Regulatory Guide 1.4: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13350A195
| number = ML003739614
| issue date = 06/30/1973
| issue date = 06/30/1974
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
| author name =  
| author name =  
| author affiliation = US Atomic Energy Commission (AEC)
| author affiliation = NRC/RES
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-1.004, Rev. 1
| document report number = RG-1.4, Rev 2
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 6
| page count = 6
}}
}}
{{#Wiki_filter:Revision 1 U.S. ATOMIC ENERGY COMMISSION
{{#Wiki_filter:Revision 2 June 1974 U.S. ATOMIC ENERGY COMMISSION
REGULATORY
                              REGULATORY                                                                                         GUIDE
DIRECTORATE  
                              DIRECTORATE OF REGULATORY STANDARDS
OF REGULATORY  
                                                                    REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES
STANDARDS Revision 1 June 1973 GUIDE REGULATORY  
              OF A LOSS OF COOLANT ACCIDENT FOR PRESSURIZED WATER REACTORS
GUIDE 1.4 ASSUMPTIONS  
USED FOR EVALUATING  
THE POTENTIAL  
RADIOLOGICAL  
CONSEQUENCES
OF A LOSS OF COOLANT ACf',DENT
FOR PRESSURIZED  
WATER REACTORS'


==A. INTRODUCTION==
==A. INTRODUCTION==
Sect ion 50.34 o1f 10 CFR Pairl 50 requires that each applicant fir a c(nstruiction permit or operating license provid,: an analysis and cvalua3ion of the design and of structures.
given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data Section 50.34 of 10 CFR Part 50 requires that each                                 and calculational techniques that might influence the applicant for a construction permit or operating license                                 final design of engineered safety features or the dose provide an analysis and evaluation of the design and                                     reduction factors allowed for these features.)
performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the                                                   


systems, and components of tile facility with [he objective of assessing fhe risk to public health and safety resulting froim operation of the facility.
==C. REGULATORY POSITION==
facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to                                          1. The assumptions related to the release of radioactive evaluate the adequacy of these structures, systems, and                                   material from the fuel and containment are as follows:
components with respect to the public health and safety.                                        a. Twenty-five percent of the equilibrium This guide gives acceptable assumptions that may be                                      radioactive iodine inventory developed from maximum used in evaluating the radiological consequences of this                                  full power operation of the core should be assumed to accident for a pressurized water reactor. In some cases,                                  be immediately available for leakage from the primary unusual site characteristics, plant design features, or                                  reactor containment. Ninety-one percent of this 25 other factors may require different assumptions which                                    percent is to be assumed to be in the form of elemental will be considered on an individual case basis. The                                      iodine, 5 percent of this 25 percent in the form of Advisory Committee on Reactor Safeguards has been                                        particulate iodine, and 4 percent of this 25 percent in consulted concerning this guide and has concurred in the                                the form of organic iodides.


Tile design basis loss of" coolant accident (LOCA) is one of the postulated accidents Used to evaluate the adequacy of these structures, systems. and comiponents with respect to the public ltealth and safety.This guide gives acceptable assumptions that may be used in evaluating tIle radiologcal consequences of this accident for a pressurized water reactor. In some cases.unusual site characteristics, platit design features.
regulatory position.                                                                           b. One hundred percent of the equilibrium
 
or other factors may require different assumptions which will be considered on an individual case basis. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position.


==B. DISCUSSION==
==B. DISCUSSION==
After reviewing a number of applications for construction permits and operating licenses for pressurized wateli power reactors, the AEC Regulatory staff has developed a number of appropriately conservative assumptions, based on engineering judgment and on applicable experimental results from safety research programs conducted by the AEC and the nuclear industry, that are used to evaluate calculations of the radioloocal consequences of various postulated acciden ts.This guide lists acceptable assumptions that may be used to evaluate the design basis LOCA of a Pressurized Water Reactor (PWR). It should be shown that thc offsite dose consequences will be within thie guidelines of 10 CFR Part 100,'This guide is a revision of former Safety Guide 4.C. REGULATORY
radioactive noble gas inventory developed from maximum full power operation of the core should be After reviewing a number of applications for                                    assumed to be immediately available for leakage from construction permits and operating licenses for                                        the reactor containment.
POSITION 1. The assuimptions related io the release of radioactive material from the fuel and containment are as Ibllows: a. T we n t y -five percent of the equilibriut radioactive iodine inventory developed from imlaximu i full power operation of the core should be assumtned to be immediately available for leakage from the prinmary reactor containment.


Ninety-one percent of this 25 percent is to be assumed ito he ill Ithe forma ofelenllelllal iodine. 5 percent of this 25 percent ill the form of particulate iodine. and 4 percent of this 25 percent in the form of organic iodides.b. One hundred percent of the equilibrium radioactive noble gas inventory developed front maximum full power operation od the core should be assumed to be immediately available for leakage front the reactor containment.
pressurized water power reactors, the AEC Regulatory                                          c. The effects of radiological decay during holdup staff has developed a number of appropriately                                          in the containment or other buildings should be taken conservative assumptions, based on engineering                                          into account.


c. The effects of radiological decay during holdup in the containment or other buildings should be taken into account.d. The reduction in the amotunt of radioactive material available for leakage to tile environment by containment sprays, recirculating filter systems, or other engineered safety features may be taken into account.but the amount of reduction in concentration of radioactive materials should be evaluated on an individual case basis.e. The primary reactor containment should be assumed to leak at the leak rate incorporated or to le incorporated as a technical specification requirement at peak accident pressure for the first 24 hours. and at 50 percent of this leak rate for the remaining duration of the accideint.
judgment and on applicable experimental results from                                          d. The reduction in the amount of radioactive safety research programs conducted by the AEC and the                                  material available for leakage to the environment by nuclear industry, that are used to evaluate calculations                                containment sprays, recirculating filter systems, or other of the radiological consequences of various postulated                                  engineered safety features may be taken into account, accidents.                                                                             but the amount of reduction in concentration of radioactive materials should be evaluated on an This guide lists acceptable assumptions that may be                              individual case basis.


2 Peak accident pressure is the maximum1 pressure defined in the technical specifications for containment leak testing.2 Thte effect on coniainnmeni leakage tinder accident conditions of features provided to reduce the leakage ot" radioactive materials from the containment will be evaluated on an individual case basi
used to evaluate the design basis LOCA of a Pressurized                                      e. The primary reactor containment should be Water Reactor (PWR). It should be shown that the assumed to leak at the leak rate incorporated or to be offsite dose consequences will be within the guidelines incorporated as a technical specification requirement at of 10 CFR Part 100. (During the construction permit peak accident pressure for the first 24 hours, and at 50
  review, guideline exposures of 20 rem whole body and percent of this leak rate for the remaining duration of
  150 rem thyroid should be used rather than the values USAEC REGULATORY GUIDES                                          Copies of published guide may. be obtained by request                    the divisions indicating D.C.  20646, desired to the US. Atomic Enemgy Commilss*o, Washlngton.


====s. USAEC REGULATORY ====
Attention: Director    of  Regulatory  Standards. Comments    and  suggestions  for Regulatory Guides we issuad to describe and make available to the parts        public methods acceptable to the AEC Regulatory staff of implementing specific            of Impr° ments In theose uldes we encouraged and should be sent to the Secretary by the staff in of the Commislion, U.S. Atomic Energy Commission,        Washington,    D.C. 20645, the Commission's regulations,    to delineate  techniques    used Attention: Chief, Public ProcoedlnglStaff.
GUIDES Coples of published guldes may be obtained by request Indicating the divisions desired to the US. Atomic Energy Commission.


Washington.
eanluating specific problems or postulated accidents, or to provide guidance to applicants. Regulatory Guides are not  substitutes  for  regulations  and compliance setout in  The guides are issued in the following ten broad divisions:
  with them is not required. Methods and solutions different from thoserequisite      to the guides will be acceptable if they provide a basis for the findings                    1. PeOWrdReactors                          6. Products the Issuance or continuance of a permit  or )iconse by  the Commissio


0.1, 20545, Regulatory Guides are issued to describe and make avaliable to the public Attention:
====n.     ====
Director of Regulatory Standards.


Comments and tuggrsilons for methods acceptable to the AEC Regulatory staff of Implementing specific parts of impfrovements In these guides ere encouraged end should be sent to the Secretary the Commission's regulations, to delineate techniques used by the staff in of the Commission, US. Atomic Energy Commission, Washington.
===7. Transportation===
                                                                                            2. Research end Test Reactors
                                                                                            3. Fuels end Materials Facilities          EL Occupatlonal Health
                                                                                            4. Environmental and Siting                9. Antitrust Review Published guides will be revised periodically, asappropriate, to accommodate            5. Materials and Plant Protection        10. General comments and to reflect new information or experienca.


O.C. 20545.evaluating specific problems or postulated accid3nts.
the accident., Peak accident pressure is the maximum                  The surface body dose rate from beta emitters in the pressure defined in the technical specifications for                  infinite cloud can be approximated as being one-half this containment leak testing.                                             amount (i.e., PD-1 = 0.23 Eox).
2. Acceptable assumptions for atmospheric diffusion and dose conversion are:
    a. The 0-8 hour ground level release                            For gamma emitting material the dose rate in air at the concentrations may be reduced by a factor ranging from                cloud center is:
one to a maximum of three (see Figure 1) for additional dispersion produced by the turbulent wake of the                                            ^/DL = 0.507 E&x reactor building in calculating potential exposures. The volumetric building wake correction, as defined in                    From a semi-infinite cloud, the gamma dose rate in air section 3-3.5.2 of Meteorology and Atomic Energy
1968, should be used only in the 0-8 hour period; it is              is:
used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only.                                          7D    = 0.25EYx b. No correction should be made for depletion of the effluent plume of radioactive iodine due to                      Where deposition on the ground, or for the radiological decay of iodine in transit.                                                      0 , = beta dose rate from an infinite cloudi(rad/sec)
    c. For the first 8 hours, the breathing rate of                        DI= gamma dose rate from an infinite cloud persons offsite should be assumed to be 3.47 x 10"4                                  (rad/sec)
cubic meters per second. From 8 to 24 hours following                      E3      average beta energy per disintegration the accident, the breathing rate should be assumed to be                            (Mev/dis)
1.75 x 104 cubic meters per second. After that until the                  EF"= average gamma energy per disintegration end of the accident, the rate should be assumed to be                                (Mev/dis)
1.75 x 10-4 cubic meters per second. After that until the                  X = concentration of beta or gamma emitting end of the accident, the rate should be assumed to be                                isotope in the cloud (curie/m 3 )
2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107                  f. The following specific 'assumptions are cm3 /day] assumed in the report of ICRP, Committee                    acceptable with respect to the radioactive cloud dose calculations:
11-1959.)
    d. The iodine dose conversion factors are given in                        (1) The dose at any distance from the reactor ICRP Publication 2, Report of Committee II,                          should be calculated based on the maximum concentration in the plume at that distance taking into
"Permissible Dose for Internal Radiation," 1959.


or to provide guidance to Attention:
account specific meteorological, topographical, and e. External whole body doses should be calculated other characteristics which may affect the maximum using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the                  plume concentration. These site related characteristics must be evaluated on an individual case basis. In the case distance that the gamma rays and beta particles travel.
Chief, Public Proceedings Staff.applicants.


Regulatory Guides are not substitutes for regulations and compliance with them is not required.
of beta radiation, the receptor is assumed to be exposed
"Such a cloud would be considered an infinite cloud for to an infinite cloud at the maximum ground level a receptor at the center because any additional [gamma and] beta emitting material beyond the cloud                          concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and                exposed to only one-half the cloud owing to the Atomic Energy, Section 7.4.1.1 -editorial additions                  presence of the ground. The maximum cloud made so that gamma and beta emitting material could be                concentration always should be assumed to be at ground considered). Under these conditions the rate of energy                level.


Methods and solutlons different from those set out in The guides are issued In the following ten broad divliions:
absorption per unit volume is equal to the rate of energy                      (2) The appropriate average beta and gamma released per unit volume. For an infinite uniform cloud              energies emitted per disintegration, as given in the Table containing X curies of beta radioactivity per cubic meter            of Isotopes, Sixth Edition, by C. M. Lederer, J. M.
the guides will be acceptable if they provide a basis for the findings requisite to the issuance or continuance of a permit or license by the Comrrssion.


1. Power Reactors 8. Products 2. Researcha nd Tast Reactors
the beta dose in air at the cloud center is:                          Hollander, I. Perlman; University of California, Berkeley;
                                                                      Lawrence Radiation Laboratory; should be used.


===7. Transportation===
SD4 = 0.457 fEX                                  g. The atmospheric diffusion model should be as follows:
3. Fuels and Materials Facilities
                                                                                (1) The basic equation for atmospheric diffusion from a ground level point source is:
8. Occupational Health Published guides will be revised periodically, as appropriate, to accommodate
      The effect on containment leakage under accident conditions of features provided to reduce the leakage of                                              1 radioactive materials from the containment will be evaluated on                                      u an individual case basis.
4. Environmental end Siting 9. Antlitrust Review comments and to reflect new informatio" or experience.


5. Materials and Plant Protection
XIQ = SrUayoz
1
                                                                1.4-2


===0. General ===
Time Where                                                                    Following Accident                Atmospheric Conditions X    = the short term average centerline value of the      3 ground level concentration (curie/meter )              0-8 hours    Pasquill Type F, windspeed        1 meter/see, Q = amount of material released          (curie/sec)                            uniform direction u = windspeed (meter/sec)
.1 2. Acceptable assumptions for atmospheric diffusion and dose conversion are: a. The 0-8 hour ground level release concentrations may be reduced by a factor ranging from one to a maximum of three (.see Figure I) for additional dispersion produced by the turbulent wake of the reactor building in calculating potential exposures.
      ay = the horizontal standard deviation of the
                                                                        8.24 hours Pasquill Type F, windspeed 1 meter/sec, plume (meters) [See Figure V-i, Page 48, variable direction within a 22.50 sector Nuclear Safety, June 1961. Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric                1-4 days      (a) 40% Pasquill Type D, windspeed 3 Dispersion," F. A. Gifford, Jr.]                                      meter/sec z= the vertical standard deviation of the plume                              (b) 60% Pasquill Type F, windspeed 2 (meters) [See Figure V-2, Page 48, Nudear                            meter/sec Safety, June 1961, Volume 2, Number 4,                                (c) wind direction variable within a 22.50
                "Use of Routine Meteorological                                        sector Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]                        4-30 days (a) 33.3% Pasquill Type C, windspeed            3 meter/sec
          (2) For time periods of greater than 8 hours                                (b) 33.3% Pasquill Type D, windspeed 3 the plume should be assumed to meander and spread                                      meter/sec uniformly over a 22.50 sector. The resultant equation is:                             (c) 33.3% Pasquill Type F, windspeed 2 meter/sec x/Q = 2.032 uu                                                (d) Wind direction 33.3% frequency in a OzU                                                22.50 sector Where
                                                                                  (4) Figures 2A and 2B give the ground level x    = distance from point of release to the receptor;            release atmospheric diffusion factors based on the other variables are as given in g(l).                    parameters given in g(3).
                                                            2
          (3) The atmospheric diffusion model for ground level releases is    based  on the information    in  the following tabl


The volumetric building wake correction, as defined in section 3.3.5.2 of Meteorology and Atomic Energy 1968. should be used only in the 0-8 hour period: it is used with a shape factor of 112 and the minimum cross-sectional area of the reactor building only.b. No correction should be made for depletion of'the effluent plume of radioactive iodine due to deposition on the ground, or for the radiological decay of iodine in transit.c. For the first 8 hours, the breathing rate of persons offsite should be assumed to be 3.47 x 10'cubic meters per second. From 8 to 24 hours following the accident, the breathing rate should be assumed to be 1.75 x 104 cubic meters per second. After that until the end of the accident, the rate should be assumed to be 2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107 cnv'/dayJ
====e.     ====
assumed in the report of ICRP, Committee 11-1959.)d. The iodine dose conversion factors are given in ICRP Publication
2, Report of Committee
11,"Permissible Dose for Internal Radiation," 1959.e. External whole body doses should be calculated using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the distance that the gamma rays and beta particles travel."Such a cloud would be considered an infinite cloud for a receptor at the center because any additional
[gamma and] beta emitting material beyond the cloud dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and Atomic Energy, Section 7.4. .1.-editorial additions made so that gamma and beta emitting material could be considered).
Under these conditions the rate of energy absorption per unit volume is equal to the rate of energy released per unit volume. For an infinite uniform cloud containing X curies of beta radioactivity per cubic meter the beta dose in air at the cloud center is: From a semi-infinite cloud, the gamma dose rate in air is: ,D = 0,25E Where beta dose rate from an infinite cloud (rad/sec)gamma dose rate from an infinite cloud (rad/sec)EO3 = average beta energy per disintegration (Mev/dis)E = average gamma energy per disintegration (Mev/dis)X = concentration of beta or gamma emilling isotope in the cloud (curie/m3)
f. The following specific assumptions are acceptable with respect to the radioactive cloud dose calculations:
(1) The dose at any distance from the reactor should be calculated based on the maximum concentration in the plume at that distance taking into account specific meteorological, topographical, and other characteristics which may affect the maximum plume concentration.


These site related characteristics must be evaluated on an individual case basis. In the case of beta radiation, the receptor is assumed to be exposed to an infinite cloud at the maximum ground level concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be exposed to only one-half the cloud owing to the presence of the ground. The maximum cloud concentration always should be assumed to be at ground level.(2) The appropriate average beta and gamma energies emitted per disintegration, as given in the Table of Isotopes, Sixth Edition, by C. M. Lederer, J. M.Hollander, I. Perlman; University of California, Berkeley, Lawrence Radiation Laboratory;
==D. IMPLEMENTATION==
should be used.g. The atmospheric diffusion model should be as follows: (1) The basic equation for atmospheric diffusion from a ground level point source is: X/Q= ruaya Where X = the short term average centerline value of the ground level concentration (curie/meter3)
2 This  model should be used until adequate site                        The revision to this guide (indicated by a line in the meteorological data are obtained. In some cases, available              margin) reflects current Regulatory staff practice in the information, such as meteorology, topography and geographical          review of construction permit applications; therefore, location, may dictate the use of a more restrictive model to            this revision is effective immediately.
Q = amount of material released (curie/see)
u = windspeed (meter/see)
y = the horizontal standard deviation of the plume (meters) [See Figure V-I. Page 48.Nuclear Safety, June 1961, Volume 2.D! = 0.457 EOX The surface body dose rate from beta emitters in the infinite cloud can be approximated as being one-half this amount (i.e., 0DD' = 0.23 E'X).For gamma emitting material the dose rate in air at the uloud center is: 7.D = 0.507 Ey(1.4-2 Number 4, "Use of Routine Meteorolo-ical Observations for Estimating Atmospcheric Dispersion," F. A. Gifford. Jrj..o" = the vertical standard deviation cf the pluii.e (meters) ISee Figure V-2, Page 48, Nuclear Safqev', June 19(1. Volume 2. Number 4."Use of Routlinc Me leorological Oh,'ervations for Estimating Atmospheric Dispersion," F. A. G;ifford.


Jr.I (.2) For lime periods of greater than 8 hours the plume shouid hI assumed to meander and spread ovcr a 22.i" sector. The resultlant e'quaition is: 2.032 x/Q = lx\Vhicrc x distance from point of release to the receptor;.
insure a conservative estimate of potential offsite exposures.
other variables are as given in g( 1).(3) Tlhe at mospheric diffusion model" for ground level releases is based on the information in the following lable.-' 'This niIdo.l' %liould be useud until adequate site metcorologic'al d:ta are obtained.


In some ,-uses. available information.
1.4-3


such u,;
BUILDING WAKE DISPERSION CORRECTION FACTOR
topography and geovaphicut.
                          0                                                                                                cli
    0                                                                                                a'
  W4
                            .44                                                                            * :1
                                                                                                                                      -.T-71
                                      -4        ----                                                      *    I
                          [-v                          T    -T
                                              77
                _T_  ,-
        Rat
          -4-                                                                                      -4
                                      1'              ------  --                                                                                  ----9


tocalion.
* Lr
                                                                                                                                                    -t Lii      F-I                                                                        KY
            -
                                  H
      ilL-                  1--r H:,        1 ifif-                                                                                            *--7- -7 I
        ýffHTq---
                                IW1ETýý T                                            F I  'I
                                                                                                          7----
                                                                                                          -T  7-
                                                                                                                                  -w
                                                                                                                        7- -+~1*~
U                                  4 F I I    F                                                                                                  -t -..
I
                              f-V
                                            I
                                                *1  - iI                                                                      Ii I
                                                '-
I..'                                                        . . . . . .A . . . . . . . . . . . . .
                                                                                                  K              7 17.


may dictate Itic use of a more restrictive model to insurc a conscrvative eltimuie of potentla oflfsitc exposures.
"'III'
                                                                                                                            ii F.V-~2 H
              __________________                      +1j
                                                          4~~~t  4r~4
                                                              ___414_____1___
                                                                              J:r
                                                                                -T4 LltIIII]I4J---I-1              1V
                                                                                                        -14- - :4Ij4Th1          -
                                                                                                                                            1-7.~I
      -I                                      w#tThJ              11ff
                                                                                1-ý 4 Lt.]                                                            i-i


Time Following Accident Atmospheric Conditions
.10-40            ::R+
0.8 hours Pasquill Type F. wiudspeed I meter/sec.
      9 I I II'llill'44            -      - ...
                                                                                                                                                                                    - . . " I aI I
                          H-Lik  i                                  -i-v-ti-ti r-i 4      TI          I'      I'
                          . F141        I                                      .F.U.,      7777!ý i                                                                11111    iiiiiin::...,.!
                                                                                                                                                                                          ri-Ill ERH                                                                                                                                                                  i ! ! I
                                                                      t44 I
      4 ER HIE 1.


uniform direction 8-24 hours Pasquill Type F, windspced I metcr/s.c.
FIGURE 2(AAMJ)
                                                                                                                                                I
                                                                                                                                                                                  ++H
                                                                                                                                                            fffl  -t-ýft  ttlt
                                                                                            1,
                                                                                          -t:      r                                                              ##
                                                                                                -.4
                                                                              44-J                                                                                        11E
                                                                                  -. :  44- tLT
                                                                                                    -
                                                                                                                                  i--T-4-+I- zh            4444 i i i i !I-H
  104                                                                                                                                                        fjP +4-tiHi++ ftHl"
      9                                                                                                                      4-  7ý+ý
                  +
                L-f+ý+'  AL
                -Lý        V
                                                                                                                                                                TTlq4lRh-        4iý
      E                            ýtv4 ft                                                                    T,
                                                                                                                                                                            TfFffliif t 4ý
                                                                                    '-4..,.
                                                                                  '-44
                                                                                          -1-il
                                                                                          4".
                                                                                                            -I                                4 T                                  t
                                                                                    ,j    -:
                                                                                                      4444 U.                                          44                                                1-4                                                4.  4 LV
                                +
                                                                                        1  2                            T' -T
            #4-4                                                                                                                      r! I L
                                                                                                                                    -4=
                                                        74          1-t -      4 -4
                                                          -t              L-T-
                                                                                                                            T
  19-4                                                                                                            ý!J!ý 44-+                          H.4          -+j J+/- 44
        9                                                                                                                  + 4-4-ý    H
                                                                                    r'      *ii
                                                                                                                                                  17
                                                                                                        44 rr
                    44
        6                                                                                                                              V.r
                    444                                                                                                                              - BE
                                                                                        1:
                                                                                                                  T!..TT
        4
                                44 i-II
              vT    RE-                    r
        3
                            14          ::1--, 4,
              -T
              1            I
                                                                                                                                                                                            A-
                            -I                    ý4, S114                                  1 I                                                                                      .1
    4ft-6 I1Ilp      -                              5          Ili10,
                                                          I II                                                                  9l'o
                                                                                                                                                                                          '8 Distance from Structure (meters)
                                                                                          1.4-5


variable direction within a 22.5" sector 1-4 days (a) 4(Y,,%( Pasquill Type D.rilel r/sec (b) 600,, Pasquill Type F.leter/sec (W' wind direction v: riabie sector windspeed
Disance fromt Structure (meter)
3 windspeed
          1.4-6}}
2 within a 22._.4-30 days (a) 33.35, Pasquill Type C, windspeed
3 meter/sec (N) 33.3%'. Pasquill Type D. windspeed
3 ineter/sec (c) 33.3%; Pasquill Type F, wirdspeed
2 viieter/sec (d) Wind direction
33.3,:, frequency in a 22.50 sector (4) Figures 2A and 213 give the groud level release atmospheric diffusion factors based on the parameters given in g( 3).1.4-3 bI .1-GiAK buPRIP IOýAO 2.5 FIGURE 1 O.SA-SO meters 2 0 P'mtr 2  4.0 .5A-1000 -nws O.SA-2500atr
2 meti 2 O.BA-1500
motors 0.5A-3000meru p. O.5A-2000
metonus ýw ccI 0 zI w1.5 4 I uII I I i ..I *10w Distance from Structure (metars)  
I 3 L FIGL S1i .. ._10-A 7----4--I a -... *---- -- ......0 0\44sanc 4m St .tu. ... tes 1 o .* '1 %Ditne rmSrut- (ees I II _ .II I 1.4-5
10-I I I A ... ; I .... 1 1 I.", .---I.-- I--,- -.-*" i ... v -.1 -1 %ýFIGURE 2(81 -_____0-8 hours7~..,D L IU E 0.1.N.. I I ' I%, ...:.7 ::::: 'V t~rV~'I F-W 0 * ,p -I *.X1 ,-,I- --7I..~.i... I_... ... -10 163 1 1 .ý 10.5 b 7 1 Distance from Structure (maters)1.4-6}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 10:29, 28 March 2020

Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors
ML003739614
Person / Time
Issue date: 06/30/1974
From:
Office of Nuclear Regulatory Research
To:
References
RG-1.4, Rev 2
Download: ML003739614 (6)


Revision 2 June 1974 U.S. ATOMIC ENERGY COMMISSION

REGULATORY GUIDE

DIRECTORATE OF REGULATORY STANDARDS

REGULATORY GUIDE 1.4 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES

OF A LOSS OF COOLANT ACCIDENT FOR PRESSURIZED WATER REACTORS

A. INTRODUCTION

given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data Section 50.34 of 10 CFR Part 50 requires that each and calculational techniques that might influence the applicant for a construction permit or operating license final design of engineered safety features or the dose provide an analysis and evaluation of the design and reduction factors allowed for these features.)

performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the

C. REGULATORY POSITION

facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to 1. The assumptions related to the release of radioactive evaluate the adequacy of these structures, systems, and material from the fuel and containment are as follows:

components with respect to the public health and safety. a. Twenty-five percent of the equilibrium This guide gives acceptable assumptions that may be radioactive iodine inventory developed from maximum used in evaluating the radiological consequences of this full power operation of the core should be assumed to accident for a pressurized water reactor. In some cases, be immediately available for leakage from the primary unusual site characteristics, plant design features, or reactor containment. Ninety-one percent of this 25 other factors may require different assumptions which percent is to be assumed to be in the form of elemental will be considered on an individual case basis. The iodine, 5 percent of this 25 percent in the form of Advisory Committee on Reactor Safeguards has been particulate iodine, and 4 percent of this 25 percent in consulted concerning this guide and has concurred in the the form of organic iodides.

regulatory position. b. One hundred percent of the equilibrium

B. DISCUSSION

radioactive noble gas inventory developed from maximum full power operation of the core should be After reviewing a number of applications for assumed to be immediately available for leakage from construction permits and operating licenses for the reactor containment.

pressurized water power reactors, the AEC Regulatory c. The effects of radiological decay during holdup staff has developed a number of appropriately in the containment or other buildings should be taken conservative assumptions, based on engineering into account.

judgment and on applicable experimental results from d. The reduction in the amount of radioactive safety research programs conducted by the AEC and the material available for leakage to the environment by nuclear industry, that are used to evaluate calculations containment sprays, recirculating filter systems, or other of the radiological consequences of various postulated engineered safety features may be taken into account, accidents. but the amount of reduction in concentration of radioactive materials should be evaluated on an This guide lists acceptable assumptions that may be individual case basis.

used to evaluate the design basis LOCA of a Pressurized e. The primary reactor containment should be Water Reactor (PWR). It should be shown that the assumed to leak at the leak rate incorporated or to be offsite dose consequences will be within the guidelines incorporated as a technical specification requirement at of 10 CFR Part 100. (During the construction permit peak accident pressure for the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and at 50

review, guideline exposures of 20 rem whole body and percent of this leak rate for the remaining duration of

150 rem thyroid should be used rather than the values USAEC REGULATORY GUIDES Copies of published guide may. be obtained by request the divisions indicating D.C. 20646, desired to the US. Atomic Enemgy Commilss*o, Washlngton.

Attention: Director of Regulatory Standards. Comments and suggestions for Regulatory Guides we issuad to describe and make available to the parts public methods acceptable to the AEC Regulatory staff of implementing specific of Impr° ments In theose uldes we encouraged and should be sent to the Secretary by the staff in of the Commislion, U.S. Atomic Energy Commission, Washington, D.C. 20645, the Commission's regulations, to delineate techniques used Attention: Chief, Public ProcoedlnglStaff.

eanluating specific problems or postulated accidents, or to provide guidance to applicants. Regulatory Guides are not substitutes for regulations and compliance setout in The guides are issued in the following ten broad divisions:

with them is not required. Methods and solutions different from thoserequisite to the guides will be acceptable if they provide a basis for the findings 1. PeOWrdReactors 6. Products the Issuance or continuance of a permit or )iconse by the Commissio

n.

7. Transportation

2. Research end Test Reactors

3. Fuels end Materials Facilities EL Occupatlonal Health

4. Environmental and Siting 9. Antitrust Review Published guides will be revised periodically, asappropriate, to accommodate 5. Materials and Plant Protection 10. General comments and to reflect new information or experienca.

the accident., Peak accident pressure is the maximum The surface body dose rate from beta emitters in the pressure defined in the technical specifications for infinite cloud can be approximated as being one-half this containment leak testing. amount (i.e., PD-1 = 0.23 Eox).

2. Acceptable assumptions for atmospheric diffusion and dose conversion are:

a. The 0-8 hour ground level release For gamma emitting material the dose rate in air at the concentrations may be reduced by a factor ranging from cloud center is:

one to a maximum of three (see Figure 1) for additional dispersion produced by the turbulent wake of the ^/DL = 0.507 E&x reactor building in calculating potential exposures. The volumetric building wake correction, as defined in From a semi-infinite cloud, the gamma dose rate in air section 3-3.5.2 of Meteorology and Atomic Energy

1968, should be used only in the 0-8 hour period; it is is:

used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only. 7D = 0.25EYx b. No correction should be made for depletion of the effluent plume of radioactive iodine due to Where deposition on the ground, or for the radiological decay of iodine in transit. 0 , = beta dose rate from an infinite cloudi(rad/sec)

c. For the first 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, the breathing rate of DI= gamma dose rate from an infinite cloud persons offsite should be assumed to be 3.47 x 10"4 (rad/sec)

cubic meters per second. From 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following E3 average beta energy per disintegration the accident, the breathing rate should be assumed to be (Mev/dis)

1.75 x 104 cubic meters per second. After that until the EF"= average gamma energy per disintegration end of the accident, the rate should be assumed to be (Mev/dis)

1.75 x 10-4 cubic meters per second. After that until the X = concentration of beta or gamma emitting end of the accident, the rate should be assumed to be isotope in the cloud (curie/m 3 )

2.32 x 104 cubic meters per second. (These values were developed from the average daily breathing rate [2 x 107 f. The following specific 'assumptions are cm3 /day] assumed in the report of ICRP, Committee acceptable with respect to the radioactive cloud dose calculations:

11-1959.)

d. The iodine dose conversion factors are given in (1) The dose at any distance from the reactor ICRP Publication 2, Report of Committee II, should be calculated based on the maximum concentration in the plume at that distance taking into

"Permissible Dose for Internal Radiation," 1959.

account specific meteorological, topographical, and e. External whole body doses should be calculated other characteristics which may affect the maximum using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the plume concentration. These site related characteristics must be evaluated on an individual case basis. In the case distance that the gamma rays and beta particles travel.

of beta radiation, the receptor is assumed to be exposed

"Such a cloud would be considered an infinite cloud for to an infinite cloud at the maximum ground level a receptor at the center because any additional [gamma and] beta emitting material beyond the cloud concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and exposed to only one-half the cloud owing to the Atomic Energy, Section 7.4.1.1 -editorial additions presence of the ground. The maximum cloud made so that gamma and beta emitting material could be concentration always should be assumed to be at ground considered). Under these conditions the rate of energy level.

absorption per unit volume is equal to the rate of energy (2) The appropriate average beta and gamma released per unit volume. For an infinite uniform cloud energies emitted per disintegration, as given in the Table containing X curies of beta radioactivity per cubic meter of Isotopes, Sixth Edition, by C. M. Lederer, J. M.

the beta dose in air at the cloud center is: Hollander, I. Perlman; University of California, Berkeley;

Lawrence Radiation Laboratory; should be used.

SD4 = 0.457 fEX g. The atmospheric diffusion model should be as follows:

(1) The basic equation for atmospheric diffusion from a ground level point source is:

The effect on containment leakage under accident conditions of features provided to reduce the leakage of 1 radioactive materials from the containment will be evaluated on u an individual case basis.

XIQ = SrUayoz

1.4-2

Time Where Following Accident Atmospheric Conditions X = the short term average centerline value of the 3 ground level concentration (curie/meter ) 0-8 hours Pasquill Type F, windspeed 1 meter/see, Q = amount of material released (curie/sec) uniform direction u = windspeed (meter/sec)

ay = the horizontal standard deviation of the

8.24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Pasquill Type F, windspeed 1 meter/sec, plume (meters) [See Figure V-i, Page 48, variable direction within a 22.50 sector Nuclear Safety, June 1961. Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric 1-4 days (a) 40% Pasquill Type D, windspeed 3 Dispersion," F. A. Gifford, Jr.] meter/sec z= the vertical standard deviation of the plume (b) 60% Pasquill Type F, windspeed 2 (meters) [See Figure V-2, Page 48, Nudear meter/sec Safety, June 1961, Volume 2, Number 4, (c) wind direction variable within a 22.50

"Use of Routine Meteorological sector Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.] 4-30 days (a) 33.3% Pasquill Type C, windspeed 3 meter/sec

(2) For time periods of greater than 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> (b) 33.3% Pasquill Type D, windspeed 3 the plume should be assumed to meander and spread meter/sec uniformly over a 22.50 sector. The resultant equation is: (c) 33.3% Pasquill Type F, windspeed 2 meter/sec x/Q = 2.032 uu (d) Wind direction 33.3% frequency in a OzU 22.50 sector Where

(4) Figures 2A and 2B give the ground level x = distance from point of release to the receptor; release atmospheric diffusion factors based on the other variables are as given in g(l). parameters given in g(3).

2

(3) The atmospheric diffusion model for ground level releases is based on the information in the following tabl

e.

D. IMPLEMENTATION

2 This model should be used until adequate site The revision to this guide (indicated by a line in the meteorological data are obtained. In some cases, available margin) reflects current Regulatory staff practice in the information, such as meteorology, topography and geographical review of construction permit applications; therefore, location, may dictate the use of a more restrictive model to this revision is effective immediately.

insure a conservative estimate of potential offsite exposures.

1.4-3

BUILDING WAKE DISPERSION CORRECTION FACTOR

0 cli

0 a'

W4

.44 * :1

-.T-71

-4 ---- * I

[-v T -T

77

_T_ ,-

Rat

-4- -4

1' ------ -- ----9

  • Lr

-t Lii F-I KY

-

H

ilL- 1--r H:, 1 ifif- *--7- -7 I

ýffHTq---

IW1ETýý T F I 'I

7----

-T 7-

-w

7- -+~1*~

U 4 F I I F -t -..

I

f-V

I

  • 1 - iI Ii I

'-

I..' . . . . . .A . . . . . . . . . . . . .

K 7 17.

"'III'

ii F.V-~2 H

__________________ +1j

4~~~t 4r~4

___414_____1___

J:r

-T4 LltIIII]I4J---I-1 1V

-14- - :4Ij4Th1 -

1-7.~I

-I w#tThJ 11ff

1-ý 4 Lt.] i-i

.10-40  ::R+

9 I I II'llill'44 - - ...

- . . " I aI I

H-Lik i -i-v-ti-ti r-i 4 TI I' I'

. F141 I .F.U., 7777!ý i 11111 iiiiiin::...,.!

ri-Ill ERH i ! ! I

t44 I

4 ER HIE 1.

FIGURE 2(AAMJ)

I

++H

fffl -t-ýft ttlt

1,

-t: r ##

-.4

44-J 11E

-. : 44- tLT

-

i--T-4-+I- zh 4444 i i i i !I-H

104 fjP +4-tiHi++ ftHl"

9 4- 7ý+ý

+

L-f+ý+' AL

-Lý V

TTlq4lRh- 4iý

E ýtv4 ft T,

TfFffliif t 4ý

'-4..,.

'-44

-1-il

4".

-I 4 T t

,j -:

4444 U. 44 1-4 4. 4 LV

+

1 2 T' -T

  1. 4-4 r! I L

-4=

74 1-t - 4 -4

-t L-T-

T

19-4 ý!J!ý 44-+ H.4 -+j J+/- 44

9 + 4-4-ý H

r' *ii

17

44 rr

44

6 V.r

444 - BE

1:

T!..TT

4

44 i-II

vT RE- r

3

14  ::1--, 4,

-T

1 I

A-

-I ý4, S114 1 I .1

4ft-6 I1Ilp - 5 Ili10,

I II 9l'o

'8 Distance from Structure (meters)

1.4-5

Disance fromt Structure (meter)

1.4-6