ML11280A263: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
#REDIRECT [[PLA-6752, Susquehanna, Unit 2, Enclosure 2 to PLA-6752, SSES Replacement Steam Dryer & Flow Induced Vibration Report, Unit 2 Start-Up, 114% Power Test Plateau.]]
{{Adams
| number = ML11280A263
| issue date = 08/30/2011
| title = Enclosure 2 to PLA-6752, SSES Replacement Steam Dryer & Flow Induced Vibration Report, Unit 2 Start-Up, 114% Power Test Plateau.
| author name = Bartos J, Hober M
| author affiliation = PPL Susquehanna, LLC
| addressee name =
| addressee affiliation = NRC/NRR
| docket = 05000388
| license number =
| contact person =
| case reference number = PLA-6752
| document type = Startup Test Report
| page count = 57
}}
 
=Text=
{{#Wiki_filter:ENCLOSURE 2 TO PLA-6752 SSES Replacement Steam Dryer and Flow Induced Vibration Report Unit 2 Start-Up 114% Power Test Plateau August 2011 Non-Proprietary Information
 
W I j PP'4,T SSES Replacement Steam Dryer and Flow Induced Vibration Report Unit 2 Start-Up 114 % Power Test Plateau August 2011 Prepared By: John A. Bartos Matt A. Hober Reviewed By: Kevin G. Browning Santo Ferraello Approved by: John E. Krais
 
TABLE OF CONTENTS Page 1.0  Executive Summary ..............................................................................................              1 2.0  Main Steam Line Strain Gage Data Analysis ......................................................                              1 2.1    Power Spectral Density .............................................................................                    1 2.2    Trending ....................................................................................................          6 2.3    Unit 1 vs. Unit 2 Data Com parison .......................................................                              6 2.4    Steam Dryer Evaluation Sum m ary ........................................................                              8 3.0  Piping Flow Induced Vibration ...........................................................................                      8 3.1    Introduction ................................................................................................          8 3.2    Data Collection Scope ...............................................................................                  9 3.3    Data Analysis Methodology ...................................................................                          9 3.4    Results .......................................................................................................        10 3.5    Piping Summary .......................................................................................                10 4.0  References ................................................................................................................. 11 Appendix A - Plant Data Log Sheets ..........................................................................                      41 i
 
LIST OF TABLES Page Table 1: Power/Core Flow Data Collection Conditions ...........................................................        1 Table 2: PSD Notch Filter Specifications for 104.1 Mlbm/hr Data (Test Point 1) .............. 2 Table 3: PSD Notch Filter Specifications for 99.9 Mlbmlhr Data (Test Point 2) ............... 2 Table 4: PSD Notch Filter Specifications for 106.1 Mlbmlhr Data (Test Point 3) .............. 3 Table 5: Maximum MSL Strain Gage Readings @ 3950 MWth and 104.1 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 1)..............................                    4 Table 6: Maximum MSL Strain Gage Readings @ 3941                MWth        and 99.9 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 2) ..............................                  4 Table 7: Maximum MSL Strain Gage Readings @ 3939                MWth        and 106.1 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 3) ...............................                  5 Table 8: Adjusted Stress with Bias and Uncertainty and LCF ACM Analysis F-Factor Method .............................................................................. 7 Table 9: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis F-Factor M ethod ..............................................................          7 Table 10: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis RM S Method .....................................................................        8 ii
 
LIST OF FIGURES Page Figure 1: MSL A Upper Strain Gage PSD Plot at Test Point 1............................................. 12 Figure 2: MSL A Lower Strain Gage PSD Plot at Test Point I ............................................ 12 Figure 3: MSL B Upper Strain Gage PSD Plot at Test Point 1 ............................................. 13 Figure 4: MSL B Lower Strain Gage PSD Plot at Test Point 1............................................. 13 Figure 5: MSL C Upper Strain Gage PSD Plot at Test Point 1............................................. 14 Figure 6: MSL C Lower Strain Gage PSD Plot at Test Point 1 ............................................ 14 Figure 7: MSL D Upper Strain Gage PSD Plot at Test Point 1............................................. 15 Figure 8: MSL D Lower Strain Gage PSD Plot at Test Point 1 ............................................ 15 Figure 9: MSL A Upper Strain Gage PSD Plot at Test Point 2 ........................................... 16 Figure 10: MSL A Lower Strain Gage PSD Plot at Test Point 2 .......................................... 16 Figure 11: MSL B Upper Strain Gage PSD Plot at Test Point 2 .......................................... 17 Figure 12: MSL B Lower Strain Gage PSD Plot at Test Point 2 ........................................... 17 Figure 13: MSL C Upper Strain Gage PSD Plot at Test Point 2 .......................................... 18 Figure 14: MSL C Lower Strain Gage PSD Plot at Test Point 2 .......................................... 18 Figure 15: MSL D Upper Strain Gage PSD Plot at Test Point 2 .......................................... 19 Figure 16: MSL D Lower Strain Gage PSD Plot at Test Point 2 .......................................... 19 Figure 17: MSL A Upper Strain Gage PSD Plot at Test Point 3 .......................................... 20 Figure 18: MSL A Lower Strain Gage PSD Plot at Test Point 3 ......................................... 20 Figure 19: MSL B Upper Strain Gage PSD Plot at Test Point 3 .......................................... 21 Figure 20: MSL B Lower Strain Gage PSD Plot at Test Point 3.......................................... 21 Figure 21: MSL C Upper Strain Gage PSD Plot at Test Point 3.......................................... 22 Figure 22: MSL C Lower Strain Gage PSD Plot at Test Point 3 ......................................... 22 Figure 23: MSL D Upper Strain Gage PSD Plot at Test Point 3 .......................................... 23 Figure 24: MSL D Lower Strain Gage PSD Plot at Test Point 3 ......................................... 23 Figure 25: MSL A Upper Strain Gage PSD Plot at Test Point 3 ......................................... 24 Figure 26: MSL A Lower Strain Gage PSD Revised Limit Curves .....................................        24 Figure 27: MSL B Upper Strain Gage PSD Revised Limit Curves .....................................        25 Figure 28: MSL B Lower Strain Gage PSD Revised Limit Curves .................................. 25 Figure 29: MSL C Upper Strain Gage PSD Revised Limit Curves ....................................          26 Figure 30: MSL C Lower Strain Gage PSD Revised Limit Curves .....................................        26 Figure 31: MSL D Upper Strain Gage PSD Revised Limit Curves .....................................        27 Figure 32: MSL D Lower Strain Gage PSD Revised Limit Curves ....................................          27 iii
 
LIST OF FIGURES (cont'd.)
Figure 33: MSL A Upper Strain Gage PSD Waterfall Plot ................................................. 28 Figure 34: MSL A Lower Strain Gage PSD Waterfall Plot ................................................. 28 Figure 35: MSL B Upper Strain Gage PSD Waterfall Plot ................................................. 29 Figure 36: MSL B Lower Strain Gage PSD Waterfall Plot ................................................. 29 Figure 37: MSL C Upper Strain Gage PSD Waterfall Plot ................................................. 30 Figure 38: MSL C Lower Strain Gage PSD Waterfall Plot ................................................. 30 Figure 39: MSL D Upper Strain Gage PSD Waterfall Plot ................................................. 31 Figure 40: MSL D Lower Strain Gage PSD Waterfall Plot ................................................. 31 Figure 41: MSL Strain Gage Time History RMS Trends ................................................... 32 Figure 42: MSL A Upper Unit 1 vs. Unit 2 Comparison ...................................................... 33 Figure 43: MSL A Lower Unit 1 vs. Unit 2 Comparison ..................................................... 33 Figure 44: MSL B Upper Unit 1 vs. Unit 2 Comparison ..................................................... 34 Figure 45: MSL B Lower Unit 1 vs. Unit 2 Comparison ...................................................... 34 Figure 46: MSL C Upper Unit 1 vs. Unit 2 Comparison ...................................................... 35 Figure 47: MSL C Lower Unit 1 vs. Unit 2 Comparison ..................................................... 35 Figure 48: MSL D Upper Unit 1 vs. Unit 2 Comparison ...................................................... 36 Figure 49: MSL D Lower Unit I vs. Unit 2 Comparison ..................................................... 36 Figure 50: Main Steam Line 'B' Piping - % of Allowables (RMS) .....................................        37 Figure 51: Main Steam Line 'C' Piping - % of Allowables (RMS) .....................................        37 Figure 52: Feedwater Piping - % of Allowables (RMS) ..................................................... 38 Figure 53: Reactor Recirculation 'A' Loop Piping - % of Allowables (RMS) ................... 38 Figure 54: RHR 'A' Loop Inside Containment Piping - % of Allowables (RMS) ............. 39 Figure 55: Reactor Recirculation 'B' and RHR 'B' Loop Inside Containment Piping .....                      39 Figure 56: RHR HV151FO15A & B Valves (Outside Containment)% of Allowables (RMS) .....                      40 Figure 57: RHR HV151FO17A & B Valves (Outside Containment)% of Allowables (RMS) ......                    40 iv
 
ACRONYMS AND ABBREVIATIONS Short Form                        Description ASME        American Society of Mechanical Engineers CLTP        Current License Thermal Power (Formerly 3489 MWth)
EPU        Extended Power Uprate FE          Finite Element FIV        Flow Induced Vibration Hz          Hertz (Cycles per Second)
HPCI        High Pressure Coolant Injection LCF        Limit Curve Factor Mlbm/hr    Millions Pound-Mass per Hour MSL        Main Steam Line MWth        Mega-Watts - Thermal OLTP        Original License Thermal Power (3293 MWth)
PSD        Power Spectral Density RCIC        Reactor Core isolation Cooling RHR        Residual Heat Removal RMS        Root Mean Square RWCU        Reactor Water Clean-Up SRV        Safety Relief Valve (Main Steam)
VPF        Vane Passing Frequency v
 
1.0    Executive Summary This report provides a summary of the SSES Unit 2 replacement steam dryer monitoring instrumentation (Main Steam Line Strain Gage) and flow induced vibration (FIV) measurements at the targeted 114.0% CLTP test plateau (3952 MWth). This data was collected at the actual power levels and core flows indicated in Table 1:
Table 1: Power/Core Flow Data Collection Conditions Test Point      Thermal Power (MWth)              Core Flow (Mlbm/r) 1                  3950.5                            104.1 2                  3941.2                            99.9 3                  3939.5                            106.1 The main steam line (MSL) strain gage locations are documented in Reference 1. Plant data log sheets for each Table 1 test point are contained in Appendix A. The data log sheets provide a record of plant conditions at these power conditions.
The MSL strain gage data demonstrated that sufficient steam dryer margin (approximately 100%) to the ASME endurance limit of 13,600 PSI exists. The analysis of the piping accelerometer FIV data confirms that there is adequate margin to the ASME limits in the SSES Main Steam, Feedwater, and Reactor Recirculation system piping.
2.0    Main Steam Line Strain Gage Data Analysis 2.1    Power Spectral Density Figures 1 through 32 provide power spectral density (PSD) plots of MSL strain gage readings. The level 1 and level 2 monitoring curves for each strain gage location are also plotted on each figure. The strain values represent average strain values observed over a 180-second test time period. A data-sampling rate of 2500 Hz was used in the data processing. The test data was band-pass filtered between 3 and 250 Hz to be consistent with the load definition used in the replacement dryer structural analysis in Reference 2.
There is substantial noise from the 60 Hz alternating current and the recirculation pump power supply, thus filtering of this electrical noise was performed. Also the reactor recirculation pump vane passing frequencies were filtered from the data sets. Testing on the instrumented Unit 1 steam dryer (({
                                                                                                *(2)}} }
Reference 2 documented that the (( {
                                                                    *(2)}}} The filters applied to the data collected at the respective test points are identified in Tables 2, 3 and 4 below:
Noise peaks at approximately 142.5 HZ were noted during the primary system hydrostatic test prior to plant start-up. This is a plant condition where systems are pressurized to operating levels but no steam flow exists. As Unit 2 ascended in power, this noise peak did not increase in amplitude. The source of this noise could not be Page 1
 
determined but it has been conclusively shown that it is not related to power and/or steam flow and therefore filters have been applied to eliminate it.
Table 2: PSD Notch Filter Specifications for 104.1 Mlbm/hr Data (Test Point 1)
Ill fit  Frequency        Width                              Origin
                  .1-        4 i1        i
                  .5-        4
                  +          I III Table 3: PSD Notch Filter Specifications for 99.9 Mlbmhr Data (Test Point 2) fit Frequency        Width                              Origin I          4 I          4
                .1          4 I          I
                .1          4 (2)1) )
Page 2
 
Table 4: PSD Notch Filter Specifications for 106.1 Mlbmhr Data (Test Point 3)
((t  Frequency      Width                                Origin i        i*
PSDs were calculated on 2 second blocks of data from the test time period (180 seconds).
In order to increase the number of spectral averages, the data blocks were overlapped by 50%. The PSDs were calculated using a Hanning window and a 0.5 Hz bin size. The resulting PSDs were then linearly averaged and are presented as Figures 1 through 32.
This method of data processing was used to provide the results in a format consistent with the processing used to develop the monitoring curves.
There are also two monitoring (limit) curves included with the PSD plots. The level 1 monitoring curve represents the response of the SSES dryer finite element (FE) model under the design acoustic load conditions factored by the minimum component analysis margin to the endurance limit. The level 2 monitoring curve is based on 80% of the level 1 curve. A more complete description of the limit curves and how they are generated is included in Reference 3 and Reference 4.
Prior to exceeding 3733 MWth (107% CLTP) one of the four strain gages at the MSL B Lower location failed low. That strain gage was removed from the MSL B Lower average calculation. Upon ascension to full EPU power (114% CLTP) an additional MSL B Lower strain gage failed high. This strain gage was also eliminated from the MSL B Lower average. Only two strain gages were left in the MSL B Lower average upon the final power ascension to full EPU power. The limit curves were generated, in accordance with Reference 4, using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP). For MSL B Lower the limit curves were based on the two-strain gage average. These monitoring curves provide guidance for evaluating the measured dryer response with respect to the structural analysis results at full EPU power (114%
CLTP).
Table 5 below shows the maximum strain gage reading for 3950.5 MWth and 104.1 Mlbm/hr (Test Point 1) as a percent of monitoring limits generated in accordance with Reference 4 using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP).
All values of strain were below the level 1 and level 2 monitoring limits. The data is plotted with the monitoring limits in Figures 1 through 8.
Page 3
 
Table 5: Maximum MSL Strain Gage Readings @ 3950.5 MWth and 104.1 MlbmJhr Expressed as a Ratio of the Monitoring Limits (Test Point 1)
((I Strain Gage Location        % of Level 1            % of Level 2      Frequency I11)} }
Table 6 below shows the maximum strain gage reading for 3941.2 MWth and 99.9 Mlb,,/hr (Test Point 2) as a percent of monitoring limits generated in accordance with Reference 4 using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP).
All values of strain were below the level 1 and level 2 monitoring limits. The data is plotted with the monitoring limits in Figures 9 through 16.
Table 6: Maximum MSL Strain Gage Readings @ 3941.2 MWth and 99.9 Mlbmhr Expressed as a Ratio of the Monitoring Limits (Test Point 2)
((
Strain Gage Location        % of Level 1      1 % of Level 2          Frequency
                            -I-                    4                    F
                            +                    4
                            +                                          F
( /) }}
Page 4
 
Table 7 below shows the maximum strain gage reading for 3939.5 MWth and 106.1 Mlbm/hr (Test Point 3) as a percent of monitoring limits generated in accordance with Reference 4 using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP).
All values of strain are below the level 1 and level 2 monitoring limits. The data is plotted with the monitoring limits in Figures 17 through 24.
Table 7: Maximum MSL Strain Gage Readings @ 3939.5 MWth and 106.1 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 3)
{t, Strain Gage Location        % of Level 1            % of Level 2      Frequency
: 2)  I A stress evaluation was conducted using the F-Factor and RMIS methodology documented in Reference 3 and Reference 4. The results of that analysis are documented in Section 2.3 below and in Tables 8 through 10. (({
(2)H)
Page 5
 
2.2    Trending For trending purposes, filtered MSL strain gage PSDs for powers up to 114.0% of CLTP (3952 MWth) have been plotted in a waterfall format and are presented in Figures 33 through 40. Figure 41 is a trend plot of the RMS value of the sample time histories plotted against total steam flow. Figures 33 through 41 show that MSL strains are I II}                                                          (    }
As noted in Section 2.1, MSL B Lower had only two strain gages in its average upon ascension to full power. This had the effect of increasing the noise floor for that location.
The step change in the MSL B Lower plot in Figure 41 resulted from the increase in the noise floor.
MSL strain gages mounted on the A and D steam lines have the highest magnitude readings. This is attributed to the 15 Hz peak being reinforced by the safety relief valve (SRV) dead-legs on these two steam lines, as discussed in References 5 and Reference 6.
2.3    Unit 1 vs. Unit 2 Data Comparison The Unit 2 MSL strain gage PSDs are similar to the PSDs measured on Unit 1 in 2010 in both frequency content and magnitude. Figures 42 through 49 show Unit 1 3947 MWth
@ 100 Mlbm/hr data plotted with Unit 2 3941 MWth @ 100 Mlbm/hr data. An examination of Figures 42 through 49 demonstrates that the acoustic signatures of Unit 1 and Unit 2 are similar. As noted in above the Unit 2 MSL B Lower strain gage reading is composed of only 2 out of 4 strain gages. This resulted in a higher noise floor. Figure 45 clearly shows this effect.
As an additional comparison of the acoustic data generated by Unit 1 and Unit 2, an F-Factor and RMS analyses (as described in Reference 3 and Reference 4) were conducted on two similar sets of MSL strain gage data. These analyses were performed to generate estimates of dryer stresses at the current operating plateau. The Unit 1 data set was taken at a reactor power of 3948 MWth and a core flow of 102 Mlb /hr. The Unit 2 data set was taken at a reactor power of 3939.5 MWth and a core flow of 106.1 Mlbm/hr.
As described in Reference 3 and Reference 4, three separate analyses were performed on each of the data sets. The data sets were filtered to remove the recirculation system pump vane passing peaks. The results presented below exclude estimates of stresses that result from pump vane passing peaks. The effects of the vane passing peaks on total steam dryer stresses are discussed in Reference 2. Tables 8 through 10 contain the results of the analyses.
Page 6
 
Table 8: Adjusted Stress with Bias and Uncertainty and LCF ACM Analysis F-Factor Method Adjusted Peak Stress (Excluding Vane Passint  Effects)
Component                      Unit 1          Unit 2 4              .4 i              .4 i              .4 4              1 i              .4 (2)1 }}
Table 9: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis F-Factor Method M{
Adjusted Peak Stress (Excludin2 Vane PassiniUEffects)
Component                I    Unit 1    1    Unit 2 4              .4 4                4-i              +
i              +
(2) }1}
Page 7
 
Table 10: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis RMS Method
((
AdCusted Peak Stress (ExcludinU    Vane Passim! Effects)
Component                        Unit 1            Unit 2 i                  i I                  I i                  i (2))1I1 An examination of Tables 8 through 10 further demonstrates the (({
(2)11 2.4      Steam Dryer Evaluation Summary Based on the current margins shown in Tables 8 through 10 and in Figures 1 through 32, there is adequate projected margin (approximately 100%) to the steam dryer ASME endurance limit of 13,600 PSI for continued power operation at 3952 MWth. The presented data also validates the conclusion that the steam dryer stress analysis based on the instrumented Unit 1 steam dryer (presented in Reference 2), is applicable to the Unit 2 steam dryer.
3.0  Piping Flow Induced Vibration 3.1      Introduction Piping accelerometers on the main steam, feedwater, reactor recirculation, residual heat removal (RHR), and reactor water cleanup (RWCU) systems were monitored during start-up. Key locations were selected based on geometry and the expected potential for vibration-related problems or maximum pipe stress. For main steam, the accelerometers were located on the "B" and "C" lines, since these are expected to be the most active.
These steam lines have active flow under the SRV branch lines, as well as the HPCI and RCIC system steam supply branch connections. Accelerometers were also located at, or near, the above mentioned branch lines of interest. In all, 74 accelerometers at 33 locations were monitored during start-up.
Page 8
 
Prior to the start-up, two RMS acceptance levels were calculated for each accelerometer on the main steam and feedwater systems. A level 1 value was determined based on vibration calculations using ASME OM-3 (Reference 7) allowable stresses. A level 2 value was conservatively established for each accelerometer at 80% of level 1. The accelerations used in the vibration analyses were "zero to peak" values (consistent with ASME OM-3) and conservative factors were used to determine equivalent RMS values.
The Reactor Recirculation/RHR/RWCU system accelerometers were assigned                  only conservative level 2 RMS and "zero-to-peak" allowable values, since these systems      were negligibly affected by EPU. If both criteria (i.e., RMS and "zero-to-peak")            were exceeded for a given instrument, then a more detailed engineering evaluation            was performed.
3.2      Data Collection Scope Formal monitoring for the effects of FIV on piping was initiated at the target test point of 2569 MWth (-65% full EPU power). Data was also collected and analyzed at targeted test points of 3293 MWth (OLTP), 3733 MWth (107% CLTP), 3855 MWth (110.5%
CLTP), and for several core flow conditions at 3952 MWth (114% CLTP), as described in Table 1 above. In addition, piping FIV was monitored on an hourly basis, and general plant walk-downs were continuously performed during power ascension from 3733 MWth to 3855 MWth, as well as from 3855 MWth to 3952 MWth.
Detailed plant walk downs of piping and components were performed for most systems affected by Extended Power Uprate located outside the drywell. These walk downs were performed at the targeted test points 3293 MWth, 3733 MWth, 3855 MWth, and 3952 MWth. The walk downs were performed for piping and components located in accessible and inaccessible (high radiation) areas. A remote controlled, mobile camera was used to observe the vibration in the inaccessible areas.
3.3      Data Analysis Methodology Spectral analyses for each accelerometer were performed at each of the test points for a time period of 140 seconds. The data was evaluated based on 4 second blocks of data and to increase the number of spectral averages, the data blocks were overlapped by 50%.
The data was band-pass filtered between 2 Hz and 250 Hz, with a 0.25 Hz bin size to provide for consistency with the method used to develop the acceptance criteria for the accelerometers.
No significant electrical noise was observed at the 60 Hz multiples of the power supply frequencies, so notch filters were not applied. Multiples of the reactor recirculation pump vane passing frequency (VPF) were observed; however, the VPF frequencies were not filtered, since they represent true mechanical vibration (i.e., displacement/stress).
Page 9
 
3.4      Results Figures 50 through 52 show the percent of allowable RMS acceleration versus total main steam flow/feed water flow trends during the power ascension to 3952 MWth. In addition, Figures 53 through 57 show the percent of allowable RMS acceleration versus core flow trends for the Reactor Recirculation, RHR, and RWCU system instruments.
Throughout power ascension, one (1) accelerometer, VE26721 (see figure 51 on page 37) located on main steam line C, degraded to the point where it's output was judged to be questionable (i.e., very high output). The loss of one accelerometer is acceptable since nearby accelerometers showed values within the ASME OM-3 acceptance criteria. This condition was documented in the corrective action program by AR1435130.
The accelerations at four (4) accelerometers, listed below, exceeded the conservative RMS allowable but were less than the governing zero to peak allowables.
"    VE26723 (see figure 53 on page 38) located    on Recirculation Loop A, N2K nozzle, 12" riser.
* VE26724 (see figure 53 on page 38) located    on Recirculation Loop A, 4" Bypass valve around discharge valve
* VE26730 (see figure 53 on page 38) located    on Recirculation Loop A, 2" RWCU drain at bottom of recirculation pipe.
"    VE26760 (see figure 55 on page 39) located    on Recirculation Loop B, N2E nozzle, 12" riser.
The walk downs were performed for piping and components located in accessible and inaccessible (i.e., high radiation) areas. As expected, the vibration observed increased with power ascension.        In general, all observed vibration was within previously established acceptance criteria.          Walk down observations of the feedwater instrumentation and piping indicated a tubing run and two non-safety related piping runs (one 2" and one 4") had increased but acceptable vibration response.          CR 1440515 documented this condition in the corrective action program for a future review of long-term reliability improvements. In 2009 CRA 1152061 documented a similar condition with feedwater instrumentation tubing in the corrective action program. This corrective action document resulted in a modification adding supports to 2 tubing runs.
3.5      Piping Summary During the Unit 2 power ascension to 3952 MWth, piping vibration levels were monitored to assess effects of flow-induced vibration (FIV). Trending demonstrated that all valid accelerations/displacements were within pre-established limits, based on ASME OM-3 allowable stresses.
The piping/components walk-down results were as expected; general vibration levels increased during power ascension and the overall response of piping and components were within established criteria.
Page 10
 
4.0   
 
==References:==
: 1. PPL Letter To USNRC, PLA-6176 (Figure 31-1), "Susquehanna Steam Electric Station Proposed License Amendment No. 285 For Unit 1 Operating License No. NPF-14 And Proposed License Amendment No. 253 For Unit 2 Operating License No. NPF-22 Extended Power Update Application Regarding Steam Dryer And Flow Effects Request For Additional Information Responses", dated 4/27/2007
: 2. GE-Hitachi Nuclear Energy Engineering Report 0000-0095-2113-P-RO, "Susquehanna Replacement Steam Dryer Updated Stress Analysis At Extended Power Uprate Conditions", Class III, February 2009 (Provided via PPL Letter To USNRC, PLA-6484, dated 2/27/09)
: 3. GE-Hitachi Nuclear Energy Engineering Report 0000-0096-5766-P-R1, "Revised Susquehanna Replacement Steam Dryer Limit Curves - Main Steam Line Mounted Instrumentation", Class III, February 2009 (Provided via PPL Letter To USNRC, PLA-6484, dated 2/27/09)
: 4. GE-Hitachi Nuclear Energy Engineering Report 0000-0101-0766-P-RO, "Main Steam Line Limit Curve Adjustment During Power Ascension", Class III, April 2009 (Provided via PPL Letter To USNRC, PLA-65 10, dated 5/12/09)
: 5. PPL Letter To USNRC, PLA-6076 (Attachment 10), "Susquehanna Steam Electric Station Proposed License Amendment No. 285 For Unit 1 Operating License No. NPF-14 And Proposed License Amendment No. 253 For Unit 2 Operating License No. NPF-22 Constant Pressure Power Uprate", dated 10/11/2006
: 6. PPL Letter To USNRC, PLA-6176 (Questions 4, 7, and 31), "Susquehanna Steam Electric Station Proposed License Amendment No. 285 For Unit 1 Operating License No.
NPF-14 And Proposed License Amendment No. 253 For Unit 2 Operating License No.
NPF-22 Extended Power Update Application Regarding Steam Dryer and Flow Effects Request      for    Additional    Information    Responses",    dated    4/27/2007
: 7. ASME OMb-S/G-2005, "Standards and Guides for Operation and Maintenance of Nuclear Power Plants", Part 3, "Requirements for Preoperational and Initial Start-Up Vibration Testing of Nuclear Power Plant Piping Systems" (ASME OM-3)
Page 11
 
((t (2,)}
Figure 1: MSL A Upper Strain Gage PSD Plot at Test Point 1
{f{
(2) }} }
Figure 2: MSL A Lower Strain Gage PSD Plot at Test Point 1 Page 12
 
(2)}
1 }
Figure 3: MSL B Upper Strain Gage PSD Plot at Test Point 1 Q111)1 Figure 4: MSL B Lower Strain Gage PSD Plot at Test Point 1 Page 13
 
{i{
(21)11 Figure 5: MSL C Upper Strain Gage PSD Plot at Test Point 1 (2)}11 Figure 6: MSL C Lower Strain Gage PSD Plot at Test Point 1 Page 14
 
(2)}11 Figure 7: MSL D Upper Strain Gage PSD Plot at Test Point 1 (if (2)}}}
Figure 8: MSL D Lower Strain Gage PSD Plot at Test Point 1 Page 15
 
{f{
(2)j11 Figure 9: MSL A Upper Strain Gage PSD Plot at Test Point 2
{I{
(2)}} }
Figure 10: MSL A Lower Strain Gage PSD Plot at Test Point 2 Page 16
 
{fI (2)
Figure 11: MSL B Upper Strain Gage PSD Plot at Test Point 2 (2)1 Figure 12: MSL B Lower Strain Gage PSD Plot at Test Point 2 Page 17
 
(2)}1  I Figure 13: MSL C Upper Strain Gage PSD Plot at Test Point 2 (2 .)1}
Figure 14: MSL C Lower Strain Gage PSD Plot at Test Point 2 Page 18
 
fit (2)~)
Figure 15: MSL D Upper Strain Gage PSD Plot at Test Point 2 (it (2)} } I Figure 16: MSL D Lower Strain Gage PSD Plot at Test Point 2 Page 19
 
fit (21)} )
Figure 17: MSL A Upper Strain Gage PSD Plot at Test Point 3 (it (2)} }
Figure 18: MSL A Lower Strain Gage PSD Plot at Test Point 3 Page 20
 
{it
                                                                  *}}
(2)
Figure 19: MSL B Upper Strain Gage PSD Plot at Test Point 3
{f{
(2)}} }
Figure 20: MSL B Lower Strain Gage PSD Plot at Test Point 3 Page 21
 
((i (2)}  }
Figure 21: MSL C Upper Strain Gage PSD Plot at Test Point 3
((t (2)*}}
Figure 22: MSL C Lower Strain Gage PSD Plot at Test Point 3 Page 22
 
(2)} 11 Figure 23: MSL D Upper Strain Gage PSD Plot at Test Point 3 (2)111 Figure 24: MSL D Lower Strain Gage PSD Plot at Test Point 3 Page 23
 
2)} 1}1 Figure 25: MSL A Upper Strain Gage PSD Revised Limit Curves (21}1)
Figure 26: MSL A Lower Strain Gage PSD Revised Limit Curves Page 24
 
                                                                .(2) )}I Figure 27: MSL B Upper Strain Gage PSD Revised Limit Curves
{it (2)}  }
Figure 28: MSL B Lower Strain Gage PSD Revised Limit Curves Page 25
 
(2)) I Figure 29: MSL C Upper Strain Gage PSD Revised Limit Curves (2)}11 Figure 30: MSL C Lower Strain Gage PSD Revised Limit Curves Page 26
 
(2)}1 )
Figure 31: MSL D Upper Strain Gage PSD Revised Limit Curves 12111 Figure 32: MSL D Lower Strain Gage PSD Revised Limit Curves Page 27
 
fit (2) 11}
Figure 33: MSL A Upper Strain Gage PSD Waterfall Plot lit (2)}11 Figure 34: MSL A Lower Strain Gage PSD Waterfall Plot Page 28
 
((t (2.)111 Figure 35: MSL B Upper Strain Gage PSD Waterfall Plot
{it (2) ) I Figure 36: MSL B Lower Strain Gage PSD Waterfall Plot Page 29
 
(2)11 )
Figure 37: MSL C Upper Strain Gage PSD Waterfall Plot (2111 Figure 38: MSL C Lower Strain Gage PSD Waterfall Plot Page 30
 
(21) ) }
Figure 39: MSL D Upper Strain Gage PSD Waterfall Plot (2)} }
Figure 40: MSL D Lower Strain Gage PSD Waterfall Plot Page 31
 
(2) }}}
Figure 41: MSL Strain Gage Time History RMS Trends Page 32
 
(2)) I)
Figure 42: MSL A Upper Unit 1 vs. Unit 2 Comparison (2))}
Figure 43: MSL A Lower Unit 1 vs. Unit 2 Comparison Page 33
 
(2)})I Figure 44: MSL B Upper Unit 1 vs. Unit 2 Comparison fit Figure 45: MSL B Lower Unit 1 vs. Unit 2 Comparison Page 34
 
(2)1 I Figure 46: MSL C Upper Unit 1 vs. Unit 2 Comparison (2)j }
Figure 47: MSL C Lower Unit 1 vs. Unit 2 Comparison Page 35
 
(2)1}}
Figure 48: MSL D Upper Unit 1 vs. Unit 2 Comparison (2)j111 Figure 49: MSL D Lower Unit 1 vs. Unit 2 Comparison Page 36
 
Unit 2 - July 2011 - Main Steam line 'B' Piping - Percent of EC-PUPC-2070 RMS Allowables 100%
90%
80%
70%
o  60%
=    50%
40%
30%
20%
10%
0%
0            2            4      6          8          10      12      14      16      18 Main Steam Flow - Mlbs/hr c:\ExcelUnit2-201 1-trend-Revl-Figure 50: Main Steam Line 'B' Piping - % of Allowables (RMS)
Unit 2 - July 2011 - Main Steam Line 'C' Piping - Percent of EC-PUPC-2070 RMS Allowables 100%
90%
80%
70%
(n a 60%
a a
50%
C 40%
0.
30%
20%
10%
0%
0            2            4      6          8          10      12      14      16      18 c:AExcel\Unit2-201 1-trend-Revi -          Main Steam Flow - Mlbs.hr Figure 51: Main Steam Line 'C' Piping - % of Allowables (RMS)
Page 37
 
Unit 2 - July 2011 - Feedwater Piping - Percent of EC-PUPC-2070 RMS Allowables 50%6                                  L 45%
40%
VE2676
                            -U- VE2677 35%
u,                                VE2677 X-
                                -VE2677
* 30%                      ~--I-VE26T77 0-U- .Q                          VE2677 o
25%V
                            -+-VE2677
~C-                              VE2677 20%-                      -    VE2677
: 0.                              *VE2677 150/%
VE2677 10%-
5%
0%
0                2            4            6        8          10          12    14        16        18 c:\FxceI\Unit2-201 1-trend-Revl-                    Feedwater Flow - Mlbs/hr Figu re 52: Feedwater Piping - % of Allowables (RMS)
Unit 2 - July 2011 - Recirculation Loop 'A' Piping - Percent of Simple RMS Allowables 150%
140% -
130% -
120%
110%--
U) 100%
    .2 cc  90%
80%
VLeu/eo rmM-, Ilr,    riser 70%
                  -.'-  VE26724 RRS-A 4" bypass riser 60%      - -VE26725      RRS-A 4' bypass run 50%      -* -- VE26726 RRS-A dead end
                  ,--VE26727 RRS-A Decon 40%
                  -VE26728 RRS-A 4" RWCU 30%      VE26729 RRS-A 2" RWCU E-W 20%      -VE26730        RRS-A 2 RWCU N-S
                          /        DD 3M-A  IA'-1 A 10%
0%
0            10        20          30  40      50        60        70    80    90      100  110 c:\Excel\Unit2-201 1-trend-Revl -                Total Core Flow - Mlbs/hr Figure 53: Reactor Recirculation 'A' Loop Piping - % of Allowables (RMS)
Page 38
 
Unit 2 - July 2011 - RHR 'A' Inside of Containment Piping - Percent of RMS Allowables 100%-*
90% 7 80% -                --    - - - -    - - ----            - -    - -    - - - - - - - - - -  - -
70%---VE26732                RH R-A F050A valve vert
                          ---  VE26733 RHR-A F050A valve E-W
'A, E
                          -- -VE26734  RHR-A F050A valve N-S 0
.0                        -X- VE26759 RHR-A F050A valve body 0
.2    50%.                0-IN- VE26735 RHR-A 24" vert
                          --    VE26736 RHR-A 24" axial 0
                              ' VE26737 RHR-A 24" horz 40%-
                          -VE26738      RHR-A near wall
: a.          30%--                VE26780 RH R-A Perp VE738 30%-
0%
0          10        20      30        40          50      60        70  80    90      100  110 c:\Excel\Unit2-201 1-trend-Revl-                  Total Core Flow - Mlbw/hr Figure 54: RHR 'A' Loop Inside Containment Piping - % of Allowables (RMS)
Unit 2 - July 2011 - RRS 'B' and RHR 'B' loop Piping - Percent of Simple RMS Allowables 110%
100%
90%
80%
70%
I
.0 60%
50%
40%
30%
20%
10%
0%
0          10        20        30        40        50      60        70  80    90      100  110 c:\Excel\Unit2-201 1-trend-Revl -                  Total Core Flow - Mlbs/hr Figure 55: Reactor Recirculation 'B' and RHR 'B' Loop Inside Containment Piping
                                  % of Allowables (RMS)
Page 39
 
Unit 2- July 2011 - HV251FO15A & B Valves - Percent of EC-PUPC-2070 Allowable 50%      -                                                    'E 45%
40%                  ---- VE26739 RHR-A F15A operator horz
                          -U--VE26740 RHR-A P15A operator vert 35%
3VE26741                            RHR-A F15A operator para
                          -- -VE26742 RH R-A F15A valve horz
_030%
.                          ---- VE26743 RHR-A F15A valve vert 25%                    -    VE26749 RHR-B F15B operator horz
                          ---  VE26750 RHR-B F15B operator vert 0-                      VE26751 RHR-B F15B operator para 20%-                  -    VE26752 RHR-B F15B valve horz
: o.                  ÷VE26753 RHRt-B F1 5B valve vert 10%_*
5%
0%_
0        10        20      30        40        50      60        70 80 90      100    110 c:\Excel\Unit2-2011-trend-Revl-                  Total Core Flow - Mlbs/hr Figure 56: RHR HV151FO15A & B Valves (Outside Containment)% of Allowables (RMS)
Unit 2 - July 2011 - HV251F017A & B Valves - Percent of EC-PUPC-2070 Allowable 50%
45%
40%
35%
0) 0 30%
o 25%
C  20%
0.
15%
100%
5%
0%
0          10        20        30      40        50        60      70 80  90      100  110 c:\Excel\Unit2-201 1-trend-Rev1-                Total Core Flow - Mlbs/hr Figure 57: RHR HV151FO17A & B Valves (Outside Containment)% of Allowables (RMS)
Page 40
 
Appendix A Plant Data Log Sheets Page 41
 
Steam Dryer Data Log Sheets Start Date/fime                                              7/26/2011 12:04          (Start)
I          I Computer ID            Value        Units Thermal Power (Instantaneous)                            u02.nba01            3950.49      MWth Thermal Power (15 min Ave.)                              u02.nbal 01          3948.23      MWth Electrical Power                                          u02.tra178          1310.28      Mwe Total Core Flow                                            u02.nffl2            104.10    M Ibm/hr Recirc Loop Flow A                                        u02.traO28            51.80    M IbnVhr Recirc Loop Flow B                                        u02.traO29            52.48    M Ibrm/hr Recirc Loop A Suction Temperature                        u02.nrt01            526.59        °F Recirc Loop B Suction Temperature                        u02.nrt02            527.10        OF Core Plate DIP                                            u02.traO27            17.28        PSI Indicated Steam Flow Line A                                u02.nff0l            4.18      M Ibrn/hr Indicated Steam Flow Line B                                u02.nff02            4.38      M Ibm/hr Indicated Steam Flow Line C                                u02.nff03            4.28      M Ibm/hr Indicated Steam Flow Line D                                u02.nffO4            4.21      M Ibmn/hr Indicated Total Steam Flow                                u02.traO97            17.01    M Ibm/hr Indicated Feedwater Flow                                  u02.traO98            16.56    M Ibm/hr Feedwater Temperature Line A                              u02.tral02            400.99        °F Feedwater Temperature Line B                              u02.tral03            402.44        °F Feedwater Temperature Line C                              u02.tral04            401.81        OF Rx Dome Pressure Narrow Range                            u02.tra2O8          1031.31      PSIG Rx Dome Pressure Wide Range                              u02.tra2O9          1030.57      PSIG Steam Dome Temperature                                    u02.nfa05            549.98        °F Recirculation Pump A Speed                          vm.2p401aI2a-rrp tac      1548.00      RPM Recirculation Pump B Speed                          vm.2p401 b/2bjrrpitac      1534.00      RPM Recirculation Pump A Power                                u02.nrj5l            4.53        MWe Recirculation Pump B Power                                u02.nrj52            4.41        MWe CRD Cooling Header Flow                                  u02.nefO3              61.87      GPM CRD System Flow                                          u02.nef01              61.88      GPM CRD System Temperature                                    u02.ndt05            140.65        °F Bottom Head Drain Temp                                    u02.tra2O6            530.81        °F Reactor Water Level Narrow Range                          u02.tra142            34.75    Inches H20 Reactor Water Level Narrow Range                          u02.nfl02            35.35    Inches H20 Reactor Water Level Narrow Range                          u02.nfl03            34.11    Inches H20 Reactor Water Level Wide Range                            u02.tra143            31.44    Inches H20 Recirculation Pump A Vane Passing Freq.                      n/a              129.00        Hz Recirculation Pump B Vane Passing Freq.                      n/a              127.83        Hz Recirculation Pump A Motor Frequency                          n/a                52.12        Hz Recirculation Pump B Motor Frequency                          n/a                51.65        Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM)                                    u02.nff77              5.53    M Ibm/hr Feed Flow Line B (LEFM)                                    u02.nff78              5.51    M Ibm/hr Feed Flow Line C (LEFM)                                    u02.nff79              5.47    M Ibm/hr CRD Flow                                                  u02.ndf01              0.03    M Ibn/hr Total Feedwater Flow                                          n/a                16.54    M Ibn/hr Steam Flow Line A                                            n/a                4.06    M lbrn/hr Steam Flow Line B                                            n/a                4.25    M lbmlhr Steam Flow Line C                                            n/a                4.15    M Ibm/hr Steam Flow Line D                                            n/a                4.08    M Ibm/hr Total Steam Flow                                              n/a                16.54    M Ibm/hr Test Point 1 - 3950.5 MWh / 104.1 Mlbmlhr - Start Page 42
 
Steam Dryer Data Log Sheets Finish IDate/Time                                I        712612011 12:07        I  (Finish)
Comouter ID                Value    Units Thermal Power (Instantaneous)                          u02.nba01              3950.33    MWth Thermal Power (15 min Ave.)                            u02.nba101              3949.33    MWth Electrical Power                                      u02.tra178              1311.21    Mwe Total Core Flow                                        u02.nffl 2              104.11  M Ibm/hr Recirc Loop Flow A                                    u02.traO28                51.90  M Ibm/hr Recirc Loop Flow B                                    u02.tra029                52.60  M Ibm/hr Recirc Loop A Suction Temperature                      u02.nrt0l              526.61      TF Recirc Loop B Suction Temperature                      u02.nrtO2              527.18      °F Core Plate D/P                                        u02.traO27                17.28      PSI Steam Flow Line A                                      u02.nff01                4.18  M Ibm/hr Steam Flow Line B                                      u02.nff02                4.39  M Ibm/hr Steam Flow Line C                                      u02.nff03                4.28  M Ibm/hr Steam Flow Line D                                      u02.nff04                4.21  M Ibm/hr Total Steam Flow                                      u02.traO97                17.02  M Ibm/hr Feedwater Flow                                        u02.traO98                16.56  M Ibm/hr Feedwater Temperature Line A                          u02.tralO2              401.01      TF Feedwater Temperature Line B                          u02.tralO3              402.34      -F Feedwater Temperature Line C                          u02.tra104              401.55      °F Rx Dome Pressure Narrow Range                          u02.tra2O8              1031.28    PSIG Rx Dome Pressure Wide Range                            u02.tra2O9              1030.66    PSIG Steam Dome Temperature                                  u02.nfa05              549.99      °F Recirculation Pump A Speed                        vm.2p401a/2a rrpjac          1548.00    RPM Recirculation Pump B Speed                      vm.2p401 b/2b-rrpjac          1534.00    RPM Recirculation Pump A Power                              u02.nrj5l                4.54    MWe Recirculation Pump B Power                              u02.nrj52                4.42    MWe CRD Cooling Header Flow                                u02.nef03                61.88    GPM CRD System Flow                                        u02.nef01                61.88    GPM CRD System Temperature                                  u02.ndt05              140.68      °F Bottom Head Drain Temp                                u02.tra206              530.83      °F Reactor Water Level Narrow Range                      u02.tra142                34.68  Inches H20 Reactor Water Level Narrow Range                        u02.nf1O2                35.36  Inches H20 Reactor Water Level Narrow Range                        u02.nflO3                34.19  Inches H20 Reactor Water Level Wide Range                        u02.tra143                31.60  Inches H20 Recirculation Pump A Vane Passing Freq.                    n/a                  129.00      Hz Recirculation Pump B Vane Passing Freq.                    n/a                  127.83      Hz Recirculation Pump A Motor Frequency                      n/a                  52.12      Hz Recirculation Pump B Motor Frequency                      n/a                  51.65      Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM)                                u02.nff77                5.53    M Ibm/hr Feed Flow Line B (LEFM)                                u02.nff78                5.51    M Ibm/hr Feed Flow Line C (LEFM)                                u02.nff79                5.47    M Ibm/hr CRD Flow                                                u02.ndf01                0.03    M Ibm/hr Total Feedwater Flow                                      n/a                  16.54    M Ibm/hr Steam Flow Line A                                          n/a                  4.05    M Ibm/hr Steam Flow Line B                                          n/a                    4.25    M Ibm/hr Steam Flow Line C                                          n/a                  4.15    MIbm/hr Steam Flow Line D                                          n/a                  4.08    MIbm/hr Total Steam Flow                                          n/a                  16.54    MIbm/hr Test Point 1 - 3950.3 MWth /104.1 Mlhb,,/hr - Finish Page 43
 
Steam Dryer Data Log Sheets Start Date/Time                                            7/27/2011 10:01        (Start)
Computer ID          Value      Units Thermal Power (Instantaneous)                            u02.nba0l          3941.21    MWth Thermal Power (15 min Ave.)                            u02.nba101          3941.23    MWth Electrical Power                                        u02.tral78        1316.61      Mwe Total Core Flow                                          u02.nffl2            99.91    M Ibm/hr Recirc Loop Flow A                                      u02.traO28          50.38    M Ibm/hr Recirc Loop Flow B                                      u02.traO29          49.82    M Ibm/hr Recirc Loop A Suction Temperature                        u02.nrt0l          525.78        °F Recirc Loop B Suction Temperature                        u02.nrtO2          526.46        TF Core Plate D/P                                          u02.traO27          16.02      PSI Indicated Steam Flow Line A                              u02.nff0l            4.19    M Ibmn/hr Indicated Steam Flow Line B                              u02.nffO2            4.38    M Ibm/hr Indicated Steam Flow Line C                              u02.nff03            4.27    M Ibm/hr Indicated Steam Flow Line D                              u02.nff04            4.20    M Ibm/hr Indicated Total Steam Flow                              u02.traO97          17.01    M Ibm/hr Indicated Feedwater Flow                                u02.traO98          16.52    M Ibm/hr Feedwater Temperature Line A                            u02.tralO2        400.72        °F Feedwater Temperature Line B                            u02.tralO3        402.31        TF Feedwater Temperature Line C                            u02.tralO4        401.26        TF Rx Dome Pressure Narrow Range                            u02.tra2O8        1030.99    PSIG Rx Dome Pressure Wide Range                              u02.tra2O9        1030.51    PSIG Steam Dome Temperature                                  u02.nfa05          549.98        °F Recirculation Pump A Speed                        vm.2p401a/2a-rrp tac    1493.00      RPM Recirculation Pump B Speed                        vm.2p401b/2b-rrp-tac    1471.00      RPM Recirculation Pump A Power                                u02.nrj5l          4.10      MWe Recirculation Pump B Power                               u02.nrj52          3.91      MWe CRD Cooling Header Flow                                  u02.nef03            61.94      GPM CRD System Flow                                          u02.nef0l            61.97      GPM CRD System Temperature                                  u02.ndt05          137.68        °F Bottom Head Drain Temp                                  u02.tra2O6          529.95        OF Reactor Water Level Narrow Range                        u02.tral42          34.92  Inches H20 Reactor Water Level Narrow Range                        u02.nflO2            35.79  Inches H20 Reactor Water Level Narrow Range                        u02.nfl03            33.74  Inches H20 Reactor Water Level Wide Range                          u02.tral43          31.78  Inches H20 Recirculation Pump A Vane Passing Freq.                      n/a            124.42        Hz Recirculation Pump B Vane Passing Freq.                      n/a            122.58        Hz Recirculation Pump A Motor Frequency                        n/a              50.27        Hz Recirculation Pump B Motor Frequency                        n/a              49.53        Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM)                                  u02.nff77            5.52    M Ibm/hr Feed Flow Line B (LEFM)                                  u02.nff78            5.51    M Ibm/hr Feed Flow Line C (LEFM)                                  u02.nff79            5.46    M Ibm/hr CRD Flow                                                u02.ndf0l            0.03    M lbn/hr Total Feedwater Flow                                        nra              16.53    M lbrrdhr Steam Flow Line A                                            n/a              4.06    M Ibm/hr Steam Flow Line B                                            n/a              4.25    M Ibm/hr Steam Flow Line C                                            n/a              4.14    M Ibm/hr Steam Flow Line D                                            n/a              4.07    M Ibm/hr Total Steam Flow                                            n/a              16.53    M Ibm/hr Test Point 2 - 3941.2 MW,h / 99.9 MIbJhr - Start Page 44
 
Steam Dryer Data Log Sheets Finish Datef'ime                                            7/27/2011 10:03      (Finish)
Computer ID          Value      Units Thermal Power (Instantaneous)                          u02.nba01          3941.04    MWth Thermal Power (15 min Ave.)                            u02.nba101          3941.14    MWth Electrical Power                                        u02.tra178        1317.07    Mwe Total Core Flow                                          u02.nff12          99.90    M Ibm/hr Recirc Loop Flow A                                      u02.traO28          50.13    M Ibm/hr Recirc Loop Flow B                                      u02.traO29          49.75    M Ibm/hr Recirc Loop A Suction Temperature                      u02.nrt01          525.78      OF Recirc Loop B Suction Temperature                      u02.nrt02          526.46      OF Core Plate D/P                                          u02.traO27          15.99      PSI Steam Flow Line A                                        u02.nff01          4.18    M Ibm/hr Steam Flow Line B                                        u02.nff02          4.38    M Ibm/hr Steam Flow Line C                                        u02.nff03          4.27    M Ibm/hr Steam Flow Line D                                        u02.nff04          4.20    M Ibm/hr Total Steam Flow                                        u02.traO97          17.01    M Ibm/hr Feedwater Flow                                          u02.traO98          16.52    M Ibm/hr Feedwater Temperature Line A                            u02.tral02          400.71      °F Feedwater Temperature Line B                            u02.tral03          402.31      °F Feedwater Temperature Line C                            u02.tral04          401.24      OF Rx Dome Pressure Narrow Range                          u02.tra2O8        1030.98    PSIG Rx Dome Pressure Wide Range                            u02.tra2O9        1030.51    PSIG Steam Dome Temperature                                  u02.nfaO5          549.98      °F Recirculation Pump A Speed                        vm.2p401a/2a-rrp-tac    1494.00    RPM Recirculation Pump B Speed                        vm.2p401b/2bjrp tac      1472.00    RPM Recirculation Pump A Power                              u02.nrj51          4.10      MWe Recirculation Pump B Power                              u02.nrj52          3.91      MWe CRD Cooling Header Flow                                u02.nef03            61.94    GPM CRD System Flow                                        u02.nef01            61.97    GPM CRD System Temperature                                  u02.ndt05          137.69      °F Bottom Head Drain Temp                                  u02.tra206          529.95      OF Reactor Water Level Narrow Range                        u02.tra142          35.06  Inches H20 Reactor Water Level Narrow Range                        u02.nflO2          35.29  Inches H20 Reactor Water Level Narrow Range                        u02.nflO3          33.71  Inches H20 Reactor Water Level Wide Range                          u02.tra143          31.78  Inches H20 Recirculation Pump A Vane Passing Freq.                    n/a            124.50      Hz Recirculation Pump B Vane Passing Freq.                    n/a            122.67      Hz Recirculation Pump A Motor Frequency                        n/a              50.30      Hz Recirculation Pump B Motor Frequency                        n/a              49.56      Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM)                                  u02.nff77            5.52    M Ibm/hr Feed Flow Line B (LEFM)                                  u02.nff78            5.51    M Ibm/hr Feed Flow Line C (LEFM)                                  u02.nff79            5.46    M Ibm/hr CRD Flow                                                u02.ndf01            0.03    M Ibm/hr Total Feedwater Flow                                        n/a              16.52    M Ibm/hr Steam Flow Line A                                          n/a              4.06    M Ibm/hr Steam Flow Line B                                          n/a              4.25    M Ibm/hr Steam Flow Line C                                          n/a              4.14    M Ibm/hr Steam Flow Line D                                          n/a              4.08    M Ibm/hr Total Steam Flow                                            n/a              16.52    MIbm/hr Test Point 2 - 3941 MWh / 99.9 Mibmhr - Finish Page 45
 
Steam Dryer Data Log Sheets Start Date/Time                                            7/28/2011 9:27        (Start)
Comouter ID            Value    Units Thermal Power (Instantaneous)                            u02.nba01          3939.52    MWth Thermal Power (15 min Ave.)                            u02.nbal 01        3939.69    MWth Electrical Power                                        u02.tra178          1302.80    Mwe Total Core Flow                                          u02.nffl2          106.10  M Ibm/hr Recirc Loop Flow A                                      u02.traO28            52.24  M Ibrn/hr Recirc Loop Flow B                                      u02.traO29          53.89  M Ibm/hr Recirc Loop A Suction Temperature                        u02.nrt01          527.63      °F Recirc Loop B Suction Temperature                        u02.nrt02          528.28      °F Core Plate D/P                                          u02.traO27          18.67      PSI Indicated Steam Flow Line A                              u02.nff0l            4.16    M Ibm/hr Indicated Steam Flow Line B                              u02.nff02            4.37    M Ibm/hr Indicated Steam Flow Line C                              u02.nff03            4.27    M Ibm/hr Indicated Steam Flow Line D                              u02.nff04            4.19    M Ibm/hr Indicated Total Steam Flow                              u02.traO97          17.02  M Ibm/hr Indicated Feedwater Flow                                u02.traO98          16.55  M Ibm/hr Feedwater Temperature Line A                            u02.tra1O2          400.96      OF Feedwater Temperature Line B                            u02.tralO3          402.21      °F 0
Feedwater Temperature Line C                            u02.tra1O4          401.15        F Rx Dome Pressure Narrow Range                            u02.tra2O8        1031.12    PSIG Rx Dome Pressure Wide Range                              u02.tra2O9        1030.73    PSIG Steam Dome Temperature                                  u02.nfa05          550.00      °F Recirculation Pump A Speed                        vm.2p401a/2a-rrpitac    1626.00    RPM Recirculation Pump B Speed                        vm.2p401 b/2b-rrp-tac    1596.00    RPM Recirculation Pump A Power                              u02.nrj5l            5.29      MWe Recirculation Pump B Power                              u02.nrj52            4.99      MWe CRD Cooling Header Flow                                  u02.nef03            61.88    GPM CRD System Flow                                          u02.nefOl            61.87    GPM CRD System Temperature                                  u02.ndtO5          140.41      °F Bottom Head Drain Temp                                  u02.tra2O6          532.09      °F Reactor Water Level Narrow Range                        u02.tra142          34.83  Inches H20 Reactor Water Level Narrow Range                          u02.nflO2          35.28  Inches H20 Reactor Water Level Narrow Range                          u02.nflO3          34.25  Inches H20 Reactor Water Level Wide Range                          u02.tra143          31.24  Inches H20 Recirculation Pump A Vane Passing Freq.                      n/a            135.50      Hz Recirculation Pump B Vane Passing Freq.                      n/a            133.00      Hz Recirculation Pump A Motor Frequency                        n/a              54.75      Hz Recirculation Pump B Motor Frequency                        n/a              53.74      Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM)                                  u02.nff77            5.52    M lbm/hr Feed Flow Line B (LEFM)                                  u02.nff78            5.51    M Ibm/hr Feed Flow Line C (LEFM)                                  u02.nff79            5.46    M Ibm/hr CRD Flow                                                u02.ndf01            0.03    M Ibm/hr Total Feedwater Flow                                        n/a              16.51    M Ibm/hr Steam Flow Line A                                            n/a              4.05    M Ibmn/hr Steam Flow Line B                                            n/a              4.25    M Ibm/hr Steam Flow Line C                                            n/a              4.15    MIbm/hr Steam Flow Line D                                            n/a              4.07    M Ibm/hr Total Steam Flow                                            n/a              16.51    M Ibm/hr Test Point 3 - 3939.5 MW,k / 106.1 MlbJhr - Start Page 46
 
Steam Dryer Data Log Sheets Finish Date/Time                                            7/28/2011 9:30          (Finish)
ComDuter ID              Value      Units Thermal Power (Instantaneous)                          u02.nba01              3939.51    MWth Thermal Power (15 min Ave.)                            u02.nba101            3939.50    MWth Electrical Power                                      u02.tra178            1303.46    Mwe Total Core Flow                                        u02.nffl 2            106.14  M Ibm/hr Recirc Loop Flow A                                    u02.traO28              52.36  M Ibm/hr Recirc Loop Flow B                                    u02.traO29              54.02  M Ibm/hr Recirc Loop A Suction Temperature                      u02.nrt01              527.62      °F Recirc Loop B Suction Temperature                      u02.nrtO2              528.27      °F Core Plate D/P                                        u02.traO27              18.73      PSI Steam Flow Line A                                      u02.nff01              4.16    M Ibm/hr Steam Flow Line B                                      u02.nff02              4.37    M Ibm/hr Steam Flow Line C                                      u02.nff03              4.27    M Ibmn/hr Steam Flow Line D                                      u02.nff04              4.19    M Ibm/hr Total Steam Flow                                      u02.traO97              17.02  M Ibm/hr Feedwater Flow                                        u02.traO98              16.54  M Ibm/hr Feedwater Temperature Line A                          u02.tral02              400.99      °F Feedwater Temperature Line B                          u02.tral03              402.19      OF Feedwater Temperature Line C                          u02.tral04              401.04      °F Rx Dome Pressure Narrow Range                          u02.tra2O8            1031.13    PSIG Rx Dome Pressure Wide Range                            u02.tra2O9            1030.78    PSIG Steam Dome Temperature                                  u02.nfaO5              550.00      °F Recirculation Pump A Speed                        vm.2p401a/2a rrp-jac        1626.00    RPM Recirculation Pump B Speed                        vm.2p401b/2b-rrpjac        1595.00    RPM Recirculation Pump A Power                              u02.nrj51              5.29      MWe Recirculation Pump B Power                              u02.nrj52              4.99      MWe CRD Cooling Header Flow                                u02.nef03              61.88    GPM CRD System Flow                                        u02.nef01              61.88    GPM CRD System Temperature                                  u02.ndt05              140.50      °F Bottom Head Drain Temp                                u02.tra2O6              532.09      °F Reactor Water Level Narrow Range                      u02.tra142              34.74  Inches H20 Reactor Water Level Narrow Range                        u02.nfl02              35.44  Inches H20 Reactor Water Level Narrow Range                        u02.nfI03              34.16  Inches H20 Reactor Water Level Wide Range                        u02.tra143              31.30  Inches H20 Recirculation Pump A Vane Passing Freq.                    n/a                135.50      Hz Recirculation Pump B Vane Passing Freq.                    n/a                132.92      Hz Recirculation Pump A Motor Frequency                      n/a                  54.75      Hz Recirculation Pump B Motor Frequency                      n/a                  53.70      Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM)                                u02.nff77                5.52  M Ibm/hr Feed Flow Line B (LEFM)                                u02.nff78                5.51  M Ibm/hr Feed Flow Line C (LEFM)                                u02.nff79                5.46  M Ibm/hr CRD Flow                                                u02.ndf01                0.03  M Ibm/hr Total Feedwater Flow                                      n/a                  16.51  M Ibm/hr Steam Flow Line A                                          n/a                  4.05    M Ibm/hr Steam Flow Line B                                          n/a                  4.25    M Ibm/hr Steam Flow Line C                                          n/a                  4.15    M Ibm/hr Steam Flow Line D                                          n/a                  4.07    M Ibm/hr Total Steam Flow                                          n/a                  16.51    M Ibm/hr Test Point 3 - 3939.5 MWth 1 106.1 Mlbm/hr - Finish Page 47
 
ENCLOSURE 3 TO PLA-6752 Affidavit
 
CONFIDENTIAL INFORMATION SUBMITTED UNDER 10 C.F.R. §2.390 AFFIDAVIT OF RICHARD D. PAGODIN I, Richard D. Pagodin General Manager-Nuclear Engineering PPL Susquehanna, LLC, do hereby affirm and state:
: 1. I am authorized to execute this affidavit on behalf of PPL Susque-hanna, LLC (hereinafter referred to as "PPL").
: 2. PPL requests that the information attached and identified by text inside triple brackets (({This sentence is an example.}}} be withheld from public disclosure under the provisions of 10 C.F.R. 2.390(a)(4).
: 3. The PPL Documents contain confidential commercial information, the disclosure of which would adversely affect PPL.
: 4. This information has been held in confidence by PPL. To the extent that PPL has shared this information with others, it has done so on a confidential basis.
: 5. PPL customarily keeps such information in confidence and there is a rational basis for holding such information in confidence. The information is not available from public sources and could not be gathered readily from other publicly available information.
: 6. Public disclosure of this information would cause substantial harm to the competitive position of PPL, because such information has significant commercial value to PPL.
: 7. The information identified in paragraph (2) above is classified as proprietary because it details the results of test data derived from test instrumentation installed specifically to collect this data. This instrumentation was installed at a significant cost to PPL. The data and the conditions under which it was collected constitute a major PPL asset.
: 8. Public disclosure of the information sought to be withheld is likely to cause substantial harm to PPL by foreclosing or reducing the availability of profit-making opportunities. The information is of value to other BWR Licensee's and would support evaluations and analyses associated with extended power uprate license amendment submittals. Making this information available to other BWR Licensee's would represent a windfall and deprive PPL the opportunity to recover a portion of its large investment in the test instrumentation from which this data is derived.
PPL SUSQUEHANNA, LLC Richard D. Pagodin            (
Commonwea        of Pe County Subscribed and sworn before me, a Notary Public in and for the CommQnwealth of Pennsylvania Thisj!d#y of          e/I/*.al2011                OOMMONWEALTH OF PENNSYLVANIA Notarial Seal Pamela M. VWit, Notary Public Sugaprkof Twp., Columbia County M Cnmmton Expires May 31, 2014 Member. Pennsvlvarna A-soiatlon of Noterime}}

Latest revision as of 15:05, 10 March 2020

Enclosure 2 to PLA-6752, SSES Replacement Steam Dryer & Flow Induced Vibration Report, Unit 2 Start-Up, 114% Power Test Plateau.
ML11280A263
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 08/30/2011
From: Bartos J, Hober M
Susquehanna
To:
Office of Nuclear Reactor Regulation
References
PLA-6752
Download: ML11280A263 (57)


Text

ENCLOSURE 2 TO PLA-6752 SSES Replacement Steam Dryer and Flow Induced Vibration Report Unit 2 Start-Up 114% Power Test Plateau August 2011 Non-Proprietary Information

W I j PP'4,T SSES Replacement Steam Dryer and Flow Induced Vibration Report Unit 2 Start-Up 114 % Power Test Plateau August 2011 Prepared By: John A. Bartos Matt A. Hober Reviewed By: Kevin G. Browning Santo Ferraello Approved by: John E. Krais

TABLE OF CONTENTS Page 1.0 Executive Summary .............................................................................................. 1 2.0 Main Steam Line Strain Gage Data Analysis ...................................................... 1 2.1 Power Spectral Density ............................................................................. 1 2.2 Trending .................................................................................................... 6 2.3 Unit 1 vs. Unit 2 Data Com parison ....................................................... 6 2.4 Steam Dryer Evaluation Sum m ary ........................................................ 8 3.0 Piping Flow Induced Vibration ........................................................................... 8 3.1 Introduction ................................................................................................ 8 3.2 Data Collection Scope ............................................................................... 9 3.3 Data Analysis Methodology ................................................................... 9 3.4 Results ....................................................................................................... 10 3.5 Piping Summary ....................................................................................... 10 4.0 References ................................................................................................................. 11 Appendix A - Plant Data Log Sheets .......................................................................... 41 i

LIST OF TABLES Page Table 1: Power/Core Flow Data Collection Conditions ........................................................... 1 Table 2: PSD Notch Filter Specifications for 104.1 Mlbm/hr Data (Test Point 1) .............. 2 Table 3: PSD Notch Filter Specifications for 99.9 Mlbmlhr Data (Test Point 2) ............... 2 Table 4: PSD Notch Filter Specifications for 106.1 Mlbmlhr Data (Test Point 3) .............. 3 Table 5: Maximum MSL Strain Gage Readings @ 3950 MWth and 104.1 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 1).............................. 4 Table 6: Maximum MSL Strain Gage Readings @ 3941 MWth and 99.9 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 2) .............................. 4 Table 7: Maximum MSL Strain Gage Readings @ 3939 MWth and 106.1 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 3) ............................... 5 Table 8: Adjusted Stress with Bias and Uncertainty and LCF ACM Analysis F-Factor Method .............................................................................. 7 Table 9: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis F-Factor M ethod .............................................................. 7 Table 10: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis RM S Method ..................................................................... 8 ii

LIST OF FIGURES Page Figure 1: MSL A Upper Strain Gage PSD Plot at Test Point 1............................................. 12 Figure 2: MSL A Lower Strain Gage PSD Plot at Test Point I ............................................ 12 Figure 3: MSL B Upper Strain Gage PSD Plot at Test Point 1 ............................................. 13 Figure 4: MSL B Lower Strain Gage PSD Plot at Test Point 1............................................. 13 Figure 5: MSL C Upper Strain Gage PSD Plot at Test Point 1............................................. 14 Figure 6: MSL C Lower Strain Gage PSD Plot at Test Point 1 ............................................ 14 Figure 7: MSL D Upper Strain Gage PSD Plot at Test Point 1............................................. 15 Figure 8: MSL D Lower Strain Gage PSD Plot at Test Point 1 ............................................ 15 Figure 9: MSL A Upper Strain Gage PSD Plot at Test Point 2 ........................................... 16 Figure 10: MSL A Lower Strain Gage PSD Plot at Test Point 2 .......................................... 16 Figure 11: MSL B Upper Strain Gage PSD Plot at Test Point 2 .......................................... 17 Figure 12: MSL B Lower Strain Gage PSD Plot at Test Point 2 ........................................... 17 Figure 13: MSL C Upper Strain Gage PSD Plot at Test Point 2 .......................................... 18 Figure 14: MSL C Lower Strain Gage PSD Plot at Test Point 2 .......................................... 18 Figure 15: MSL D Upper Strain Gage PSD Plot at Test Point 2 .......................................... 19 Figure 16: MSL D Lower Strain Gage PSD Plot at Test Point 2 .......................................... 19 Figure 17: MSL A Upper Strain Gage PSD Plot at Test Point 3 .......................................... 20 Figure 18: MSL A Lower Strain Gage PSD Plot at Test Point 3 ......................................... 20 Figure 19: MSL B Upper Strain Gage PSD Plot at Test Point 3 .......................................... 21 Figure 20: MSL B Lower Strain Gage PSD Plot at Test Point 3.......................................... 21 Figure 21: MSL C Upper Strain Gage PSD Plot at Test Point 3.......................................... 22 Figure 22: MSL C Lower Strain Gage PSD Plot at Test Point 3 ......................................... 22 Figure 23: MSL D Upper Strain Gage PSD Plot at Test Point 3 .......................................... 23 Figure 24: MSL D Lower Strain Gage PSD Plot at Test Point 3 ......................................... 23 Figure 25: MSL A Upper Strain Gage PSD Plot at Test Point 3 ......................................... 24 Figure 26: MSL A Lower Strain Gage PSD Revised Limit Curves ..................................... 24 Figure 27: MSL B Upper Strain Gage PSD Revised Limit Curves ..................................... 25 Figure 28: MSL B Lower Strain Gage PSD Revised Limit Curves .................................. 25 Figure 29: MSL C Upper Strain Gage PSD Revised Limit Curves .................................... 26 Figure 30: MSL C Lower Strain Gage PSD Revised Limit Curves ..................................... 26 Figure 31: MSL D Upper Strain Gage PSD Revised Limit Curves ..................................... 27 Figure 32: MSL D Lower Strain Gage PSD Revised Limit Curves .................................... 27 iii

LIST OF FIGURES (cont'd.)

Figure 33: MSL A Upper Strain Gage PSD Waterfall Plot ................................................. 28 Figure 34: MSL A Lower Strain Gage PSD Waterfall Plot ................................................. 28 Figure 35: MSL B Upper Strain Gage PSD Waterfall Plot ................................................. 29 Figure 36: MSL B Lower Strain Gage PSD Waterfall Plot ................................................. 29 Figure 37: MSL C Upper Strain Gage PSD Waterfall Plot ................................................. 30 Figure 38: MSL C Lower Strain Gage PSD Waterfall Plot ................................................. 30 Figure 39: MSL D Upper Strain Gage PSD Waterfall Plot ................................................. 31 Figure 40: MSL D Lower Strain Gage PSD Waterfall Plot ................................................. 31 Figure 41: MSL Strain Gage Time History RMS Trends ................................................... 32 Figure 42: MSL A Upper Unit 1 vs. Unit 2 Comparison ...................................................... 33 Figure 43: MSL A Lower Unit 1 vs. Unit 2 Comparison ..................................................... 33 Figure 44: MSL B Upper Unit 1 vs. Unit 2 Comparison ..................................................... 34 Figure 45: MSL B Lower Unit 1 vs. Unit 2 Comparison ...................................................... 34 Figure 46: MSL C Upper Unit 1 vs. Unit 2 Comparison ...................................................... 35 Figure 47: MSL C Lower Unit 1 vs. Unit 2 Comparison ..................................................... 35 Figure 48: MSL D Upper Unit 1 vs. Unit 2 Comparison ...................................................... 36 Figure 49: MSL D Lower Unit I vs. Unit 2 Comparison ..................................................... 36 Figure 50: Main Steam Line 'B' Piping - % of Allowables (RMS) ..................................... 37 Figure 51: Main Steam Line 'C' Piping - % of Allowables (RMS) ..................................... 37 Figure 52: Feedwater Piping - % of Allowables (RMS) ..................................................... 38 Figure 53: Reactor Recirculation 'A' Loop Piping - % of Allowables (RMS) ................... 38 Figure 54: RHR 'A' Loop Inside Containment Piping - % of Allowables (RMS) ............. 39 Figure 55: Reactor Recirculation 'B' and RHR 'B' Loop Inside Containment Piping ..... 39 Figure 56: RHR HV151FO15A & B Valves (Outside Containment)% of Allowables (RMS) ..... 40 Figure 57: RHR HV151FO17A & B Valves (Outside Containment)% of Allowables (RMS) ...... 40 iv

ACRONYMS AND ABBREVIATIONS Short Form Description ASME American Society of Mechanical Engineers CLTP Current License Thermal Power (Formerly 3489 MWth)

EPU Extended Power Uprate FE Finite Element FIV Flow Induced Vibration Hz Hertz (Cycles per Second)

HPCI High Pressure Coolant Injection LCF Limit Curve Factor Mlbm/hr Millions Pound-Mass per Hour MSL Main Steam Line MWth Mega-Watts - Thermal OLTP Original License Thermal Power (3293 MWth)

PSD Power Spectral Density RCIC Reactor Core isolation Cooling RHR Residual Heat Removal RMS Root Mean Square RWCU Reactor Water Clean-Up SRV Safety Relief Valve (Main Steam)

VPF Vane Passing Frequency v

1.0 Executive Summary This report provides a summary of the SSES Unit 2 replacement steam dryer monitoring instrumentation (Main Steam Line Strain Gage) and flow induced vibration (FIV) measurements at the targeted 114.0% CLTP test plateau (3952 MWth). This data was collected at the actual power levels and core flows indicated in Table 1:

Table 1: Power/Core Flow Data Collection Conditions Test Point Thermal Power (MWth) Core Flow (Mlbm/r) 1 3950.5 104.1 2 3941.2 99.9 3 3939.5 106.1 The main steam line (MSL) strain gage locations are documented in Reference 1. Plant data log sheets for each Table 1 test point are contained in Appendix A. The data log sheets provide a record of plant conditions at these power conditions.

The MSL strain gage data demonstrated that sufficient steam dryer margin (approximately 100%) to the ASME endurance limit of 13,600 PSI exists. The analysis of the piping accelerometer FIV data confirms that there is adequate margin to the ASME limits in the SSES Main Steam, Feedwater, and Reactor Recirculation system piping.

2.0 Main Steam Line Strain Gage Data Analysis 2.1 Power Spectral Density Figures 1 through 32 provide power spectral density (PSD) plots of MSL strain gage readings. The level 1 and level 2 monitoring curves for each strain gage location are also plotted on each figure. The strain values represent average strain values observed over a 180-second test time period. A data-sampling rate of 2500 Hz was used in the data processing. The test data was band-pass filtered between 3 and 250 Hz to be consistent with the load definition used in the replacement dryer structural analysis in Reference 2.

There is substantial noise from the 60 Hz alternating current and the recirculation pump power supply, thus filtering of this electrical noise was performed. Also the reactor recirculation pump vane passing frequencies were filtered from the data sets. Testing on the instrumented Unit 1 steam dryer (({

  • (2) }

Reference 2 documented that the (( {

                                                                   *(2)}}} The filters applied to the data collected at the respective test points are identified in Tables 2, 3 and 4 below:

Noise peaks at approximately 142.5 HZ were noted during the primary system hydrostatic test prior to plant start-up. This is a plant condition where systems are pressurized to operating levels but no steam flow exists. As Unit 2 ascended in power, this noise peak did not increase in amplitude. The source of this noise could not be Page 1

determined but it has been conclusively shown that it is not related to power and/or steam flow and therefore filters have been applied to eliminate it. Table 2: PSD Notch Filter Specifications for 104.1 Mlbm/hr Data (Test Point 1) Ill fit Frequency Width Origin

                  .1-        4 i1         i
                  .5-        4
                  +          I III Table 3: PSD Notch Filter Specifications for 99.9 Mlbmhr Data (Test Point 2) fit Frequency         Width                              Origin I          4 I          4
                .1          4 I          I
                .1          4 (2)1) )

Page 2

Table 4: PSD Notch Filter Specifications for 106.1 Mlbmhr Data (Test Point 3) ((t Frequency Width Origin i i* PSDs were calculated on 2 second blocks of data from the test time period (180 seconds). In order to increase the number of spectral averages, the data blocks were overlapped by 50%. The PSDs were calculated using a Hanning window and a 0.5 Hz bin size. The resulting PSDs were then linearly averaged and are presented as Figures 1 through 32. This method of data processing was used to provide the results in a format consistent with the processing used to develop the monitoring curves. There are also two monitoring (limit) curves included with the PSD plots. The level 1 monitoring curve represents the response of the SSES dryer finite element (FE) model under the design acoustic load conditions factored by the minimum component analysis margin to the endurance limit. The level 2 monitoring curve is based on 80% of the level 1 curve. A more complete description of the limit curves and how they are generated is included in Reference 3 and Reference 4. Prior to exceeding 3733 MWth (107% CLTP) one of the four strain gages at the MSL B Lower location failed low. That strain gage was removed from the MSL B Lower average calculation. Upon ascension to full EPU power (114% CLTP) an additional MSL B Lower strain gage failed high. This strain gage was also eliminated from the MSL B Lower average. Only two strain gages were left in the MSL B Lower average upon the final power ascension to full EPU power. The limit curves were generated, in accordance with Reference 4, using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP). For MSL B Lower the limit curves were based on the two-strain gage average. These monitoring curves provide guidance for evaluating the measured dryer response with respect to the structural analysis results at full EPU power (114% CLTP). Table 5 below shows the maximum strain gage reading for 3950.5 MWth and 104.1 Mlbm/hr (Test Point 1) as a percent of monitoring limits generated in accordance with Reference 4 using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP). All values of strain were below the level 1 and level 2 monitoring limits. The data is plotted with the monitoring limits in Figures 1 through 8. Page 3

Table 5: Maximum MSL Strain Gage Readings @ 3950.5 MWth and 104.1 MlbmJhr Expressed as a Ratio of the Monitoring Limits (Test Point 1) ((I Strain Gage Location  % of Level 1  % of Level 2 Frequency I11)} } Table 6 below shows the maximum strain gage reading for 3941.2 MWth and 99.9 Mlb,,/hr (Test Point 2) as a percent of monitoring limits generated in accordance with Reference 4 using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP). All values of strain were below the level 1 and level 2 monitoring limits. The data is plotted with the monitoring limits in Figures 9 through 16. Table 6: Maximum MSL Strain Gage Readings @ 3941.2 MWth and 99.9 Mlbmhr Expressed as a Ratio of the Monitoring Limits (Test Point 2) (( Strain Gage Location  % of Level 1 1 % of Level 2 Frequency

                           -I-                    4                     F
                            +                     4
                            +                                           F

( /) }} Page 4

Table 7 below shows the maximum strain gage reading for 3939.5 MWth and 106.1 Mlbm/hr (Test Point 3) as a percent of monitoring limits generated in accordance with Reference 4 using a baseline data set from Unit 2 collected at 3913 MWth (112% CLTP). All values of strain are below the level 1 and level 2 monitoring limits. The data is plotted with the monitoring limits in Figures 17 through 24. Table 7: Maximum MSL Strain Gage Readings @ 3939.5 MWth and 106.1 Mlbm/hr Expressed as a Ratio of the Monitoring Limits (Test Point 3) {t, Strain Gage Location  % of Level 1  % of Level 2 Frequency

2) I A stress evaluation was conducted using the F-Factor and RMIS methodology documented in Reference 3 and Reference 4. The results of that analysis are documented in Section 2.3 below and in Tables 8 through 10. (({

(2)H) Page 5

2.2 Trending For trending purposes, filtered MSL strain gage PSDs for powers up to 114.0% of CLTP (3952 MWth) have been plotted in a waterfall format and are presented in Figures 33 through 40. Figure 41 is a trend plot of the RMS value of the sample time histories plotted against total steam flow. Figures 33 through 41 show that MSL strains are I II} ( } As noted in Section 2.1, MSL B Lower had only two strain gages in its average upon ascension to full power. This had the effect of increasing the noise floor for that location. The step change in the MSL B Lower plot in Figure 41 resulted from the increase in the noise floor. MSL strain gages mounted on the A and D steam lines have the highest magnitude readings. This is attributed to the 15 Hz peak being reinforced by the safety relief valve (SRV) dead-legs on these two steam lines, as discussed in References 5 and Reference 6. 2.3 Unit 1 vs. Unit 2 Data Comparison The Unit 2 MSL strain gage PSDs are similar to the PSDs measured on Unit 1 in 2010 in both frequency content and magnitude. Figures 42 through 49 show Unit 1 3947 MWth

@ 100 Mlbm/hr data plotted with Unit 2 3941 MWth @ 100 Mlbm/hr data. An examination of Figures 42 through 49 demonstrates that the acoustic signatures of Unit 1 and Unit 2 are similar. As noted in above the Unit 2 MSL B Lower strain gage reading is composed of only 2 out of 4 strain gages. This resulted in a higher noise floor. Figure 45 clearly shows this effect.

As an additional comparison of the acoustic data generated by Unit 1 and Unit 2, an F-Factor and RMS analyses (as described in Reference 3 and Reference 4) were conducted on two similar sets of MSL strain gage data. These analyses were performed to generate estimates of dryer stresses at the current operating plateau. The Unit 1 data set was taken at a reactor power of 3948 MWth and a core flow of 102 Mlb /hr. The Unit 2 data set was taken at a reactor power of 3939.5 MWth and a core flow of 106.1 Mlbm/hr. As described in Reference 3 and Reference 4, three separate analyses were performed on each of the data sets. The data sets were filtered to remove the recirculation system pump vane passing peaks. The results presented below exclude estimates of stresses that result from pump vane passing peaks. The effects of the vane passing peaks on total steam dryer stresses are discussed in Reference 2. Tables 8 through 10 contain the results of the analyses. Page 6

Table 8: Adjusted Stress with Bias and Uncertainty and LCF ACM Analysis F-Factor Method Adjusted Peak Stress (Excluding Vane Passint Effects) Component Unit 1 Unit 2 4 .4 i .4 i .4 4 1 i .4 (2)1 }} Table 9: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis F-Factor Method M{ Adjusted Peak Stress (Excludin2 Vane PassiniUEffects) Component I Unit 1 1 Unit 2 4 .4 4 4-i + i + (2) }1} Page 7

Table 10: Adjusted Stress with Bias and Uncertainty and LCF Supplemental Analysis RMS Method (( AdCusted Peak Stress (ExcludinU Vane Passim! Effects) Component Unit 1 Unit 2 i i I I i i (2))1I1 An examination of Tables 8 through 10 further demonstrates the (({ (2)11 2.4 Steam Dryer Evaluation Summary Based on the current margins shown in Tables 8 through 10 and in Figures 1 through 32, there is adequate projected margin (approximately 100%) to the steam dryer ASME endurance limit of 13,600 PSI for continued power operation at 3952 MWth. The presented data also validates the conclusion that the steam dryer stress analysis based on the instrumented Unit 1 steam dryer (presented in Reference 2), is applicable to the Unit 2 steam dryer. 3.0 Piping Flow Induced Vibration 3.1 Introduction Piping accelerometers on the main steam, feedwater, reactor recirculation, residual heat removal (RHR), and reactor water cleanup (RWCU) systems were monitored during start-up. Key locations were selected based on geometry and the expected potential for vibration-related problems or maximum pipe stress. For main steam, the accelerometers were located on the "B" and "C" lines, since these are expected to be the most active. These steam lines have active flow under the SRV branch lines, as well as the HPCI and RCIC system steam supply branch connections. Accelerometers were also located at, or near, the above mentioned branch lines of interest. In all, 74 accelerometers at 33 locations were monitored during start-up. Page 8

Prior to the start-up, two RMS acceptance levels were calculated for each accelerometer on the main steam and feedwater systems. A level 1 value was determined based on vibration calculations using ASME OM-3 (Reference 7) allowable stresses. A level 2 value was conservatively established for each accelerometer at 80% of level 1. The accelerations used in the vibration analyses were "zero to peak" values (consistent with ASME OM-3) and conservative factors were used to determine equivalent RMS values. The Reactor Recirculation/RHR/RWCU system accelerometers were assigned only conservative level 2 RMS and "zero-to-peak" allowable values, since these systems were negligibly affected by EPU. If both criteria (i.e., RMS and "zero-to-peak") were exceeded for a given instrument, then a more detailed engineering evaluation was performed. 3.2 Data Collection Scope Formal monitoring for the effects of FIV on piping was initiated at the target test point of 2569 MWth (-65% full EPU power). Data was also collected and analyzed at targeted test points of 3293 MWth (OLTP), 3733 MWth (107% CLTP), 3855 MWth (110.5% CLTP), and for several core flow conditions at 3952 MWth (114% CLTP), as described in Table 1 above. In addition, piping FIV was monitored on an hourly basis, and general plant walk-downs were continuously performed during power ascension from 3733 MWth to 3855 MWth, as well as from 3855 MWth to 3952 MWth. Detailed plant walk downs of piping and components were performed for most systems affected by Extended Power Uprate located outside the drywell. These walk downs were performed at the targeted test points 3293 MWth, 3733 MWth, 3855 MWth, and 3952 MWth. The walk downs were performed for piping and components located in accessible and inaccessible (high radiation) areas. A remote controlled, mobile camera was used to observe the vibration in the inaccessible areas. 3.3 Data Analysis Methodology Spectral analyses for each accelerometer were performed at each of the test points for a time period of 140 seconds. The data was evaluated based on 4 second blocks of data and to increase the number of spectral averages, the data blocks were overlapped by 50%. The data was band-pass filtered between 2 Hz and 250 Hz, with a 0.25 Hz bin size to provide for consistency with the method used to develop the acceptance criteria for the accelerometers. No significant electrical noise was observed at the 60 Hz multiples of the power supply frequencies, so notch filters were not applied. Multiples of the reactor recirculation pump vane passing frequency (VPF) were observed; however, the VPF frequencies were not filtered, since they represent true mechanical vibration (i.e., displacement/stress). Page 9

3.4 Results Figures 50 through 52 show the percent of allowable RMS acceleration versus total main steam flow/feed water flow trends during the power ascension to 3952 MWth. In addition, Figures 53 through 57 show the percent of allowable RMS acceleration versus core flow trends for the Reactor Recirculation, RHR, and RWCU system instruments. Throughout power ascension, one (1) accelerometer, VE26721 (see figure 51 on page 37) located on main steam line C, degraded to the point where it's output was judged to be questionable (i.e., very high output). The loss of one accelerometer is acceptable since nearby accelerometers showed values within the ASME OM-3 acceptance criteria. This condition was documented in the corrective action program by AR1435130. The accelerations at four (4) accelerometers, listed below, exceeded the conservative RMS allowable but were less than the governing zero to peak allowables. " VE26723 (see figure 53 on page 38) located on Recirculation Loop A, N2K nozzle, 12" riser.

  • VE26724 (see figure 53 on page 38) located on Recirculation Loop A, 4" Bypass valve around discharge valve
  • VE26730 (see figure 53 on page 38) located on Recirculation Loop A, 2" RWCU drain at bottom of recirculation pipe.

" VE26760 (see figure 55 on page 39) located on Recirculation Loop B, N2E nozzle, 12" riser. The walk downs were performed for piping and components located in accessible and inaccessible (i.e., high radiation) areas. As expected, the vibration observed increased with power ascension. In general, all observed vibration was within previously established acceptance criteria. Walk down observations of the feedwater instrumentation and piping indicated a tubing run and two non-safety related piping runs (one 2" and one 4") had increased but acceptable vibration response. CR 1440515 documented this condition in the corrective action program for a future review of long-term reliability improvements. In 2009 CRA 1152061 documented a similar condition with feedwater instrumentation tubing in the corrective action program. This corrective action document resulted in a modification adding supports to 2 tubing runs. 3.5 Piping Summary During the Unit 2 power ascension to 3952 MWth, piping vibration levels were monitored to assess effects of flow-induced vibration (FIV). Trending demonstrated that all valid accelerations/displacements were within pre-established limits, based on ASME OM-3 allowable stresses. The piping/components walk-down results were as expected; general vibration levels increased during power ascension and the overall response of piping and components were within established criteria. Page 10

4.0

References:

1. PPL Letter To USNRC, PLA-6176 (Figure 31-1), "Susquehanna Steam Electric Station Proposed License Amendment No. 285 For Unit 1 Operating License No. NPF-14 And Proposed License Amendment No. 253 For Unit 2 Operating License No. NPF-22 Extended Power Update Application Regarding Steam Dryer And Flow Effects Request For Additional Information Responses", dated 4/27/2007
2. GE-Hitachi Nuclear Energy Engineering Report 0000-0095-2113-P-RO, "Susquehanna Replacement Steam Dryer Updated Stress Analysis At Extended Power Uprate Conditions", Class III, February 2009 (Provided via PPL Letter To USNRC, PLA-6484, dated 2/27/09)
3. GE-Hitachi Nuclear Energy Engineering Report 0000-0096-5766-P-R1, "Revised Susquehanna Replacement Steam Dryer Limit Curves - Main Steam Line Mounted Instrumentation", Class III, February 2009 (Provided via PPL Letter To USNRC, PLA-6484, dated 2/27/09)
4. GE-Hitachi Nuclear Energy Engineering Report 0000-0101-0766-P-RO, "Main Steam Line Limit Curve Adjustment During Power Ascension", Class III, April 2009 (Provided via PPL Letter To USNRC, PLA-65 10, dated 5/12/09)
5. PPL Letter To USNRC, PLA-6076 (Attachment 10), "Susquehanna Steam Electric Station Proposed License Amendment No. 285 For Unit 1 Operating License No. NPF-14 And Proposed License Amendment No. 253 For Unit 2 Operating License No. NPF-22 Constant Pressure Power Uprate", dated 10/11/2006
6. PPL Letter To USNRC, PLA-6176 (Questions 4, 7, and 31), "Susquehanna Steam Electric Station Proposed License Amendment No. 285 For Unit 1 Operating License No.

NPF-14 And Proposed License Amendment No. 253 For Unit 2 Operating License No. NPF-22 Extended Power Update Application Regarding Steam Dryer and Flow Effects Request for Additional Information Responses", dated 4/27/2007

7. ASME OMb-S/G-2005, "Standards and Guides for Operation and Maintenance of Nuclear Power Plants", Part 3, "Requirements for Preoperational and Initial Start-Up Vibration Testing of Nuclear Power Plant Piping Systems" (ASME OM-3)

Page 11

((t (2,)} Figure 1: MSL A Upper Strain Gage PSD Plot at Test Point 1 {f{ (2) }} } Figure 2: MSL A Lower Strain Gage PSD Plot at Test Point 1 Page 12

(2)} 1 } Figure 3: MSL B Upper Strain Gage PSD Plot at Test Point 1 Q111)1 Figure 4: MSL B Lower Strain Gage PSD Plot at Test Point 1 Page 13

{i{ (21)11 Figure 5: MSL C Upper Strain Gage PSD Plot at Test Point 1 (2)}11 Figure 6: MSL C Lower Strain Gage PSD Plot at Test Point 1 Page 14

(2)}11 Figure 7: MSL D Upper Strain Gage PSD Plot at Test Point 1 (if (2)}}} Figure 8: MSL D Lower Strain Gage PSD Plot at Test Point 1 Page 15

{f{ (2)j11 Figure 9: MSL A Upper Strain Gage PSD Plot at Test Point 2 {I{ (2)}} } Figure 10: MSL A Lower Strain Gage PSD Plot at Test Point 2 Page 16

{fI (2) Figure 11: MSL B Upper Strain Gage PSD Plot at Test Point 2 (2)1 Figure 12: MSL B Lower Strain Gage PSD Plot at Test Point 2 Page 17

(2)}1 I Figure 13: MSL C Upper Strain Gage PSD Plot at Test Point 2 (2 .)1} Figure 14: MSL C Lower Strain Gage PSD Plot at Test Point 2 Page 18

fit (2)~) Figure 15: MSL D Upper Strain Gage PSD Plot at Test Point 2 (it (2)} } I Figure 16: MSL D Lower Strain Gage PSD Plot at Test Point 2 Page 19

fit (21)} ) Figure 17: MSL A Upper Strain Gage PSD Plot at Test Point 3 (it (2)} } Figure 18: MSL A Lower Strain Gage PSD Plot at Test Point 3 Page 20

{it

                                                                 *}}

(2) Figure 19: MSL B Upper Strain Gage PSD Plot at Test Point 3 {f{ (2)}} } Figure 20: MSL B Lower Strain Gage PSD Plot at Test Point 3 Page 21

((i (2)} } Figure 21: MSL C Upper Strain Gage PSD Plot at Test Point 3 ((t (2)*}} Figure 22: MSL C Lower Strain Gage PSD Plot at Test Point 3 Page 22

(2)} 11 Figure 23: MSL D Upper Strain Gage PSD Plot at Test Point 3 (2)111 Figure 24: MSL D Lower Strain Gage PSD Plot at Test Point 3 Page 23

2)} 1}1 Figure 25: MSL A Upper Strain Gage PSD Revised Limit Curves (21}1) Figure 26: MSL A Lower Strain Gage PSD Revised Limit Curves Page 24

                                                               .(2) )}I Figure 27: MSL B Upper Strain Gage PSD Revised Limit Curves

{it (2)} } Figure 28: MSL B Lower Strain Gage PSD Revised Limit Curves Page 25

(2)) I Figure 29: MSL C Upper Strain Gage PSD Revised Limit Curves (2)}11 Figure 30: MSL C Lower Strain Gage PSD Revised Limit Curves Page 26

(2)}1 ) Figure 31: MSL D Upper Strain Gage PSD Revised Limit Curves 12111 Figure 32: MSL D Lower Strain Gage PSD Revised Limit Curves Page 27

fit (2) 11} Figure 33: MSL A Upper Strain Gage PSD Waterfall Plot lit (2)}11 Figure 34: MSL A Lower Strain Gage PSD Waterfall Plot Page 28

((t (2.)111 Figure 35: MSL B Upper Strain Gage PSD Waterfall Plot {it (2) ) I Figure 36: MSL B Lower Strain Gage PSD Waterfall Plot Page 29

(2)11 ) Figure 37: MSL C Upper Strain Gage PSD Waterfall Plot (2111 Figure 38: MSL C Lower Strain Gage PSD Waterfall Plot Page 30

(21) ) } Figure 39: MSL D Upper Strain Gage PSD Waterfall Plot (2)} } Figure 40: MSL D Lower Strain Gage PSD Waterfall Plot Page 31

(2) }}} Figure 41: MSL Strain Gage Time History RMS Trends Page 32

(2)) I) Figure 42: MSL A Upper Unit 1 vs. Unit 2 Comparison (2))} Figure 43: MSL A Lower Unit 1 vs. Unit 2 Comparison Page 33

(2)})I Figure 44: MSL B Upper Unit 1 vs. Unit 2 Comparison fit Figure 45: MSL B Lower Unit 1 vs. Unit 2 Comparison Page 34

(2)1 I Figure 46: MSL C Upper Unit 1 vs. Unit 2 Comparison (2)j } Figure 47: MSL C Lower Unit 1 vs. Unit 2 Comparison Page 35

(2)1}} Figure 48: MSL D Upper Unit 1 vs. Unit 2 Comparison (2)j111 Figure 49: MSL D Lower Unit 1 vs. Unit 2 Comparison Page 36

Unit 2 - July 2011 - Main Steam line 'B' Piping - Percent of EC-PUPC-2070 RMS Allowables 100% 90% 80% 70% o 60% = 50% 40% 30% 20% 10% 0% 0 2 4 6 8 10 12 14 16 18 Main Steam Flow - Mlbs/hr c:\ExcelUnit2-201 1-trend-Revl-Figure 50: Main Steam Line 'B' Piping - % of Allowables (RMS) Unit 2 - July 2011 - Main Steam Line 'C' Piping - Percent of EC-PUPC-2070 RMS Allowables 100% 90% 80% 70% (n a 60% a a 50% C 40% 0. 30% 20% 10% 0% 0 2 4 6 8 10 12 14 16 18 c:AExcel\Unit2-201 1-trend-Revi - Main Steam Flow - Mlbs.hr Figure 51: Main Steam Line 'C' Piping - % of Allowables (RMS) Page 37

Unit 2 - July 2011 - Feedwater Piping - Percent of EC-PUPC-2070 RMS Allowables 50%6 L 45% 40% VE2676

                            -U- VE2677 35%

u, VE2677 X-

                               -VE2677
  • 30% ~--I-VE26T77 0-U- .Q VE2677 o

25%V

                            -+-VE2677

~C- VE2677 20%- - VE2677

0. *VE2677 150/%

VE2677 10%- 5% 0% 0 2 4 6 8 10 12 14 16 18 c:\FxceI\Unit2-201 1-trend-Revl- Feedwater Flow - Mlbs/hr Figu re 52: Feedwater Piping - % of Allowables (RMS) Unit 2 - July 2011 - Recirculation Loop 'A' Piping - Percent of Simple RMS Allowables 150% 140% - 130% - 120% 110%-- U) 100%

   .2 cc   90%

80% VLeu/eo rmM-, Ilr, riser 70%

                  -.'-  VE26724 RRS-A 4" bypass riser 60%       - -VE26725      RRS-A 4' bypass run 50%       -* -- VE26726 RRS-A dead end
                  ,--VE26727 RRS-A Decon 40%
                  -VE26728 RRS-A 4" RWCU 30%       VE26729 RRS-A 2" RWCU E-W 20%       -VE26730        RRS-A 2 RWCU N-S
                         /        DD 3M-A   IA'-1 A 10%

0% 0 10 20 30 40 50 60 70 80 90 100 110 c:\Excel\Unit2-201 1-trend-Revl - Total Core Flow - Mlbs/hr Figure 53: Reactor Recirculation 'A' Loop Piping - % of Allowables (RMS) Page 38

Unit 2 - July 2011 - RHR 'A' Inside of Containment Piping - Percent of RMS Allowables 100%-* 90% 7 80% - -- - - - - - - ---- - - - - - - - - - - - - - - - - 70%---VE26732 RH R-A F050A valve vert

                          ---   VE26733 RHR-A F050A valve E-W

'A, E

                          -- -VE26734   RHR-A F050A valve N-S 0

.0 -X- VE26759 RHR-A F050A valve body 0 .2 50%. 0-IN- VE26735 RHR-A 24" vert

                          --    VE26736 RHR-A 24" axial 0
                              ' VE26737 RHR-A 24" horz 40%-
                          -VE26738      RHR-A near wall
a. 30%-- VE26780 RH R-A Perp VE738 30%-

0% 0 10 20 30 40 50 60 70 80 90 100 110 c:\Excel\Unit2-201 1-trend-Revl- Total Core Flow - Mlbw/hr Figure 54: RHR 'A' Loop Inside Containment Piping - % of Allowables (RMS) Unit 2 - July 2011 - RRS 'B' and RHR 'B' loop Piping - Percent of Simple RMS Allowables 110% 100% 90% 80% 70% I

.0 60%

50% 40% 30% 20% 10% 0% 0 10 20 30 40 50 60 70 80 90 100 110 c:\Excel\Unit2-201 1-trend-Revl - Total Core Flow - Mlbs/hr Figure 55: Reactor Recirculation 'B' and RHR 'B' Loop Inside Containment Piping

                                 % of Allowables (RMS)

Page 39

Unit 2- July 2011 - HV251FO15A & B Valves - Percent of EC-PUPC-2070 Allowable 50% - 'E 45% 40% ---- VE26739 RHR-A F15A operator horz

                          -U--VE26740 RHR-A P15A operator vert 35%

3VE26741 RHR-A F15A operator para

                          -- -VE26742 RH R-A F15A valve horz

_030% . ---- VE26743 RHR-A F15A valve vert 25% - VE26749 RHR-B F15B operator horz

                          ---  VE26750 RHR-B F15B operator vert 0-                       VE26751 RHR-B F15B operator para 20%-                  -    VE26752 RHR-B F15B valve horz
o. ÷VE26753 RHRt-B F1 5B valve vert 10%_*

5% 0%_ 0 10 20 30 40 50 60 70 80 90 100 110 c:\Excel\Unit2-2011-trend-Revl- Total Core Flow - Mlbs/hr Figure 56: RHR HV151FO15A & B Valves (Outside Containment)% of Allowables (RMS) Unit 2 - July 2011 - HV251F017A & B Valves - Percent of EC-PUPC-2070 Allowable 50% 45% 40% 35% 0) 0 30% o 25% C 20% 0. 15% 100% 5% 0% 0 10 20 30 40 50 60 70 80 90 100 110 c:\Excel\Unit2-201 1-trend-Rev1- Total Core Flow - Mlbs/hr Figure 57: RHR HV151FO17A & B Valves (Outside Containment)% of Allowables (RMS) Page 40

Appendix A Plant Data Log Sheets Page 41

Steam Dryer Data Log Sheets Start Date/fime 7/26/2011 12:04 (Start) I I Computer ID Value Units Thermal Power (Instantaneous) u02.nba01 3950.49 MWth Thermal Power (15 min Ave.) u02.nbal 01 3948.23 MWth Electrical Power u02.tra178 1310.28 Mwe Total Core Flow u02.nffl2 104.10 M Ibm/hr Recirc Loop Flow A u02.traO28 51.80 M IbnVhr Recirc Loop Flow B u02.traO29 52.48 M Ibrm/hr Recirc Loop A Suction Temperature u02.nrt01 526.59 °F Recirc Loop B Suction Temperature u02.nrt02 527.10 OF Core Plate DIP u02.traO27 17.28 PSI Indicated Steam Flow Line A u02.nff0l 4.18 M Ibrn/hr Indicated Steam Flow Line B u02.nff02 4.38 M Ibm/hr Indicated Steam Flow Line C u02.nff03 4.28 M Ibm/hr Indicated Steam Flow Line D u02.nffO4 4.21 M Ibmn/hr Indicated Total Steam Flow u02.traO97 17.01 M Ibm/hr Indicated Feedwater Flow u02.traO98 16.56 M Ibm/hr Feedwater Temperature Line A u02.tral02 400.99 °F Feedwater Temperature Line B u02.tral03 402.44 °F Feedwater Temperature Line C u02.tral04 401.81 OF Rx Dome Pressure Narrow Range u02.tra2O8 1031.31 PSIG Rx Dome Pressure Wide Range u02.tra2O9 1030.57 PSIG Steam Dome Temperature u02.nfa05 549.98 °F Recirculation Pump A Speed vm.2p401aI2a-rrp tac 1548.00 RPM Recirculation Pump B Speed vm.2p401 b/2bjrrpitac 1534.00 RPM Recirculation Pump A Power u02.nrj5l 4.53 MWe Recirculation Pump B Power u02.nrj52 4.41 MWe CRD Cooling Header Flow u02.nefO3 61.87 GPM CRD System Flow u02.nef01 61.88 GPM CRD System Temperature u02.ndt05 140.65 °F Bottom Head Drain Temp u02.tra2O6 530.81 °F Reactor Water Level Narrow Range u02.tra142 34.75 Inches H20 Reactor Water Level Narrow Range u02.nfl02 35.35 Inches H20 Reactor Water Level Narrow Range u02.nfl03 34.11 Inches H20 Reactor Water Level Wide Range u02.tra143 31.44 Inches H20 Recirculation Pump A Vane Passing Freq. n/a 129.00 Hz Recirculation Pump B Vane Passing Freq. n/a 127.83 Hz Recirculation Pump A Motor Frequency n/a 52.12 Hz Recirculation Pump B Motor Frequency n/a 51.65 Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM) u02.nff77 5.53 M Ibm/hr Feed Flow Line B (LEFM) u02.nff78 5.51 M Ibm/hr Feed Flow Line C (LEFM) u02.nff79 5.47 M Ibm/hr CRD Flow u02.ndf01 0.03 M Ibn/hr Total Feedwater Flow n/a 16.54 M Ibn/hr Steam Flow Line A n/a 4.06 M lbrn/hr Steam Flow Line B n/a 4.25 M lbmlhr Steam Flow Line C n/a 4.15 M Ibm/hr Steam Flow Line D n/a 4.08 M Ibm/hr Total Steam Flow n/a 16.54 M Ibm/hr Test Point 1 - 3950.5 MWh / 104.1 Mlbmlhr - Start Page 42

Steam Dryer Data Log Sheets Finish IDate/Time I 712612011 12:07 I (Finish) Comouter ID Value Units Thermal Power (Instantaneous) u02.nba01 3950.33 MWth Thermal Power (15 min Ave.) u02.nba101 3949.33 MWth Electrical Power u02.tra178 1311.21 Mwe Total Core Flow u02.nffl 2 104.11 M Ibm/hr Recirc Loop Flow A u02.traO28 51.90 M Ibm/hr Recirc Loop Flow B u02.tra029 52.60 M Ibm/hr Recirc Loop A Suction Temperature u02.nrt0l 526.61 TF Recirc Loop B Suction Temperature u02.nrtO2 527.18 °F Core Plate D/P u02.traO27 17.28 PSI Steam Flow Line A u02.nff01 4.18 M Ibm/hr Steam Flow Line B u02.nff02 4.39 M Ibm/hr Steam Flow Line C u02.nff03 4.28 M Ibm/hr Steam Flow Line D u02.nff04 4.21 M Ibm/hr Total Steam Flow u02.traO97 17.02 M Ibm/hr Feedwater Flow u02.traO98 16.56 M Ibm/hr Feedwater Temperature Line A u02.tralO2 401.01 TF Feedwater Temperature Line B u02.tralO3 402.34 -F Feedwater Temperature Line C u02.tra104 401.55 °F Rx Dome Pressure Narrow Range u02.tra2O8 1031.28 PSIG Rx Dome Pressure Wide Range u02.tra2O9 1030.66 PSIG Steam Dome Temperature u02.nfa05 549.99 °F Recirculation Pump A Speed vm.2p401a/2a rrpjac 1548.00 RPM Recirculation Pump B Speed vm.2p401 b/2b-rrpjac 1534.00 RPM Recirculation Pump A Power u02.nrj5l 4.54 MWe Recirculation Pump B Power u02.nrj52 4.42 MWe CRD Cooling Header Flow u02.nef03 61.88 GPM CRD System Flow u02.nef01 61.88 GPM CRD System Temperature u02.ndt05 140.68 °F Bottom Head Drain Temp u02.tra206 530.83 °F Reactor Water Level Narrow Range u02.tra142 34.68 Inches H20 Reactor Water Level Narrow Range u02.nf1O2 35.36 Inches H20 Reactor Water Level Narrow Range u02.nflO3 34.19 Inches H20 Reactor Water Level Wide Range u02.tra143 31.60 Inches H20 Recirculation Pump A Vane Passing Freq. n/a 129.00 Hz Recirculation Pump B Vane Passing Freq. n/a 127.83 Hz Recirculation Pump A Motor Frequency n/a 52.12 Hz Recirculation Pump B Motor Frequency n/a 51.65 Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM) u02.nff77 5.53 M Ibm/hr Feed Flow Line B (LEFM) u02.nff78 5.51 M Ibm/hr Feed Flow Line C (LEFM) u02.nff79 5.47 M Ibm/hr CRD Flow u02.ndf01 0.03 M Ibm/hr Total Feedwater Flow n/a 16.54 M Ibm/hr Steam Flow Line A n/a 4.05 M Ibm/hr Steam Flow Line B n/a 4.25 M Ibm/hr Steam Flow Line C n/a 4.15 MIbm/hr Steam Flow Line D n/a 4.08 MIbm/hr Total Steam Flow n/a 16.54 MIbm/hr Test Point 1 - 3950.3 MWth /104.1 Mlhb,,/hr - Finish Page 43

Steam Dryer Data Log Sheets Start Date/Time 7/27/2011 10:01 (Start) Computer ID Value Units Thermal Power (Instantaneous) u02.nba0l 3941.21 MWth Thermal Power (15 min Ave.) u02.nba101 3941.23 MWth Electrical Power u02.tral78 1316.61 Mwe Total Core Flow u02.nffl2 99.91 M Ibm/hr Recirc Loop Flow A u02.traO28 50.38 M Ibm/hr Recirc Loop Flow B u02.traO29 49.82 M Ibm/hr Recirc Loop A Suction Temperature u02.nrt0l 525.78 °F Recirc Loop B Suction Temperature u02.nrtO2 526.46 TF Core Plate D/P u02.traO27 16.02 PSI Indicated Steam Flow Line A u02.nff0l 4.19 M Ibmn/hr Indicated Steam Flow Line B u02.nffO2 4.38 M Ibm/hr Indicated Steam Flow Line C u02.nff03 4.27 M Ibm/hr Indicated Steam Flow Line D u02.nff04 4.20 M Ibm/hr Indicated Total Steam Flow u02.traO97 17.01 M Ibm/hr Indicated Feedwater Flow u02.traO98 16.52 M Ibm/hr Feedwater Temperature Line A u02.tralO2 400.72 °F Feedwater Temperature Line B u02.tralO3 402.31 TF Feedwater Temperature Line C u02.tralO4 401.26 TF Rx Dome Pressure Narrow Range u02.tra2O8 1030.99 PSIG Rx Dome Pressure Wide Range u02.tra2O9 1030.51 PSIG Steam Dome Temperature u02.nfa05 549.98 °F Recirculation Pump A Speed vm.2p401a/2a-rrp tac 1493.00 RPM Recirculation Pump B Speed vm.2p401b/2b-rrp-tac 1471.00 RPM Recirculation Pump A Power u02.nrj5l 4.10 MWe Recirculation Pump B Power u02.nrj52 3.91 MWe CRD Cooling Header Flow u02.nef03 61.94 GPM CRD System Flow u02.nef0l 61.97 GPM CRD System Temperature u02.ndt05 137.68 °F Bottom Head Drain Temp u02.tra2O6 529.95 OF Reactor Water Level Narrow Range u02.tral42 34.92 Inches H20 Reactor Water Level Narrow Range u02.nflO2 35.79 Inches H20 Reactor Water Level Narrow Range u02.nfl03 33.74 Inches H20 Reactor Water Level Wide Range u02.tral43 31.78 Inches H20 Recirculation Pump A Vane Passing Freq. n/a 124.42 Hz Recirculation Pump B Vane Passing Freq. n/a 122.58 Hz Recirculation Pump A Motor Frequency n/a 50.27 Hz Recirculation Pump B Motor Frequency n/a 49.53 Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM) u02.nff77 5.52 M Ibm/hr Feed Flow Line B (LEFM) u02.nff78 5.51 M Ibm/hr Feed Flow Line C (LEFM) u02.nff79 5.46 M Ibm/hr CRD Flow u02.ndf0l 0.03 M lbn/hr Total Feedwater Flow nra 16.53 M lbrrdhr Steam Flow Line A n/a 4.06 M Ibm/hr Steam Flow Line B n/a 4.25 M Ibm/hr Steam Flow Line C n/a 4.14 M Ibm/hr Steam Flow Line D n/a 4.07 M Ibm/hr Total Steam Flow n/a 16.53 M Ibm/hr Test Point 2 - 3941.2 MW,h / 99.9 MIbJhr - Start Page 44

Steam Dryer Data Log Sheets Finish Datef'ime 7/27/2011 10:03 (Finish) Computer ID Value Units Thermal Power (Instantaneous) u02.nba01 3941.04 MWth Thermal Power (15 min Ave.) u02.nba101 3941.14 MWth Electrical Power u02.tra178 1317.07 Mwe Total Core Flow u02.nff12 99.90 M Ibm/hr Recirc Loop Flow A u02.traO28 50.13 M Ibm/hr Recirc Loop Flow B u02.traO29 49.75 M Ibm/hr Recirc Loop A Suction Temperature u02.nrt01 525.78 OF Recirc Loop B Suction Temperature u02.nrt02 526.46 OF Core Plate D/P u02.traO27 15.99 PSI Steam Flow Line A u02.nff01 4.18 M Ibm/hr Steam Flow Line B u02.nff02 4.38 M Ibm/hr Steam Flow Line C u02.nff03 4.27 M Ibm/hr Steam Flow Line D u02.nff04 4.20 M Ibm/hr Total Steam Flow u02.traO97 17.01 M Ibm/hr Feedwater Flow u02.traO98 16.52 M Ibm/hr Feedwater Temperature Line A u02.tral02 400.71 °F Feedwater Temperature Line B u02.tral03 402.31 °F Feedwater Temperature Line C u02.tral04 401.24 OF Rx Dome Pressure Narrow Range u02.tra2O8 1030.98 PSIG Rx Dome Pressure Wide Range u02.tra2O9 1030.51 PSIG Steam Dome Temperature u02.nfaO5 549.98 °F Recirculation Pump A Speed vm.2p401a/2a-rrp-tac 1494.00 RPM Recirculation Pump B Speed vm.2p401b/2bjrp tac 1472.00 RPM Recirculation Pump A Power u02.nrj51 4.10 MWe Recirculation Pump B Power u02.nrj52 3.91 MWe CRD Cooling Header Flow u02.nef03 61.94 GPM CRD System Flow u02.nef01 61.97 GPM CRD System Temperature u02.ndt05 137.69 °F Bottom Head Drain Temp u02.tra206 529.95 OF Reactor Water Level Narrow Range u02.tra142 35.06 Inches H20 Reactor Water Level Narrow Range u02.nflO2 35.29 Inches H20 Reactor Water Level Narrow Range u02.nflO3 33.71 Inches H20 Reactor Water Level Wide Range u02.tra143 31.78 Inches H20 Recirculation Pump A Vane Passing Freq. n/a 124.50 Hz Recirculation Pump B Vane Passing Freq. n/a 122.67 Hz Recirculation Pump A Motor Frequency n/a 50.30 Hz Recirculation Pump B Motor Frequency n/a 49.56 Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM) u02.nff77 5.52 M Ibm/hr Feed Flow Line B (LEFM) u02.nff78 5.51 M Ibm/hr Feed Flow Line C (LEFM) u02.nff79 5.46 M Ibm/hr CRD Flow u02.ndf01 0.03 M Ibm/hr Total Feedwater Flow n/a 16.52 M Ibm/hr Steam Flow Line A n/a 4.06 M Ibm/hr Steam Flow Line B n/a 4.25 M Ibm/hr Steam Flow Line C n/a 4.14 M Ibm/hr Steam Flow Line D n/a 4.08 M Ibm/hr Total Steam Flow n/a 16.52 MIbm/hr Test Point 2 - 3941 MWh / 99.9 Mibmhr - Finish Page 45

Steam Dryer Data Log Sheets Start Date/Time 7/28/2011 9:27 (Start) Comouter ID Value Units Thermal Power (Instantaneous) u02.nba01 3939.52 MWth Thermal Power (15 min Ave.) u02.nbal 01 3939.69 MWth Electrical Power u02.tra178 1302.80 Mwe Total Core Flow u02.nffl2 106.10 M Ibm/hr Recirc Loop Flow A u02.traO28 52.24 M Ibrn/hr Recirc Loop Flow B u02.traO29 53.89 M Ibm/hr Recirc Loop A Suction Temperature u02.nrt01 527.63 °F Recirc Loop B Suction Temperature u02.nrt02 528.28 °F Core Plate D/P u02.traO27 18.67 PSI Indicated Steam Flow Line A u02.nff0l 4.16 M Ibm/hr Indicated Steam Flow Line B u02.nff02 4.37 M Ibm/hr Indicated Steam Flow Line C u02.nff03 4.27 M Ibm/hr Indicated Steam Flow Line D u02.nff04 4.19 M Ibm/hr Indicated Total Steam Flow u02.traO97 17.02 M Ibm/hr Indicated Feedwater Flow u02.traO98 16.55 M Ibm/hr Feedwater Temperature Line A u02.tra1O2 400.96 OF Feedwater Temperature Line B u02.tralO3 402.21 °F 0 Feedwater Temperature Line C u02.tra1O4 401.15 F Rx Dome Pressure Narrow Range u02.tra2O8 1031.12 PSIG Rx Dome Pressure Wide Range u02.tra2O9 1030.73 PSIG Steam Dome Temperature u02.nfa05 550.00 °F Recirculation Pump A Speed vm.2p401a/2a-rrpitac 1626.00 RPM Recirculation Pump B Speed vm.2p401 b/2b-rrp-tac 1596.00 RPM Recirculation Pump A Power u02.nrj5l 5.29 MWe Recirculation Pump B Power u02.nrj52 4.99 MWe CRD Cooling Header Flow u02.nef03 61.88 GPM CRD System Flow u02.nefOl 61.87 GPM CRD System Temperature u02.ndtO5 140.41 °F Bottom Head Drain Temp u02.tra2O6 532.09 °F Reactor Water Level Narrow Range u02.tra142 34.83 Inches H20 Reactor Water Level Narrow Range u02.nflO2 35.28 Inches H20 Reactor Water Level Narrow Range u02.nflO3 34.25 Inches H20 Reactor Water Level Wide Range u02.tra143 31.24 Inches H20 Recirculation Pump A Vane Passing Freq. n/a 135.50 Hz Recirculation Pump B Vane Passing Freq. n/a 133.00 Hz Recirculation Pump A Motor Frequency n/a 54.75 Hz Recirculation Pump B Motor Frequency n/a 53.74 Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM) u02.nff77 5.52 M lbm/hr Feed Flow Line B (LEFM) u02.nff78 5.51 M Ibm/hr Feed Flow Line C (LEFM) u02.nff79 5.46 M Ibm/hr CRD Flow u02.ndf01 0.03 M Ibm/hr Total Feedwater Flow n/a 16.51 M Ibm/hr Steam Flow Line A n/a 4.05 M Ibmn/hr Steam Flow Line B n/a 4.25 M Ibm/hr Steam Flow Line C n/a 4.15 MIbm/hr Steam Flow Line D n/a 4.07 M Ibm/hr Total Steam Flow n/a 16.51 M Ibm/hr Test Point 3 - 3939.5 MW,k / 106.1 MlbJhr - Start Page 46

Steam Dryer Data Log Sheets Finish Date/Time 7/28/2011 9:30 (Finish) ComDuter ID Value Units Thermal Power (Instantaneous) u02.nba01 3939.51 MWth Thermal Power (15 min Ave.) u02.nba101 3939.50 MWth Electrical Power u02.tra178 1303.46 Mwe Total Core Flow u02.nffl 2 106.14 M Ibm/hr Recirc Loop Flow A u02.traO28 52.36 M Ibm/hr Recirc Loop Flow B u02.traO29 54.02 M Ibm/hr Recirc Loop A Suction Temperature u02.nrt01 527.62 °F Recirc Loop B Suction Temperature u02.nrtO2 528.27 °F Core Plate D/P u02.traO27 18.73 PSI Steam Flow Line A u02.nff01 4.16 M Ibm/hr Steam Flow Line B u02.nff02 4.37 M Ibm/hr Steam Flow Line C u02.nff03 4.27 M Ibmn/hr Steam Flow Line D u02.nff04 4.19 M Ibm/hr Total Steam Flow u02.traO97 17.02 M Ibm/hr Feedwater Flow u02.traO98 16.54 M Ibm/hr Feedwater Temperature Line A u02.tral02 400.99 °F Feedwater Temperature Line B u02.tral03 402.19 OF Feedwater Temperature Line C u02.tral04 401.04 °F Rx Dome Pressure Narrow Range u02.tra2O8 1031.13 PSIG Rx Dome Pressure Wide Range u02.tra2O9 1030.78 PSIG Steam Dome Temperature u02.nfaO5 550.00 °F Recirculation Pump A Speed vm.2p401a/2a rrp-jac 1626.00 RPM Recirculation Pump B Speed vm.2p401b/2b-rrpjac 1595.00 RPM Recirculation Pump A Power u02.nrj51 5.29 MWe Recirculation Pump B Power u02.nrj52 4.99 MWe CRD Cooling Header Flow u02.nef03 61.88 GPM CRD System Flow u02.nef01 61.88 GPM CRD System Temperature u02.ndt05 140.50 °F Bottom Head Drain Temp u02.tra2O6 532.09 °F Reactor Water Level Narrow Range u02.tra142 34.74 Inches H20 Reactor Water Level Narrow Range u02.nfl02 35.44 Inches H20 Reactor Water Level Narrow Range u02.nfI03 34.16 Inches H20 Reactor Water Level Wide Range u02.tra143 31.30 Inches H20 Recirculation Pump A Vane Passing Freq. n/a 135.50 Hz Recirculation Pump B Vane Passing Freq. n/a 132.92 Hz Recirculation Pump A Motor Frequency n/a 54.75 Hz Recirculation Pump B Motor Frequency n/a 53.70 Hz Enhanced Steam Flow Calculations Feed Flow Line A (LEFM) u02.nff77 5.52 M Ibm/hr Feed Flow Line B (LEFM) u02.nff78 5.51 M Ibm/hr Feed Flow Line C (LEFM) u02.nff79 5.46 M Ibm/hr CRD Flow u02.ndf01 0.03 M Ibm/hr Total Feedwater Flow n/a 16.51 M Ibm/hr Steam Flow Line A n/a 4.05 M Ibm/hr Steam Flow Line B n/a 4.25 M Ibm/hr Steam Flow Line C n/a 4.15 M Ibm/hr Steam Flow Line D n/a 4.07 M Ibm/hr Total Steam Flow n/a 16.51 M Ibm/hr Test Point 3 - 3939.5 MWth 1 106.1 Mlbm/hr - Finish Page 47

ENCLOSURE 3 TO PLA-6752 Affidavit

CONFIDENTIAL INFORMATION SUBMITTED UNDER 10 C.F.R. §2.390 AFFIDAVIT OF RICHARD D. PAGODIN I, Richard D. Pagodin General Manager-Nuclear Engineering PPL Susquehanna, LLC, do hereby affirm and state:

1. I am authorized to execute this affidavit on behalf of PPL Susque-hanna, LLC (hereinafter referred to as "PPL").
2. PPL requests that the information attached and identified by text inside triple brackets (({This sentence is an example.}}} be withheld from public disclosure under the provisions of 10 C.F.R. 2.390(a)(4).
3. The PPL Documents contain confidential commercial information, the disclosure of which would adversely affect PPL.
4. This information has been held in confidence by PPL. To the extent that PPL has shared this information with others, it has done so on a confidential basis.
5. PPL customarily keeps such information in confidence and there is a rational basis for holding such information in confidence. The information is not available from public sources and could not be gathered readily from other publicly available information.
6. Public disclosure of this information would cause substantial harm to the competitive position of PPL, because such information has significant commercial value to PPL.
7. The information identified in paragraph (2) above is classified as proprietary because it details the results of test data derived from test instrumentation installed specifically to collect this data. This instrumentation was installed at a significant cost to PPL. The data and the conditions under which it was collected constitute a major PPL asset.
8. Public disclosure of the information sought to be withheld is likely to cause substantial harm to PPL by foreclosing or reducing the availability of profit-making opportunities. The information is of value to other BWR Licensee's and would support evaluations and analyses associated with extended power uprate license amendment submittals. Making this information available to other BWR Licensee's would represent a windfall and deprive PPL the opportunity to recover a portion of its large investment in the test instrumentation from which this data is derived.

PPL SUSQUEHANNA, LLC Richard D. Pagodin ( Commonwea of Pe County Subscribed and sworn before me, a Notary Public in and for the CommQnwealth of Pennsylvania Thisj!d#y of e/I/*.al2011 OOMMONWEALTH OF PENNSYLVANIA Notarial Seal Pamela M. VWit, Notary Public Sugaprkof Twp., Columbia County M Cnmmton Expires May 31, 2014 Member. Pennsvlvarna A-soiatlon of Noterime}}