ML090260127: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML090260127
| number = ML090260127
| issue date = 11/11/2008
| issue date = 11/11/2008
| title = Catawba, Units 1 & 2 - Calculation 07Q3691-CAL-009, Revision 0, Analysis of Buried Hdpe Piping System - Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2
| title = Calculation 07Q3691-CAL-009, Revision 0, Analysis of Buried Hdpe Piping System - Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2
| author name = Hailu S
| author name = Hailu S
| author affiliation = Stevenson & Associates
| author affiliation = Stevenson & Associates
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Client: Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Title: Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 Project: Catawba Unit #1 and Unit #2 - Buried HDPE Pipe Design and Analysis Method: Computer and Manual Calculations Acceptance Criteria: N/A Remarks:  Verification Method  Design Review Method  Other  Alternate Calculation  No Verification Necessary  Qualification Test Results:  Program Name Version/Revision Computer Type QA Verified ADLPIPE 4F10.1 PC YES Computer Programs UsedMicrosoft Word 2003 PC N/A  Mathcad 2000 PC N/A REVISIONS Revision No. 0  Description Original Issue  Total Pages (Cumulative) 94  By/Date 11-10-08 Checked/Date 11-11-08 Approved/Date  11-11-08 Stevenson & Associates CALCULATION COVER SHEET CONTRACT NO.
{{#Wiki_filter:Client:     Duke Power Carolinas, LLC                         Calculation No.         07Q3691-CAL-009
07Q3691U:\07Q3691 - Duke HDPE Analysis\10_Calculations\07Q3691-CAL-009\07Q3691-CAL-009_11-10.doc C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page TABLE OF CONTENTS T ABLE OF C ONTENTS....................................................................................................................................2 D OCUMENT I NDEX........................................................................................................................................41.0PURPOSE OR OBJECTIVE...........................................................................................................62.0SCOPE AND LIMITATIONS.........................................................................................................63.0DEFINITIONS.................................................................................................................................64.0ASSUMPTIONS..............................................................................................................................84.1Assumptions Not Requiring Verification................................................................................84.2Assumptions To Be Verified.....................................................................................................85.0ANALYSIS METHODOLOGY AND APPROACH......................................................................85.1Background
...............................................................................................................................
.85.2Methodology and Approach.....................................................................................................95.2.1HDPE Calculations Dependent Only on Design Conditions and Pipe Size..........................95.2.2HDPE Calculations Requiring the Input of Geometry Specific Loads...............................125.2.3Steel Pipe Criteria....................................................................................................................156.0ANALYSIS INPUTS.....................................................................................................................156.1Design Loads............................................................................................................................156.2Pipe Properties.........................................................................................................................156.3Material Properties..................................................................................................................166.4HDPE to Steel Boundary........................................................................................................196.5HDPE Elbows...........................................................................................................................196.6Stress Indices and SIFs............................................................................................................206.7Soil Springs
...............................................................................................................................
226.8Seismic Analysis Input............................................................................................................226.8.1Seismic Anchor Motion...........................................................................................................226.8.2Seismic Wave Passage.............................................................................................................226.8.3Decoupling of 12" Steel Pipe...................................................................................................236.9Piping Layout...........................................................................................................................236.10Pipe Criteria - Steel and HDPE.............................................................................................256.11Acceptance Criteria - Steel and HDPE.................................................................................277.0ANALYSIS....................................................................................................................................29 7.1 Computer Model.............................................................................................................................29 7.2 Results of ADLPIPE Analysis........................................................................................................307.2.1 Load Cases Analyzed...................................................................................................................30 7.2.2 Summary of HDPE Loads at Critical Locations.......................................................................317.3 Calculations per the ASME BPVC Code Case N-755..................................................................337.4 Stress Summary for Unit 2 Steel Pipe...........................................................................................447.5 Flange Summary for Unit 2 HDPE Pipe.......................................................................................447.6 Evaluation of Buoyancy over Condenser Cooling Water Lines.................................................447.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines.....................................467.8 Evaluation of 12" ø HDPE Pipe over Condenser Cooling Water Lines.....................................498.0RESULTS......................................................................................................................................518.1 Functionality Capability and Break Postulation..........................................................................52 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects......................528.3 Final Loads at the Centerline of the 42" ø Supply Line due to Soil Effects...............................548.4 Branch Line Qualification..............................................................................................................5


==59.0CONCLUSION==
==Title:==
S...........................................................................................................................55Appendix A.................................................................................................................................................56Appendix B.................................................................................................................................................62 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page DOCUMENT I NDEX DIN No. Document Number/Title Revision, Edition, Date Reference Input Output1 Nondestructive Evaluation: Seismic Design Criteria for Polyethylene Pipe Replacement Code Case, EPRI, Palo Alto, CA, 2006, Report Number 1013549 September 2006 2 Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, ASCE 1984 3 Catawba Updated Final Safety Analysis Report Rev. 12, April 2006 4 Polyethylene (PE) Pressure Pipe and Fittings, 4in. (100 mm) through 63 in. (1,575 mm) for Water Distribution and Transmission, ANSI/AWWA C906-99, American Water Works Association, 6666 West Quincy Ave., Denver, CO 80235 March 1, 2000 5Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-06.
Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 Project:       Catawba Unit #1 and Unit #2 - Buried HDPE Pipe Design and Analysis Method:        Computer and Manual Calculations Acceptance Criteria:                    N/A Remarks:
6Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-11.
Verification Method            Design Review Method              Alternate Calculation          Qualification Test Other                            No Verification Necessary Results:
7Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-12.8 HDPE Product Catalog, ISCO Industries Version 2.1, 2005 9 Ladish General Catalog No. 55 1971  10 Navco Piping Catalog Edition No. 10, June 1, 1974 11 ASME Boiler and Pressure Vessel Code, Section III, Division I, Subsection ND-3600 1998 Edition with 2000 Addenda 12 ASME Code Case N-755, High Density Polyethylene (HPDE) Buried Pipe, Section III, Division I, Class 3 March 22, 2007 13 CNS ISFSI Haul Path Evaluation Calculation, CNM 1140.04-0005 001 Rev. 0, December 21, 2006 14 Request for Relief Number 06-CN-003 Use of Polyethylene Material in Nuclear Safety-Related Piping Applications (TAC Numbers MD 3729  and MD 3730) March 13, 2008 15 S&A Calculation 07Q3691-CAL-001 Calculation of Soil Spring Stiffness for Buried HDPE Pipe Rev. 0, 2008 16 Catawba Nuclear Station Units 1 and 2 Calculation CNC-1206.02-84-001, Nuclear Service Water Pipe Seismic Analysis (Buried Portion)Rev. 16,  9-7-06 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page DIN No. Document Number/Title Revision, Edition, Date Reference Input Output17 Bonney Forge Stress Intensification Factors: Weldolet, Sockolet, Thredolet, Sweepolet, Latrolet, Insert Weldolet, Bulletin SI-1 1988 18 S&A Calculation 07Q3691-CAL-002 Calculation of Equivalent Thermal Strain for Seismic Analysis of Buried HDPE Pipe Rev. 0, 2008 19 Catawba Nuclear Station Specification CNS-1206.02-01-008  Rev. 1,  January 3,1998 20 018B00Y020GPLOT_Digitized Spectra (4-14) - 21 Young, W. C., Roarks Formulas for Stress and Strain.McGraw-Hill, Sixth Edition, 1989 22 Fatigue and Capacity Testing of High-Density Polyethylene Pipe and Pipe Components Fabricated from PE4710 (1015062) Final Report, December 2007 23 3691-LSC-002, HDPE Pipe Interface Loads Applied to Steel Pipe March 17, 2008 24S&A Calculation 07Q3691-CAL-011, Definition of Break Selection Criteria and Functional Capability Criteria for the Piping Design SpecificationAugust 30,2008 25 S&A Calculation 07Q3691-CAL-013, Technical Basis for Design Acceptance Criteria September, 30, 2008 26 CNS-1574-00_RN-00-0002,  ASME Design Specification for the Nuclear Service Water System (RN) Diesel Generator Cooling Supply and Return Piping; Modification, Repair, and Replacement Preliminary Draft 27 S&A Document 3691-DI-001,  Design Instructions for Analysis of Polyethylene Pipe Rev. 0, 7/2008 28 Welding Research Council Bulletin 300, Technical Position on Industry Practice December, 1984 29 ASME Boiler and Pressure Vessel Code, Section III, Division I, Subsection ND-3600 1989 Edition with 1991 Addenda C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 1.0 PURPOSEOR O BJECTIVECatawba Nuclear Station has decided to replace the buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply and return headers to Unit 1 and Unit 2 Diesel Generator (DG) buildings. The existing 10-in carbon steel piping will be replaced by 12-in high-density polyethylene (HDPE) piping. The purpose of this calculation is to demonstrate the Design Basis ASME BPVC Code and Regulatory compliance for the buried HDPE piping system connecting the 42-in supply header B to the DG building of Unit 2.
Computer Programs                  Program Name                  Version/Revision      Computer Type        QA Verified Used ADLPIPE                              4F10.1               PC                YES Microsoft Word                      2003                  PC                N/A Mathcad                              2000                 PC                N/A REVISIONS Revision No.                                 0 Description                            Original Issue Total Pages (Cumulative)                     94 By/Date                                             11-10-08 Checked/Date                                       11-11-08 Approved/Date                                     11-11-08 CALCULATION                            CONTRACT NO.
2.0 SCOPEAND L IMITATIONSResults of this calculation are limited to the 12-in buried HDPE piping system supplying cooling water from the 42-in NSWS supply header B to the to the Diesel Generator Building of Unit 2. The piping model goes from the anchor at the wall (column lines 76 & AA) to the 42ø Supply B header pipe of the NSWS. There is a manhole ( MH-3 ) at Diesel Generator Building Unit 2, and there is also a manhole      ( MH-7) at the connection to the 42 ø Supply B header pipe of the NSWS. The manholes provide access to the steel to HDPE flanged connections for the purpose of inspection and maintenance of the steel to
COVER SHEET                              07Q3691 Stevenson & Associates U:\07Q3691 - Duke HDPE Analysis\10_Calculations\07Q3691-CAL-009\07Q3691-CAL-009_11-10.doc


HDPE connections. The HDPE pipe passes through the wall penetration of the manhole, but is not attached to the structure. The manhole does not transfer any load to the HDPE pipe. The gap between the manhole penetration and the HDPE pipe is sealed to prevent water from entering the manhole through this penetration. The piping qualification includes the following: (a) The Steel Pipe from the Unit 2 Diesel Generator Building anchor steel to the High Density   Polyethylene (HDPE) pipe Flange. (b) HDPE Piping from Steel - HDPE Flange near the Unit 2 Diesel Generator Building Anchor to the Steel - HDPE Flange near the 42 NSWS Supply Header B (c) The Steel Pipe from the Steel - HDPE Flange anchor to the 42 NSWS Supply Header   B, including qualification of the 12 NSWS Supply Header B branch connection to the   NSWS Supply Header pipe.3.0 D EFINITIONSNomenclature per Ref. [14], Request for Relief Number 06-CN-003, Use of Polyethylene Material in Nuclear Safety-Related Piping Applications (TAC Numbers MD 3729 and MD 3730). This nomenclature may differ somewhat from the nomen clature used in the ASME BPVC Code Case N-755 Ref. [12]. Nomenclature is provided at point of use
CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                                              Calculation No.                07Q3691-CAL-009 Project  Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                  Date 11/10/08                      Chkd by                                            Date 11/11/08 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................................... 2 DOCUMENT INDEX ........................................................................................................................................ 4 1.0      PURPOSE OR OBJECTIVE ........................................................................................................... 6 2.0      SCOPE AND LIMITATIONS......................................................................................................... 6 3.0      DEFINITIONS................................................................................................................................. 6 4.0      ASSUMPTIONS.............................................................................................................................. 8 4.1    Assumptions Not Requiring Verification ................................................................................ 8 4.2    Assumptions To Be Verified ..................................................................................................... 8 5.0      ANALYSIS METHODOLOGY AND APPROACH...................................................................... 8 5.1    Background ................................................................................................................................ 8 5.2    Methodology and Approach ..................................................................................................... 9 5.2.1 HDPE Calculations Dependent Only on Design Conditions and Pipe Size.......................... 9 5.2.2 HDPE Calculations Requiring the Input of Geometry Specific Loads............................... 12 5.2.3 Steel Pipe Criteria.................................................................................................................... 15 6.0      ANALYSIS INPUTS..................................................................................................................... 15 6.1    Design Loads ............................................................................................................................ 15 6.2    Pipe Properties......................................................................................................................... 15 6.3    Material Properties.................................................................................................................. 16 6.4    HDPE to Steel Boundary ........................................................................................................ 19 6.5    HDPE Elbows........................................................................................................................... 19 6.6    Stress Indices and SIFs............................................................................................................ 20 6.7    Soil Springs............................................................................................................................... 22 6.8    Seismic Analysis Input ............................................................................................................ 22 6.8.1 Seismic Anchor Motion ........................................................................................................... 22 6.8.2 Seismic Wave Passage ............................................................................................................. 22 6.8.3 Decoupling of 12 Steel Pipe................................................................................................... 23 6.9    Piping Layout........................................................................................................................... 23 6.10    Pipe Criteria - Steel and HDPE ............................................................................................. 25 6.11    Acceptance Criteria - Steel and HDPE ................................................................................. 27 7.0      ANALYSIS.................................................................................................................................... 29 7.1 Computer Model ............................................................................................................................. 29 7.2 Results of ADLPIPE Analysis........................................................................................................ 30 7.2.1 Load Cases Analyzed ................................................................................................................... 30 7.2.2 Summary of HDPE Loads at Critical Locations ....................................................................... 31 7.3 Calculations per the ASME BPVC Code Case N-755.................................................................. 33 7.4 Stress Summary for Unit 2 Steel Pipe ........................................................................................... 44 7.5 Flange Summary for Unit 2 HDPE Pipe ....................................................................................... 44 7.6 Evaluation of Buoyancy over Condenser Cooling Water Lines ................................................. 44 7.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines ..................................... 46 7.8 Evaluation of 12 ø HDPE Pipe over Condenser Cooling Water Lines..................................... 49 8.0      RESULTS ...................................................................................................................................... 51 8.1 Functionality Capability and Break Postulation.......................................................................... 52 Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                                                    Calculation No.                07Q3691-CAL-009 Project  Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                      Date 11/10/08                      Chkd by                                            Date 11/11/08 8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects ...................... 52 8.3 Final Loads at the Centerline of the 42 ø Supply Line due to Soil Effects............................... 54 8.4 Branch Line Qualification.............................................................................................................. 55
.A = Cross sectional area of pipe [in 2] = Coefficient of thermal expansion [in/in/
 
o F]B 1 and B 2 = Primary stress indices B' = Burial factor BS = Building settlement loads c = Allowance for erosion or mechanical damage, [in]
==9.0      CONCLUSION==
S ........................................................................................................................... 55 Appendix A................................................................................................................................................. 56 Appendix B ................................................................................................................................................. 62 Page CALCULATION CONTINUATION SHEET Client              Duke Power Carolinas, LLC                    Calculation No. 07Q3691-CAL-009 Project          Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                    Date 11/10/08      Chkd by                    Date 11/11/08 DOCUMENT INDEX DIN No.                                                                                            Reference          Output Input Document Number/Title                              Revision, Edition, Date 1            Nondestructive Evaluation: Seismic Design          September 2006 Criteria for Polyethylene Pipe Replacement Code Case, EPRI, Palo Alto, CA, 2006, Report Number 1013549 2            Guidelines for the Seismic Design of Oil and Gas  1984 Pipeline Systems, ASCE 3            Catawba Updated Final Safety Analysis Report      Rev. 12, April 2006 4            Polyethylene (PE) Pressure Pipe and Fittings,      March 1, 2000 4in. (100 mm) through 63 in. (1,575 mm) for Water Distribution and Transmission, ANSI/AWWA C906-99, American Water Works Association, 6666 West Quincy Ave., Denver, CO 80235 5            Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-06.
6            Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-11.
7            Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-12.
8            HDPE Product Catalog, ISCO Industries              Version 2.1, 2005 9            Ladish General Catalog No. 55                      1971 10            Navco Piping Catalog                                Edition No. 10, June 1, 1974 11            ASME Boiler and Pressure Vessel Code, Section      1998 Edition with 2000 Addenda III, Division I, Subsection ND-3600 12            ASME Code Case N-755, High Density                  March 22, 2007 Polyethylene (HPDE) Buried Pipe, Section III, Division I, Class 3 13            CNS ISFSI Haul Path Evaluation Calculation,        Rev. 0, December 21, 2006 CNM 1140.04-0005 001 14            Request for Relief Number 06-CN-003 Use of        March 13, 2008 Polyethylene Material in Nuclear Safety-Related Piping Applications (TAC Numbers MD 3729 and MD 3730) 15            S&A Calculation 07Q3691-CAL-001 Calculation        Rev. 0, 2008 of Soil Spring Stiffness for Buried HDPE Pipe 16            Catawba Nuclear Station Units 1 and 2              Rev. 16, 9-7-06 Calculation CNC-1206.02-84-001, Nuclear Service Water Pipe Seismic Analysis (Buried Portion)
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                    Calculation No. 07Q3691-CAL-009 Project      Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                Date 11/10/08      Chkd by                    Date 11/11/08 DIN No.                                                                                            Reference          Output Input Document Number/Title                              Revision, Edition, Date 17        Bonney Forge Stress Intensification Factors:        1988 Weldolet, Sockolet, Thredolet, Sweepolet, Latrolet, Insert Weldolet, Bulletin SI-1 18        S&A Calculation 07Q3691-CAL-002 Calculation        Rev. 0, 2008 of Equivalent Thermal Strain for Seismic Analysis of Buried HDPE Pipe 19        Catawba Nuclear Station Specification CNS-          Rev. 1, January 3,1998 1206.02-01-008 20        018B00Y020GPLOT_Digitized Spectra (4-14)            -
21        Young, W. C., Roarks Formulas for Stress and      McGraw-Hill, Sixth Edition, 1989 Strain.
22        Fatigue and Capacity Testing of High-Density        Final Report, December 2007 Polyethylene Pipe and Pipe Components Fabricated from PE4710 (1015062) 23        3691-LSC-002, HDPE Pipe Interface Loads            March 17, 2008 Applied to Steel Pipe 24        S&A Calculation 07Q3691-CAL-011, Definition        August 30,2008 of Break Selection Criteria and Functional Capability Criteria for the Piping Design Specification 25        S&A Calculation 07Q3691-CAL-013, Technical        September, 30, 2008 Basis for Design Acceptance Criteria 26        CNS-1574-00_RN-00-0002,  ASME Design              Preliminary Draft Specification for the Nuclear Service Water System (RN) Diesel Generator Cooling Supply and Return Piping; Modification, Repair, and Replacement 27        S&A Document 3691-DI-001,  Design                  Rev. 0, 7/2008 Instructions for Analysis of Polyethylene Pipe 28        Welding Research Council Bulletin 300,              December, 1984 Technical Position on Industry Practice 29        ASME Boiler and Pressure Vessel Code, Section      1989 Edition with 1991 Addenda III, Division I, Subsection ND-3600 Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                          Calculation No. 07Q3691-CAL-009 Project    Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                Date 11/10/08          Chkd by                      Date 11/11/08 1.0      PURPOSE OR OBJECTIVE Catawba Nuclear Station has decided to replace the buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply and return headers to Unit 1 and Unit 2 Diesel Generator (DG) buildings. The existing 10-in carbon steel piping will be replaced by 12-in high-density polyethylene (HDPE) piping. The purpose of this calculation is to demonstrate the Design Basis ASME BPVC Code and Regulatory compliance for the buried HDPE piping system connecting the 42-in supply header B to the DG building of Unit 2.
2.0      SCOPE AND LIMITATIONS Results of this calculation are limited to the 12-in buried HDPE piping system supplying cooling water from the 42-in NSWS supply header B to the to the Diesel Generator Building of Unit 2. The piping model goes from the anchor at the wall (column lines 76 & AA) to the 42ø Supply B header pipe of the NSWS. There is a manhole ( MH-3 ) at Diesel Generator Building Unit 2, and there is also a manhole
( MH-7) at the connection to the 42 ø Supply B header pipe of the NSWS. The manholes provide access to the steel to HDPE flanged connections for the purpose of inspection and maintenance of the steel to HDPE connections. The HDPE pipe passes through the wall penetration of the manhole, but is not attached to the structure. The manhole does not transfer any load to the HDPE pipe. The gap between the manhole penetration and the HDPE pipe is sealed to prevent water from entering the manhole through this penetration. The piping qualification includes the following:
(a)     The Steel Pipe from the Unit 2 Diesel Generator Building anchor steel to the High Density Polyethylene (HDPE) pipe Flange.
(b)     HDPE Piping from Steel - HDPE Flange near the Unit 2 Diesel Generator Building Anchor to the Steel - HDPE Flange near the 42 NSWS Supply Header B (c)     The Steel Pipe from the Steel - HDPE Flange anchor to the 42 NSWS Supply Header B, including qualification of the 12 NSWS Supply Header B branch connection to the NSWS Supply Header pipe.
3.0     DEFINITIONS Nomenclature per Ref. [14], Request for Relief Number 06-CN-003, Use of Polyethylene Material in Nuclear Safety-Related Piping Applications (TAC Numbers MD 3729 and MD 3730). This nomenclature may differ somewhat from the nomenclature used in the ASME BPVC Code Case N-755 Ref. [12].
Nomenclature is provided at point of use.
A = Cross sectional area of pipe [in2]
D = Coefficient of thermal expansion [in/in/oF]
B1 and B2 = Primary stress indices B' = Burial factor BS = Building settlement loads c = Allowance for erosion or mechanical damage, [in]
D = Outside diameter of pipe [in]
D = Outside diameter of pipe [in]
DR = Dimensional ratio of pipe; for OD-controlled pipe, DR = D/t C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page DW = Deadweight of pipe and contents [lb]E = Modulus of soil reaction [psi]
DR = Dimensional ratio of pipe; for OD-controlled pipe, DR = D/t Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                       Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08       Chkd by                       Date 11/11/08 DW = Deadweight of pipe and contents [lb]
E pipe= Elastic modulus of pipe [psi]
E = Modulus of soil reaction [psi]
f 0= Ovality correction factor F= Impact factor for surface loads.
Epipe = Elastic modulus of pipe [psi]
FS = Factor of safety (FS = 2.0 Level A, 1.8 for Level B, and 1.5 for Levels C and D) soil=Specific weight of the soil [lb/ft 3]water=Specific weight of the water [lb/ft 3]H= Height of fill (or cover) above top of pipe [ft]
f0 = Ovality correction factor F = Impact factor for surface loads.
H gw = height of groundwater above pipe [ft]
FS = Factor of safety (FS = 2.0 Level A, 1.8 for Level B, and 1.5 for Levels C and D)
k=Longitudinal stress factor K b= Bedding factor, usually 0.1.
Jsoil = Specific weight of the soil [lb/ft3]
K 0= Coefficient of soil pressure at rest, 0.5 to 1.0, may conservatively be taken as 1.0 K po= Spring due to pipe ovaling [lb/in]
water = Specific weight of the water [lb/ft3]
H = Height of fill (or cover) above top of pipe [ft]
Hgw = height of groundwater above pipe [ft]
k = Longitudinal stress factor Kb = Bedding factor, usually 0.1.
K0 = Coefficient of soil pressure at rest, 0.5 to 1.0, may conservatively be taken as 1.0 Kpo = Spring due to pipe ovaling [lb/in]
L = Deflection lag factor (recommended values: 1.0 for short term and 1.5 for long term loads)
L = Deflection lag factor (recommended values: 1.0 for short term and 1.5 for long term loads)
OBE w = Operating Basis Earthquake due to effects of seismic wave passage OBE S = Operating Basis Earthquake due to effects of soil movement OBE D = Operating Basis Earthquake due to effects of anchor movements P = Long-term design gage pressure for the pipe at the specified design temperature [psi]
OBEw = Operating Basis Earthquake due to effects of seismic wave passage OBES = Operating Basis Earthquake due to effects of soil movement OBED = Operating Basis Earthquake due to effects of anchor movements P = Long-term design gage pressure for the pipe at the specified design temperature [psi]
P A , P B , P C  and P D = Maximum Pressures for Service Levels A through D [psi]
PA , PB , PC and PD = Maximum Pressures for Service Levels A through D [psi]
P bs , P cs , and P ds = Surge Pressures for Service Levels B through D [psi]
Pbs , Pcs , and Pds = Surge Pressures for Service Levels B through D [psi]
P E= Vertical soil pressure loads due to weight of soil cover [psi]
PE = Vertical soil pressure loads due to weight of soil cover [psi]
P gw= Groundwater pressure loads [psi]
Pgw = Groundwater pressure loads [psi]
P L= Vertical surcharge (transportation) loads [psi] PS = Loads due to pump startup and shutdown  
PL = Vertical surcharge (transportation) loads [psi]
 
PS = Loads due to pump startup and shutdown Rb = Buoyancy reduction factor Sh = Design allowable stress for HDPE piping at temperature [psi]
R b=Buoyancy reduction factor S h= Design allowable stress for HDPE piping at temperature [psi]
Sy = Yield stress [psi]
S y = Yield stress [psi]
SSEw = Safe Shutdown Earthquake due to effects of seismic wave passage SSES = Safe Shutdown Earthquake due to effects of soil movement SSED = Safe Shutdown Earthquake due to effects of anchor movements TA,max ,TB,max , TC,max and TD,max = Maximum temperature for Service Levels A through D [oF]
SSE w = Safe Shutdown Earthquake due to effects of seismic wave passage SSE S = Safe Shutdown Earthquake due to effects of soil movement SSE D = Safe Shutdown Earthquake due to effects of anchor movements T A,max ,TB,max , TC,max and TD,max = Maximum temperature for Service Levels A through D [
TA,min ,TB,min , TC,min and TD,min = Minimum temperature for Service Levels A through D [oF]
o F]TA,min ,TB,min , TC,min and TD,min = Minimum temperature for Service Levels A through D [
t = Actual (not nominal) pipe wall thickness [in]
o F]t= Actual (not nominal) pipe wall thickness [in]
tmin = Minimum allowable pipe wall thickness [in]
t min = Minimum allowable pipe wall thickness [in]
VOT = Valve Operating Transients Q= Poissons ratio for piping Qr = Poisson ratio for the bedrock WP = Weight of empty pipe, [lb/ft]
VOT= Valve Operating Transients = Poissons ratio for piping r= Poisson ratio for the bedrock W P = Weight of empty pipe, [lb/ft]
Ww = Groundwater floatation loads [lb]
W w = Groundwater floatation loads [lb]
Z = Section modulus of pipe cross section [in3]
Z=Section modulus of pipe cross section [in 3]
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08         Chkd by                         Date 11/11/08 4.0       ASSUMPTIONS 4.1       Assumptions Not Requiring Verification
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 4.0 A SSUMPTIONS 4.1 Assumptions Not Requiring Verification [1] Due to the small Seismic Building Displacement of the Unit 2 Diesel Generator Building (0.003), the seismic response of the buried steel pipe from the Diesel Generator building anchor to the HDPE piping is predominately due the effect of seismic wave passage. The effect of the Diesel Generator Building Amplified Floor Response does not need to be considered in the analysis of the buried pipe, Ref. [25]. [2] Per discussion with Catawba Systems Engineering, it is concluded that the buried HDPE   piping at Catawba is not subjected to any pressure surge loads, Ref. [25] [3] Seismic Anchor Movements of 0.003 are much less than 1/16 and, therefore, will have   negligible effect on the piping and are not considered in the analysis 4.2 Assumptions To Be Verified [1] Stress Intensification Factors (SIFs) for mitered elbows less than 90º are enveloped   by SIFs of 90º elbows.
[1]     Due to the small Seismic Building Displacement of the Unit 2 Diesel Generator Building (0.003), the seismic response of the buried steel pipe from the Diesel Generator building anchor to the HDPE piping is predominately due the effect of seismic wave passage. The effect of the Diesel Generator Building Amplified Floor Response does not need to be considered in the analysis of the buried pipe, Ref. [25].
5.0 ANALYSIS M ETHODOLOGY AND A PPROACH 5.1 Background The buried water supply system to and from the Diesel Generator (DG) buildings to the 42-in Nuclear Service Water System (NSWS) currently uses 10-in carbon steel pipes. Catawba Nuclear Station (CNS) has decided to replace the 10-in steel pipes with 12-in high-density polyethylene (HDPE) pipes. There are a total of eight cooling water piping linesfour supply lines and four return lines. Two cooling water supply lines to the DG building of Unit 1. One line originates from the 42-in supply header A and the other originates from the 42-in supply header B. Two cooling water supply lines to the DG building of Unit 2. One line originates from the 42-in supply header A and the other originates from the 42-in supply header B. Two cooling water return lines originating from the DG building of Unit 1. One line returns water to the 42-in return header A and the other returns water to the 42-in return header B. Two cooling water return lines originating from the DG building of Unit 2. One line returns water to the 42-in return header A and the other returns water to the 42-in return header B. The HDPE pipes are connected to the steel pipes by means of a flanged joint. At the DG building wall entrance, a transition is made from 10-in to 12-in using a 10x12 steel reducer with flanges to provide the necessary flanged connection to the HDPE pipe and a means of providing future access for examination of all joints from the inside surface per Ref. [14]. At the 42-in header side, a short 12-in flanged steel pipe is welded to the header. An additional steel flanged joint attached to the 12-in pipe provides the C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page necessary connection to the HDPE pipe and serves as future access. The HDPE piping system is considered anchored at both ends. The buried HDPE piping system considered in this calculation is the cooling water supply line from the 42-in supply header B to the Diesel Generator Building of Unit 2. The effects of pressure, deadweight, seismic and temperature loads on the buried HDPE piping are analyzed. 5.2 Methodology and Approach The piping is qualified to the requirements of the Piping Design Specification Ref. [26]. The Design Specification is based on ASME BPVC Code Case N-755 Ref. [12] and the commitments in Relief Request Number 06-CN-003 Ref. [14]. In addition, further guidance on design and analysis methods is provided in EPRI Report 1013549 Ref. [1] and S & A Design Instruction 3691-DI-001 Ref. [27]. However, the controlling design document is the Piping Design Specification Ref. [26]. The Code of Record for the Design and Analysis of the HDPE Pipe is the 1998 Edition of the ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection ND up to and including the 2000 Addenda. However, ND-3600 of the ASME Boiler and Pressure Vessel Code 1989 Edition shall be used to comply with the limitations imposed by 10 CFR 50.55 a (b) (1) (iii) except as amended by the governing document Relief Request Number 06-CN-003 Ref. [14]. The piping is classified as ASME Class 3 Duke Class C. The piping system is analyzed using a combination of hand calculations and the ADLPIPE computer program. ADLPIPE analyzes complex piping systems subjected to static and dynamic loads. The basic load cases (deadweight, thermal, seismic OBE, seismic SSE, etc.) and their combinations (such as thermal plus seismic) are included in the ADLPIPE analysis. Stresses in steel pipes are automatically computed by ADLPIPE according to an ASME Code year of interest. However, ADLPIPE does not calculate the stresses for all piping load cases and combinations in the HDPE pipe because HDPE material, properties, and qualification criteria are not yet included in the ADLPIPE computer code. Therefore, manual calculations are performed for the HPDE piping according to the relief request Ref. [14] which is consistent with the ASME BPVC Code Case N-755 [Ref. 12]. The required manual calculations are presented in sections 5.2.1 and 5.2.2. 5.2.1HDPE Calculations Dependent Only on Design Conditions and Pipe SizeThese calculations do not require ADLPIPE analysis results as input. The HDPE pipe size and the design conditions are the only inputs needed to perform the manual calculations in this section.
[2]     Per discussion with Catawba Systems Engineering, it is concluded that the buried HDPE piping at Catawba is not subjected to any pressure surge loads, Ref. [25]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Minimum Required Wall ThicknessPer Section 3131.1 of Ref. [12], the minimum required wall thickness (t min) of straight pipe sections is determined from:
[3]     Seismic Anchor Movements of 0.003 are much less than 1/16 and, therefore, will have negligible effect on the piping and are not considered in the analysis 4.2       Assumptions To Be Verified
c P S PD t2 min     (5.1) where: P = internal design gage pressure at the specified design temperature, psi D = outside diameter of pipe, in S = allowable stress, psi, from Table 3021-1 Ref. [14]
[1]     Stress Intensification Factors (SIFs) for mitered elbows less than 90º are enveloped by SIFs of 90º elbows.
c = allowance for mechanical and erosion damage, [in.] The actual wall thickness of the HDPE pipe shall not be less than t min . Ring DeflectionPer Section 3210 of Ref. [12], the deflection of the pipe diameter () due to soil and surcharge loads should be less than the maximum allowable value (max): max s 3 pipe L b E b'E F 061.0 1 DR 1 3 E 2 P K P L K 144 1  (5.2) where: )(gw dry gw saturated E H H H P K b = bedding factor L = deflection lag factor, 1.25 to 1.50, or 1.0 if using the soil prism pressure P E = vertical soil pressure due to earth loads, [lb/ft 2]P L = vertical soil pressure due to surcharge loads, [lb/ft 2]Epipe= apparent modulus of elasticity of pipe at 50 years, [psi]
5.0       ANALYSIS METHODOLOGY AND APPROACH 5.1     Background The buried water supply system to and from the Diesel Generator (DG) buildings to the 42-in Nuclear Service Water System (NSWS) currently uses 10-in carbon steel pipes. Catawba Nuclear Station (CNS) has decided to replace the 10-in steel pipes with 12-in high-density polyethylene (HDPE) pipes. There are a total of eight cooling water piping linesfour supply lines and four return lines.
DR= dimensional ratio of pipe (D/t)
x Two cooling water supply lines to the DG building of Unit 1. One line originates from the 42-in supply header A and the other originates from the 42-in supply header B.
x Two cooling water supply lines to the DG building of Unit 2. One line originates from the 42-in supply header A and the other originates from the 42-in supply header B.
x Two cooling water return lines originating from the DG building of Unit 1. One line returns water to the 42-in return header A and the other returns water to the 42-in return header B.
x Two cooling water return lines originating from the DG building of Unit 2. One line returns water to the 42-in return header A and the other returns water to the 42-in return header B.
The HDPE pipes are connected to the steel pipes by means of a flanged joint. At the DG building wall entrance, a transition is made from 10-in to 12-in using a 10x12 steel reducer with flanges to provide the necessary flanged connection to the HDPE pipe and a means of providing future access for examination of all joints from the inside surface per Ref. [14]. At the 42-in header side, a short 12-in flanged steel pipe is welded to the header. An additional steel flanged joint attached to the 12-in pipe provides the Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                       Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08           Chkd by                       Date 11/11/08 necessary connection to the HDPE pipe and serves as future access. The HDPE piping system is considered anchored at both ends.
The buried HDPE piping system considered in this calculation is the cooling water supply line from the 42-in supply header B to the Diesel Generator Building of Unit 2. The effects of pressure, deadweight, seismic and temperature loads on the buried HDPE piping are analyzed.
5.2   Methodology and Approach The piping is qualified to the requirements of the Piping Design Specification Ref. [26]. The Design Specification is based on ASME BPVC Code Case N-755 Ref. [12] and the commitments in Relief Request Number 06-CN-003 Ref. [14]. In addition, further guidance on design and analysis methods is provided in EPRI Report 1013549 Ref. [1] and S & A Design Instruction 3691-DI-001 Ref. [27]. However, the controlling design document is the Piping Design Specification Ref. [26].
The Code of Record for the Design and Analysis of the HDPE Pipe is the 1998 Edition of the ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection ND up to and including the 2000 Addenda. However, ND-3600 of the ASME Boiler and Pressure Vessel Code 1989 Edition shall be used to comply with the limitations imposed by 10 CFR 50.55 a (b) (1) (iii) except as amended by the governing document Relief Request Number 06-CN-003 Ref. [14]. The piping is classified as ASME Class 3 Duke Class C.
The piping system is analyzed using a combination of hand calculations and the ADLPIPE computer program. ADLPIPE analyzes complex piping systems subjected to static and dynamic loads. The basic load cases (deadweight, thermal, seismic OBE, seismic SSE, etc.) and their combinations (such as thermal plus seismic) are included in the ADLPIPE analysis.
Stresses in steel pipes are automatically computed by ADLPIPE according to an ASME Code year of interest. However, ADLPIPE does not calculate the stresses for all piping load cases and combinations in the HDPE pipe because HDPE material, properties, and qualification criteria are not yet included in the ADLPIPE computer code. Therefore, manual calculations are performed for the HPDE piping according to the relief request Ref. [14] which is consistent with the ASME BPVC Code Case N-755 [Ref. 12]. The required manual calculations are presented in sections 5.2.1 and 5.2.2.
5.2.1 HDPE Calculations Dependent Only on Design Conditions and Pipe Size These calculations do not require ADLPIPE analysis results as input. The HDPE pipe size and the design conditions are the only inputs needed to perform the manual calculations in this section.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                             Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08           Chkd by                     Date 11/11/08 Minimum Required Wall Thickness Per Section 3131.1 of Ref. [12], the minimum required wall thickness (tmin) of straight pipe sections is determined from:
PD t min         c                                            (5.1) 2S  P where:
P = internal design gage pressure at the specified design temperature, psi D = outside diameter of pipe, in S = allowable stress, psi, from Table 3021-1 Ref. [14]
c = allowance for mechanical and erosion damage, [in.]
The actual wall thickness of the HDPE pipe shall not be less than tmin .
Ring Deflection Per Section 3210 of Ref. [12], the deflection of the pipe diameter (:) due to soil and surcharge loads should be less than the maximum allowable value (:max):
1         K L PE  K b  PL
:                                            d : max                (5.2) 144 2E pipe § 1
* 3
                                                    ¨        ¸  0.061Fs E' 3 © DR  1 ¹ where:
PE    U saturated H gw  U dry ( H  H gw )
Kb = bedding factor L = deflection lag factor, 1.25 to 1.50, or 1.0 if using the soil prism pressure PE = vertical soil pressure due to earth loads, [lb/ft2]
PL = vertical soil pressure due to surcharge loads, [lb/ft2]
Epipe = apparent modulus of elasticity of pipe at 50 years, [psi]
DR = dimensional ratio of pipe (D/t)
D = outside pipe diameter, [in]
D = outside pipe diameter, [in]
F s = soil support factor E' = modulus of soil reaction, [psi] saturated = density of saturated soil, [lb/ft 3] dry = density of dry soil, [lb/ft 3]H = height of ground cover, [ft]
Fs = soil support factor E' = modulus of soil reaction, [psi]
H gw = height of groundwater above pipe, [ft] t = minimum pipe wall thickness, [in]
Usaturated = density of saturated soil, [lb/ft3]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Compression of SidewallsThe circumferential compressive stress ( SW) in the sidewalls of pipe and miters due to soil and surcharge loads per Section 3220 of Ref. [12] should be less than 1000 psi. This 1000 psi is based on PE-3408 material and assumes a temperature of 70º F. Per Ref. [25] the allowable value at a temperature of   140º F for PE-4710 material is 530 psi. The value used in this analysis is 500 psi which is conservative.
Udry = density of dry soil, [lb/ft3]
H = height of ground cover, [ft]
Hgw = height of groundwater above pipe, [ft]
t = minimum pipe wall thickness, [in]
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                           Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08           Chkd by                     Date 11/11/08 Compression of Sidewalls The circumferential compressive stress (VSW) in the sidewalls of pipe and miters due to soil and surcharge loads per Section 3220 of Ref. [12] should be less than 1000 psi. This 1000 psi is based on PE-3408 material and assumes a temperature of 70º F. Per Ref. [25] the allowable value at a temperature of 140º F for PE-4710 material is 530 psi. The value used in this analysis is 500 psi which is conservative.
This 140º F temperature was selected because it is the maximum discharge line temperature. This lower bound value was conservatively applied to all eight piping analyzes.
This 140º F temperature was selected because it is the maximum discharge line temperature. This lower bound value was conservatively applied to all eight piping analyzes.
psi DR P P L E SW 500 144 2)(    (5.3) where: P E = vertical soil pressure due to earth loads, [lb/ft 2]P L = vertical soil pressure due to surcharge loads, [lb/ft 2]DR= dimensional ratio of pipe (D/t)
(PE  PL )  DR V SW                     d 500 psi                              (5.3) 2 u 144 where:
D = outside pipe diameter, [in] t = minimum pipe wall thickness [in] Buckling Due to External PressureExternal pressure from groundwater, earth loads, and surcharge loads on the buried HDPE pipe shall not cause the pipe to buckle per Section 3221.1 of Ref. [12]; that is, 2/1 3 pipe b gw L E)1 DR (12 E'E'B R 8.2 144 P P P  (5.4) where: H H gw 33.0 1 R bH e B 065.0 4 1 1'P E = vertical soil pressure due to earth loads, lb/ft 2 P L = vertical soil pressure due to surcharge loads, [lb/ft 2]P gw = pressure due to groundwater, [lb/ft 2]R b = buoyancy reduction factor B' = burial factor E pipe= modulus of elasticity of pipe, [psi]
PE = vertical soil pressure due to earth loads, [lb/ft2]
PL = vertical soil pressure due to surcharge loads, [lb/ft2]
DR = dimensional ratio of pipe (D/t)
D = outside pipe diameter, [in]
t = minimum pipe wall thickness [in]
Buckling Due to External Pressure External pressure from groundwater, earth loads, and surcharge loads on the buried HDPE pipe shall not cause the pipe to buckle per Section 3221.1 of Ref. [12]; that is, 1/ 2 PE  PL  Pgw                              E pipe     &#xba; d 2.8  <<R b B'E'                 >>                        (5.4) 144                &#xac;<<          12  (DR  1) 3 1/4>>
where:
H gw Rb    1  0.33 H
1 B'
1  4e 0.065 H PE = vertical soil pressure due to earth loads, lb/ft2 PL = vertical soil pressure due to surcharge loads, [lb/ft2]
Pgw = pressure due to groundwater, [lb/ft2]
Rb = buoyancy reduction factor B' = burial factor Epipe = modulus of elasticity of pipe, [psi]
E' = modulus of soil reaction, [psi]
E' = modulus of soil reaction, [psi]
DR= dimensional ratio of pipe (D/t)
DR = dimensional ratio of pipe (D/t)
H = depth of cover, [ft]
H = depth of cover, [ft]
H gw = height of groundwater above pipe, [ft]
Hgw = height of groundwater above pipe, [ft]
D = outside pipe diameter, [in] t = minimum pipe wall thickness [in]
D = outside pipe diameter, [in]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Effects of Negative Internal PressurePer Section 3221.2 of Ref. [12], when the pipe is subjected to a negative internal pressure, it should withstand the differential pressure (P) without credit for the surrounding soil, that is:
t = minimum pipe wall thickness [in]
3 2 1 1)1 (2 2DR E f P pipe o    (5.5) where: f o = ovality correction factor E pipe= modulus of elasticity of pipe, [ psi] = Poissons ratio (0.35 for short duration loads to 0.45 for long duration loads)
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                             Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08           Chkd by                       Date 11/11/08 Effects of Negative Internal Pressure Per Section 3221.2 of Ref. [12], when the pipe is subjected to a negative internal pressure, it should withstand the differential pressure ('P) without credit for the surrounding soil, that is:
DR= dimensional ratio of pipe (D/t) D = outside pipe diameter, [in] t = minimum pipe wall thickness [in] FloatationTo prevent floatation by groundwater, the buried pipe must have sufficient cover or be anchored to the ground. Per Section 3222 of Ref. [12], the following criterion must be satisfied:
3 f o 2E pipe &sect; 1 *
12 D P W W E P w      (5.6) where: W w = weight of water displaced by pipe, [lb/ft]
                                    'P d              &#xa8;        &#xb8;                                  (5.5) 2 (1  X 2 ) &#xa9; DR  1 &#xb9; where:
W P = weight of empty pipe, [lb/ft]
fo = ovality correction factor Epipe = modulus of elasticity of pipe, [ psi]
P E = vertical soil pressure due to earth loads, [lb/ft 2]D = outside pipe diameter, [in.] 5.2.2HDPE Calculations Requiring the Input of Geometry Specific LoadsThe manual calculations in this section require the ADLPIPE analysis results as input. HDPE pipe stresses are computed using the forces and moments obtained from ADLPIPE analysis. The stress calculations are performed both for straight pipes and mitered elbows. Longitudinal StressPer Section 3223.1 of Ref. [12], the longitudinal stresses due to axial forces and bending moments resulting from applied mechanical loads shall not exceed k*S: S k Z M B A F B*2 t 2 D*P B 2 a 1 A 1    (5.7)
Q = Poissons ratio (0.35 for short duration loads to 0.45 for long duration loads)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page where: B 1 and B 2 = primary stress indices defined in Table 3223-1 of Ref. [12]
DR = dimensional ratio of pipe (D/t)
P A = design or service level A, B, C or D pressure, [psi]
D = outside pipe diameter, [in]
t = minimum pipe wall thickness [in]
Floatation To prevent floatation by groundwater, the buried pipe must have sufficient cover or be anchored to the ground. Per Section 3222 of Ref. [12], the following criterion must be satisfied:
P D Ww  WP  E                                                   (5.6) 12 where:
Ww = weight of water displaced by pipe, [lb/ft]
WP = weight of empty pipe, [lb/ft]
PE = vertical soil pressure due to earth loads, [lb/ft2]
D = outside pipe diameter, [in.]
5.2.2 HDPE Calculations Requiring the Input of Geometry Specific Loads The manual calculations in this section require the ADLPIPE analysis results as input. HDPE pipe stresses are computed using the forces and moments obtained from ADLPIPE analysis. The stress calculations are performed both for straight pipes and mitered elbows.
Longitudinal Stress Per Section 3223.1 of Ref. [12], the longitudinal stresses due to axial forces and bending moments resulting from applied mechanical loads shall not exceed k*S:
P *D              F          M B1 A        2
* B1 a  B 2       d k S                      (5.7) 2t              A          Z Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                           Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08             Chkd by                       Date 11/11/08 where:
B1 and B2 = primary stress indices defined in Table 3223-1 of Ref. [12]
PA = design or service level A, B, C or D pressure, [psi]
D = outside diameter of pipe at the section where the evaluation is conducted, [in.]
D = outside diameter of pipe at the section where the evaluation is conducted, [in.]
t = nominal pipe wall thickness at the section where the evaluation is conducted, [in.]
t = nominal pipe wall thickness at the section where the evaluation is conducted, [in.]
F a = axial force due to the specified design, level A, B, C or D applied mechanical loads, [lb] M = resultant bending moment due to the specified design, level A, B, C or D applied mechanical loads, [in.-lb]  
Fa = axial force due to the specified design, level A, B, C or D applied mechanical loads, [lb]
 
M = resultant bending moment due to the specified design, level A, B, C or D applied mechanical loads, [in.-lb]
A= cross sectional area of pipe at the section where the force is calculated, [in 2]Z = section modulus of pipe cross section at the section where the moment is calculated, [in 3]k= longitudinal stress factor per Table 3223-2 of Ref. [12]
A = cross sectional area of pipe at the section where the force is calculated, [in2]
S= allowable stress, psi, from Table 3021-1 Ref. [14] Thermal Expansion and Contraction(a) Fully Constrained Thermal Contraction The tensile stress, per Section 3311.1 of Ref. [12], resulting from the assumption of fully constrained thermal contraction of the buried pipe when Twater < T ground , increased by the tensile stress due to axial contraction from Poisson effect, shall not exceed the allowable stress (S):
Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]
S t 2 D P T E pipe    (5.8) where: E pipe= modulus of elasticity of pipe, [psi] = coefficient of thermal expansion, [in/in/
k = longitudinal stress factor per Table 3223-2 of Ref. [12]
o F]T = Twater - T ground < 0 = Poissons ratio (0.35 for short duration loads to 0.45 for long duration loads)
S = allowable stress, psi, from Table 3021-1 Ref. [14]
Thermal Expansion and Contraction (a) Fully Constrained Thermal Contraction The tensile stress, per Section 3311.1 of Ref. [12], resulting from the assumption of fully constrained thermal contraction of the buried pipe when Twater < Tground, increased by the tensile stress due to axial contraction from Poisson effect, shall not exceed the allowable stress (S):
PD VW      E pipe  D 'T  X      dS                              (5.8) 2t where: Epipe = modulus of elasticity of pipe, [psi]
D = coefficient of thermal expansion, [in/in/oF]
                  'T = Twater - Tground < 0 Q = Poissons ratio (0.35 for short duration loads to 0.45 for long duration loads)
P = internal design gage pressure including pressure spikes due to transients from anticipated water hammer events, [psi]
P = internal design gage pressure including pressure spikes due to transients from anticipated water hammer events, [psi]
D = outside pipe diameter, [in.]
D = outside pipe diameter, [in.]
t = nominal pipe wall thickness, [in.]
t = nominal pipe wall thickness, [in.]
S= allowable stress, psi, from Table 3021-1 Ref. [14] (b) Fully Constrained Thermal Expansion The tensile stress resulting from the assumption of fully constrained thermal expansion of the buried pipe when Twater > Tground, per Section 3311.2 of Ref. [12], shall not exceed the allowable stress (S):
S = allowable stress, psi, from Table 3021-1 Ref. [14]
S T E pipe     (5.9) where: E pipe= modulus of elasticity of pipe, [psi[ = coefficient of thermal expansion, [in/in/
(b) Fully Constrained Thermal Expansion The tensile stress resulting from the assumption of fully constrained thermal expansion of the buried pipe when Twater > Tground, per Section 3311.2 of Ref. [12], shall not exceed the allowable stress (S):
o F]T = Twater - T ground > 0 S= allowable stress, psi, from Table 3021-1 Ref. [14]
E pipe D  'T d S                                    (5.9) where:
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page (c) Alternative Evaluation for Thermal Expansion or Contraction When the soil stiffness is accounted for to calculate the pipe expansion and contraction stresses, per Section 3311.3 of Ref. [12], the stresses must satisfy the following condition:
Epipe = modulus of elasticity of pipe, [psi[
psi 1100 A F Z M i aC C   (5.10) where: i = stress intensification factor F aC = axial force range due to thermal expansion or contraction and/or the restraint of free end displacement, [lb]
D = coefficient of thermal expansion, [in/in/oF]
M C = resultant moment range due to thermal expansion or contraction and/or the restraint of free end displacement, [in.-lb]  
                  'T = Twater - Tground > 0 S = allowable stress, psi, from Table 3021-1 Ref. [14]
 
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08         Chkd by                         Date 11/11/08 (c) Alternative Evaluation for Thermal Expansion or Contraction When the soil stiffness is accounted for to calculate the pipe expansion and contraction stresses, per Section 3311.3 of Ref. [12], the stresses must satisfy the following condition:
A= cross sectional area of pipe at the section where the force is calculated, [in 2]Z = section modulus of pipe cross section at the section where the moment is calculated, [in 3]Non-repeated Anchor MovementsPer Section 3312 of Ref. [12], the effects of any single non-repeated anchor movement shall meet the requirements of the following equation:
M C FaC
S 2 A F Z M i aD D     (5.11) where: i = stress intensification factor F aD = axial force due to the non-repeated anchor motion, [lb]
                                                          d 1100psi                                (5.10)
M D = resultant moment due to the non-repeated anchor motion, [in.-lb]
Z      A where:
A= cross sectional area of pipe at the section where the force is calculated, [in 2]Z = section modulus of pipe cross section at the section where the moment is calculated, [in 3]S= allowable stress, psi, from Table 3021-1 Ref. [14] Seismic Induced StressesPer Section 3410 of Ref. [12], the stresses in the buried pipe due to soil strains caused by seismic wave passage, seismic soil movement, and building seismic anchor motion effects, where applicable, must satisfy the following equation:
i = stress intensification factor FaC = axial force range due to thermal expansion or contraction and/or the restraint of free end displacement, [lb]
psi 1100 A F Z M i aE E   (5.12)
MC = resultant moment range due to thermal expansion or contraction and/or the restraint of free end displacement, [in.-lb]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page where: i = stress intensification factor F aE = axial force range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [lb]  
A = cross sectional area of pipe at the section where the force is calculated, [in2]
 
Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]
M E = resultant moment range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [in.-lb]
Non-repeated Anchor Movements Per Section 3312 of Ref. [12], the effects of any single non-repeated anchor movement shall meet the requirements of the following equation:
A= cross sectional area of pipe at the section where the force is calculated, [in 2]Z = section modulus of pipe cross section at the section where the moment is calculated, [in 3]Seismic wave passage, seismic soil movement, and building seismic anchor motions are combined by square root sum of the squares. This equation is applicable to both OBE and SSE. Ref. [25] Section 7.0 provides the basis of this applicability. 5.2.3 Steel Pipe Criteria The steel pipe from the Diesel Generator building anchor to the HDPE pipe flange connection and from the HDPE pipe flange connection to the 42&#xf8; supply header are qualified in the ADLPIPE analysis in accordance with the requirements of Ref. [29]. The stresses for the steel pipe are shown in Section 7.4.
M D FaD
6.0 ANALYSIS I NPUTS 6.1 Design Loads Design temperature and pressure values supplied by Duke Power Carolinas and used as input in this calculation are listed in Table 6.1. Table 6.1: Design Loads Design Temperature 100 &#xba;F Ambient Temperature 55 &#xba;F Minimum Temperature 32 &#xba;F Maximum Temperature 100 &#xba;F Design Pressure 100 psig Operating Pressure 75 psig 6.2 Pipe Properties Geometric and other relevant properties for the pipes used in this calculation are shown in Table 6.2.
                                                          d 2S                                    (5.11)
Outside diameter (OD), thickness and weight values for steel pipes were taken from standard piping catalogs, Ref. [10]. For IPS HDPE pipe, values were obtained from ANSI/AWWA Standa rd C906-99, Ref. [4], thickness values were obtained from Ref. [12], and weight values were taken from manufacturers literature Ref. [8]. For the same nominal pipe size, the ODs of the HDPE and the steel pipes are equal; therefore, the IPS sizing system is used.
Z      A where:
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Table 6.2: Properties of Pipes Cr-Mo Steel Pipe Carbon Steel Pipe HDPE Pipe/ElbowNominal size 10-in 12-in 12-in 12-in Material A6XLN (1) A6XLN (1) A-106, Gr. B PE 4710 (2)Schedule Standard Standard Standard DR 11/DR 9 Outside Diameter [in] 10.75 12.75 12.75 12.75 Wall Thickness [in] 0.365 0.375 0.375 1.159/1.417 Contents Water Water Water Water Wt. of Contents [lb/ft] 34.1 49.0 49.0 37.0/33.5 Wt. of Pipe [lbs/ft] 40.5 49.6 49.6 18.4/22 (1) This is a manufacturers designation for a Cr-Mo alloy used for piping as SB-675 and SB-690, for forgings as SB-462, and for castings as SB-366.  
i = stress intensification factor FaD = axial force due to the non-repeated anchor motion, [lb]
(2) The cell classification of PE 4710 material is 445574C 6.3 Material Properties Properties of A-106 carbon steel and A6XLN (Cr-Mo) are given in Tables 6.3a and 6.3b. The values in Table 6.3a were obtained from the 1989 edition of the ASME B&PVC, Section III [Ref. 29]. The values in Table 6.3b were obtained from the 1998 edition of the ASME B&PVC, Section III, Part D [Ref. 11]. Table 6.3a: Properties of A-106 Carbon Steel Temperature, T [
MD = resultant moment due to the non-repeated anchor motion, [in.-lb]
o F]32 55 65 100 Coeff. of Thermal Exp., [in/in/o F]6.5x10-6 6.5x10-6 6.5x10-6 6.5x10-6Modulus of Elasticity, E [ksi]27,900 27,900 27,90027,900Allowable Stress, S c [psi]S h [psi]15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 Yield Stress, S y [psi]35,000 35,000 35,000 35,000 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Table 6.3b: Properties of A6XLN (Cr-Mo) Temperature, T [
A = cross sectional area of pipe at the section where the force is calculated, [in2]
o F]32 55 65 100 Coeff. of Thermal Exp., [in/in/o F]8.2x10-6 8.2x10-6 8.2x10-6 8.2x10-6Modulus of Elasticity, E [ksi] 28,000 28,000 28,000 28,000 Allowable Stress (1), S c [psi] S h [psi]24,300 24,300 24,300 24,300 24,300 24,300 24,300 24,300 Yield Stress (2), S y [psi]45,000 45,000 45,000 45,000 Notes: (1) A6XLN is a manufacturers designation for the following Cr-Mo alloys: SB-675, SB-690, and SB-462. The values shown here correspond to the minimum values listed in the 1998 ASME Code.(2)The yield strength shown here corresponds to the minimum of SB-675, SB-690, and SB-462. The mechanical properties of HDPE vary significantly with load duration. Therefore, different values must be used for different load cases. Tables 6.3c thru 6.3f provide the mechanical properties of HDPE for various load durations. Mechanical properties obtained for 50-year load duration are given in Table 6.3c. These properties are used for deadweight and thermal analysis. Table 6.3c: Properties of HPDE year Load DurationTemperature, T [
Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]
oF]32 55 65 100 Coeff. of Thermal Exp., [in/in/oF]90x10-6 90x10-6 90x10-6 90x10-6 Modulus of Elasticity (1), E [ksi]28 28 28 23 Allowable Stress, S [psi]800 800 800 620 Poissons Ratio, [ - ]0.45 0.45 0.45 0.45 (1) Per Table 3210-3 of Ref. [12] Mechanical properties obtained for short-term load duration are shown in Table 6.3d. These are used for OBE, SSE, and equivalent thermal strain analysis.
S = allowable stress, psi, from Table 3021-1 Ref. [14]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Table 6.3d: Properties of HPDE - Short-term Load Duration (< 10 - hr Load Duration)Temperature, T [
Seismic Induced Stresses Per Section 3410 of Ref. [12], the stresses in the buried pipe due to soil strains caused by seismic wave passage, seismic soil movement, and building seismic anchor motion effects, where applicable, must satisfy the following equation:
oF]32 55 65 100 Coeff. of Thermal Exp., [in/in/oF]90x10-6 90x10-6 90x10-6 90x10-6 Modulus of Elasticity (1), E [ksi]110 110 110 100 Allowable Stress (2), S [psi]1200 1200 1200 940 Poissons Ratio, [ - ]0.35 0.35 0.35 0.35 (1) Per Table 3210-3 of Ref. [12] (Load Duration < 10 hr.) (2) The allowable stress for short duration listed in Table 3223-3 of Ref. [12] are usedTable 6.3e: Properties of HPDE - 1000-hr Load DurationTemperature, T [
M E FaE
oF]32 55 65 100 Coeff. of Thermal Exp.,  [in/in/oF]90x10-6 90x10-6 90x10-6 90x10-6 Modulus of Elasticity (1), E [ksi]44 44 44 36 Allowable Stress (2), S [psi]840 840 840 620 Poissons Ratio, [ - ]0.35 0.35 0.35 0.35 (1) Per Table 3210-3 of Ref. [12] (2) The allowables for 10-year duration listed in Table 3131-1 of Ref. [12] are used. This is conservative.Table 6.3f: Properties of HPDE year Load DurationTemperature, T [
                                                        d 1100psi                                (5.12)
oF]32 55 65 100 Coeff. of Thermal Exp., [in/in/oF]90x10-6 90x10-6 90x10-6 90x10-6 Modulus of Elasticity (1), E [ksi]32 110 110 26 Allowable Stress (2), S [psi]840 840 840 620 Poissons Ratio, [ - ]0.35 0.35 0.35 0.35 (1) Per Table 3210-3 of Ref. [12] (2) Per Table 3131-1 of Ref. [12]
Z      A Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                       Calculation No.     07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08       Chkd by                           Date 11/11/08 where:
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 6.4 HDPE to Steel Boundary The HDPE pipe is connected to the steel pipe by means of a flanged connection. The following piping components are used for the joints at the entrance to the DG building wall and at the 42-in header: A 10-in by 12-in steel reducer 10-in, 150-lb ANSI B16.5 raised face welding neck steel flanges 12-in, 150-lb ANSI B16.5 raised face welding neck steel flanges A 12-in, short-radius, 90 o steel elbow Two HDPE flange adapters Two special steel backup rings that possess the same bolt pattern as 12-in, 150-lb steel flanges and are used in conjunction with the HDPE adapters Relevant properties for the above piping components were obtained from manufacturers catalogs - Ref. [9] for the steel components and Ref. [8] for the HDPE components and steel backup rings. The properties are listed in Table 6.6. Table 6.6: Piping Components Used At/Near the HDPE- to- Steel Boundary Piping Component Nominal Size [in] Thickness
i = stress intensification factor FaE = axial force range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [lb]
[in]Length [in] O. D.  [in] Weight [lb]10 0.365 4 12 (1) 54 150-lb, Welding Neck Steel Flange 12 0.375 4.5 14.375 (1) 88 Steel Reducer10x12 NA (2) 8 NA (2) 34 90 o Steel Elbow 12 0.37512 (3) 12.7580HDPE Flange Adapter 12 1.55 12 12.7524Steel Backup Ring 12 1.25 1.25 19 24 (1) These values represent the diameter of the flange hub at base.(2) OD and thickness for a reducer are variable and are not required as input. (3) This is the center to face length; it is also equal to the radius of the elbow.6.5 HDPE Elbows The piping system includes 90 o and 45 o HDPE mitered elbows. The mitered elbows are size DR 9 (one DR ratio lower than the HDPE pipe that is DR 11) to comply with the requirements of the ASME BPVC Code Case N-755 Paragraph -3132(d) Ref. [12]. These elbows are modeled according to the manufacturers catalog specifications [Ref. 8]. The 90 o mitered elbow has 5 segments as shown in Fig. 6.5a and the 45 o mitered elbow has 3 segments as shown in Fig. 6.5b. This piping analysis has 90&#xba; and 45&#xba; mitered elbows in the model.
ME = resultant moment range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [in.-lb]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Fig. 6.5a: Geometry of 90 o HDPE mitered elbow Fig. 6.5b: Geometry of 45 o HDPE mitered elbow 6.6 Stress Indices and SIFs ADLPIPE automatically calculates stress indices and stress intensification factors (SIF) for the steel piping components based on the 1989 Code Ref. [29]. The 10-in and 12-in carbon steel piping has butt welded fittings. The analysis is based on the 1989 Class 3 ASME Code.
A = cross sectional area of pipe at the section where the force is calculated, [in2]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 6.6.1 HPDE Pipe The buried HDPE piping is DR 11 butt welded, straight pipe. The following stress index and SIF values as listed in Tables 3223-1 and 3311.2-1 of Ref. [12], are used: Stress Indices:   B 1 = 0.5 B 2 = 1.0Stress Intensification Factor: i = 1.0 6.6.2 HPDE Mitered Elbows The 90&#xba; mitered elbows are DR 9. SIF and stress index values for these components as obtained from Tables 3223-1 and 3311.2-1 of Ref. [12], are as follows:Stress Indices:   B 1 = 0.69 B 2 = 1.64Stress Intensification Factor: i = 2.0 These values are for 5 segment 90&#xba; mitered elbows. Per Ref. [25] Section 6.1, it is assumed these values envelope the 3 segment 45&#xba; mitered elbows. 6.6.3 Flexibility Factors for Mitered Elbows The flexibility factor calculated by ADLPIPE for the 12&#xf8; mitered elbows is 1.79 1.82 which is the calculated flexibility factor per Table NB-3673.2 (b)(1), Section 5.6.2.3 of Ref. [22]. The preliminary mean flexibility factor from testing Ref. [22] of the 12&#xf8; elbows is 2.15 for in-plane and 2.44 for out-of-plane Ref. [22]. The lower flexibility factor calculated by ADLPIPE will result in higher moments on the piping system due to less flexibility. The calculated Stress Intensification Factor (SIF) calculated from Table NB-3673.2(b)(1) for 12 &#xf8; elbows is 1.04 in-plane and 0.87 out-of-plane. This piping analysis uses a 2.0 SIF for in-plane and out-of-plane for the mitered elbows which is from the ASME BPVC Code Case N-755 Ref. [12].
Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]
6.6.4 Weldolet A Weldolet is used for attaching the 12-in pipe to the 42-in header. The stress intensification factor for the Weldolet is determined from the following equation given in Ref. [17]: 3/2/3.3 9.0 r t iwhere: i = stress intensification factor t = nominal wall thickness of run pipe [in]
Seismic wave passage, seismic soil movement, and building seismic anchor motions are combined by square root sum of the squares. This equation is applicable to both OBE and SSE. Ref. [25] Section 7.0 provides the basis of this applicability.
5.2.3 Steel Pipe Criteria The steel pipe from the Diesel Generator building anchor to the HDPE pipe flange connection and from the HDPE pipe flange connection to the 42&#xf8; supply header are qualified in the ADLPIPE analysis in accordance with the requirements of Ref. [29]. The stresses for the steel pipe are shown in Section 7.4.
6.0       ANALYSIS INPUTS 6.1       Design Loads Design temperature and pressure values supplied by Duke Power Carolinas and used as input in this calculation are listed in Table 6.1.
Table 6.1: Design Loads Design Temperature                         100 &#xba;F Ambient Temperature                         55 &#xba;F Minimum Temperature                         32 &#xba;F Maximum Temperature                         100 &#xba;F Design Pressure                             100 psig Operating Pressure                         75 psig 6.2       Pipe Properties Geometric and other relevant properties for the pipes used in this calculation are shown in Table 6.2.
Outside diameter (OD), thickness and weight values for steel pipes were taken from standard piping catalogs, Ref. [10]. For IPS HDPE pipe, values were obtained from ANSI/AWWA Standard C906-99, Ref.
[4], thickness values were obtained from Ref. [12], and weight values were taken from manufacturers literature Ref. [8]. For the same nominal pipe size, the ODs of the HDPE and the steel pipes are equal; therefore, the IPS sizing system is used.
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08         Chkd by                       Date 11/11/08 Table 6.2: Properties of Pipes Carbon Steel Pipe      HDPE Cr-Mo Steel Pipe Pipe/Elbow Nominal size                           10-in             12-in               12-in           12-in Material                             A6XLN(1)           A6XLN(1)         A-106, Gr. B       PE 4710(2)
Schedule                             Standard           Standard           Standard       DR 11/DR 9 Outside Diameter [in]                 10.75               12.75             12.75             12.75 Wall Thickness [in]                   0.365               0.375             0.375         1.159/1.417 Contents                               Water             Water               Water             Water Wt. of Contents [lb/ft]                 34.1               49.0               49.0           37.0/33.5 Wt. of Pipe [lbs/ft]                   40.5               49.6               49.6           18.4/22 (1)
This is a manufacturers designation for a Cr-Mo alloy used for piping as SB-675 and SB-690, for forgings as SB-462, and for castings as SB-366.
(2)
The cell classification of PE 4710 material is 445574C 6.3       Material Properties Properties of A-106 carbon steel and A6XLN (Cr-Mo) are given in Tables 6.3a and 6.3b. The values in Table 6.3a were obtained from the 1989 edition of the ASME B&PVC, Section III [Ref. 29]. The values in Table 6.3b were obtained from the 1998 edition of the ASME B&PVC, Section III, Part D [Ref. 11].
Table 6.3a: Properties of A-106 Carbon Steel Temperature, T [oF]       32           55           65         100 Coeff. of Thermal Exp., [in/in/oF]   6.5x10-6     6.5x10-6     6.5x10-6   6.5x10-6 Modulus of Elasticity, E [ksi]   27,900       27,900       27,900    27,900 Allowable Stress, Sc [psi]   15,000       15,000       15,000     15,000 Sh [psi]  15,000       15,000       15,000     15,000 Yield Stress, Sy [psi] 35,000       35,000       35,000     35,000 Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                           Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08         Chkd by                         Date 11/11/08 Table 6.3b: Properties of A6XLN (Cr-Mo)
Temperature, T [oF]           32             55             65             100 Coeff. of Thermal Exp., [in/in/oF]         8.2x10-6       8.2x10-6       8.2x10-6       8.2x10-6 Modulus of Elasticity, E [ksi]       28,000         28,000         28,000           28,000 Allowable Stress(1), Sc [psi]       24,300         24,300         24,300           24,300 Sh [psi]      24,300         24,300         24,300           24,300 Yield Stress(2), Sy [psi]     45,000         45,000         45,000           45,000 Notes:
(1)
A6XLN is a manufacturers designation for the following Cr-Mo alloys: SB-675, SB-690, and SB-462. The values shown here correspond to the minimum values listed in the 1998 ASME Code.
(2)
The yield strength shown here corresponds to the minimum of SB-675, SB-690, and SB-462.
The mechanical properties of HDPE vary significantly with load duration. Therefore, different values must be used for different load cases. Tables 6.3c thru 6.3f provide the mechanical properties of HDPE for various load durations.
Mechanical properties obtained for 50-year load duration are given in Table 6.3c. These properties are used for deadweight and thermal analysis.
Table 6.3c: Properties of HPDE year Load Duration Temperature, T [oF]       32           55             65         100 Coeff. of Thermal Exp., [in/in/oF]     90x10-6     90x10-6       90x10-6       90x10-6 Modulus of Elasticity(1), E [ksi]     28           28             28           23 Allowable Stress, S [psi]     800           800           800         620 Poissons Ratio, Q [ - ]   0.45         0.45         0.45         0.45 (1) Per Table 3210-3 of Ref. [12]
Mechanical properties obtained for short-term load duration are shown in Table 6.3d. These are used for OBE, SSE, and equivalent thermal strain analysis.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                               Calculation No.       07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08             Chkd by                           Date 11/11/08 Table 6.3d: Properties of HPDE - Short-term Load Duration (< 10 - hr Load Duration)
Temperature, T [oF]           32           55             65           100 Coeff. of Thermal Exp., [in/in/oF]         90x10-6       90x10-6         90x10-6       90x10-6 (1)
Modulus of Elasticity       , E [ksi]     110           110             110           100 (2)
Allowable Stress      , S [psi]     1200         1200           1200           940 Poissons Ratio, Q [ - ]       0.35           0.35           0.35           0.35 (1) Per Table 3210-3 of Ref. [12] (Load Duration < 10 hr.)
(2) The allowable stress for short duration listed in Table 3223-3 of Ref. [12] are used Table 6.3e: Properties of HPDE - 1000-hr Load Duration Temperature, T [oF]           32           55             65           100 Coeff. of Thermal Exp.,  [in/in/oF]       90x10-6       90x10-6         90x10-6       90x10-6 (1)
Modulus of Elasticity       , E [ksi]       44           44             44             36 (2)
Allowable Stress      , S [psi]     840           840             840           620 Poissons Ratio, Q [ - ]       0.35           0.35           0.35           0.35 (1) Per Table 3210-3 of Ref. [12]
(2) The allowables for 10-year duration listed in Table 3131-1 of Ref. [12] are used. This is conservative.
Table 6.3f: Properties of HPDE year Load Duration Temperature, T [oF]           32           55             65           100 Coeff. of Thermal Exp., [in/in/oF]         90x10-6       90x10-6         90x10-6       90x10-6 (1)
Modulus of Elasticity       , E [ksi]       32           110             110             26 (2)
Allowable Stress      , S [psi]     840           840             840           620 Poissons Ratio, Q [ - ]       0.35           0.35           0.35           0.35 (1) Per Table 3210-3 of Ref. [12]
(2) Per Table 3131-1 of Ref. [12]
Page CALCULATION CONTINUATION SHEET Client            Duke Power Carolinas, LLC                                 Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08               Chkd by                         Date 11/11/08 6.4       HDPE to Steel Boundary The HDPE pipe is connected to the steel pipe by means of a flanged connection. The following piping components are used for the joints at the entrance to the DG building wall and at the 42-in header:
x    A 10-in by 12-in steel reducer x    10-in, 150-lb ANSI B16.5 raised face welding neck steel flanges x    12-in, 150-lb ANSI B16.5 raised face welding neck steel flanges x    A 12-in, short-radius, 90o steel elbow x    Two HDPE flange adapters x    Two special steel backup rings that possess the same bolt pattern as 12-in, 150-lb steel flanges and are used in conjunction with the HDPE adapters Relevant properties for the above piping components were obtained from manufacturers catalogs - Ref.
[9] for the steel components and Ref. [8] for the HDPE components and steel backup rings. The properties are listed in Table 6.6.
Table 6.6: Piping Components Used At/Near the HDPE- to- Steel Boundary Nominal      Thickness        Length      O. D.      Weight Piping Component Size [in]         [in]           [in]       [in]     [lb]
150-lb, Welding Neck                    10          0.365             4         12(1)       54 Steel Flange 12           0.375           4.5     14.375(1)     88 Steel Reducer                    10x12          NA (2)           8       NA (2)       34 90o Steel Elbow                     12           0.375          12(3)     12.75        80 HDPE Flange Adapter                       12           1.55           12       12.75        24 Steel Backup Ring                     12           1.25           1.25         19         24 (1)
These values represent the diameter of the flange hub at base.
(2)
OD and thickness for a reducer are variable and are not required as input.
(3)
This is the center to face length; it is also equal to the radius of the elbow.
6.5       HDPE Elbows The piping system includes 90o and 45o HDPE mitered elbows. The mitered elbows are size DR 9 (one DR ratio lower than the HDPE pipe that is DR 11) to comply with the requirements of the ASME BPVC Code Case N-755 Paragraph -3132(d) Ref. [12]. These elbows are modeled according to the manufacturers catalog specifications [Ref. 8]. The 90 o mitered elbow has 5 segments as shown in Fig.
6.5a and the 45 o mitered elbow has 3 segments as shown in Fig. 6.5b. This piping analysis has 90&#xba; and 45&#xba; mitered elbows in the model.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                       Calculation No.     07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08       Chkd by                         Date 11/11/08 Fig. 6.5a: Geometry of 90o HDPE mitered elbow Fig. 6.5b: Geometry of 45o HDPE mitered elbow 6.6     Stress Indices and SIFs ADLPIPE automatically calculates stress indices and stress intensification factors (SIF) for the steel piping components based on the 1989 Code Ref. [29]. The 10-in and 12-in carbon steel piping has butt welded fittings. The analysis is based on the 1989 Class 3 ASME Code.
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                         Calculation No.     07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08         Chkd by                         Date 11/11/08 6.6.1 HPDE Pipe The buried HDPE piping is DR 11 butt welded, straight pipe. The following stress index and SIF values as listed in Tables 3223-1 and 3311.2-1 of Ref. [12], are used:
Stress Indices:                   B1 = 0.5 B2 = 1.0 Stress Intensification Factor:     i = 1.0 6.6.2 HPDE Mitered Elbows The 90&#xba; mitered elbows are DR 9. SIF and stress index values for these components as obtained from Tables 3223-1 and 3311.2-1 of Ref. [12], are as follows:
Stress Indices:                   B1 = 0.69 B2 = 1.64 Stress Intensification Factor:     i = 2.0 These values are for 5 segment 90&#xba; mitered elbows. Per Ref. [25] Section 6.1, it is assumed these values envelope the 3 segment 45&#xba; mitered elbows.
6.6.3 Flexibility Factors for Mitered Elbows The flexibility factor calculated by ADLPIPE for the 12&#xf8; mitered elbows is 1.79 &sect; 1.82 which is the calculated flexibility factor per Table NB-3673.2 (b)(1), Section 5.6.2.3 of Ref. [22]. The preliminary mean flexibility factor from testing Ref. [22] of the 12&#xf8; elbows is 2.15 for in-plane and 2.44 for out-of-plane Ref.
[22]. The lower flexibility factor calculated by ADLPIPE will result in higher moments on the piping system due to less flexibility. The calculated Stress Intensification Factor (SIF) calculated from Table NB-3673.2(b)(1) for 12 &#xf8; elbows is 1.04 in-plane and 0.87 out-of-plane. This piping analysis uses a 2.0 SIF for in-plane and out-of-plane for the mitered elbows which is from the ASME BPVC Code Case N-755 Ref. [12].
6.6.4 Weldolet A Weldolet is used for attaching the 12-in pipe to the 42-in header. The stress intensification factor for the Weldolet is determined from the following equation given in Ref. [17]:
0.9 i              2/3 3.3t / r where: i = stress intensification factor t = nominal wall thickness of run pipe [in]
r = mean radius of run pipe [in]
r = mean radius of run pipe [in]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page For the 42-in diameter pipe, t = 0.500 in. [Ref. 10], and the mean radius, r = (42-0.500)/2 = 20.75 in. The stress intensification factor is therefore: 87.4 75.20/5.0*3.3 9.0 3/2i6.7 Soil Springs The buried piping is subject to loads from earthquake, temperature and surrounding soil. To determine the pipe stresses resulting from these loads, the soil spring stiffness is required as input. Soil spring stiffness values obtained from Ref. [15] and shown below will be used as input in the ADLPIPE analysis of the piping system. Soil springs are generally applied at 2 ft intervals around elbows (over 6ft sections on each side of elbows) and at 10 ft intervals elsewhere.Table 6.7-Suggested Soil Spring Stiffness Values for 12-in HDPE Pipe Spring Stiffness for Selected Lengths  
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                           Calculation No.     07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08         Chkd by                         Date 11/11/08 For the 42-in diameter pipe, t = 0.500 in. [Ref. 10], and the mean radius, r = (42-0.500)/2 = 20.75 in. The stress intensification factor is therefore:
[lb/in]Height of Soil Above Pipe, H SpringDirection Spring Stiffness
0 .9 i                      2/3 4.87 3.3
[lb/in 2]L = 2ft L = 10 ft Lateral 130 3120 15600 Vertical 540 12960 64800 H = 5.0 ft Axial 425 10200 51000 Note that soil spring stiffness values for pipe sections of length other than shown in Table 6.7 can be determined by proportion. 6.8 Seismic Analysis Input 6.8.1 Seismic Anchor Motion Per Calculation CNC-1206.02-84-0001 [Ref. 16] provided by CNS, the seismic displacement of the DG building is less than 0.003 inches for OBE or SSE analysis. The 42&#xf8; Supply Line is attached at the Auxiliary Building and has the following seismic displacements Lateral = 0.014328 < 1/16 in, Axial = 0.01374 < 1/16 in, and Vertical = 0.0 for OBE or SSE analysis. These displacements are considered insignificant for this analysis and a seismic anchor motion analysis is therefore not conducted  
* 0.5 / 20.75 6.7       Soil Springs The buried piping is subject to loads from earthquake, temperature and surrounding soil. To determine the pipe stresses resulting from these loads, the soil spring stiffness is required as input. Soil spring stiffness values obtained from Ref. [15] and shown below will be used as input in the ADLPIPE analysis of the piping system. Soil springs are generally applied at 2 ft intervals around elbows (over 6ft sections on each side of elbows) and at 10 ft intervals elsewhere.
 
Table 6.7-Suggested Soil Spring Stiffness Values for 12-in HDPE Pipe Spring Stiffness for Selected Lengths Height of Soil            Spring        Spring Stiffness                      [lb/in]
.6.8.2 Seismic Wave Passage Since the piping system is completely buried and isolated from aboveground piping, the methodology of Non-Mandatory Appendix D of the ASME BPVC Code Case N-755 will be used to qualify the piping for seismic wave passage. In Ref. [18], the strains due to seismic wave passage were computed and then C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page converted to an equivalent thermal strain resulting in a temperature change (T) of 10 oF. This change in temperature will be used as input in the ADLPIPE computer model as a thermal analysis of the piping system to determine the seismic loads. 6.8.3 Decoupling of 12" Steel Pipe If the ratio of the moment of inertia of the run pipe to branch pipe (decoupled pipe) is equal to or greater than 25, the branch piping may be considered to have no significant effect on the response of the run pipe. Ref. [28]. I12 branch pipe
Above Pipe, H           Direction            [lb/in2]
= 300 in 4 ; I42 run pipe
L = 2ft             L = 10 ft Lateral               130                 3120                 15600 H = 5.0 ft             Vertical              540                12960                64800 Axial               425                 10200                 51000 Note that soil spring stiffness values for pipe sections of length other than shown in Table 6.7 can be determined by proportion.
= 14037 in 4 ; Ratio of run to branch is 46. The analysis of the decoupled piping shall consider the thermal, seismic, and other movements of the run pipe at the intersection point. There are no thermal or seismic anchor movements (See section 6.8.1) on the run pipe. The steel buried pipe will not have seismic response from the seismic wave passage. Therefore, there are no anchor movements at the 12 pipe (branch) to the 42 pipe (run) connection. 6.9 Piping Layout The layout of the piping system is shown in the following drawings provided by Duke Power Carolinas: CN-1038-06 [Ref. 5], CN-1038-11 [Ref. 6] and CN-1038-12 [Ref. 7]. Dimensions and orientations of piping shown on these drawings were used in generating the ADLPIPE computer model for the piping system. A sketch of the piping layout is shown in Fig. 6.9 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Figure 6.9 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 6.10 Pipe Criteria - Steel and HDPEThe pipe load combinations considered and shown in Table 6.10(a) - Steel Table 6.10(a) Buried Steel Piping Load Combinations Service Level Stress Condition Load Combination Primary P Design Primary P + DW Primary P aPrimary - - Longitudinal Stress P a + DW Secondary Range of (T a min , Ta max)ANon Repeated Anchor Motion BS Primary P b Primary P bsPrimary - - Longitudinal Stress P b + DW + VOT P b + DW+PS BSecondary - Thermal and Seismic (a) Range of (T b min , Tb max)(b) T b max + [OBE W 2 + ( OBE S+ OBE D)2]1/2(c) T b min + [OBE W 2 + ( OBE S+ OBE D)2]1/2C Primary P cPrimary  P d DSecondary - Seismic [SSE W 2 + (SSE S+ SSE D)2]1/2 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page The pipe load combinations considered and shown in Table 6.10(b) - HDPE Table 6.10(b)- Buried HDPE Piping Load Combinations Service Level Stress Condition Load Combination Design P   P + DW Primary - Side Wall Compression P E + P L Primary - Buckling due to External Pressure P E+P L+P gwPrimary -- Flotation W WPrimary -- Pressure P aPrimary - - Longitudinal Stress P a + DW Secondary Range of (T a min , Ta max)ANon Repeated Anchor Motion BS Primary - Side Wall Compression P E + P L Primary - Buckling due to External Pressure P E+P L+P gwPrimary -- Flotation W WPrimary -- Pressure P bPrimary -- Pressure + Surge Pressure P b + P bsPrimary - - Longitudinal Stress P b + DW Primary -- Pressure + Longitudinal Stress + Short Term P b + DW + VOT P b + DW +PS Secondary -- Thermal Range of (T b min , Tb max)BSecondary -- Seismic [OBE W 2 + ( OBE S+ OBE D)2]1/2Primary -- Side Wall Compression P E + P LPrimary -- Buckling due to External Pressure P E+P L+P gwPrimary -- Flotation W WPrimary  -- Pressure P cPrimary -- Pressure + Surge Pressure P c + P cs CSecondary -- Thermal Range of (T c min , Tc max)Primary -- Side Wall Compression P E + P LPrimary -- Buckling due to External Pressure P E+P L+P gwPrimary -- Flotation W WPrimary -- Pressure P dPrimary -- Pressure + Surge Pressure P d + P dsSecondary -- Thermal Range of (T d min , Td max)DSecondary -- Seismic [SSE W 2 + (SSE S+ SSE D)2]1/2 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 6.11 Acceptance Criteria - Steel and HDPE The criteria used to evaluate the adequacy of the buried steel piping system are summarized in Table 6.11(a). Table 6.11(a) - Buried Steel Piping Capacity Criteria Service Level Stress Condition Capacity Criteria Primary Requirements of ND-3640 Design Primary ND-3652, Equation (8) with a Stress Limit of 1.5 S hPrimary  Less than 1.0 P Primary - - Longitudinal Stress ND-3653.1, Equation (9) with a stress limit of 1.8 S hSecondary ND-3653.2(a), Equation (10) with a stress limit of S A ANon Repeated Anchor Motion ND-3653.2(b), Equation (10a) with a stress limit of 3.0 S cPrimary  Less than 1.1 P Primary - - Longitudinal Stress ND-3653.1, Equation (9) with a stress limit of Lesser of 1.8 S h or 1.5 S y BSecondary - Thermal and Seismic ND-3653.2(a), Equation (10) with a stress limit of S AC Primary Less than 1.8 P Primary Less than 2.0 P DSecondary - Seismic ND-3653.2(a), Equation (10) with a stress limit of S A
6.8       Seismic Analysis Input 6.8.1 Seismic Anchor Motion Per Calculation CNC-1206.02-84-0001 [Ref. 16] provided by CNS, the seismic displacement of the DG building is less than 0.003 inches for OBE or SSE analysis. The 42&#xf8; Supply Line is attached at the Auxiliary Building and has the following seismic displacements Lateral = 0.014328 < 1/16 in, Axial =
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page The criteria used to evaluate the adequacy of the buried HDPE piping system are summarized in Table 6.11(b). Table 6-11(b) - Buried HDPE Capacity Criteria Service Level Stress Condition Capacity Criteria Design Requirements of N755-3131.1   Requirements of N755-3223.1 with k=1.0Primary - Side Wall Compression 500 psi (N755-3220) Primary - Buckling due to External PressureRequirements of N755-3221.1 Primary - Flotation W P+[P E*(DW/12)] Primary Less than 1.0
0.01374 < 1/16 in, and Vertical = 0.0 for OBE or SSE analysis. These displacements are considered insignificant for this analysis and a seismic anchor motion analysis is therefore not conducted 6.8.2 Seismic Wave Passage Since the piping system is completely buried and isolated from aboveground piping, the methodology of Non-Mandatory Appendix D of the ASME BPVC Code Case N-755 will be used to qualify the piping for seismic wave passage. In Ref. [18], the strains due to seismic wave passage were computed and then Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                 Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08             Chkd by                           Date 11/11/08 converted to an equivalent thermal strain resulting in a temperature change ('T) of 10 oF. This change in temperature will be used as input in the ADLPIPE computer model as a thermal analysis of the piping system to determine the seismic loads.
* P Primary - Longitudinal Stress Requirements of N755-3223.1 with k=1.0Secondary - Thermal 1100 psi (N755-3311.3)
6.8.3 Decoupling of 12 Steel Pipe If the ratio of the moment of inertia of the run pipe to branch pipe (decoupled pipe) is equal to or greater than 25, the branch piping may be considered to have no significant effect on the response of the run pipe. Ref. [28]. I12 branch pipe = 300 in4 ; I42 run pipe = 14037 in4 ; Ratio of run to branch is 46. The analysis of the decoupled piping shall consider the thermal, seismic, and other movements of the run pipe at the intersection point. There are no thermal or seismic anchor movements (See section 6.8.1) on the run pipe. The steel buried pipe will not have seismic response from the seismic wave passage. Therefore, there are no anchor movements at the 12 pipe (branch) to the 42 pipe (run) connection.
ANon Repeated Anchor Motion 2*S (N755-3312) Primary - Side Wall Compression 500 psi (N755-3220) Primary - Buckling due to External PressureRequirements of N755-3221.1 Primary - Flotation W P+[P E*(DW/12)] Primary - Pressure Less than 1.1
6.9       Piping Layout The layout of the piping system is shown in the following drawings provided by Duke Power Carolinas:
* P Primary - Pressure + Surge Pressure 1.5
CN-1038-06 [Ref. 5], CN-1038-11 [Ref. 6] and CN-1038-12 [Ref. 7]. Dimensions and orientations of piping shown on these drawings were used in generating the ADLPIPE computer model for the piping system. A sketch of the piping layout is shown in Fig. 6.9 Page CALCULATION CONTINUATION SHEET Client    Duke Power Carolinas, LLC                     Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                           Date 11/10/08       Chkd by                   Date 11/11/08 Figure 6.9 Page CALCULATION CONTINUATION SHEET Client      Duke Power Carolinas, LLC                       Calculation No.     07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08       Chkd by                         Date 11/11/08 6.10     Pipe Criteria - Steel and HDPE The pipe load combinations considered and shown in Table 6.10(a) - Steel Table 6.10(a) Buried Steel Piping Load Combinations Service Level           Stress Condition                           Load Combination Primary                         P Design       Primary                         P + DW Primary                         Pa Primary - - Longitudinal Stress Pa + DW A          Secondary                       Range of (Ta min, Ta max)
* P Primary - Longitudinal Stress Requirements of N755-3223.1 with k=1.1Primary - Pressure + Longitudinal Stress +
Non Repeated Anchor Motion       BS Primary                         Pb Primary                          Pbs Primary - - Longitudinal Stress Pb + DW + VOT B                                          Pb + DW+PS Secondary - Thermal and         (a) Range of (Tb min, Tb max)
Short Duration Requirements of N755-3223.2 or 0.4*Material tensile strength at yield Secondary - Thermal 1100 psi (N755-3311.3)
Seismic                          (b)Tb max + [OBEW2 + (OBES+OBED)2]1/2 (c)Tb min + [OBEW2 + (OBES+OBED)2]1/2 C          Primary                         Pc Primary                          Pd D          Secondary - Seismic             [SSEW2 + (SSES+SSED)2]1/2 Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08         Chkd by                         Date 11/11/08 The pipe load combinations considered and shown in Table 6.10(b) - HDPE Table 6.10(b)- Buried HDPE Piping Load Combinations Service Level                   Stress Condition                       Load Combination Design                                                       P P + DW Primary - Side Wall Compression           PE + PL Primary - Buckling due to External       PE+PL+Pgw Pressure Primary -- Flotation                     WW A              Primary -- Pressure                       Pa Primary - - Longitudinal Stress           Pa + DW Secondary                                 Range of (Ta min, Ta max)
BSecondary - Seismic 1100 psi (N755-3410) Primary -Side Wall Compression 500 psi (N755-3220) Primary - Buckling due to External PressureRequirements of N755-3221.1 Primary - Flotation W P+[P E*(DW/12)] Primary - Pressure Less than 1.33
Non Repeated Anchor Motion               BS Primary - Side Wall Compression           PE + PL Primary - Buckling due to External       PE+PL+Pgw Pressure Primary -- Flotation                     WW B              Primary -- Pressure                       Pb Primary -- Pressure + Surge Pressure     Pb + Pbs Primary - - Longitudinal Stress           Pb + DW Primary -- Pressure + Longitudinal       Pb + DW + VOT Stress + Short Term                       Pb + DW +PS Secondary -- Thermal                     Range of (Tb min, Tb max)
* P Primary - Pressure + Surge Pressure 2.0
Secondary -- Seismic                     [OBEW2 + (OBES+OBED)2]1/2 Primary -- Side Wall Compression         PE + PL Primary -- Buckling due to External       PE+PL+Pgw Pressure C              Primary -- Flotation                     WW Primary -- Pressure                       Pc Primary -- Pressure + Surge Pressure     Pc + Pcs Secondary -- Thermal                     Range of (Tc min, Tc max)
* P CSecondary - Thermal 1100 psi (N755-3311.3) Primary - Side Wall Compression 500 psi (N755-3220) Primary - Buckling due to External PressureRequirements of N755-3221.1 Primary - Flotation W P+[P E*(DW/12)] Primary - Pressure Less than 1.33
Primary -- Side Wall Compression         PE + PL Primary -- Buckling due to External       PE+PL+Pgw Pressure D              Primary -- Flotation                     WW Primary -- Pressure                       Pd Primary -- Pressure + Surge Pressure     Pd + Pds Secondary -- Thermal                     Range of (Td min, Td max)
* P Primary - Pressure + Surge Pressure 2.0
Secondary -- Seismic                     [SSEW2 + (SSES+SSED)2]1/2 Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                       Calculation No.     07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08         Chkd by                           Date 11/11/08 6.11     Acceptance Criteria - Steel and HDPE The criteria used to evaluate the adequacy of the buried steel piping system are summarized in Table 6.11(a).
* P Secondary -Thermal 1100 psi (N755-3311.3)
Table 6.11(a) - Buried Steel Piping Capacity Criteria Service Level                   Stress Condition                           Capacity Criteria Design        Primary                                         Requirements of ND-3640 Primary                                         ND-3652, Equation (8) with a Stress Limit of 1.5 Sh Primary                                        Less than 1.0 P Primary - - Longitudinal Stress                 ND-3653.1, Equation (9) with a stress limit of 1.8 Sh A            Secondary                                      ND-3653.2(a), Equation (10) with a stress limit of SA Non Repeated Anchor Motion                     ND-3653.2(b), Equation (10a) with a stress limit of 3.0 Sc Primary                                        Less than 1.1 P Primary - - Longitudinal Stress                 ND-3653.1, Equation (9) with a stress limit of Lesser of 1.8 Sh or 1.5 Sy B            Secondary - Thermal and Seismic                 ND-3653.2(a), Equation (10) with a stress limit of SA C            Primary                                         Less than 1.8 P Primary                                         Less than 2.0 P D            Secondary - Seismic                             ND-3653.2(a), Equation (10) with a stress limit of SA Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                       Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08         Chkd by                       Date 11/11/08 The criteria used to evaluate the adequacy of the buried HDPE piping system are summarized in Table 6.11(b).
DSecondary -- Seismic 1100 psi (N755-3410)
Table 6-11(b) - Buried HDPE Capacity Criteria Service Level                   Stress Condition                         Capacity Criteria Design                                                     Requirements of N755-3131.1 Requirements of N755-3223.1 with k=1.0 A          Primary - Side Wall Compression             500 psi (N755-3220)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 7.0 ANALYSIS The analysis of the piping system is done per the Piping Design Specification Ref. [26] using analysis methods consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12] as outlined in Section 5.2 of this calculation. The calculations presented in Section 5.2.1 are dependent only on design conditions and pipe size. For the calculations described in Section 5.2.2, the loads acting on the piping system (due to pressure, deadweight, thermal, seismic, etc.) for the various service levels are required. These loads are determined using the ADLPIPE computer program.
Primary - Buckling due to External Pressure  Requirements of N755-3221.1 Primary - Flotation                         WP+[PE*(DW/12)]
7.1 Computer Model The run starts at the DG building wall of Unit 2 (Node Pt. = 100) and ends at the centerline of the 42-in Supply Header B (Node Pt. = 990). The piping system is considered anchored at each end. A steel flange is welded to the 10-in pipe coming out of the DG building wall. A 10x12 steel reducer, with flanges on both ends, is attached to the 10-in pipe coming out of the DG building wall. A flanged joint is created (Node Pt. 130) between the steel reducer and the HDPE pipe by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the reducer have the same bolt pattern. A 12-in pipe with a flange on one end is welded to the 42-in header. An additional 12-in steel pipe with flanges welded to its ends extends to Node Pt. 880. A flanged joint between the steel pipe and the HDPE pipe is created (Node Pt. 880) by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the 12-in pipe piece have the same  
Primary                                     Less than 1.0
 
* P Primary - Longitudinal Stress               Requirements of N755-3223.1 with k=1.0 Secondary - Thermal                         1100 psi (N755-3311.3)
bolt pattern. Various mitered elbows are used as the HDPE pipe is routed from Node Pt. 130 at EL. 588-6 to Node Pt. 880 at EL. 588-6. Details of the piping dimensions and routing are found in Refs. [5], [6], and [7]. The isometric sketch of the piping system is attached in Appendix A. The ADLPIPE computer model was created for this piping system using the inputs listed in Section 6 of this calculation. Soil springs were generally applied at 2 ft intervals around elbows and at 10 ft intervals in the remaining section of the piping. A complete listing of the ADLPIPE model (input file) and analysis results (output file) are attached in Appendix B.
Non Repeated Anchor Motion                   2*S (N755-3312)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 7.2 Results of ADLPIPE Analysis 7.2.1 Load Cases Analyzed Steel and HDPE pipe load cases as well as load combinations analyzed using the ADLPIPE piping analysis program are shown in Tables 7.2.1a and 7.2.1b. Thermal cases are required for Level A, B, C, and D because of the time dependence of the Elastic Modulus for HDPE pipe. The following durations were assumed for each service level: Service Level A: 50 Years Ref. [14]  E c = 28,000 psi E h = 23,000 psi Service Level B: 10 Years Ref. [14]  E c = 32,000 psi E h = 26,000 psi Service Level C: 1000 Hrs Ref. [14]  E c = 44,000 psi E h = 36,000 psi Service Level D: 1000 Hrs Ref. [14]  E c = 44,000 psi E h = 36,000 psi Table 7.2.1a: ADLPIPE Single Load Cases Analyzed Load Type Load Case Deadweight + Pressure 10 Level A Thermal at Minimum Temperature, T min = 32 o F (T = -23 o F) 21Level A Thermal at Maximum Temperature, T max = 100 o F (T = 45 o F ) 22Level B Thermal at Minimum Temperature, T min = 32 o F (T = -23 o F) 23Level B Thermal at Maximum Temperature, T max = 100 o F (T = 45 o F ) 24Level C/D Thermal at Minimum Temperature, T min = 32 o F (T = -23 o F) 25Level C/D Thermal at Maximum Temperature, T max = 100 o F (T = 45 o F ) 26Thermal at T = 65 o F (T = 10 o F )(1)30 (1)This is a pseudo-seismic case. T is the equivalent temperature rise for computing the seismic loads on the piping system.
B          Primary - Side Wall Compression             500 psi (N755-3220)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Table 7.2.1b: ADLPIPE Load Combinations Considered Load Type Load Case Level A : Absolute Range of Load Cases 21 and 22 27 Level B : Absolute Range of Load Cases 23 and 24 28 Level C/D : Absolute Range of Load Cases 25 and 26 29 Level D : Absolute Range of Load Case 30 (SSE) 31 Level B : Load Case 31 / 1.875 (OBE)  
Primary - Buckling due to External Pressure  Requirements of N755-3221.1 Primary - Flotation                         WP+[PE*(DW/12)]
(1) 32 Level B: Absolute Thermal Max (L.C. 24) + OBE Seismic (L.C. 32) 40 Level B: Absolute Thermal Min (L.C. 23) + OBE Seismic (L.C. 32) 41 Level B: Max of Load Case 28, 40 and 41 45 (1)Per page 94 of Ref. [16], OBE = SSE/1.875.7.2.2 Summary of HDPE Loads at Critical Locations The loads acting at the critical locations on the HDPE pipe (i.e., where the maximum stresses occur) for Service Levels A, B, C and D are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 7.2.2a to 7.2.2d and will be used for computing pipe stresses as described in Section 5 of this calculation. Service Level A Table 7.2.2a: HDPE Deadweight Loads at Critical LocationsStraight Pipe Mitered Elbow LoadCase F [lb] Node No.
Primary - Pressure                           Less than 1.1
M [ft-lb] Node No.
* P Primary - Pressure + Surge Pressure         1.5
F[lb]Node No.
* P Primary - Longitudinal Stress               Requirements of N755-3223.1 with k=1.1 Primary - Pressure + Longitudinal Stress +   Requirements of N755-3223.2 or Short Duration                              0.4*Material tensile strength at yield Secondary - Thermal                         1100 psi (N755-3311.3)
M[ft-lb]Node No.10 0 225 491 225 0 320 71 320 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Table 7.2.2b: HDPE Thermal Loads at Critical LocationsStraight Pipe Mitered Elbow Load Case F [lb] Node No.
Secondary - Seismic                         1100 psi (N755-3410)
M [ft-lb] Node No.
C          Primary -Side Wall Compression               500 psi (N755-3220)
F[lb](1)Node No. M[ft-lb]Node No.27 (Level A) 5259 880 536 880 2464 650 1158 650 28 (Level B) 5862 880 637 880 2771 650 1336 650 29 (Level C/D) 7707 880 982 880 3732 650 1923 650 (1) Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative. Service Level B Table 7.2.2c: HDPE OBE Loads at Critical LocationsStraight Pipe Mitered Elbow LoadCase F [lb] Node No.
Primary - Buckling due to External Pressure  Requirements of N755-3221.1 Primary - Flotation                         WP+[PE*(DW/12)]
M [ft-lb] Node No.
Primary - Pressure                           Less than 1.33
F[lb](1)Node No. M[ft-lb]Node No.32 (OBE) 2832 880 603 880 1526 650 995 650 (1)Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.Service Level D Table 7.2.2d: HDPE SSE Loads at Critical LocationsStraight Pipe Mitered Elbow LoadCase F [lb] Node No.
* P Primary - Pressure + Surge Pressure         2.0
M [ft-lb] Node No.
* P Secondary - Thermal                         1100 psi (N755-3311.3)
F[lb](1)Node No. M[ft-lb]Node No.31 (SSE) 5308 880 1130 880 2862 650 1866 650 (1)Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.
D          Primary - Side Wall Compression             500 psi (N755-3220)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 7.3 Calculations per the ASME BPVC Code Case N-755 The HDPE piping system was analyzed per the Design Specification Ref. [26] which is consistent with Relief Request 06-CN-003 Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12], as described in Sections 5.2.1 and 5.2.2, of this calculation. The manual calculations were performed using Mathcad. The design conditions and the maximum loads obtained from ADLPIPE analysis (as listed in Tables 7.2.2a to 7.2.2d) were used to qualify the HDPE piping based on the applicable criteria for the design load cases. The manual calculations are provided below.
Primary - Buckling due to External Pressure  Requirements of N755-3221.1 Primary - Flotation                         WP+[PE*(DW/12)]
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Allowance for mechanical and erosion damagec0.0inDR D t Dimensional ratio (DR = 11 for straight pipe and DR = 9 for mitered elbows)
Primary - Pressure                           Less than 1.33
Minimum wall thickness for DR-9 pipe, Ref. [12]t1.417inMinimum wall thickness for DR-11 pipe, Ref. [12]t1.159inOutside diameter of pipeD12.75inBedding factor K bed 0.1Deflection lag factorL1.5Specific weight of dry soil  soil 105 lb ft 3Design pressure, psigP100 lb in 2Specific weight of water w 62.4 lb ft 3Weight of empty pipe per foot W p 18.4 lb ftModulus for fine grain sand compacted to > 95% E'2000 lb in 2Elastic modulus at 100 o F for short term load duration E pipe10h 100000 lb in 2Elastic modulus at 100 o F for 50 yr load duration E pipe50y 23000 lb in 2Allowable stress at 100 o FS620 lb in 2Manual Calculations Per ASME BPVC Code Case N-755:
* P Primary - Pressure + Surge Pressure         2.0
* P Secondary -Thermal                           1100 psi (N755-3311.3)
Secondary -- Seismic                         1100 psi (N755-3410)
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                         Calculation No.       07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08         Chkd by                         Date 11/11/08 7.0     ANALYSIS The analysis of the piping system is done per the Piping Design Specification Ref. [26] using analysis methods consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12] as outlined in Section 5.2 of this calculation. The calculations presented in Section 5.2.1 are dependent only on design conditions and pipe size. For the calculations described in Section 5.2.2, the loads acting on the piping system (due to pressure, deadweight, thermal, seismic, etc.) for the various service levels are required. These loads are determined using the ADLPIPE computer program.
7.1 Computer Model The run starts at the DG building wall of Unit 2 (Node Pt. = 100) and ends at the centerline of the 42-in Supply Header B (Node Pt. = 990). The piping system is considered anchored at each end.
A steel flange is welded to the 10-in pipe coming out of the DG building wall. A 10x12 steel reducer, with flanges on both ends, is attached to the 10-in pipe coming out of the DG building wall. A flanged joint is created (Node Pt. 130) between the steel reducer and the HDPE pipe by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the reducer have the same bolt pattern.
A 12-in pipe with a flange on one end is welded to the 42-in header. An additional 12-in steel pipe with flanges welded to its ends extends to Node Pt. 880. A flanged joint between the steel pipe and the HDPE pipe is created (Node Pt. 880) by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the 12-in pipe piece have the same bolt pattern.
Various mitered elbows are used as the HDPE pipe is routed from Node Pt. 130 at EL. 588-6 to Node Pt. 880 at EL. 588-6. Details of the piping dimensions and routing are found in Refs. [5], [6], and [7].
The isometric sketch of the piping system is attached in Appendix A. The ADLPIPE computer model was created for this piping system using the inputs listed in Section 6 of this calculation. Soil springs were generally applied at 2 ft intervals around elbows and at 10 ft intervals in the remaining section of the piping. A complete listing of the ADLPIPE model (input file) and analysis results (output file) are attached in Appendix B.
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                           Calculation No.     07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08           Chkd by                           Date 11/11/08 7.2 Results of ADLPIPE Analysis 7.2.1 Load Cases Analyzed Steel and HDPE pipe load cases as well as load combinations analyzed using the ADLPIPE piping analysis program are shown in Tables 7.2.1a and 7.2.1b. Thermal cases are required for Level A, B, C, and D because of the time dependence of the Elastic Modulus for HDPE pipe. The following durations were assumed for each service level:
Service Level A:     50 Years Ref. [14]  Ec = 28,000 psi   Eh = 23,000 psi Service Level B:     10 Years Ref. [14]  Ec = 32,000 psi   Eh = 26,000 psi Service Level C:     1000 Hrs Ref. [14]  Ec = 44,000 psi   Eh = 36,000 psi Service Level D:     1000 Hrs Ref. [14]  Ec = 44,000 psi   Eh = 36,000 psi Table 7.2.1a: ADLPIPE Single Load Cases Analyzed Load Type                                                                             Load Case Deadweight + Pressure                                                                 10 Level A Thermal at Minimum Temperature, Tmin = 32o F ('T = -23o F)                   21 Level A Thermal at Maximum Temperature, Tmax = 100o F ('T = 45o F )                   22 Level B Thermal at Minimum Temperature, Tmin = 32o F ('T = -23o F)                   23 Level B Thermal at Maximum Temperature, Tmax = 100o F ('T = 45o F )                   24 Level C/D Thermal at Minimum Temperature, Tmin = 32o F ('T = -23o F)                 25 Level C/D Thermal at Maximum Temperature, Tmax = 100o F ('T = 45o F )                 26 Thermal at T = 65o F ('T = 10o F )(1)                                                 30 (1)
This is a pseudo-seismic case. 'T is the equivalent temperature rise for computing the seismic loads on the piping system.
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                       Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08       Chkd by                     Date 11/11/08 Table 7.2.1b: ADLPIPE Load Combinations Considered Load Type                                                                     Load Case Level A : Absolute Range of Load Cases 21 and 22                             27 Level B : Absolute Range of Load Cases 23 and 24                             28 Level C/D : Absolute Range of Load Cases 25 and 26                           29 Level D : Absolute Range of Load Case 30 (SSE)                               31 Level B : Load Case 31 / 1.875 (OBE) (1)                                     32 Level B: Absolute Thermal Max (L.C. 24) + OBE Seismic (L.C. 32)               40 Level B: Absolute Thermal Min (L.C. 23) + OBE Seismic (L.C. 32)               41 Level B: Max of Load Case 28, 40 and 41                                       45 (1)
Per page 94 of Ref. [16], OBE = SSE/1.875.
7.2.2 Summary of HDPE Loads at Critical Locations The loads acting at the critical locations on the HDPE pipe (i.e., where the maximum stresses occur) for Service Levels A, B, C and D are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 7.2.2a to 7.2.2d and will be used for computing pipe stresses as described in Section 5 of this calculation.
Service Level A Table 7.2.2a: HDPE Deadweight Loads at Critical Locations Straight Pipe                               Mitered Elbow Load Case F [lb]       Node No. M [ft-lb]   Node No. F [lb]     Node No. M [ft-lb] Node No.
10             0           225         491         225       0           320       71       320 Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                         Calculation No.     07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08           Chkd by                       Date 11/11/08 Table 7.2.2b: HDPE Thermal Loads at Critical Locations Straight Pipe                                 Mitered Elbow Load Case F [lb]   Node No.     M [ft-lb]   Node No. F [lb](1) Node No. M [ft-lb]   Node No.
27 (Level A)         5259     880           536         880         2464       650       1158         650 28 (Level B)         5862     880           637         880         2771       650       1336         650 29 (Level C/D)       7707     880           982         880         3732       650       1923         650 (1)
Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.
Service Level B Table 7.2.2c: HDPE OBE Loads at Critical Locations Straight Pipe                                     Mitered Elbow Load Case F [lb]       Node No. M [ft-lb]     Node No. F [lb](1)     Node No. M [ft-lb]   Node No.
32 (OBE)       2832         880         603           880       1526         650       995         650 (1)
Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.
Service Level D Table 7.2.2d: HDPE SSE Loads at Critical Locations Straight Pipe                                     Mitered Elbow Load Case F [lb]       Node No. M [ft-lb]     Node No. F [lb](1)     Node No. M [ft-lb]   Node No.
31 (SSE)       5308         880         1130         880       2862         650       1866       650 (1)
Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                       Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08         Chkd by                       Date 11/11/08 7.3 Calculations per the ASME BPVC Code Case N-755 The HDPE piping system was analyzed per the Design Specification Ref. [26] which is consistent with Relief Request 06-CN-003 Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12], as described in Sections 5.2.1 and 5.2.2, of this calculation. The manual calculations were performed using Mathcad.
The design conditions and the maximum loads obtained from ADLPIPE analysis (as listed in Tables 7.2.2a to 7.2.2d) were used to qualify the HDPE piping based on the applicable criteria for the design load cases. The manual calculations are provided below.
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                           Calculation No.       07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08       Chkd by                             Date 11/11/08 Manual Calculations Per ASME BPVC Code Case N-755:
Define Variables:
Define Variables:
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page P v 15.814 lb in 2P v1.015P vThis soil pressure value was obtained based on a cask weight of 310 kip and transporter weight of 170 kip.
lb S  620                                    Allowable stress at 100o F 2
in lb Epipe50y  23000                          Elastic modulus at 100o F for 50 yr load duration 2
in lb Epipe10h  100000                          Elastic modulus at 100o F for short term load duration 2
in lb E'  2000                                  Modulus for fine grain sand compacted to > 95%
2 in lb W p  18.4                                  Weight of empty pipe per foot ft lb J w  62.4                                  Specific weight of water 3
ft lb P  100                                  Design pressure, psig 2
in lb J soil  105                            Specific weight of dry soil 3
ft L  1.5                                  Deflection lag factor Kbed  0.1                                Bedding factor D  12.75  in                            Outside diameter of pipe t    1.159  in                          Minimum wall thickness for DR-11 pipe, Ref. [12]
t    1.417  in                          Minimum wall thickness for DR-9 pipe, Ref. [12]
D                                Dimensional ratio (DR = 11 for straight pipe and DR                                        DR = 9 for mitered elbows) t c  0.0in Allowance for mechanical and erosion damage Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                       Calculation No.                 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08               Chkd by                                           Date 11/11/08 Section 3131.1 - Minimum Required Wall Thickness Calculate the pressure design thickness, t  min :
P D tmin                                               tmin      0.95in
( 2  S  P)
Determine the minimum required wall thickness, tdesign :
tdesign  tmin  c                                tdesign      0.95in Pipe wall thickness (DR 11), t = 1.159 in > 0.95 in...........................................................
O.K.
Pipe wall thickness (DR 9), t = 1.417 in > 0.95 in............................................................
O.K.
Note that DR-11 governs. Therefore, for subsequent calculations, only DR-11 needs to be considered; that is::
DR  11 Section 3210 - Ring Deflection Determine the vertical soil pressure (P L) due to surcharge loads.
Per Drawing No. CN-1038-06 [Ref. 5], the Transporter Haul Path crosses over the HDPE pipe lines of Unit 2. The Haul Path is at EL. 594'-0" and the pipe centerline is at EL. 588'-6". Hence, the soil depth from surface to top of pipe = 5 ft.
H  5ft As shown on page 21 of 79 of Ref. [13], the maximum vertical soil pressure Pv due to the combined weight of the transporter and cask at 5 feet below surface, not including impact, is:
lb Pv  15.58 2
in This soil pressure value was obtained based on a cask weight of 310 kip and transporter weight of 170 kip.
Per Sheet 25 of EC./VN No. CD500920D (DOC. ID. 32-5053646-01 Rev. 1) dated 2-20-07, the cask weight is 314.6 kip, which is 1.5% greater than the original value used in computing soil pressure. Therefore, in this calculation, the vertical soil pressure value will be increased by 1.5%; that is:
Per Sheet 25 of EC./VN No. CD500920D (DOC. ID. 32-5053646-01 Rev. 1) dated 2-20-07, the cask weight is 314.6 kip, which is 1.5% greater than the original value used in computing soil pressure. Therefore, in this calculation, the vertical soil pressure value will be increased by 1.5%; that is:
P v 15.58 lb in 2As shown on page 21 of 79 of Ref. [13], the maximum vertical soil pressure P v due to the combined weight of the transporter and cask at 5 feet below surface, not including impact, is:H5ftDetermine the vertical soil pressure (P L) due to surcharge loads.
Pv  1.015  Pv                                                            lb Pv      15.814 2
Per Drawing No. CN-1038-06 [Ref. 5], the Transporter Haul Path crosses over the HDPE pipe lines of Unit 2. The Haul Path is at EL. 594'-0" and the pipe centerline is at EL. 588'-6". Hence, the soil depth from surface to top of pipe = 5 ft.
in Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                               Calculation No.         07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                     Date 11/10/08             Chkd by                           Date 11/11/08 Per Ref. [13], the impact load factor (F) due to the cask dropping from a maximum height of 8.0 inches is:
Section 3210 - Ring DeflectionDR11Note that DR-11 governs. Therefore, for subsequent calculations, only DR-11 needs to be considered; that is:: Pipe wall thickness (DR 11),  t = 1.159 in > 0.95 in...........................................................
F  3.033 The maximum vertical soil pressure due to surcharge loads, including impact, is computed by applying the impact load factor to the combined weight of the transporter and cask. This is conservative since the impact load factor actually applies to the cask weight only. Therefore:
O.K.Pipe wall thickness (DR 9),    t = 1.417 in > 0.95 in............................................................O.K.t design0.95int design t min cDetermine the minimum required wall thickness, t design: t min0.95int min PD2SP()Calculate the pressure design thickness, t min: Section 3131.1 - Minimum Required Wall Thickness C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Per Ref. [13], the impact load factor (F) due to the cask dropping from a maximum height of 8.0 inches is:F3.033The maximum vertical soil pressure due to surcharge loads, including impact, is computed by applying the impact load factor to the combined weight of the transporter and cask. This is conservative since the impact load factor actually applies to the cask weight only. Therefore:
lb PL  F  Pv                              PL  47.96 2
P L FP vP L 47.96 lb in 2Calculate the vertical soil pressure due to earth loads. Note that there is no water above pipe; hence, dry soil is the only source of pressure.
in Calculate the vertical soil pressure due to earth loads. Note that there is no water above pipe; hence, dry soil is the only source of pressure.
P E soil HP E 3.65 lb in 2Compute the ring deflection by letting Soil Support Factor, F s = 0. Note that as shown in Table 3210-2 of Ref. [12], the value of F s depends on properties of the trench and native soil, and on pipe diameter and trench width. Using zero for Fs (see equation below) will yield a conservative value for .F s 0Compute the ring deflection . 1 K bed LP E2E pipe50y3 1DR10.061F sE' 13.5710 4 2 K bed P L2E pipe10h3 1DR10.061F sE' 27.1910 4Note that the equation given in Ref. [12] for computing includes a conversion factor of 144. Since MathCad automatically converts units, this conversion factor is not included in the above equation.
PE  J soil H                                                                    lb PE    3.65 2
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page  1 21.0810 3The maximum allowable ring deflection (max) is given in Ref. [12] as percent of the original diameter.
in Compute the ring deflection : by letting Soil Support Factor, Fs = 0. Note that as shown in Table 3210-2 of Ref. [12], the value of Fs depends on properties of the trench and native soil, and on pipe diameter and trench width. Using zero for Fs (see equation below) will yield a conservative value for :.
Per Table 3210-1 of Ref. [12], for DR = 11: max = 5%  
Fs  0 Compute the ring deflection : .
= 0.05 >1.0810 3 ........................................................................
Kbed  L  PE
O.K.Section 3220 - Compression of Sidewalls Calculate the circumferential compressive stress ( sw) in the sidewalls of pipe and miters. sw P E P LDR2sw 283.8 lb in 2Note that the equation given in Ref. [12] for computing sw includes a conversion factor of 144. Since MathCad automatically converts units, the conversion factor is omitted here.
:1                                                                                       4 2  Epipe50y          1 *                                          :1    3.57 u 10
Compare sw to the allowable stress value of 500 psi: sw 283.8 lb in 2 < 500 psi   .................................................................................................
                                  &sect;&#xa8;        &#xb8;  0.061  Fs  E' 3          &#xa9; DR  1 &#xb9; Kbed  PL
:2 
2  Epipe10h          1                                                          4
                                &sect;&#xa8;          *  0.061  F  E'                     :2    7.19 u 10
                                              &#xb8;            s 3        &#xa9; DR  1 &#xb9; Note that the equation given in Ref. [12] for computing : includes a conversion factor of 144. Since MathCad automatically converts units, this conversion factor is not included in the above equation.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                                                 Calculation No.                   07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08                         Chkd by                                                   Date 11/11/08
                                                                                                                                  3
:  :1  :2                                                                                        :      1.08 u 10 The maximum allowable ring deflection ( max) is given in Ref. [12] as percent of the original diameter.
Per Table 3210-1 of Ref. [12], for DR = 11:
                                                  3
:max = 5% = 0.05 > :          1.08 u 10            ........................................................................
O.K.
Section 3220 - Compression of Sidewalls Calculate the circumferential compressive stress ( Vsw ) in the sidewalls of pipe and miters.
PE  PL  DR                                                                      lb Vsw                                                                 Vsw        283.8 2                                                                            2 in Note that the equation given in Ref. [12] for computing Vsw includes a conversion factor of 144.
Since MathCad automatically converts units, the conversion factor is omitted here.
Compare Vsw to the allowable stress value of 500 psi:
lb Vsw    283.8     < 500 psi .................................................................................................
O.K.
O.K.
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Section 3221.1 - Buckling Due to External Pressure Check that external pressure from ground water (Pgw), earth loads (P E) and surcharge loads (P L)does not cause the pipe to buckle. PhydroPgwP EP L2.8R b BE'E pipe50y12DR1()30.5 Note that the equation provided in Ref. [12] for computing the external buckling pressure includes a conversion factor of 144. The conversion factor is not needed here since MathCad automatically converts units.
2 in Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                           Calculation No.                   07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                     Date 11/10/08               Chkd by                                                   Date 11/11/08 Section 3221.1 - Buckling Due to External Pressure Check that external pressure from ground water ( Pgw ), earth loads ( PE ) and surcharge loads ( PL )
does not cause the pipe to buckle .
0.5 Epipe50y &#xba; Phydro      Pgw  PE  PL d 2.8  << Rb  B  E' 3>>
                                                &#xac;              12  ( DR  1) 1/4 Note that the equation provided in Ref. [12] for computing the external buckling pressure includes a conversion factor of 144. The conversion factor is not needed here since MathCad automatically converts units.
There is no water above the pipe. Hence:
There is no water above the pipe. Hence:
H gw0ftP gw 0 lb in 2R b10.33 H gw HR b 1Compute the burial factor, B. Note that for computing burial factor, height of soil above pipe (H)needs to be redefined as a quantity H B with no units.
lb Hgw  0ft                                      Pgw  0 2
H B 5B 114exp0.065H BB0.257P gw P EP L51.6 lb in 22.8R b BE'E pipe50y12DR1()30.587.9 lb in 2(P gw+ P E + P L ) is less than 87.9 lb/in 2................................................................................
in Hgw Rb  1  0.33                                 Rb      1 H
Compute the burial factor, B. Note that for computing burial factor, height of soil above pipe (H) needs to be redefined as a quantity H B with no units.
HB  5 1
B                                                                                    B     0.257 1  4  exp 0.065  HB lb Pgw  PE  PL        51.6 2
in 0.5 Epipe50y &#xba;                lb 2.8  << Rb  B  E'                       87.9 3>>                2
                &#xac;              12  ( DR  1) 1/4            in (Pgw + PE + PL ) is less than 87.9 lb/in2................................................................................
O.K.
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                              Calculation No.                    07Q3691-CAL-009 Project    Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                          Date 11/10/08              Chkd by                                                  Date 11/11/08 Section 3221.2 - Effects of Negative Internal Pressure fo                                    3 2  Epipe10h              1  *
          'P d                            &sect;&#xa8;        &#xb8; 2
1Q 2        &#xa9; DR  1 &#xb9; fo  0.64                                Ovality correction factor per Table 3221.2-1 for 5% ovality Q  0.35                                  Use short-term values for elastic modulus and Poisson ratio fo    2  Epipe10h                      3 1                lb
                                &sect;&#xa8;          *
                                                &#xb8;    72.9 2
1Q 2        &#xa9; DR  1 &#xb9;            in 2
Therefore, 'P may not exceed 72.9 psi.
Section 3222 - Flotation For floatation, the minimum height of soil above top of pipe (H = 5ft) should be used to calculate the vertical earth load PE . The PE value calculated in the preceding sections is still valid since H = 5ft was used to calculate that value.
The equation given in Ref.[12] includes a conversion factor W w  W p  PE  D                        of 12. Mathcad automatically converts units; therefore, the conversion factor is not needed here.
2 SD Ww                 Jw                    W w is the unit weight of the water displaced by the pipe 4
lb Ww      55.3 ft lb W p  PE  D        576.2 ft W w is less than W p  PE  D ......................................................................................................
O.K.
O.K.
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page W w is less than W p P E D......................................................................................................
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                             Calculation No.       07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                     Date 11/10/08       Chkd by                             Date 11/11/08 Calculation of Stresses Per Code Case N-755 [Ref. 12]
O.K.W p P E D576.2 lb ftW w 55.3 lb ftW w is the unit weight of the water displaced by the pipe W w D 24 wW w W p P E DThe equation given in Ref.[12] includes a conversion factor of 12. Mathcad automatically converts units; therefore, the conversion factor is not needed here.For floatation, the minimum height of soil above top of pipe (H = 5ft) should be used to calculate the vertical earth load P E . The P E value calculated in the preceding sections is still valid since H = 5ft was used to calculate that value.
Define Variables:
Section 3222 - Flotation Therefore,P may not exceed 72.9 psi.
lb Pa  100                                          Design or Service Level A, B, C, or D pressure 2
f o 2 2E pipe10h1 21DR1372.9 lb in 2Use short-term values for elastic modulus and Poisson ratio 0.35Ovality correction factor per Table 3221.2-1 for 5% ovality f o 0.64P f o 22Epipe10h1 21DR13 Section 3221.2 - Effects of Negative Internal Pressure C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page B 1 0.5B 2 1.0Properties of Mitered Elbow Elbow is DR-9 D ie9.916inInside Diameter of elbow, per Ref. [12]
in D  12.75 in                                      Outside diameter of pipe and mitered elbow Properties of Straight Pipe                                      Straight pipe is DR-11 Di  10.432 in                                    Inside Diameter of straight pipe, per Ref. [12]
t e1.417inWall thickness of elbow, per Ref. [12]
t  1.159  in                                      Wall thickness of straight pipe, per Ref. [12]
A e 4 D 2 D ie 2A e50.5in 2Cross sectional area of elbow Z e 32D 4 D ie 4DZ e129.0in 3Section modulus of elbow i e 2.0Stress Intensification Factor of elbow (per Table 3311.2-1)
S
Stress Indices of elbow (per Table 3223-1)
                        &sect;&#xa9; D  Di 2     2*                  2 A                      &#xb9;      A    42.2in        Cross sectional area of straight pipe 4
B 1e 0.69B 2e 1.64Calculation of Stresses Per Code Case N-755 [Ref. 12]
4      4
Define Variables:Pa100 lb in 2Design or Service Level A, B, C, or D pressureD12.75inOutside diameter of pipe and mitered elbow Properties of Straight Pipe Straight pipe is DR-11 D i10.432inInside Diameter of straight pipe, per Ref. [12]t1.159inWall thickness of straight pipe, per Ref. [12]
                  &sect; S
A 4 D 2 D i 2A42.2in 2Cross sectional area of straight pipe Z 32D 4 D i 4DZ112.3in 3Section modulus of straight pipe Stress Intensification Factor of straight pipe (per Table 3311.2-1)i1.0Stress Indices of straight pipe (per Table 3223-1)
* D  Di Z  &#xa8; &#xb8;                        Z  112.3in 3
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page which is less than  620 lb in 2...............
Section modulus of straight pipe
OK B 1ePaD2t e2B 1eF ae A eB 2e M e Z e321.3 lb in 2Resultant bending moment due to deadweight on the mitered elbow M e71lbftAxial force due to deadweight on the mitered elbow F ae0lbB 1e P a D2t e2B 1eF ae A eB 2e M e Z ekS Elbow is DR-9 Mitered Elbow
                  &#xa9; 32 &#xb9;          D Stress Intensification Factor of straight pipe i  1.0                                            (per Table 3311.2-1)
: which is less than  620 lb in 2.......................
Stress Indices of straight pipe B1  0.5                        B2  1.0            (per Table 3223-1)
OK B 1PaD2t2B 1F a AB 2 M Z327.5 lb in 2Resultant bending moment due to deadweight on the straight pipeM491lbftAxial force due to deadweight on the straight pipe F a0lbB 1 P a D2t2B 1F a AB 2 M ZkS Straight pipe is DR-11 Straight Piping Section
Properties of Mitered Elbow                                      Elbow is DR-9 Die  9.916  in                                    Inside Diameter of elbow, per Ref. [12]
: kS620 lb in 2k1.0Longitudinal Stress Factor for Design (per Table 3223-2)S620 lb in 2Allowable stress at 100 degrees F (per Table 3131-1) 3223.1 - Longitudinal Stress Design The Design/Operating Temperature is 100 degrees F. The design pressure for the inlet line is 100 psig.
te  1.417  in                                    Wall thickness of elbow, per Ref. [12]
S
                        &sect;&#xa9; D  Die 2       2*                2 Ae                       &#xb9;    Ae    50.5in        Cross sectional area of elbow 4
4        4
                    &sect; S
* D  Die                        3 Section modulus of elbow Ze   &#xa8; &#xb8;                      Ze  129.0in
                    &#xa9; 32 &#xb9;          D ie  2.0                                            Stress Intensification Factor of elbow (per Table 3311.2-1)
Stress Indices of elbow B1e  0.69                      B2e  1.64          (per Table 3223-1)
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                 Calculation No.           07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                     Date 11/10/08             Chkd by                                     Date 11/11/08 The Design/Operating Temperature is 100 degrees F. The design pressure for the inlet line is 100 psig.
The Level A, B, C, and D operating pressure for the inlet line is 75 psig. The maximum deadweight and presure loads (Load Case 10) are obtained from the ADLPIPE analysis and listed in Section 7.3 of this calculation. Qualification of the HDPE pipe is based on Design Level factors and Allowable stress using the Design temperature and pressure. Design pressue envelopes Service Levels A, B, C, and D pressures.
The Level A, B, C, and D operating pressure for the inlet line is 75 psig. The maximum deadweight and presure loads (Load Case 10) are obtained from the ADLPIPE analysis and listed in Section 7.3 of this calculation. Qualification of the HDPE pipe is based on Design Level factors and Allowable stress using the Design temperature and pressure. Design pressue envelopes Service Levels A, B, C, and D pressures.
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page There are no nonrepeated (thermal) anchor movements .
3223.1 - Longitudinal Stress Design lb                                              Allowable stress at 100 degrees F S  620                                                      (per Table 3131-1) 2 in Longitudinal Stress Factor for Design k  1.0                                                        (per Table 3223-2) lb k S    620 2
3312 - Nonrepeated Anchor Movements which is less than 1100 lb in 2...................................
in Straight Piping Section :                                           Straight pipe is DR-11 Pa  D              Fa        M B1             2  B1     B2      d k S 2 t              A        Z Fa  0  lb                                                Axial force due to deadweight on the straight pipe M  491 lb ft                                          Resultant bending moment due to deadweight on the straight pipe Pa  D              Fa        M            lb                              lb B1             2  B1     B2        327.5        which is less than 620        .......................OK 2 t              A        Z             2                                2 in                              in Mitered Elbow:                                                    Elbow is DR-9 Pa  D              Fae        Me B1e             2  B1e       B2e      d k S 2  te              Ae          Ze Fae  0  lb                                                   Axial force due to deadweight on the mitered elbow M e  71  lb  ft                                              Resultant bending moment due to deadweight on the mitered elbow Pa  D              Fae        Me            lb                                lb B1e             2 B1e       B2e        321.3        which is less than 620          ...............OK 2  te              Ae          Ze            2                                2 in                                in Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                  Calculation No.                   07Q3691-CAL-009 Project    Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                      Date 11/10/08          Chkd by                                          Date 11/11/08 3311 - Design for Thermal Expansion and Contraction Soil springs were applied to account for the soil stiffness. Therefore, the alternative method of 3311.3 is used: The maximum thermal range force and moment were used to check the stresses in the HDPE pipe. The thermal range of Service Level C/D envelopes Service Level A and B.
OK i e M ce Z eF ace A e431.6 lb in 2M ce1923ftlbResultant moment range due to thermal expansion and/or contraction on the mitered elbow (Level
Straight Piping Section :
 
Straight pipe is DR-11 Mc    Fac              lb i            d 1100 Z    A                    2 in Fac  7707  lb                                    Axial force range due to thermal expansion and/or contraction on the straight pipe (Level C/D)
C/D)F ace3732lbAxial force range due to thermal expansion and/or contraction on the mitered elbow (Level C/D) i e M ce Z eF ace A e1100 lb in 2 Elbow is DR-9 Mitered Elbow
Resultant moment range due to thermal expansion M c  982  ft  lb                                and/or contraction on the straight pipe (Level C/D)
: which is less than 1100 lb in 2.....................................
Mc    Fac            lb                                  lb i                287.6          which is less than 1100       .....................................
OK i M c ZF ac A287.6 lb in 2M c982ftlbResultant moment range due to thermal expansion and/or contraction on the straight pipe (Level C/D)
OK Z     A                 2                                  2 in                                  in Mitered Elbow:                                                  Elbow is DR-9 M ce  Face                lb ie              d 1100 Ze      Ae                    2 in Axial force range due to thermal expansion and/or Face  3732  lb                                        contraction on the mitered elbow (Level C/D)
Axial force range due to thermal expansion and/or contraction on the straight pipe (Level C/D)
Resultant moment range due to thermal expansion M ce  1923  ft  lb                                   and/or contraction on the mitered elbow (Level C/D)
F ac7707lbi M c ZF ac A1100 lb in 2 Straight pipe is DR-11 Straight Piping Section
M ce  Face              lb                                lb ie                431.6          which is less than 1100         ...................................
: Soil springs were applied to account for the soil stiffness. Therefore, the alternative method of 3311.3 is used: The maximum thermal range force and moment were used to check the stresses in the HDPE pipe. The thermal range of Service Level C/D envelopes Service Level A and B.
OK Ze      Ae                  2                                2 in                                 in 3312 - Nonrepeated Anchor Movements There are no nonrepeated (thermal) anchor movements .
3311 - Design for Thermal Expansion and Contraction C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page which is less than 1100 lb in 2.......................................
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                      Calculation No.                    07Q3691-CAL-009 Project    Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                    Date 11/10/08              Chkd by                                              Date 11/11/08 3410 - Seismic Induced Stresses This is applicable for both SSE and OBE loads. These stresses are based on evaluation of the SSE (Level D) conditions which also qualifies the piping for OBE (Level B) conditions as OBE loads are lower and OBE and SSE limits are the same Straight Piping Section:                                  Straight pipe is DR-11 ME    FaE            lb i            d 1100 Z      A                2 in FaE  5308  lb Axial force range due to seismic loads on the straight pipe M E  603  ft  lb Resultant moment range due to seismic loads on the straight pipe ME    FaE          lb                                  lb i              190.2           which is less than 1100        .......................................
OK i e M Ee Z eF aEe A e403.8 lb in 2Resultant moment range due to seismic loads on the mitered elbow M Ee1866ftlbAxial force range due to seismic loads on the mitered elbow F aEe2862lbi e M Ee Z eF aEe A e1100 lb in 2 Mitered elbow is DR-9 Mitered Elbow
OK Z      A              2                                  2 in                                  in Mitered Elbow:
: which is less than 1100 lb in 2.......................................
Mitered elbow is DR-9 M Ee    FaEe              lb ie                d 1100 Ze      Ae                  2 in FaEe  2862  lb                                              Axial force range due to seismic loads on the mitered elbow M Ee  1866  ft  lb                                        Resultant moment range due to seismic loads on the mitered elbow M Ee    FaEe            lb                                  lb ie                  403.8            which is less than 1100          .......................................
OK i M E ZF aE A190.2 lb in 2Resultant moment range due to seismic loads on the straight pipe M E603ftlbAxial force range due to seismic loads on the straight pipe F aE5308lbi M E ZF aE A1100 lb in 2 Straight pipe is DR-11 Straight Piping Section
OK Ze      Ae                2                                  2 in                                  in Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                          Calculation No. 07Q3691-CAL-009 Project  Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                              Date 11/10/08        Chkd by                          Date 11/11/08 7.4 Stress Summary for Unit 2 Steel Pipe Acceptance              Calculated          Allowable              Calculated          Node Criteria            Stress [psi]        Stress [psi]            Allowable            Point Equation 8 (Design)              2104              22500                    0.09              985 Equation 9 (Level A)            1579              27000                    0.06              985 Equation 9 (Level B)            1579              27000                    0.06              985 Equation 10 (Level A)            8047              22500                    0.36              985 Equation 10 (Level B)           9224              22500                    0.41              985 Equation 10 (Level C/D)          7887              22500                    0.35              985 7.5 Flange Summary for Unit 2 HDPE Pipe The EPRI flange capacity tests, Ref. [22], demonstrated that if the pipe stresses at the fusion joint joining the HDPE flange adapter to the piping were less than the maximum code capacities, the flanges were adequate. For this system, all pipe stresses at the fusion joint, joining the HDPE flange adapter to the piping are less than the maximum permitted code capacities.
: This is applicable for both SSE and OBE loads. These stresses are based on evaluation of the SSE (Level D) conditions which also qualifies the piping for OBE (Level B) conditions as OBE loads are lower and OBE and SSE limits are the same 3410 - Seismic Induced Stresses C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 7.4 Stress Summary for Unit 2 Steel PipeAcceptance CriteriaCalculated Stress [psi] Allowable Stress [psi] CalculatedAllowable Node PointEquation 8 (Design) 2104 22500 0.09 985 Equation 9 (Level A) 1579 27000 0.06 985 Equation 9 (Level B) 1579 27000 0.06 985 Equation 10 (Level A) 8047 22500 0.36 985Equation 10 (Level B) 9224 22500 0.41 985Equation 10 (Level C/D) 7887 22500 0.35 9857.5 Flange Summary for Unit 2 HDPE Pipe The EPRI flange capacity tests, Ref. [22], demonstrated that if the pipe stresses at the fusion joint joining the HDPE flange adapter to the piping were less than the maximum code capacities, the flanges were adequate. For this system, all pipe stresses at the fusion joint, joining the HDPE flange adapter to the piping are less than the maximum permitted code capacities. 7.6 Evaluation of Buoyancy over Condenser Cooling Water Lines This piping system goes over the 10-ft diameter Condenser Cooling Water (CCW) lines in the region with plant coordinates 49+50X to 50+00X and 54+00Y to 55+00Y. The HDPE cooling water pipe line is at EL. 588-6 and the CCW lines are at EL. 579-2. In the event a CCW line breaks and completely floods the region, the buoyancy force acting on the HDPE cooling water line needs to be checked if it would result in pipe floatation. The HDPE pipe in this location rests on a composite bed made up of a 16-in HDPE pipe and an 18-in steel pipe as shown in Fig. 7.6 below. The 18-in pipe is attached to concrete piers at its ends.
7.6 Evaluation of Buoyancy over Condenser Cooling Water Lines This piping system goes over the 10-ft diameter Condenser Cooling Water (CCW) lines in the region with plant coordinates 49+50X to 50+00X and 54+00Y to 55+00Y. The HDPE cooling water pipe line is at EL.
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Fig. 7.6: Support provided for HPDE pipe system in the region where it lies over the CCW lines The buoyancy force (F b) per unit length acting on the pipe is:
588-6 and the CCW lines are at EL. 579-2. In the event a CCW line breaks and completely floods the region, the buoyancy force acting on the HDPE cooling water line needs to be checked if it would result in pipe floatation.
b water b A Fwhere: water = specific weight of water [lb/ft 3];  water = 62.4 lb/ft 3                A b = cross-sectional area of related to the displaced volume [ft 2] The area A b can be conservatively estimated from: 2 4 2 12 2 18 D D A bwhere:    D 18 and D 12 are the ODs for 18-in steel pipe and 12-in HDPE pipe, respectively.
The HDPE pipe in this location rests on a composite bed made up of a 16-in HDPE pipe and an 18-in steel pipe as shown in Fig. 7.6 below. The 18-in pipe is attached to concrete piers at its ends.
Noting that D 18 = 18/12 = 1.5 ft and D 12 = 12.75/12 = 1.0625 ft, and substituting yields: 2 0625.1 5.1 4*4.62 2 2 b F = 82.8 lb/ft The forces resisting buoyancy force are:
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                              Calculation No. 07Q3691-CAL-009 Project    Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                Date 11/10/08              Chkd by                      Date 11/11/08 Fig. 7.6: Support provided for HPDE pipe system in the region where it lies over the CCW lines The buoyancy force (Fb) per unit length acting on the pipe is:
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page weight of 18-in steel pipe = 104.7 lb/ft; use only 1/2 of this weight  52.3 lb/ft weight of 16-in HDPE pipe = 29.0 lb/ft; use only 1/2 of this weight  14.5 lb/ft weight of 12-in HDPE pipe = 18.4 lb/ft weight of soil above pipe = soil *H* D 12= 105 lb/ft 3* 5ft
Fb    J water Ab where:
* 1.0625ft = 557.8 lb/ft Note that in computing the soil weight above pipe, for conservatism, D 12 was used instead of D 18 and the height of soil above pipe (H) was taken as 5 ft. Force resisting buoyancy = 52.3 + 14.5 + 18.4 + 557.8 = 643.0 lb/ft > F b = 82.8 lb/ft The 18-in pipe is attached to concrete piers on both ends. The concrete piers are 3x2x14-10 = 89 ft
Jwater = specific weight of water [lb/ft3]; Jwater = 62.4 lb/ft3 Ab = cross-sectional area of related to the displaced volume [ft2]
: 3. Concrete weighs about 144 lb/ft
The area Ab can be conservatively estimated from:
: 3. Hence, the weight of the concrete piers is 89ft 3 x144lb/ft 3 = 12.8 kips. This is an additional force that is resisting the buoyancy force. It is concluded that in the event the CCW lines break and flood the region, the HDPE piping will be OK against floatation. 7.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines This evaluation is for the steel pipe bridge over the 10-0 &#xf8; Condenser Cooling Water lines should they rupture and erode the soil supporting the 12 &#xf8; Nuclear Service Water (NSW) lines to the Diesel Generator Building. This is a faulted condition on the piping system. Three concrete piers split the 58 foot span into two 29 foot spans simply supported. The bridge is composed of half of a 18 &#xf8; sch. 40 carbon steel pipe (104.7 lb/ft / 2 = 52.4 lb/ft) as shown in Figure 7.6.
2      2 S &sect;&#xa8; D18  D12 *&#xb8; Ab 4 &#xa8;&#xa9;      2      &#xb8;
The bridge is essentially a steel structure that supports the half section of a 16 &#xf8; DR11 HDPE pipe (29 lb/ft / 2 = 14.5 lb/ft) that acts as protection for the pressure retaining 12 &#xf8; DR 11 HDPE pipe with water (54.4 lb/ft) The weight per foot supported by the bridge is:  Half of a 18 &#xf8; Sch. 40 steel pipe = 0.5*(104.7 lb/ft) = 52.35 lb/ft  Half of a 16 &#xf8; DR 11 HDPE pipe = 0.5*(29 lb/ft= 14.5 lb/ft 12 &#xf8; DR 11 HDPE pipe with water = 54.4 lb/ft = 54.4 lb/ft       Total wt. = 121.25 lb/ft Check the half section of 18 steel pipe acting as a bridge for deadweight bending stress over a 29 foot span. Conservatively assume simply supported connections for the bridge.
                                                                          &#xb9; where:
8 2 wl bending M w  = 121.25 lb/ft / 12 = 10.104 lb/in  l  = 29 ft x 12in/ft     = 348 in C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 8 2 348*104.10 bending Min/lb 954 , 152 bending MZ M bendingCalculate the Section Properties of the Half 18" Section: 18 in. Sch. 40 pipe t m = 0.562 in From, [Ref. 21], Roarks Formulas for Stress and Strain, 6 th Edition Page 69, Section 22 Dia. = 18 inches t m = 0.562 inches R = 9 inches R i = 8.438 inches See Section in Figure 7.6 2 2 2 2 2 394.15 438.8 9*2*2 in A A R R A i4 2 2 2 2 2 2 4 4 2 2 743.585 582.1491 8 418.5069 6561 8 8 in I I I R R I i  Where the 2-2 axis is the vertical axis about the centroid of the section.
D18 and D12 are the ODs for 18-in steel pipe and 12-in HDPE pipe, respectively.
Z 2-2= 585.743 in 4 / 9 = 65.08 in 3Calculate the Centroid for Calculating the Section Modulus in the 1-1 Direction C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page in y y y Ri R Ri R y b b b b 553.5 80.9 216.128*3 4 438.8 9 438.8 9*3 4 3 4 1 1 2 2 3 3 1 2 2 3 3 1Calculate I 1-1 about the Centroid about the horizontal axis: 4 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 2 2 2 3 3 4 4 1 1 122.111 621.474 743.585 450.677 , 1 9 8 582.491 , 1 8 80.9 270.439 , 16 9 8 582.491 , 1 8 438.8 9 438.8 9 9 8 438.8 9 8 9 8 8 in I I I I I Ri R Ri R Ri R I 3 16 1 1 1 1 01.20 553.5 122.111 in y I z x xDeadweight Stress in the Pipe Bridge:
Noting that D18 = 18/12 = 1.5 ft and D12 = 12.75/12 = 1.0625 ft, and substituting yields:
01.20 954 , 152 bending psi 644 , 7 bending < 0.60
S &sect;&#xa8; 1.5 2  1.0625 2 *&#xb8; Fb  62.4 *                              = 82.8 lb/ft 4 &#xa8;&#xa9;          2        &#xb8;
* F y = 0.60
                                                                        &#xb9; The forces resisting buoyancy force are:
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                            Calculation No.     07Q3691-CAL-009 Project      Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08          Chkd by                            Date 11/11/08 x  weight of 18-in steel pipe = 104.7 lb/ft; use only 1/2 of this weight  52.3 lb/ft x  weight of 16-in HDPE pipe = 29.0 lb/ft; use only 1/2 of this weight  14.5 lb/ft x  weight of 12-in HDPE pipe = 18.4 lb/ft x  weight of soil above pipe = Jsoil *H* D12 = 105 lb/ft3
* 5ft
* 1.0625ft = 557.8 lb/ft Note that in computing the soil weight above pipe, for conservatism, D12 was used instead of D18 and the height of soil above pipe (H) was taken as 5 ft.
Force resisting buoyancy = 52.3 + 14.5 + 18.4 + 557.8 = 643.0 lb/ft > Fb = 82.8 lb/ft The 18-in pipe is attached to concrete piers on both ends. The concrete piers are 3x2x14-10 = 89 ft3.
Concrete weighs about 144 lb/ft3. Hence, the weight of the concrete piers is 89ft3 x144lb/ft3 = 12.8 kips.
This is an additional force that is resisting the buoyancy force.
It is concluded that in the event the CCW lines break and flood the region, the HDPE piping will be OK against floatation.
7.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines This evaluation is for the steel pipe bridge over the 10-0 &#xf8; Condenser Cooling Water lines should they rupture and erode the soil supporting the 12 &#xf8; Nuclear Service Water (NSW) lines to the Diesel Generator Building. This is a faulted condition on the piping system.
Three concrete piers split the 58 foot span into two 29 foot spans simply supported. The bridge is composed of half of a 18 &#xf8; sch. 40 carbon steel pipe (104.7 lb/ft / 2 = 52.4 lb/ft) as shown in Figure 7.6.
The bridge is essentially a steel structure that supports the half section of a 16 &#xf8; DR11 HDPE pipe (29 lb/ft / 2 = 14.5 lb/ft) that acts as protection for the pressure retaining 12 &#xf8; DR 11 HDPE pipe with water (54.4 lb/ft)
The weight per foot supported by the bridge is:
Half of a 18 &#xf8; Sch. 40 steel pipe = 0.5*(104.7 lb/ft)        = 52.35 lb/ft Half of a 16 &#xf8; DR 11 HDPE pipe = 0.5*(29 lb/ft)              = 14.5 lb/ft 12 &#xf8; DR 11 HDPE pipe with water = 54.4 lb/ft                = 54.4 lb/ft Total wt.        = 121.25 lb/ft Check the half section of 18 steel pipe acting as a bridge for deadweight bending stress over a 29 foot span. Conservatively assume simply supported connections for the bridge.
wl 2 M bending 8
w = 121.25 lb/ft / 12 = 10.104 lb/in l = 29 ft x 12in/ft    = 348 in Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                          Calculation No. 07Q3691-CAL-009 Project    Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08          Chkd by                          Date 11/11/08 10.104
* 348 2 M bending 8
M bending    152,954lb / in M
V bending Z
Calculate the Section Properties of the Half 18 Section:
18 in. Sch. 40 pipe      tm = 0.562 in From, [Ref. 21], Roarks Formulas for Stress and Strain, 6th Edition Page 69, Section 22 Dia. = 18 inches tm = 0.562 inches R = 9 inches Ri = 8.438 inches See Section in Figure 7.6 S
A
* R 2  Ri2 2
S A
* 9 2  8.438 2 2
A 15.394 in 2 S
I 22     R 4  Ri4 8
S I 22     6561  5069.418 8                       Where the 2-2 axis is the vertical axis about the centroid of the section.
S I 22     1491.582 8
I 22  585.743 in 4 Z2-2 = 585.743 in4 / 9 = 65.08 in3 Calculate the Centroid for Calculating the Section Modulus in the 1-1 Direction Page CALCULATION CONTINUATION SHEET Client            Duke Power Carolinas, LLC                       Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08     Chkd by                   Date 11/11/08 4    R 3  Ri 3 &#xba; y1b          << 2        2>>
3S    &#xac; R  Ri 1/4 4  9 3  8.438 3 &#xba; y1b          *<<                >>
3S &#xac; 9 2  8.438 2 1/4 4 128.216 &#xba; y1b
* 3S <<&#xac; 9.80 >>1/4 y1b    5.553 in Calculate I1-1 about the Centroid about the horizontal axis:
S        4      4     8    R 3  Ri 3 2 &#xba; I 11       R  Ri             << 2         2 >>
8                  9S  <<&#xac; R  Ri >>1/4 2
S 4               4     8  9 3  8.438 3 &#xba; I 11       9  8.438               <<              >>
8                     9S &#xac;<< 9 2  8.438 2 1/4>>
S                      8 16,439.270 &#xba; I 11      1,491.582 
8                   9S <<&#xac; 9.80 >>1/4 S                      8 I 11      1,491.582           >1,677.450@
8                    9S I 11  585.743  474.621 I 11  111.122 in 4 I x1 x1    111.122 z11                              20.01 in 3 y16        5.553 Deadweight Stress in the Pipe Bridge:
152,954 V bending 20.01 V bending        7,644psi < 0.60
* Fy = 0.60
* 36 ksi = 21.6 ksi OK 0.60
* 36 ksi = 21.6 ksi OK 0.60
* F y is the normal AISC Allowable Stress for a Steel Pipe Support C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Earthquake Stress in the Pipe Bridge The peak seismic acceleration near the DG building is 0.324g vertical and 0.486g horizontal Ref. [19] &
* Fy is the normal AISC Allowable Stress for a Steel Pipe Support Page CALCULATION CONTINUATION SHEET Client              Duke Power Carolinas, LLC                               Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08           Chkd by                       Date 11/11/08 Earthquake Stress in the Pipe Bridge The peak seismic acceleration near the DG building is 0.324g vertical and 0.486g horizontal Ref. [19] &
Ref. [20].seis-horizontal = 0.486g
Ref. [20].
* 152,954 lb-in / 65.083 in 3 = 1,142 psi seis-vertical = 0.324g
seis-horizontal = 0.486g
* 152,954 lb-in / 20.01 in 3 = 2,477 psi seis-total       = [ (1,142) 2 + (2,477) 2 ] 1/2 = 2,728 psi faulted = Deadweight + Seismic faulted  < 0.90
* 152,954 lb-in / 65.083 in3 = 1,142 psi seis-vertical   = 0.324g
* F y faulted = 7,644 + 2,728 = 10,372 psi < 0.90
* 152,954 lb-in / 20.01 in3 = 2,477 psi seis-total     = [ (1,142)2 + (2,477)2 ] 1/2 = 2,728 psi faulted = Deadweight + Seismicfaulted < 0.90
* Fy faulted = 7,644 + 2,728 = 10,372 psi < 0.90
* 36 ksi = 32.4 ksi OK 0.90
* 36 ksi = 32.4 ksi OK 0.90
* F y is an appropriate Faulted Allowable Stress for a Steel Structure Therefore the 18 &#xf8; steel pipe will support the 12 &#xf8; HDPE pipe in the event of a rupture of the CCW pipe and a subsequent SSE event.7.8 Evaluation of 12" &#xf8; HDPE Pipe over Condenser Cooling Water Lines As discussed in Section 7.7, the 12 &#xf8; HDPE piping is supported by the steel pipe bridge in the unlikely event that the Condenser Cooling Water lines wash out the soil surrounding the HDPE piping crossing this piping. Section 7.7 resulted in the conclusion that the bridge analyzed as a steel structure is acceptable. This portion of the calculation analyzes the pressure retaining 12 &#xf8; HDPE for this faulted event. The 12 &#xf8; HDPE will deflect with the pipe bridge. Therefore, the deflection of the bridge will be calculated. Using this displacement, an equivalent load will be calculated for the 12 &#xf8; HDPE. This load will be combined appropriately with other loads (pressure) and the resulting stresses will be compared to the allowable stress. Deflection of Pipe Bridge for Dead Weight For a simply supported beam deflection is as follows: max = 5  l 4 / 384 EI = 5* 10.104 lb/in
* Fy is an appropriate Faulted Allowable Stress for a Steel Structure Therefore the 18 &#xf8; steel pipe will support the 12 &#xf8; HDPE pipe in the event of a rupture of the CCW pipe and a subsequent SSE event.
* 348 4 in 2 / (384
7.8 Evaluation of 12 &#xf8; HDPE Pipe over Condenser Cooling Water Lines As discussed in Section 7.7, the 12 &#xf8; HDPE piping is supported by the steel pipe bridge in the unlikely event that the Condenser Cooling Water lines wash out the soil surrounding the HDPE piping crossing this piping. Section 7.7 resulted in the conclusion that the bridge analyzed as a steel structure is acceptable. This portion of the calculation analyzes the pressure retaining 12 &#xf8; HDPE for this faulted event. The 12 &#xf8; HDPE will deflect with the pipe bridge. Therefore, the deflection of the bridge will be calculated. Using this displacement, an equivalent load will be calculated for the 12 &#xf8; HDPE. This load will be combined appropriately with other loads (pressure) and the resulting stresses will be compared to the allowable stress.
* 29 x 10 6 lb/in 2
Deflection of Pipe Bridge for Dead Weight For a simply supported beam deflection is as follows:
* 111.112 in
max = 5  l4 / 384 EI = 5* 10.104 lb/in
: 4) = 0.888 in
* 3484 in2 / (384
.Deflection of Pipe Bridge for Earthquake Load For a simply supported beam deflection is as follows: max- vertical-earthquake  
* 29 x 106 lb/in2
= 0.324g
* 111.112 in4) = 0.888 in.
* 0.888 in. = 0.288 in. max-horizontal-earthquake = 0.486g
Deflection of Pipe Bridge for Earthquake Load For a simply supported beam deflection is as follows:
max- vertical-earthquake = 0.324g
* 0.888 in. = 0.288 in.
max-horizontal-earthquake = 0.486g
* 5* 10.104 lb/in
* 5* 10.104 lb/in
* 348 4 in 2 / (384
* 3484 in2 / (384
* 29 x 10 6 lb/in 2
* 29 x 106 lb/in2
* 585.743 in
* 585.743 in4) = 0.0552 in.
: 4) = 0.0552 in. max-total-earthquake
max-total-earthquake = (0.2882 in2 + 0.05522 in2)0.50 = 0.293 in Page CALCULATION CONTINUATION SHEET Client            Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                   Date 11/10/08         Chkd by                       Date 11/11/08 Calculation of Bending Stress in the HDPE Piping Due to Deflection In the case of the 12 HDPE pressure retaining piping, the stress is at its highest when the system is stiffest since the stress in this case is displacement dependent. Therefore, the piping will be conservatively assumed to have a fixed connection on either side of the span.
= (0.288 2 in 2 + 0.0552 2 in 2)0.50 = 0.293 in C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Calculation of Bending Stress in the HDPE Piping Due to Deflection In the case of the 12 HDPE pressure retaining piping, the stress is at its highest when the system is stiffest since the stress in this case is displacement dependent. Therefore, the piping will be conservatively assumed to have a fixed connection on either side of the span.
HDPE Properties:
HDPE Properties:  
I = 1/64 (D4 - DI4) = 1/64  (12.754 - 10.454) = 711.8 in4 Z = I
 
* 2 / D = 711.8 in4
I = 1/64 (D 4 - D I 4) = 1/64  (12.754 - 10.454) = 711.8 in 4 Z = I
* 2 / 12.75 in. = 111.7 in3 For a Fixed - Fixed Beam Dead Weight @ Ambient Temperature:
* 2 / D =
  =  l4 / 384 E I   = 384 E I  / l4 = 384
711.8 in 4
* 110,000 lb/in2
* 2 / 12.75 in. = 111.7 in 3For a Fixed - Fixed Beam Dead Weight @ Ambient Temperature:  =  l 4 / 384 E I = 384 E I  / l 4 = 384
* 711.8 in4
* 110,000 lb/in 2
* 0.888 / 3484 in4 = 1.82045 lb/in (Equivalent Load on Pipe)
* 711.8 in 4
E = 110,000 psi for the HDPE Pipe @ Ambient Temperature (conservative for calculating stress,
* 0.888 / 348 4 in 4 = 1.82045 lb/in (Equivalent Load on Pipe) E = 110,000 psi for the HDPE Pipe @ Ambient Temperature (conservative for calculating stress,   = 0.888 is the deflection at the center of the bridge due to Dead Weight l = 348 in (29 foot span of the bridge)
&#xa8; = 0.888 is the deflection at the center of the bridge due to Dead Weight l = 348 in (29 foot span of the bridge)
M Max l 2 / 24 = 1.82045 lb/in * (348
MMax l2 / 24 = 1.82045 lb/in * (3482) / 24 = 9,186 in-lb bending-Deadweight = 9,186 in-lb / 111.7 in3 = 82.24 psi bending-Earthquake = 82.24 psi
: 2) / 24 = 9,186 in-lb bending-Deadweight = 9,186 in-lb / 111.7 in 3 = 82.24 psi bending-Earthquake = 82.24 psi
* 0.293 / 0.888 = 27.13 psi The earthquake does not act concurrently with the wash out from the CCW pipes. These stresses are small enough that they do not control design when combined appropriately with pressure stress. They are acceptable by inspection.
* 0.293 / 0.888 = 27.13 psi The earthquake does not act concurrently with the wash out from the CCW pipes. These stresses are small enough that they do not control design when combined appropriately with pressure stress. They are acceptable by inspection.
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 8.0 R ESULTSThe HDPE piping system was found to be adequate. Table 8.a summarizes these results.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08         Chkd by                         Date 11/11/08 8.0     RESULTS The HDPE piping system was found to be adequate. Table 8.a summarizes these results.
Table 8.aResult Summary for 12" HDPE Pipe Acceptance Criteria Calculated ValueAllowable ValueCalculatedAllowable Node Pt. Minimum Required Wall Thickness 0.951.1590.82 N/A Ring Deflection 0.001080.050.02 N/A Compression of Side Walls 284 psi500 psi0.57 N/A Buckling Due to External Pressure  51.6 psi87.9 psi0.59 N/A Effects of Negative Internal Pressure > - 72.9 psi0 psi***0.0 N/A Flotation 55.3 lb/ft576 lb/ft0.10 N/A Deadweight + Pressure Stress - Straight Pipe  327.5 psi620 psi0.53 225 Deadweight + Pressure Stress - Mitered Elbow 321.3 psi620 psi0.52 320 Thermal Stress - Straight Pipe287.6psi1100 psi0.26 880 Thermal Stress - Mitered Elbow431.6 psi1100 psi0.39 650 Seismic SSE Stress -
Table 8.a Result Summary for 12 HDPE Pipe Calculated          Allowable        Calculated Acceptance Criteria                                                                     Node Pt.
Straight Pipe 190.2 psi1100 psi0.17 880 Seismic SSE Stress - Mitered Elbow 403.8 psi1100 psi0.37 650 *** The HDPE pipe is not under a vacuum per the Design Specification Ref. [26]
Value              Value        Allowable Minimum Required Wall 0.95            1.159              0.82     N/A Thickness Ring Deflection                       0.00108                0.05              0.02     N/A Compression of Side Walls               284 psi            500 psi              0.57     N/A Buckling Due to External 51.6 psi          87.9 psi              0.59     N/A Pressure Effects of Negative Internal
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page The steel piping system was found to be adequate. Table 8.b summarizes these results Table 8.b Result Summary for 10" and 12" Steel Pipe Acceptance Criteria Calculated Stress [psi] Allowable Stress [psi] CalculatedAllowable Node Point Deadweight and Pressure (Design) 2104 22500 0.09 985 Deadweight and Pressure (Level  A) 1579 27000 0.06 985 Thermal  (Level A) 8047 22500 0.36 985Deadweight and Pressure (Level B) 1579 27000 0.06 985 Thermal and Seismic (Level B) 9224 22500 0.41 985Seismic (Level C/D) 7887 22500 0.35 9858.1 Functionality Capability and Break Postulation This piping analysis meets functional capability as defined in Ref. [24]. The maximum Level D Pressure and Temperature do not exceed design Pressure and Temperature. All piping stress limits given in ASME BPVC Code Case N-755 are met for all applied Level D loads and the capacities used in this review are based on the Design Temperature. This piping is classified as moderate energy as defined in Ref. [24]. Moderate energy piping is piping that has a temperature of less than 200 &#xba; F and a pressure of 275 psig or less. Per Ref [26], for this piping, the maximum temperature is 100&#xba; F and the operating pressure is 75 psig. Leak cracks are to be postulated at points based on the following equation:
                                    > - 72.9 psi               0 psi          ***0.0     N/A Pressure Flotation                             55.3 lb/ft        576 lb/ft              0.10     N/A Deadweight + Pressure 327.5 psi            620 psi              0.53      225 Stress - Straight Pipe Deadweight + Pressure 321.3 psi            620 psi              0.52     320 Stress - Mitered Elbow Thermal Stress - Straight 287.6psi          1100 psi              0.26     880 Pipe Thermal Stress - Mitered 431.6 psi          1100 psi              0.39     650 Elbow Seismic SSE Stress -
psi S psi S A F Z M i A F Z M i A F Z M i t PD aE E aC C aA A)2200 1.1 (4.0)1100 1100 1.1 (4.0 75.0 4where: P = Operating pressure D = Outside pipe diameter t = Nominal pipe wall thickness C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page i = Stress intensification factor A = Cross sectional area of pipe Z = Section modulus of pipe F aA = Axial force due to deadweight loads F aC = Axial force range due to thermal loads F aE = Axial force range due to seismic loads M A = Moment due to deadweight loads M C = Moment range due to thermal loads M E = Moment range due to seismic loads The deadweight, thermal, and seismic loads at the critical locations will be taken from Tables 7.2.2a to 7.2.2d for straight pipe and mitered elbows and checked to the postulated break equation. The maximum stresses for deadweight, seismic and thermal cases may occur at different locations. The equation uses the maximum stresses even when they are found in separate locations. This is conservative. S = 620 psi   0.4(1.1S + 2200) = 0.4 (1.1*620 + 2200) = 1153 psi For straight pipe
190.2 psi          1100 psi              0.17     880 Straight Pipe Seismic SSE Stress -
:D = 12.75 in t = 1.159 in A = 42.2 in 2 Z = 112.3 in 3P = 75 psi i = 1.0 0.75i = 1.0 (Note: 0.75i cannot be less than 1.0)
403.8 psi          1100 psi              0.37     650 Mitered Elbow
M A = 491 ft-lb = 5892 in-lb M C = 982 ft-lb = 11784 in-lb M E = 1130 ft-lb = 13560 in-lb F aA = 0   F aC = 7707 lb   F aE = 5308 lb Substituting these values into the equation yields:
*** The HDPE pipe is not under a vacuum per the Design Specification Ref. [26]
psi psi 1153 793 2.42 5308 3.112 13560 0.1 2.42 7707 3.112 11784 0.1 2.42 0 3.112 5892 0.1 159.1*4 75.12*75Therefore, there are no postulated moderate energy leak cracks on the straight HDPE piping. For mitered elbows
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                     Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                               Date 11/10/08       Chkd by                       Date 11/11/08 The steel piping system was found to be adequate. Table 8.b summarizes these results Table 8.b Result Summary for 10 and 12 Steel Pipe Calculated      Allowable        Calculated Acceptance Criteria                                                             Node Point Stress [psi]   Stress [psi]       Allowable Deadweight and Pressure 2104           22500               0.09             985 (Design)
:D = 12.75 in t = 1.417 in A = 50.5 in 2 Z = 129.0 in 3P = 75 psi i = 2.0 0.75i = 1.5 M A = 71 ft-lb = 852 in-lb M C = 1923 ft-lb = 23076 in-lb M E = 1866 ft-lb = 22392 in-lb F aA = 0   F aC = 3732 lb   F aE = 2862 lb Substituting these values into the equation yields:
Deadweight and Pressure 1579           27000               0.06             985 (Level A)
psi psi 1153 1145 5.50 2862 129 22392 0.2 5.50 3732 129 23076 0.2 5.50 0 129 852 5.1 417.1*4 75.12*75Therefore, there are no postulated moderate energy leak cracks on the mitered HDPE piping.
Thermal 8047           22500               0.36             985 (Level A)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects The maximum loads acting from the HDPE pipe for Service Levels A, B, C and D acting on the anchor at the face of the Diesel Generator Building are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 8.2a and 8.2b and compared to the maximum loads that the HDPE pipe can contribute to anchor load at the face of the Diesel Generator Building
Deadweight and Pressure 1579           27000               0.06             985 (Level B)
.Table 8.2a: HDPE Loads from ADLPIPE for Anchor at Diesel Generator Building Load Case Node PointFx (lbs) Fy (lbs) Fz (lbs) Mx (ft-lb) My (ft-lb) Mz (ft-lb) 10 (DW) 100 0 521 0 5 0 1253 27 (Th) 100 6003 0 2 0 22 0 28 (Th) 100 6643 0 5 0 36 0 29 (Th) 100 8485 0 17 0 101 0 31 (SSE) 100 4723 0 54 0 243 0 32 (OBE) 100 2519 0 29 0 130 0 Table 8.2b: HDPE Loads combined for maximum forces and moments to be compared to allowable interface loads applied to the steel pipe per Ref. [23] Axial Force (lbs) Shear Force (lbs) Resultant Moment (in-lbs) Load Case Node PointCombined from ADLPIPEMaximum Combined from ADLPIPEMaximum Combined from ADLPIPE Maximum10 (DW) 130 0 4200 103 4200 580 100000 27 (Th) 1306003 (1) 4200 2 4200 168 100000 28 (Th) 1306643 (1) 4600 5 4600 240 100000 29 (Th) 1308485 (1) 5500 17 5500 528 100000 31 (SSE) 1304723 (1) 4600 54 4600 744 100000 32 (OBE) 1302519 4600 29 4600 396 100000 (1) The thermal axial forces exceed the maximum for the HDPE pipe. These forces are acceptable due to the very small shear force and moment at the same node point. Therefore, the loads shown above will be used as input for the anchor design at the Diesel Generator Building. 8.3 Final Loads at the Centerline of the 42" &#xf8; Supply Line due to Soil Effects Table 8.3a: HDPE Loads from ADLPIPE at the Centerline of the 42 &#xf8; Supply Line Load Case Node PointFx (lbs) Fy (lbs) Fz (lbs) Mx (ft-lb) My (ft-lb) Mz (ft-lb) 10 (DW) 990 2409 20 19 0 116 122 27 (Th) 990 3718 302 3718 27284 0 27284 28 (Th) 990 4145 352 4145 30377 0 30377 29 (Th) 990 5449 519 5449 39777 0 39777 31 (SSE) 990 3753 504 3753 26931 0 26931 32 (OBE) 990 2002 269 2002 14362 0 14362 C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 8.4 Branch Line Qualification The branch line meets the 1989 ASME BPVC Code allowable stresses. Table 8.4a below shows the results of the ADLPIPE analysis for the branch line (Nodes 880 to 985).
Thermal and Seismic 9224           22500               0.41             985 (Level B)
Table 8.4a Result Summary for 12" Steel Branch Line Acceptance Criteria Calculated Stress [psi] Allowable Stress [psi] CalculatedAllowable Node Point Deadweight and Pressure (Design) 2104 22500 0.09 985 Deadweight and Pressure (Level  A) 1579 27000 0.06 985 Thermal  (Level A) 8047 22500 0.36 985Deadweight and Pressure (Level B) 1579 27000 0.06 985 Thermal and Seismic (Level B) 9224 22500 0.41 985 Seismic  (Level C/D) 7887 22500 0.35 9859.0  C ONCLUSIONSThe existing 10-in carbon steel buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply headers to Unit 2 Diesel Generator (DG) building piping at the Catawba Nuclear Station will be replaced by 12-in high-density polyethylene (HDPE) piping system. This calculation determined that the buried HDPE piping system connecting the 42-in supply header B to the DG building of Unit 2 meets all applicable acceptance criteria as defined in the piping design specification Ref. [26] which is consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755 [Ref. 12] as summarized in Table 8-1.
Seismic (Level C/D)             7887           22500               0.35             985 8.1 Functionality Capability and Break Postulation This piping analysis meets functional capability as defined in Ref. [24]. The maximum Level D Pressure and Temperature do not exceed design Pressure and Temperature. All piping stress limits given in ASME BPVC Code Case N-755 are met for all applied Level D loads and the capacities used in this review are based on the Design Temperature.
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Appendix A ADLPIPE Model Isometrics C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page Appendix B ADLPIPE Input and Output files C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page INPUT FILE:GE,*********************  CATAWBA NUCLEAR STATION  ********************        GE,COOLING WATER SUPPLY LINE FROM 42-IN HEADER 'B' TO D/G BLDG OF UNIT 2        UN,0,0,0,                                                                        NOTE,MODEL=supply2B.adi                                                          NO,*******************************************************************          NO,THERE ARE TWO SUPPLY LINES RUNNING TO THE D/G BUILDING OF UNIT 2              NO,THIS IS THE LINE THAT ORIGINATES FROM THE 42-IN SUPPLY HEADER 'B'            NO,*******************************************************************
This piping is classified as moderate energy as defined in Ref. [24]. Moderate energy piping is piping that has a temperature of less than 200 &#xba; F and a pressure of 275 psig or less. Per Ref [26], for this piping, the maximum temperature is 100&#xba; F and the operating pressure is 75 psig. Leak cracks are to be postulated at points based on the following equation:
NO,GLOBAL COORDINATE SYSTEM: +X = NORTH, +Z = EAST, Y = VERTICAL                NO,*******************************************************************          NO,PIPING: 10" AND 12", SCH. 40, Cr-Mo AND CARBON STEEL PIPES,                  NO,        12", DR-11, IPS HDPE PIPE,                                            NO,CONTENTS:                                                                    NO,        WATER FILLED, NO INSULATION, NO,DESIGN CONDITIONS:                                                            NO,        T(AMBIENT) = 55 F, T(DESIGN) = 100 F, P(DESIGN) = 100 PSIG            NO,CODE:  ASME, YEAR 1989,                                                          NO,*******************************************************************          NO,PIPING SYSTEM IS CONSIDERED ANCHORED AT BOTH ENDS                            AN,,100, RE,,100,1,1,1,1,1,1,                                                            AN,,990,                                                                        RE,,990,1,1,1,1,1,1, NO,*******************************************************************          NO,THE FOLLOWING SOIL SPRING STIFFNESS VALUES IN [LB/IN] ARE USED.              NO NO,                                  LENGTH OF PIPE BETWEEN SPRINGS              NO,    SOIL HEIGHT    DIRECTION    ------------------------------              NO,    ABOVE PIPE    OF SPRING    2FT SECTION      10FT SECTION NO,    -----------------------------------------------------------              NO, H = 5 FT LATERAL  3120  15600 NO,  VERTICAL 12960  64800 NO,  AXIAL  10200  51000
PD            M      F &#xba; M       F &#xba; M       F &#xba;
       0.75i << A  aA >>  i << C  aC >>  i << E  aE >> d 0.4(1.1S  1100  1100) psi  0.4(1.1S  2200) psi 4t          &#xac; Z      A 1/4 &#xac; Z      A 1/4 &#xac; Z      A 1/4 where:
P = Operating pressure D = Outside pipe diameter t = Nominal pipe wall thickness Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No.     07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                       Date 11/10/08           Chkd by                           Date 11/11/08 i = Stress intensification factor A = Cross sectional area of pipe Z = Section modulus of pipe FaA = Axial force due to deadweight loads FaC = Axial force range due to thermal loads FaE = Axial force range due to seismic loads MA = Moment due to deadweight loads MC = Moment range due to thermal loads ME = Moment range due to seismic loads The deadweight, thermal, and seismic loads at the critical locations will be taken from Tables 7.2.2a to 7.2.2d for straight pipe and mitered elbows and checked to the postulated break equation. The maximum stresses for deadweight, seismic and thermal cases may occur at different locations. The equation uses the maximum stresses even when they are found in separate locations. This is conservative.
S = 620 psi 0.4(1.1S + 2200) = 0.4 (1.1*620 + 2200) = 1153 psi For straight pipe:
D = 12.75 in         t = 1.159 in         A = 42.2 in2      Z = 112.3 in3 P = 75 psi           i = 1.0               0.75i = 1.0       (Note: 0.75i cannot be less than 1.0)
MA = 491 ft-lb = 5892 in-lb               MC = 982 ft-lb = 11784 in-lb         ME = 1130 ft-lb = 13560 in-lb FaA = 0                                     FaC = 7707 lb                       FaE = 5308 lb Substituting these values into the equation yields:
75
* 12.75          5892        0 &#xba;          11784 7707 &#xba;          13560 5308 &#xba;
               1 .0 <<                >>  1.0 << 112 .3  42.2 >>  1.0 << 112 .3  42.2 >>    793 psi  1153 psi 4
* 1.159          &#xac; 112 . 3  42  . 2 1/4      &#xac;              1/4      &#xac;                1/4 Therefore, there are no postulated moderate energy leak cracks on the straight HDPE piping.
For mitered elbows:
D = 12.75 in         t = 1.417 in         A = 50.5 in2      Z = 129.0 in3 P = 75 psi           i = 2.0               0.75i = 1.5 MA = 71 ft-lb = 852 in-lb                 MC = 1923 ft-lb = 23076 in-lb         ME = 1866 ft-lb = 22392 in-lb FaA = 0                                     FaC = 3732 lb                       FaE = 2862 lb Substituting these values into the equation yields:
75
* 12.75          852      0 &#xba;          23076 3732 &#xba;            22392 2862 &#xba;
               1 .5 <<              >>  2.0 << 129  50.5 >>  2.0 << 129  50.5 >>            1145 psi  1153 psi 4
* 1.417         &#xac; 129    50 . 5 1/4      &#xac;                1/4       &#xac;                1/4 Therefore, there are no postulated moderate energy leak cracks on the mitered HDPE piping.
Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                           Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                 Date 11/10/08         Chkd by                           Date 11/11/08 8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects The maximum loads acting from the HDPE pipe for Service Levels A, B, C and D acting on the anchor at the face of the Diesel Generator Building are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 8.2a and 8.2b and compared to the maximum loads that the HDPE pipe can contribute to anchor load at the face of the Diesel Generator Building.
Table 8.2a: HDPE Loads from ADLPIPE for Anchor at Diesel Generator Building Load Case     Node           Fx (lbs)     Fy (lbs)     Fz (lbs)       Mx (ft-lb)   My (ft-lb)     Mz (ft-lb)
Point 10 (DW)       100             0             521         0             5           0             1253 27 (Th)       100             6003         0           2             0           22             0 28 (Th)       100             6643         0           5             0           36             0 29 (Th)       100             8485         0           17             0           101           0 31 (SSE)       100             4723         0           54             0           243           0 32 (OBE)       100             2519         0           29             0           130           0 Table 8.2b: HDPE Loads combined for maximum forces and moments to be compared to allowable interface loads applied to the steel pipe per Ref. [23]
Load          Node          Axial Force (lbs)         Shear Force (lbs)           Resultant Moment Case          Point                                                                  (in-lbs)
Combined      Maximum      Combined      Maximum      Combined      Maximum from                       from                         from ADLPIPE                   ADLPIPE                      ADLPIPE 10 (DW)       130           0             4200         103           4200         580           100000 27 (Th)       130            6003 (1)     4200         2             4200         168           100000 28 (Th)       130            6643 (1)     4600         5             4600         240           100000 29 (Th)       130            8485 (1)     5500         17             5500         528           100000 31 (SSE)       130            4723 (1)     4600         54             4600         744           100000 32 (OBE)       130            2519          4600         29             4600         396           100000 (1) The thermal axial forces exceed the maximum for the HDPE pipe. These forces are acceptable due to the very small shear force and moment at the same node point. Therefore, the loads shown above will be used as input for the anchor design at the Diesel Generator Building.
8.3 Final Loads at the Centerline of the 42 &#xf8; Supply Line due to Soil Effects Table 8.3a: HDPE Loads from ADLPIPE at the Centerline of the 42 &#xf8; Supply Line Load Case     Node           Fx (lbs)     Fy (lbs)     Fz (lbs)       Mx (ft-lb)   My (ft-lb)     Mz (ft-lb)
Point 10 (DW)       990             2409         20           19             0           116           122 27 (Th)       990             3718         302         3718           27284       0             27284 28 (Th)       990             4145         352         4145           30377       0             30377 29 (Th)       990             5449         519         5449           39777       0             39777 31 (SSE)       990             3753         504         3753           26931       0             26931 32 (OBE)       990             2002         269         2002           14362       0             14362 Page CALCULATION CONTINUATION SHEET Client        Duke Power Carolinas, LLC                         Calculation No. 07Q3691-CAL-009 Project   Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                             Date 11/10/08           Chkd by                       Date 11/11/08 8.4 Branch Line Qualification The branch line meets the 1989 ASME BPVC Code allowable stresses. Table 8.4a below shows the results of the ADLPIPE analysis for the branch line (Nodes 880 to 985).
Table 8.4a Result Summary for 12 Steel Branch Line Calculated          Allowable        Calculated Acceptance Criteria                                                                 Node Point Stress [psi]       Stress [psi]       Allowable Deadweight and Pressure 2104             22500               0.09             985 (Design)
Deadweight and Pressure 1579             27000               0.06             985 (Level A)
Thermal 8047             22500               0.36             985 (Level A)
Deadweight and Pressure 1579             27000               0.06             985 (Level B)
Thermal and Seismic 9224             22500               0.41             985 (Level B)
Seismic 7887             22500               0.35             985 (Level C/D)


NO,NO,STIFFNESS VALUES FOR OTHER LENGTHS ARE OBTAINED
==9.0      CONCLUSION==
S The existing 10-in carbon steel buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply headers to Unit 2 Diesel Generator (DG) building piping at the Catawba Nuclear Station will be replaced by 12-in high-density polyethylene (HDPE) piping system. This calculation determined that the buried HDPE piping
SE,,0, RU,155,1155,1.0,,,
SE,,0, RU,155,1155,1.0,,,
2SP,155,1155,3060,,,                                                           SE,,0,                                                                           RU,155,2155,,1.0,,                                                               2SP,155,2155,3888,,,                                                           SE,,0,                                                                           RU,155,3155,,,1.0, 2SP,155,3155,936,,,                                                           SE,,0,                                                                           NO,******************************************************************
2SP,155,1155,3060,,,
NO,APPLY SOIL SPRINGS AROUND 90-DEGREE ELBOW AT 2 FT INTERVALS                             NO,******************************************************************           RU,155,160,2.0,                                                                 SE,,0,                                                                           RU,160,1160,1.0,,,                                                               2SP,160,1160,10200,,,
SE,,0, RU,155,2155,,1.0,,
SE,,0,                                                                           RU,160,2160,,1.0,,                                                               2SP,160,2160,12960,,,                                                           SE,,0,                                                                           RU,160,3160,,,1.0,                                                               2SP,160,3160,3120,,,                                                          
2SP,155,2155,3888,,,
 
SE,,0, RU,155,3155,,,1.0, 2SP,155,3155,936,,,
SE,,0,NO,**************************************************************** NO,LENGTH OF 90-DEGREE ELBOW 24.9 IN > 2FT. HENCE, ELBOW STARTS IN NO,NEXT 2FT SECTION (23.1 IN = 1.925FT FROM CURRENT NODE POINT)
SE,,0, NO,******************************************************************
 
NO,APPLY SOIL SPRINGS AROUND 90-DEGREE ELBOW AT 2 FT INTERVALS NO,******************************************************************
NO,NO,NEXT RUN GOES UP TO BEGINNING OF ELBOW. SINCE RUN LENGTH IS NO,APPROX. = 2FT, FOR SIMPLICITY, APPLY SOIL SPRINGS AT END OF THIS NO,RUN AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION. NO,**************************************************************** NO                                                                             RU,160,165,1.925,                                                                 SE,,0,                                                                           RU,165,1165,1.0,,,
RU,155,160,2.0, SE,,0, RU,160,1160,1.0,,,
2SP,165,1165,10200,,,                                                           SE,,0,                                                                           RU,165,2165,,1.0,,,                                                             2SP,165,2165,12960,,                                                           SE,,0,                                                                           RU,165,3165,,,1.0, 2SP,165,3165,3120, SE,,0,NO,****************************************************************             NO,**********       90 DEGREE IPS HDPE ELBOW       **************             NO,****************************************************************             NO,THIS IS A 5-SEGMENT MITERED ELBOW.
2SP,160,1160,10200,,,
NO,FOR 12-IN, DR-9, MITERED ELBOW (PER ISCO CATALOG):,                           NO,       OUTSIDE DIAMETER, OD = 12.75 IN                                       NO,       MIN. WALL THICKNESS, t = 1.417 IN NO,       INSIDE DIAMETER, ID = OD - 2t = 9.916 IN                             NO,       RADIUS, R = 19.5 IN                                                   NO,       LENGTH, FC = 24.9 IN = 2.075 FT                                       NO,       WT(PIPE) = 21.97 LB/FT = 1.83 LB/IN NO,WEIGHT OF WATER FOR ID = 9.916 IN:
SE,,0, RU,160,2160,,1.0,,
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page NO,       WT(WATER)= 33.46 LB/FT = 2.79 LB/IN                                   NO,WT(PIPE+WATER) = 1.83 + 2.79 = 4.62 LB/IN                                     NO                                                                               NO,SIF AND STRESS INDICES FOR MITERED ELBOW:                                     NO,       SIF = 2.0       B1 = 0.69           B2 = 1.64                       NO                                                                               NO,ELBOW STARTS AT NODE PT. 165 AND ENDS AT NODE PT. 205 NO,****************************************************************              
2SP,160,2160,12960,,,
 
SE,,0, RU,160,3160,,,1.0, 2SP,160,3160,3120,,,
NO,RU,165,170,2.075,,                                                                               CM,170,180,12.75,1.417,,19.5,11.25,4.62,                                         IB,170,180,2.0,.69,1.64,                                                         CM,180,185,12.75,1.417,,19.5,22.5,4.62,                                         IB,180,185,2.0,.69,1.64, CM,185,190,12.75,1.417,,19.5,22.5,4.62,                                         IB,185,190,2.0,.69,1.64,                                                         CM,190,195,12.75,1.417,,19.5,22.5,4.62, IB,190,195,2.0,.69,1.64,                                                         CM,195,200,12.75,1.417,,19.5,,4.62,                                             IB,195,200,2.0,.69,1.64, RU,200,205,,,2.075,                                                         NO                                                                               NO,*******************************************************************
SE,,0, NO,****************************************************************
NO,PIPE AXIS IS NOW PARALLEL TO Z-AXIS, X IS LATERAL DIRECTION,                 NO                                                                               NO,TOTAL LENGTH OF PIPING UP TO THE NEXT (90-DEG.) ELBOW = 83.2 FT             NO                                                                               NO,LENGTH FOR APPLICATION OF SOIL SPRINGS AT 2FT INTERVALS (AROUND   NO,ELBOWS, ON EACH END OF PIPING) = 12 FT NO                                                                               NO,LENGTH AVAILABLE TO APPLY SPRINGS AT 10 FT INTERVALS = 71.2 FT               NO,**************************************************************** NO,SINCE 90-DEG ELBOW LENGTH = 24.9" = 2.075 FT (APPROX.= 2FT),
NO,LENGTH OF 90-DEGREE ELBOW 24.9 IN > 2FT. HENCE, ELBOW STARTS IN NO,NEXT 2FT SECTION (23.1 IN = 1.925FT FROM CURRENT NODE POINT)
NO,FOR SIMPLICITY, APPLY FISRT SET OF SOIL SPRINGS AT END OF ELBOW NO,AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION. NO,****************************************************************
NO, NO,NEXT RUN GOES UP TO BEGINNING OF ELBOW. SINCE RUN LENGTH IS NO,APPROX. = 2FT, FOR SIMPLICITY, APPLY SOIL SPRINGS AT END OF THIS NO,RUN AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.
SE,,0,                                                                           RU,205,1205,1.0,,,                                                               2SP,205,1205,3120,                                                             SE,,0,                                                                           RU,205,2205,,1.0,,                                                               2SP,205,2205,12960, SE,,0,                                                                           RU,205,3205,,,1.0,                                                               2SP,205,3205,10200, SE,,0,NO,**************************************************************** NO,NEXT SECTION IS 1.925FT LONG (=APPROX. 2 FT). USE SOIL SPRING NO,STIFFNESS VALUE OF A 2FT SECTION NO,****************************************************************                                                                           RU,205,210,,,1.925,                                                               SE,,0,                                                                           RU,210,1210,1.0,,,                                                               2SP,210,1210,3120, SE,,0,                                                                           RU,210,2210,,1.0,,                                                               2SP,210,2210,12960, SE,,0,                                                                           RU,210,3210,,,1.0,                                                               2SP,210,3210,10200, SE,,0, NO,****************************************************************
NO,****************************************************************
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page NO,NEXT SECTION IS 2 FT LONG NO,****************************************************************                                                                             RU,210,215,,,2.0,                                                               SE,,0,                                                                           RU,215,1215,1.0,,,                                                               2SP,215,1215,3120,                                                             SE,,0, RU,215,2215,,1.0,,
NO RU,160,165,1.925, SE,,0, RU,165,1165,1.0,,,
2SP,215,2215,12960,                                                             SE,,0,                                                                           RU,215,3215,,,1.0,                                                               2SP,215,3215,10200,                                                             SE,,0,                                                                           NO,****************************************************************
2SP,165,1165,10200,,,
SE,,0, RU,165,2165,,1.0,,,
2SP,165,2165,12960,,
SE,,0, RU,165,3165,,,1.0, 2SP,165,3165,3120, SE,,0, NO,****************************************************************
NO,**********     90 DEGREE IPS HDPE ELBOW                   **************
NO,****************************************************************
NO,THIS IS A 5-SEGMENT MITERED ELBOW.
NO,FOR 12-IN, DR-9, MITERED ELBOW (PER ISCO CATALOG):,
NO,     OUTSIDE DIAMETER, OD = 12.75 IN NO,     MIN. WALL THICKNESS, t = 1.417 IN NO,     INSIDE DIAMETER, ID = OD - 2t = 9.916 IN NO,     RADIUS, R = 19.5 IN NO,     LENGTH, FC = 24.9 IN = 2.075 FT NO,     WT(PIPE) = 21.97 LB/FT = 1.83 LB/IN NO,WEIGHT OF WATER FOR ID = 9.916 IN:
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 NO,     WT(WATER)= 33.46 LB/FT = 2.79 LB/IN NO,WT(PIPE+WATER) = 1.83 + 2.79 = 4.62 LB/IN NO NO,SIF AND STRESS INDICES FOR MITERED ELBOW:
NO,     SIF = 2.0       B1 = 0.69         B2 = 1.64 NO NO,ELBOW STARTS AT NODE PT. 165 AND ENDS AT NODE PT. 205 NO,****************************************************************
NO, RU,165,170,2.075,,
CM,170,180,12.75,1.417,,19.5,11.25,4.62, IB,170,180,2.0,.69,1.64, CM,180,185,12.75,1.417,,19.5,22.5,4.62, IB,180,185,2.0,.69,1.64, CM,185,190,12.75,1.417,,19.5,22.5,4.62, IB,185,190,2.0,.69,1.64, CM,190,195,12.75,1.417,,19.5,22.5,4.62, IB,190,195,2.0,.69,1.64, CM,195,200,12.75,1.417,,19.5,,4.62, IB,195,200,2.0,.69,1.64, RU,200,205,,,2.075, NO NO,*******************************************************************
NO,PIPE AXIS IS NOW PARALLEL TO Z-AXIS, X IS LATERAL DIRECTION, NO NO,TOTAL LENGTH OF PIPING UP TO THE NEXT (90-DEG.) ELBOW = 83.2 FT NO NO,LENGTH FOR APPLICATION OF SOIL SPRINGS AT 2FT INTERVALS (AROUND NO,ELBOWS, ON EACH END OF PIPING) = 12 FT NO NO,LENGTH AVAILABLE TO APPLY SPRINGS AT 10 FT INTERVALS = 71.2 FT NO,****************************************************************
NO,SINCE 90-DEG ELBOW LENGTH = 24.9" = 2.075 FT (APPROX.= 2FT),
NO,FOR SIMPLICITY, APPLY FISRT SET OF SOIL SPRINGS AT END OF ELBOW NO,AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.
NO,****************************************************************
SE,,0, RU,205,1205,1.0,,,
2SP,205,1205,3120, SE,,0, RU,205,2205,,1.0,,
2SP,205,2205,12960, SE,,0, RU,205,3205,,,1.0, 2SP,205,3205,10200, SE,,0, NO,****************************************************************
NO,NEXT SECTION IS 1.925FT LONG (=APPROX. 2 FT). USE SOIL SPRING NO,STIFFNESS VALUE OF A 2FT SECTION NO,****************************************************************
RU,205,210,,,1.925, SE,,0, RU,210,1210,1.0,,,
2SP,210,1210,3120, SE,,0, RU,210,2210,,1.0,,
2SP,210,2210,12960, SE,,0, RU,210,3210,,,1.0, 2SP,210,3210,10200, SE,,0, NO,****************************************************************
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 NO,NEXT SECTION IS 2 FT LONG NO,****************************************************************
RU,210,215,,,2.0, SE,,0, RU,215,1215,1.0,,,
2SP,215,1215,3120, SE,,0, RU,215,2215,,1.0,,
2SP,215,2215,12960, SE,,0, RU,215,3215,,,1.0, 2SP,215,3215,10200, SE,,0, NO,****************************************************************
NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10 FT = 71.2 FT NO, DIVIDE THIS LENGTH AS FOLLOWS: 71.2FT = 6*10FT + 2*5.6FT NO,****************************************************************
NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10 FT = 71.2 FT NO, DIVIDE THIS LENGTH AS FOLLOWS: 71.2FT = 6*10FT + 2*5.6FT NO,****************************************************************
NO,NO,****************************************************************             NO,NEXT PIPNG SECTION IS 5.6 FT LONG. SOIL SPRING STIFFNESS VALUES             NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)                                 NO,****************************************************************
NO, NO,****************************************************************
RU,215,220,,,5.6,                                                               SE,,0,                                                                           RU,220,1220,1.0,,,                                                               2SP,220,1220,8736,                                                           SE,,0,                                                                           RU,220,2220,,1.0,,
NO,NEXT PIPNG SECTION IS 5.6 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)
2SP,220,2220,36288,                                                           SE,,0,                                                                           RU,220,3220,,,1.0,                                                               2SP,220,3220,28560,                                                          
NO,****************************************************************
 
RU,215,220,,,5.6, SE,,0, RU,220,1220,1.0,,,
SE,,0,NO,**************************************************************** NO,SOIL SPRING SPACING = 10 FT (OVER THE NEXT 60 FT LENGTH)
2SP,220,1220,8736, SE,,0, RU,220,2220,,1.0,,
NO,****************************************************************                                                                         RU,220,225,,,10.0,                                                               SE,,0,                                                                           RU,225,1225,1.0,,,                                                               2SP,225,1225,15600,                                                           SE,,0, RU,225,2225,,1.0,,                                                               2SP,225,2225,64800,                                                           SE,,0,                                                                           RU,225,3225,,,1.0,                                                               2SP,225,3225,51000,                                                           SE,,0, RU,225,230,,,10.0,                                                               SE,,0,                                                                           RU,230,1230,1.0,,,                                                               2SP,230,1230,15600,                                                           SE,,0,                                                                           RU,230,2230,,1.0,,
2SP,220,2220,36288, SE,,0, RU,220,3220,,,1.0, 2SP,220,3220,28560, SE,,0, NO,****************************************************************
2SP,230,2230,64800,                                                           SE,,0,                                                                           RU,230,3230,,,1.0, 2SP,230,3230,51000,                                                           SE,,0,                                                                           RU,230,235,,,10.0,                                                               SE,,0, RU,235,1235,1.0,,,
NO,SOIL SPRING SPACING = 10 FT (OVER THE NEXT 60 FT LENGTH)
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 2SP,235,1235,15600,                                                           SE,,0,                                                                           RU,235,2235,,1.0,,                                                               2SP,235,2235,64800,                                                           SE,,0,                                                                           RU,235,3235,,,1.0,                                                               2SP,235,3235,51000, SE,,0, RU,235,240,,,10.0,                                                               SE,,0,                                                                           RU,240,1240,1.0,,,                                                               2SP,240,1240,15600,                                                           SE,,0,                                                                           RU,240,2240,,1.0,,
NO,****************************************************************
2SP,240,2240,64800,                                                           SE,,0,                                                                           RU,240,3240,,,1.0, 2SP,240,3240,51000,                                                           SE,,0,                                                                           RU,240,245,,,10.0,                                                               SE,,0,                                                                           RU,245,1245,1.0,,,                                                               2SP,245,1245,15600, SE,,0,                                                                           RU,245,2245,,1.0,,                                                               2SP,245,2245,64800,                                                           SE,,0,                                                                           RU,245,3245,,,1.0,                                                               2SP,245,3245,51000, SE,,0,                                                                           RU,245,250,,,10.0,                                                               SE,,0,                                                                           RU,250,1250,1.0,,,
RU,220,225,,,10.0, SE,,0, RU,225,1225,1.0,,,
2SP,250,1250,15600,                                                           SE,,0,                                                                           RU,250,2250,,1.0,,
2SP,225,1225,15600, SE,,0, RU,225,2225,,1.0,,
2SP,250,2250,64800,                                                           SE,,0,                                                                           RU,250,3250,,,1.0,                                                               2SP,250,3250,51000,                                                           SE,,0,                                                                           NO,****************************************************************
2SP,225,2225,64800, SE,,0, RU,225,3225,,,1.0, 2SP,225,3225,51000, SE,,0, RU,225,230,,,10.0, SE,,0, RU,230,1230,1.0,,,
NO,NEXT PIPNG SECTION IS 5.6 FT LONG. SOIL SPRING STIFFNESS VALUES             NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)                                 NO,****************************************************************     RU,250,260,,,5.6,                                                               SE,,0,                                                                           RU,260,1260,1.0,,,
2SP,230,1230,15600, SE,,0, RU,230,2230,,1.0,,
2SP,260,1260,8736,                                                           SE,,0,                                                                           RU,260,2260,,1.0,,                                                               2SP,260,2260,36288,                                                           SE,,0,                                                                           RU,260,3260,,,1.0, 2SP,260,3260,28560,                                                           SE,,0,                                                                           NO,****************************************************************
2SP,230,2230,64800, SE,,0, RU,230,3230,,,1.0, 2SP,230,3230,51000, SE,,0, RU,230,235,,,10.0, SE,,0, RU,235,1235,1.0,,,
NO,CHANGE SPACING OF SOIL SPRINGS TO 2 FT (AROUND 90-DEGREE ELBOW)               NO,****************************************************************             RU,260,265,,,2.0,                                                               SE,,0, RU,265,1265,1.0,,,
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 2SP,235,1235,15600, SE,,0, RU,235,2235,,1.0,,
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 2SP,265,1265,3120,                                                             SE,,0,                                                                           RU,265,2265,,1.0,,                                                               2SP,265,2265,12960,                                                             SE,,0,                                                                           RU,265,3265,,,1.0,                                                               2SP,265,3265,10200,                                                            
2SP,235,2235,64800, SE,,0, RU,235,3235,,,1.0, 2SP,235,3235,51000, SE,,0, RU,235,240,,,10.0, SE,,0, RU,240,1240,1.0,,,
 
2SP,240,1240,15600, SE,,0, RU,240,2240,,1.0,,
SE,,0, NO,**************************************************************** NO,LENGTH OF 90-DEGREE ELBOW 24.9 IN > 2FT. HENCE, ELBOW STARTS IN NO,NEXT 2FT SECTION (23.1 IN = 1.925FT FROM CURRENT NODE POINT)
2SP,240,2240,64800, SE,,0, RU,240,3240,,,1.0, 2SP,240,3240,51000, SE,,0, RU,240,245,,,10.0, SE,,0, RU,245,1245,1.0,,,
NO,NO,NEXT RUN GOES UP TO BEGINNING OF ELBOW. SINCE RUN LENGTH IS NO,APPROX. = 2FT, FOR SIMPLICITY, APPLY SOIL SPRINGS AT END OF THIS NO,RUN AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION. NO,**************************************************************** NO RU,265,270,,,1.925,                                                               SE,,0,                                                                           RU,270,1270,1.0,,,                                                               2SP,270,1270,3120,                                                             SE,,0,                                                                           RU,270,2270,,1.0,,
2SP,245,1245,15600, SE,,0, RU,245,2245,,1.0,,
2SP,270,2270,12960,                                                             SE,,0,                                                                           RU,270,3270,,,1.0,                                                               2SP,270,3270,10200,                                                             SE,,0,                                                                           NO,****************************************************************
2SP,245,2245,64800, SE,,0, RU,245,3245,,,1.0, 2SP,245,3245,51000, SE,,0, RU,245,250,,,10.0, SE,,0, RU,250,1250,1.0,,,
NO,                     90 DEGREE IPS HDPE ELBOW                                 NO,****************************************************************             NO,THIS IS A 12", DR-9, 5-SEGMENT MITER ELBOW. PROPERTIES OF ELBOW NO,ARE AS LISTED EARLIER.  
2SP,250,1250,15600, SE,,0, RU,250,2250,,1.0,,
 
2SP,250,2250,64800, SE,,0, RU,250,3250,,,1.0, 2SP,250,3250,51000, SE,,0, NO,****************************************************************
NO,NO,ELBOW STARTS AT NODE PT. 270 AND ENDS AT NODE PT. 320                         NO,****************************************************************                                      
NO,NEXT PIPNG SECTION IS 5.6 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)
 
NO,****************************************************************
NORU,270,280,,,2.075,                                                                                                       CM,280,285,12.75,1.417,,19.5,11.25,4.62,                                         IB,280,285,2.0,.69,1.64,                                                         CM,285,290,12.75,1.417,,19.5,22.5,4.62,                                         IB,285,290,2.0,.69,1.64, CM,290,295,12.75,1.417,,19.5,22.5,4.62,                                         IB,290,295,2.0,.69,1.64,                                                         CM,295,300,12.75,1.417,,19.5,22.5,4.62,                                         IB,295,300,2.0,.69,1.64,                                                         CM,300,310,12.75,1.417,,19.5,,4.62,                                             IB,300,310,2.0,.69,1.64, RU,310,320,2.075,,,                                                         NO                                                                               NO,******************************************************************           NO,PIPE IS PARALLEL TO X-AXIS; Z IS LATERAL DIRECTION NO,NO,LENGTH OF NEXT SECTION = 90.7 FT  
RU,250,260,,,5.6, SE,,0, RU,260,1260,1.0,,,
 
2SP,260,1260,8736, SE,,0, RU,260,2260,,1.0,,
NO,NO,APPLY SPRINGS AT 2FT INTERVALS AROUND ELBOWS (6FT ON EACH END)           NO,AND EVERY 10FT IN REMAINING SECTION (LENGTH= 90.7'-12'= 78.7 FT)
2SP,260,2260,36288, SE,,0, RU,260,3260,,,1.0, 2SP,260,3260,28560, SE,,0, NO,****************************************************************
NO,****************************************************************** NO,SINCE 90-DEG ELBOW LENGTH = 24.9" = 2.075 FT (APPROX.= 2FT), NO,FOR SIMPLICITY, APPLY FISRT SET OF SOIL SPRINGS AT END OF ELBOW NO,AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.
NO,CHANGE SPACING OF SOIL SPRINGS TO 2 FT (AROUND 90-DEGREE ELBOW)
NO,****************************************************************
RU,260,265,,,2.0, SE,,0, RU,265,1265,1.0,,,
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 2SP,265,1265,3120, SE,,0, RU,265,2265,,1.0,,
2SP,265,2265,12960, SE,,0, RU,265,3265,,,1.0, 2SP,265,3265,10200, SE,,0, NO,****************************************************************
NO,LENGTH OF 90-DEGREE ELBOW 24.9 IN > 2FT. HENCE, ELBOW STARTS IN NO,NEXT 2FT SECTION (23.1 IN = 1.925FT FROM CURRENT NODE POINT)
NO, NO,NEXT RUN GOES UP TO BEGINNING OF ELBOW. SINCE RUN LENGTH IS NO,APPROX. = 2FT, FOR SIMPLICITY, APPLY SOIL SPRINGS AT END OF THIS NO,RUN AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.
NO,****************************************************************
NO RU,265,270,,,1.925, SE,,0, RU,270,1270,1.0,,,
2SP,270,1270,3120, SE,,0, RU,270,2270,,1.0,,
2SP,270,2270,12960, SE,,0, RU,270,3270,,,1.0, 2SP,270,3270,10200, SE,,0, NO,****************************************************************
NO,               90 DEGREE IPS HDPE ELBOW NO,****************************************************************
NO,THIS IS A 12", DR-9, 5-SEGMENT MITER ELBOW. PROPERTIES OF ELBOW NO,ARE AS LISTED EARLIER.
NO, NO,ELBOW STARTS AT NODE PT. 270 AND ENDS AT NODE PT. 320 NO,****************************************************************
NO RU,270,280,,,2.075, CM,280,285,12.75,1.417,,19.5,11.25,4.62, IB,280,285,2.0,.69,1.64, CM,285,290,12.75,1.417,,19.5,22.5,4.62, IB,285,290,2.0,.69,1.64, CM,290,295,12.75,1.417,,19.5,22.5,4.62, IB,290,295,2.0,.69,1.64, CM,295,300,12.75,1.417,,19.5,22.5,4.62, IB,295,300,2.0,.69,1.64, CM,300,310,12.75,1.417,,19.5,,4.62, IB,300,310,2.0,.69,1.64, RU,310,320,2.075,,,
NO NO,******************************************************************
NO,PIPE IS PARALLEL TO X-AXIS; Z IS LATERAL DIRECTION NO, NO,LENGTH OF NEXT SECTION = 90.7 FT NO, NO,APPLY SPRINGS AT 2FT INTERVALS AROUND ELBOWS (6FT ON EACH END)
NO,AND EVERY 10FT IN REMAINING SECTION (LENGTH= 90.7'-12'= 78.7 FT)
NO,******************************************************************
NO,SINCE 90-DEG ELBOW LENGTH = 24.9" = 2.075 FT (APPROX.= 2FT),
NO,FOR SIMPLICITY, APPLY FISRT SET OF SOIL SPRINGS AT END OF ELBOW NO,AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.
NO,******************************************************************
NO,******************************************************************
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page SE,,0,                                                                           RU,320,1320,1.0,,,                                                               2SP,320,1320,10200,,,                                                           SE,,0,                                                                           RU,320,2320,,1.0,,                                                               2SP,320,2320,12960,,,                                                           SE,,0, RU,320,3320,,,1.0, 2SP,320,3320,3120,,,
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 SE,,0, RU,320,1320,1.0,,,
SE,,0,NO,**************************************************************** NO,NEXT SECTION IS 1.925FT LONG (=APPROX. 2 FT). USE SOIL SPRING NO,STIFFNESS VALUE OF A 2FT SECTION NO,****************************************************************                                                                           RU,320,330,1.925,,,                                                                 SE,,0,                                                                           RU,330,1330,1.0,,,
2SP,320,1320,10200,,,
2SP,330,1330,10200,,,                                                           SE,,0,                                                                           RU,330,2330,,1.0,,                                                               2SP,330,2330,12960,,,                                                           SE,,0,                                                                           RU,330,3330,,,1.0, 2SP,330,3330,3120,,,
SE,,0, RU,320,2320,,1.0,,
SE,,0,NO,**************************************************************** NO,NEXT SECTION IS 2FT LONG NO,****************************************************************                                                                           RU,330,340,2.,,,
2SP,320,2320,12960,,,
SE,,0,                                                                           RU,340,1340,1.0,,,                                                               2SP,340,1340,10200,,,                                                           SE,,0, RU,340,2340,,1.0,,                                                               2SP,340,2340,12960,,,                                                           SE,,0, RU,340,3340,,,1.0,                                                               2SP,340,3340,3120,,,                                                           SE,,0,                                                                           NO,****************************************************************             NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10 FT = 78.7 FT NO,DIVIDE THIS LENGTH AS FOLLOWS: 78.7FT = 6*10FT + 2*9.35FT                             NO,****************************************************************
SE,,0, RU,320,3320,,,1.0, 2SP,320,3320,3120,,,
NO,NO,****************************************************************             NO,NEXT PIPNG SECTION IS 9.35 FT LONG. SOIL SPRING STIFFNESS VALUES             NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)
SE,,0, NO,****************************************************************
NO,****************************************************************     RU,340,350,9.35,,,                                                               SE,,0,                                                                           RU,350,1350,1.0,,,                                                               2SP,350,1350,47685,,,                                                           SE,,0, RU,350,2350,,1.0,,                                                               2SP,350,2350,60588,,,                                                           SE,,0, RU,350,3350,,,1.0,                                                               2SP,350,3350,14586,,,
NO,NEXT SECTION IS 1.925FT LONG (=APPROX. 2 FT). USE SOIL SPRING NO,STIFFNESS VALUE OF A 2FT SECTION NO,****************************************************************
SE,,0,NO,****************************************************************
RU,320,330,1.925,,,
NO,SOIL SPRING SPACING IS 10 FT FOR THE NEXT 60 FT SECTION C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page NO,****************************************************************                                                                               RU,350,360,10.,,,                                                               SE,,0,                                                                           RU,360,1360,1.0,,,                                                               2SP,360,1360,51000,,,                                                           SE,,0,                                                                           RU,360,2360,,1.0,,
SE,,0, RU,330,1330,1.0,,,
2SP,330,1330,10200,,,
SE,,0, RU,330,2330,,1.0,,
2SP,330,2330,12960,,,
SE,,0, RU,330,3330,,,1.0, 2SP,330,3330,3120,,,
SE,,0, NO,****************************************************************
NO,NEXT SECTION IS 2FT LONG NO,****************************************************************
RU,330,340,2.,,,
SE,,0, RU,340,1340,1.0,,,
2SP,340,1340,10200,,,
SE,,0, RU,340,2340,,1.0,,
2SP,340,2340,12960,,,
SE,,0, RU,340,3340,,,1.0, 2SP,340,3340,3120,,,
SE,,0, NO,****************************************************************
NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10 FT = 78.7 FT NO,DIVIDE THIS LENGTH AS FOLLOWS: 78.7FT = 6*10FT + 2*9.35FT NO,****************************************************************
NO, NO,****************************************************************
NO,NEXT PIPNG SECTION IS 9.35 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)
NO,****************************************************************
RU,340,350,9.35,,,
SE,,0, RU,350,1350,1.0,,,
2SP,350,1350,47685,,,
SE,,0, RU,350,2350,,1.0,,
2SP,350,2350,60588,,,
SE,,0, RU,350,3350,,,1.0, 2SP,350,3350,14586,,,
SE,,0, NO,****************************************************************
NO,SOIL SPRING SPACING IS 10 FT FOR THE NEXT 60 FT SECTION Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 NO,****************************************************************
RU,350,360,10.,,,
SE,,0, RU,360,1360,1.0,,,
2SP,360,1360,51000,,,
SE,,0, RU,360,2360,,1.0,,
2SP,360,2360,64800,,,
2SP,360,2360,64800,,,
SE,,0,                                                                          RU,360,3360,,,1.0,                                                              2SP,360,3360,15600,,,
SE,,0, RU,360,3360,,,1.0, 2SP,360,3360,15600,,,
SE,,0,RU,360
SE,,0, RU,360,370,10.,,,
SE,,0, RU,370,1370,1.0,,,
2SP,370,1370,51000,,,
SE,,0, RU,370,2370,,1.0,,
2SP,370,2370,64800,,,
SE,,0, RU,370,3370,,,1.0, 2SP,370,3370,15600,,,
SE,,0, RU,370,380,10.,,,
SE,,0, RU,380,1380,1.0,,,
2SP,380,1380,51000,,,
SE,,0, RU,380,2380,,1.0,,
2SP,380,2380,64800,,,
SE,,0, RU,380,3380,,,1.0, 2SP,380,3380,15600,,,
SE,,0, RU,380,390,10.,
NO,****************************************************************
NO,****************************************************************
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page NO                                                                              RU,735,740,,,8.7,                                                                SE,,0,                                                                          RU,740,1740,1.0,,,                                                              2SP,740,1740,13572,                                                              SE,,0,                                                                          RU,740,2740,,1.0,,
RU,830,840,4.81,,4.81, SE,,0, RU,840,1840,0.707,,0.707,,1,,
2SP,740,2740,56376, SE,,0,                                                                          RU,740,3740,,,1.0,                                                              2SP,740,3740,44370,                                                              SE,,0,                                                                          NO,****************************************************************              NO,APPLY SOIL SPRINGS AT 2 FT INTERVALS NO,****************************************************************              NO,                                                                              RU,740,745,,,2.0, SE,,0,                                                                          RU,745,1745,1.0,,,                                                              2SP,745,1745,3120,                                                              SE,,0,                                                                          RU,745,2745,,1.0,,                                                              2SP,745,2745,12960, SE,,0,                                                                          RU,745,3745,,,1.0,                                                              2SP,745,3745,10200,                                                              SE,,0,                                                                          RU,745,750,,,2.0,                                                                SE,,0, RU,750,1750,1.0,,,                                                              2SP,750,1750,3120,                                                              SE,,0,                                                                          RU,750,2750,,1.0,,
2SP,840,1840,34680,,,
2SP,750,2750,12960,                                                              SE,,0,                                                                          RU,750,3750,,,1.0, 2SP,750,3750,10200,                                                              SE,,0,                                                                          NO,****************************************************************              NO,NEXT RUN GOES UP TO BEGINNING OF 45-DEGREE MITERED ELBOW                      NO,LENGTH OF 45-DEG. MITERED ELBOW (SEE ELBOW DIMENSIONS):FC= 1.13FT            NO,THEREFORE, LENGTH OF NEXT RUN = 2.0'-1.13' = 0.87 FT NO,****************************************************************              NO                                                                              RU,750,755,,,0.87,                                                              NO                                                                              NO,****************************************************************              NO,**********        45 DEGREE IPS HDPE ELBOW        **************
SE,,0, RU,840,2840,,1.0,,
NO,****************************************************************              NO,THIS IS A 3-SEGMENT MITERED ELBOW. THE PROPERTIES ARE AS LISTED              NO,EARLIER.                                                                      NO                                                                              NO,ELBOW STARTS AT NODE PT. 755 AND ENDS AT NODE PT. 795                        NO,****************************************************************
2SP,840,2840,44064,,,
NO                                                                              RU,755,760,,,1.13,                                                              CM,760,770,12.75,1.417,,19.5,11.25,4.62, IB,760,770,2.0,.69,1.64,                                                        CM,770,780,12.75,1.417,,19.5,22.5,4.62,                                          IB,770,780,2.0,.69,1.64,                                                        CM,780,790,12.75,1.417,,19.5,,4.62, IB,780,790,2.0,.69,1.64, C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page RU,790,795,0.8,,0.8,                                                        NO                                                                              NO,****************************************************************              NO,PIPE AXIS OF NOW MAKES 45 DEGREES (CCW) WITH Z-AXIS                          NO                                                                              NO,TOTAL LENGTH OF NEXT PIPING SECTION= 57.0 FT                                  NO,LENGTH OF STEEL COMPONENTS= ELBOW(12")+FLANGE(4.5")=16.5"= 1.4' NO,LENGTH OF HDPE PIPING = 57.0' - 1.4' = 55.6 FT NO                                                                              NO,****************************************************************              NO,APPLY SOIL SPRINGS EVERY 2FT AROUND HDPE ELBOW AND WITHIN THE                NO,'INFLUENCE LENGTH' (OVER A TOTAL OF 12 FT) AND EVERY 10FT IN                  NO,THE REMAINING SECTION (LENGTH = 55.6 - 12 = 43.6 FT)                          NO NO,LOCATION OF 1ST SPRING SET FROM END OF ELBOW= 2.0-1.13= 0.87FT                NO,****************************************************************              NO RU,795,800,0.615,,0.615,                                                        SE,,0,                                                                          RU,800,1800,0.707,,0.707,,1,,                                                    2SP,800,1800,10200,                                                              SE,,0,                                                                          RU,800,2800,,1,,
SE,,0, RU,840,3840,0.707,,-0.707,,1,,
2SP,800,2800,12960,                                                              SE,,0,                                                                          RU,800,3800,0.707,,-0.707,,1,,                                                  2SP,800,3800,3120,                                                              SE,,0,                                                                          RU,800,805,1.414,,1.414, SE,,0,                                                                          RU,805,1805,0.707,,0.707,,1,,                                                    2SP,805,1805,10200,                                                              SE,,0, RU,805,2805,,1,,                                                                2SP,805,2805,12960,                                                              SE,,0, RU,805,3805,0.707,,-0.707,,1,,                                                  2SP,805,3805,3120,                                                              SE,,0,                                                                          RU,805,810,1.414,,1.414,                                                        SE,,0,                                                                          RU,810,1810,0.707,,0.707,,1,,
2SP,840,3840,10608,,,
2SP,810,1810,10200,                                                              SE,,0,                                                                          RU,810,2810,,1,,                                                                2SP,810,2810,12960,                                                              SE,,0,                                                                          RU,810,3810,0.707,,-0.707,,1,,
SE,,0, NO,****************************************************************
2SP,810,3810,3120,                                                              SE,,0,                                                                          NO,**************************************************************** NO,CHANGE SOIL SPRING SPACING TO 10FT              NO,DIVIDE AVAILABLE LENGTH AS FOLLOWS: 43.6FT = 3*10FT + 2*6.8FT                    NO,****************************************************************
NO,CHANGE SOIL SPRING SPACING TO 2 FT NO,****************************************************************
 
Page CALCULATION CONTINUATION SHEET Client          Duke Power Carolinas, LLC                                   Calculation No. 07Q3691-CAL-009 Project     Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By:                                         Date 11/10/08             Chkd by                   Date 11/11/08 NO RU,840,850,1.414,,1.414, SE,,0, RU,850,1850,0.707,,0.707,,1,,
NONO,****************************************************************              NO,LENGTH OF NEXT PIPING SECTION = 6.8 FT. SOIL SPRING STIFFNESS NO,VALUES ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)                                NO,****************************************************************                    RU,810,815,4.81,,4.81,                                                          SE,,0, RU,815,1815,0.707,,0.707,,1,,
2SP,850,1850,10200,,,
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page 2SP,815,1815,34680,,,                                                            SE,,0,                                                                          RU,815,2815,,1.0,,                                                              2SP,815,2815,44064,,,                                                            SE,,0,                                                                          RU,815,3815,0.707,,-0.707,,1,,                                                  2SP,815,3815,10608,,,                                                           
SE,,0, RU,850,2850,,1.0,,
 
SE,,0, NO,****************************************************************              NO,SOIL SPRING SPACING IS 10 FT OVER THE NEXT 30 FT SECTION                              NO,****************************************************************                                                                          RU,815,820,7.07,,7.07,                                                          SE,,0,                                                                          RU,820,1820,0.707,,0.707,,1,,
2SP,820,1820,51000,,,                                                            SE,,0,                                                                          RU,820,2820,,1.0,,
2SP,820,2820,64800,,,                                                            SE,,0,                                                                          RU,820,3820,0.707,,-0.707,,1,,                                                  2SP,820,3820,15600,,,                                                            SE,,0,                                                                          RU,820,825,7.07,,7.07, SE,,0,                                                                          RU,825,1825,0.707,,0.707,,1,,                                                    2SP,825,1825,51000,,,                                                            SE,,0,                                                                          RU,825,2825,,1.0,,                                                              2SP,825,2825,64800,,,
SE,,0,                                                                          RU,825,3825,0.707,,-0.707,,1,,                                                  2SP,825,3825,15600,,,                                                            SE,,0, RU,825,830,7.07,,7.07,                                                          SE,,0,                                                                          RU,830,1830,0.707,,0.707,,1,,
2SP,830,1830,51000,,,                                                            SE,,0,                                                                          RU,830,2830,,1.0,,                                                              2SP,830,2830,64800,,,                                                            SE,,0,                                                                          RU,830,3830,0.707,,-0.707,,1,,
2SP,830,3830,15600,,,                                                            SE,,0,                                                                          NO,****************************************************************              NO,LENGTH OF NEXT SECTION = 6.8 FT. SOIL SPRING STIFFNESS VALUES            NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)                                    NO,****************************************************************
RU,830,840,4.81,,4.81,                                                       SE,,0,                                                                           RU,840,1840,0.707,,0.707,,1,,                                                   2SP,840,1840,34680,,,                                                           SE,,0,                                                                           RU,840,2840,,1.0,,
2SP,840,2840,44064,,,                                                           SE,,0,                                                                           RU,840,3840,0.707,,-0.707,,1,,
2SP,840,3840,10608,,,                                                           SE,,0,                                                                           NO,****************************************************************
NO,CHANGE SOIL SPRING SPACING TO 2 FT NO,****************************************************************
C ALCULATION CONTINUATION SHEETClient Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis TitleAnalysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 By:Date 11/10/08 Chkd by Date 11/11/08 Page NO                                                                               RU,840,850,1.414,,1.414,                                                         SE,,0,                                                                           RU,850,1850,0.707,,0.707,,1,,                                                   2SP,850,1850,10200,,,                                                           SE,,0,                                                                           RU,850,2850,,1.0,,
2SP,850,2850,12960,,,
2SP,850,2850,12960,,,
SE,,0,                                                                          RU,850,3850,0.707,,-0.707,,1,,                                                  2SP
SE,,0, RU,850,3850,0.707,,-0.707,,1,,
2SP,850,3850,3120,,,
SE,,0, RU,850,860,1.414,,1.414, SE,,0, RU,860,1860,0.707,,0.707,,

Latest revision as of 16:52, 12 March 2020

Calculation 07Q3691-CAL-009, Revision 0, Analysis of Buried Hdpe Piping System - Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2
ML090260127
Person / Time
Site: Catawba, 05000415  Duke Energy icon.png
Issue date: 11/11/2008
From: Hailu S
Stevenson & Associates
To:
Duke Energy Carolinas, Office of Nuclear Reactor Regulation
References
07Q3691 07Q3691-CAL-009, Rev 0
Download: ML090260127 (94)


Text

Client: Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009

Title:

Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Generator 2B Unit 2 Project: Catawba Unit #1 and Unit #2 - Buried HDPE Pipe Design and Analysis Method: Computer and Manual Calculations Acceptance Criteria: N/A Remarks:

Verification Method Design Review Method Alternate Calculation Qualification Test Other No Verification Necessary Results:

Computer Programs Program Name Version/Revision Computer Type QA Verified Used ADLPIPE 4F10.1 PC YES Microsoft Word 2003 PC N/A Mathcad 2000 PC N/A REVISIONS Revision No. 0 Description Original Issue Total Pages (Cumulative) 94 By/Date 11-10-08 Checked/Date 11-11-08 Approved/Date 11-11-08 CALCULATION CONTRACT NO.

COVER SHEET 07Q3691 Stevenson & Associates U:\07Q3691 - Duke HDPE Analysis\10_Calculations\07Q3691-CAL-009\07Q3691-CAL-009_11-10.doc

CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................................... 2 DOCUMENT INDEX ........................................................................................................................................ 4 1.0 PURPOSE OR OBJECTIVE ........................................................................................................... 6 2.0 SCOPE AND LIMITATIONS......................................................................................................... 6 3.0 DEFINITIONS................................................................................................................................. 6 4.0 ASSUMPTIONS.............................................................................................................................. 8 4.1 Assumptions Not Requiring Verification ................................................................................ 8 4.2 Assumptions To Be Verified ..................................................................................................... 8 5.0 ANALYSIS METHODOLOGY AND APPROACH...................................................................... 8 5.1 Background ................................................................................................................................ 8 5.2 Methodology and Approach ..................................................................................................... 9 5.2.1 HDPE Calculations Dependent Only on Design Conditions and Pipe Size.......................... 9 5.2.2 HDPE Calculations Requiring the Input of Geometry Specific Loads............................... 12 5.2.3 Steel Pipe Criteria.................................................................................................................... 15 6.0 ANALYSIS INPUTS..................................................................................................................... 15 6.1 Design Loads ............................................................................................................................ 15 6.2 Pipe Properties......................................................................................................................... 15 6.3 Material Properties.................................................................................................................. 16 6.4 HDPE to Steel Boundary ........................................................................................................ 19 6.5 HDPE Elbows........................................................................................................................... 19 6.6 Stress Indices and SIFs............................................................................................................ 20 6.7 Soil Springs............................................................................................................................... 22 6.8 Seismic Analysis Input ............................................................................................................ 22 6.8.1 Seismic Anchor Motion ........................................................................................................... 22 6.8.2 Seismic Wave Passage ............................................................................................................. 22 6.8.3 Decoupling of 12 Steel Pipe................................................................................................... 23 6.9 Piping Layout........................................................................................................................... 23 6.10 Pipe Criteria - Steel and HDPE ............................................................................................. 25 6.11 Acceptance Criteria - Steel and HDPE ................................................................................. 27 7.0 ANALYSIS.................................................................................................................................... 29 7.1 Computer Model ............................................................................................................................. 29 7.2 Results of ADLPIPE Analysis........................................................................................................ 30 7.2.1 Load Cases Analyzed ................................................................................................................... 30 7.2.2 Summary of HDPE Loads at Critical Locations ....................................................................... 31 7.3 Calculations per the ASME BPVC Code Case N-755.................................................................. 33 7.4 Stress Summary for Unit 2 Steel Pipe ........................................................................................... 44 7.5 Flange Summary for Unit 2 HDPE Pipe ....................................................................................... 44 7.6 Evaluation of Buoyancy over Condenser Cooling Water Lines ................................................. 44 7.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines ..................................... 46 7.8 Evaluation of 12 ø HDPE Pipe over Condenser Cooling Water Lines..................................... 49 8.0 RESULTS ...................................................................................................................................... 51 8.1 Functionality Capability and Break Postulation.......................................................................... 52 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects ...................... 52 8.3 Final Loads at the Centerline of the 42 ø Supply Line due to Soil Effects............................... 54 8.4 Branch Line Qualification.............................................................................................................. 55

9.0 CONCLUSION

S ........................................................................................................................... 55 Appendix A................................................................................................................................................. 56 Appendix B ................................................................................................................................................. 62 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 DOCUMENT INDEX DIN No. Reference Output Input Document Number/Title Revision, Edition, Date 1 Nondestructive Evaluation: Seismic Design September 2006 Criteria for Polyethylene Pipe Replacement Code Case, EPRI, Palo Alto, CA, 2006, Report Number 1013549 2 Guidelines for the Seismic Design of Oil and Gas 1984 Pipeline Systems, ASCE 3 Catawba Updated Final Safety Analysis Report Rev. 12, April 2006 4 Polyethylene (PE) Pressure Pipe and Fittings, March 1, 2000 4in. (100 mm) through 63 in. (1,575 mm) for Water Distribution and Transmission, ANSI/AWWA C906-99, American Water Works Association, 6666 West Quincy Ave., Denver, CO 80235 5 Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-06.

6 Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-11.

7 Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-12.

8 HDPE Product Catalog, ISCO Industries Version 2.1, 2005 9 Ladish General Catalog No. 55 1971 10 Navco Piping Catalog Edition No. 10, June 1, 1974 11 ASME Boiler and Pressure Vessel Code, Section 1998 Edition with 2000 Addenda III, Division I, Subsection ND-3600 12 ASME Code Case N-755, High Density March 22, 2007 Polyethylene (HPDE) Buried Pipe,Section III, Division I, Class 3 13 CNS ISFSI Haul Path Evaluation Calculation, Rev. 0, December 21, 2006 CNM 1140.04-0005 001 14 Request for Relief Number 06-CN-003 Use of March 13, 2008 Polyethylene Material in Nuclear Safety-Related Piping Applications (TAC Numbers MD 3729 and MD 3730) 15 S&A Calculation 07Q3691-CAL-001 Calculation Rev. 0, 2008 of Soil Spring Stiffness for Buried HDPE Pipe 16 Catawba Nuclear Station Units 1 and 2 Rev. 16, 9-7-06 Calculation CNC-1206.02-84-001, Nuclear Service Water Pipe Seismic Analysis (Buried Portion)

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 DIN No. Reference Output Input Document Number/Title Revision, Edition, Date 17 Bonney Forge Stress Intensification Factors: 1988 Weldolet, Sockolet, Thredolet, Sweepolet, Latrolet, Insert Weldolet, Bulletin SI-1 18 S&A Calculation 07Q3691-CAL-002 Calculation Rev. 0, 2008 of Equivalent Thermal Strain for Seismic Analysis of Buried HDPE Pipe 19 Catawba Nuclear Station Specification CNS- Rev. 1, January 3,1998 1206.02-01-008 20 018B00Y020GPLOT_Digitized Spectra (4-14) -

21 Young, W. C., Roarks Formulas for Stress and McGraw-Hill, Sixth Edition, 1989 Strain.

22 Fatigue and Capacity Testing of High-Density Final Report, December 2007 Polyethylene Pipe and Pipe Components Fabricated from PE4710 (1015062) 23 3691-LSC-002, HDPE Pipe Interface Loads March 17, 2008 Applied to Steel Pipe 24 S&A Calculation 07Q3691-CAL-011, Definition August 30,2008 of Break Selection Criteria and Functional Capability Criteria for the Piping Design Specification 25 S&A Calculation 07Q3691-CAL-013, Technical September, 30, 2008 Basis for Design Acceptance Criteria 26 CNS-1574-00_RN-00-0002, ASME Design Preliminary Draft Specification for the Nuclear Service Water System (RN) Diesel Generator Cooling Supply and Return Piping; Modification, Repair, and Replacement 27 S&A Document 3691-DI-001, Design Rev. 0, 7/2008 Instructions for Analysis of Polyethylene Pipe 28 Welding Research Council Bulletin 300, December, 1984 Technical Position on Industry Practice 29 ASME Boiler and Pressure Vessel Code, Section 1989 Edition with 1991 Addenda III, Division I, Subsection ND-3600 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 1.0 PURPOSE OR OBJECTIVE Catawba Nuclear Station has decided to replace the buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply and return headers to Unit 1 and Unit 2 Diesel Generator (DG) buildings. The existing 10-in carbon steel piping will be replaced by 12-in high-density polyethylene (HDPE) piping. The purpose of this calculation is to demonstrate the Design Basis ASME BPVC Code and Regulatory compliance for the buried HDPE piping system connecting the 42-in supply header B to the DG building of Unit 2.

2.0 SCOPE AND LIMITATIONS Results of this calculation are limited to the 12-in buried HDPE piping system supplying cooling water from the 42-in NSWS supply header B to the to the Diesel Generator Building of Unit 2. The piping model goes from the anchor at the wall (column lines 76 & AA) to the 42ø Supply B header pipe of the NSWS. There is a manhole ( MH-3 ) at Diesel Generator Building Unit 2, and there is also a manhole

( MH-7) at the connection to the 42 ø Supply B header pipe of the NSWS. The manholes provide access to the steel to HDPE flanged connections for the purpose of inspection and maintenance of the steel to HDPE connections. The HDPE pipe passes through the wall penetration of the manhole, but is not attached to the structure. The manhole does not transfer any load to the HDPE pipe. The gap between the manhole penetration and the HDPE pipe is sealed to prevent water from entering the manhole through this penetration. The piping qualification includes the following:

(a) The Steel Pipe from the Unit 2 Diesel Generator Building anchor steel to the High Density Polyethylene (HDPE) pipe Flange.

(b) HDPE Piping from Steel - HDPE Flange near the Unit 2 Diesel Generator Building Anchor to the Steel - HDPE Flange near the 42 NSWS Supply Header B (c) The Steel Pipe from the Steel - HDPE Flange anchor to the 42 NSWS Supply Header B, including qualification of the 12 NSWS Supply Header B branch connection to the NSWS Supply Header pipe.

3.0 DEFINITIONS Nomenclature per Ref. [14], Request for Relief Number 06-CN-003, Use of Polyethylene Material in Nuclear Safety-Related Piping Applications (TAC Numbers MD 3729 and MD 3730). This nomenclature may differ somewhat from the nomenclature used in the ASME BPVC Code Case N-755 Ref. [12].

Nomenclature is provided at point of use.

A = Cross sectional area of pipe [in2]

D = Coefficient of thermal expansion [in/in/oF]

B1 and B2 = Primary stress indices B' = Burial factor BS = Building settlement loads c = Allowance for erosion or mechanical damage, [in]

D = Outside diameter of pipe [in]

DR = Dimensional ratio of pipe; for OD-controlled pipe, DR = D/t Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 DW = Deadweight of pipe and contents [lb]

E = Modulus of soil reaction [psi]

Epipe = Elastic modulus of pipe [psi]

f0 = Ovality correction factor F = Impact factor for surface loads.

FS = Factor of safety (FS = 2.0 Level A, 1.8 for Level B, and 1.5 for Levels C and D)

Jsoil = Specific weight of the soil [lb/ft3]

water = Specific weight of the water [lb/ft3]

H = Height of fill (or cover) above top of pipe [ft]

Hgw = height of groundwater above pipe [ft]

k = Longitudinal stress factor Kb = Bedding factor, usually 0.1.

K0 = Coefficient of soil pressure at rest, 0.5 to 1.0, may conservatively be taken as 1.0 Kpo = Spring due to pipe ovaling [lb/in]

L = Deflection lag factor (recommended values: 1.0 for short term and 1.5 for long term loads)

OBEw = Operating Basis Earthquake due to effects of seismic wave passage OBES = Operating Basis Earthquake due to effects of soil movement OBED = Operating Basis Earthquake due to effects of anchor movements P = Long-term design gage pressure for the pipe at the specified design temperature [psi]

PA , PB , PC and PD = Maximum Pressures for Service Levels A through D [psi]

Pbs , Pcs , and Pds = Surge Pressures for Service Levels B through D [psi]

PE = Vertical soil pressure loads due to weight of soil cover [psi]

Pgw = Groundwater pressure loads [psi]

PL = Vertical surcharge (transportation) loads [psi]

PS = Loads due to pump startup and shutdown Rb = Buoyancy reduction factor Sh = Design allowable stress for HDPE piping at temperature [psi]

Sy = Yield stress [psi]

SSEw = Safe Shutdown Earthquake due to effects of seismic wave passage SSES = Safe Shutdown Earthquake due to effects of soil movement SSED = Safe Shutdown Earthquake due to effects of anchor movements TA,max ,TB,max , TC,max and TD,max = Maximum temperature for Service Levels A through D [oF]

TA,min ,TB,min , TC,min and TD,min = Minimum temperature for Service Levels A through D [oF]

t = Actual (not nominal) pipe wall thickness [in]

tmin = Minimum allowable pipe wall thickness [in]

VOT = Valve Operating Transients Q= Poissons ratio for piping Qr = Poisson ratio for the bedrock WP = Weight of empty pipe, [lb/ft]

Ww = Groundwater floatation loads [lb]

Z = Section modulus of pipe cross section [in3]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 4.0 ASSUMPTIONS 4.1 Assumptions Not Requiring Verification

[1] Due to the small Seismic Building Displacement of the Unit 2 Diesel Generator Building (0.003), the seismic response of the buried steel pipe from the Diesel Generator building anchor to the HDPE piping is predominately due the effect of seismic wave passage. The effect of the Diesel Generator Building Amplified Floor Response does not need to be considered in the analysis of the buried pipe, Ref. [25].

[2] Per discussion with Catawba Systems Engineering, it is concluded that the buried HDPE piping at Catawba is not subjected to any pressure surge loads, Ref. [25]

[3] Seismic Anchor Movements of 0.003 are much less than 1/16 and, therefore, will have negligible effect on the piping and are not considered in the analysis 4.2 Assumptions To Be Verified

[1] Stress Intensification Factors (SIFs) for mitered elbows less than 90º are enveloped by SIFs of 90º elbows.

5.0 ANALYSIS METHODOLOGY AND APPROACH 5.1 Background The buried water supply system to and from the Diesel Generator (DG) buildings to the 42-in Nuclear Service Water System (NSWS) currently uses 10-in carbon steel pipes. Catawba Nuclear Station (CNS) has decided to replace the 10-in steel pipes with 12-in high-density polyethylene (HDPE) pipes. There are a total of eight cooling water piping linesfour supply lines and four return lines.

x Two cooling water supply lines to the DG building of Unit 1. One line originates from the 42-in supply header A and the other originates from the 42-in supply header B.

x Two cooling water supply lines to the DG building of Unit 2. One line originates from the 42-in supply header A and the other originates from the 42-in supply header B.

x Two cooling water return lines originating from the DG building of Unit 1. One line returns water to the 42-in return header A and the other returns water to the 42-in return header B.

x Two cooling water return lines originating from the DG building of Unit 2. One line returns water to the 42-in return header A and the other returns water to the 42-in return header B.

The HDPE pipes are connected to the steel pipes by means of a flanged joint. At the DG building wall entrance, a transition is made from 10-in to 12-in using a 10x12 steel reducer with flanges to provide the necessary flanged connection to the HDPE pipe and a means of providing future access for examination of all joints from the inside surface per Ref. [14]. At the 42-in header side, a short 12-in flanged steel pipe is welded to the header. An additional steel flanged joint attached to the 12-in pipe provides the Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 necessary connection to the HDPE pipe and serves as future access. The HDPE piping system is considered anchored at both ends.

The buried HDPE piping system considered in this calculation is the cooling water supply line from the 42-in supply header B to the Diesel Generator Building of Unit 2. The effects of pressure, deadweight, seismic and temperature loads on the buried HDPE piping are analyzed.

5.2 Methodology and Approach The piping is qualified to the requirements of the Piping Design Specification Ref. [26]. The Design Specification is based on ASME BPVC Code Case N-755 Ref. [12] and the commitments in Relief Request Number 06-CN-003 Ref. [14]. In addition, further guidance on design and analysis methods is provided in EPRI Report 1013549 Ref. [1] and S & A Design Instruction 3691-DI-001 Ref. [27]. However, the controlling design document is the Piping Design Specification Ref. [26].

The Code of Record for the Design and Analysis of the HDPE Pipe is the 1998 Edition of the ASME Boiler and Pressure Vessel Code,Section III, Division 1, Subsection ND up to and including the 2000 Addenda. However, ND-3600 of the ASME Boiler and Pressure Vessel Code 1989 Edition shall be used to comply with the limitations imposed by 10 CFR 50.55 a (b) (1) (iii) except as amended by the governing document Relief Request Number 06-CN-003 Ref. [14]. The piping is classified as ASME Class 3 Duke Class C.

The piping system is analyzed using a combination of hand calculations and the ADLPIPE computer program. ADLPIPE analyzes complex piping systems subjected to static and dynamic loads. The basic load cases (deadweight, thermal, seismic OBE, seismic SSE, etc.) and their combinations (such as thermal plus seismic) are included in the ADLPIPE analysis.

Stresses in steel pipes are automatically computed by ADLPIPE according to an ASME Code year of interest. However, ADLPIPE does not calculate the stresses for all piping load cases and combinations in the HDPE pipe because HDPE material, properties, and qualification criteria are not yet included in the ADLPIPE computer code. Therefore, manual calculations are performed for the HPDE piping according to the relief request Ref. [14] which is consistent with the ASME BPVC Code Case N-755 [Ref. 12]. The required manual calculations are presented in sections 5.2.1 and 5.2.2.

5.2.1 HDPE Calculations Dependent Only on Design Conditions and Pipe Size These calculations do not require ADLPIPE analysis results as input. The HDPE pipe size and the design conditions are the only inputs needed to perform the manual calculations in this section.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Minimum Required Wall Thickness Per Section 3131.1 of Ref. [12], the minimum required wall thickness (tmin) of straight pipe sections is determined from:

PD t min c (5.1) 2S  P where:

P = internal design gage pressure at the specified design temperature, psi D = outside diameter of pipe, in S = allowable stress, psi, from Table 3021-1 Ref. [14]

c = allowance for mechanical and erosion damage, [in.]

The actual wall thickness of the HDPE pipe shall not be less than tmin .

Ring Deflection Per Section 3210 of Ref. [12], the deflection of the pipe diameter (:) due to soil and surcharge loads should be less than the maximum allowable value (:max):

1 K b L PE  K b PL

d : max (5.2) 144 2E pipe § 1
  • 3

¨ ¸  0.061Fs E' 3 © DR  1 ¹ where:

PE U saturated H gw  U dry ( H  H gw )

Kb = bedding factor L = deflection lag factor, 1.25 to 1.50, or 1.0 if using the soil prism pressure PE = vertical soil pressure due to earth loads, [lb/ft2]

PL = vertical soil pressure due to surcharge loads, [lb/ft2]

Epipe = apparent modulus of elasticity of pipe at 50 years, [psi]

DR = dimensional ratio of pipe (D/t)

D = outside pipe diameter, [in]

Fs = soil support factor E' = modulus of soil reaction, [psi]

Usaturated = density of saturated soil, [lb/ft3]

Udry = density of dry soil, [lb/ft3]

H = height of ground cover, [ft]

Hgw = height of groundwater above pipe, [ft]

t = minimum pipe wall thickness, [in]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Compression of Sidewalls The circumferential compressive stress (VSW) in the sidewalls of pipe and miters due to soil and surcharge loads per Section 3220 of Ref. [12] should be less than 1000 psi. This 1000 psi is based on PE-3408 material and assumes a temperature of 70º F. Per Ref. [25] the allowable value at a temperature of 140º F for PE-4710 material is 530 psi. The value used in this analysis is 500 psi which is conservative.

This 140º F temperature was selected because it is the maximum discharge line temperature. This lower bound value was conservatively applied to all eight piping analyzes.

(PE  PL ) DR V SW d 500 psi (5.3) 2 u 144 where:

PE = vertical soil pressure due to earth loads, [lb/ft2]

PL = vertical soil pressure due to surcharge loads, [lb/ft2]

DR = dimensional ratio of pipe (D/t)

D = outside pipe diameter, [in]

t = minimum pipe wall thickness [in]

Buckling Due to External Pressure External pressure from groundwater, earth loads, and surcharge loads on the buried HDPE pipe shall not cause the pipe to buckle per Section 3221.1 of Ref. [12]; that is, 1/ 2 PE  PL  Pgw E pipe º d 2.8 <<R b B'E' >> (5.4) 144 ¬<< 12 (DR  1) 3 1/4>>

where:

H gw Rb 1  0.33 H

1 B'

1  4e 0.065 H PE = vertical soil pressure due to earth loads, lb/ft2 PL = vertical soil pressure due to surcharge loads, [lb/ft2]

Pgw = pressure due to groundwater, [lb/ft2]

Rb = buoyancy reduction factor B' = burial factor Epipe = modulus of elasticity of pipe, [psi]

E' = modulus of soil reaction, [psi]

DR = dimensional ratio of pipe (D/t)

H = depth of cover, [ft]

Hgw = height of groundwater above pipe, [ft]

D = outside pipe diameter, [in]

t = minimum pipe wall thickness [in]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Effects of Negative Internal Pressure Per Section 3221.2 of Ref. [12], when the pipe is subjected to a negative internal pressure, it should withstand the differential pressure ('P) without credit for the surrounding soil, that is:

3 f o 2E pipe § 1 *

'P d ¨ ¸ (5.5) 2 (1  X 2 ) © DR  1 ¹ where:

fo = ovality correction factor Epipe = modulus of elasticity of pipe, [ psi]

Q = Poissons ratio (0.35 for short duration loads to 0.45 for long duration loads)

DR = dimensional ratio of pipe (D/t)

D = outside pipe diameter, [in]

t = minimum pipe wall thickness [in]

Floatation To prevent floatation by groundwater, the buried pipe must have sufficient cover or be anchored to the ground. Per Section 3222 of Ref. [12], the following criterion must be satisfied:

P D Ww  WP  E (5.6) 12 where:

Ww = weight of water displaced by pipe, [lb/ft]

WP = weight of empty pipe, [lb/ft]

PE = vertical soil pressure due to earth loads, [lb/ft2]

D = outside pipe diameter, [in.]

5.2.2 HDPE Calculations Requiring the Input of Geometry Specific Loads The manual calculations in this section require the ADLPIPE analysis results as input. HDPE pipe stresses are computed using the forces and moments obtained from ADLPIPE analysis. The stress calculations are performed both for straight pipes and mitered elbows.

Longitudinal Stress Per Section 3223.1 of Ref. [12], the longitudinal stresses due to axial forces and bending moments resulting from applied mechanical loads shall not exceed k*S:

P *D F M B1 A  2

  • B1 a  B 2 d k S (5.7) 2t A Z Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 where:

B1 and B2 = primary stress indices defined in Table 3223-1 of Ref. [12]

PA = design or service level A, B, C or D pressure, [psi]

D = outside diameter of pipe at the section where the evaluation is conducted, [in.]

t = nominal pipe wall thickness at the section where the evaluation is conducted, [in.]

Fa = axial force due to the specified design, level A, B, C or D applied mechanical loads, [lb]

M = resultant bending moment due to the specified design, level A, B, C or D applied mechanical loads, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, [in2]

Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]

k = longitudinal stress factor per Table 3223-2 of Ref. [12]

S = allowable stress, psi, from Table 3021-1 Ref. [14]

Thermal Expansion and Contraction (a) Fully Constrained Thermal Contraction The tensile stress, per Section 3311.1 of Ref. [12], resulting from the assumption of fully constrained thermal contraction of the buried pipe when Twater < Tground, increased by the tensile stress due to axial contraction from Poisson effect, shall not exceed the allowable stress (S):

PD VW E pipe D 'T  X dS (5.8) 2t where: Epipe = modulus of elasticity of pipe, [psi]

D = coefficient of thermal expansion, [in/in/oF]

'T = Twater - Tground < 0 Q = Poissons ratio (0.35 for short duration loads to 0.45 for long duration loads)

P = internal design gage pressure including pressure spikes due to transients from anticipated water hammer events, [psi]

D = outside pipe diameter, [in.]

t = nominal pipe wall thickness, [in.]

S = allowable stress, psi, from Table 3021-1 Ref. [14]

(b) Fully Constrained Thermal Expansion The tensile stress resulting from the assumption of fully constrained thermal expansion of the buried pipe when Twater > Tground, per Section 3311.2 of Ref. [12], shall not exceed the allowable stress (S):

E pipe D 'T d S (5.9) where:

Epipe = modulus of elasticity of pipe, [psi[

D = coefficient of thermal expansion, [in/in/oF]

'T = Twater - Tground > 0 S = allowable stress, psi, from Table 3021-1 Ref. [14]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 (c) Alternative Evaluation for Thermal Expansion or Contraction When the soil stiffness is accounted for to calculate the pipe expansion and contraction stresses, per Section 3311.3 of Ref. [12], the stresses must satisfy the following condition:

i M C FaC

 d 1100psi (5.10)

Z A where:

i = stress intensification factor FaC = axial force range due to thermal expansion or contraction and/or the restraint of free end displacement, [lb]

MC = resultant moment range due to thermal expansion or contraction and/or the restraint of free end displacement, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, [in2]

Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]

Non-repeated Anchor Movements Per Section 3312 of Ref. [12], the effects of any single non-repeated anchor movement shall meet the requirements of the following equation:

i M D FaD

 d 2S (5.11)

Z A where:

i = stress intensification factor FaD = axial force due to the non-repeated anchor motion, [lb]

MD = resultant moment due to the non-repeated anchor motion, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, [in2]

Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]

S = allowable stress, psi, from Table 3021-1 Ref. [14]

Seismic Induced Stresses Per Section 3410 of Ref. [12], the stresses in the buried pipe due to soil strains caused by seismic wave passage, seismic soil movement, and building seismic anchor motion effects, where applicable, must satisfy the following equation:

i M E FaE

 d 1100psi (5.12)

Z A Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 where:

i = stress intensification factor FaE = axial force range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [lb]

ME = resultant moment range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, [in2]

Z = section modulus of pipe cross section at the section where the moment is calculated, [in3]

Seismic wave passage, seismic soil movement, and building seismic anchor motions are combined by square root sum of the squares. This equation is applicable to both OBE and SSE. Ref. [25] Section 7.0 provides the basis of this applicability.

5.2.3 Steel Pipe Criteria The steel pipe from the Diesel Generator building anchor to the HDPE pipe flange connection and from the HDPE pipe flange connection to the 42ø supply header are qualified in the ADLPIPE analysis in accordance with the requirements of Ref. [29]. The stresses for the steel pipe are shown in Section 7.4.

6.0 ANALYSIS INPUTS 6.1 Design Loads Design temperature and pressure values supplied by Duke Power Carolinas and used as input in this calculation are listed in Table 6.1.

Table 6.1: Design Loads Design Temperature 100 ºF Ambient Temperature 55 ºF Minimum Temperature 32 ºF Maximum Temperature 100 ºF Design Pressure 100 psig Operating Pressure 75 psig 6.2 Pipe Properties Geometric and other relevant properties for the pipes used in this calculation are shown in Table 6.2.

Outside diameter (OD), thickness and weight values for steel pipes were taken from standard piping catalogs, Ref. [10]. For IPS HDPE pipe, values were obtained from ANSI/AWWA Standard C906-99, Ref.

[4], thickness values were obtained from Ref. [12], and weight values were taken from manufacturers literature Ref. [8]. For the same nominal pipe size, the ODs of the HDPE and the steel pipes are equal; therefore, the IPS sizing system is used.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Table 6.2: Properties of Pipes Carbon Steel Pipe HDPE Cr-Mo Steel Pipe Pipe/Elbow Nominal size 10-in 12-in 12-in 12-in Material A6XLN(1) A6XLN(1) A-106, Gr. B PE 4710(2)

Schedule Standard Standard Standard DR 11/DR 9 Outside Diameter [in] 10.75 12.75 12.75 12.75 Wall Thickness [in] 0.365 0.375 0.375 1.159/1.417 Contents Water Water Water Water Wt. of Contents [lb/ft] 34.1 49.0 49.0 37.0/33.5 Wt. of Pipe [lbs/ft] 40.5 49.6 49.6 18.4/22 (1)

This is a manufacturers designation for a Cr-Mo alloy used for piping as SB-675 and SB-690, for forgings as SB-462, and for castings as SB-366.

(2)

The cell classification of PE 4710 material is 445574C 6.3 Material Properties Properties of A-106 carbon steel and A6XLN (Cr-Mo) are given in Tables 6.3a and 6.3b. The values in Table 6.3a were obtained from the 1989 edition of the ASME B&PVC,Section III [Ref. 29]. The values in Table 6.3b were obtained from the 1998 edition of the ASME B&PVC,Section III, Part D [Ref. 11].

Table 6.3a: Properties of A-106 Carbon Steel Temperature, T [oF] 32 55 65 100 Coeff. of Thermal Exp., [in/in/oF] 6.5x10-6 6.5x10-6 6.5x10-6 6.5x10-6 Modulus of Elasticity, E [ksi] 27,900 27,900 27,900 27,900 Allowable Stress, Sc [psi] 15,000 15,000 15,000 15,000 Sh [psi] 15,000 15,000 15,000 15,000 Yield Stress, Sy [psi] 35,000 35,000 35,000 35,000 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Table 6.3b: Properties of A6XLN (Cr-Mo)

Temperature, T [oF] 32 55 65 100 Coeff. of Thermal Exp., [in/in/oF] 8.2x10-6 8.2x10-6 8.2x10-6 8.2x10-6 Modulus of Elasticity, E [ksi] 28,000 28,000 28,000 28,000 Allowable Stress(1), Sc [psi] 24,300 24,300 24,300 24,300 Sh [psi] 24,300 24,300 24,300 24,300 Yield Stress(2), Sy [psi] 45,000 45,000 45,000 45,000 Notes:

(1)

A6XLN is a manufacturers designation for the following Cr-Mo alloys: SB-675, SB-690, and SB-462. The values shown here correspond to the minimum values listed in the 1998 ASME Code.

(2)

The yield strength shown here corresponds to the minimum of SB-675, SB-690, and SB-462.

The mechanical properties of HDPE vary significantly with load duration. Therefore, different values must be used for different load cases. Tables 6.3c thru 6.3f provide the mechanical properties of HDPE for various load durations.

Mechanical properties obtained for 50-year load duration are given in Table 6.3c. These properties are used for deadweight and thermal analysis.

Table 6.3c: Properties of HPDE year Load Duration Temperature, T [oF] 32 55 65 100 Coeff. of Thermal Exp., [in/in/oF] 90x10-6 90x10-6 90x10-6 90x10-6 Modulus of Elasticity(1), E [ksi] 28 28 28 23 Allowable Stress, S [psi] 800 800 800 620 Poissons Ratio, Q [ - ] 0.45 0.45 0.45 0.45 (1) Per Table 3210-3 of Ref. [12]

Mechanical properties obtained for short-term load duration are shown in Table 6.3d. These are used for OBE, SSE, and equivalent thermal strain analysis.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Table 6.3d: Properties of HPDE - Short-term Load Duration (< 10 - hr Load Duration)

Temperature, T [oF] 32 55 65 100 Coeff. of Thermal Exp., [in/in/oF] 90x10-6 90x10-6 90x10-6 90x10-6 (1)

Modulus of Elasticity , E [ksi] 110 110 110 100 (2)

Allowable Stress , S [psi] 1200 1200 1200 940 Poissons Ratio, Q [ - ] 0.35 0.35 0.35 0.35 (1) Per Table 3210-3 of Ref. [12] (Load Duration < 10 hr.)

(2) The allowable stress for short duration listed in Table 3223-3 of Ref. [12] are used Table 6.3e: Properties of HPDE - 1000-hr Load Duration Temperature, T [oF] 32 55 65 100 Coeff. of Thermal Exp., [in/in/oF] 90x10-6 90x10-6 90x10-6 90x10-6 (1)

Modulus of Elasticity , E [ksi] 44 44 44 36 (2)

Allowable Stress , S [psi] 840 840 840 620 Poissons Ratio, Q [ - ] 0.35 0.35 0.35 0.35 (1) Per Table 3210-3 of Ref. [12]

(2) The allowables for 10-year duration listed in Table 3131-1 of Ref. [12] are used. This is conservative.

Table 6.3f: Properties of HPDE year Load Duration Temperature, T [oF] 32 55 65 100 Coeff. of Thermal Exp., [in/in/oF] 90x10-6 90x10-6 90x10-6 90x10-6 (1)

Modulus of Elasticity , E [ksi] 32 110 110 26 (2)

Allowable Stress , S [psi] 840 840 840 620 Poissons Ratio, Q [ - ] 0.35 0.35 0.35 0.35 (1) Per Table 3210-3 of Ref. [12]

(2) Per Table 3131-1 of Ref. [12]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 6.4 HDPE to Steel Boundary The HDPE pipe is connected to the steel pipe by means of a flanged connection. The following piping components are used for the joints at the entrance to the DG building wall and at the 42-in header:

x A 10-in by 12-in steel reducer x 10-in, 150-lb ANSI B16.5 raised face welding neck steel flanges x 12-in, 150-lb ANSI B16.5 raised face welding neck steel flanges x A 12-in, short-radius, 90o steel elbow x Two HDPE flange adapters x Two special steel backup rings that possess the same bolt pattern as 12-in, 150-lb steel flanges and are used in conjunction with the HDPE adapters Relevant properties for the above piping components were obtained from manufacturers catalogs - Ref.

[9] for the steel components and Ref. [8] for the HDPE components and steel backup rings. The properties are listed in Table 6.6.

Table 6.6: Piping Components Used At/Near the HDPE- to- Steel Boundary Nominal Thickness Length O. D. Weight Piping Component Size [in] [in] [in] [in] [lb]

150-lb, Welding Neck 10 0.365 4 12(1) 54 Steel Flange 12 0.375 4.5 14.375(1) 88 Steel Reducer 10x12 NA (2) 8 NA (2) 34 90o Steel Elbow 12 0.375 12(3) 12.75 80 HDPE Flange Adapter 12 1.55 12 12.75 24 Steel Backup Ring 12 1.25 1.25 19 24 (1)

These values represent the diameter of the flange hub at base.

(2)

OD and thickness for a reducer are variable and are not required as input.

(3)

This is the center to face length; it is also equal to the radius of the elbow.

6.5 HDPE Elbows The piping system includes 90o and 45o HDPE mitered elbows. The mitered elbows are size DR 9 (one DR ratio lower than the HDPE pipe that is DR 11) to comply with the requirements of the ASME BPVC Code Case N-755 Paragraph -3132(d) Ref. [12]. These elbows are modeled according to the manufacturers catalog specifications [Ref. 8]. The 90 o mitered elbow has 5 segments as shown in Fig.

6.5a and the 45 o mitered elbow has 3 segments as shown in Fig. 6.5b. This piping analysis has 90º and 45º mitered elbows in the model.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Fig. 6.5a: Geometry of 90o HDPE mitered elbow Fig. 6.5b: Geometry of 45o HDPE mitered elbow 6.6 Stress Indices and SIFs ADLPIPE automatically calculates stress indices and stress intensification factors (SIF) for the steel piping components based on the 1989 Code Ref. [29]. The 10-in and 12-in carbon steel piping has butt welded fittings. The analysis is based on the 1989 Class 3 ASME Code.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 6.6.1 HPDE Pipe The buried HDPE piping is DR 11 butt welded, straight pipe. The following stress index and SIF values as listed in Tables 3223-1 and 3311.2-1 of Ref. [12], are used:

Stress Indices: B1 = 0.5 B2 = 1.0 Stress Intensification Factor: i = 1.0 6.6.2 HPDE Mitered Elbows The 90º mitered elbows are DR 9. SIF and stress index values for these components as obtained from Tables 3223-1 and 3311.2-1 of Ref. [12], are as follows:

Stress Indices: B1 = 0.69 B2 = 1.64 Stress Intensification Factor: i = 2.0 These values are for 5 segment 90º mitered elbows. Per Ref. [25] Section 6.1, it is assumed these values envelope the 3 segment 45º mitered elbows.

6.6.3 Flexibility Factors for Mitered Elbows The flexibility factor calculated by ADLPIPE for the 12ø mitered elbows is 1.79 § 1.82 which is the calculated flexibility factor per Table NB-3673.2 (b)(1), Section 5.6.2.3 of Ref. [22]. The preliminary mean flexibility factor from testing Ref. [22] of the 12ø elbows is 2.15 for in-plane and 2.44 for out-of-plane Ref.

[22]. The lower flexibility factor calculated by ADLPIPE will result in higher moments on the piping system due to less flexibility. The calculated Stress Intensification Factor (SIF) calculated from Table NB-3673.2(b)(1) for 12 ø elbows is 1.04 in-plane and 0.87 out-of-plane. This piping analysis uses a 2.0 SIF for in-plane and out-of-plane for the mitered elbows which is from the ASME BPVC Code Case N-755 Ref. [12].

6.6.4 Weldolet A Weldolet is used for attaching the 12-in pipe to the 42-in header. The stress intensification factor for the Weldolet is determined from the following equation given in Ref. [17]:

0.9 i 2/3 3.3t / r where: i = stress intensification factor t = nominal wall thickness of run pipe [in]

r = mean radius of run pipe [in]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 For the 42-in diameter pipe, t = 0.500 in. [Ref. 10], and the mean radius, r = (42-0.500)/2 = 20.75 in. The stress intensification factor is therefore:

0 .9 i 2/3 4.87 3.3

  • 0.5 / 20.75 6.7 Soil Springs The buried piping is subject to loads from earthquake, temperature and surrounding soil. To determine the pipe stresses resulting from these loads, the soil spring stiffness is required as input. Soil spring stiffness values obtained from Ref. [15] and shown below will be used as input in the ADLPIPE analysis of the piping system. Soil springs are generally applied at 2 ft intervals around elbows (over 6ft sections on each side of elbows) and at 10 ft intervals elsewhere.

Table 6.7-Suggested Soil Spring Stiffness Values for 12-in HDPE Pipe Spring Stiffness for Selected Lengths Height of Soil Spring Spring Stiffness [lb/in]

Above Pipe, H Direction [lb/in2]

L = 2ft L = 10 ft Lateral 130 3120 15600 H = 5.0 ft Vertical 540 12960 64800 Axial 425 10200 51000 Note that soil spring stiffness values for pipe sections of length other than shown in Table 6.7 can be determined by proportion.

6.8 Seismic Analysis Input 6.8.1 Seismic Anchor Motion Per Calculation CNC-1206.02-84-0001 [Ref. 16] provided by CNS, the seismic displacement of the DG building is less than 0.003 inches for OBE or SSE analysis. The 42ø Supply Line is attached at the Auxiliary Building and has the following seismic displacements Lateral = 0.014328 < 1/16 in, Axial =

0.01374 < 1/16 in, and Vertical = 0.0 for OBE or SSE analysis. These displacements are considered insignificant for this analysis and a seismic anchor motion analysis is therefore not conducted 6.8.2 Seismic Wave Passage Since the piping system is completely buried and isolated from aboveground piping, the methodology of Non-Mandatory Appendix D of the ASME BPVC Code Case N-755 will be used to qualify the piping for seismic wave passage. In Ref. [18], the strains due to seismic wave passage were computed and then Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 converted to an equivalent thermal strain resulting in a temperature change ('T) of 10 oF. This change in temperature will be used as input in the ADLPIPE computer model as a thermal analysis of the piping system to determine the seismic loads.

6.8.3 Decoupling of 12 Steel Pipe If the ratio of the moment of inertia of the run pipe to branch pipe (decoupled pipe) is equal to or greater than 25, the branch piping may be considered to have no significant effect on the response of the run pipe. Ref. [28]. I12 branch pipe = 300 in4 ; I42 run pipe = 14037 in4 ; Ratio of run to branch is 46. The analysis of the decoupled piping shall consider the thermal, seismic, and other movements of the run pipe at the intersection point. There are no thermal or seismic anchor movements (See section 6.8.1) on the run pipe. The steel buried pipe will not have seismic response from the seismic wave passage. Therefore, there are no anchor movements at the 12 pipe (branch) to the 42 pipe (run) connection.

6.9 Piping Layout The layout of the piping system is shown in the following drawings provided by Duke Power Carolinas:

CN-1038-06 [Ref. 5], CN-1038-11 [Ref. 6] and CN-1038-12 [Ref. 7]. Dimensions and orientations of piping shown on these drawings were used in generating the ADLPIPE computer model for the piping system. A sketch of the piping layout is shown in Fig. 6.9 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Figure 6.9 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 6.10 Pipe Criteria - Steel and HDPE The pipe load combinations considered and shown in Table 6.10(a) - Steel Table 6.10(a) Buried Steel Piping Load Combinations Service Level Stress Condition Load Combination Primary P Design Primary P + DW Primary Pa Primary - - Longitudinal Stress Pa + DW A Secondary Range of (Ta min, Ta max)

Non Repeated Anchor Motion BS Primary Pb Primary Pbs Primary - - Longitudinal Stress Pb + DW + VOT B Pb + DW+PS Secondary - Thermal and (a) Range of (Tb min, Tb max)

Seismic (b)Tb max + [OBEW2 + (OBES+OBED)2]1/2 (c)Tb min + [OBEW2 + (OBES+OBED)2]1/2 C Primary Pc Primary Pd D Secondary - Seismic [SSEW2 + (SSES+SSED)2]1/2 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 The pipe load combinations considered and shown in Table 6.10(b) - HDPE Table 6.10(b)- Buried HDPE Piping Load Combinations Service Level Stress Condition Load Combination Design P P + DW Primary - Side Wall Compression PE + PL Primary - Buckling due to External PE+PL+Pgw Pressure Primary -- Flotation WW A Primary -- Pressure Pa Primary - - Longitudinal Stress Pa + DW Secondary Range of (Ta min, Ta max)

Non Repeated Anchor Motion BS Primary - Side Wall Compression PE + PL Primary - Buckling due to External PE+PL+Pgw Pressure Primary -- Flotation WW B Primary -- Pressure Pb Primary -- Pressure + Surge Pressure Pb + Pbs Primary - - Longitudinal Stress Pb + DW Primary -- Pressure + Longitudinal Pb + DW + VOT Stress + Short Term Pb + DW +PS Secondary -- Thermal Range of (Tb min, Tb max)

Secondary -- Seismic [OBEW2 + (OBES+OBED)2]1/2 Primary -- Side Wall Compression PE + PL Primary -- Buckling due to External PE+PL+Pgw Pressure C Primary -- Flotation WW Primary -- Pressure Pc Primary -- Pressure + Surge Pressure Pc + Pcs Secondary -- Thermal Range of (Tc min, Tc max)

Primary -- Side Wall Compression PE + PL Primary -- Buckling due to External PE+PL+Pgw Pressure D Primary -- Flotation WW Primary -- Pressure Pd Primary -- Pressure + Surge Pressure Pd + Pds Secondary -- Thermal Range of (Td min, Td max)

Secondary -- Seismic [SSEW2 + (SSES+SSED)2]1/2 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 6.11 Acceptance Criteria - Steel and HDPE The criteria used to evaluate the adequacy of the buried steel piping system are summarized in Table 6.11(a).

Table 6.11(a) - Buried Steel Piping Capacity Criteria Service Level Stress Condition Capacity Criteria Design Primary Requirements of ND-3640 Primary ND-3652, Equation (8) with a Stress Limit of 1.5 Sh Primary Less than 1.0 P Primary - - Longitudinal Stress ND-3653.1, Equation (9) with a stress limit of 1.8 Sh A Secondary ND-3653.2(a), Equation (10) with a stress limit of SA Non Repeated Anchor Motion ND-3653.2(b), Equation (10a) with a stress limit of 3.0 Sc Primary Less than 1.1 P Primary - - Longitudinal Stress ND-3653.1, Equation (9) with a stress limit of Lesser of 1.8 Sh or 1.5 Sy B Secondary - Thermal and Seismic ND-3653.2(a), Equation (10) with a stress limit of SA C Primary Less than 1.8 P Primary Less than 2.0 P D Secondary - Seismic ND-3653.2(a), Equation (10) with a stress limit of SA Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 The criteria used to evaluate the adequacy of the buried HDPE piping system are summarized in Table 6.11(b).

Table 6-11(b) - Buried HDPE Capacity Criteria Service Level Stress Condition Capacity Criteria Design Requirements of N755-3131.1 Requirements of N755-3223.1 with k=1.0 A Primary - Side Wall Compression 500 psi (N755-3220)

Primary - Buckling due to External Pressure Requirements of N755-3221.1 Primary - Flotation WP+[PE*(DW/12)]

Primary Less than 1.0

  • P Primary - Longitudinal Stress Requirements of N755-3223.1 with k=1.0 Secondary - Thermal 1100 psi (N755-3311.3)

Non Repeated Anchor Motion 2*S (N755-3312)

B Primary - Side Wall Compression 500 psi (N755-3220)

Primary - Buckling due to External Pressure Requirements of N755-3221.1 Primary - Flotation WP+[PE*(DW/12)]

Primary - Pressure Less than 1.1

  • P Primary - Pressure + Surge Pressure 1.5
  • P Primary - Longitudinal Stress Requirements of N755-3223.1 with k=1.1 Primary - Pressure + Longitudinal Stress + Requirements of N755-3223.2 or Short Duration 0.4*Material tensile strength at yield Secondary - Thermal 1100 psi (N755-3311.3)

Secondary - Seismic 1100 psi (N755-3410)

C Primary -Side Wall Compression 500 psi (N755-3220)

Primary - Buckling due to External Pressure Requirements of N755-3221.1 Primary - Flotation WP+[PE*(DW/12)]

Primary - Pressure Less than 1.33

  • P Primary - Pressure + Surge Pressure 2.0
  • P Secondary - Thermal 1100 psi (N755-3311.3)

D Primary - Side Wall Compression 500 psi (N755-3220)

Primary - Buckling due to External Pressure Requirements of N755-3221.1 Primary - Flotation WP+[PE*(DW/12)]

Primary - Pressure Less than 1.33

  • P Primary - Pressure + Surge Pressure 2.0
  • P Secondary -Thermal 1100 psi (N755-3311.3)

Secondary -- Seismic 1100 psi (N755-3410)

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 7.0 ANALYSIS The analysis of the piping system is done per the Piping Design Specification Ref. [26] using analysis methods consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12] as outlined in Section 5.2 of this calculation. The calculations presented in Section 5.2.1 are dependent only on design conditions and pipe size. For the calculations described in Section 5.2.2, the loads acting on the piping system (due to pressure, deadweight, thermal, seismic, etc.) for the various service levels are required. These loads are determined using the ADLPIPE computer program.

7.1 Computer Model The run starts at the DG building wall of Unit 2 (Node Pt. = 100) and ends at the centerline of the 42-in Supply Header B (Node Pt. = 990). The piping system is considered anchored at each end.

A steel flange is welded to the 10-in pipe coming out of the DG building wall. A 10x12 steel reducer, with flanges on both ends, is attached to the 10-in pipe coming out of the DG building wall. A flanged joint is created (Node Pt. 130) between the steel reducer and the HDPE pipe by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the reducer have the same bolt pattern.

A 12-in pipe with a flange on one end is welded to the 42-in header. An additional 12-in steel pipe with flanges welded to its ends extends to Node Pt. 880. A flanged joint between the steel pipe and the HDPE pipe is created (Node Pt. 880) by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the 12-in pipe piece have the same bolt pattern.

Various mitered elbows are used as the HDPE pipe is routed from Node Pt. 130 at EL. 588-6 to Node Pt. 880 at EL. 588-6. Details of the piping dimensions and routing are found in Refs. [5], [6], and [7].

The isometric sketch of the piping system is attached in Appendix A. The ADLPIPE computer model was created for this piping system using the inputs listed in Section 6 of this calculation. Soil springs were generally applied at 2 ft intervals around elbows and at 10 ft intervals in the remaining section of the piping. A complete listing of the ADLPIPE model (input file) and analysis results (output file) are attached in Appendix B.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 7.2 Results of ADLPIPE Analysis 7.2.1 Load Cases Analyzed Steel and HDPE pipe load cases as well as load combinations analyzed using the ADLPIPE piping analysis program are shown in Tables 7.2.1a and 7.2.1b. Thermal cases are required for Level A, B, C, and D because of the time dependence of the Elastic Modulus for HDPE pipe. The following durations were assumed for each service level:

Service Level A: 50 Years Ref. [14] Ec = 28,000 psi Eh = 23,000 psi Service Level B: 10 Years Ref. [14] Ec = 32,000 psi Eh = 26,000 psi Service Level C: 1000 Hrs Ref. [14] Ec = 44,000 psi Eh = 36,000 psi Service Level D: 1000 Hrs Ref. [14] Ec = 44,000 psi Eh = 36,000 psi Table 7.2.1a: ADLPIPE Single Load Cases Analyzed Load Type Load Case Deadweight + Pressure 10 Level A Thermal at Minimum Temperature, Tmin = 32o F ('T = -23o F) 21 Level A Thermal at Maximum Temperature, Tmax = 100o F ('T = 45o F ) 22 Level B Thermal at Minimum Temperature, Tmin = 32o F ('T = -23o F) 23 Level B Thermal at Maximum Temperature, Tmax = 100o F ('T = 45o F ) 24 Level C/D Thermal at Minimum Temperature, Tmin = 32o F ('T = -23o F) 25 Level C/D Thermal at Maximum Temperature, Tmax = 100o F ('T = 45o F ) 26 Thermal at T = 65o F ('T = 10o F )(1) 30 (1)

This is a pseudo-seismic case. 'T is the equivalent temperature rise for computing the seismic loads on the piping system.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Table 7.2.1b: ADLPIPE Load Combinations Considered Load Type Load Case Level A : Absolute Range of Load Cases 21 and 22 27 Level B : Absolute Range of Load Cases 23 and 24 28 Level C/D : Absolute Range of Load Cases 25 and 26 29 Level D : Absolute Range of Load Case 30 (SSE) 31 Level B : Load Case 31 / 1.875 (OBE) (1) 32 Level B: Absolute Thermal Max (L.C. 24) + OBE Seismic (L.C. 32) 40 Level B: Absolute Thermal Min (L.C. 23) + OBE Seismic (L.C. 32) 41 Level B: Max of Load Case 28, 40 and 41 45 (1)

Per page 94 of Ref. [16], OBE = SSE/1.875.

7.2.2 Summary of HDPE Loads at Critical Locations The loads acting at the critical locations on the HDPE pipe (i.e., where the maximum stresses occur) for Service Levels A, B, C and D are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 7.2.2a to 7.2.2d and will be used for computing pipe stresses as described in Section 5 of this calculation.

Service Level A Table 7.2.2a: HDPE Deadweight Loads at Critical Locations Straight Pipe Mitered Elbow Load Case F [lb] Node No. M [ft-lb] Node No. F [lb] Node No. M [ft-lb] Node No.

10 0 225 491 225 0 320 71 320 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Table 7.2.2b: HDPE Thermal Loads at Critical Locations Straight Pipe Mitered Elbow Load Case F [lb] Node No. M [ft-lb] Node No. F [lb](1) Node No. M [ft-lb] Node No.

27 (Level A) 5259 880 536 880 2464 650 1158 650 28 (Level B) 5862 880 637 880 2771 650 1336 650 29 (Level C/D) 7707 880 982 880 3732 650 1923 650 (1)

Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.

Service Level B Table 7.2.2c: HDPE OBE Loads at Critical Locations Straight Pipe Mitered Elbow Load Case F [lb] Node No. M [ft-lb] Node No. F [lb](1) Node No. M [ft-lb] Node No.

32 (OBE) 2832 880 603 880 1526 650 995 650 (1)

Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.

Service Level D Table 7.2.2d: HDPE SSE Loads at Critical Locations Straight Pipe Mitered Elbow Load Case F [lb] Node No. M [ft-lb] Node No. F [lb](1) Node No. M [ft-lb] Node No.

31 (SSE) 5308 880 1130 880 2862 650 1866 650 (1)

Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 7.3 Calculations per the ASME BPVC Code Case N-755 The HDPE piping system was analyzed per the Design Specification Ref. [26] which is consistent with Relief Request 06-CN-003 Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12], as described in Sections 5.2.1 and 5.2.2, of this calculation. The manual calculations were performed using Mathcad.

The design conditions and the maximum loads obtained from ADLPIPE analysis (as listed in Tables 7.2.2a to 7.2.2d) were used to qualify the HDPE piping based on the applicable criteria for the design load cases. The manual calculations are provided below.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Manual Calculations Per ASME BPVC Code Case N-755:

Define Variables:

lb S  620 Allowable stress at 100o F 2

in lb Epipe50y  23000 Elastic modulus at 100o F for 50 yr load duration 2

in lb Epipe10h  100000 Elastic modulus at 100o F for short term load duration 2

in lb E'  2000 Modulus for fine grain sand compacted to > 95%

2 in lb W p  18.4 Weight of empty pipe per foot ft lb J w  62.4 Specific weight of water 3

ft lb P  100 Design pressure, psig 2

in lb J soil  105 Specific weight of dry soil 3

ft L  1.5 Deflection lag factor Kbed  0.1 Bedding factor D  12.75 in Outside diameter of pipe t 1.159 in Minimum wall thickness for DR-11 pipe, Ref. [12]

t 1.417 in Minimum wall thickness for DR-9 pipe, Ref. [12]

D Dimensional ratio (DR = 11 for straight pipe and DR DR = 9 for mitered elbows) t c  0.0in Allowance for mechanical and erosion damage Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Section 3131.1 - Minimum Required Wall Thickness Calculate the pressure design thickness, t min :

P D tmin  tmin 0.95in

( 2 S  P)

Determine the minimum required wall thickness, tdesign :

tdesign  tmin  c tdesign 0.95in Pipe wall thickness (DR 11), t = 1.159 in > 0.95 in...........................................................

O.K.

Pipe wall thickness (DR 9), t = 1.417 in > 0.95 in............................................................

O.K.

Note that DR-11 governs. Therefore, for subsequent calculations, only DR-11 needs to be considered; that is::

DR  11 Section 3210 - Ring Deflection Determine the vertical soil pressure (P L) due to surcharge loads.

Per Drawing No. CN-1038-06 [Ref. 5], the Transporter Haul Path crosses over the HDPE pipe lines of Unit 2. The Haul Path is at EL. 594'-0" and the pipe centerline is at EL. 588'-6". Hence, the soil depth from surface to top of pipe = 5 ft.

H  5ft As shown on page 21 of 79 of Ref. [13], the maximum vertical soil pressure Pv due to the combined weight of the transporter and cask at 5 feet below surface, not including impact, is:

lb Pv  15.58 2

in This soil pressure value was obtained based on a cask weight of 310 kip and transporter weight of 170 kip.

Per Sheet 25 of EC./VN No. CD500920D (DOC. ID. 32-5053646-01 Rev. 1) dated 2-20-07, the cask weight is 314.6 kip, which is 1.5% greater than the original value used in computing soil pressure. Therefore, in this calculation, the vertical soil pressure value will be increased by 1.5%; that is:

Pv  1.015 Pv lb Pv 15.814 2

in Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Per Ref. [13], the impact load factor (F) due to the cask dropping from a maximum height of 8.0 inches is:

F  3.033 The maximum vertical soil pressure due to surcharge loads, including impact, is computed by applying the impact load factor to the combined weight of the transporter and cask. This is conservative since the impact load factor actually applies to the cask weight only. Therefore:

lb PL  F Pv PL 47.96 2

in Calculate the vertical soil pressure due to earth loads. Note that there is no water above pipe; hence, dry soil is the only source of pressure.

PE  J soil H lb PE 3.65 2

in Compute the ring deflection : by letting Soil Support Factor, Fs = 0. Note that as shown in Table 3210-2 of Ref. [12], the value of Fs depends on properties of the trench and native soil, and on pipe diameter and trench width. Using zero for Fs (see equation below) will yield a conservative value for :.

Fs  0 Compute the ring deflection : .

Kbed L PE

1  4 2 Epipe50y 1 * :1 3.57 u 10

§¨ ¸  0.061 Fs E' 3 © DR  1 ¹ Kbed PL

2 

2 Epipe10h 1 4

§¨ *  0.061 F E' :2 7.19 u 10

¸ s 3 © DR  1 ¹ Note that the equation given in Ref. [12] for computing : includes a conversion factor of 144. Since MathCad automatically converts units, this conversion factor is not included in the above equation.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08

3

 :1  :2  : 1.08 u 10 The maximum allowable ring deflection : ( max) is given in Ref. [12] as percent of the original diameter.

Per Table 3210-1 of Ref. [12], for DR = 11:

3

max = 5% = 0.05 > : 1.08 u 10 ........................................................................

O.K.

Section 3220 - Compression of Sidewalls Calculate the circumferential compressive stress ( Vsw ) in the sidewalls of pipe and miters.

PE  PL DR lb Vsw  Vsw 283.8 2 2 in Note that the equation given in Ref. [12] for computing Vsw includes a conversion factor of 144.

Since MathCad automatically converts units, the conversion factor is omitted here.

Compare Vsw to the allowable stress value of 500 psi:

lb Vsw 283.8 < 500 psi .................................................................................................

O.K.

2 in Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Section 3221.1 - Buckling Due to External Pressure Check that external pressure from ground water ( Pgw ), earth loads ( PE ) and surcharge loads ( PL )

does not cause the pipe to buckle .

0.5 Epipe50y º Phydro Pgw  PE  PL d 2.8 << Rb B E' 3>>

¬ 12 ( DR  1) 1/4 Note that the equation provided in Ref. [12] for computing the external buckling pressure includes a conversion factor of 144. The conversion factor is not needed here since MathCad automatically converts units.

There is no water above the pipe. Hence:

lb Hgw  0ft Pgw  0 2

in Hgw Rb  1  0.33 Rb 1 H

Compute the burial factor, B. Note that for computing burial factor, height of soil above pipe (H) needs to be redefined as a quantity H B with no units.

HB  5 1

B B 0.257 1  4 exp 0.065 HB lb Pgw  PE  PL 51.6 2

in 0.5 Epipe50y º lb 2.8 << Rb B E' 87.9 3>> 2

¬ 12 ( DR  1) 1/4 in (Pgw + PE + PL ) is less than 87.9 lb/in2................................................................................

O.K.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Section 3221.2 - Effects of Negative Internal Pressure fo 3 2 Epipe10h 1 *

'P d §¨ ¸ 2

1Q 2 © DR  1 ¹ fo  0.64 Ovality correction factor per Table 3221.2-1 for 5% ovality Q  0.35 Use short-term values for elastic modulus and Poisson ratio fo 2 Epipe10h 3 1 lb

§¨ *

¸ 72.9 2

1Q 2 © DR  1 ¹ in 2

Therefore, 'P may not exceed 72.9 psi.

Section 3222 - Flotation For floatation, the minimum height of soil above top of pipe (H = 5ft) should be used to calculate the vertical earth load PE . The PE value calculated in the preceding sections is still valid since H = 5ft was used to calculate that value.

The equation given in Ref.[12] includes a conversion factor W w  W p  PE D of 12. Mathcad automatically converts units; therefore, the conversion factor is not needed here.

2 SD Ww  Jw W w is the unit weight of the water displaced by the pipe 4

lb Ww 55.3 ft lb W p  PE D 576.2 ft W w is less than W p  PE D ......................................................................................................

O.K.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Calculation of Stresses Per Code Case N-755 [Ref. 12]

Define Variables:

lb Pa  100 Design or Service Level A, B, C, or D pressure 2

in D  12.75 in Outside diameter of pipe and mitered elbow Properties of Straight Pipe Straight pipe is DR-11 Di  10.432 in Inside Diameter of straight pipe, per Ref. [12]

t  1.159 in Wall thickness of straight pipe, per Ref. [12]

S

§© D  Di 2 2* 2 A ¹ A 42.2in Cross sectional area of straight pipe 4

4 4

§ S

  • D  Di Z ¨ ¸ Z 112.3in 3

Section modulus of straight pipe

© 32 ¹ D Stress Intensification Factor of straight pipe i  1.0 (per Table 3311.2-1)

Stress Indices of straight pipe B1  0.5 B2  1.0 (per Table 3223-1)

Properties of Mitered Elbow Elbow is DR-9 Die  9.916 in Inside Diameter of elbow, per Ref. [12]

te  1.417 in Wall thickness of elbow, per Ref. [12]

S

§© D  Die 2 2* 2 Ae  ¹ Ae 50.5in Cross sectional area of elbow 4

4 4

§ S

  • D  Die 3 Section modulus of elbow Ze  ¨ ¸ Ze 129.0in

© 32 ¹ D ie  2.0 Stress Intensification Factor of elbow (per Table 3311.2-1)

Stress Indices of elbow B1e  0.69 B2e  1.64 (per Table 3223-1)

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 The Design/Operating Temperature is 100 degrees F. The design pressure for the inlet line is 100 psig.

The Level A, B, C, and D operating pressure for the inlet line is 75 psig. The maximum deadweight and presure loads (Load Case 10) are obtained from the ADLPIPE analysis and listed in Section 7.3 of this calculation. Qualification of the HDPE pipe is based on Design Level factors and Allowable stress using the Design temperature and pressure. Design pressue envelopes Service Levels A, B, C, and D pressures.

3223.1 - Longitudinal Stress Design lb Allowable stress at 100 degrees F S  620 (per Table 3131-1) 2 in Longitudinal Stress Factor for Design k  1.0 (per Table 3223-2) lb k S 620 2

in Straight Piping Section : Straight pipe is DR-11 Pa D Fa M B1  2 B1  B2 d k S 2 t A Z Fa  0 lb Axial force due to deadweight on the straight pipe M  491 lb ft Resultant bending moment due to deadweight on the straight pipe Pa D Fa M lb lb B1  2 B1  B2 327.5 which is less than 620 .......................OK 2 t A Z 2 2 in in Mitered Elbow: Elbow is DR-9 Pa D Fae Me B1e  2 B1e  B2e d k S 2 te Ae Ze Fae  0 lb Axial force due to deadweight on the mitered elbow M e  71 lb ft Resultant bending moment due to deadweight on the mitered elbow Pa D Fae Me lb lb B1e  2 B1e  B2e 321.3 which is less than 620 ...............OK 2 te Ae Ze 2 2 in in Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 3311 - Design for Thermal Expansion and Contraction Soil springs were applied to account for the soil stiffness. Therefore, the alternative method of 3311.3 is used: The maximum thermal range force and moment were used to check the stresses in the HDPE pipe. The thermal range of Service Level C/D envelopes Service Level A and B.

Straight Piping Section :

Straight pipe is DR-11 Mc Fac lb i  d 1100 Z A 2 in Fac  7707 lb Axial force range due to thermal expansion and/or contraction on the straight pipe (Level C/D)

Resultant moment range due to thermal expansion M c  982 ft lb and/or contraction on the straight pipe (Level C/D)

Mc Fac lb lb i  287.6 which is less than 1100 .....................................

OK Z A 2 2 in in Mitered Elbow: Elbow is DR-9 M ce Face lb ie  d 1100 Ze Ae 2 in Axial force range due to thermal expansion and/or Face  3732 lb contraction on the mitered elbow (Level C/D)

Resultant moment range due to thermal expansion M ce  1923 ft lb and/or contraction on the mitered elbow (Level C/D)

M ce Face lb lb ie  431.6 which is less than 1100 ...................................

OK Ze Ae 2 2 in in 3312 - Nonrepeated Anchor Movements There are no nonrepeated (thermal) anchor movements .

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 3410 - Seismic Induced Stresses This is applicable for both SSE and OBE loads. These stresses are based on evaluation of the SSE (Level D) conditions which also qualifies the piping for OBE (Level B) conditions as OBE loads are lower and OBE and SSE limits are the same Straight Piping Section: Straight pipe is DR-11 ME FaE lb i  d 1100 Z A 2 in FaE  5308 lb Axial force range due to seismic loads on the straight pipe M E  603 ft lb Resultant moment range due to seismic loads on the straight pipe ME FaE lb lb i  190.2 which is less than 1100 .......................................

OK Z A 2 2 in in Mitered Elbow:

Mitered elbow is DR-9 M Ee FaEe lb ie  d 1100 Ze Ae 2 in FaEe  2862 lb Axial force range due to seismic loads on the mitered elbow M Ee  1866 ft lb Resultant moment range due to seismic loads on the mitered elbow M Ee FaEe lb lb ie  403.8 which is less than 1100 .......................................

OK Ze Ae 2 2 in in Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 7.4 Stress Summary for Unit 2 Steel Pipe Acceptance Calculated Allowable Calculated Node Criteria Stress [psi] Stress [psi] Allowable Point Equation 8 (Design) 2104 22500 0.09 985 Equation 9 (Level A) 1579 27000 0.06 985 Equation 9 (Level B) 1579 27000 0.06 985 Equation 10 (Level A) 8047 22500 0.36 985 Equation 10 (Level B) 9224 22500 0.41 985 Equation 10 (Level C/D) 7887 22500 0.35 985 7.5 Flange Summary for Unit 2 HDPE Pipe The EPRI flange capacity tests, Ref. [22], demonstrated that if the pipe stresses at the fusion joint joining the HDPE flange adapter to the piping were less than the maximum code capacities, the flanges were adequate. For this system, all pipe stresses at the fusion joint, joining the HDPE flange adapter to the piping are less than the maximum permitted code capacities.

7.6 Evaluation of Buoyancy over Condenser Cooling Water Lines This piping system goes over the 10-ft diameter Condenser Cooling Water (CCW) lines in the region with plant coordinates 49+50X to 50+00X and 54+00Y to 55+00Y. The HDPE cooling water pipe line is at EL.

588-6 and the CCW lines are at EL. 579-2. In the event a CCW line breaks and completely floods the region, the buoyancy force acting on the HDPE cooling water line needs to be checked if it would result in pipe floatation.

The HDPE pipe in this location rests on a composite bed made up of a 16-in HDPE pipe and an 18-in steel pipe as shown in Fig. 7.6 below. The 18-in pipe is attached to concrete piers at its ends.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Fig. 7.6: Support provided for HPDE pipe system in the region where it lies over the CCW lines The buoyancy force (Fb) per unit length acting on the pipe is:

Fb J water Ab where:

Jwater = specific weight of water [lb/ft3]; Jwater = 62.4 lb/ft3 Ab = cross-sectional area of related to the displaced volume [ft2]

The area Ab can be conservatively estimated from:

2 2 S §¨ D18  D12 *¸ Ab 4 ¨© 2 ¸

¹ where:

D18 and D12 are the ODs for 18-in steel pipe and 12-in HDPE pipe, respectively.

Noting that D18 = 18/12 = 1.5 ft and D12 = 12.75/12 = 1.0625 ft, and substituting yields:

S §¨ 1.5 2  1.0625 2 *¸ Fb 62.4 * = 82.8 lb/ft 4 ¨© 2 ¸

¹ The forces resisting buoyancy force are:

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 x weight of 18-in steel pipe = 104.7 lb/ft; use only 1/2 of this weight 52.3 lb/ft x weight of 16-in HDPE pipe = 29.0 lb/ft; use only 1/2 of this weight 14.5 lb/ft x weight of 12-in HDPE pipe = 18.4 lb/ft x weight of soil above pipe = Jsoil *H* D12 = 105 lb/ft3

  • 5ft
  • 1.0625ft = 557.8 lb/ft Note that in computing the soil weight above pipe, for conservatism, D12 was used instead of D18 and the height of soil above pipe (H) was taken as 5 ft.

Force resisting buoyancy = 52.3 + 14.5 + 18.4 + 557.8 = 643.0 lb/ft > Fb = 82.8 lb/ft The 18-in pipe is attached to concrete piers on both ends. The concrete piers are 3x2x14-10 = 89 ft3.

Concrete weighs about 144 lb/ft3. Hence, the weight of the concrete piers is 89ft3 x144lb/ft3 = 12.8 kips.

This is an additional force that is resisting the buoyancy force.

It is concluded that in the event the CCW lines break and flood the region, the HDPE piping will be OK against floatation.

7.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines This evaluation is for the steel pipe bridge over the 10-0 ø Condenser Cooling Water lines should they rupture and erode the soil supporting the 12 ø Nuclear Service Water (NSW) lines to the Diesel Generator Building. This is a faulted condition on the piping system.

Three concrete piers split the 58 foot span into two 29 foot spans simply supported. The bridge is composed of half of a 18 ø sch. 40 carbon steel pipe (104.7 lb/ft / 2 = 52.4 lb/ft) as shown in Figure 7.6.

The bridge is essentially a steel structure that supports the half section of a 16 ø DR11 HDPE pipe (29 lb/ft / 2 = 14.5 lb/ft) that acts as protection for the pressure retaining 12 ø DR 11 HDPE pipe with water (54.4 lb/ft)

The weight per foot supported by the bridge is:

Half of a 18 ø Sch. 40 steel pipe = 0.5*(104.7 lb/ft) = 52.35 lb/ft Half of a 16 ø DR 11 HDPE pipe = 0.5*(29 lb/ft) = 14.5 lb/ft 12 ø DR 11 HDPE pipe with water = 54.4 lb/ft = 54.4 lb/ft Total wt. = 121.25 lb/ft Check the half section of 18 steel pipe acting as a bridge for deadweight bending stress over a 29 foot span. Conservatively assume simply supported connections for the bridge.

wl 2 M bending 8

w = 121.25 lb/ft / 12 = 10.104 lb/in l = 29 ft x 12in/ft = 348 in Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 10.104

  • 348 2 M bending 8

M bending 152,954lb / in M

V bending Z

Calculate the Section Properties of the Half 18 Section:

18 in. Sch. 40 pipe tm = 0.562 in From, [Ref. 21], Roarks Formulas for Stress and Strain, 6th Edition Page 69, Section 22 Dia. = 18 inches tm = 0.562 inches R = 9 inches Ri = 8.438 inches See Section in Figure 7.6 S

A

  • R 2  Ri2 2

S A

  • 9 2  8.438 2 2

A 15.394 in 2 S

I 22 R 4  Ri4 8

S I 22 6561  5069.418 8 Where the 2-2 axis is the vertical axis about the centroid of the section.

S I 22 1491.582 8

I 22 585.743 in 4 Z2-2 = 585.743 in4 / 9 = 65.08 in3 Calculate the Centroid for Calculating the Section Modulus in the 1-1 Direction Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 4 R 3  Ri 3 º y1b << 2 2>>

3S ¬ R  Ri 1/4 4 9 3  8.438 3 º y1b *<< >>

3S ¬ 9 2  8.438 2 1/4 4 128.216 º y1b

  • 3S <<¬ 9.80 >>1/4 y1b 5.553 in Calculate I1-1 about the Centroid about the horizontal axis:

S 4 4 8 R 3  Ri 3 2 º I 11 R  Ri  << 2 2 >>

8 9S <<¬ R  Ri >>1/4 2

S 4 4 8 9 3  8.438 3 º I 11 9  8.438  << >>

8 9S ¬<< 9 2  8.438 2 1/4>>

S 8 16,439.270 º I 11 1,491.582 

8 9S <<¬ 9.80 >>1/4 S 8 I 11 1,491.582  >1,677.450@

8 9S I 11 585.743  474.621 I 11 111.122 in 4 I x1 x1 111.122 z11 20.01 in 3 y16 5.553 Deadweight Stress in the Pipe Bridge:

152,954 V bending 20.01 V bending 7,644psi < 0.60

  • Fy = 0.60
  • 36 ksi = 21.6 ksi OK 0.60
  • Fy is the normal AISC Allowable Stress for a Steel Pipe Support Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Earthquake Stress in the Pipe Bridge The peak seismic acceleration near the DG building is 0.324g vertical and 0.486g horizontal Ref. [19] &

Ref. [20].

seis-horizontal = 0.486g

  • 152,954 lb-in / 65.083 in3 = 1,142 psi seis-vertical = 0.324g
  • 152,954 lb-in / 20.01 in3 = 2,477 psi seis-total = [ (1,142)2 + (2,477)2 ] 1/2 = 2,728 psi faulted = Deadweight + Seismicfaulted < 0.90
  • Fy faulted = 7,644 + 2,728 = 10,372 psi < 0.90
  • 36 ksi = 32.4 ksi OK 0.90
  • Fy is an appropriate Faulted Allowable Stress for a Steel Structure Therefore the 18 ø steel pipe will support the 12 ø HDPE pipe in the event of a rupture of the CCW pipe and a subsequent SSE event.

7.8 Evaluation of 12 ø HDPE Pipe over Condenser Cooling Water Lines As discussed in Section 7.7, the 12 ø HDPE piping is supported by the steel pipe bridge in the unlikely event that the Condenser Cooling Water lines wash out the soil surrounding the HDPE piping crossing this piping. Section 7.7 resulted in the conclusion that the bridge analyzed as a steel structure is acceptable. This portion of the calculation analyzes the pressure retaining 12 ø HDPE for this faulted event. The 12 ø HDPE will deflect with the pipe bridge. Therefore, the deflection of the bridge will be calculated. Using this displacement, an equivalent load will be calculated for the 12 ø HDPE. This load will be combined appropriately with other loads (pressure) and the resulting stresses will be compared to the allowable stress.

Deflection of Pipe Bridge for Dead Weight For a simply supported beam deflection is as follows:

max = 5 l4 / 384 EI = 5* 10.104 lb/in

  • 3484 in2 / (384
  • 29 x 106 lb/in2
  • 111.112 in4) = 0.888 in.

Deflection of Pipe Bridge for Earthquake Load For a simply supported beam deflection is as follows:

max- vertical-earthquake = 0.324g

  • 0.888 in. = 0.288 in.

max-horizontal-earthquake = 0.486g

  • 5* 10.104 lb/in
  • 3484 in2 / (384
  • 29 x 106 lb/in2
  • 585.743 in4) = 0.0552 in.

max-total-earthquake = (0.2882 in2 + 0.05522 in2)0.50 = 0.293 in Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Calculation of Bending Stress in the HDPE Piping Due to Deflection In the case of the 12 HDPE pressure retaining piping, the stress is at its highest when the system is stiffest since the stress in this case is displacement dependent. Therefore, the piping will be conservatively assumed to have a fixed connection on either side of the span.

HDPE Properties:

I = 1/64 (D4 - DI4) = 1/64 (12.754 - 10.454) = 711.8 in4 Z = I

  • 2 / D = 711.8 in4
  • 2 / 12.75 in. = 111.7 in3 For a Fixed - Fixed Beam Dead Weight @ Ambient Temperature:

= l4 / 384 E I = 384 E I / l4 = 384

  • 110,000 lb/in2
  • 711.8 in4
  • 0.888 / 3484 in4 = 1.82045 lb/in (Equivalent Load on Pipe)

E = 110,000 psi for the HDPE Pipe @ Ambient Temperature (conservative for calculating stress,

¨ = 0.888 is the deflection at the center of the bridge due to Dead Weight l = 348 in (29 foot span of the bridge)

MMax = l2 / 24 = 1.82045 lb/in * (3482) / 24 = 9,186 in-lb bending-Deadweight = 9,186 in-lb / 111.7 in3 = 82.24 psi bending-Earthquake = 82.24 psi

  • 0.293 / 0.888 = 27.13 psi The earthquake does not act concurrently with the wash out from the CCW pipes. These stresses are small enough that they do not control design when combined appropriately with pressure stress. They are acceptable by inspection.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 8.0 RESULTS The HDPE piping system was found to be adequate. Table 8.a summarizes these results.

Table 8.a Result Summary for 12 HDPE Pipe Calculated Allowable Calculated Acceptance Criteria Node Pt.

Value Value Allowable Minimum Required Wall 0.95 1.159 0.82 N/A Thickness Ring Deflection 0.00108 0.05 0.02 N/A Compression of Side Walls 284 psi 500 psi 0.57 N/A Buckling Due to External 51.6 psi 87.9 psi 0.59 N/A Pressure Effects of Negative Internal

> - 72.9 psi 0 psi ***0.0 N/A Pressure Flotation 55.3 lb/ft 576 lb/ft 0.10 N/A Deadweight + Pressure 327.5 psi 620 psi 0.53 225 Stress - Straight Pipe Deadweight + Pressure 321.3 psi 620 psi 0.52 320 Stress - Mitered Elbow Thermal Stress - Straight 287.6psi 1100 psi 0.26 880 Pipe Thermal Stress - Mitered 431.6 psi 1100 psi 0.39 650 Elbow Seismic SSE Stress -

190.2 psi 1100 psi 0.17 880 Straight Pipe Seismic SSE Stress -

403.8 psi 1100 psi 0.37 650 Mitered Elbow

      • The HDPE pipe is not under a vacuum per the Design Specification Ref. [26]

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 The steel piping system was found to be adequate. Table 8.b summarizes these results Table 8.b Result Summary for 10 and 12 Steel Pipe Calculated Allowable Calculated Acceptance Criteria Node Point Stress [psi] Stress [psi] Allowable Deadweight and Pressure 2104 22500 0.09 985 (Design)

Deadweight and Pressure 1579 27000 0.06 985 (Level A)

Thermal 8047 22500 0.36 985 (Level A)

Deadweight and Pressure 1579 27000 0.06 985 (Level B)

Thermal and Seismic 9224 22500 0.41 985 (Level B)

Seismic (Level C/D) 7887 22500 0.35 985 8.1 Functionality Capability and Break Postulation This piping analysis meets functional capability as defined in Ref. [24]. The maximum Level D Pressure and Temperature do not exceed design Pressure and Temperature. All piping stress limits given in ASME BPVC Code Case N-755 are met for all applied Level D loads and the capacities used in this review are based on the Design Temperature.

This piping is classified as moderate energy as defined in Ref. [24]. Moderate energy piping is piping that has a temperature of less than 200 º F and a pressure of 275 psig or less. Per Ref [26], for this piping, the maximum temperature is 100º F and the operating pressure is 75 psig. Leak cracks are to be postulated at points based on the following equation:

PD M F º M F º M F º

 0.75i << A  aA >>  i << C  aC >>  i << E  aE >> d 0.4(1.1S  1100  1100) psi 0.4(1.1S  2200) psi 4t ¬ Z A 1/4 ¬ Z A 1/4 ¬ Z A 1/4 where:

P = Operating pressure D = Outside pipe diameter t = Nominal pipe wall thickness Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 i = Stress intensification factor A = Cross sectional area of pipe Z = Section modulus of pipe FaA = Axial force due to deadweight loads FaC = Axial force range due to thermal loads FaE = Axial force range due to seismic loads MA = Moment due to deadweight loads MC = Moment range due to thermal loads ME = Moment range due to seismic loads The deadweight, thermal, and seismic loads at the critical locations will be taken from Tables 7.2.2a to 7.2.2d for straight pipe and mitered elbows and checked to the postulated break equation. The maximum stresses for deadweight, seismic and thermal cases may occur at different locations. The equation uses the maximum stresses even when they are found in separate locations. This is conservative.

S = 620 psi 0.4(1.1S + 2200) = 0.4 (1.1*620 + 2200) = 1153 psi For straight pipe:

D = 12.75 in t = 1.159 in A = 42.2 in2 Z = 112.3 in3 P = 75 psi i = 1.0 0.75i = 1.0 (Note: 0.75i cannot be less than 1.0)

MA = 491 ft-lb = 5892 in-lb MC = 982 ft-lb = 11784 in-lb ME = 1130 ft-lb = 13560 in-lb FaA = 0 FaC = 7707 lb FaE = 5308 lb Substituting these values into the equation yields:

75

  • 12.75 5892 0 º 11784 7707 º 13560 5308 º

 1 .0 <<  >>  1.0 << 112 .3  42.2 >>  1.0 << 112 .3  42.2 >> 793 psi  1153 psi 4

  • 1.159 ¬ 112 . 3 42 . 2 1/4 ¬ 1/4 ¬ 1/4 Therefore, there are no postulated moderate energy leak cracks on the straight HDPE piping.

For mitered elbows:

D = 12.75 in t = 1.417 in A = 50.5 in2 Z = 129.0 in3 P = 75 psi i = 2.0 0.75i = 1.5 MA = 71 ft-lb = 852 in-lb MC = 1923 ft-lb = 23076 in-lb ME = 1866 ft-lb = 22392 in-lb FaA = 0 FaC = 3732 lb FaE = 2862 lb Substituting these values into the equation yields:

75

  • 12.75 852 0 º 23076 3732 º 22392 2862 º

 1 .5 <<  >>  2.0 << 129  50.5 >>  2.0 << 129  50.5 >> 1145 psi  1153 psi 4

  • 1.417 ¬ 129 50 . 5 1/4 ¬ 1/4 ¬ 1/4 Therefore, there are no postulated moderate energy leak cracks on the mitered HDPE piping.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects The maximum loads acting from the HDPE pipe for Service Levels A, B, C and D acting on the anchor at the face of the Diesel Generator Building are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 8.2a and 8.2b and compared to the maximum loads that the HDPE pipe can contribute to anchor load at the face of the Diesel Generator Building.

Table 8.2a: HDPE Loads from ADLPIPE for Anchor at Diesel Generator Building Load Case Node Fx (lbs) Fy (lbs) Fz (lbs) Mx (ft-lb) My (ft-lb) Mz (ft-lb)

Point 10 (DW) 100 0 521 0 5 0 1253 27 (Th) 100 6003 0 2 0 22 0 28 (Th) 100 6643 0 5 0 36 0 29 (Th) 100 8485 0 17 0 101 0 31 (SSE) 100 4723 0 54 0 243 0 32 (OBE) 100 2519 0 29 0 130 0 Table 8.2b: HDPE Loads combined for maximum forces and moments to be compared to allowable interface loads applied to the steel pipe per Ref. [23]

Load Node Axial Force (lbs) Shear Force (lbs) Resultant Moment Case Point (in-lbs)

Combined Maximum Combined Maximum Combined Maximum from from from ADLPIPE ADLPIPE ADLPIPE 10 (DW) 130 0 4200 103 4200 580 100000 27 (Th) 130 6003 (1) 4200 2 4200 168 100000 28 (Th) 130 6643 (1) 4600 5 4600 240 100000 29 (Th) 130 8485 (1) 5500 17 5500 528 100000 31 (SSE) 130 4723 (1) 4600 54 4600 744 100000 32 (OBE) 130 2519 4600 29 4600 396 100000 (1) The thermal axial forces exceed the maximum for the HDPE pipe. These forces are acceptable due to the very small shear force and moment at the same node point. Therefore, the loads shown above will be used as input for the anchor design at the Diesel Generator Building.

8.3 Final Loads at the Centerline of the 42 ø Supply Line due to Soil Effects Table 8.3a: HDPE Loads from ADLPIPE at the Centerline of the 42 ø Supply Line Load Case Node Fx (lbs) Fy (lbs) Fz (lbs) Mx (ft-lb) My (ft-lb) Mz (ft-lb)

Point 10 (DW) 990 2409 20 19 0 116 122 27 (Th) 990 3718 302 3718 27284 0 27284 28 (Th) 990 4145 352 4145 30377 0 30377 29 (Th) 990 5449 519 5449 39777 0 39777 31 (SSE) 990 3753 504 3753 26931 0 26931 32 (OBE) 990 2002 269 2002 14362 0 14362 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 8.4 Branch Line Qualification The branch line meets the 1989 ASME BPVC Code allowable stresses. Table 8.4a below shows the results of the ADLPIPE analysis for the branch line (Nodes 880 to 985).

Table 8.4a Result Summary for 12 Steel Branch Line Calculated Allowable Calculated Acceptance Criteria Node Point Stress [psi] Stress [psi] Allowable Deadweight and Pressure 2104 22500 0.09 985 (Design)

Deadweight and Pressure 1579 27000 0.06 985 (Level A)

Thermal 8047 22500 0.36 985 (Level A)

Deadweight and Pressure 1579 27000 0.06 985 (Level B)

Thermal and Seismic 9224 22500 0.41 985 (Level B)

Seismic 7887 22500 0.35 985 (Level C/D)

9.0 CONCLUSION

S The existing 10-in carbon steel buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply headers to Unit 2 Diesel Generator (DG) building piping at the Catawba Nuclear Station will be replaced by 12-in high-density polyethylene (HDPE) piping system. This calculation determined that the buried HDPE piping system connecting the 42-in supply header B to the DG building of Unit 2 meets all applicable acceptance criteria as defined in the piping design specification Ref. [26] which is consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755

[Ref. 12] as summarized in Table 8-1.

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Appendix A ADLPIPE Model Isometrics Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 Appendix B ADLPIPE Input and Output files Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 INPUT FILE:

GE,********************* CATAWBA NUCLEAR STATION ********************

GE,COOLING WATER SUPPLY LINE FROM 42-IN HEADER 'B' TO D/G BLDG OF UNIT 2 UN,0,0,0, NOTE,MODEL=supply2B.adi NO,*******************************************************************

NO,THERE ARE TWO SUPPLY LINES RUNNING TO THE D/G BUILDING OF UNIT 2 NO,THIS IS THE LINE THAT ORIGINATES FROM THE 42-IN SUPPLY HEADER 'B' NO,*******************************************************************

NO,GLOBAL COORDINATE SYSTEM: +X = NORTH, +Z = EAST, Y = VERTICAL NO,*******************************************************************

NO,PIPING: 10" AND 12", SCH. 40, Cr-Mo AND CARBON STEEL PIPES, NO, 12", DR-11, IPS HDPE PIPE, NO,CONTENTS:

NO, WATER FILLED, NO INSULATION, NO,DESIGN CONDITIONS:

NO, T(AMBIENT) = 55 F, T(DESIGN) = 100 F, P(DESIGN) = 100 PSIG NO,CODE: ASME, YEAR 1989, NO,*******************************************************************

NO,PIPING SYSTEM IS CONSIDERED ANCHORED AT BOTH ENDS AN,,100, RE,,100,1,1,1,1,1,1, AN,,990, RE,,990,1,1,1,1,1,1, NO,*******************************************************************

NO,THE FOLLOWING SOIL SPRING STIFFNESS VALUES IN [LB/IN] ARE USED.

NO NO, LENGTH OF PIPE BETWEEN SPRINGS NO, SOIL HEIGHT DIRECTION ------------------------------

NO, ABOVE PIPE OF SPRING 2FT SECTION 10FT SECTION NO, -----------------------------------------------------------

NO, H = 5 FT LATERAL 3120 15600 NO, VERTICAL 12960 64800 NO, AXIAL 10200 51000 NO, NO,STIFFNESS VALUES FOR OTHER LENGTHS ARE OBTAINED BY PROPORTION NO,*******************************************************************

NO RE,,1140,1,1,1,1,1,1, RE,,2140,1,1,1,1,1,1, RE,,3140,1,1,1,1,1,1, RE,,1145,1,1,1,1,1,1, RE,,2145,1,1,1,1,1,1, RE,,3145,1,1,1,1,1,1, RE,,1150,1,1,1,1,1,1, RE,,2150,1,1,1,1,1,1, RE,,3150,1,1,1,1,1,1, RE,,1155,1,1,1,1,1,1, RE,,2155,1,1,1,1,1,1, RE,,3155,1,1,1,1,1,1, RE,,1160,1,1,1,1,1,1, RE,,2160,1,1,1,1,1,1, RE,,3160,1,1,1,1,1,1, RE,,1165,1,1,1,1,1,1, RE,,2165,1,1,1,1,1,1, RE,,3165,1,1,1,1,1,1, RE,,1205,1,1,1,1,1,1, RE,,2205,1,1,1,1,1,1, RE,,3205,1,1,1,1,1,1, RE,,1210,1,1,1,1,1,1, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RE,,2210,1,1,1,1,1,1, RE,,3210,1,1,1,1,1,1, RE,,1215,1,1,1,1,1,1, RE,,2215,1,1,1,1,1,1, RE,,3215,1,1,1,1,1,1, RE,,1220,1,1,1,1,1,1, RE,,2220,1,1,1,1,1,1, RE,,3220,1,1,1,1,1,1, RE,,1225,1,1,1,1,1,1, RE,,2225,1,1,1,1,1,1, RE,,3225,1,1,1,1,1,1, RE,,1230,1,1,1,1,1,1, RE,,2230,1,1,1,1,1,1, RE,,3230,1,1,1,1,1,1, RE,,1235,1,1,1,1,1,1, RE,,2235,1,1,1,1,1,1, RE,,3235,1,1,1,1,1,1, RE,,1240,1,1,1,1,1,1, RE,,2240,1,1,1,1,1,1, RE,,3240,1,1,1,1,1,1, RE,,1245,1,1,1,1,1,1, RE,,2245,1,1,1,1,1,1, RE,,3245,1,1,1,1,1,1, RE,,1250,1,1,1,1,1,1, RE,,2250,1,1,1,1,1,1, RE,,3250,1,1,1,1,1,1, RE,,1260,1,1,1,1,1,1, RE,,2260,1,1,1,1,1,1, RE,,3260,1,1,1,1,1,1, RE,,1265,1,1,1,1,1,1, RE,,2265,1,1,1,1,1,1, RE,,3265,1,1,1,1,1,1, RE,,1270,1,1,1,1,1,1, RE,,2270,1,1,1,1,1,1, RE,,3270,1,1,1,1,1,1, RE,,1320,1,1,1,1,1,1, RE,,2320,1,1,1,1,1,1, RE,,3320,1,1,1,1,1,1, RE,,1330,1,1,1,1,1,1, RE,,2330,1,1,1,1,1,1, RE,,3330,1,1,1,1,1,1, RE,,1340,1,1,1,1,1,1, RE,,2340,1,1,1,1,1,1, RE,,3340,1,1,1,1,1,1, RE,,1350,1,1,1,1,1,1, RE,,2350,1,1,1,1,1,1, RE,,3350,1,1,1,1,1,1, RE,,1360,1,1,1,1,1,1, RE,,2360,1,1,1,1,1,1, RE,,3360,1,1,1,1,1,1, RE,,1370,1,1,1,1,1,1, RE,,2370,1,1,1,1,1,1, RE,,3370,1,1,1,1,1,1, RE,,1380,1,1,1,1,1,1, RE,,2380,1,1,1,1,1,1, RE,,3380,1,1,1,1,1,1, RE,,1390,1,1,1,1,1,1, RE,,2390,1,1,1,1,1,1, RE,,3390,1,1,1,1,1,1, RE,,1400,1,1,1,1,1,1, RE,,2400,1,1,1,1,1,1, RE,,3400,1,1,1,1,1,1, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RE,,1410,1,1,1,1,1,1, RE,,2410,1,1,1,1,1,1, RE,,3410,1,1,1,1,1,1, RE,,1420,1,1,1,1,1,1, RE,,2420,1,1,1,1,1,1, RE,,3420,1,1,1,1,1,1, RE,,1430,1,1,1,1,1,1, RE,,2430,1,1,1,1,1,1, RE,,3430,1,1,1,1,1,1, RE,,1440,1,1,1,1,1,1, RE,,2440,1,1,1,1,1,1, RE,,3440,1,1,1,1,1,1, RE,,1490,1,1,1,1,1,1, RE,,2490,1,1,1,1,1,1, RE,,3490,1,1,1,1,1,1, RE,,1495,1,1,1,1,1,1, RE,,2495,1,1,1,1,1,1, RE,,3495,1,1,1,1,1,1, RE,,1500,1,1,1,1,1,1, RE,,2500,1,1,1,1,1,1, RE,,3500,1,1,1,1,1,1, RE,,1510,1,1,1,1,1,1, RE,,2510,1,1,1,1,1,1, RE,,3510,1,1,1,1,1,1, RE,,1520,1,1,1,1,1,1, RE,,2520,1,1,1,1,1,1, RE,,3520,1,1,1,1,1,1, RE,,1530,1,1,1,1,1,1, RE,,2530,1,1,1,1,1,1, RE,,3530,1,1,1,1,1,1, RE,,1540,1,1,1,1,1,1, RE,,2540,1,1,1,1,1,1, RE,,3540,1,1,1,1,1,1, RE,,1600,1,1,1,1,1,1, RE,,2600,1,1,1,1,1,1, RE,,3600,1,1,1,1,1,1, RE,,1610,1,1,1,1,1,1, RE,,2610,1,1,1,1,1,1, RE,,3610,1,1,1,1,1,1, RE,,1620,1,1,1,1,1,1, RE,,2620,1,1,1,1,1,1, RE,,3620,1,1,1,1,1,1, RE,,1670,1,1,1,1,1,1, RE,,2670,1,1,1,1,1,1, RE,,3670,1,1,1,1,1,1, RE,,1675,1,1,1,1,1,1, RE,,2675,1,1,1,1,1,1, RE,,3675,1,1,1,1,1,1, RE,,1680,1,1,1,1,1,1, RE,,2680,1,1,1,1,1,1, RE,,3680,1,1,1,1,1,1, RE,,1685,1,1,1,1,1,1, RE,,2685,1,1,1,1,1,1, RE,,3685,1,1,1,1,1,1, RE,,1690,1,1,1,1,1,1, RE,,2690,1,1,1,1,1,1, RE,,3690,1,1,1,1,1,1, RE,,1695,1,1,1,1,1,1, RE,,2695,1,1,1,1,1,1, RE,,3695,1,1,1,1,1,1, RE,,1700,1,1,1,1,1,1, RE,,2700,1,1,1,1,1,1, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RE,,3700,1,1,1,1,1,1, RE,,1705,1,1,1,1,1,1, RE,,2705,1,1,1,1,1,1, RE,,3705,1,1,1,1,1,1, RE,,1710,1,1,1,1,1,1, RE,,2710,1,1,1,1,1,1, RE,,3710,1,1,1,1,1,1, RE,,1715,1,1,1,1,1,1, RE,,2715,1,1,1,1,1,1, RE,,3715,1,1,1,1,1,1, RE,,1720,1,1,1,1,1,1, RE,,2720,1,1,1,1,1,1, RE,,3720,1,1,1,1,1,1, RE,,1725,1,1,1,1,1,1, RE,,2725,1,1,1,1,1,1, RE,,3725,1,1,1,1,1,1, RE,,1730,1,1,1,1,1,1, RE,,2730,1,1,1,1,1,1, RE,,3730,1,1,1,1,1,1, RE,,1735,1,1,1,1,1,1, RE,,2735,1,1,1,1,1,1, RE,,3735,1,1,1,1,1,1, RE,,1740,1,1,1,1,1,1, RE,,2740,1,1,1,1,1,1, RE,,3740,1,1,1,1,1,1, RE,,1745,1,1,1,1,1,1, RE,,2745,1,1,1,1,1,1, RE,,3745,1,1,1,1,1,1, RE,,1750,1,1,1,1,1,1, RE,,2750,1,1,1,1,1,1, RE,,3750,1,1,1,1,1,1, RE,,1800,1,1,1,1,1,1, RE,,2800,1,1,1,1,1,1, RE,,3800,1,1,1,1,1,1, RE,,1805,1,1,1,1,1,1, RE,,2805,1,1,1,1,1,1, RE,,3805,1,1,1,1,1,1, RE,,1810,1,1,1,1,1,1, RE,,2810,1,1,1,1,1,1, RE,,3810,1,1,1,1,1,1, RE,,1815,1,1,1,1,1,1, RE,,2815,1,1,1,1,1,1, RE,,3815,1,1,1,1,1,1, RE,,1820,1,1,1,1,1,1, RE,,2820,1,1,1,1,1,1, RE,,3820,1,1,1,1,1,1, RE,,1825,1,1,1,1,1,1, RE,,2825,1,1,1,1,1,1, RE,,3825,1,1,1,1,1,1, RE,,1830,1,1,1,1,1,1, RE,,2830,1,1,1,1,1,1, RE,,3830,1,1,1,1,1,1, RE,,1840,1,1,1,1,1,1, RE,,2840,1,1,1,1,1,1, RE,,3840,1,1,1,1,1,1, RE,,1850,1,1,1,1,1,1, RE,,2850,1,1,1,1,1,1, RE,,3850,1,1,1,1,1,1, RE,,1860,1,1,1,1,1,1, RE,,2860,1,1,1,1,1,1, RE,,3860,1,1,1,1,1,1, SE,,0, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO,*****************************************************************

NO,THE PIPING SYSTEM STARTS AT THE SURFACE OF THE D/G BUILDING WALL NO,WITH A 10-IN Cr-Mo STEEL PIPE THAT IS CONSIDERED ANCHORED AT THE NO,SURFACE OF THE WALL (NODE PT. 100).

NO, NO,PIPE CENTERLINE IS AT ELEVATION 588'-6" NO NO,A 10X12 STEEL REDUCER, WITH FLANGES WELDED ON ITS ENDS, CONNECTS, NO,THE 10-IN PIPE TO A 12-IN HDPE PIPE.

NO,*****************************************************************

NO,10-IN, SCH. 40 Cr-Mo STEEL PIPE PROPERTIES:,

NO, OUTSIDE DIAMETER = 10.75 IN NO, WALL THICKNESS = 0.365 IN NO, WT(PIPE)= 40.5LB/FT = 3.38 LB/IN NO, WT(WATER) = 34.1 LB/FT= 2.84 LB/IN NO, WT(PIPE+WATER) = 3.38 + 2.84 = 6.22 LB/IN NO NO,PROPERTIES OF PIPE MATERIAL (SB-690/SB-675) AT 70 F:

NO, E = 28E+06 PSI NO, ALPHA = 8.1E-06 IN/IN/F NO,*****************************************************************

NO PI,100,105,10.75,0.365,28.0,8.1,0.01,6.22, NO NO,*****************************************************************

NO,LENGTH OF 10-IN DIAMETER PIPE COMING OUT OF WALL = 20IN = 1.67FT NO,*****************************************************************

NO RU,100,105,1.67,,,

NO NO,*****************************************************************

NO,ATTACH A 150-LB WELDING NECK (WN) FLANGE TO END OF 10-IN PIPE NO,AND TO THE 10" SIDE OF REDUCER NO,FOR 10-IN WN FLANGE (PER LADISH CATALOG):

NO, TOTAL LENGTH = 4.0 IN = 0.33 FT NO, FLANGE THICKNESS = 1.188 IN NO, O. D. OF FLANGE = 16 IN NO, DIAMETER AT HUB BASE= 12.0 IN NO, WALL THICKNESS (MIN) = 0.365 IN NO, WEIGHT OF FLANGE= 54 LB --> UNIT WT = 13.50 LB/IN NO, WT(FLANGE+WATER)= 13.50 + 2.84 = 16.3 LB/IN NO,USE DIAMETER AT HUB BASE AS O.D. FOR MODELING NO,*****************************************************************

NO NOTE,IV=WNFL,END=FLG 1V,105,110,0.33,,,12.0,0.365,16.3, NOTE,IV=WNFL,BEG=FLG 1V,110,115,0.33,,,12.0,0.365,16.3, NO NO,*****************************************************************

NO,INSTALL A 10X12 STEEL REDUCER.

NO,PER LADISH CATALOG:

NO, REDUCER LENGTH = 8 IN = 0.67 FT NO, REDUCER WEIGHT = 34 LB --> UNIT WT = 4.25 LB/IN NO,WEIGHT OF WATER:

NO, FOR 10" PIPE = 34.1 LB/FT = 2.84 LB/IN NO, FOR 12" PIPE = 49.0 LB/FT = 4.08 LB/IN NO, FOR 10X12 REDUCER = (2.84+4.08)/2 = 3.46 LB/IN NO,WT (REDUCER+WATER) = 4.25 + 3.46 = 7.7 LB/IN NO,FOR 12" PIPE: OD = 12.75 IN AND WALL THICKNESS = 0.375 IN NO,*****************************************************************

NO Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RD,115,120,0.67,,,12.75,0.375,7.7, NO NO,*****************************************************************

NO,ATTACH A WELDING NECK (WN) FLANGE TO THE 12-IN SIDE OF REDUCER NO,FOR 12-IN,150-LB WN FLANGE (PER LADISH CATALOG):,

NO, TOTAL LENGTH = 4.5 IN = 0.38 FT NO, FLANGE THICKNESS = 1.25 IN NO, O. D. OF FLANGE = 19 IN NO, DIAMETER AT HUB BASE= 14.375 IN NO, WALL THICKNESS (MIN) = 0.375 IN NO, WEIGHT OF FLANGE= 88 LB --> UNIT WT = 19.56 LB/IN NO, WT(FLANGE+WATER)= 19.56 + 4.08 = 23.6 LB/IN NO,USE DIAMETER AT HUB BASE AS O.D. FOR MODELING NO,******************************************************************

NO NOTE,IV=WNFL,END=FLG 1V,120,130,0.38,,,14.375,0.375,23.6, SE,,0, NO NO,******************************************************************

NO, CHANGE TO 12" HDPE PIPE NO,******************************************************************

NO,12-IN, DR 11 HDPE PIPE PROPERTIES:,

NO, OUTSIDE DIAMETER, OD = 12.75 IN NO, MIN.WALL THICKNESS, t = 1.159 IN NO, INSIDE DIAMETER, ID = OD - 2t = 10.432 IN NO, WT(PIPE) = 18.41 LB/FT = 1.53 LB/IN NO, WT(WATER) = 37.04 LB/FT = 3.09 LB/IN NO, WT(WATER+PIPE) = 1.53 + 3.09 = 4.62 LB/IN NO NO,HDPE PROEPRTIES AT 70F AND 50-YEAR DURATION:

NO, E = 28 KSI NO, ALPHA = 90.0E-6 IN/IN/F NO,******************************************************************

NO PI,130,133,12.75,1.159,0.028,90.0,.01,4.62, NO NO,******************************************************************

NO,INSTALL A FLANGE ADAPTER WITH A STEEL BACKUP RING MOUNTED ON IT NO NO,FOR 12-IN, DR 11, IPS HDPE FLANGE ADAPTER (PER ISCO CATALOG):,

NO, TOTAL LENGTH = 12.0 IN = 1.0 FT NO, FLANGE THICKNESS = 1.55 IN NO, WEIGHT OF ADAPTER = 24 LB NO,FOR 12-IN STEEL BACKUP RING (PER ISCO CATALOG):

NO, THICKNESS = 1.25 IN, WEIGHT = 24 LB NO NO,MODEL ADAPTER AND RING ASSEMBLY AS A PIPE AND FLANGE COMBINATION NO,FOR FLANGE, USE:,

NO, LENGTH = 1.55+1.25 = 2.8" --> LENGTH = 3 IN NO, WALL THICKNESS = 1.16 IN NO, O.D. OF FLANGE = 15.5 IN NO, WEIGHT = WT(RING+ADAPTER) - WT(9" LONG PIPE)

NO, = 24.0 + 24.0 - 18.4*(9/12) = 34.2 LB NO WT(FLANGE+WATER)= (34.2/3)+3.09 = 14.5 LB/IN NO NO,FOR PIPE, USE:,

NO, LENGTH = 12.0 - 3.0 = 9 IN NO, WT(PIPE+WATER) = 4.62 LB/IN NO,******************************************************************

NO NOTE,IV=WNFL,BEG=FLG Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 1V,130,133,0.25,,,15.5,1.159,14.5, RU,133,135,0.75,,,

NO NO,******************************************************************

NO,PIPE ORIENTATION: PARALLEL TO X-AXIS NO NO,SINCE PIPE AXIS IS AT ELEVATION 588'-6", HEIGHT OF SOIL (H) FROM, NO,TOP OF PIPE = 5 FT. THEREFORE, USE THE FOLLOWING SOIL SPRING NO,STIFFNESS VALUES OBTAINED FOR H = 5 FT.

NO NO, SPRING STIFFNESS [LB/IN]

NO, DIRECTION -----------------------------

NO, OF SPRING 2FT SECTION 10FT SECTION NO, ---------------------------------------------

NO, LATERAL 3120 15600 NO, VERTICAL 12960 64800 NO, AXIAL 10200 51000 NO NO,APPLY SOIL SPRINGS AT 2 FT INTERVALS AROUND MITERED ELBOWS AND NO,WITHIN THE 'INFLUENCE LENGTH'(TOTAL = 12 FT).

NO, NO,LOCATION OF 1ST SPRING SET FROM END OF FLANGE ADAPTER= 1.0 FT NO,******************************************************************

NO RU,135,140,1.0, SE,,0, RU,140,1140,1.0,,,

2SP,140,1140,10200,,,

SE,,0, RU,140,2140,,1.0,,

2SP,140,2140,12960,,,

SE,,0, RU,140,3140,,,1.0, 2SP,140,3140,3120,,,

SE,,0, RU,140,145,2.0, SE,,0, RU,145,1145,1.0,,,

2SP,145,1145,10200,,,

SE,,0, RU,145,2145,,1.0,,

2SP,145,2145,12960,,,

SE,,0, RU,145,3145,,,1.0, 2SP,145,3145,3120,,,

SE,,0, RU,145,150,2.0, SE,,0, RU,150,1150,1.0,,,

2SP,150,1150,10200,,,

SE,,0, RU,150,2150,,1.0,,

2SP,150,2150,12960,,,

SE,,0, RU,150,3150,,,1.0, 2SP,150,3150,3120,,,

SE,,0, NO,****************************************************************

NO,REMAINING LENGTH PIPING = 12.6'-6.0' = 6.6 FT NO NO,DIVIDE THIS LENGTH AS FOLLOWS: 3*2FT + 1*0.6FT NO,****************************************************************

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO, NO,****************************************************************

NO,NEXT PIPNG SECTION IS 0.6 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,150,155,0.6,,,

SE,,0, RU,155,1155,1.0,,,

2SP,155,1155,3060,,,

SE,,0, RU,155,2155,,1.0,,

2SP,155,2155,3888,,,

SE,,0, RU,155,3155,,,1.0, 2SP,155,3155,936,,,

SE,,0, NO,******************************************************************

NO,APPLY SOIL SPRINGS AROUND 90-DEGREE ELBOW AT 2 FT INTERVALS NO,******************************************************************

RU,155,160,2.0, SE,,0, RU,160,1160,1.0,,,

2SP,160,1160,10200,,,

SE,,0, RU,160,2160,,1.0,,

2SP,160,2160,12960,,,

SE,,0, RU,160,3160,,,1.0, 2SP,160,3160,3120,,,

SE,,0, NO,****************************************************************

NO,LENGTH OF 90-DEGREE ELBOW 24.9 IN > 2FT. HENCE, ELBOW STARTS IN NO,NEXT 2FT SECTION (23.1 IN = 1.925FT FROM CURRENT NODE POINT)

NO, NO,NEXT RUN GOES UP TO BEGINNING OF ELBOW. SINCE RUN LENGTH IS NO,APPROX. = 2FT, FOR SIMPLICITY, APPLY SOIL SPRINGS AT END OF THIS NO,RUN AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.

NO,****************************************************************

NO RU,160,165,1.925, SE,,0, RU,165,1165,1.0,,,

2SP,165,1165,10200,,,

SE,,0, RU,165,2165,,1.0,,,

2SP,165,2165,12960,,

SE,,0, RU,165,3165,,,1.0, 2SP,165,3165,3120, SE,,0, NO,****************************************************************

NO,********** 90 DEGREE IPS HDPE ELBOW **************

NO,****************************************************************

NO,THIS IS A 5-SEGMENT MITERED ELBOW.

NO,FOR 12-IN, DR-9, MITERED ELBOW (PER ISCO CATALOG):,

NO, OUTSIDE DIAMETER, OD = 12.75 IN NO, MIN. WALL THICKNESS, t = 1.417 IN NO, INSIDE DIAMETER, ID = OD - 2t = 9.916 IN NO, RADIUS, R = 19.5 IN NO, LENGTH, FC = 24.9 IN = 2.075 FT NO, WT(PIPE) = 21.97 LB/FT = 1.83 LB/IN NO,WEIGHT OF WATER FOR ID = 9.916 IN:

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO, WT(WATER)= 33.46 LB/FT = 2.79 LB/IN NO,WT(PIPE+WATER) = 1.83 + 2.79 = 4.62 LB/IN NO NO,SIF AND STRESS INDICES FOR MITERED ELBOW:

NO, SIF = 2.0 B1 = 0.69 B2 = 1.64 NO NO,ELBOW STARTS AT NODE PT. 165 AND ENDS AT NODE PT. 205 NO,****************************************************************

NO, RU,165,170,2.075,,

CM,170,180,12.75,1.417,,19.5,11.25,4.62, IB,170,180,2.0,.69,1.64, CM,180,185,12.75,1.417,,19.5,22.5,4.62, IB,180,185,2.0,.69,1.64, CM,185,190,12.75,1.417,,19.5,22.5,4.62, IB,185,190,2.0,.69,1.64, CM,190,195,12.75,1.417,,19.5,22.5,4.62, IB,190,195,2.0,.69,1.64, CM,195,200,12.75,1.417,,19.5,,4.62, IB,195,200,2.0,.69,1.64, RU,200,205,,,2.075, NO NO,*******************************************************************

NO,PIPE AXIS IS NOW PARALLEL TO Z-AXIS, X IS LATERAL DIRECTION, NO NO,TOTAL LENGTH OF PIPING UP TO THE NEXT (90-DEG.) ELBOW = 83.2 FT NO NO,LENGTH FOR APPLICATION OF SOIL SPRINGS AT 2FT INTERVALS (AROUND NO,ELBOWS, ON EACH END OF PIPING) = 12 FT NO NO,LENGTH AVAILABLE TO APPLY SPRINGS AT 10 FT INTERVALS = 71.2 FT NO,****************************************************************

NO,SINCE 90-DEG ELBOW LENGTH = 24.9" = 2.075 FT (APPROX.= 2FT),

NO,FOR SIMPLICITY, APPLY FISRT SET OF SOIL SPRINGS AT END OF ELBOW NO,AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.

NO,****************************************************************

SE,,0, RU,205,1205,1.0,,,

2SP,205,1205,3120, SE,,0, RU,205,2205,,1.0,,

2SP,205,2205,12960, SE,,0, RU,205,3205,,,1.0, 2SP,205,3205,10200, SE,,0, NO,****************************************************************

NO,NEXT SECTION IS 1.925FT LONG (=APPROX. 2 FT). USE SOIL SPRING NO,STIFFNESS VALUE OF A 2FT SECTION NO,****************************************************************

RU,205,210,,,1.925, SE,,0, RU,210,1210,1.0,,,

2SP,210,1210,3120, SE,,0, RU,210,2210,,1.0,,

2SP,210,2210,12960, SE,,0, RU,210,3210,,,1.0, 2SP,210,3210,10200, SE,,0, NO,****************************************************************

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO,NEXT SECTION IS 2 FT LONG NO,****************************************************************

RU,210,215,,,2.0, SE,,0, RU,215,1215,1.0,,,

2SP,215,1215,3120, SE,,0, RU,215,2215,,1.0,,

2SP,215,2215,12960, SE,,0, RU,215,3215,,,1.0, 2SP,215,3215,10200, SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10 FT = 71.2 FT NO, DIVIDE THIS LENGTH AS FOLLOWS: 71.2FT = 6*10FT + 2*5.6FT NO,****************************************************************

NO, NO,****************************************************************

NO,NEXT PIPNG SECTION IS 5.6 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,215,220,,,5.6, SE,,0, RU,220,1220,1.0,,,

2SP,220,1220,8736, SE,,0, RU,220,2220,,1.0,,

2SP,220,2220,36288, SE,,0, RU,220,3220,,,1.0, 2SP,220,3220,28560, SE,,0, NO,****************************************************************

NO,SOIL SPRING SPACING = 10 FT (OVER THE NEXT 60 FT LENGTH)

NO,****************************************************************

RU,220,225,,,10.0, SE,,0, RU,225,1225,1.0,,,

2SP,225,1225,15600, SE,,0, RU,225,2225,,1.0,,

2SP,225,2225,64800, SE,,0, RU,225,3225,,,1.0, 2SP,225,3225,51000, SE,,0, RU,225,230,,,10.0, SE,,0, RU,230,1230,1.0,,,

2SP,230,1230,15600, SE,,0, RU,230,2230,,1.0,,

2SP,230,2230,64800, SE,,0, RU,230,3230,,,1.0, 2SP,230,3230,51000, SE,,0, RU,230,235,,,10.0, SE,,0, RU,235,1235,1.0,,,

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 2SP,235,1235,15600, SE,,0, RU,235,2235,,1.0,,

2SP,235,2235,64800, SE,,0, RU,235,3235,,,1.0, 2SP,235,3235,51000, SE,,0, RU,235,240,,,10.0, SE,,0, RU,240,1240,1.0,,,

2SP,240,1240,15600, SE,,0, RU,240,2240,,1.0,,

2SP,240,2240,64800, SE,,0, RU,240,3240,,,1.0, 2SP,240,3240,51000, SE,,0, RU,240,245,,,10.0, SE,,0, RU,245,1245,1.0,,,

2SP,245,1245,15600, SE,,0, RU,245,2245,,1.0,,

2SP,245,2245,64800, SE,,0, RU,245,3245,,,1.0, 2SP,245,3245,51000, SE,,0, RU,245,250,,,10.0, SE,,0, RU,250,1250,1.0,,,

2SP,250,1250,15600, SE,,0, RU,250,2250,,1.0,,

2SP,250,2250,64800, SE,,0, RU,250,3250,,,1.0, 2SP,250,3250,51000, SE,,0, NO,****************************************************************

NO,NEXT PIPNG SECTION IS 5.6 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,250,260,,,5.6, SE,,0, RU,260,1260,1.0,,,

2SP,260,1260,8736, SE,,0, RU,260,2260,,1.0,,

2SP,260,2260,36288, SE,,0, RU,260,3260,,,1.0, 2SP,260,3260,28560, SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS TO 2 FT (AROUND 90-DEGREE ELBOW)

NO,****************************************************************

RU,260,265,,,2.0, SE,,0, RU,265,1265,1.0,,,

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 2SP,265,1265,3120, SE,,0, RU,265,2265,,1.0,,

2SP,265,2265,12960, SE,,0, RU,265,3265,,,1.0, 2SP,265,3265,10200, SE,,0, NO,****************************************************************

NO,LENGTH OF 90-DEGREE ELBOW 24.9 IN > 2FT. HENCE, ELBOW STARTS IN NO,NEXT 2FT SECTION (23.1 IN = 1.925FT FROM CURRENT NODE POINT)

NO, NO,NEXT RUN GOES UP TO BEGINNING OF ELBOW. SINCE RUN LENGTH IS NO,APPROX. = 2FT, FOR SIMPLICITY, APPLY SOIL SPRINGS AT END OF THIS NO,RUN AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.

NO,****************************************************************

NO RU,265,270,,,1.925, SE,,0, RU,270,1270,1.0,,,

2SP,270,1270,3120, SE,,0, RU,270,2270,,1.0,,

2SP,270,2270,12960, SE,,0, RU,270,3270,,,1.0, 2SP,270,3270,10200, SE,,0, NO,****************************************************************

NO, 90 DEGREE IPS HDPE ELBOW NO,****************************************************************

NO,THIS IS A 12", DR-9, 5-SEGMENT MITER ELBOW. PROPERTIES OF ELBOW NO,ARE AS LISTED EARLIER.

NO, NO,ELBOW STARTS AT NODE PT. 270 AND ENDS AT NODE PT. 320 NO,****************************************************************

NO RU,270,280,,,2.075, CM,280,285,12.75,1.417,,19.5,11.25,4.62, IB,280,285,2.0,.69,1.64, CM,285,290,12.75,1.417,,19.5,22.5,4.62, IB,285,290,2.0,.69,1.64, CM,290,295,12.75,1.417,,19.5,22.5,4.62, IB,290,295,2.0,.69,1.64, CM,295,300,12.75,1.417,,19.5,22.5,4.62, IB,295,300,2.0,.69,1.64, CM,300,310,12.75,1.417,,19.5,,4.62, IB,300,310,2.0,.69,1.64, RU,310,320,2.075,,,

NO NO,******************************************************************

NO,PIPE IS PARALLEL TO X-AXIS; Z IS LATERAL DIRECTION NO, NO,LENGTH OF NEXT SECTION = 90.7 FT NO, NO,APPLY SPRINGS AT 2FT INTERVALS AROUND ELBOWS (6FT ON EACH END)

NO,AND EVERY 10FT IN REMAINING SECTION (LENGTH= 90.7'-12'= 78.7 FT)

NO,******************************************************************

NO,SINCE 90-DEG ELBOW LENGTH = 24.9" = 2.075 FT (APPROX.= 2FT),

NO,FOR SIMPLICITY, APPLY FISRT SET OF SOIL SPRINGS AT END OF ELBOW NO,AND USE STIFFNESS VALUES OBTAINED FOR A 2FT SECTION.

NO,******************************************************************

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 SE,,0, RU,320,1320,1.0,,,

2SP,320,1320,10200,,,

SE,,0, RU,320,2320,,1.0,,

2SP,320,2320,12960,,,

SE,,0, RU,320,3320,,,1.0, 2SP,320,3320,3120,,,

SE,,0, NO,****************************************************************

NO,NEXT SECTION IS 1.925FT LONG (=APPROX. 2 FT). USE SOIL SPRING NO,STIFFNESS VALUE OF A 2FT SECTION NO,****************************************************************

RU,320,330,1.925,,,

SE,,0, RU,330,1330,1.0,,,

2SP,330,1330,10200,,,

SE,,0, RU,330,2330,,1.0,,

2SP,330,2330,12960,,,

SE,,0, RU,330,3330,,,1.0, 2SP,330,3330,3120,,,

SE,,0, NO,****************************************************************

NO,NEXT SECTION IS 2FT LONG NO,****************************************************************

RU,330,340,2.,,,

SE,,0, RU,340,1340,1.0,,,

2SP,340,1340,10200,,,

SE,,0, RU,340,2340,,1.0,,

2SP,340,2340,12960,,,

SE,,0, RU,340,3340,,,1.0, 2SP,340,3340,3120,,,

SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10 FT = 78.7 FT NO,DIVIDE THIS LENGTH AS FOLLOWS: 78.7FT = 6*10FT + 2*9.35FT NO,****************************************************************

NO, NO,****************************************************************

NO,NEXT PIPNG SECTION IS 9.35 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,340,350,9.35,,,

SE,,0, RU,350,1350,1.0,,,

2SP,350,1350,47685,,,

SE,,0, RU,350,2350,,1.0,,

2SP,350,2350,60588,,,

SE,,0, RU,350,3350,,,1.0, 2SP,350,3350,14586,,,

SE,,0, NO,****************************************************************

NO,SOIL SPRING SPACING IS 10 FT FOR THE NEXT 60 FT SECTION Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO,****************************************************************

RU,350,360,10.,,,

SE,,0, RU,360,1360,1.0,,,

2SP,360,1360,51000,,,

SE,,0, RU,360,2360,,1.0,,

2SP,360,2360,64800,,,

SE,,0, RU,360,3360,,,1.0, 2SP,360,3360,15600,,,

SE,,0, RU,360,370,10.,,,

SE,,0, RU,370,1370,1.0,,,

2SP,370,1370,51000,,,

SE,,0, RU,370,2370,,1.0,,

2SP,370,2370,64800,,,

SE,,0, RU,370,3370,,,1.0, 2SP,370,3370,15600,,,

SE,,0, RU,370,380,10.,,,

SE,,0, RU,380,1380,1.0,,,

2SP,380,1380,51000,,,

SE,,0, RU,380,2380,,1.0,,

2SP,380,2380,64800,,,

SE,,0, RU,380,3380,,,1.0, 2SP,380,3380,15600,,,

SE,,0, RU,380,390,10.,,,

SE,,0, RU,390,1390,1.0,,,

2SP,390,1390,51000,,,

SE,,0, RU,390,2390,,1.0,,

2SP,390,2390,64800,,,

SE,,0, RU,390,3390,,,1.0, 2SP,390,3390,15600,,,

SE,,0, RU,390,400,10.,,,

SE,,0, RU,400,1400,1.0,,,

2SP,400,1400,51000,,,

SE,,0, RU,400,2400,,1.0,,

2SP,400,2400,64800,,,

SE,,0, RU,400,3400,,,1.0, 2SP,400,3400,15600,,,

SE,,0, RU,400,410,10.,,,

SE,,0, RU,410,1410,1.0,,,

2SP,410,1410,51000,,,

SE,,0, RU,410,2410,,1.0,,

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 2SP,410,2410,64800,,,

SE,,0, RU,410,3410,,,1.0, 2SP,410,3410,15600,,,

SE,,0, NO,****************************************************************

NO,NEXT PIPNG SECTION IS 9.35FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,410,420,9.35,,,

SE,,0, RU,420,1420,1.0,,,

2SP,420,1420,47685,,,

SE,,0, RU,420,2420,,1.0,,

2SP,420,2420,60588,,,

SE,,0, RU,420,3420,,,1.0, 2SP,420,3420,14586,,,

SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS TO 2 FT (AROUND 45-DEGREE ELBOW)

NO,****************************************************************

NO RU,420,430,2.,,,

SE,,0, RU,430,1430,1.0,,,

2SP,430,1430,10200,,,

SE,,0, RU,430,2430,,1.0,,

2SP,430,2430,12960,,,

SE,,0, RU,430,3430,,,1.0, 2SP,430,3430,3120,,,

SE,,0, RU,430,440,2.,,,

SE,,0, RU,440,1440,1.0,,,

2SP,440,1440,10200,,,

SE,,0, RU,440,2440,,1.0,,

2SP,440,2440,12960,,,

SE,,0, RU,440,3440,,,1.0, 2SP,440,3440,3120,,,

SE,,0, NO,****************************************************************

NO,NEXT RUN GOES UP TO BEGINNING OF 45-DEGREE MITERED ELBOW NO,LENGTH OF 45-DEG. MITERED ELBOW (SEE BELOW): FC = 1.13 FT NO,THEREFORE, LENGTH OF RUN = 2.0'-1.13' = 0.87 FT NO,****************************************************************

NO RU,440,445,0.87, NO NO,****************************************************************

NO,********** 45 DEGREE IPS HDPE ELBOW **************

NO,****************************************************************

NO,THIS IS A 3-SEGMENT MITERED ELBOW.

NO,FOR 12-IN, DR-9, MITERED ELBOW (PER ISCO CATALOG):,

NO, OUTSIDE DIAMETER, OD = 12.75 IN NO, MIN. WALL THICKNESS, t = 1.417 IN NO, INSIDE DIAMETER, ID = OD - 2t = 9.916 IN Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO, RADIUS, R = 19.5 IN NO, LENGTH, FC = 13.5 IN = 1.13 FT NO, WT(PIPE) = 21.97 LB/FT = 1.83 LB/IN NO,WEIGHT OF WATER FOR ID = 9.916 IN:

NO, WT(WATER)= 33.46 LB/FT = 2.79 LB/IN NO,WT(PIPE+WATER) = 1.83 + 2.79 = 4.62 LB/IN NO NO,SIF AND STRESS INDICES FOR MITERED ELBOW:

NO, SIF = 2.0 B1 = 0.69 B2 = 1.64 NO NO,ELBOW STARTS AT NODE PT. 445 AND ENDS AT NODE PT. 485 NO,****************************************************************

NO RU,445,450,1.13,,,

CM,450,460,12.75,1.417,,19.5,11.25,4.62, IB,450,460,2.0,.69,1.64, CM,460,470,12.75,1.417,,19.5,22.5,4.62, IB,460,470,2.0,.69,1.64, CM,470,480,12.75,1.417,,19.5,,4.62, IB,470,480,2.0,.69,1.64, RU,480,485,0.8,,0.8, NO NO,****************************************************************

NO,PIPE AXIS OF NEXT SECTION MAKES 45 DEGREES (CCW) WITH Z-AXIS NO,LENGTH OF PIPE = 57 FT NO,****************************************************************

NO,APPLY SOIL SPRINGS EVERY 2FT AROUND ELBOWS (6FT ON EACH END)

NO,AND EVERY 10FT IN THE REMAINING SECTION (LENGTH= 57'-12')= 45 FT NO NO,LOCATION OF 1ST SPRING SET FROM END OF ELBOW= 2.0-1.13= 0.87FT NO,****************************************************************

NO RU,485,490,0.615,,0.615, SE,,0, RU,490,1490,0.707,,0.707,,1,,

2SP,490,1490,10200, SE,,0, RU,490,2490,,1,,

2SP,490,2490,12960, SE,,0, RU,490,3490,0.707,,-0.707,,1,,

2SP,490,3490,3120, SE,,0, RU,490,495,1.414,,1.414, SE,,0, RU,495,1495,0.707,,0.707,,1,,

2SP,495,1495,10200,,,

SE,,0, RU,495,2495,,1.0,,

2SP,495,2495,12960,,,

SE,,0, RU,495,3495,0.707,,-0.707,,1,,

2SP,495,3495,3120,,,

SE,,0, RU,495,500,1.414,,1.414, SE,,0, RU,500,1500,0.707,,0.707,,1,,

2SP,500,1500,10200,,,

SE,,0, RU,500,2500,,1.0,,

2SP,500,2500,12960,,,

SE,,0, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RU,500,3500,0.707,,-0.707,,1,,

2SP,500,3500,3120,,,

SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS FROM 2 FT TO 10 FT NO,AVAILABLE LENGTH TO APPLY SPRINGS EVERY 10FT = 45 FT NO,DIVIDE THIS LENGTH AS: 45FT = 7.5FT + 3*10FT + 7.5FT NO,****************************************************************

NO,NEXT PIPING SECTION IS 7.5 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

NO RU,500,510,5.30,,5.30, SE,,0, RU,510,1510,0.707,,0.707,,1,,

2SP,510,1510,38250,,,

SE,,0, RU,510,2510,,1.0,,

2SP,510,2510,48600,,,

SE,,0, RU,510,3510,0.707,,-0.707,,1,,

2SP,510,3510,11700,,,

SE,,0, NO,****************************************************************

NO,SOIL SPRING SPACING = 10FT FOR NEXT 30 FT LENGTH NO,****************************************************************

RU,510,520,7.07,,7.07, SE,,0, RU,520,1520,0.707,,0.707,,1,,

2SP,520,1520,51000,,,

SE,,0, RU,520,2520,,1.0,,

2SP,520,2520,64800,,,

SE,,0, RU,520,3520,0.707,,-0.707,,1,,

2SP,520,3520,15600,,,

SE,,0, RU,520,530,7.07,,7.07, SE,,0, RU,530,1530,0.707,,0.707,,1,,

2SP,530,1530,51000,,,

SE,,0, RU,530,2530,,1.0,,

2SP,530,2530,64800,,,

SE,,0, RU,530,3530,0.707,,-0.707,,1,,

2SP,530,3530,15600,,,

SE,,0, RU,530,540,7.07,,7.07, SE,,0, RU,540,1540,0.707,,0.707,,1,,

2SP,540,1540,51000,,,

SE,,0, RU,540,2540,,1.0,,

2SP,540,2540,64800,,,

SE,,0, RU,540,3540,0.707,,-0.707,,1,,

2SP,540,3540,15600,,,

SE,,0, NO,****************************************************************

NO,NEXT PIPING SECTION IS 7.5 FT LONG. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO,****************************************************************

NO RU,540,600,5.30,,5.30, SE,,0, RU,600,1600,0.707,,0.707,,1,,

2SP,600,1600,38250,,,

SE,,0, RU,600,2600,,1.0,,

2SP,600,2600,48600,,,

SE,,0, RU,600,3600,0.707,,-0.707,,1,,

2SP,600,3600,11700,,,

SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS TO 2 FT (AROUND 45-DEGREE ELBOW)

NO,****************************************************************

NO RU,600,610,1.414,,1.414, SE,,0, RU,610,1610,0.707,,0.707,,1,,

2SP,610,1610,10200,,,

SE,,0, RU,610,2610,,1.0,,

2SP,610,2610,12960,,,

SE,,0, RU,610,3610,0.707,,-0.707,,1,,

2SP,610,3610,3120,,,

SE,,0, RU,610,620,1.414,,1.414, SE,,0, RU,620,1620,0.707,,0.707,,1,,

2SP,620,1620,10200,,,

SE,,0, RU,620,2620,,1.0,,

2SP,620,2620,12960,,,

SE,,0, RU,620,3620,0.707,,-0.707,,1,,

2SP,620,3620,3120,,,

SE,,0, NO,****************************************************************

NO,NEXT RUN GOES UP TO BEGINNING OF 45-DEGREE MITERED ELBOW NO,LENGTH OF 45-DEG. MITERED ELBOW (SEE ELBOW DIMENSIONS):FC= 1.13FT NO,THEREFORE, LENGTH OF NEXT RUN = 2.0'-1.13' = 0.87 FT NO,****************************************************************

NO RU,620,625,0.615,,0.615, NO NO,****************************************************************

NO,********** 45 DEGREE IPS HDPE ELBOW **************

NO,****************************************************************

NO,THIS IS A 3-SEGMENT MITERED ELBOW. THE PROPERTIES ARE AS LISTED NO,EARLIER.

NO NO,ELBOW STARTS AT NODE PT. 625 AND ENDS AT NODE PT. 665 NO,****************************************************************

NO RU,625,630,0.8,,0.8, CM,630,640,12.75,1.417,,19.5,11.25,4.62, IB,630,640,2.0,.69,1.64, CM,640,650,12.75,1.417,,19.5,22.5,4.62, IB,640,650,2.0,.69,1.64, CM,650,660,12.75,1.417,,19.5,,4.62, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 IB,650,660,2.0,0.69,1.64, RU,660,665,,,1.13, NO NO,****************************************************************

NO,PIPING IS NOW PARALLEL TO Z-AXIS. X IS LATERAL DIRECTION NO NO,LENGTH OF PIPING SECTION PARALLEL TO Z-AXIS = 129.4 FT NO, NO,APPLY SOIL SPRINGS EVERY 2FT AROUND ELBOWS (6FT AT EACH END) AND NO,EVERY 10 FT IN THE REMAINING SECTION (LENGTH= 129.4-12=117.4 FT)

NO NO,LOCATION OF 1ST SPRING SET FROM END OF ELBOW= 2.0-1.13= 0.87FT NO,****************************************************************

NO RU,665,670,,,0.87, NO SE,,0, RU,670,1670,1.0,,,

2SP,670,1670,3120, SE,,0, RU,670,2670,,1.0,,

2SP,670,2670,12960, SE,,0, RU,670,3670,,,1.0, 2SP,670,3670,10200, SE,,0, RU,670,675,,,2.0, SE,,0, RU,675,1675,1.0,,,

2SP,675,1675,3120, SE,,0, RU,675,2675,,1.0,,

2SP,675,2675,12960, SE,,0, RU,675,3675,,,1.0, 2SP,675,3675,10200, SE,,0, RU,675,680,,,2.0, SE,,0, RU,680,1680,1.0,,,

2SP,680,1680,3120, SE,,0, RU,680,2680,,1.0,,

2SP,680,2680,12960, SE,,0, RU,680,3680,,,1.0, 2SP,680,3680,10200, SE,,0, NO,****************************************************************

NO,CHANGE SPACING OF SOIL SPRINGS TO 10 FT NO,AVAILABLE LENGTH = 117.4 FT NO,DIVIDE THIS LENGTH AS FOLLOWS: 117.4 FT = 10*10FT + 2*8.7FT NO,****************************************************************

NO NO,****************************************************************

NO,LENGTH OF NEXT PIPING SECTION = 8.7 FT. SOIL SPRING STIFFNESS NO,VALUES ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,680,685,,,8.7, SE,,0, RU,685,1685,1.0,,,

2SP,685,1685,13572, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 SE,,0, RU,685,2685,,1.0,,

2SP,685,2685,56376, SE,,0, RU,685,3685,,,1.0, 2SP,685,3685,44370, SE,,0, NO,****************************************************************

NO,SOIL SPRING SPACING IS 10 FT FOR THE NEXT 100 FT SECTION NO,****************************************************************

RU,685,690,,,10.0, SE,,0, RU,690,1690,1.0,,,

2SP,690,1690,15600, SE,,0, RU,690,2690,,1.0,,

2SP,690,2690,64800, SE,,0, RU,690,3690,,,1.0, 2SP,690,3690,51000, SE,,0, RU,690,695,,,10.0, SE,,0, RU,695,1695,1.0,,,

2SP,695,1695,15600, SE,,0, RU,695,2695,,1.0,,

2SP,695,2695,64800, SE,,0, RU,695,3695,,,1.0, 2SP,695,3695,51000, SE,,0, RU,695,700,,,10.0, SE,,0, RU,700,1700,1.0,,,

2SP,700,1700,15600, SE,,0, RU,700,2700,,1.0,,

2SP,700,2700,64800, SE,,0, RU,700,3700,,,1.0, 2SP,700,3700,51000, SE,,0, RU,700,705,,,10.0, SE,,0, RU,705,1705,1.0,,,

2SP,705,1705,15600, SE,,0, RU,705,2705,,1.0,,

2SP,705,2705,64800, SE,,0, RU,705,3705,,,1.0, 2SP,705,3705,51000, SE,,0, RU,705,710,,,10.0, SE,,0, RU,710,1710,1.0,,,

2SP,710,1710,15600, SE,,0, RU,710,2710,,1.0,,

2SP,710,2710,64800, SE,,0, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RU,710,3710,,,1.0, 2SP,710,3710,51000, SE,,0, RU,710,715,,,10.0, SE,,0, RU,715,1715,1.0,,,

2SP,715,1715,15600, SE,,0, RU,715,2715,,1.0,,

2SP,715,2715,64800, SE,,0, RU,715,3715,,,1.0, 2SP,715,3715,51000, SE,,0, RU,715,720,,,10.0, SE,,0, RU,720,1720,1.0,,,

2SP,720,1720,15600, SE,,0, RU,720,2720,,1.0,,

2SP,720,2720,64800, SE,,0, RU,720,3720,,,1.0, 2SP,720,3720,51000, SE,,0, RU,720,725,,,10.0, SE,,0, RU,725,1725,1.0,,,

2SP,725,1725,15600, SE,,0, RU,725,2725,,1.0,,

2SP,725,2725,64800, SE,,0, RU,725,3725,,,1.0, 2SP,725,3725,51000, SE,,0, RU,725,730,,,10.0, SE,,0, RU,730,1730,1.0,,,

2SP,730,1730,15600, SE,,0, RU,730,2730,,1.0,,

2SP,730,2730,64800, SE,,0, RU,730,3730,,,1.0, 2SP,730,3730,51000, SE,,0, RU,730,735,,,10.0, SE,,0, RU,735,1735,1.0,,,

2SP,735,1735,15600, SE,,0, RU,735,2735,,1.0,,

2SP,735,2735,64800, SE,,0, RU,735,3735,,,1.0, 2SP,735,3735,51000, SE,,0, NO,****************************************************************

NO,NEXT SECTION IS 8.7 FT LONG. SOIL SPRING STIFFNESS VALUES ARE NO,ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO RU,735,740,,,8.7, SE,,0, RU,740,1740,1.0,,,

2SP,740,1740,13572, SE,,0, RU,740,2740,,1.0,,

2SP,740,2740,56376, SE,,0, RU,740,3740,,,1.0, 2SP,740,3740,44370, SE,,0, NO,****************************************************************

NO,APPLY SOIL SPRINGS AT 2 FT INTERVALS NO,****************************************************************

NO, RU,740,745,,,2.0, SE,,0, RU,745,1745,1.0,,,

2SP,745,1745,3120, SE,,0, RU,745,2745,,1.0,,

2SP,745,2745,12960, SE,,0, RU,745,3745,,,1.0, 2SP,745,3745,10200, SE,,0, RU,745,750,,,2.0, SE,,0, RU,750,1750,1.0,,,

2SP,750,1750,3120, SE,,0, RU,750,2750,,1.0,,

2SP,750,2750,12960, SE,,0, RU,750,3750,,,1.0, 2SP,750,3750,10200, SE,,0, NO,****************************************************************

NO,NEXT RUN GOES UP TO BEGINNING OF 45-DEGREE MITERED ELBOW NO,LENGTH OF 45-DEG. MITERED ELBOW (SEE ELBOW DIMENSIONS):FC= 1.13FT NO,THEREFORE, LENGTH OF NEXT RUN = 2.0'-1.13' = 0.87 FT NO,****************************************************************

NO RU,750,755,,,0.87, NO NO,****************************************************************

NO,********** 45 DEGREE IPS HDPE ELBOW **************

NO,****************************************************************

NO,THIS IS A 3-SEGMENT MITERED ELBOW. THE PROPERTIES ARE AS LISTED NO,EARLIER.

NO NO,ELBOW STARTS AT NODE PT. 755 AND ENDS AT NODE PT. 795 NO,****************************************************************

NO RU,755,760,,,1.13, CM,760,770,12.75,1.417,,19.5,11.25,4.62, IB,760,770,2.0,.69,1.64, CM,770,780,12.75,1.417,,19.5,22.5,4.62, IB,770,780,2.0,.69,1.64, CM,780,790,12.75,1.417,,19.5,,4.62, IB,780,790,2.0,.69,1.64, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 RU,790,795,0.8,,0.8, NO NO,****************************************************************

NO,PIPE AXIS OF NOW MAKES 45 DEGREES (CCW) WITH Z-AXIS NO NO,TOTAL LENGTH OF NEXT PIPING SECTION= 57.0 FT NO,LENGTH OF STEEL COMPONENTS= ELBOW(12")+FLANGE(4.5")=16.5"= 1.4' NO,LENGTH OF HDPE PIPING = 57.0' - 1.4' = 55.6 FT NO NO,****************************************************************

NO,APPLY SOIL SPRINGS EVERY 2FT AROUND HDPE ELBOW AND WITHIN THE NO,'INFLUENCE LENGTH' (OVER A TOTAL OF 12 FT) AND EVERY 10FT IN NO,THE REMAINING SECTION (LENGTH = 55.6 - 12 = 43.6 FT)

NO NO,LOCATION OF 1ST SPRING SET FROM END OF ELBOW= 2.0-1.13= 0.87FT NO,****************************************************************

NO RU,795,800,0.615,,0.615, SE,,0, RU,800,1800,0.707,,0.707,,1,,

2SP,800,1800,10200, SE,,0, RU,800,2800,,1,,

2SP,800,2800,12960, SE,,0, RU,800,3800,0.707,,-0.707,,1,,

2SP,800,3800,3120, SE,,0, RU,800,805,1.414,,1.414, SE,,0, RU,805,1805,0.707,,0.707,,1,,

2SP,805,1805,10200, SE,,0, RU,805,2805,,1,,

2SP,805,2805,12960, SE,,0, RU,805,3805,0.707,,-0.707,,1,,

2SP,805,3805,3120, SE,,0, RU,805,810,1.414,,1.414, SE,,0, RU,810,1810,0.707,,0.707,,1,,

2SP,810,1810,10200, SE,,0, RU,810,2810,,1,,

2SP,810,2810,12960, SE,,0, RU,810,3810,0.707,,-0.707,,1,,

2SP,810,3810,3120, SE,,0, NO,****************************************************************

NO,CHANGE SOIL SPRING SPACING TO 10FT NO,DIVIDE AVAILABLE LENGTH AS FOLLOWS: 43.6FT = 3*10FT + 2*6.8FT NO,****************************************************************

NO NO,****************************************************************

NO,LENGTH OF NEXT PIPING SECTION = 6.8 FT. SOIL SPRING STIFFNESS NO,VALUES ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,810,815,4.81,,4.81, SE,,0, RU,815,1815,0.707,,0.707,,1,,

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 2SP,815,1815,34680,,,

SE,,0, RU,815,2815,,1.0,,

2SP,815,2815,44064,,,

SE,,0, RU,815,3815,0.707,,-0.707,,1,,

2SP,815,3815,10608,,,

SE,,0, NO,****************************************************************

NO,SOIL SPRING SPACING IS 10 FT OVER THE NEXT 30 FT SECTION NO,****************************************************************

RU,815,820,7.07,,7.07, SE,,0, RU,820,1820,0.707,,0.707,,1,,

2SP,820,1820,51000,,,

SE,,0, RU,820,2820,,1.0,,

2SP,820,2820,64800,,,

SE,,0, RU,820,3820,0.707,,-0.707,,1,,

2SP,820,3820,15600,,,

SE,,0, RU,820,825,7.07,,7.07, SE,,0, RU,825,1825,0.707,,0.707,,1,,

2SP,825,1825,51000,,,

SE,,0, RU,825,2825,,1.0,,

2SP,825,2825,64800,,,

SE,,0, RU,825,3825,0.707,,-0.707,,1,,

2SP,825,3825,15600,,,

SE,,0, RU,825,830,7.07,,7.07, SE,,0, RU,830,1830,0.707,,0.707,,1,,

2SP,830,1830,51000,,,

SE,,0, RU,830,2830,,1.0,,

2SP,830,2830,64800,,,

SE,,0, RU,830,3830,0.707,,-0.707,,1,,

2SP,830,3830,15600,,,

SE,,0, NO,****************************************************************

NO,LENGTH OF NEXT SECTION = 6.8 FT. SOIL SPRING STIFFNESS VALUES NO,ARE ADJUSTED (PROPORTIONAL TO SECTION LENGTH)

NO,****************************************************************

RU,830,840,4.81,,4.81, SE,,0, RU,840,1840,0.707,,0.707,,1,,

2SP,840,1840,34680,,,

SE,,0, RU,840,2840,,1.0,,

2SP,840,2840,44064,,,

SE,,0, RU,840,3840,0.707,,-0.707,,1,,

2SP,840,3840,10608,,,

SE,,0, NO,****************************************************************

NO,CHANGE SOIL SPRING SPACING TO 2 FT NO,****************************************************************

Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO RU,840,850,1.414,,1.414, SE,,0, RU,850,1850,0.707,,0.707,,1,,

2SP,850,1850,10200,,,

SE,,0, RU,850,2850,,1.0,,

2SP,850,2850,12960,,,

SE,,0, RU,850,3850,0.707,,-0.707,,1,,

2SP,850,3850,3120,,,

SE,,0, RU,850,860,1.414,,1.414, SE,,0, RU,860,1860,0.707,,0.707,,1,,

2SP,860,1860,10200,,,

SE,,0, RU,860,2860,,1.0,,

2SP,860,2860,12960,,,

SE,,0, RU,860,3860,0.707,,-0.707,,1,,

2SP,860,3860,3120,,,

SE,,0, NO,*****************************************************************

NO,NEXT 2FT SECTION CONTAINS THE FLANGED END OF HDPE PIPE NO NO,LENGTH OF PIPE UP TO THE BEGINNING OF FLANGE ADAPTER:

NO, 2.0FT - 1.0 FT = 1.0 FT NO,*****************************************************************

NO RU,860,870,0.707,,0.707, NO NO,******************************************************************

NO,INSTALL A FLANGE ADAPTER WITH A STEEL BACKUP RING MOUNTED ON IT NO NO,PROPERTIES OF ADAPTER AND RING ARE AS LISTED EARLIER (NEAR THE NO,BEGINNING OF THIS MODEL)

NO,******************************************************************

NO RU,870,875,0.530,,0.530, NOTE,IV=WNFL,END=FLG 1V,875,880,0.177,,0.177,15.5,1.159,14.5, SE,,0, NO,******************************************************************

NO, CHANGE TO STEEL PIPE NO,******************************************************************

NO,12-IN, SCH. 40 Cr-Mo STEEL PIPE PROPERTIES:,

NO, OUTSIDE DIAMETER = 12.75 IN NO, WALL THICKNESS = 0.375 IN NO, WT(PIPE)= 49.6 LB/FT = 4.13 LB/IN NO, WT(WATER) = 49.0 LB/FT= 4.08 LB/IN NO, WT(PIPE+WATER) = (49.6+49.0)/12 = 8.22 LB/IN NO,******************************************************************

NO, PI,880,900,12.75,0.375,28.0,8.1,0.01,8.22, NO, NO,******************************************************************

NO,INSTALL A 90-DEGREE ELBOW WITH A FLANGE WELDED TO ONE END NO,******************************************************************

NO,FOR 12-IN SHORT RADIUS 90-DEG. ELBOW (BASED ON LADISH CATALOG):

NO, LENGTH = 12 IN T = 0.375 IN NO, RADIUS = 12 IN WT(ELBOW)= 80 LB Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO, WT(ELBOW+WATER)= 129.0 LB/FT = 10.75 LB/IN NO,*****************************************************************

NO,PROPERTIES OF 12-IN, 150-LB WELDING NECK FLANGE ARE AS LISTED, NO,EARLIER NO,*****************************************************************

NO,90-DEG. ELBOW WILL BE CONNECTED TO A VERTICAL 12-IN PIPE NO,*****************************************************************

NO, NOTE,IV=WNFL,BEG=FLG 1V,880,900,0.269,,0.269,14.375,0.375,23.6, RU,900,910,0.71,,0.71, EL,910,920,,,,12.0,,10.75, RU,920,925,,-1.01,,

NO, NO,*****************************************************************

NO,PIPE IS ORIENTED PARALLEL TO THE Y-AXIS NO, NO,WELD ONE END OF A 3 FT LONG, 12-IN PIPE TO END OF 90-DEG. ELBOW.

NO,A FLANGE IS WELDED TO OTHER END OF THE PIPE.

NO,*****************************************************************

NO, RU,925,930,,-3.0,,

NOTE,IV=WNFL,END=FLG 1V,930,940,,-0.38,,14.375,0.375,23.6, SE,,0, NO, NO,******************************************************************

NO,CHANGE MATERIAL TO CARBON STEEL (SA-106)

NO,******************************************************************

NO, PI,940,950,12.75,0.375,27.9,6.01,0.01,8.22, NO, NO,******************************************************************

NO,WELD A FLANGE TO A 12-IN CARBON STEEL PIPE AND ATTACH THE PIPE TO NO,42-IN HEADER LENGTH OF PIPE = 12 IN = 1.0 FT NO,******************************************************************

NO, NOTE,IV=WNFL,BEG=FLG 1V,940,950,,-0.38,,14.375,0.375,23.6, RU,950,985,,-1.0,,

NO, NO,******************************************************************

NO,A WELDOLET IS USED BETWEEN THE 12-IN PIPE AND 42-IN HEADER NO,APPLY SIF=4.87 FOR WELDOLET AT JUNCTION POINT (CENTER OF 42" PIPE)

NO,******************************************************************

NO,42-IN DIAMETER PIPE PROPERTIES:

NO, OD = 42 IN WALL THICKNESS = 0.500 IN NO, WT(PIPE) = 221.6LB/FT WT(WATER) = 571.7LB/FT NO, WT(PIPE+WATER)= 66.1LB/IN NO,******************************************************************

NO, SE,,0, RU,985,990,,-1.75, CH,985,990,42.,0.500,,,,66.1, JB,985,990,4.87, NO, EN,,0 NO,***************************** END OF RUN *************************

NO, EXECUTE NO,**************************** DEADWEIGHT ANALYSIS *****************************

NO,LOADING CASE NO. 10 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO,CODE= ASME, YEAR = 1989, CLASS = 3 NO,FOR 1989 ASME CODE, CLASS 3 ANALYSIS = CLASS 2 ANALYSIS NO,DESIGN PRESSURE = 100 PSI, PEAK PRESSURE = 75 PSI NO,SA-106 GRADE B CARBON STEEL PROPERTIES:

NO, Sc = 15000 PSI Sh = 15000 PSI NO, Sy = 35000 PSI POISSON RATIO = 0.3 NO, Ec = 27.9E+06 PSI NO,HDPE 50-YEAR DURATION PROPERTIES:

NO, Sc = 800 PSI Sh = 800 PSI NO, Sy = 2500 PSI POISSON RATIO = 0.45 NO, Ec = 0.028E+06 PSI NO,SB-690/SB-675 Cr-Mo STEEL PROPERTIES:

NO, Sc = 23100 PSI Sh = 22200 PSI NO, Sy = 45000 PSI POISSON RATIO = 0.3 NO, Ec = 28E+06 PSI NO, CL,,,3.0,1989,1, CO,3,1,10,100,75,23100,22200, MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,800,800, MA,130,133,2500,,0.45,,,0.028, CL,880,900,3.0,100,75,23100,22200, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, DEADWEIGHT,,,,-1,,

XP,-27,20, EN,,,

NO, EXECUTE NO,*************** THERMAL ANALYSIS AT MIN TEMP = 32 F, LEVEL A *****************

NO,LOADING CASE NO. 21 NO,Delta T = 32 F - 55 F = -23 F NO,PROPERTIES OF HDPE, Cr-Mo AND CARBON STEEL ARE SAME AS DW CASE, NO, CL,,,3.0,1989,1, CO,3,0,21,100,75,23100,22000, MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,800,800, MA,130,133,2500,,0.45,,,0.028, CL,880,900,3.0,100,75,23100,22200, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,-23.,6.22, CH,130,133,12.75,1.159,0.028,90.,-23.,4.62, CH,880,900,12.75,0.375,28.0,8.1,-23.,8.22, CH,950,985,12.75,0.375,27.9,6.07,-23,8.22, TH,,0, EN,,,

EXECUTE NO,*************** THERMAL ANALYSIS AT MAX TEMP = 100 F, LEVEL A ****************

NO,LOADING CASE NO. 22 NO,Delta T = 100 F - 55 F = 45 F NO,CARBON STEEL AND Cr-Mo STEEL PROPERTIES ARE SAME AS FOR DW CASE NO, NO,HDPE 50-YEAR DURATION PROPERTIES:

NO, Sc = 800 PSI Sh = 620 PSI NO, Sy = 2500 PSI POISSON RATIO = 0.45 NO, Ec = 0.023E+06 PSI CL,,,3.0,1989,1, CO,3,0,22,100,75,23100,22000, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,800,620, MA,130,133,2500,,0.45,,,0.023, CL,880,900,3.0,100,75,23100,22000, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,45.,6.22, CH,130,133,12.75,1.159,0.023,90.,45.,4.62, CH,880,900,12.75,0.375,28.0,8.1,45.,8.22, CH,950,985,12.75,0.375,27.9,6.07,45,8.22, TH,,0, EN,,,

EXECUTE NO,*************** THERMAL ANALYSIS AT MIN TEMP = 32 F, LEVEL B *****************

NO,LOADING CASE NO. 23 NO,DELTA T=32 F - 55 F = -23F NO,CARBON STEEL AND Cr-Mo STEEL PROPERTIES ARE SAME AS DW CASE NO,HDPE 10 YEAR DURATION PROPERTIES NO, Sc=840 PSI Sh=840 PSI NO, Sy=2500 PSI POISSON RATIO=0.45 NO, Ec=0.032E+6 PSI CL,,,3.0,1989,1, CO,3,0,23,100,75,23100,22000, MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,840,840, MA,130,133,2500,,0.45,,,0.032, CL,880,900,3.0,100,75,23100,22000, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,-23,6.22, CH,130,133,12.75,1.159,0.032,90,-23,4.62, CH,880,900,12.75,0.375,28.0,8.1,-23,8.22, CH,950,985,12.75,0.375,27.9,6.07,-23,8.22, TH,,0, EN,,,

EXECUTE NO,*************** THERMAL ANALYSIS AT MAX TEMP = 100 F, LEVEL B ****************

NO,LOADING CASE NO. 24 NO,DELTA T = 100 F - 55 F = 45 F NO,CARBON STEEL AND Cr.-Mo STEEL PROPERTIES ARE SAME FOR DW CASE NO,HDPE 10 YEAR DURATION PROPERTIES NO, Sc=840 PSI Sh=620 PSI NO, Sy=2500 PSI POISSON=0.45 NO, Ec=0.026E+6 PSI CL,,,3.0,1989,1, CO,3,0,24,100,75,23100,22200, MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,840,620, MA,130,133,2500,,0.45,,,0.026, CL,880,900,3.0,100,75,23100,22200, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,45,6.22, CH,130,133,12.75,1.159,0.026,90,45,4.62, CH,880,900,12.75,0.375,28.0,8.1,45,8.22, CH,950,985,12.75,0.375,27.9,6.07,45,8.22, TH,,0, EN,,,

EXECUTE Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NO,************** THERMAL ANALYSIS AT MIN TEMP = 32 F, LEVEL C/D ****************

NO,LOADING CASE 25 NO,DELTA T = 32 F - 55 F = -23 F NO, NO,CARBON STEEL AND Cr.-Mo. STEEL PROPERTIES ARE SAME AS DW CASE NO,HDPE 1000 HOUR DURATION PROPERTIES NO, Sc=840 PSI Sh=840 PSI NO, Sy=2500 PSI POISSON=0.45 NO, Ec=0.044E+6 PSI CL,,,3.0,1989,1, CO,3,0,25,100,75,23100,22200, MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,840,840, MA,130,133,2500,,0.45,,,0.044, CL,880,900,3.0,100,75,23100,22200, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,-23,6.22, CH,130,133,12.75,1.159,0.044,90,-23,4.62, CH,880,900,12.75,0.375,28.0,8.1,-23,8.22, CH,950,985,12.75,0.375,27.9,6.07,-23,8.22, TH,,0, EN,,,

EXECUTE NO,************** THERMAL ANALYSIS AT MAX TEMP = 100 F, LEVEL C/D ***************

NO,LOADING CASE 26 NO,DELTA T = 100 F - 55 F = 45 F NO,CARBON STEEL AND Cr.-Mo. STEEL PROPERTIES ARE SAME DW CASE NO,HDPE 1000 YEAR DURATION PROPERTIES NO, Sc=840 PSI Sh=620 PSI NO, Sy=2500 PSI POISSON=0.45 NO, Ec=0.036E+6 PSI CL,,,3.0,1989,1, CO,3,0,26,100,75,23100,22000, MA,,,45000,,0.3,,,28.0, CL,130,133,3.0,100,75,840,620, MA,130,133,2500,,0.45,,,0.036, CL,880,900,3.0,100,75,23100,22000, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,45,6.22, CH,130,133,12.75,1.159,0.036,90,45,4.62, CH,880,900,12.75,0.375,28.0,8.1,45,8.22, CH,950,985,12.75,0.375,27.9,6.07,45,8.22, TH,,0, EN,,,

EXECUTE NO,***************** THERMAL ANALYSIS AT 65 F, PSEUDO-SEISMIC *******************

NO,LOADING CASE NO. 30 NO, NO,Delta T = 10 F NO,CARBON STEEL AND Cr.-Mo. STEEL PROPERTIES ARE SAME AS DW CASE NO, NO,*** FOR HDPE, USE SHORT-TERM (< 10 HRS) PROPERTIES:,

NO, Sc = 1200 PSI Sh = 1200 PSI NO, Sy = 2500 PSI POISSON RATIO = 0.35 NO, Ec = 0.110E+06 PSI CL,,,3.0,1989,1, CO,3,0,30,100,75,23100,22200, MA,,,45000,,0.3,,,28.0, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 CL,130,133,3.0,100,75,1200,1200, MA,130,133,2500,,0.35,,,0.110, CL,880,900,3.0,100,75,23100,22200, MA,880,900,45000,,0.3,,,28.0, CL,940,950,3.0,100,75,15000,15000, MA,940,950,35000,,0.3,,,27.9, CH,100,105,10.75,0.365,28.0,8.1,10.,6.22, CH,130,133,12.75,1.159,0.110,90.,10.,4.62, CH,880,900,12.75,0.375,28.0,8.1,10.,8.22, CH,950,985,12.75,0.375,27.9,6.07,10,8.22, TH,,0, EN,,0, NO, EXECUTE NO,******************** COMBINE LOAD CASES 21 AND 22, LEVEL A ********************

NO,METHOD OF LOAD COMBINATION = ABSOLUTE VALUE OF RANGE NO,LOADING CASE NO. 27 CL,,,3.0,1989,3, NE,7,,21,22,,,,27, OU,4,,27, EN,,,

EXECUTE NO,******************** COMBINE LOAD CASES 23 AND 24, LEVEL B ********************

NO,METHOD OF LOAD COMBINATION = ABSOLUTE VALUE OF RANGE NO,LOADING CASE NO. 28 CL,,,3.0,1989,3, NE,7,,23,24,,,,28, OU,4,,28, EN,,0, EXECUTE NO,******************* COMBINE LOAD CASES 25 AND 26, LEVEL C/D *******************

NO,METHOD OF LOAD COMBINATION = ABSOLUTE VALUE OF RANGE NO,LOADING CASE NO. 29 CL,,,3.0,1989,3, NE,7,,25,26,,,,29, OU,4,,29, EN,,0, EXECUTE NO,************** COMPUTE ABSOLUTE RANGE FOR LOAD CASE 30 (SEISMIC) **************

NO,THESE LOADS REPRESENT SSE SEISMIC LOAD RANGES NO,METHOD OF COMPUTING = ABSOLUTE LOAD CASE 30 + ABSOLUTE LOAD CASE 30 NO,LOADING CASE NO. 31 CL,,,3.0,1989,3, NE,3,,30,30,,,,31, OU,4,,31, EN,,0, EXECUTE NO,*************** DIVIDE ABSOLUTE RANGE OF LOAD CASE 30 BY 1.875 ***************

NO,THESE LOADS REPRESENT OBE SEISMIC LOAD RANGES NO,METHOD OF COMPUTING = FACTORING --> 0.5333*LOAD CASE 31 NO,LOADING CASE NO. 32 CL,,,3.0,1989,3, NE,8,,31,0.5333,,,,32, OU,4,,32, EN,,0, EXECUTE NO,**************** COMBINE THERMAL AND OBE LOADS: LEVEL B ********************

NO,METHOD OF COMBINATION = ADD ABSOLUTE VALUES OF EACH LOAD NO,LOAD CASE NO. 40 -- USE THERMAL LOADS OBTAINED AT MINIMUM TEMP. (LOAD CASE 21)

NO,LOAD CASE NO. 41 -- USE THERMAL LOADS OBTAINED AT MAXIMUM TEMP. (LOAD CASE 22)

CL,,,3.0,1989,3, NE,3,,21,32,,,,40 Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 NE,3,,22,32,,,,41 OU,1,,40, OU,1,,41, EN,,0, EXECUTE NO,****** SEARCH FOR HIGHEST LOADS FROM LOAD CASES 27, 40, AND 41: LEVEL B *******

NO,LOAD CASE NO. 45 CL,,,3.0,1989,3, NE,9,,27,40,41,,,45 OU,1,,45, EN,,0, EXECUTE NO,***************** GENERATE STRESS REPORT: LEVEL A ***********************

CL,,,3.0,1989,1, EQUATION,8,,10 EQUATION,9,,10 EQUATION,10,,,27 EN,,0, EXECUTE NO,******************** GENERATE STRESS REPORT: LEVEL B ********************

CL,,,3.0,1989,2, EQUATION,8,,10 EQUATION,9,,10 EQUATION,10,,,45 EN,,0, EXECUTE NO,****************** GENERATE STRESS REPORT: LEVEL C/D ********************

CL,,,3.0,1989,4, EQUATION,10,,,31 EN,,0, Page CALCULATION CONTINUATION SHEET Client Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 Project Catawba Unit # 1 and #2 - Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel Title Generator 2B Unit 2 By: Date 11/10/08 Chkd by Date 11/11/08 OUTPUT FILE:

Output file on CD-Rom Page- 94 -