivitycontrolandshutdown elementsaswell.ThevesselisclassifiedasSDC3perASCE4319andwillmaintainitsgeometryto ensuretheRCSSelementscanbeinsertedduringpostulatedeventsincludingadesignbasisearthquake.
ThesefeaturesdemonstratecompliancewithPDC74.
4.3.4 TestingandInspection Thereactorvesselandinternalswillbeincludedinaninserviceinspectionprogramwhichwillbe submittedatthetimeoftheOperatingLicenseApplication.
4.3.5 References
- 1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII,Division 5(2019),HighTemperatureReactors.2017.
- 2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclearFacilities.
- 3. KairosPower,LLC,MetallicMaterialsQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR013P,Revision1.
- 4. KairosPower,LLC,GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR014P,Revision1.
PreliminarySafetyAnalysisReport
ReactorDescription
KairosPowerHermesReactor
Revision0 457 4.7 REACTORVESSELSUPPORTSYSTEM 4.7.1 Description Thereactorvesselsupportsystem(RVSS)providesstructuralsupporttothereactorvesselsupportthe fullweightofthereactorvesselwithfuelandcoolant,vesselinternals,andallheadmounted components.Thesystemtransmitspressure,seismic,andthermalloadstothecavitystructuresduring normaloperationanddesignbasisearthquakes.TheRVSSprovidesadequatethermalmanagementto supportthevesselsthermalexpansionwhiletransitioningfromroomtemperatureatassemblyto nominaloperatingtemperatureforprimarycoolantfill.TheRVSSalsosupportsthevesselsthermal expansionduringpostulatedevents.
TheRVSSinterfaceswiththereactorvessel(seeSection4.3),thereactorthermalmanagementsystem (RTMS)(SeeSection9.1.5),andthesafetyrelatedportionoftheReactorBuilding(seeSection3.5).The safetyrelatedportionoftheReactorBuildingisseismicallyisolatedtoreduceseismicloads(seeSection 3.5.3).
Thebottomsupportconsistsofasupporttray,ledge,supportcolumns,supportpads,baseplate,vessel connector,andanchoringconnectorasshowninFigure4.71.Allthecomponentsaremadeof316H stainlesssteel.Thereactorvesselbottomheadsitsdirectlyontopofthetrayandisconnectedtothe traybythevesselconnectortopreventupliftandshear.Theledgearoundtheedgeofthetraycontains spilledFlibeincaseofleakage.Thetrayisreinforcedby316HSSsupportcolumnswhicharesizedand spacedappropriatelytoprovidestructuralsupportforthetotalweightofthevessel,vesselinternals, headcomponents,coolant,andfuel.Thesupportcolumnsareweldedontothesupportpadwhich allowsrelativeslidingwiththeunderlyingbaseplatetoaccommodatethermalexpansion.Thesupport padshaveslottedholestoallowrelativeslidingwiththeanchoringconnectors.Theanchoring connectorspreventthereactorvesselandRVSSfromupliftandshear.TheRVSSisdesignedand fabricatedperASMEBPVCSectionIII,Division5(20179)(Reference1).
TheRTMSprovidesthermalmanagementforthebottomsupportwithaloadbearingmetallicinsulation materialwhichactsasathermalbreakthatreducesheatlossandcoolingloadfortheRVSSsupport columns.ThebottominsulationoftheRTMS,asshowninFigure4.71,protectsthereactorbuilding cavityconcretefromthermaleffects.TheRVSSisalsoverticallyanchoredtothefoundationthroughthe bottominsulation.Thebottomsupportinsulationinterfaceaccommodatesrelativethermalexpansion betweenthesupportcolumnsandtheinsulationmaterial.
Therearenolateralseismicrestraintsforthereactorvesselandtheheadmountedcomponents.The RVSSisdesignedtokeepthereactorvesselfromupliftandshearduringseismicevents.Thedesignalso leveragesseismicisolationoftheReactorBuildingtoreduceseismiceffectsonthereactorvessel,RVSS, andtheheadmountedcomponents(seeSection4.3).
4.7.2 DesignBasis ConsistentwithPDC2,theRVSScanwithstandtheeffectsofnaturalphenomenaandtoperformits safetyfunctionintheeventofadesignbasisearthquake.
ConsistentwithPDC4,theRVSSaccommodatestheenvironmentalconditionsassociatedwithnormal operation,maintenance,testing,andpostulatedevents.
ConsistentwithPDC74,thedesignofthereactorstructuralsupportsystemensurestheintegrityofthe reactorvesselduringpostulatedeventstosupportthegeometryforpassiveremovalofresidualheat fromthecoreandtopermitsufficientinsertionofthecontrolandshutdownelementsprovidingfor reactorshutdown.
PreliminarySafetyAnalysisReport
ReactorDescription
KairosPowerHermesReactor
Revision0 458 4.7.3 SystemEvaluation TheRVSSsupportsthereactorvesselintheeventofanearthquakeorothernaturalphenomenonthus ensuringtheintegrityofthereactorvesselanditsabilitytoretainreactorcoolant.Thebottomsupport meetsASCE4319(2019)(Reference2)andprecludeslinearbucklinginthevesselsupportcolumns understaticanddesignbasisearthquakeloads.Thebottomsupportisalsoverticallyanchoredtothe cavitytopreventthevesselfromupliftduringadesignbasisearthquake.Thevesselconnectorsmeet Reference2andprovidesufficientlateralandupliftsupporttothevesselandthevesseltophead components.Thereactorcavityisalsoseismicallyisolatedtoreduceseismicloads.Thesedesign featuresdemonstratecompliancewithPDC2fortheRVSS.
TheRVSSisprotectedfromdischargingfluidsbycatchbasins.Sensorsandprobesinstalledoncatch basinsincludingthebottomsupporttraycanbeusedasameansofleakdetectiontoprecludedamage totheRVSS.TherearenopressurizedpipingsystemsinproximitytotheRVSSthusprecludingbydesign anyimpactsfromhighenergylineconsiderations.TheRVSSaccommodatesthereactorvessel temperatureloadingcyclesincombinationwithrelevantmechanicalloadingcyclestoensurecreep fatiguedamagesareprecluded.TheRVSScanalsoaccommodatethegrowthofthereactorvesseldueto thermalexpansionbetweenstartupandequilibriumconditions.ThesedesignfeaturessatisfyPDC4for theRVSS.
PDC74statesrequiresthedesignofthereactorvesselandreactorsystemshallbesuchthattheir integrityismaintainedduringpostulatedevents(1)toensurethegeometryforpassiveremovalof residualheatfromthereactorcoretotheultimateheatsinkand(2)topermitsufficientinsertionofthe neutronabsorberstoprovideforreactorshutdown.TheRVSSmaintainstheintegrityofthereactor vesselbyremovingheatviatheRTMS,activelyduringnormaloperationandpassivelyduringpostulated events.Fissionproductdecayheatandotherresidualheatfromthereactorcoreistransferredtothe reactorvessel;thentotheanchoredsurfacebytheRVSS.ThesupportcolumnsoftheRVSSaresizedand spacedtomaximizeheattransferbetweenthebottomsupportandtheenvironment.Thethermalbreak betweentheRVSSandthereactorbuildingprovidedbythebottomsupportinsulationensuresthe concreteintegritymeetsACI34913tosupportmaintenanceandinspectionofthevesselbottom head/vesselshellweldandtoensureconditionsinthesurroundingcavitydonotexceedmaximum allowableparameters.ThisdemonstratescompliancewithPDC74fortheRVSS.
4.7.4 TestingandInspection TheRVSStemperaturewillbemonitoredduringoperationforconformancewithdesignlimits.TheRVSS willbeincludedinaninserviceinspectionprogramwhichwillbesubmittedatthetimeoftheOperating LicenseApplication.
4.7.5 References
- 1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII, Division5,(2019)HighTemperatureReactors.2017.
- 2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclear Facilities.
- 3. ACI34913,CodeRequirementsforNuclearSafetyRelatedConcreteStructuresand Commentary
PreliminarySafetyAnalysisReport
EngineeredSafetyFeatures
KairosPowerHermesReactor 69 Revision0 6.3.5 References
- 1. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.IIIDiv.5, BPVCSectionIIIRulesforConstructionofNuclearFacilityComponentsDivision5High TemperatureReactors,20179.
- 2. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.XIDiv.1and 2,BPVSSectionXIRulesforInserviceInspectionofNuclearPowerPlantComponents,2019.
- 3. AmericanSocietyofCivilEngineers,ASCE/SEI4319,SeismicDesignCriteriaforStructures,Systems, andComponentsinNuclearFacilities,2020.
- 4. AmericanSocietyofCivilEngineers,ASCE/SEI416,SeismicAnalysisofSafetyRelatedNuclear Structures,2017.
- 5. AmericanConcreteInstitute,ACI34913,CodeRequirementsforNuclearSafetyRelatedConcrete StructuresandCommentary,2014.