2CAN070804, Cycle 20 Startup Report: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 267: Line 267:
FZ          1.1757      1.1990    -1.9405 %
FZ          1.1757      1.1990    -1.9405 %
FQ          1.6494      1.6960    -2.7456 %
FQ          1.6494      1.6960    -2.7456 %
CALCULATED RMS VALUES RADIAL =      1.9193 AXIAL =      4.1978 MEASURED ASI =        -.0704 PREDICTED ASI =      -.1058 ACCEPTANCE CRITERIA REPORT
CALCULATED RMS VALUES RADIAL =      1.9193 AXIAL =      4.1978 MEASURED ASI =        -.0704 PREDICTED ASI =      -.1058 ACCEPTANCE CRITERIA REPORT MEASURED FXY      WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
                                  --------------------------
MEASURED FXY      WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FR        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FR        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FZ        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FZ        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
Line 352: Line 350:
FZ          1.1417      1.1370      .4132 %
FZ          1.1417      1.1370      .4132 %
FQ          1.5966      1.5910      .3517 %
FQ          1.5966      1.5910      .3517 %
CALCULATED RMS VALUES RADIAL =      1.3784 AXIAL =      4.9895 MEASURED ASI =        -.0024 PREDICTED ASI =      -.0449 ACCEPTANCE CRITERIA REPORT
CALCULATED RMS VALUES RADIAL =      1.3784 AXIAL =      4.9895 MEASURED ASI =        -.0024 PREDICTED ASI =      -.0449 ACCEPTANCE CRITERIA REPORT MEASURED FXY      WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
                                  --------------------------
MEASURED FXY      WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FR        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FR        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FZ        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FZ        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
Line 437: Line 433:
FZ          1.1475      1.1150    2.9118 %
FZ          1.1475      1.1150    2.9118 %
FQ          1.6299      1.5840    2.8976 %
FQ          1.6299      1.5840    2.8976 %
CALCULATED RMS VALUES RADIAL =      1.2725 AXIAL =      3.6611 MEASURED ASI =        .0672 PREDICTED ASI =        .0391 ACCEPTANCE CRITERIA REPORT
CALCULATED RMS VALUES RADIAL =      1.2725 AXIAL =      3.6611 MEASURED ASI =        .0672 PREDICTED ASI =        .0391 ACCEPTANCE CRITERIA REPORT MEASURED FXY      WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
                                  --------------------------
MEASURED FXY      WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FR        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FR        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FZ        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.
MEASURED FZ        WAS WITHIN PLUS OR MINUS        10.000 % OF THE PREDICTED VALUE.

Latest revision as of 00:06, 13 March 2020

Cycle 20 Startup Report
ML081900610
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 07/03/2008
From: James D
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
2CAN070804
Download: ML081900610 (26)


Text

Entergy Operations, Inc.

1448 S.R. 333 Russellville, AR 72802 Tel 479-858-4619 Dale E. James Manager, Licensing Arkansas Nuclear One 2CAN070804 July 3, 2008 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

SUBJECT:

ANO-2 Cycle 20 Startup Report Arkansas Nuclear One, Unit 2 Docket No. 50-368 License No. NPF-6

Dear Sir or Madam:

The Arkansas Nuclear One, Unit 2 (ANO-2) Technical Requirement Manual (TRM)

Section 6.9.1.1 requires a summary report of plant startup and power escalation testing following the installation of fuel that has a different design. Cycle 20 is the first cycle at ANO-2 to be refueled with Westinghouses Next Generation Fuel (NGF) design fuel assemblies.

The unit achieved criticality on April 10, 2008, following the 2R19 refueling outage.

This letter contains no new commitments.

By means of this submittal, the reporting requirements of ANO-2 TRM 6.9.1.1 are fulfilled.

If you have any questions or require additional information, please contact me.

Sincerely, DEJ/rwc

Attachment:

ANO-2 Cycle 20 Startup Report

2CAN070804 Page 2 of 2 cc: Dr. Elmo E. Collins Regional Administrator U. S. Nuclear Regulatory Commission Region IV 612 Lamar Blvd., Suite 400 Arlington, TX 76011-4125 NRC Senior Resident Inspector Arkansas Nuclear One P. O. Box 310 London, AR 72847 U. S. Nuclear Regulatory Commission Attn: Mr. Alan B. Wang MS O-7D1 Washington, DC 20555-0001 Mr. Bernard R. Bevill Director Division of Radiation Control and Emergency Management Arkansas Department of Health 4815 West Markham Street Little Rock, AR 72205

Attachment to 2CAN070804 ANO-2 Cycle 20 Startup Report

Attachment to 2CAN070804 Page 1 of 23 ANO-2 Cycle 20 Startup Report ABSTRACT This report summarizes the results of the startup physics test program. Results of these activities verify the Cycle 20 nuclear design calculations and demonstrate adequate conservatism in core performance with respect to the Arkansas Nuclear One, Unit 2 (ANO-2)

Safety Analysis Report (SAR), Technical Specifications (TSs), Technical Requirements Manual (TRM), and the Cycle 20 Reload Safety Evaluation. Cycle 20 achieved initial criticality on April 10, 2008.

Attachment to 2CAN070804 Page 2 of 23 TABLE OF CONTENTS Page

1.0 INTRODUCTION

.................................................................................................. 3 2.0 REACTOR CORE DESCRIPTION....................................................................... 3 2.1 Loading Pattern and Assembly Burnup .................................................... 4 2.2 Incore Instrumentation (ICI) Locations ..................................................... 4 2.3 Verification of Core Loading ..................................................................... 4 3.0 PRECRITICAL TESTS......................................................................................... 4 3.1 Control Element Assembly (CEA) Drop Time Testing.............................. 4 4.0 LOW POWER PHYSICS TESTING ..................................................................... 5 4.1 Initial Criticality ......................................................................................... 5 4.2 STAR Program HZP Critical Boron Concentration ................................... 5 4.3 STAR Program MTC Alternate Surveillance ............................................ 6 5.0 POWER ASCENSION TESTING......................................................................... 6 5.1 Reactor Coolant System (RCS) Flow Rate .............................................. 6 5.2 Core Power Distribution ........................................................................... 6 5.2.1 29% Power Test Plateau Results................................................ 6 5.2.2 66% Power Test Plateau Results................................................ 7 5.2.3 100% Power Test Plateau Results.............................................. 8 5.3 Shape Annealing Matrix (SAM) and Boundary Point Power Correlation Coefficient (BPPCC) Measurement ....................................... 9 5.4 Planar Radial Peaking Factor (RPF) Verification ..................................... 10 5.5 Temperature Reactivity Coefficient ......................................................... 10

6.0 CONCLUSION

S................................................................................................... 11

7.0 REFERENCES

..................................................................................................... 11 8.0 FIGURES Figure 1 Cycle 20 Core Loading ................................................................................. 12 Figure 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for Batch Z Fuel Assemblies ................. ................................. 14 Figure 3 Cycle 20 Fuel Management Scheme............................................................ 15 Figure 4 BOC Assembly Average Burnup and Initial Enrichment Distribution ............ 16 Figure 5 ICI Locations ................................................................................................. 17 Figure 6 GETARP Output for the 29% Power Plateau................................................ 18 Figure 7 GETARP Output for the 66% Power Plateau................................................ 20 Figure 8 GETARP Output for the 100% Power Plateau.............................................. 22

Attachment to 2CAN070804 Page 3 of 23

1.0 INTRODUCTION

This report summarizes the results of the ANO-2 Cycle 20 startup physics test program. The startup physics test program consisted of a series of tests performed at various stages, including prior to initial criticality, low power physics testing (LPPT), and during power ascension.

The objective of these tests were (a) to demonstrate that during reactor operation, the measured core physics parameters would be within the assumptions of the SAR accident analyses (Reference 7.1), within the limitations of the plant TSs (Reference 7.2), and within the limitations of the Cycle 20 reload safety evaluation (References 7.3 and 7.4), (b) to verify the nuclear design calculations, and (c) to provide the bases for validation of database and addressable constants in the core protection calculators (CPCs) and the core operating limit supervisory system (COLSS). Specifically, shape annealing matrix (SAM) elements installed in each channel of the CPCs are determined and the all rods out (ARO) planar radial peaking factor (RPF) is verified and conservatively adjusted in the CPCs and COLSS during power ascension.

Section 2 of this report provides a brief description of the reactor core. Section 3 discusses the pre-critical control element assembly (CEA) drop time test. In section 4, initial criticality and the low power physics tests are presented. Section 5 describes the power ascension tests, which include a reactor coolant system (RCS) flow rate determination, core power distribution measurements, the SAM determination, planar RPF verification, azimuthal power tilt verification, and a temperature reactivity coefficient measurement. The conclusions of this report are given in Section 6. Section 7 lists the references cited in this report.

2.0 REACTOR CORE DESCRIPTION The design of the ANO-2 Cycle 20 core includes the first batch of Next Generation Fuel (NGF) and is the third cycle of zirconium diboride (ZrB2) as an integral fuel burnable absorber (IFBA).

The NGF fuel design incorporates the following changes relative to the previous fuel design:

  • A reduced cutback (non-IFBA coated) region at both the tops and bottoms of IFBA fuel rods and a reduced IFBA coating thickness where the coating is applied
  • Eliminated use of annular fuel pellets in non-IFBA fuel rods
  • Reduced fuel pellet and fuel rod cladding diameters to accommodate increased pressure drop of mixing vane grids
  • Slight increase in overall fuel rod length
  • Reduction in fuel rod initial fill gas pressures
  • A wholly re-designed grid cage including lower end fittings, guide tubes, upper end fitting flow plate and longer hold down springs
  • Use of Optimized ZIRLO material for fuel rod cladding and all but the top grid straps
  • An Inconel top grid, new mid-grids with I-Springs and intermediate flow mixing grids
  • Use of bulge joints to connect grid assemblies and guide tubes (vs. welding)
  • Attaching the lower Guardian grid to the lower end fitting with inserts (vs. welding)
  • Use of Stress-Relief Annealed (SRA) ZIRLO material for guide tubes
  • An anti-rotation joint between guide tubes and the upper nozzle

Attachment to 2CAN070804 Page 4 of 23 The 88 new fuel assemblies designated as Batch Z were loaded with fuel rod enrichments as high as 4.16 w/o U-235 and a nominal B-10 loading of 3.14 mg/in in the ZrB2 IFBA rods. In addition, 1 Batch U and 88 Batch Y assemblies were returned to the Cycle 20 core (Reference 7.3).

The NGF design changes have been explicitly modeled in Cycle 20 neutronics calculations and reload analyses (Reference 7.3).

2.1 Loading Pattern and Assembly Burnup Attached Figures 1 through 4, taken from the ANO-2 Cycle 20 Reload Analysis Report (RAR),

give the loading pattern and beginning of cycle (BOC) assembly average design burnups.

2.2 In-core Instrumentation (ICI) Locations The ICI design consists of 42 fixed ICI assemblies inserted into the center guide tube of 42 fuel assemblies. ICI locations are identified in Figure 5. Each ICI assembly contains 5 self-powered rhodium detectors and one core exit thermocouple (CET). None of the 42 ICI assemblies were replaced during 2R19 prior to the Cycle 20 startup. During power ascension, at least 199 of 210 possible detectors were operable.

2.3 Verification of Core Loading After the reactor core was loaded, core mapping was performed using an underwater television camera and monitor. This core mapping operation verified that the core was correctly loaded.

Core mapping was performed by the reactor engineering organization. The core mapping operation included a comparison of the identification numbers on the fuel assemblies, CEA configuration, and fuel assembly orientation against the design configuration.

3.0 PRECRITICAL TESTS 3.1 Control Element Assembly (CEA) Drop Time Testing This testing verifies that the drop time of all CEAs are in accordance with the surveillance requirements of ANO-2 TS 3.1.3.4. The method used by this test involves special control element assembly calculator (CEAC) software (CEA Drop Time Test, or CDTT software), which allows the measurement of all CEAs simultaneously. After the establishment of hot, full flow RCS conditions (i.e., greater than 525 °F with four reactor coolant pumps operating) and with the RCS boron concentration at a sufficient level to keep the reactor adequately shutdown during the test, all CEAs are withdrawn to the full out position. The CDTT software is then loaded into one of the CEAC channels and initiated. The software transmits a large penalty factor to each of the CPC channels, thereby initiating a reactor trip. The CDTT software records CEA positions every 50 milliseconds (msec) during the drop. Data output from the CDTT software is adjusted for holding coil delay time and used to verify that drop time limits are satisfied (Reference 7.14).

Attachment to 2CAN070804 Page 5 of 23 From a fully withdrawn position, TS 3.1.3.4 requires that the maximum individual CEA drop time and the average of all CEA drop times from when electrical power to the CEA drive mechanism is interrupted until the CEAs reach 90% inserted be:

Individual Limit 3.7 seconds Average Limit 3.2 seconds A 50 msec allowance is used for measurement uncertainty.

All CEAs passed the individual drop time limit of 3.65 seconds (TS limit minus 0.05 seconds).

The slowest drop time was 3.390 seconds (CEA #80). The average CEA drop time was 2.999 seconds, which passed the average limit of 3.15 seconds (TS average limit minus 0.05 seconds).

In addition, ANO-2 utilizes the CEA drop time testing data as a CEA coupling check. If measured and expected drop times differ by more than 0.1 seconds for a CEA, then an additional review of drop characteristics (i.e., slowdown in the dashpot region, presence or absence of bounce) is performed to determine the condition of the CEA. Expected drop times are obtained from historical data. If CEAs remain suspect after this further review, additional CEA coupling data may be taken during low power physics testing by exercising the suspect CEAs individually and monitoring the reactivity trace behavior on a reactimeter. This provides a final confirmation that any suspect CEA is coupled. For Cycle 20, all CEAs were determined to be coupled based on meeting expected drop times or review of drop characteristics.

4.0 LOW POWER PHYSICS TESTING Prior to reactor startup, engineering evaluations and startup test controlling procedure pre-requisites verified the applicability requirements of Westinghouse Topical Report WCAP-16011-P-A, Startup Test Activity Reduction Program, dated February 2005 (the STAR program) were satisfied. Based on meeting the requirements of this topical report, a reduced scope of startup testing was performed versus the traditional reactimeter based test program. The following presents the STAR test program results.

4.1 Initial Criticality ANO-2 normally withdraws CEAs to criticality. Shutdown Banks A and B are withdrawn and the RCS is then diluted to an estimated critical boron concentration (CBC) corresponding to the desired critical CEA position. For Cycle 20, the estimated critical position was Group P at 120.0 inches withdrawn based on a measured RCS boron concentration of 1256 parts per million (ppm) prior to starting the approach to criticality. For Cycle 20, actual criticality was achieved with Group P at 96 inches withdrawn.

4.2 STAR Program Hot Zero Power (HZP) CBC This test procedure specifies that the controlling group (Group P) position be recorded and all other CEAs be at their Upper Electrical Limit. As a pre-requisite, boron equilibrium is checked by obtaining three RCS boron samples and verifying each is within 10 ppm of the average. The residual worth of Group P is determined using the physics test predictions. The average RCS boron sample is corrected for the residual Group P worth to determine the ARO CBC. For

Attachment to 2CAN070804 Page 6 of 23 Cycle 20, the ARO CBC was predicted to be 1305 ppm. The actual ARO CBC was 1296 ppm.

The acceptance criteria require the actual and predicted ARO CBC values to be within 50 ppm or the boron equivalent of 0.5 % k/k. Therefore, the 9 ppm difference for Cycle 20 was well within the acceptance criteria limit.

4.3 STAR Program Moderator Temperature Coefficient (MTC) Alternate Surveillance When applying the STAR test program, the MTC of reactivity is calculated at HZP by adjusting the predicted MTC to account for the difference between actual boron concentration and the boron concentration associated with the test prediction. The resultant MTC at test conditions was -0.247 x 10-4 k/k/°F versus an upper (or positive) Core Operating Limits Report (COLR) limit of +0.5 x 10-4 k/k/°F. The MTC was extrapolated to the COLR figure Linear Break Point Power Level (LBPPL) and the 100% power level to insure compliance with the COLR. The resulting MTC (LBPPL) was -0.797 x 10-4 k/k/°F versus an upper (or positive) COLR limit of

+0.05 x 10-4 k/k/°F at the LBPPL. The extrapolated MTC (100) was -1.347 x 10-4 k/k/°F versus an upper (or positive) COLR limit of -0.20 x 10-4 k/k/°F and a negative COLR limit of

-3.8 x 10-4 k/k/°F at 100% power. All values were within the limits of the COLR which meets the Alternate MTC Surveillance acceptance criteria.

5.0 POWER ASCENSION TESTING 5.1 Reactor Coolant System (RCS) Flow Rate At the 66% power test plateau, the RCS flow rate was determined by calorimetric methods at steady state conditions in accordance with ANO-2 TS Table 4.3-1, Item 10, Note 8. The acceptance criterion requires the measured RCS flow rate to be at least 103% of the design flow rate of 120.4 x 106 lbm/hr to account for measurement uncertainties. The RCS flow rate determined calorimetrically was 105.35% of the design flow rate, which satisfies the acceptance criterion. The COLSS and CPC calculated RCS flow rates were verified to be conservative with respect to the calorimetric flow rate and the CPCs were verified conservative with respect to COLSS. No adjustments to COLSS calculated flow were made. However, CPC calculated flow was adjusted to remove excess conservatism.

5.2 Core Power Distribution 5.2.1 29% Power Test Plateau Results Core power distribution data using fixed in-core neutron detectors is used to verify proper core loading and consistency between as-built and engineering design models. The first power distribution measurement is performed after the turbine is synchronized and prior to exceeding 30% power. The objective of this measurement is primarily to identify any fuel misloading that results in asymmetries or deviations from the reactor physics design. Because of the decreased signal-to-noise ratio at low powers and the absence of xenon stability requirements, radial and azimuthal symmetry criteria are emphasized, whereas pointwise absolute statistical acceptance criteria are relaxed. A core power distribution map at 29% power is given in Figure 6. The acceptance criteria at 29% follow:

Attachment to 2CAN070804 Page 7 of 23

a. For a predicted relative power density (RPD) < 0.9, the radial power distribution measured and predicted relative power density values shall agree within +/- 0.1 RPD units.
b. For a predicted RPD 0.9, the radial power distribution measured and predicted RPD values shall agree within +/- 10%.
c. The power in each operable detector shall be within +/- 10% of the average power in its symmetric detector group.
d. The vector tilt shall be less than 3%.

The acceptance criteria stated in a, b, and c above were met for all 177 fuel locations and all operable detectors (199 operable out of a possible 210). From Figure 6, the maximum percent difference for a predicted RPD 0.9 was 2.99% (predicted RPD of 0.972 versus measured RPD of 1.001). The largest percent difference for an operable in-core detector relative to the average power in its symmetric group was 4.70%. The vector tilt was measured to be 0.76%; therefore, the acceptance criterion stated in item d above was met.

5.2.2 66% Power Test Plateau Results At the intermediate power plateau of approximately 66% power, a core power distribution analysis is performed to again verify proper fuel loading and consistency with design predictions. The acceptance criteria at the intermediate power analysis follow:

a. The measured radial power distribution is compared to the predicted power distribution by calculating the root mean square (RMS) deviation from predictions of the RPD for each of the 177 fuel assemblies. This RMS error may not exceed 5%.
b. The measured radial power distribution is additionally compared to the predicted power distribution using a box-by-box comparison of the RPD for each of the 177 fuel assemblies. For a predicted RPD 0.9, the measured and predicted RPD values shall agree within +/- 10%.
c. For a predicted RPD < 0.9, the measured and predicted RPD values shall agree within

+/- 15%.

d. The measured axial power distribution is also compared to the predicted axial power distribution. The acceptance criterion states the RMS error between the measured axial power distribution and the predicted axial power distribution shall not exceed 5%.
e. The measured values of total planar RPF (Fxy), total integrated RPF (Fr), core average axial peak (Fz), and 3-D power peak (Fq) are compared to predicted values. The acceptance criteria state that the measured values:

Fxy, Fr, and Fz shall be within +/- 10% of the predicted values, and that COLSS and CPC constants shall be adjusted to appropriately reflect the measured values.

All of the acceptance criteria stated in a through e above were met at the 66% power plateau.

Attachment to 2CAN070804 Page 8 of 23 TABLE 5.2.2-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED  % DIFFERENCE*

Fxy 1.4229 1.4390 -1.12 Fr 1.3696 1.3940 -1.75 Fz 1.1417 1.1370 0.41 Fq 1.5966 1.5910 0.35

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 7)

Calculated RMS values were:

RADIAL = 1.3784 AXIAL = 4.9895 A RPD map for the 66% power test plateau is given in Figure 7. The maximum percent difference for a predicted RPD 0.9 was -2.46% (predicted RPD of 1.157 versus measured RPD of 1.128).

5.2.3 100% Power Test Plateau Results The final core power distribution analysis is performed with equilibrium xenon at approximately 100% power. At this plateau, axial and radial power distributions are compared to design predictions as a final verification that the core is operating in a manner consistent with its design within the associated design uncertainties. The acceptance criteria are the same as those for the intermediate power distribution analysis stated in 5.2.2.a through 5.2.2.e above. The acceptance criteria stated in 5.2.2.a through 5.2.2.e for the 100% power test plateau were met for Cycle 20.

TABLE 5.2.3-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED  % DIFFERENCE*

Fxy 1.4125 1.4280 -1.08 Fr 1.3681 1.3790 -0.79 Fz 1.1475 1.1150 2.91 Fq 1.6299 1.5840 2.90

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 8)

Calculated RMS values were:

RADIAL = 1.2725 AXIAL = 3.6611

Attachment to 2CAN070804 Page 9 of 23 A relative power density (RPD) map for the 100% power test plateau is given in Figure 8. The maximum % difference for a predicted RPD 0.9 was -2.73% (predicted RPD of 1.152 versus measured RPD of 1.121).

5.3 Shape Annealing Matrix (SAM) and Boundary Point Power Correlation Coefficient (BPPCC) Measurement The CPCs, part of the reactor protection system, use excore neutron flux detector signals to infer the axial distribution of reactor power. The algorithm that infers the core power distribution from the excore signals includes an adjustment for the non-uniform transport of neutrons between the core and the excore detectors. This adjustment is provided by the SAM. The ANO-2 TSs require measurement and installation of appropriate SAM elements and associated BPPCCs after each refueling or verification of cycle independent SAM (CISAM) elements for each channel of the CPCs prior to exceeding 70% power. For Cycle 20, new SAM and BPPCC elements were measured.

Acceptance criteria for the SAM measurement require axial shape RMS errors to be less than or equal to 5.5, the standard deviation of peripheral power integral errors to be less than or equal to 0.5 and a test matrix value between 3.0 and 8.0. The test matrix value acceptance criteria are intended to identify inconsistencies in data used to calculate the SAM and BPPCC elements. The ultimate acceptance criterion for the SAM measurement is the axial shape RMS error.

In order to meet all of the acceptance criteria, measured data below approximately 32% power was excluded. This was required to achieve a test matrix value within the allowable range.

With respect to the acceptance criteria, the SAM and BPPCC values that were installed in CPCs gave the following results:

Criteria Channel A Channel B Channel C Channel D Axial Shape 2.021 2.022 2.026 2.021 RMS Error Power Error 0.1544 0.1712 0.1352 0.1382 Test Matrix 5.952 5.735 4.592 4.803 Value The exclusion of measured data below approximately 32% power resulted in slightly higher CPC ASI uncertainty relative to the uncertainty assumed in the overall uncertainty analysis performed for the reload. The exclusion of this data also requires that the CPC uncertainty constants, BERR1 and BERR3, be increased from original values prior to exceeding a core burnup of 210 EFPD.

The higher ASI uncertainty required administrative controls to be implemented that restrict the allowable range of CPC ASI. These restrictions were not needed to maintain operability of CPCs, but were needed to maintain the initial conditions of certain safety analyses initiated at or below 20% power and above 20% power when COLSS is out of service.

Attachment to 2CAN070804 Page 10 of 23 5.4 Planar Radial Peaking Factor (RPF) Verification At the 66% power test plateau, the RPF for the ARO configuration was measured using in-core detector data and the CECOR computer code. The measured ARO Fxy was 1.4223. The planar RPF multiplier corresponding to the ARO condition in CPCs and the similar addressable constant in COLSS were appropriately and conservatively adjusted as a result of this measurement prior to the plant increasing power above 70%. Adjustments for other CEA configurations are no longer performed since conservative bounding values have been determined by reload analyses and are installed prior to startup.

For ANO-2, the CEA shadowing factors are not measured. The CPC database and addressable constants include allowances for using predicted CEA shadowing factors.

5.5 Temperature Reactivity Coefficient A moderator and isothermal temperature coefficient (ITC) measurement was performed at 100%. During the MTC and ITC measurement, turbine load is used to increase RCS average temperature, which decreases reactor power, and then to decrease RCS average temperature, which increases reactor power. This manipulation yields a ratio of RCS temperature change to reactor power change. Using a predicted power coefficient (PC) with the measured average ratio, an ITC is inferred. Using a predicted fuel temperature coefficient with the inferred ITC yields an MTC.

Acceptance criteria state that the difference between the predicted and inferred ITC shall be less than 0.3 x 10-4 k/k/°F. MTC, extrapolated to 100%, 70%, the COLR linear breakpoint power level and 0% power must also be within COLR limits.

For Cycle 20, the ITC and MTC passed the acceptance criteria. The measured ITC was

-1.20 x 10-4 k/k/°F versus a predicted ITC of -1.30 x 10-4 k/k/°F. The difference was 0.10 x 10 4 k/k/°F which was within the +/- 0.3 x 10-4 k/k/°F acceptance criteria. Extrapolated MTC values were as follows:

Power Level Extrapolated MTC Value (k/k/°F) 100% -1.06 x 10-4 70% -0.63 x 10-4 COLR Linear Breakpoint

-0.34 x 10-4 Power Level (50%)

0% 0.07 x 10-4 All extrapolated MTC values remained within COLR limits.

The measured MTC was extrapolated to 100% and 0% power and predicted peak boron concentration for the cycle to verify the MTC remains within COLR and TS stated design limits.

The MTC extrapolated to 100% power and peak boron concentration was -0.78 x 10-4 k/k/°F.

The MTC extrapolated to 0% power and peak boron concentration was 0.26 x 10-4 k/k/°F.

Both values were within COLR and TS stated design limits.

Attachment to 2CAN070804 Page 11 of 23 Finally, the measured MTC was also extrapolated to 100% power and end of cycle conditions.

This extrapolation indicated that the limiting boron concentration for maintaining COLR compliance can not be physically achieved (i.e., negative boron concentration) during the cycle, providing assurance that the COLR negative MTC limit of -3.8 x 10-4 k/k/°F will not be exceeded during Cycle 20.

6.0 CONCLUSION

S Based upon analysis of the startup physics test results, it is concluded that the measured core parameters verify the Cycle 20 nuclear design calculations and the proper loading of the core.

All test values were found to be acceptable with respect to limits and requirements contained within the ANO-2 SAR, Technical Specifications and COLR.

The above test results demonstrate adequate conservatism in the Cycle 20 core performance with respect to the Cycle 20 reload safety evaluations and licensing basis.

7.0 REFERENCES

7.1 ANO-2 Safety Analysis Report (SAR), Section 4.5, Startup Program and Section 15, Accident Analysis 7.2 ANO-2 Technical Specifications 7.3 ANO-2 Cycle 20 Reload Analysis Report (RAR), CALC-ANO2-NE-08-00001 7.4 ANO-2 Cycle 20 Core Operating Limits Report (COLR) 7.5 ANO-2 Procedure 2302.009, Change 025, Moderator Temperature Coefficient at Power, 5/28/2008 7.6 ANO-2 Procedure 2302.021, Change 024, Sequence for Low Power Physics Testing Following Refueling, 5/15/2008 7.7 ANO-2 Procedure 2302.022, Change 015, Initial Criticality Following Refueling, 6/16/2008 7.8 ANO-2 Procedure 2302.034, Change 020-00-0, Power Ascension Testing Controlling Procedure, 6/16/2008 7.9 ANO-2 Procedure 2302.039, Change 013-00-0, Core Power Distribution Following Refueling, 4/12/2008, 4/13/2008 & 4/18/2008 7.10 ANO-2 Procedure 2302.046, Change 009-00-0, CEA Drop Time Test, 4/8/2008 7.11 ANO-2 Procedure 2302.057, Change 005, RCS Calorimetric Flowrate Calibration Using RCSFLOW Program, 4/13/2008 & 4/21/2008

Attachment to 2CAN070804 Page 12 of 23 FIGURE 1 Cycle 20 Core Loading Fuel Rods Number of Nominal ZrB2 Rods Shim Number Sub- Number of per Assembly Fuel Rods Enrichment per Loading of ZrB2 Batch ID Assemblies (Excluding (Including (wt. %) Assembly (ZrB2) Rods ZrB2 Rods) ZrB2 Rods) 108 4.16 36 2.00x 2304 576 Z1 16 32 3.86 8 2.00x 640 128 48 3.56 4 2.00x 832 64 108 4.16 36 2.00x 2880 720 Z2 20 36 3.86 4 2.00x 800 80 24 3.56 28 2.00x 1040 560 88 4.16 56 2.00x 1152 448 Z3 8 32 3.86 8 2.00x 320 64 16 3.56 36 2.00x 416 288 80 4.16 64 2.00x 6336 2816 Z4 44 24 3.86 16 2.00x 1760 704 8 3.56 44 2.00x 2288 1936 Total 88 20768 8384 64 4.34 40 1.88x 1248 480 Y1 12 56 4.04 20 1.88x 912 240 36 3.74 20 1.88x 672 240 64 4.34 40 1.88x 1664 640 Y2 16 56 4.04 20 1.88x 1216 320 16 3.74 40 1.88x 896 640 76 4.64 28 1.88x 1664 448 Y3 16 64 4.34 12 1.88x 1216 192 36 4.04 20 1.88x 896 320 64 4.64 40 1.88x 832 320 Y4 8 56 4.34 20 1.88x 608 160 36 4.04 20 1.88x 448 160 64 4.34 40 1.88x 2080 800 Y5 20 48 4.04 28 1.88x 1520 560 12 3.74 44 1.88x 1120 880 56 4.34 48 1.88x 1664 768 Y6 16 48 4.04 28 1.88x 1216 448 8 3.74 48 1.88x 896 768 Total 88 20768 8384

Attachment to 2CAN070804 Page 13 of 23 FIGURE 1 (continued)

Cycle 20 Core Loading Fuel Rods Number of Nominal Erbia Shim Number Sub- Number of per Assembly Fuel Rods Enrichment Rods per Loading of Erbia Batch ID Assemblies (Excluding (Including (wt. %) Assembly (Erbia) Rods Erbia Rods) Erbia Rods) 128 4.17 0 ------ 128 0 U4 1 8 3.87 100 2.1 108 100 Total 1 236 100 ZrB2 Grand 177 41772 16768 Total Erbia 100

Attachment to 2CAN070804 Page 14 of 23 FIGURE 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for Batch Z Fuel Assemblies Batch Z1: 48 ZrB2 Batch Z2: 68 ZrB2 Batch Z3: 100 ZrB2 Batch Z4: 124 ZrB2 High Enriched Fuel Rod Med Enriched Fuel Rod Low Enriched Fuel Rod High Enriched ZrB2 Rod Med Enriched ZrB2 Rod Low Enriched ZrB2 Rod

Attachment to 2CAN070804 Page 15 of 23 FIGURE 3 Cycle 20 Fuel Management Scheme A B C D E F G H J K L M N Y505 Y610 Y516 Y607 Y514 1

H-13 K-7 H-7 J-6 H-5 Y602 Y203 Z103 Z203 Z208 Z210 Z106 Y209 Y613 2 E-6 D-11 FEED FEED FEED FEED FEED M-11 L-6 Y519 Z108 Z216 Z403 Y308 Z416 Y305 Z419 Z217 Z114 Y520 3

G-12 FEED FEED FEED D-13 FEED M-13 FEED FEED FEED D-7 Y603 Z115 Y407 Z302 Y108 Z431 Y202 Z433 Y104 Z304 Y408 Z102 Y604 4

F-5 FEED J-14 FEED E-3 FEED K-13 FEED L-3 FEED B-9 FEED K-5 Y205 Z202 Z305 Y503 Z402 Y316 Z441 Y306 Z408 Y517 Z306 Z220 Y204 5

L-4 FEED FEED G-4 FEED F-2 FEED K-2 FEED M-7 FEED FEED E-4 Y507 Z116 Z426 Y101 Z427 Y402 Z423 Y110 Z424 Y404 Z415 Y102 Z418 Z104 Y506 6 E-8 FEED FEED C-5 FEED P-9 FEED H-14 FEED G-14 FEED N-5 FEED FEED C-8 Y615 Z204 Y304 Z401 Y310 Z430 Y211 Z414 Y206 Z410 Y309 Z438 Y307 Z213 Y614 7 F-7 FEED N-4 FEED B-6 FEED C-6 FEED K-3 FEED P-6 FEED C-4 FEED J-10 Y511 Z214 Z436 Y201 Z429 Y111 Z444 U418* Z428 Y106 Z425 Y214 Z435 Z211 Y512 8 270° G-8 FEED FEED N-6 FEED P-8 FEED H-5 FEED B-8 FEED C-10 FEED FEED J-8 Y612 Z212 Y313 Z409 Y315 Z440 Y208 Z407 Y215 Z417 Y302 Z434 Y312 Z207 Y608 9 G-6 FEED N-12 FEED B-10 FEED F-13 FEED N-10 FEED P-10 FEED C-12 FEED K-9 Y513 Z111 Z422 Y112 Z437 Y401 Z439 Y105 Z443 Y405 Z404 Y109 Z442 Z112 Y510 10 N-8 FEED FEED C-11 FEED J-2 FEED H-2 FEED B-7 FEED N-11 FEED FEED L-8 Y210 Z209 Z307 Y508 Z405 Y314 Z412 Y303 Z406 Y504 Z301 Z201 Y216 11 L-12 FEED FEED D-9 FEED F-14 FEED K-14 FEED J-12 FEED FEED E-12 Y601 Z109 Y403 Z308 Y103 Z413 Y213 Z421 Y107 Z303 Y406 Z110 Y606 12 F-11 FEED P-7 FEED E-13 FEED F-3 FEED L-13 FEED G-2 FEED K-11 Y509 Z105 Z215 Z420 Y311 Z411 Y301 Z432 Z206 Z107 Y518 13 M-9 FEED FEED FEED D-3 FEED M-3 FEED FEED FEED J-4 Y609 Y212 Z101 Z205 Z219 Z218 Z113 Y207 Y616 14

  • from Cycle 16 E-10 D-5 FEED FEED FEED FEED FEED M-5 L-10 Y YY Assembly Identifier Y515 Y605 Y501 Y611 Y502 15 Z-ZZ Previous Cycle Location H-11 G-10 H-9 F-9 H-3 180° U REGION U4 Y REGION Y5 Z REGION Z4

( 4.036 W/O ) ( 4.101 W/O ) ( 3.977 W/O )

Y REGION Y1 Y REGION Y6

( 4.101 W/O ) ( 4.101 W/O )

Y REGION Y2 Z REGION Z1

( 4.101 W/O ) ( 3.977 W/O )

Y REGION Y3 Z REGION Z2

( 4.401 W/O ) ( 3.977 W/O )

Y REGION Y4 Z REGION Z3

( 4.401 W/O ) ( 3.977 W/O )

Note: U4 assembly in center reinserted from the spent fuel pool, discharged at the end of Cycle 16.

Attachment to 2CAN070804 Page 16 of 23 FIGURE 4 BOC Assembly Average Burnup and Initial Enrichment Distribution nn BB BB = Batch Identifier for Assembly nn xxxx Assembly Average Burnup (MWD/T) 1 U4 2 Z4 3 Y1 4 Z4 5 Y2 6 Z4 7 Z2 8 Y5 25816 0 21738 0 23892 0 0 24370 9 Z4 10 Y2 11 Z4 12 Y3 13 Z4 14 Y3 15 Z2 16 Y6 0 23888 0 19413 0 17863 0 24567 17 Y1 18 Z4 19 Y4 20 Z4 21 Y1 22 Z4 23 Z1 24 Y5 21738 0 21654 0 21951 0 0 24680 25 Z4 26 Y3 27 Z4 28 Y5 29 Z3 30 Z2 31 Y2 0 19425 0 24762 0 0 24261 32 Y2 33 Z4 34 Y1 35 Z3 36 Y4 37 Z1 38 Y6 23892 0 21966 0 21669 0 24670 39 Z4 40 Y3 41 Z4 42 Z2 43 Z1 44 Y6 0 17843 0 0 0 24763 45 Z2 46 Z2 47 Z1 48 Y2 49 Y6 0 0 0 24263 24662 50 Y5 51 Y6 52 Y5 24370 24554 24502 Region Z ZrB2 rods have annular pellets in top & bottom 6" of rod at the rod's nominal enrichment

Attachment to 2CAN070804 Page 17 of 23 FIGURE 5 ICI Locations A B C D E F G H J K L M N 1

2 O O O O 1 2 3 4 3

4 O O O O O O 5 6 7 8 9 10 5

6 O O O O O O O 11 12 13 14 15 16 17 7 O O 18 19 8 O O O O 20 22 23 24 9 O O 26 27 10 O O O O O O O 28 29 30 31 32 33 34 11 12 O O O O O O 35 36 37 38 39 40 13 14 O O O O 41 42 43 44 15 DETECTOR AXIAL LEVEL J=1 BOTTOM OF CORE J=2 MIDDLE OF CORE J=3 TOP OF CORE

Attachment to 2CAN070804 Page 18 of 23 FIGURE 6 GETARP Output for the 29% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP GGG EEE TTT AAA AAA RRR RRR PPP PPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP GGG GGG EEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR NT REVISION 1 MEASURED DATA EXTRACTED FROM: a32510n.s01 PREDICTED DATA EXTRACTED FROM: a2pred.029 RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+-----------+ +-------+-------+-------+-------+-------+

PREDICTED ;  ; .411 ; .537 ; .563 ; .537 ; .410 ; (MEAS.-PREDICTED)
MEASURED ;  ; .435 ; .570 ; .595 ; .566 ; .434 ;  % DIFFERENCE = ----------------- X 100.0
% DIFFER ;  ; 5.88 ; 6.08 ; 5.70 ; 5.31 ; 5.77 ; PREDICTED

+-----------+ +-------+-------+-------+-------+-------+-------+-------+-------+-------+

.418 ; .662 ; 1.056 ; 1.162 ; 1.170 ; 1.162 ; 1.056 ; .663 ; .420 ;
.431 ; .635 ; 1.035 ; 1.150 ; 1.151 ; 1.136 ; 1.036 ; .652 ; .437 ;
3.02 ; -4.05 ; -1.99 ; -1.05 ; -1.66 ; -2.21 ; -1.90 ; -1.61 ; 4.09 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.526 ; 1.071 ; 1.203 ; 1.141 ; 1.276 ; 1.178 ; 1.276 ; 1.143 ; 1.207 ; 1.075 ; .526 ;
.555 ; 1.064 ; 1.169 ; 1.113 ; 1.252 ; 1.154 ; 1.250 ; 1.115 ; 1.177 ; 1.073 ; .559 ;
5.49 ; -.67 ; -2.85 ; -2.47 ; -1.86 ; -2.06 ; -2.00 ; -2.43 ; -2.51 ; -.19 ; 6.25 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.420 ; 1.075 ; 1.229 ; 1.257 ; 1.170 ; 1.165 ; 1.125 ; 1.166 ; 1.171 ; 1.260 ; 1.229 ; 1.071 ; .418 ;
.450 ; 1.081 ; 1.223 ; 1.249 ; 1.175 ; 1.158 ; 1.138 ; 1.163 ; 1.176 ; 1.247 ; 1.227 ; 1.088 ; .455 ;
7.19 ; .58 ; -.53 ; -.61 ; .41 ; -.60 ; 1.12 ; -.24 ; .46 ; -1.06 ; -.13 ; 1.59 ; 8.78 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.663 ; 1.207 ; 1.260 ; 1.140 ; 1.142 ; 1.195 ; 1.111 ; 1.194 ; 1.140 ; 1.140 ; 1.257 ; 1.203 ; .662 ;
.695 ; 1.194 ; 1.236 ; 1.150 ; 1.135 ; 1.199 ; 1.112 ; 1.202 ; 1.138 ; 1.154 ; 1.244 ; 1.205 ; .706 ;
4.79 ; -1.06 ; -1.87 ; .84 ; -.64 ; .34 ; .11 ; .63 ; -.19 ; 1.27 ; -1.06 ; .17 ; 6.59 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.410 ; 1.056 ; 1.143 ; 1.171 ; 1.140 ; 1.145 ; 1.066 ; 1.042 ; 1.064 ; 1.145 ; 1.142 ; 1.170 ; 1.141 ; 1.056 ; .411 ;
.395 ; 1.050 ; 1.136 ; 1.172 ; 1.123 ; 1.151 ; 1.069 ; 1.070 ; 1.071 ; 1.158 ; 1.138 ; 1.184 ; 1.151 ; 1.076 ; .449 ;
-3.56 ; -.56 ; -.63 ; .13 ; -1.51 ; .48 ; .28 ; 2.65 ; .66 ; 1.13 ; -.33 ; 1.20 ; .86 ; 1.89 ; 9.15 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.537 ; 1.162 ; 1.276 ; 1.166 ; 1.194 ; 1.064 ; .972 ; .956 ; .972 ; 1.066 ; 1.195 ; 1.165 ; 1.276 ; 1.162 ; .537 ;
.561 ; 1.159 ; 1.260 ; 1.149 ; 1.189 ; 1.061 ; .994 ; .974 ; 1.001 ; 1.071 ; 1.199 ; 1.158 ; 1.269 ; 1.160 ; .578 ;
4.50 ; -.29 ; -1.26 ; -1.44 ; -.42 ; -.26 ; 2.24 ; 1.85 ; 2.99 ; .47 ; .33 ; -.59 ; -.52 ; -.16 ; 7.57 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.563 ; 1.170 ; 1.178 ; 1.125 ; 1.111 ; 1.042 ; .956 ; .858 ; .956 ; 1.042 ; 1.111 ; 1.125 ; 1.178 ; 1.170 ; .563 ;
.595 ; 1.156 ; 1.157 ; 1.130 ; 1.101 ; 1.053 ; .939 ; .883 ; .958 ; 1.063 ; 1.105 ; 1.137 ; 1.165 ; 1.167 ; .601 ;
5.77 ; -1.18 ; -1.77 ; .49 ; -.93 ; 1.08 ; -1.77 ; 2.91 ; .20 ; 1.97 ; -.52 ; 1.11 ; -1.10 ; -.24 ; 6.80 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.537 ; 1.162 ; 1.276 ; 1.165 ; 1.195 ; 1.066 ; .972 ; .956 ; .972 ; 1.064 ; 1.194 ; 1.166 ; 1.276 ; 1.162 ; .537 ;
.570 ; 1.142 ; 1.256 ; 1.148 ; 1.190 ; 1.059 ; .986 ; .966 ; .993 ; 1.064 ; 1.195 ; 1.156 ; 1.268 ; 1.166 ; .564 ;
6.10 ; -1.71 ; -1.55 ; -1.47 ; -.41 ; -.67 ; 1.42 ; 1.03 ; 2.15 ; .04 ; .08 ; -.88 ; -.59 ; .38 ; 5.05 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.411 ; 1.056 ; 1.141 ; 1.170 ; 1.142 ; 1.145 ; 1.064 ; 1.042 ; 1.066 ; 1.145 ; 1.140 ; 1.171 ; 1.143 ; 1.056 ; .410 ;
.442 ; 1.061 ; 1.137 ; 1.173 ; 1.130 ; 1.143 ; 1.046 ; 1.055 ; 1.052 ; 1.148 ; 1.132 ; 1.179 ; 1.144 ; 1.054 ; .391 ;
7.63 ; .47 ; -.34 ; .23 ; -1.06 ; -.15 ; -1.69 ; 1.20 ; -1.33 ; .28 ; -.69 ; .65 ; .06 ; -.15 ; -4.61 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.662 ; 1.203 ; 1.257 ; 1.140 ; 1.140 ; 1.194 ; 1.111 ; 1.195 ; 1.142 ; 1.140 ; 1.260 ; 1.207 ; .663 ;
.695 ; 1.187 ; 1.229 ; 1.144 ; 1.126 ; 1.187 ; 1.102 ; 1.191 ; 1.131 ; 1.148 ; 1.236 ; 1.194 ; .695 ;
4.93 ; -1.35 ; -2.21 ; .39 ; -1.25 ; -.58 ; -.85 ; -.30 ; -.96 ; .73 ; -1.88 ; -1.05 ; 4.89 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.418 ; 1.071 ; 1.229 ; 1.260 ; 1.171 ; 1.166 ; 1.125 ; 1.165 ; 1.170 ; 1.257 ; 1.229 ; 1.075 ; .420 ;
.445 ; 1.063 ; 1.213 ; 1.238 ; 1.169 ; 1.155 ; 1.132 ; 1.160 ; 1.171 ; 1.240 ; 1.217 ; 1.072 ; .448 ;
6.56 ; -.75 ; -1.33 ; -1.72 ; -.21 ; -.98 ; .63 ; -.42 ; .10 ; -1.39 ; -.95 ; -.27 ; 6.68 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.526 ; 1.075 ; 1.207 ; 1.143 ; 1.276 ; 1.178 ; 1.276 ; 1.141 ; 1.203 ; 1.071 ; .526 ;
.550 ; 1.063 ; 1.171 ; 1.110 ; 1.246 ; 1.147 ; 1.245 ; 1.110 ; 1.170 ; 1.063 ; .552 ;
4.53 ; -1.08 ; -2.96 ; -2.87 ; -2.36 ; -2.62 ; -2.40 ; -2.75 ; -2.78 ; -.74 ; 4.98 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.420 ; .663 ; 1.056 ; 1.162 ; 1.170 ; 1.162 ; 1.056 ; .662 ; .418 ;
.436 ; .655 ; 1.036 ; 1.137 ; 1.143 ; 1.131 ; 1.033 ; .652 ; .435 ;
3.72 ; -1.13 ; -1.90 ; -2.14 ; -2.34 ; -2.64 ; -2.20 ; -1.53 ; 3.99 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.410 ; .537 ; .563 ; .537 ; .411 ;
.434 ; .565 ; .591 ; .563 ; .433 ;
5.73 ; 5.18 ; 5.01 ; 4.89 ; 5.32 ;

+-------+-------+-------+-------+-------+

Attachment to 2CAN070804 Page 19 of 23 FIGURE 6 (continued)

GETARP Output for the 29% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON NODE PREDICTED MEAS.  % DIFFERENCE 1 .4230 .4809 13.6889 2 .4890 .5399 10.4109 3 .5540 .5986 8.0506 4 .6520 .6988 7.1761 5 .7100 .7539 6.1878 6 .7510 .7929 5.5766 7 .7890 .8285 5.0115 8 .8210 .8592 4.6487 9 .8490 .8858 4.3314 10 .8730 .9091 4.1392 11 .8950 .9301 3.9190 12 .9140 .9491 3.8409 13 .9330 .9670 3.6458 14 .9500 .9839 3.5700 15 .9660 1.0000 3.5161 16 .9820 1.0153 3.3943 17 .9970 1.0300 3.3055 18 1.0120 1.0439 3.1493 19 1.0260 1.0571 3.0286 20 1.0400 1.0696 2.8445 21 1.0530 1.0814 2.6999 22 1.0660 1.0927 2.5081 23 1.0800 1.1034 2.1666 24 1.0930 1.1140 1.9239 25 1.1080 1.1259 1.6195 26 1.1250 1.1399 1.3261 27 1.1400 1.1530 1.1420 28 1.1530 1.1622 .7988 29 1.1640 1.1681 .3558 30 1.1730 1.1721 -.0776 31 1.1810 1.1747 -.5361 32 1.1870 1.1757 -.9491 33 1.1920 1.1754 -1.3891 34 1.1950 1.1738 -1.7778 35 1.1980 1.1707 -2.2816 36 1.1990 1.1661 -2.7403 37 1.1990 1.1599 -3.2576 38 1.1980 1.1520 -3.8370 39 1.1950 1.1421 -4.4280 40 1.1890 1.1298 -4.9796 41 1.1810 1.1150 -5.5884 42 1.1680 1.0968 -6.0995 43 1.1500 1.0745 -6.5633 44 1.1260 1.0474 -6.9832 45 1.0930 1.0144 -7.1900 46 1.0500 .9747 -7.1752 47 .9990 .9310 -6.8038 48 .9220 .8687 -5.7854 49 .7910 .7548 -4.5729 50 .7080 .7063 -.2388 51 .6220 .6604 6.1749 PEAKING PARAMETER COMPARISON PARAMETER MEAS. PREDICTED % DIFFERENCE FXY 1.4600 1.4530 .4829 %

FR 1.3782 1.4120 -2.3966 %

FZ 1.1757 1.1990 -1.9405 %

FQ 1.6494 1.6960 -2.7456 %

CALCULATED RMS VALUES RADIAL = 1.9193 AXIAL = 4.1978 MEASURED ASI = -.0704 PREDICTED ASI = -.1058 ACCEPTANCE CRITERIA REPORT MEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

RMS ERROR ON AXIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET ***

Attachment to 2CAN070804 Page 20 of 23 FIGURE 7 GETARP Output for the 66% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP GGG EEE TTT AAA AAA RRR RRR PPP PPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP GGG GGG EEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR NT REVISION 1 MEASURED DATA EXTRACTED FROM: a3251tk.s01 PREDICTED DATA EXTRACTED FROM: a2pred.068 RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+-----------+ +-------+-------+-------+-------+-------+

PREDICTED ;  ; .423 ; .550 ; .576 ; .549 ; .422 ; (MEAS.-PREDICTED)
MEASURED ;  ; .433 ; .567 ; .592 ; .562 ; .432 ;  % DIFFERENCE = ----------------- X 100.0
% DIFFER ;  ; 2.46 ; 3.04 ; 2.76 ; 2.36 ; 2.32 ; PREDICTED

+-----------+ +-------+-------+-------+-------+-------+-------+-------+-------+-------+

.429 ; .671 ; 1.058 ; 1.157 ; 1.165 ; 1.157 ; 1.058 ; .672 ; .430 ;
.430 ; .640 ; 1.036 ; 1.146 ; 1.148 ; 1.131 ; 1.036 ; .659 ; .437 ;
.27 ; -4.55 ; -2.12 ; -.91 ; -1.50 ; -2.26 ; -2.07 ; -1.96 ; 1.69 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.534 ; 1.068 ; 1.195 ; 1.135 ; 1.260 ; 1.169 ; 1.260 ; 1.136 ; 1.198 ; 1.072 ; .534 ;
.550 ; 1.061 ; 1.168 ; 1.113 ; 1.251 ; 1.153 ; 1.248 ; 1.115 ; 1.176 ; 1.071 ; .555 ;
3.04 ; -.70 ; -2.30 ; -1.96 ; -.69 ; -1.34 ; -.91 ; -1.84 ; -1.80 ; -.13 ; 3.94 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; 1.072 ; 1.212 ; 1.244 ; 1.161 ; 1.159 ; 1.120 ; 1.160 ; 1.162 ; 1.246 ; 1.212 ; 1.068 ; .429 ;
.446 ; 1.072 ; 1.216 ; 1.241 ; 1.172 ; 1.160 ; 1.138 ; 1.164 ; 1.174 ; 1.239 ; 1.222 ; 1.081 ; .451 ;
3.69 ; .02 ; .32 ; -.23 ; .97 ; .08 ; 1.59 ; .32 ; 1.02 ; -.57 ; .79 ; 1.22 ; 5.05 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.672 ; 1.198 ; 1.246 ; 1.133 ; 1.139 ; 1.191 ; 1.114 ; 1.190 ; 1.138 ; 1.133 ; 1.244 ; 1.195 ; .671 ;
.691 ; 1.191 ; 1.234 ; 1.146 ; 1.136 ; 1.202 ; 1.117 ; 1.206 ; 1.140 ; 1.152 ; 1.241 ; 1.200 ; .701 ;
2.77 ; -.61 ; -.99 ; 1.18 ; -.27 ; .95 ; .25 ; 1.33 ; .16 ; 1.65 ; -.25 ; .45 ; 4.42 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.422 ; 1.058 ; 1.136 ; 1.162 ; 1.138 ; 1.145 ; 1.075 ; 1.053 ; 1.074 ; 1.145 ; 1.139 ; 1.161 ; 1.135 ; 1.058 ; .423 ;
.403 ; 1.047 ; 1.136 ; 1.171 ; 1.125 ; 1.154 ; 1.076 ; 1.077 ; 1.083 ; 1.164 ; 1.141 ; 1.182 ; 1.147 ; 1.070 ; .445 ;
-4.45 ; -1.08 ; -.02 ; .79 ; -1.13 ; .81 ; .09 ; 2.31 ; .80 ; 1.62 ; .20 ; 1.80 ; 1.06 ; 1.18 ; 5.13 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.549 ; 1.157 ; 1.260 ; 1.160 ; 1.190 ; 1.074 ; .989 ; .978 ; .989 ; 1.075 ; 1.191 ; 1.159 ; 1.260 ; 1.157 ; .550 ;
.557 ; 1.140 ; 1.253 ; 1.148 ; 1.192 ; 1.069 ; 1.005 ; .986 ; 1.013 ; 1.079 ; 1.203 ; 1.159 ; 1.265 ; 1.153 ; .573 ;
1.38 ; -1.45 ; -.52 ; -1.01 ; .16 ; -.49 ; 1.58 ; .78 ; 2.39 ; .40 ; .99 ; -.04 ; .42 ; -.31 ; 4.18 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.576 ; 1.165 ; 1.169 ; 1.120 ; 1.114 ; 1.053 ; .978 ; .883 ; .978 ; 1.053 ; 1.114 ; 1.120 ; 1.169 ; 1.165 ; .576 ;
.590 ; 1.147 ; 1.152 ; 1.129 ; 1.105 ; 1.063 ; .963 ; .898 ; .979 ; 1.072 ; 1.111 ; 1.137 ; 1.162 ; 1.161 ; .597 ;
2.46 ; -1.52 ; -1.42 ; .79 ; -.79 ; .99 ; -1.56 ; 1.67 ; .12 ; 1.84 ; -.26 ; 1.49 ; -.57 ; -.30 ; 3.71 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.550 ; 1.157 ; 1.260 ; 1.159 ; 1.191 ; 1.075 ; .989 ; .978 ; .989 ; 1.074 ; 1.190 ; 1.160 ; 1.260 ; 1.157 ; .549 ;
.566 ; 1.138 ; 1.252 ; 1.148 ; 1.194 ; 1.068 ; .999 ; .979 ; 1.005 ; 1.073 ; 1.198 ; 1.155 ; 1.263 ; 1.158 ; .562 ;
2.83 ; -1.66 ; -.63 ; -.94 ; .26 ; -.64 ; 1.02 ; .11 ; 1.58 ; -.13 ; .70 ; -.39 ; .26 ; .11 ; 2.40 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.423 ; 1.058 ; 1.135 ; 1.161 ; 1.139 ; 1.145 ; 1.074 ; 1.053 ; 1.075 ; 1.145 ; 1.138 ; 1.162 ; 1.136 ; 1.058 ; .422 ;
.439 ; 1.056 ; 1.133 ; 1.171 ; 1.134 ; 1.151 ; 1.060 ; 1.065 ; 1.063 ; 1.153 ; 1.134 ; 1.175 ; 1.138 ; 1.052 ; .399 ;
3.75 ; -.15 ; -.19 ; .86 ; -.45 ; .49 ; -1.27 ; 1.11 ; -1.13 ; .72 ; -.31 ; 1.14 ; .16 ; -.61 ; -5.52 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.671 ; 1.195 ; 1.244 ; 1.133 ; 1.138 ; 1.190 ; 1.114 ; 1.191 ; 1.139 ; 1.133 ; 1.246 ; 1.198 ; .672 ;
.690 ; 1.183 ; 1.228 ; 1.143 ; 1.130 ; 1.194 ; 1.108 ; 1.196 ; 1.133 ; 1.145 ; 1.232 ; 1.188 ; .691 ;
2.90 ; -.97 ; -1.31 ; .88 ; -.74 ; .31 ; -.55 ; .40 ; -.55 ; 1.04 ; -1.10 ; -.80 ; 2.80 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.429 ; 1.068 ; 1.212 ; 1.246 ; 1.162 ; 1.160 ; 1.120 ; 1.159 ; 1.161 ; 1.244 ; 1.212 ; 1.072 ; .430 ;
.442 ; 1.059 ; 1.209 ; 1.232 ; 1.168 ; 1.158 ; 1.133 ; 1.161 ; 1.168 ; 1.231 ; 1.210 ; 1.064 ; .444 ;
3.10 ; -.87 ; -.28 ; -1.12 ; .50 ; -.18 ; 1.20 ; .15 ; .62 ; -1.07 ; -.15 ; -.75 ; 3.22 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.534 ; 1.072 ; 1.198 ; 1.136 ; 1.260 ; 1.169 ; 1.260 ; 1.135 ; 1.195 ; 1.068 ; .534 ;
.547 ; 1.062 ; 1.172 ; 1.112 ; 1.246 ; 1.148 ; 1.244 ; 1.109 ; 1.168 ; 1.059 ; .548 ;
2.44 ; -.89 ; -2.14 ; -2.14 ; -1.10 ; -1.80 ; -1.24 ; -2.26 ; -2.27 ; -.80 ; 2.58 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; .672 ; 1.058 ; 1.157 ; 1.165 ; 1.157 ; 1.058 ; .671 ; .429 ;
.436 ; .662 ; 1.038 ; 1.134 ; 1.141 ; 1.128 ; 1.033 ; .657 ; .434 ;
1.43 ; -1.46 ; -1.92 ; -1.97 ; -2.06 ; -2.46 ; -2.34 ; -2.16 ; 1.17 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.422 ; .549 ; .576 ; .550 ; .423 ;
.432 ; .562 ; .589 ; .561 ; .431 ;
2.46 ; 2.42 ; 2.21 ; 1.93 ; 1.93 ;

+-------+-------+-------+-------+-------+

Attachment to 2CAN070804 Page 21 of 23 FIGURE 7 (continued)

GETARP Output for the 66% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON NODE PREDICTED MEAS.  % DIFFERENCE 1 .5120 .5587 9.1137 2 .5850 .6256 6.9375 3 .6550 .6915 5.5683 4 .7620 .8041 5.5289 5 .8210 .8641 5.2519 6 .8600 .9047 5.1931 7 .8940 .9406 5.2077 8 .9210 .9698 5.3022 9 .9440 .9937 5.2640 10 .9620 1.0131 5.3080 11 .9780 1.0290 5.2099 12 .9910 1.0420 5.1493 13 1.0030 1.0533 5.0130 14 1.0130 1.0630 4.9314 15 1.0230 1.0714 4.7291 16 1.0320 1.0789 4.5423 17 1.0410 1.0855 4.2780 18 1.0490 1.0915 4.0534 19 1.0560 1.0969 3.8770 20 1.0630 1.1019 3.6590 21 1.0710 1.1065 3.3109 22 1.0780 1.1108 3.0399 23 1.0850 1.1147 2.7376 24 1.0920 1.1188 2.4566 25 1.1000 1.1244 2.2176 26 1.1100 1.1321 1.9885 27 1.1200 1.1389 1.6834 28 1.1260 1.1417 1.3942 29 1.1310 1.1412 .9054 30 1.1340 1.1387 .4174 31 1.1360 1.1348 -.1068 32 1.1370 1.1293 -.6782 33 1.1370 1.1224 -1.2799 34 1.1360 1.1143 -1.9100 35 1.1350 1.1049 -2.6485 36 1.1320 1.0944 -3.3186 37 1.1280 1.0827 -4.0197 38 1.1230 1.0697 -4.7475 39 1.1160 1.0553 -5.4394 40 1.1080 1.0393 -6.2027 41 1.0970 1.0215 -6.8800 42 1.0830 1.0012 -7.5526 43 1.0650 .9778 -8.1852 44 1.0420 .9505 -8.7768 45 1.0110 .9185 -9.1461 46 .9710 .8809 -9.2831 47 .9250 .8401 -9.1748 48 .8580 .7829 -8.7557 49 .7390 .6795 -8.0483 50 .6710 .6354 -5.3062 51 .5990 .5938 -.8667 PEAKING PARAMETER COMPARISON PARAMETER MEAS. PREDICTED % DIFFERENCE FXY 1.4229 1.4390 -1.1189 %

FR 1.3696 1.3940 -1.7502 %

FZ 1.1417 1.1370 .4132 %

FQ 1.5966 1.5910 .3517 %

CALCULATED RMS VALUES RADIAL = 1.3784 AXIAL = 4.9895 MEASURED ASI = -.0024 PREDICTED ASI = -.0449 ACCEPTANCE CRITERIA REPORT MEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

RMS ERROR ON AXIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET ***

Attachment to 2CAN070804 Page 22 of 23 FIGURE 8 GETARP Output for the 100% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP GGG EEE TTT AAA AAA RRR RRR PPP PPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP GGG GGG EEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR NT REVISION 1 MEASURED DATA EXTRACTED FROM: A3255JB.S02 PREDICTED DATA EXTRACTED FROM: a2pred.eq.100 RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+-----------+ +-------+-------+-------+-------+-------+

PREDICTED ;  ; .430 ; .557 ; .583 ; .557 ; .430 ; (MEAS.-PREDICTED)
MEASURED ;  ; .427 ; .557 ; .582 ; .552 ; .425 ;  % DIFFERENCE = ----------------- X 100.0
% DIFFER ;  ; -.76 ; -.03 ; -.21 ; -.92 ; -1.17 ; PREDICTED

+-----------+ +-------+-------+-------+-------+-------+-------+-------+-------+-------+

.435 ; .676 ; 1.056 ; 1.152 ; 1.160 ; 1.152 ; 1.057 ; .678 ; .436 ;
.426 ; .643 ; 1.032 ; 1.138 ; 1.142 ; 1.122 ; 1.032 ; .661 ; .432 ;
-2.17 ; -4.83 ; -2.25 ; -1.19 ; -1.51 ; -2.61 ; -2.37 ; -2.55 ; -.85 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.539 ; 1.064 ; 1.188 ; 1.130 ; 1.249 ; 1.164 ; 1.249 ; 1.131 ; 1.191 ; 1.067 ; .539 ;
.539 ; 1.050 ; 1.168 ; 1.119 ; 1.247 ; 1.159 ; 1.243 ; 1.120 ; 1.176 ; 1.060 ; .544 ;
-.08 ; -1.32 ; -1.71 ; -.99 ; -.14 ; -.40 ; -.44 ; -.96 ; -1.29 ; -.68 ; .90 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.436 ; 1.067 ; 1.200 ; 1.235 ; 1.157 ; 1.157 ; 1.119 ; 1.158 ; 1.158 ; 1.238 ; 1.200 ; 1.064 ; .435 ;
.436 ; 1.056 ; 1.201 ; 1.239 ; 1.170 ; 1.172 ; 1.138 ; 1.174 ; 1.170 ; 1.235 ; 1.206 ; 1.067 ; .441 ;
.06 ; -1.02 ; .05 ; .29 ; 1.10 ; 1.26 ; 1.72 ; 1.34 ; 1.03 ; -.24 ; .54 ; .29 ; 1.45 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.678 ; 1.191 ; 1.238 ; 1.130 ; 1.140 ; 1.190 ; 1.118 ; 1.189 ; 1.139 ; 1.130 ; 1.235 ; 1.188 ; .676 ;
.680 ; 1.185 ; 1.234 ; 1.142 ; 1.146 ; 1.207 ; 1.129 ; 1.209 ; 1.149 ; 1.147 ; 1.241 ; 1.195 ; .689 ;
.27 ; -.54 ; -.29 ; 1.09 ; .55 ; 1.40 ; 1.01 ; 1.65 ; .88 ; 1.50 ; .52 ; .56 ; 1.89 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; 1.057 ; 1.131 ; 1.158 ; 1.139 ; 1.146 ; 1.083 ; 1.062 ; 1.082 ; 1.146 ; 1.140 ; 1.157 ; 1.130 ; 1.056 ; .430 ;
.406 ; 1.040 ; 1.136 ; 1.168 ; 1.139 ; 1.160 ; 1.092 ; 1.084 ; 1.096 ; 1.168 ; 1.154 ; 1.178 ; 1.147 ; 1.059 ; .435 ;
-5.52 ; -1.65 ; .41 ; .85 ; -.04 ; 1.24 ; .80 ; 2.07 ; 1.28 ; 1.93 ; 1.26 ; 1.85 ; 1.51 ; .31 ; 1.25 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.557 ; 1.152 ; 1.249 ; 1.158 ; 1.189 ; 1.082 ; 1.001 ; .993 ; 1.001 ; 1.083 ; 1.190 ; 1.157 ; 1.249 ; 1.152 ; .557 ;
.549 ; 1.130 ; 1.245 ; 1.156 ; 1.197 ; 1.086 ; 1.017 ; 1.005 ; 1.024 ; 1.096 ; 1.208 ; 1.167 ; 1.257 ; 1.143 ; .562 ;
-1.48 ; -1.93 ; -.31 ; -.15 ; .70 ; .37 ; 1.64 ; 1.23 ; 2.34 ; 1.23 ; 1.54 ; .85 ; .66 ; -.77 ; .85 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.583 ; 1.160 ; 1.164 ; 1.119 ; 1.118 ; 1.062 ; .993 ; .900 ; .993 ; 1.062 ; 1.118 ; 1.119 ; 1.164 ; 1.160 ; .583 ;
.580 ; 1.141 ; 1.155 ; 1.128 ; 1.120 ; 1.076 ; .996 ; .917 ; 1.012 ; 1.085 ; 1.128 ; 1.136 ; 1.166 ; 1.154 ; .587 ;
-.46 ; -1.65 ; -.77 ; .80 ; .16 ; 1.35 ; .32 ; 1.85 ; 1.92 ; 2.18 ; .86 ; 1.53 ; .13 ; -.50 ; .66 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.557 ; 1.152 ; 1.249 ; 1.157 ; 1.190 ; 1.083 ; 1.001 ; .993 ; 1.001 ; 1.082 ; 1.189 ; 1.158 ; 1.249 ; 1.152 ; .557 ;
.555 ; 1.130 ; 1.244 ; 1.157 ; 1.200 ; 1.088 ; 1.016 ; 1.002 ; 1.020 ; 1.091 ; 1.204 ; 1.163 ; 1.254 ; 1.147 ; .554 ;
-.30 ; -1.90 ; -.36 ; -.03 ; .87 ; .43 ; 1.49 ; .92 ; 1.92 ; .82 ; 1.23 ; .42 ; .38 ; -.45 ; -.49 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; 1.056 ; 1.130 ; 1.157 ; 1.140 ; 1.146 ; 1.082 ; 1.062 ; 1.083 ; 1.146 ; 1.139 ; 1.158 ; 1.131 ; 1.057 ; .430 ;
.430 ; 1.046 ; 1.132 ; 1.168 ; 1.148 ; 1.161 ; 1.086 ; 1.079 ; 1.086 ; 1.161 ; 1.146 ; 1.170 ; 1.135 ; 1.043 ; .403 ;
.04 ; -.92 ; .18 ; .96 ; .69 ; 1.28 ; .39 ; 1.55 ; .24 ; 1.30 ; .57 ; 1.03 ; .32 ; -1.29 ; -6.27 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.676 ; 1.188 ; 1.235 ; 1.130 ; 1.139 ; 1.189 ; 1.118 ; 1.190 ; 1.140 ; 1.130 ; 1.238 ; 1.191 ; .678 ;
.680 ; 1.179 ; 1.230 ; 1.141 ; 1.143 ; 1.203 ; 1.124 ; 1.203 ; 1.143 ; 1.139 ; 1.231 ; 1.181 ; .679 ;
.52 ; -.77 ; -.41 ; .94 ; .32 ; 1.16 ; .58 ; 1.08 ; .30 ; .84 ; -.53 ; -.84 ; .20 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.435 ; 1.064 ; 1.200 ; 1.238 ; 1.158 ; 1.158 ; 1.119 ; 1.157 ; 1.157 ; 1.235 ; 1.200 ; 1.067 ; .436 ;
.434 ; 1.048 ; 1.196 ; 1.231 ; 1.167 ; 1.170 ; 1.135 ; 1.170 ; 1.164 ; 1.226 ; 1.194 ; 1.049 ; .434 ;
-.24 ; -1.55 ; -.34 ; -.57 ; .76 ; 1.02 ; 1.45 ; 1.15 ; .64 ; -.75 ; -.51 ; -1.73 ; -.40 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.539 ; 1.067 ; 1.191 ; 1.131 ; 1.249 ; 1.164 ; 1.249 ; 1.130 ; 1.188 ; 1.064 ; .539 ;
.537 ; 1.054 ; 1.173 ; 1.119 ; 1.243 ; 1.155 ; 1.240 ; 1.114 ; 1.166 ; 1.048 ; .536 ;
-.34 ; -1.26 ; -1.48 ; -1.09 ; -.47 ; -.79 ; -.73 ; -1.39 ; -1.83 ; -1.54 ; -.55 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.436 ; .678 ; 1.057 ; 1.152 ; 1.160 ; 1.152 ; 1.056 ; .676 ; .435 ;
.432 ; .664 ; 1.035 ; 1.128 ; 1.137 ; 1.121 ; 1.029 ; .658 ; .429 ;
-1.01 ; -2.09 ; -2.09 ; -2.12 ; -1.98 ; -2.73 ; -2.54 ; -2.69 ; -1.46 ;

+-------+-------+-------+-------+-------+-------+-------+-------+-------+

.430 ; .557 ; .583 ; .557 ; .430 ;
.426 ; .553 ; .579 ; .551 ; .424 ;
-.89 ; -.70 ; -.64 ; -1.08 ; -1.30 ;

+-------+-------+-------+-------+-------+

Attachment to 2CAN070804 Page 23 of 23 FIGURE 8 (continued)

GETARP Output for the 100% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON NODE PREDICTED MEAS.  % DIFFERENCE 1 .6090 .6249 2.6181 2 .6900 .7017 1.6925 3 .7680 .7765 1.1049 4 .8850 .9024 1.9665 5 .9470 .9688 2.3013 6 .9860 1.0125 2.6901 7 1.0190 1.0501 3.0493 8 1.0450 1.0793 3.2805 9 1.0640 1.1015 3.5279 10 1.0780 1.1179 3.7047 11 1.0890 1.1297 3.7355 12 1.0970 1.1376 3.7012 13 1.1030 1.1429 3.6176 14 1.1080 1.1460 3.4282 15 1.1110 1.1473 3.2709 16 1.1130 1.1475 3.0967 17 1.1150 1.1466 2.8336 18 1.1150 1.1450 2.6932 19 1.1150 1.1430 2.5100 20 1.1150 1.1406 2.2994 21 1.1130 1.1381 2.2557 22 1.1110 1.1355 2.2080 23 1.1090 1.1328 2.1431 24 1.1080 1.1303 2.0161 25 1.1070 1.1294 2.0259 26 1.1080 1.1306 2.0396 27 1.1080 1.1308 2.0541 28 1.1060 1.1268 1.8851 29 1.1020 1.1195 1.5885 30 1.0960 1.1100 1.2746 31 1.0890 1.0989 .9054 32 1.0810 1.0861 .4730 33 1.0740 1.0720 -.1859 34 1.0650 1.0567 -.7828 35 1.0560 1.0403 -1.4881 36 1.0460 1.0231 -2.1932 37 1.0350 1.0050 -2.9000 38 1.0240 .9862 -3.6873 39 1.0110 .9667 -4.3802 40 .9960 .9463 -4.9918 41 .9810 .9249 -5.7193 42 .9630 .9018 -6.3548 43 .9420 .8766 -6.9456 44 .9160 .8484 -7.3780 45 .8860 .8166 -7.8369 46 .8480 .7801 -8.0020 47 .8050 .7414 -7.9015 48 .7460 .6884 -7.7206 49 .6440 .5953 -7.5588 50 .5910 .5543 -6.2054 51 .5340 .5154 -3.4791 PEAKING PARAMETER COMPARISON PARAMETER MEAS. PREDICTED % DIFFERENCE FXY 1.4125 1.4280 -1.0843 %

FR 1.3681 1.3790 -.7922 %

FZ 1.1475 1.1150 2.9118 %

FQ 1.6299 1.5840 2.8976 %

CALCULATED RMS VALUES RADIAL = 1.2725 AXIAL = 3.6611 MEASURED ASI = .0672 PREDICTED ASI = .0391 ACCEPTANCE CRITERIA REPORT MEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

RMS ERROR ON AXIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET ***