ML18227E210: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:AB-97 p--p:~"YII gg~iJk R~~
moLfI 'L'ILG BASELINE ECOLOGICAL STUDY OF A SUBTROPICAL TERRESTRIAL BIOME IN.SOUTHERN DADE COUNTY, FLORIDA Docket  0 CmIrglm g
                            ~/8S/
                          ~>IF~cDQ F,:)!.'.m'R'OYCacumenh 0'"GCUYCGY 00 CIIET FILE jANUARY 1978 APPLIED BIOLOGY, INC.
Ecological Consultants 8
641 DeKALB INDUSTRIALWAY ATLANTA,GEORGIA 30033 TELEPHONE (404) 296-3900
 
I I
I I
I I
I
 
AB-97 BASELINE ECOLOG I CAL STUDY OF A SUBTROP I CAL TERRESTRIAL BIONE IN SOUTHERN DADE COUNTY, FLORIDA Prepared  for FLORXDA PONER 6 LIGHT COMPANY MIAMI, FLORIDA By APPLIED BXOLOGY, INC.
ATLANTA, GEORGIA January l978
 
I I
I I
I l~
I
 
CONTENTS Pa<ac
 
==1.0 INTRODUCTION==
-                                                  1-1 1.1 Background Information                                      1-1 1.2 Description of the Region                                  1-4 1.3  Study Rationale                                          1-5
: 1. 4 Summa ry                                                  1-9 1.4.1 Natural Plant Associ ations                          1-9 1.4.2 Soil Analyses and Characteristics -          -- -- 1-10 1.4.3 Kinds and Abundance of Native Animals --- 1-11 1.4.4 Experimental Studies-                                1-13 2.0 DEFINITION OF TYPES AND RELATIVE ABUNDANCE OF OF NATURAL PLANT ASSOCIATIONS                                  2-1 2.1  Introduction                                              2-1 2.2  Natural Plant Associations                                2-4 2.2.1 Fringe Forest                                        2-4 2.2.2 Dwarf Mangrove                                      2-4 2.2.3 Black Rush/Salt Grass                                2-5 2.2.4 Saw Grass                                            2-5 2.2.5 Hammocks-                                            2-9 2.3 Soil Analyses and Characteristics                          2-15 2.3.1  Major Soil. Types                                  2-15 Miami  Oolite                                    2-15 Naris                                              2-15 Peats                                            2-16 2.3.2  Soil Characteristics                              2-18 Soil Sampling Station;Locations (for Stratigraphy, Bulk Density, Carbon and Carbonate,    and Salinity Studies)----    2-18 Soil Stratigraphy                                2-18 Methods                                    2-18 Results-                                1 2-19 Bulk Density                                      2-23 Methods                                    2-23 Results                                    2-23 Carbon and Carbonate    Analyses  --- -- --  2-25 Methods                                    2-25 Results                                    2-25 Soil Salinity                                    2-26 Methods                                    2-28 Results                                    2-28 Soil Sampling Station Locations (for      ATP, Soil Moisture, pH, and Organic and Inorganic Carbon Studies                      2-32 ATP                                              2-33 Soil Moisture                                    2-37 S oil pH                                          2-38 Organic and Inorganic Carbon      ---- -- --  2-38 11
 
I I
I
 
CONTENTS (continued)
                                                                ~Pa e 2.3.3    Soil Microbiology                            2-43 Methods                                2-43 Results                                2-44 Numbers of Bacteria in Soi 1---  2-44 Taxonomy of Soil Bacteria-----    2-46 Physiological and Metabolic Characteristics                            2-46 Carbon Metabolism                            2-49 Nitrogen Metabolism                          2-49 2.3.4 Soil Profile                                    2-52 Introduction                                2-52 Methods                                      2-53 Hammock Soil Transects ---------    2-53 Subsurface Stratigraphy  --- ----- 2-53 Results                                      2-56 2.4  Summary                                              2-58 3.0  KINDS AND ABUNDANCE OF NATIVE ANIMALS                      3-1 3.1  Introducti on                                        3-1 3.2  Birds                                                3-5 3.3  Mammals                                              3-15 3.4  Reptiles and Amphibians                              3-18 3.5  Fish                                                  3-23 3.6  Selected Invertebrates                                3-27 3.6.1 Soil Macroinvertebrates                        3-27 3.6.2 Surface and Arboreal Molluscs                  3-27 3.6.3 Insects and Spiders                            3-30 3.6.4 Zooplankton                                    3-42 3.6.5 Aquatic Molluscs                                3-45 3.7  Su'mmary                                              3-49
: 4. 0 EXPERIMENTAL STUDIES                                      4-1 4.1  Introduction                                          4-1 4.2  Vegetation Peak Standing Crops                        4-2 4.2.1 Methods                                        4-2 4.2.2 Results                                        4-3 Species Density and Areal Coverage-    4-3 Vegetative Biomass -                  4-7 4.3  Effects of Soil Characteristics on Plant .
Association Groups                                4-21 4.3.1 Introduction                                    4-21 4.3.2 South Dade Soils                                4-21 4.3.3 Distribution of Hammocks                        4-22 4.3.4 Distribution of Mangroves                        4-23 4.4  Nutrient Turnover in Salt Marshes                      4-24 4;4.1 Introduction                                    4-24 111
 
I I
I I
I I
I I
I
 
CONTENTS (continued)
                                                              ~Pa e 4.4.2  Hydraulic Studies                            4-24 Methods                                      4-24 Results                                      4-26 4.4.'3  Nutrient Determination in  Mangrove  Soils  4-29 Nitrogen                                    4-29 Phosphorus                                  4-31 Micronutrients                              4-36 Nitrogen Fixation                            4-39 4.4.4  Organic Carbon Productivity ----    ------- 4-43 Productivity of Trees and Grasses -------    4-44 Methods                                      4-44 Results                                      4-44 Productivity of Phytoplankton  and Benthic Algae                              4-46 Methods                                      4-46 Results                                      4-46 4.4.5  Mangrove  Contribution to Adjacent Estuary  4-47 Methods                                      4-47 Results                                      4-51 4.5  Effects of Groundwater    Seepage on Mangroves  ---- 4-58 4.5.1  Distribution of Vegetation                  4-58 4.6  Summary                                              4-60 LITERATURE CITED                                              4-63
 
I I
I I
 
LIST  OF FIGURES Figure                                                        ~Pa  e Location of South Dade Site                            1-3 2-1  Distribution of major vegetation zones at the South Dade study area-                                2-3 2-2  South Dade Area dwarf mangrove zone vegetation inventory                                              2-6 2-3  South Dade Area black rush/salt grass zone vegetation inventory                                  2-7 South Dade Area saw grass zone vegetation inventory                                              2-8 2-5  South Dade Area saltwater hammock vegetation
      'inventory                                            2-11 2-6  South Dade Area brackish water hammock vegetation inventory                                  2-12 2-7  Bright band of calcitic mud deposition parallel to shoreline, and study transect station locations                                      2-17 2-8  So i 1 strati graphy at 17 s tat i ons in di ffere n t vegetation zones                                      2-20 2-9  Salinity  and  chlorinity values    along study transect                                              2-30 2-10  Depth  profiles by stations and parameters-----      2-39 2-11  Location of study hammock in dwarf mangrove zone                                                  2-54 2-12  Hamock study transects                                2-55 3-1    Outflight patterns from    West  Arsenicker  Key rookeries,  Hay 1977                                  3-14 3-2    Diversity of day insect collections (mean, range and standard    error), South Dade  Area----  3-40 4-1    Study transect station locations      -----;------  4-4 4-2    Distribution    and biomass of dwarf mangrove zone by component and species                          4-8 4-3    Leaf biomass and leaf area in the dwarf mangrove zones                                        4-9 4-4  Distribution of biomass in black rush/salt grass zone by component and species -- ------- 4-11
 
I I
I I
I I
I
 
LIST  OF FIGURES (continued)
~Fi  ures                                                  ~Pa e Leaf biomass and leaf area in black rush/
salt grass zone                                  4-12 4-6    Distribution of biomass in black rush/salt grass zone by component and species ------------ 4-13 4-7    Leaf biomass and leaf area in black rush/
salt grass zone (off transect)                  4-14 4-8    Distribution of biomass in saw grass zone by component and species                            4-17 4-9    Leaf biomass and leaf area in the saw grass zone                                            4-18 Approximate locations of fresh and sal t water interface, August 1974                          4-25 4-11    Nitrogen fixation in grams of ni trogen per gram of sediment per year                            4-40 4-12    Nitrogen fixation in grams of nitrogen per gram of algal mat per year                            4-41
 
I I
I I
 
LIST OF TABLES Table                                                      ~Pa e Major contributors of South Dade Area research material                                    1-8 2-1  Vegetation zone acreage of South Dade Site      ----- 2-14 2-2  Bulk density measurements for South Dade Area soils                                            2-24 2-3  Average  calcium, magnesium and strontium composition of the carbonate fraction of marls and peats along the South Dade study transect--
2-4  Salinity in parts per thousand (%, ) from ground water of major vegetation areas ---      --
2-5  Adenosine triphosphate (ATP) in soil samples from non-hammock areas near Stations 2, 18, and 30                                                2-35 2-6  Adenosine triphosphate          in soil from 'drainage 2, 18, and 30 tail'f  (ATP) hammocks samples near Stations 2-36 2-7  Depth analysis of organic and inorganic carbon content of soil                                      2-41 2-8  Derived counts of colony-forming units (CFU) of aerobic and facultative anaerobic bacteria ----- 2-45 2-9  Cluster analysis of soil isolates showing groups with > 80% coefficients of association -- 2-47 2-10 Summary of hydrolysis of various substrates by, all isolates in a soil column, Stations 2, 18 and 30                                                2-50 3-1  Status category definitions extracted from the inventory of rare and endangered biota in Florida                                            3-3 3-2  Birds found within or near the South Dade Site (not on r.are or endangered list) --------      3-6 3-3  Rare or endangered birds found within or near the South Dade Site                              3-10 3-4  Mammals collected or sighted in the South Dade Si te and vi cini ty                                  3-16 3-5  Reptiles and amphibians observed    within the South Dade Site                                      3-19
 
I I
I
 
LIST  OF TABLES continued Table                                                      ~Pa e 3-6  Reptiles sighted outside of South Dade Site      ---- 3-20 3-7  Fishes collected and observed at the South Dade Area                                            3-24 3-8  Soil macroinvertebrates  collected at the South Dade Area                                            3-28 3-9  Surface and arboreal molluscs collected at the South Dade Area                                      3-29 3-10 Insects collected in the South    Dade Area -------  3-31 3-11 Zooplankton groups collected    at  South Dade Area and  their relative  abundance  by habitat  --- 3-44 3-12 Aquatic molluscs collected  within the South Dade Area 4-1  Vegetation type and areal coverage of major zones of the South Dade Site                          4-5 4-2  Density of mangrove species (individuals/mz) along the South Dade study transect ---    ------- 4-6 4-3  Biomass estimate of 424.4 hectares of black rush on the South Dade Area Total biomass of saw grass on the South Dade Area                                                  4-19 4-5  Distribution of  biomass (g/mz) in the various vegetative zones on the South Dade Area exclusive of hammock biomass                          4-20 4-6  Total Kjeldahl nitrogen in south Dade soils during November                                      4-30 4-7  Inorganic phosphorus analyses of south Dade soils during the winter (November) -----------      4-32 4-8  Inorganic phosphorus analyses of south Dade soils during spring (February)                        4-34 4-9  Inorganic, organic, total and percent of total phosphorus  values of south Dade soils --    ------ 4-37 4-10 Magnesium, manganese, potassium, strontium, and zinc analyses of south Dade soils ---------- 4-38
 
I I
I I
 
LIST OF TABLES continued Tabl e                                                    ~Pa e 4-11    Mean concentrations of particulate detrital material in the tidal waters                    4-52 4-12    Amounts  of total, inorganic, and organic dissolved carbon in the tidal waters during November                                  4-54 4-13    Measured  transport of detrital organic matter dpring  January,  February, October and November 1976                                    4-55 4-14    Elemental composition of detritus after 70 days  of decomposition - - --- - --        57 4-15  "
Summaries  of the respiration  and production values by  vegetative zone                      4-62
 
I 4 I
I I
 
==1.0  INTRODUCTION==
 
==1.1    BACKGROUND==
INFORMATION This document has been prepared in response to Operating License Nos. DPR-31 and DPR-41,  Section 4.0-8-1, a, b, and c of the Technical Specifications prepared by the Nuclear Regulatory Commis-sion  (NRC)  for Florida  Power & Light  Company's  (FPL) Turkey Point Units  3 and  4. The specifications are  as  follows:
: a. Definition of different types and relative abundance of natural plant association as a function of topography over a 10,000-acre tract [actually about 10,500 acresj that includes tidal, mangrove salt marsh, fresh-water wetlands, and dry land communities.
This will include analyses of the character-istics of the soils in which these plants are formed (e.g., depth of organic layer, pH,  available nutrients, soil profile, salinity, etc.) as a basis for predicting conditions under which these plant associa-tions will survive.
: b. Study the kinds and abundance of native animals that live in association with the different plant communities and utilize them for food and shelter and breeding.
In this phase of the study, field observa-tions and trapping techniques will be used to prepare accurate lists of the species noted, especially any rare or endangered species, and  will include birds,  mammals, amphibians,  reptiles, fishes  and selected invertebrates.
: c. Experimental studies on selected parameters such as:
1-1
 
I I
I I
I I
I
 
(a) peak standing crop of different plant species as a function of seasons of the year, (b) effects of certain soil characteristics on occurrence of plant association groups, (c) nutrient turnover in the mangrove salt marsh and its relative contribution to the adjacent estuary areas, and (d) effects of possible ground water seepage on mangrove    ecosystems.
NRC  further stated that      "... an  intensive  and comprehensive three-year program would      be undertaken to establish baseline ecolog-ical conditions    and  characterize the flora      and fauna  of  a tract of land that  was  ecologically similar to the Turkey        Point Site." FPL complied by  starting  a program in 1973 which responded          to all of the environmental parameters      in the Appendix    B Technical Specifications.
There were  valid reasons for not conducting          a baseline program on  the Turkey Point Site    itself. Construction of the canal cooling system was started    prior to finalization of the        proposed ecological programs, and    it would  have been    scientifically    unsound to study a 1
habitat undergoing modification.        Also, from    a  purely practical standpoint, environmental surveys would have          been  difficult to conduct amid heavy drag      line  and  earth-moving equipment.
A habitat ecologically similar to the Turkey Point Site            was available for study in southern        Dade County.      This 4252-hectare (10,500-acre)    site,  designated as the South      Dade  Site,  was already  owned by FPL    (Figure  l-l) and    shared  a  cordon boundary 1-2
 
I I
I I
I
 
                                                                                                                                                                                                                  ) 'ccc$64$
Itchy
                                                                                                                                                                                                          ~c ~
                                                                                                                                                                                                                                  ~fPcdI c                Ijvcc Ejg@$    I $
r+r,fA4~+4~IIv cjrc  rcpt
                                                                                                                                                                                    'v>>
E
,v Jgt                                                                                                                                                                                      +J sy. f                        cvrrj v
                                        'c<<!  .)    c 0
ICI n',,r
                                                                                                                                                                .  ~'f~~      cV            0      CII
                                                                                                                                                                                                        ~
                                                                                                                                                                  .~kcIv crrvgcg+I 0C    +J c
c c                                  III III O
0        0ccj CI UO C
                                                                  .5'tV I,
I jc pCcct                                    )c  "r                          Ntc p                            c          cv+
cjjc 4
                                                                                                                "a~@
    ~  ~  ..C                                                ~    >    cc Il *,                                    )0gg I  ~  II                                '
vr
                                                  ~  I Q    I          I    lg                                            d I                                                    ~      I  t<<      ~
V.
Qcj IP                                                              C" "CjjaP I ccj I
0' S                (Q                                                                                                  '"
8                                                                                                                      .,rp
                            /                                                                            Gf O                        .v  ~+."  t~~d -C O
                'c 0                          j. ","
                                                                                                                          ~ Ir P jf I  ~
a                    +
                                                                                                                                                                                                                    ~@y.<hajj" I      I~i ct
                                                                        ~ cj C
0 I
                                                                                                                                                      ~ I
                                                                                                                                                                                                  ~
v
      ~
Gf cj (5
co--- I <
I tr vj>'j'Cc
                                                                                                                                                                                  ~4 v 'p<<*tvCr"jr C<<
v jr co                                                                                                                                            .".aPI C~
U) m CO I
c ~
                                                                                                                                                                                  ~          'p
 
4
~~
 
with the Turkey Point Site.      Therefore, biological data from the South Dade Site were evaluated to assess        the impact of the construc-tion of the closed-loop cooling canal      system on the Turkey Point Site.
 
==1.2      DESCRIPTION==
OF THE REGION Both the Turkey Point canal system and the immediately adjacent South Dade Site    lie  to the west  and south  of  Card Sound and  Little Card Sound    (hereafter referred to  as Card Sound    for brevity). These two small water bodies are contiguous      with the southern reaches of Biscayne Bay.
The  region is subject to heavy periodic inundation by        rainfall, about 127 to 152 centimeters      (50 to 60 inches) per year.      The volume of runoff resulting from    a rainfall  depends  on  the groundwater le'vel at the time of the rainfall.      During the dry season when groundwater levels are low, the aquifer will hold additional water, so,          infiltra-tion of surface water is greater      and  runoff is small. During the wet season when groundwater levels are near the ground surface, the aquifer  has  little capacity  to store water,    and the amount  of infil-tration is small.      Runoff is inhibited during the wet season,      however, due  to increased tidal levels in    Card Sound. As a  result,  much  of the  site is  covered with standing water during the wet season        that is continuous with    tidal waters  (Dames & Hoore,    1976).
1-4
 
I I
I I
I
 
The topography    of the land is low    and  flat,  thus  rainfall drainage is slow. The  slight  downward slope    of the land, about 1.8 centimeters per 100 meters, keeps the inland regions draining into  Card Sound. The  construction of the    Model Land Canal and the South Florida Water Management      District's  borrow canal and Levee 31-E have  interrupted fresher water sheet flow        and  directed surface water flow  away from  the study areas.
: 1. 3    STUDY RATIONALE Mangroves and    saltwater wetlands are believed to        be  vital to the well-being of nearshore and offshore fisheries.            The  coastal fringes of the  South Dade Site and the Turkey Point        Site support mangroves    and saltwater wetlands, which      lie further  inland and blend into freshwater plant communities. What  effects,  if any,  will  the presence of the Turkey Point canals have on the mangroves and adjacent Card Sound?
Without proper baseline data, statements          about environmental effects of the Turkey Point canal system would          be pure conjecture.
Complex questions    needed  to be answered,    such as how productive are these associations    and what are the    physical parameters that control them?  What are  the native animals of the area      and how do    they rely on the  vegetation?    How  will  the presence of canals, buildings, and roadways  directly  a'djacent to  this coastal  zone  affect this productivity?
1-5
 
I I
I I
I I
I I
 
Answers to these and    other related questions were not forth-coming from published    scientific literature, for enormous gaps existed in  many  technical aspects of estuarine and terrestrial ecology. Salt marshes  and coastal zones had received little scientific scrutiny un-til the  past several decades,    when  the role played by coastal zones was  recognized as being crucial to the cycling        of nutrients into the marine food chains.      Therefore, explanation of the complex biochemi-cal and thermodynamic (energy-flow) networks are scarcely given by present-day science and technology.          Basic research was needed to identify the    complex life systems    which interact in the    zones where the land meets the sea.        Accordingly, teams of researchers      from three universities    and several  consulting firms were engaged by      FPL  to con-duct  field  and  laboratory studies which would identify        and describe the biological, biochemical and microbial          activity of the    South Dade habitat. With these data, reasonable      estimations might    be made which would apply to the habitat at the Turkey Point            Site.
To  study in depth each of the 4252 hectares        (10,500 acres) present in the South    Dade  Site  was  not practical. Therefore,    as in other ecological baseline studies of this magnitude, the scientific efforts were focused upon the habitats that were most representative of those found throughout the      South Dade  Site. In the opinion of the scientific    community, the most    critical habitats    from an ecological standpoint were located in the transition between the upland              saw grass prairies  and the marine waters    of  Card Sound. Accordingly,    a  measured 1-6
 
I I
I I
 
transect of land      100 meters    (330  ft) wide was established    which extended from    a  point just south of the      Sea Dade Canal    to  a  nearshore point in  Card Sound.        The  transect extended sufficiently far inland to include most major habitats found within the South                Dade  Site boundary and representative          of conditions at Turkey Point.          In  some instances  it was    necessary    to locate research projects      away from the transect to serve      as a  control or      when destructive sampling of vege-tation  was  required.      Although the study was most intense in and around the transect,      it was    not limited to the transect.        The area encompassed    by  the Model Land Canal, the        Sea Dade  Canal, Canal and Levee 31-E, and Old      Dixie Highway,      known as  the South  Dade  Area,  was evaluated in detail      for its flora      and fauna.
Over 70    scientists    and  .technicians from three univerisities were engaged    between 1973 and 1976.          These research  teams,    identified in Table  l-l, conducted      field    and  laboratory studies which would iden-tify and  describe the biological, biochemical, and microbial acti vity of the  South Dade Area.        Other subcontractors      also provided environ-mental data during the study period.
Thi,s  report is    a summary    of the three-year    program  that  was  con-ducted in coastal      salt  marsh and saw grass      ecology of the South      Dade Area. In order to      facilitate readability,        only  a fraction of the tabu-lar, graphic,    and mathematical        data has been  included in this report. *
*See  Literature Cited,      page 4-61 and      4-62.
1-7
 
I I
I I
I I
 
TABLE l-l MAJOR CONTRIBUTORS OF SOUTH DADE AREA RESEARCH MATERIAL Major Contributors                Ma 'or Stud Area                    Reference Samuel  C. Snedaker              Natural plant associations    and  Ecological studies  on a subtrop Rosenstiel School of Marine      soil characteri s ti cs.            ical terrestrial biome. Final and Atmospheric Sciences                                          report. Prepared for Florida 4600 Rickenbacker Causeway                                            Power & Light Co., Miami, Florida.
Miami, Florida Connell, Metcalf & Eddy          Kinds and abundance    of native  Biological data collected for        PPL Engineering and Environ          animals.                          for this report only.
mental Consultants Miami, Florida Dames & Moore                    Surface water hydrology.            Surface water investigations, South Consul tants in Environmental                                        Dade biological study, South Dade and Applied Earth Sciences                                        Area. Prepared for Florida Power &
Boca Raton, Florida                                                  Light Co., Miami, Florida Jack H. Fell                      Vegetative  litterfall, micro-    The  role of microorganisms  as indi-Rosenstiel School of Marine      biology, nutrient turnover in      cators of changing environmental con-and Atmospheric Sciences      salt  marshes.                    ditions in mangrove and marsh commun-4600 Rickenbacker Causeway                                          ities. A final report (Section A) on Miami, Florida                                                      a research project in South Dade County'submitted to Florida Power 8 Light Co., Miami, Florida Edward L. Fincher              Microbiology, organic and          Ecological stodies of a subtropical School  of Biology              inorganic carbon content of        terrestrial .biome: microbial ecology.
Georgia Institute    of          soils.                              Summary report, March 1, 1976-August Technology                                                        31, 1976. Project No. G 32-630.
Atlanta, Georgia                                                    Prepared for Florida Power & Light Co.,
Miami, Florida.
 
I I
I
: 1. 4   
 
==SUMMARY==
 
The intent of this report is to establish baseline ecological conditions of habitats similar to Turkey Point.            The parameters studied in-depth were natural plant associations,          soil analysis  and characteristics  and kinds and abundance        of native animals. Additional experimental studies were conducted on surface water hydrology, nutrient turnover    and microbiology of salt marshes, and nutrient con-tribution to adjacent    Card Sound.
1.4.1  Natural Plant Associations Natural plant associations        (Section 2.2) were strongly    influ-enced by two major determinants:        tolerance to water of varying chloride (salt) concentrations and the distribution of high organic-containing soils, mostly mangrove peats.. Zones of vegetation were delineated and maintained based upon    a  plant species being able to withstand physio-logical stresses    imposed by  salt-induced osmotic pressure.        Density and acreage  of plant species    were    identified  and described using prin-cipal vegetative characteristics, as follows:
: a. Frin e forest - comprised of large red mangroves forming a ense fringe bordering the coast
: b. Dwarf man rove    - a  population of stunted or diminutive red, lac , or white mangroves which are not believed to be a dwarf race or variety, but rather have dwarf characteris-tics imposed by the high chloride concentrations and low phosphorus content of the soils
: c. Black rush  salt  rass    -  two  grass-like species which occur etween t e more sa >ne        soils  of the dwarf mangroves and
            .the fresher water saw grass        habitat 1-9
 
I I
I I
: d. Saw    rass - generally in fresher. water and about one mile in and from Card Sound waters
: e. Salt water    hammocks  - slightly elevated oval or    round masses    of rich organic peat    which support dense stands of  mangroves
: f. Brackish water haomocks - with configuration similar to salt water hammoc s except that a different plant species composition occurs.
1.4.2  Soil Anal ses and Characteristics The South Dade      Site soils (Section 2.3) are comprised of non-stratified calcitic      mud  which  is lai gely finely-divided calcium      and magnesium carbonates.        Soil depth to bedrock varies from 1.2 meters (4  ft) to occasional out-croppings which broach the surface of the soil. Scattered        randomly within the    calcitic  mud are pockets or lenses of organic peat.        These are comprised    of mostly  dead  roots and other degraded  plant products.      Peats may or may not broach the surface.
Peat deposits which do broach the surface may            characteristically support dense mangrove-dominated          vegetation to form salt water or brackish water      hammocks. Red mangrove  peats spaced between layers        of calcitic    mud  strongly suggests the region      has  fluctuated  between marine and  freshwater influences during        its geological  past. The  freshwater calcareous    mud was    probably the earliest sediment type formed        on  this coast. At  some  later time,  mangroves  began  to colonize the calcareous mud  areas.
1-10
 
I 1.4.3  Kinds and Abundance  of Native  Animals Studies were conducted to determine the kinds and abundance of birds,  mammals,  reptiles, amphibians, fish, arboreal and aquatic molluscs, insects, spiders, and soil macroinvertebrates (Section 3.0).
Animal species  observed at the South Dade Site were researched        to determine  their status with respect to the U.S. Department of the Interior's endangered and threatened wildlife lists, the State of Florida Game and Fresh Hater Fish Commission wildlife code, and the Florida Committee  on Rare and Endangered    Plants and Animals inventory of rare  and endangered  biota of Florida.
The South Dade  Site is unattractive to the large wading birds as a rookery  or nesting area. These species  prefer the security of small islands and densely wooded areas with      tall  trees which provide a measure  of protection against predators.      The  Arsenicker  Keys and Mangrove Key, small mangrove-covered    islands lying about    3  kilometers (1.8 miles) east of the Turkey Point cooling canals, provides the requisite isolation for the location of rookeries. An estimated 4,000 wading birds have been observed in these small islands.        Ten  percent or less of this population    use the South Dade  Site  as a forage area.
Among  the aquatic birds the most    common  birds observed along the coast were, in decreasing order, the    little blue  heron, white ibis, great egret  and snowy  egret.
1-11
 
I I
I I
I I
I
 
Only  five species of    mammals  were sampled during the study and five other species observed.          Sampled species      were the    rice rat, cotton rat,    raccoon, black    rat  and house mouse.      Observed species      included the white-tailed deer,        marsh  rabbits, bobcat,    manatee    and  bottle-nosed dol-phin; the    latter  two aquatic mammals occurring in South            Florida Water  Man-agement    District    canals and offshore, respectively.
Reptiles observed within the South          Dade  Site were anoles, water snakes,    indigo snakes, racers      and  rattlesnakes. Amphibians were represented by  cricket frogs,      greenhouse    frogs, pig    and leopard    frogs and various tree-frogs. No  alligators or crocodiles        were observed on the      site;  however, these species were seen within the adjacent cooling canal system,                    Intercep-tor Ditch    and Canal, and Levee 31-E.          It is  possible that small numbers of alligators    may  occur almost anywhere      on FPL  property.      Crocodiles  seem  to be  attracted to      man-made  canals and borrow      pits  because    they prefer deep, quiet-water sites.
Twenty-four species of      fish'ere collected at        the South  Dade  Area.
With the exception      of scattered    ponds, the inland areas are usually dry.
During the wet season,        especially September through        November, the inland areas may support      relatively large populations of fish.            The species  most coranonly  collected included mosquitofish,          killifish, silversides      and mo-jarras. These species      provide forage for wading birds and larger carnivor-ous  fishes. No  species of fish currently      listed  as  threatened or endan-gered on federeal or state        lists  are known to occur within the South Dade Si te.
1-12
 
l l
 
1.4.4    Ex erimental Studies Experimental studies (Section 4.0) were conducted in the South Dade Area  to determine peak standing crops, the effects of soil char-acteristics  on  plants, nutrient turnover in salt marshes,        and possible influences of groundwater seepage        on mangroves. Within the mangrove zones,  red mangroves comprised over 78&#xc3;      of the total above-ground biomass. Leaf biomass    was  found to be 139 g/mz and    leaf area was 0.2 mz/m2. Values    for black rush/salt grass and saw grass zones      were also calculated.      Detritus accumulation, leaf biomass, and leaf      area were found  to increase    as a  function of distance from the shoreline.
Soil characteristics were found to play        a  minor role in nutrient cycling. The  distribution    and sources  of water played  a more signifi-cant role in determining plant distribution.          The  majority of the plant coranunities were found on inorganic        calcitic substrates. The calcitic soils at the    South Dade  Site are  relatively infertile due to the dominance  of calcium  and magnesium carbonates      and  only minimal amounts of other requisite elements. Mangrove distribution was not found to depend upon specific soil types, but rather on the relative position to the shoreline of Card      Sound and  tidal influences, Tidal flow and amplitude studies determined that the horizontal distance traveled by the landward edge of the water during the dry season  did not extend more than    700 meters  from the shoreline. During the wet season,    standi ng  freshwater from rainfall    was continuous with 1-13
 
I I
I I
 
Card Sound water.      Normal  tidal motion    was  imparted, and    tidal effects  were  therefore observed throughout the study area.            Tidal movements    and storms are    believed to be the mechanisms that release and  transport nutrients from the black rush/salt grass            and saw grass zones to Card Sound.
The  detrital export    dynamics  of the  South Dade Site were evaluated in relation to actual        litterfall, the      decomposition rate, and the amount    of litter  remaining on the surface.        The  majority of the  detrital export    was  in the form of small particles between 0.45 and 62.0pm    in size. Organic matter may be      either exported to or imported from Card Sound; that        is, particulate matter      may  leave the system and enter Card, Sound or be transported          from Card Sound into the South    Dade  Site habitats..
The  effects of groundwater      seepage  on mangroves    were  deter-mined. Different  mangrove species    respond in various ways .when exposed to varying      saline regimes.      Exposure  to increasingly fresh water likewise    was shown  to  have a profound    effect  upon the  distri-bution of mangrove species.        The presence    of mangrove species    in higher saline habitats reflects the          inability of other    species to cope  with physiological stresses      induced by    salts. Therefore, in-creased  seepage  of saltwater at concentrations near that of          seawater in the South    Dade  Site soils could    be expected    to favor the growth of mangrove:species      at the expense of the less salt-tolerant vegetative species.
1-14
 
l I
 
2.0    DEFINITION  OF TYPES AND RELATIVE ABUNDANCE OF NATURAL PLANT ASSOCIATIONS"
: 2. 1    INTRODUCTION The  first part  of this section discusses the different types and  relative  abundance  of natural plant associations      found in the South Dade Area.      The  various plant associations      that comprise the mangrove  salt  marshes,  wetlands and dry land communities are defined.
The second    part of this section investigates      how  these plant associa-tions relate to the topography      and  soil characteristics of the study area as  a  basis  for predicting conditions    under which plant associa-tions will survive.
The  vegetative characteristics of the South        Dade Area change from northwest to southeast.        Plant communities    differ dramatically as a  result of slight variations in topography which affect the tidal intrusion of saline waters from adjacent        Card Sound. Dense mangroves flourish along the coast.        This mangrove community recedes      into salt-tolerant grasses, that, in turn, blend into freshwater dominanted            by saw  grass. Throughout these vegetation zones are hammocks, or tree islands,    so named  for their appearance    as  islands protruding above the expanse  of grasses    upon a  flat plain. Viewed from    low-flying air-craft, these teardrop or circular-shaped islands appear to punctuate the fields of saw grass and rushes below. Hammocks are rich with peat and other accumulations of organic matter that support heavy 2-1
 
vegetative growth.      The  geological origins of these rich organic deposits have not been identified.
The major  natural plant associations    found in the South Dade Area    are fringe  forest (comprised of mangroves}, dwarf      .
mangrove,    black rush/salt grass, saw grass, and      hammocks  (Figure 2-1).
The  fringe forest    and dwarf mangrove zones are    part of the mangrove salt  marshes. The  black rush and salt grass zone is also predominately a  saltwater association,    but the upland portions    of this zone merge into the wetlands of the      saw grass    zone. Hammocks are the only dry land community during the      summer  wet season,  but during the dry winter  season  the saw grass and black rush/salt grass zones are also essentially dry -land habitats.
2~2
 
      'wp A
~ \'
e I
I
 
Fi (FW Distr'1bu            GIagor      vegetation zones af the de Study Area.              Photo data taken        in    1964.    ~                                          o/e.l-0 r                                                                                                                                                            ,1 "F                    4 fig Sca fe. 1;,  cm = 266 v,:
q~a
                                                                                                          >age
                                                                                              ~e8
                        <<                                                                                                  <<                                        I
('                                                      EVE STUDY AREA                                                              \
r z/e
            -BOUNDARY I'
                                                                                                                                                    ~ H<<
I
                                                    ,-r <<'. H                                        >>" E A,                                  <<QJ      ~<<g.  >> H e
h                            ci                                                                              r 4                P:
H l+
(H>>
                                      ''H                                                                      ,g<<~    I
                                                                                                                          ~
I                            l I                                        F a
Q.'
(
g            I,H(
Fi I~      glQ
                                                                                            <<H (<<',
FRl,"f'6E mREST                                                        '4 fktle Car-5:.Siiind
                                        ) Qa 4                                    ~H ~ ~          C-I 1(
                                /+
 
I
: 2. 2    NATURAL PLANT ASSOCIATIONS 2.2.1    ~Fi The  shoreline of the South      Dade study area is  a fringe forest of  mangroves. The  fringe forest    does not extend  sufficiently inland to allow for species zonation but is          composed  solelv of the red mangrove, Bhisopho~a mangle.          The red mangrove coranunity  is best developed along shorelines with elevations above the            mean tide line.      The  proproot system, characteristic of red mangroves, is generally very      dense and serves    to entrap most of the organic debris produced      in situ. The accumulation  of organic matter  by mangrove proproots, added        to the debris from frequent breakage of the upper      canopy  structure  by winds and storms,    results in rela-tively large    amounts    of organic matter in the soils of the fringe forest.
2.2.2  ~0f    N Landward  of the fringe forest is      a broad area characterized by  sparsely-distributed individuals of very short (generally less than 2 m [7 ft] tall) red mangroves. Interspersed with these dwarf red mangroves are equally short individuals          of the black  mangrove (Avicennia gezvninan8), and the white mangrove (Laguncula~ia
~acemosa). This area,    known as  the dwarf, or scrub, mangrove zone, is found along the lower southeast coast of Florida and the Florida Keys. The dwarf mangrove zone occupies about 30/ of the study area 2-4
 
(see Section 4.5.3 Dwarf Mangroves).          Also observed in  this  area are black rush and scattered clumps of        salt grass. Figure 2-2 shows  the frequency of the occurrence of plant species in 75 sample quadrats    located in the dwarf mangrove zone.
2.2.3 Black Rush/Salt Grass Just landward of the dwarf mangrove area is        a  zone composed of black rush (t'uncut zoemezianus)      and  salt grass (DistichiEis spica'). Occasional  isolated individuals of    each  of the  mangrove species are also present.      Frequency  of species occurrence in the black rush/salt grass zone is given in Figure 2-3.            Also character-istic of this  zone  is  a well-developed blue-green algal mat which covers the surface    of the  marl substrate.
2.2.4  Saw Grass The upland  vegetation zone    on  the study property is dominated by saw grass  (Clad~urn jamaiceneis).      Unlike the familiar    saw grass expanses  of the Everglades, this      zone has a large amount      of open area  in which the marl substrate is exposed.          A thin layer of algae is present in this area, but        it is not so well defined as that in the black rush/salt grass      zone (Figure    2-4), largely    due  to the presence of fresher water.
 
V I
I
 
FRE(UENCY OF OCCURRENCE                                              (X)
IO              4l            W            Ch            Ch            M              0)
Tl 0                  0              0              0            0            0              0            0              0            0 0 EC)      ~    ~    ~      ~    ~ ~    ~ ~      ~  ~  ~  ~  ~      ~  ~ ~        ~  ~  ~  ~  ~  ~          ~  ~      ~  ~  ~
                ~    ~  ~  ~    ~  ~        ~ ~ ~          ~  ~  ~  ~  ~ ~ ~      ~ ~    ~      ~  ~  ~  ~  ~  ~  ~  ~  ~  ~
              ~    ~ ~          ~    ~  ~  0 ~ ~ 0 ~      ~    ~  ~      ~  ~  ~      ~  ~  ~  ~  ~  ~          ~  ~      ~ ~    ~
                ~    ~ ~    ~ ~ ~            ~ ~                                ~  ~  ~ ~    ~      ~ ~    ~  ~  ~
                                                                                                                            ~
                                                                                                                              ~  ~  ~ ~
                                                                                                                                        ~ ~
                                                                                                                                              ~
                                                                                                                                                ~
                                                                                                  ~  ~  ~ ~    ~              ~
tD S    ~ ~ ~
              ~
              ~
                ~ ~
                    ~
                ~ ~ ~
                    ~ ~
                ~ ~ ~
                        ~
                          ~
:::: RHI ZOPHORA
                              ~
                                ~ ~
                                    ~ ~
                                          ~  ~    ~ ~ ~
                                                ~ ~ ~
                                                              ~ ~ ~
                                                                ~ ~
MANGLE::::
                                                                        ~
                                                                              ~ ~
                                                                            ~ ~
                                                                                      ~
                                                                                    ~ ~
                                                                                              ~
                                                                                            ~ ~
                                                                                              ~
                                                                                            ~ ~
                                                                                              ~
                                                                                            ~ ~
                                                                                                  ~
                                                                                                  ~
                                                                                                    ~
                                                                                                    ~
                                                                                                    ~
                                                                                                      ~
                                                                                                      ~
                                                                                                            ~ ~
                                                                                                          ~ ~
                                                                                                            ~ ~
                                                                                                          ~ ~
                                                                                                            ~ 0
                                                                                                                  ~
                                                                                                                  ~
                                                                                                                    ~
                                                                                                                    ~
                                                                                                                    ~
                                                                                                                      ~
                                                                                                                      ~
                                                                                                                      ~
                                                                                                                          ~
                                                                                                                          ~
                                                                                                                          ~
                                                                                                                            ~
                                                                                                                            ~
                                                                                                                              ~
                                                                                                                              ~
                                                                                                                              ~
                                                                                                                                ~
                                                                                                                                ~
                                                                                                                                  ~
                                                                                                                                  ~
                                                                                                                                  ~
                                                                                                                                      ~ ~
                                                                                                                                        ~ ~
                                                                                                                                      ~ ~
                                                                                                                                        ~ ~
                                                                                                                                      ~ 0
                                                                                                                                              ~
                                                                                                                                              ~
                                                                                                                                              ~
                                                                                                                                                ~
                                                                                                                                                ~
              ~    ~    ~      ~    ~  ~  ~    ~ ~    ~  ~  ~  ~      ~ ~    ~      ~  ~  ~  ~ ~    ~          ~  ~      ~  ~  ~
                ~    ~  ~  ~    ~  ~        ~  ~  ~              ~  ~ ~    ~  ~  ~ ~    ~      ~ ~    ~  ~  ~  ~  ~  ~ ~    ~
                ~    ~ ~    ~    o ~          ~  ~  o      ~ ~ ~      ~ ~    ~  ~  ~ ~    ~      ~ ~    ~  ~  ~  ~
              ~ ~        ~      ~    ~ ~    ~    ~  ~  ~  ~  ~  ~      ~ ~    ~      ~  ~  ~  ~ ~    ~      ~ ~
                ~    ~ ~    ~    ~ ~          ~  ~  ~      ~ ~ ~      ~  ~  ~  ~  ~ ~    ~      ~  ~  ~  ~  ~  ~
              ~ ~        ~      ~    ~ ~    ~ ~      ~ ~    ~ ~ ~          ~  ~  ~      ~  ~  ~  ~  ~  ~      ~ ~
I L IS .SP I CATA .              ~  ~
                ~    ~ ~    ~    ~                                                              ~      ~ ~    ~  ~  ~  ~
              ~ ~        ~                                                                    ~  ~  ~  ~ ~    ~      ~ ~
              ~
                ~
                ~
                    ~
                      ~ ~
                      ~
                        ~
                          ~
:~ ~
DISTICH
                                      ~ ~      ~  ~  ~  ~
                                                                                            ~ ~
                                                                                            ~
                                                                                              ~
                                                                                              ~
                                                                                                ~
                                                                                                  ~
                                                                                                  ~
                                                                                                    ~
                                                                                                    ~
                                                                                                      ~
                                                                                                      ~
                                                                                                          ~
                                                                                                            ~
                                                                                                              ~
                                                                                                            ~ ~
                                                                                                          ~ J
                                                                                                                ~
                                                                                                                  ~
                                                                                                                  ~
                                                                                                                    ~
                                                                                                                    ~
                                                                                                                      ~
                                                                                                                      ~
                                                                                                                        ~
                                                                                                                          ~
                                                                                                                          ~
                                                                                                                        ~ ~
                                                                                                                            ~
                                                                                                                              ~
                                                                                                                              ~
              ~    ~    ~
C/l        ~    ~  ~  ~
0~ ~ ~ ~      ~ ~ ~          ~  ~
                                                                      ~ ~
                                                                            ~  ~  ~  ~  ~  ~  ~      ~ ~
                                                                                                          ~ ~
                                                                                                                    ~  ~ ~ ~
CD ED 0    ~
              ~
              ~
                ~
                    ~
                    ~
                        ~
                        ~
                      ~ ~    ~ ~
                                  ~ ~
                                        ~
                                          ~
                                              ~
                                              ~ ~
                                                  ~
                                                ~ ~ ~
                                                      ~
                                                      ~
                                                          ~
                                                          ~
                                                              ~
                                                              ~
                                                                ~
                                                                  ~
                                                                  ~ ~
                                                                    ~ ~
                                                                              ~  ~ ~
0 ~ ~
                                                                            ~ ~ ~ ~
                                                                                              ~  ~  ~          ~      ~  ~
              ~    ~    ~        ~ ~      ~  ~  ~ ~    ~  ~  ~  ~      ~ ~ ~
lD el.
H GI'
            ~
            ~
            ~
            ~
              ~
              ~
              ~
              ~
                ~
                ~
                ~
                ~
                    ~
                    ~
                    ~
                    ~
                      ~
                      ~
                        ~
                      ~ ~
                        ~
                      ~ ~
                        ~
                        ~
                          ~
                          ~
                              ~ ~ ~
                              ~
                                  ~
                                    ~
                                      ~
                                      ~
LAGUNCUL
                                        ~
                                          ~  ~
                                                ~
                                                  ~
                                                    ~
                                                      ~
                                                        ~
                                                          ~
RIA
                                                                  ~  ~
RACEMOS
                                                                              ~  ~  ~
Ql    ~    ~    ~  ~
O CL      ~
              ~
              ~
                ~
                    ~ ~
                    ~ ~
                      ~  ~
lD    ~
              ~
                ~
                    ~
                      ~
                        ~
                          ~
            ~
            ~
              ~
                ~
                ~
                    ~ ~
                      ~
                      ~
                          ~
                          ~
BORRICHIA FRUTESCENS (8
A) Ol
            ~
            ~
              ~
                ~
                ~
                    ~ ~
                    ~
                    ~
                      ~
                        ~
                      ~ ~
                        ~
                      ~ ~
                          ~
                    ~    ~
r+    CL          ~
                      ~ ~
                        ~              SALICORNIA VIRGINICA O    Z    ~
            ~
                ~ ~
                ~ ~
                    ~
                    ~ ~
                        ~
                            ~
                            ~
'c a        ~
              ~
                  ~
                    ~
            ~    ~
              ~    ~
            ~    ~
            ~
              ~
              ~
                  ~
                    ~
                    ~
JUNCUS ROEMERIANUS
              ~    ~
            ~    ~
O CONOCARPUS                ERECTA lD N
O ID
 
I I
I I
 
ICI FREQUENCY OF OCCURRENCE                                              (X)
ID                                                                                                                  N 0                  0              0IO            4) 0              04            0(h            0(h            0            CD 0  0 0
              ~
                ~    t~ ~
                    ~ ~
                                ~
                                  ~
                                    ~
                                        ~
                                          ~
                                            ~  ~
                                                  ~
                                                    ~
                                                        ~
                                                          ~
                                                            ~
                                                              ~  ~
                                                                  ~
                                                                    ~
                                                                      ~
                                                                        ~
                                                                          ~    ~  ~
                                                                                  ~ ~ ~
                                                                                ~ ~ ~
                                                                                        ~      ~
                                                                                                ~
                                                                                                    ~
                                                                                                  ~ ~
                                                                                                    ~
                                                                                                        ~
                                                                                                        ~
                                                                                                          ~  ~
                                                                                                                ~
                                                                                                                  ~
                                                                                                                    ~
                                                                                                                ~ ~ ~
                                                                                                                      ~
                                                                                                                        ~  ~ ~
                                                                                                                          ~ ~
                                                                                                                                ~
                                                                                                                                  ~
                                                                                                                                  ~
                                                                                                                                    ~
                                                                                                                                      ~
                                                                                                                                      ~
                ~          ~                                                    ~ 0 ~          ~ ~    ~  ~ ~ ~          ~  ~ ~
              ~    ~    ~                                                                    ~  ~  ~      ~  ~ ~    ~ ~    ~  ~
              ~ ~
                ~
                ~
                      ~
                      ~ ~
                          ~
                            ~
::::DISTICHILIS                          SP ICATA              ~
                                                                                                  ~
                                                                                                    ~
                                                                                                      ~
                                                                                                        ~
                                                                                                          ~  ~ ~ ~
                                                                                                                ~ ~ ~
                                                                                                                            ~
                                                                                                                          ~ ~
                                                                                                                                ~ ~
                                                                                                                                  ~  ~
( 0Vl ID
              ~ ~
              ~ ~
                ~
                ~
                    ~
                      ~
                      ~
                          ~
                          ~
                          ~
                            ~
                                ~
                                  ~
                                    ~
                                        ~
                                          ~
                                            ~
                                            ~
                                                  ~
                                                ~ ~
                                                ~
                                                  ~ ~ ~
                                                    ~
                                                        ~  ~
                                                          ~ ~
                                                          ~  ~  ~
                                                                  ~ ~ ~
                                                                ~ ~ 0
                                                                  ~ ~ ~
                                                                    ~  ~ ~
                                                                                ~
                                                                                ~
                                                                                  ~
                                                                                  ~
e
                                                                                    ~
                                                                                      ~
                                                                                      ~
                                                                                        ~
                                                                                        ~
                                                                                          ~
                                                                                          ~  ~
                                                                                                ~
                                                                                                ~
                                                                                                  ~ ~
                                                                                                  ~
                                                                                                    ~
                                                                                                  ~ ~
                                                                                                    ~
                                                                                                      ~
                                                                                                        ~
                                                                                                        ~
                                                                                                          ~
                                                                                                          ~
                                                                                                          ~
                                                                                                              ~ ~ ~
                                                                                                                ~ ~ ~
                                                                                                              ~ ~ ~
                                                                                                                ~ ~ ~
                                                                                                                          ~
                                                                                                                            ~
                                                                                                                            ~
                                                                                                                              ~
                                                                                                                              ~
                                                                                                                                ~ ~
                                                                                                                                ~
                                                                                                                                  ~
                                                                                                                                  ~
                                                                                                                                    ~
                                                                                                                                      ~
                                                                                                                                      ~
Ct C          ~
              ~
                ~
                    ~ ~
                      ~    ~  ~
                                  ~
                                    ~
                                        ~
                                          ~      ~    ~  ~      ~  ~        ~  ~  ~
                                                                                              ~
                                                                                                ~ ~
                                                                                                  ~  ~
                                                                                                        ~
                                                                                                          ~
ID              ~    ~    ~                                                                  ~ ~    ~
rt K          ~ ~ ~
              ~ ~
                ~ ~
                ~ ~
                          ~
                            ~
                            ~
                                ~:.: JUNCUS
                                ~ ~
ROEMERIANUS:
                                                                    ~ ~          ~      ~
                                                                                              ~
                                                                                              ~
                                                                                              ~
                                                                                                  ~
                                                                                                ~ ~
                                                                                                  ~
                                                                                                ~ ~
                                                                                                  ~
                                                                                                      ~
                                                                                                      ~
                                                                                                      ~
                                                                                                        ~
                                                                                                        ~
4
                                                                                                          ~
                                                                                                          ~
NO  Qp
              ~ ~
0 ~~
              ~ ~ ~
                            ~
                                  ~ ~ ~
                                ~ ~ ~
                                  ~    ~  ~
                                                ~
                                                ~
                                                  ~
                                                    ~
                                                    ~
                                                        ~
                                                          ~ ~
                                                            ~
                                                          ~ ~
                                                                ~
                                                                ~
                                                                  ~  ~ ~
                                                                    ~ ~
                                                                                ~
                                                                                  ~
                                                                                    ~
                                                                                      ~
                                                                                      ~
                                                                                        ~
                                                                                          ~  ~
                                                                                                ~ ~
                                                                                                  ~
                                                                                                ~ ~
                                                                                                      ~
                                                                                                        ~
                                                                                                        ~
                                                                                                          ~
0    Q.      ~
                ~
                ~
                    ~
                      ~
                      ~ ~
                          ~
                            ~  ~
                                ~
                                  ~ ~
                                    ~
                                    ~
0
                                          ~
                                            ~  ~
0
                                                  ~
                                                    ~
                                                        ~ ~
                                                          ~ ~
                                                        ~ ~
                                                                ~
                                                                  ~
                                                                  ~
                                                                    ~
                                                                      ~
                                                                      ~
                                                                        ~
ID      ~
              ~
                    ~ ~
                ~ ~ ~
                    ~ ~
                                ~
                                  ~
                                  ~
                                    ~
                                        ~
                                        ~
                                          ~
                                            ~
                                            ~
                                                ~
                                                ~
                                                  ~
                                                    ~
                                                    ~ ~
t ~
                                                            ~
                                                              ~
                                                              ~
                                                                ~ ~
                                                                  ~ ~
                                                                ~ ~ ~
                                                                        ~
              ~
                ~ ~
                    ~ ~
                            ~  ~ 0
                                  ~    ~
                                          ~
                                          ~
                                            ~  ~
                                                  ~
                                                  ~
                                                    ~ ~
                                                        ~
                                                        ~
                                                            ~
                                                              ~
                                                                  ~
                                                                ~ 0
                                                                  ~ ~
0
                                                                        ~                          RH IZOPHORA MANGLE
                      ~ ~      ~    ~                      ~
(    ID CU
              ~
              ~
                ~ ~
                    ~ ~
                ~ ~ ~
                    ~    ~
                            ~  ~
                                  ~ ~
                                ~ ~
                                  ~ ~ ~
                                  ~~ ~ ~
                                          ~
                                            ~  ~
                                                ~
                                                  ~
                                                  ~
                                                    ~ ~
                                                    ~
                                                        ~
                                                        ~
                                                            ~
                                                          ~ ~
                                                            ~
                                                              ~  ~ ~ ~
                                                                  ~ ~
                                                                ~ ~ ~
                                                                  ~ ~
m    ~ ~
              ~ ~
                ~    ~
                          ~
                          ~
                            ~  ~ ~
                                  ~    ~
                                          ~
                                            ~
                                                ~ ~
                                                  ~
                                                ~ ~
                                                        ~
                                                          ~
                                                          ~
                                                            ~
                                                              ~
                                                                ~ ~ ~
                                                                  ~ ~
                                                                ~ ~    ~
et  CF'      ~
                ~
                ~ ~
                    ~
                      ~
                          ~
                            ~
                            ~
                                ~ ~
                                ~
                                  ~
                                    ~
                                          ~
                                        ~ ~
                                          ~
                                                  ~
                                                ~ ~
                                                  ~
                                                        ~
                                                        ~
                                                          ~
                                                            ~
                                                            ~
                                                              ~
                                                                  ~ ~
                                                                ~ ~
                                                                  ~ ~
                                                                        ~                          BORRI CHIA FRUTESCENS
              ~    ~    ~      ~    ~ ~    ~    ~    ~  ~  ~ ~    ~
                ~ ~        ~  ~    ~    ~      ~    ~  ~      ~  ~
W    n  m    ~    ~    ~      ~    ~ ~    ~ ~      ~  ~  ~ ~    ~
                ~ ~        ~  ~    ~  ~      ~ ~      ~ ~  ~
              ~    1    ~      ~    ~  ~  ~    ~    ~          ~
                ~ ~        ~  ~    ~    ~      ~ ~      ~
              ~ ~        ~      ~    ~  ~  ~    ~ ~      ~  ~  ~
                ~    ~    ~  ~    ~    ~        ~    ~  ~
              ~ ~
              ~ ~
                ~ ~
                          ~
                          ~
                            ~
                                  ~
                                ~ ~
                                  ~
                                        ~
                                          ~
                                        ~ ~
                                            ~  ~
                                                  ~ ~
                                                ~ ~ ~
0 ~    ~
                                                              ~
                                                              ~
                                                                ~
                                                                ~
                                                                    ~
                                                                    ~
LAGUNCULARIA RACEMOSA
                ~ ~        ~  ~ ~      ~      ~ ~      ~
              ~ ~        ~      ~    ~  ~  ~    ~ ~      ~  ~  ~
            ~    ~      ~  ~  ~ ~      ~      ~ ~      ~
              ~ ~        ~      ~    ~ ~    ~    ~
              ~ ~
                  ~
                  ~
                      ~
                        ~
                          ~
                            ~
                            ~
                                ~
                                ~
                                  ~
                                      ~ ~
                                        ~
                                    ~ ~ ~
                                            \  ~    ~
                                                        ~
                                                        ~
                                                            ~
                                                          ~ ~
                                                            ~
              ~    ~    ~      ~ ~          ~    ~
              ~
                  ~
                    ~
                        ~
                          ~
                            ~  ~
                                  ~ ~
                                    ~    ~
                                            ~  ~    ~
                                                        ~
                                                        ~
                                                            ~                                      CONOCARPUS                ERECTA
                  ~    ~  ~  ~    ~  ~                ~
              ~ ~        ~      ~ ~ ~        ~    ~
                  ~    ~  ~  ~    ~ ~                ~  ~
              ~ ~        ~      ~    ~ ~    ~    ~
0N ID
 
I I
l I
 
FREQUENCY OF OCCURRENCE            (I)
N 0                                    0    0      0 0  0        0al        0      0
~
  ~
    ~ ~
~ ~ ~
  ~
~ ~
  ~
      ~
      ~ ~
          ~
        ~ ~
      ~ ~
    ~ ~ ~
            ~
            ~
              ~  ~
                ~ ~
              ~ ~ ~
              ~
                    ~
                ~ ~ ~
                  ~ ~
              ~ ~ ~
                      ~
:::. CLADIUH JAMAICENSIS::::::
                                                        ~
                                                          ~ ~ ~
                                                            ~ ~
                                                          ~ ~ ~
                                                        ~ ~ ~
                                                          ~ ~ ~
                                                                  ~  ~
                                                                    ~ 0
                                                                        ~ ~
                                                                  ~ ~ ~ ~
                                                                    ~ ~ ~
                                                                  ~ ~ ~ ~
                                                                          ~
                                                                              ~ ~ ~
                                                                              ~ ~ ~
                                                                              ~ ~ ~
                                                                              ~ ~ ~
                                                                              ~ ~ ~
                ~ ~ ~
  ~  ~ ~
~ ~ ~ ~
  ~ ~ ~
              ~  ~ ~
                ~ ~  ~
CONOCARPUS ERECTA
  ~
    ~
      ~
~ ~ ~ ~
  ~
        ~ ~
      ~ ~
    ~ ~ ~
          ~
I EUPATORIUM CAP ILL FOLI UM
  ~  ~  ~
~
  ~
    ~ ~
      ~ ~
    ~ ~                      HYDROCOTYLE UHBRELLATA
  ~  ~  ~
    ~ ~
  ~ ~ ~ ~ ~
  ~ ~ ~
PASPALUM
~  ~
DISTI CHILI S SP I CATA CRINUH AMERICANUH MIKANIA SCANDENS TALI NUM PANI CULATUH ELEUSINE INDICA PLUCHEA ROSEA SCHOENUS NIGRICANS LAGUNCULARIA RACEHOSA LIPP IA NODI FLORA PROSERPINACA PALUSTRIS VAR. PALUSTRIS SABATIA SESUVIUM PORTULACASTRUH BAT IS  MARITIMA PENSTEHON
 
I I
I I
 
2.2.5  Hammocks One  of the striking features of the study area is the presence  of hammocks. Hammocks    are slight promontories      covered with dense shrubs    and  trees. From an  aerial perspective, the hammocks  are "teardrop" shaped with the rounded "heads" pointing inland  and  tapering  "tails" directed    toward the shoreline.        Forested hammocks  with this distinctive shape      and  spatial pattern are found in areas where the general topography is          flat  and  there is  a characteristic unidirectional surface water flow pattern.              The hammocks  in the area range in size from less than 0.10 hectares (0.2 acres) to over 10 hectares        (25 acres),  and occur  in approximate density of 40/km    (15 miles ) (Snedaker,      1976). The  tallest trees within the  hammocks  are  3  to  4  m  (10 to 13  ft.)  taller than the surrounding dwarf forest, which has        a mean  height of approximately 1.5  m (5  ft.). Any of the four      mangrove species    may be  encountered within  a hammock',  red and black mangroves dominate in the more saline areas,    and in the  more  inland areas the    hammocks  are increas-ingly dominated    by buttonwood,    particularly    around the  fringes. In the more inland areas, the dominance is increasingly shared by trees such as  Australian pine (C'asucuina equieet~folia), Brazilian pepper (Sohinue  tezebinthifoHus),      and  other exotic  and  native plants    common in subtropical south Florida.        The more  inland  hammocks  eventually grade  into the strand or island forests of the Florida Everglades, 2-9
 
I I
I
 
Scattered over the study area are two types of        hammock which are described as either freshwater or saltwater depending upon the species composition.        Saltwater  hammocks  are largely comprised of red mangroves,    but both the black and white mangroves, and occasionally buttonwoods (Conocmpus        ejecta), are present    (see Figure  2-5). These hammock  trees .are significantly    taller  than the surrounding dwarf forms. Saltwater mangrove    hammocks  generally occur in inland areas along depressions      which channel runoff to the shoreline.        They  differ slightly  from freshwater hammocks in that they are found in areas that are only slightly elevated relative to the surrounding area.
Found  in the dwarf    and  black rush/salt grass zones, they are generally "teardrop"    shaped. No  true understory  and  generally few seedlings are found in the    interior of    the saltwater hammocks. A  few herbaceous species such as glasswort (SaEicozmia        uirginica), salt  grass (Distichs'Lis  spica'),    and batis (Bat~e mcuitima) form the dominant ground cover, but 'they are usually quite dispersed and          a  continuous cover is seldom formed.
The  brackish water hammocks, generally more rounded than the          salt-water hammocks, are found in the upper black rush/salt grass and            saw grass zones.      These hammocks    receive fresher water from    rainfall runoffs, as evidenced    by the species    composition (Figure 2-6).      Also found in brackish  hammocks  are the palmetto (Sabal palmetto) and the leather-fern (Acrostichum a+sewn).      The  brackish water  hammocks  are more diverse than the saltwater hammocks, and may contain some mangroves.
2-10
 
I I
I I
I I
 
100      ~ ~                                                                      I
          ~ ~
        ~ ~ ~
          ~ ~ ~
UJ
        ~ ~ ~                                                                                          UJ
          ~ ~ ~                                                                                                      C/)
90                                                                                                                LLI
          ~ ~ ~
        ~ ~ ~
                    ~ ~ ~
                  ~ ~ ~ ~
                              ~ ~ ~ ~
                                ~ ~ ~
I I O                      I
          ~ ~ ~
        ~ ~ ~
                    ~ ~ ~
                  ~ ~ ~ ~
                              ~ ~ ~ ~
                                ~ ~ ~                                                  CY      I      CY            CY 80
          ~ ~ ~    ~ ~ ~    ~ ~ ~ ~                                                  Q LLI            CD
          ~ ~  ~  ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~
UJ      ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~    ~ ~ ~      ~ ~ ~
o
          ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~      ~ ~
                                                                                      )
        ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~    ~ ~ ~      ~ ~ ~
          ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~    o ~
w 70      ~ ~ ~
        ~ ~ ~
                    ~ ~ ~
                  ~ ~ ~ ~
                              ~ ~ ~ ~
                                ~ ~ ~
                                            ~ ~ ~
                                          ~ ~ ~ ~
                                                    ~ ~ ~
                                                    ~ ~ ~
                                                              ~ ~ ~ ~
                                                                ~ ~ ~                                                  CL              cL
          ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~                  CA
                  ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~    ~ ~ ~      ~ ~ ~                                                  CD
        ~ ~ ~
          ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~                  UJ C/I                            CO 60    ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~      ~ ~ ~
        ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~    ~ ~ ~      ~ ~ ~    ~ ~ ~ ~
          ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~      ~ ~ ~
CD      ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~    ~ ~ ~      ~ ~ ~    ~ ~ ~ ~
          ~ ~ ~              ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~      ~ ~ o 50                          o Q        ~ ~ ~
              ~ ~
          ~ ~ ~
                  'O'
                    ~
C/l Zo
                              ~  cL ~
                                'V'Mo    ~
                                            ~ ~
                                            ~
C/I ~
                                                    ~ ~ ~
                                              ~ ~.I-,
                                                    ~
cL  ~
                                                              ~ ~ ~ ~
                                                                ~ ~ ~
                                                              ~ ~ ~ ~
                                                                          ~ ~ ~
                                                                        ~ ~ ~ ~
                                                                          ~ ~ ~
                                                                                    ~ ~ ~ ~
                                                                                      ~ ~ ~
                                                                                    ~ ~ ~ ~
UJ ~        UJ
                                ~
Mo  ~  ~
                                              ~o        cC
                                                                ~ ~ ~
                                                              ~ ~ ~ ~      oW
                                                                                      ~ ~ ~
                                                                                    ~ ~ ~ ~
40 o        ~
c~
CO
: 5.    ~  (g    o  ~ M
                                                        ~o
                                                              ~ ~ ~ ~      ~ O Wo
                                                                                    ~ ~ ~ ~
I                o'~'o                                                  ~ ~ ~
                                  )
        ~        ~                                ~
        ~        ~        ~  ~ M      ~  +o    ~  C/I o
                                                              ~    Qo                ~ ~ ~ ~
                                                                                      ~ ~ ~
o  cL    ~        o                    ~    Mo      ~ UJ      ~ ~ ~ ~
30
                                          ~  (g o  ~
C/I ~  ~
I    ~        ~  ~ ~ ~
                        <o                              M
        ~
            $Q    ~
                      ~ cC
                        ~o
                                ~
cC:,
KIo
                                          ~
                                              ~  o Mo ~o          ~    +o        0
                                                                                        ~ ~
                                                                                    ~ ~ ~ ~
        ~
            ~o ~ ~ ~ Qo
                  ~
                  ~
                      ~
LJ
                                ~
                                ~
                                  ~      ~
                                          ~
                                            ~ oo
                                              ~o
                                                      ~                  ~
                                                                          ~ CoC.'
                                                                                  ~  ~ ~ ~
                                                                                    ~ ~ ~ ~
                                                                                      ~ ~ ~
O 20 oO              Ko ~ U,                        ~o                  LJo
                    ~
I+        ~
Mo      ~  UJ ~    ~
                                                                  ~    o O        ~ ~ ~  ~ ~ ~ ~ ~ ~ ~ ~
10
          ~  m
            ~o 'cC CC
          ~ ~ ~
                    ~
                    ~ ~
                            ~
                          ~ ~
                                ~ +
C/)
                                ~ ~ ~
                                          ~
                                          ~
                                            ~
                                              )
                                              ~ O
                                          ~ ~ ~ ~
o
                                                    ~
M o '/Io  I
                                                      ~ ~ ~
                                                              ~
                                                                ~
                                                                ~
I
                                                                  ~
                                                                ~ ~ ~
                                                                      ~
                                                                        ~
                                                                          ~
                                                                          'Q
                                                                        ~ ~ ~ ~
                                                                                  ~
                                                                                    ~ ~ ~ ~
                                                                                      ~ ~ ~
                                                                                    ~ ~ ~ ~
                                                                                      ~ ~ ~
                                                                                      ~ ~ ~
o
                                                                                              ~ ~ ~  ~ ~ ~
                                                                                                ~ ~ ~ ~ ~ ~ ~
                                                                                              ~ ~ ~  ~ ~ ~
                                                                                            ~ ~ ~ ~ ~ ~ ~ ~
                                                                                            ~ ~ ~ ~ ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ ~  ~ ~ ~
                      ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ ~
            ~ ~ ~
          ~ ~ ~    ~  ~ ~ ~    ~ ~ ~    ~ ~ ~ ~    ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~ o ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ o  ~ ~ ~
            ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ ~
          ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~ ~      ~ ~ ~    ~ ~ ~    ~ ~ ~ ~      ~ ~ ~  ~ ~ ~    ~ ~ ~ ~  ~ ~ ~  ~ ~ ~  ~ ~ ~ ~  ~ ~ ~
0 SPECIES Figure 2-5.                        South Dade Area                          saltwater            hammock        vegetation inventory.
 
I I
I I
I I
 
100  ..        ~ ~  ~ ~
t/)
        ~ ~  ~ ~    ~ ~
          ~ ~
        ~ ~
              ~ ~ ~ ~
              ~ ~    ~ ~
                        ~ ~                                          t/I
                        ~ t                                    CD                  LD 90                                                          LI  LLI                I/I      U CD
          ~ ~  ~ ~ ~ ~  ~ ~                                                        UJ
        ~ ~  ~ ~    ~ ~                                    <<C  I                                      U
          ~ ~
        ~ ~
              ~ ~ ~ ~
              ~ ~    ~ ~
                        ~ ~                                      LJLI                              I M
          ~ ~  ~ ~ ~ ~  ~ ~                                      C/l CL 80                                                                tD
          ~ ~  ~ ~ ~ ~  ~ ~  ~ ~                                    CO                            CO
        ~ ~  ~ ~    ~ ~    ~ ~
CD'J CC                            UJ    <<C
          ~ ~  ~ ~ ~ ~  ~ ~  ~ ~                            CO
              ~ ~    ~ ~    ~ ~
          ~ ~  ~ ~ ~ ~  ~ ~  ~ ~                                                                    UJ              C/l UJ  70                                                          <<C    cC                      tD I t/I      Cn
          ~ ~  ~ ~ ~ ~  ~ ~  ~ ~  ~ ~                                                        O                    O
          ~ ~
              ~ ~  ~ ~
              ~ ~ ~ ~  ~ ~
                            ~ ~
                              ~ ~
                                  ~ ~
                                    ~ ~
                                        ~ ~
CC.'
                                                                                    <<C tD K              CY LIJ
          ~ ~
              ~ ~  ~ ~
              ~ ~ ~ ~  ~ ~
                                  ~ ~
                                    ~ ~
                                        ~ ~
LIJ
                                                                                <<C X
O          tD O    IM CY OC LLI CD O
              ~ ~    ~ ~          ~ ~  ~ ~  ~ ~
tD      tD tD        ~ ~  ~ ~ ~ ~
              ~ ~  ~ ~
                        ~ ~        ~ ~
                                  ~ ~
                                        ~ ~ ~ ~
                                              ~ ~                      CO      t/)                        CO  M    UJ
          ~ ~  ~ ~ ~ ~  ~ ~        ~ ~      ~ ~
              ~ ~                  ~ ~        ~ ~
50      ~ ~            LD  ~ ~            ~ ~
                                    ~ ~          ~ ~
          ~ ~
              ~ ~  tD      cC                    ~ ~
0                            LLI      <<L        ~ ~
tD                  ~ ~
40                                            ~ ~  ~ ~
                                                  ~ ~  ~ ~
LJJ      UJ                  tD                  ~ ~  ~ ~
OC                  I        I        ~ ~  ~ ~
LLI                I        OC        ~ ~
30                  I/I            tD        ~ ~      ~ ~
OC                  O        ~ ~  ~ ~  ~ ~    ~
                                                  ~ ~      ~ ~  ~ ~  ~ ~
tD                                  ~ ~
                                                      ~ ~  ~ ~
                                                        ~ ~ ~ ~
                                                                  ~ ~
                                                                ~ ~  ~ ~
CY 20      O tD
                                                  ~ ~
                                                  ~ ~
                                                      ~ ~
                                                      ~ ~
                                                            ~ ~
                                                            ~ ~
                                                                  ~ ~
                                                                  ~ ~      ~ ~  ~ ~  ~ ~ ~ ~  ~ ~
tD IV          I        tD        CL  ~ ~  ~ ~ ~ ~  ~ ~  ~ ~    ~ ~  ~ ~    ~ ~  ~ ~
CB  t/I      OC            ~ ~  ~ ~  ~ ~  ~ ~      ~ ~  ~ ~  ~ ~ ~ ~  ~ ~
                                                                                                ~ ~
ID        <<C                        tD  ~ ~
                                                  ~ ~
                                                        ~ ~ ~ ~
                                                      ~ ~  ~ ~
                                                                ~ ~
                                                                  ~ ~
                                                                      ~ ~
                                                                          ~ ~
                                                                              ~ ~
                                                                                ~ ~
                                                                                    ~ ~    ~ ~
                                                                                    ~ ~ ~ ~  ~ ~
10      CX        ID                  CO
          ~ ~                      ~ ~          ~ ~  ~ ~  ~ ~  ~ ~      ~ ~  ~ ~    ~ ~ ~  ~ ~  ~ ~  ~ ~  ~  ~ ~
        ~ ~  ~ ~    ~ ~    ~ ~  ~ ~  ~ ~  ~ ~  ~ ~      ~ ~  ~ ~  ~ ~    ~ ~  ~ ~    ~ ~  ~ ~  ~ ~ ~ ~  ~  ~  ~ ~
          ~ ~  ~ ~ ~ ~  ~ ~  ~ ~  ~ ~  ~ ~ ~ ~  ~ ~  ~ ~  ~ ~  ~ ~      ~ ~  ~ ~  ~ ~ ~ ~  ~  ~  ~ ~  ~ ~  ~  ~ ~
        ~ ~  ~ ~    ~ ~    ~ ~  ~ ~  ~ ~  ~ ~  ~ ~      ~ ~  ~ ~  ~ ~    ~ ~  ~ ~    ~ ~  ~ ~  ~ ~ ~ ~  ~  ~  ~ ~
          ~ ~  ~ ~ ~ ~  ~ ~  ~ ~  ~ ~  ~ ~ ~ ~  ~ ~  ~ ~  ~ ~  ~ ~      ~ ~  ~ ~  ~ ~ ~ ~  ~  ~  ~ ~  ~ ~  ~  ~ ~
0 SPECIES Figure 2-6.              South Dade Area brackish water hammock vegetation inventory.
2-12
 
I Both  saltwater and  brackish water  haranocks  are characterized by large accumulations  of peat  which sometimes reach to the bedrock.
The  peat creates  a reducing environment and any standing water in the  hammocks  is usually highly colored, indicating high organic matter content.
A representation of the spatial distribution of these vegeta-tive  zones, shown in Figure 2-1, shows    that the boundaries delineating the vegetative zones are roughly parallel to the shoreline.          The acreage  of the vegetation  zones described  above    is given in Table 2-1.
2-13
 
I I
5~yV ",a '
I I
I I
 
TABLE 2-1 VEGETATION ZONE ACREAGE OF THE SOUTH DADE SITE Percent Ve  etation  t  e                Hectares Acres      Covera e Fringe forest                      142.0    (350)      3.3 Dwarf mangrove                    1304.0    (3222)    30. 7 Black rush/
salt grass                    424.4    (1049)    10.0 Saw  grass                        1630.3    (4028)    38.3 Saltwater  hammock                264 '    (654)      6.2 Brackish water  hammock          488.1    (1206)    11. 5 Total                  4252.5  (10509)    100.0 2-14
 
I I
I I
I I
I
 
2.3    SOIL ANALYSES AND CHARACTERISTICS 2.3.1  Ma  or Soil  T  es Miami  oolite The  geologic formation underlying the surface in the South Dade study area      is  Miami  oolite. This    bedrock    is a  soft, sandy limestone, containing as much as 95! calcium carbonate, and  consis'ting of small spherical ovules.        This rock of marine origin is believed to    be  Pleistocene in age (Snedaker, 1976).
Depth  to bedrock varies from about 1.2        m below the surface    to occasional outcroppings which broach the surface of the soil (see Section 2.3.2, Soil Stratigraphy).
Marls Overlying the Miami oolite is        a  nonstratified calcitic mud  or marl  similar to that found in other environments in south Florida. Marl  is  formed from carbonates    transported in freshwater by heavy seasonal        rainfall. These  rains dissolve calcium and magnesium carbonates        found in the soft limestone outcroppings    common  in  Dade  County. Carbonate-laden    water slowly flows into regions of higher salinity          and pH which causes precipitation of calcium      and magnesium carbonate      crystals.
These  sink to the bottom of standing or slow-moving pools to form a  blanket of white, finely divided material which looks similar to white or gray-white chalk      and  is called calcitic    mud or marl.
2-15
 
I I
I
 
The  surface of the marl is generally covered by an inch-thick blanket of periphyton, mostly blue-green algae.              The  accumulation of calcitic sheaths from the blue-green algal            mats  also contribute to the calcitic    muds. The mud    is  cream colored when pure, but darker brown  when mixed  with various amounts of organic matter.
The junction  between the mangrove        salt  marshes  and the  fresher water wetlands is    a prime location      for calcitic    mud  accumulation.
This region appears on aerial photographs as            a  bright  band bordering the coast (Figure 2-7).
Peats The distribution of peat deposits at the          South Dade  Site varies from scattered pockets interspersed            among  the  calcitic  mud  to more cohesive masses    of  up  to  2  meters in depth.      This peat appears reddish-brown when fresh, but turns darker brown to black when exposed to  air,  and grayish-brown when mixed        with carbonates.
The peats  of this region are primarily          red mangrove peats that occur in marine situatiOns and in the subsurface of present-day fresh-water areas. Red mangrove    peat is    a  fibrous, spongy, reddish-brown material  composed  of  dead (and sometimes      living) roots    and other de-graded plant products.      The presence      of red  mangrove peats spaced between layers    of calcitic    mud  strongly suggests that the region          has fluctuated between marine      and  freshwater influences during        its  geological past.
2-16
 
I I
I I
I I
t" +"
I
 
ure 2-7 8          band of calcitic ad  deposi-i;ion                                    LL L
0
(
-";paratfel Xo -shoreline,      and study transec+
C 5
station locations.                                      I aq
                                                                                        'Qq QO(5      C  0                Cana )
                                                                      /$ 8                                    l 1'r 55{
C5 (5  c                                              5
                                                                                                  '      {
                                                                                              ~ ~      ~
                                                                                                    ~
g{'
C5 ~
P            A  ~~+    t 6(    '
h--.
f<-
                                        '5 y            p
                                                                                                                ,  .AF.;.~
5 (55, O'0'
                                                                                      .I C                                                C5, G~
Litt'le      Card Sound S
 
I I
I
 
2.3.2    Soil Characteristics Soil Sam 1in Station Locations (For Stratigraphy, Bulk Density, Carbon/Carbonate            and  Salinity Studies)
The  stations (Figure 2-7) which were examined for the soil stratigraphy, bulk density, carbon        and carbonate,      and  salinity studies are indicated in each respective section.              For purposes of discussion, Stations 1-9 are characterized as sawgrass vegeta-tion; Stations 10-17 are in the black rush/sa'It grass zone; Stations 18-26 are    in the dwarf mangrove zone;      and  Stations    26  to Card Sound are    in the fringe forest.
Soil Stratigra  h Methods    - Core samples  were taken  at  17  transect locations by means  of  a  piston core sampling device.      This device    was designed to obtain relatively undisturbed        and uncompressed      core samples  of the marl and peat layers.        Core samples were extruded        in the field on a  portable table,      split into  two halves and described.        Color, origin of root material, gastropods, carbonate content, water content and any allochthonous      (deposited  away from    point of origin) material were reported      at their corresponding depths.        After this, the cores were sealed    with  a plastic wrapper  and  then covered with aluminum 2-18
 
I I
I
 
foil. The samples  were frozen upon    their return to the laboratory.
Samples  of each core were cut    into  5 cm intervals from one-half of the sample, then dried, ground and weighed out into sample              splits for carbonate, ash-free .weight,      and elemental    analysis by atomic absorption. Additional core samples were taken with        a  3.8  cm inside diameter    PVC  cylinder, which    was stoppered and brought to the laboratory intact.      At the laboratory the soils were extruded onto waxed paper and described 'as to color, origin of root material, gastropod shells and any unusual materials present.            The cores were then  cut into lengths representing the top,l5        cm  of the soil, the second  15 cm  of soil,  and  in the cases of    some  of the deeper cores, the bottom    15 cm  of soil. These 15 cm lengths were placed in individual glass dishes      and  oven-dried at 70'C to      a  constant weight. The samples  were then ground to pass through a 0.84-mm mesh screen and placed in small manila envelopes.
Results (Snedaker,  1976)  - Figure 2-8 is    a  diagrammatic representation of the subsurface units encountered during core              samp-ling. White calcareous  mud  (Perrine marl)  was  ubiquitous throughout the transect and was always present in the upper          10 cm  of the core samples. This mud  is typically  more gray  in color at the      seaward stations  and may be  of marine origin at these particular locations.
Freshwater gastropods were      common  constituents of these      muds and were also found    within red  mangrove peat.
2-1 9
 
I I
I I
 
SAW GRASS                BLACK RUSH      - SALT GRASS                DWARF HANGROVE                FRINGE FOREST 1  2 4  5    6  7  8  9      'l1  12 17  18  19  20  21  22  23            26 27 29 3'1 32 0
10 20 Vertical scale 30(centimeters)                    Periphyton (surface only)
Horizontal scale (meters) 0    White Calcareous Hud Mixed Juncus 8 Rhi zophorn Peat
                                                                                    ~Calcareous
                                                                                    ~8              Juncus Rhizophorn Peat Rhi zophora            Calcareous                Juncus Peat Peat                  Rhi zophora Peat    ggg Figure 2-8. Soil stratigraphy at l7 stations in different vegetation zones.
 
I I
I I
I I
 
Red mangrove    peat was    a common    deposit. This peat consists of  a dense  mesh  of intertwined roots      and  rootlets  and  fine-grained organic or calcareous      interstitial material.        This peat is reddish-brown  in color;    when mixed    with carbonate    it is  characteristically a dark gray or gray-brown color.          In  some cases  the peat has  a mottled appearance    due  to irregular mixing of root material with the calcareous mud.      Older red mangrove peat is quite black and contains roots with dissolved cortices.          Freshwater gastropod shells were usually abundant but quite fragile or partially dissolved from the organic acids within the peat.            The red mangrove peat under the scrub mangrove    was  slightly different      from that which formed under red mangrove hammocks in        that the    hammock  peat was  distinctly more reddish and    "clean" in appearance.        Apparently,  hammock  peat Y
lacks the copious amounts of fine-grained organic matrix that is associated with scrub mangrove peat.
Calcareous    peat or calcareous      mud  containing appr'eciable amounts  of red  mangrove  root material    was  usually found under the white calcareous mud.        In some  cases,    black rush roots occurred with red mangrove roots, but only in the upper stations of the transect.
The  color varied from white to gray-brown, indicating            a change  in the carbonate-organic      ratio within the peat matrix.
Black rush peat    was  found at stations northwest      of Station  15.
This peat had  a  yellowish-brown or. grayish-brown color and displayed          an 2-21
 
I I
I
 
intertwined  mass  of small roots    and  rootlets with    a  fine-grained matrix penetrated      by  larger roots    and an occasional    black rush leaf fragment. In general, black rush peat has        a  slippery feel    and becomes  sticky  when pressed    between the  fingers.
Fine fragments of limestone bedrock were also present at the base  of the cores.      In a  few cases,    larger fragments    were found as much as 10 cm above      the contact with the limestone.          Apparently, root growth    has  displaced these fragments from their original position at the limestone surface.        The presence    of these fragments indicates that  a reaction between the limestone and overlying peats is causing calcium carbonate to decompose from the limestone surface.
The  geological significance of the stratigraphic sequence is  difficult to interpret      because  the peat accumulations are autoch-thonous and are not subject to the layer-cake            stratigraphic principles so commonly used.      The  freshwater calcareous      mud was    probably the earliest  sediment type formed on        this coast. The  fringe forest may  also have been present at the incipient stages of carbonate deposition. At  some  later time, the    mangroves  began  to colonize the calcareous    mud  areas. Evidence    for this is  tenuous at present, but the difference in gastropod shells within the peats and the                mud is striking.      It is  possible that the growth and expansion of peat accumulating in the active rooting zone have dissolved the original matrix of carbonate      silt  and  left  behind the coarse,      relatively 2-22
 
I I
I I
I I
 
insoluble gastropod shells.      If peat  accumulation occurred largely as a  result of root addition    and growth (as suggested      by the lack of leaf, twig  and bark  in the peat mass), then replacement        and displacement of the calcareous      mud  would occur    within the active rooting zone.
Bulk Densit Methods  - Samples  for the determination of the bulk density of surface soils were taken at six stations along the South          Dade study transect. These samples were      representative of the four vegetation zones and the two    hammock    types. Ten 30-cms samples were taken from several    cm  below the surface    at  each site  and placed in plastic soil sample bags.      The samples  were oven-dried    at 70'C to constant weight  and then weighed.      The  bulk density  was  calculated as g/cm~.
Results - The bulk density measurements        for soils in the South Dade study area are important        in the determination of other soil properties. Soil porosity    and the  estimation of the    mass  of a  sample  of soil too large to    be  conveniently weighed are both dependent on the bulk density.        Bulk density determinations    for the various stations and soil areas are given in Table 2-2.
2-23
 
I I
I I
I I
 
TABLE  2-2 BULK DENSITY MEASUREMENTS FOR SOUTH DADE AREA SOILS Station      Habitat Saw  grass                  0.474 Black rush/salt grass        0.477 Hammock                      0.265 16          Black rush/salt grass      0.531 23        Dwarf mangrove              0.578 23        Hammock                      0.378 30          Dwarf mangrove              0.501 30        Hammock                      0.397 37          Fringe forest              0.143 2-24
 
I I
I I
I I
I I
I I
 
The hammock samples      are less dense than      all other  samples with the exception of fringe forest samples.
Carbon and Carbonate Anal ses Methods  - Both organic and inorganic carbon were determined for the  South Dade study area      soils. Several samples were analyzed for total  carbon using the wet combustion method.            Concurrently, samples  of the  same  soil  were analyzed    for  carbonate carbon by the volumetric calcimeter method.          The  difference between these      two amounts was taken      to  be  the organic carbon content.        The soil  was then analyzed    for organic    carbon by the Walkley-Black wet oxidation method. All results    were presented    as percentage    dry weight of soil (Fell, 1976).
Results - The results of the carbon analyses demonstrated that the total carbon content of the soils            was  quite varied, with a  high value of 35.01% in the peat soil at Station            2  and a low value of 10.13/ in the lower        depths  of the  marl  soils at Station 8.      The total  carbon content has been divided        into its organic    and  inorganic components. Inorganic carbon comprised from 0.09K to          as much as 10.6/ of the soil carbon, while organic carbon ranged from 1.12/
to 34.33K of the total soil carbon.          The percentage    of organic carbon was about twice as much in the surface peats in the hammock at Station  2 as  that in the surface peats in the        hammock  at Station    30.
2-25
 
I I
I I
I I
I I
I
 
This could possibly      reflect the differences in the    amount  of tidal scouring present between the two stations.        Calcium carbonate formed a major portion      of the soil, comprising  up  to  90 .805 of the soil. The  surface sediments consisted mainly of calcium carbonate.
The  analysis of the calcium, magnesium      and  strontium contents of the calcium carbonate fraction provided valuable informati on          on the character and composition of the precipitate.          Table 2-3 is a summary  of the averages of the composition of the marls          and peats at three depths over the entire transect.        The  concentrations of all three elements were influenced by the amount of organic matter present. Calcium decreased    with increasing organic matter, while magnesium and    strontium both increased with increasing organic matter. Calcium content increased      slightly with increasing proximity to Card  Sound and    with depth. Magnesium also showed a slight increase both down the transect and with depth through the          soil column.
Soil Salinit This study was conducted to determine the amount of dissolved chlorides (salts) in the      interstitial  and surface waters from soils of the  South Oade study area.
2-26
 
I I
I I
I I
I I
I I
 
TABLE 2-3 AVERAGE CALCIUM, MAGNESIUM AND STRONTIUM COMPOSITION OF THE CARBONATE FRACTION OF THE MARLS AND PEATS ALONG THE SOUTH DADE STUDY TRANSECT a sons    an Habitat            Depths        % Calcium  %  Ma  nesium  % Strontium MARLS Saw  grass        Stations 1-9 0- 6            97.08        2.74          0.048 6- 12"          97.58        2.28          0.060 12- 18"          94.30        5.50          0.070 Black rush/      Stations 15-17 Salt grass          0- 6            96.90        2.90          0.060 6- 12"          96.50        3.30          0.045 12- 18"          96.66        3.17          0.066 Dwarf mangrove    Stations 21-26 0- 6"          96.83        2. 97        0.070 6- 12"          95.70        4.12          0.068 12- 18"          97.40        2.45          0.060 Fringe forest    Stations 29-32 0- 6"          96.07        3.57          0. 073 6- 12"          94.90        4 '5          0.089 PEATS Brackish water hammock        Stations 1-17 0- 6"          70.45      29.35          0.100 6- 12"          80.13      19.63          0.112 12- 18"          85.00      14.70          0.060 Saltwater hammock        Stations 18-32 0-  6'-
94.75        5.15          0.070 12"        92.10        7,80          0.080 12- 18"          88.85      11. 00        0.045 2-27
 
I I
I I
I I
I I
 
Methods  - Data  for surface water    and ground water    salinities were obtained from Automatic Hydrolab recorders,        described in Section 4.4.2, Hydraulic Studies.        Chlorinity values for Stations 2, 9, 16, 21, 30 and 37 (Table 2-4) were used to construct graphs of salinity  changes  along the transect    for 1974. In  May and October 1976, additional    salinity  surveys were  made  along the transect using    an American  Optical refractometer.
Results - Figure 2-9 shows the variations recorded in surface and ground water chlorinities on the South          Dade  study area  for 1974. The maximum  chlorinities occurred at Station      30 during the spring    when reduced  rainfall and  increased insolation concentrated  the salts in the    tidal 'waters. Decreased    chlori n-ities at this  time at the upper transect stations      may  reflect ground water  input, which would dilute the seawater.          The  chlor-inity measurements at Station      37 show  little variation    in the I
Card Sound waters throughout the      year. The average    chlorinity at this station is approximately      19  parts per thousand (%,)
which  is essentially that of "normal" seawater.        'Chlorinity values may be  multiplied  by 1.86  to approximate salt concentration in parts per thousand.      During the  latter part of the year, when standing water covered    Station 2, the chlorinity at the upper transect stations    was  about 5%,, which    is about 27/ of    normal seawater.
2-28
 
I I
I I
I I
I I
 
TABLE  2-4 SALINITY IN PARTS PER THOUSAND (%o )
FROM GROUND WATER OF MAJOR VEGETATION AREAS Station  Number                    Area                %o 37              Fringe forest shoreline          34 30              Dwarf mangrove/f ringe f orest    38 21              Black rush/salt grass            28 16              Black rush/salt grass            18 Saw  grass                        16 Saw  grass 2-29
 
I I
I I
I I
 
BLACK RUSH/
SAW GRASS        SALT GRASS    DWARF MANGROVE    FRINGE FOREST    CARD SOUND 45        25 40 30 20 10          5 0
0        0 0
0 0          (a) MEAtt SURFACE WATER 0          0 I
z  40 z  22.5 20 Vl 30 15 20 10 10 (b) MEAN GROUND WATER 0                                                                  37 9              16      21              30 DISTAttCE ALOttG TRANSECT (m X 100)
Figure 2-9.      Salinity    and  chlorinity values      along study transect.
2-30
 
I I
I I
I I
I I
 
Salinity values at Station        9  varied more than at any other station.      Because  data from Station    16 were  limited they did not reflect  the true variation observed at the station.            However, the figures  do  indicate  a  close correlation between surface and ground water sal  ini ties.
The    highest salt concentrations were observed in the soils from the dwarf mangrove zone.        This hypersaline region landward of the fringe forest comprises 30.66! of the            South Oade  Site.
Tidal cycles vary in amplitude        and thus the    distance traveled inland also varies; the soils are subject to repeated periods of saturation    and  drying by evaporation which effectively concentrates the soluble components        of seawater  and  brackish ground water.
Also, drainage of the region is generally slow.              Thus, evaporative processes    build  up the concentrations    of salts  and  minerals to levels which are toxic to all but salt-tolerant species such            as mangroves  ~    Soil salinities from the open      flats  have been measured as high as    80.3'/,    in isolated instances, which is roughly two and one-half that of bay waters.
Salt-tolerant plants proliferate in regions of high salt concentrations not due to metabolic need for excessive chloride, but due to    their ability to survive    where other    plant species, 2-31
 
I I
I I
I I
I
 
competing  for the  same space,  light,  and  nutrients, are unable to withstand the osmotic stresses      placed upon them by the environ-ment.
Soil Sam  lin  Locations (for ATP, Soil Moisture, pH, and Organic/Inorganic Carbon Studies)
Transect stations selected as representative        of the differ-ent ecotones were 2, 6, 10, 14, 18,      20 and 30. Soil samples consisted of cylindrical cores about      5 cm  in diameter  and 25-50 cm in length. Multiple sections of approximately        1  cm were taken down  the length  of the core for analysis.      Subsurface  sampling was done because  undegraded    plant detritus  was present at varying depths in  test cores. Also, water levels fluctuated, which could affect cyclic  exchange mechanisms    in the transport of nutrients and degraded  products of metabolism.
These samples  were analyzed    for ATP,  soil moisture,    pH, and  organic and inorganic carbon.
2-32
 
I 4
I I
 
ATP  - Studies    were undertaken    to defi ne biological activi ty in    South Dade    soils. Biological activity  was  determined by measuring      the adenosine    triphosphate (ATP) content of the soil.
ATP  is part of      a system  of chemicals found only in living cells; thus measurement      of  ATP  concentrations provides    an indirect measure  of living organisms whether they are bacterial, protozoal, or higher life forms. High ATP concentrations indicate biologi-cal  activity,    but do not differentiate between plant or animal tissue. The    relatively constant ratio of ATP to carbon in living cells permits estimates to be made of living biomass which cannot be otherwise calculated from the samples while i n the field.
Determination of the        ATP  content of soil collected from Stations 2, 18, and        30  in open land areas    well away from  the hammock  area corresponded      to other samples taken for carbon analysis,    pH, and    moisture. Open  land collection sites were considered representative        of the predominant character of the transect. Additional samples were taken from the "drainage            tail" of  hammocks    at Stations 2, 18,      and 30  for comparative  purposes to confirm    an  anticipated higher biomass in soil from areas of higher plant detritus production.
2-33
 
I I
I
 
Results of    ATP  concentration analyses at 5-cm soil depth intervals at Stations 2, 18,        and 30 are" shown      in Table 2-5  . Con-sidering only the    mean  concentration of        ATP  at all depths of soil, it appeared    that the concentration progressively decreased from Station  2  to Station 30.      The  relatively constant rate of decrease of  ATP  concentration    as a  function of soil depth was about the same at Stations 2, 18,      and 30. The ATP      concentration at any level      was about  50%  that of the preceding level (Fi ncher, 1976).
Similar determinations of          ATP  concentrations were    made on soil cores from the "drainage        tail" of      hammocks  in the areas of Stations 2, 18, and 30.        Expectations were        for higher levels of ATP on  the premise that these areas received higher quantities of plant detritus which would support            a  larger biomass,    measured  as ATP, than    in the  non-hammock    or "open" areas of the transect.            Such expectations were found to        be  true at all stations in the top          1  cm of soil,    as shown  in Table 2-6    . At Station 2,    ATP  concentrations at 5-15  cm  of depth  were equivalent        in the "drainage    tail"  and "open" area  sites. However, the    two-fold higher concentration in the surface layer of the "drainage          tail"  at Station  2  declined more rapidly with soil      depths    The  concentration of      ATP  in the "drainage tail"  decreased  64%  with each soil stratum,,whereas          in the "open,"
non-hammock    location,  ATP  decreased      50%  with each soil depth.      The rate of decrease with soil depth            was  also higher in soil from the "drainage    tail" at Stations    18 and 30.
2-34
 
I I
I I
 
TABLE 2-5 ADENOSINE TRIPHOSPHATE (ATP) IN SOIL SAMPLES FROM NON-HAMMOCK AREAS NEAR STATIONS 2, 18, and'30 Mean  concentration of    ATP  - g / dr soil Soil Depth CN                Station  2        Station  18        Station 30
: 2. 38              1. 01              0. 66 1.20                0.57                0.37 10                0.60                0.32                0.21
: 0. 29              0.18                0. 12 20                0.14                0.10                0.06 25                0.07                0.05                0.04 30                0.04                0.03                0. 02 Rate  of decrease per depth interval,  1  50                  43 2-35
 
I II, t I
j I
1
 
TABLE  2-6 ADENOSINE TRIPHOSPHATE (ATP) IN SOIL SAMPLES FROM 'DRAINAGE  TAIL'F HAMMOCKS NEAR STATIONS  2, 18, and 30 Mean  concentration of    ATP  - u / dr soil Soil Depth (cm                  Station  2        Station  18      Station  30 4.78                4.47              1.66 1.90              0.66 10                    0. 60                0. 76              0.26 15                    0. 21                0. 30              0.10 20                                        0.-1 2            0.04 25                                        0.04              0.01
        '0 0.02              0.006 Rate  of  decrease per depth interval,'4      64                  57                  60 2-36
 
I l
I
 
Concentrations of    ATP  at the  same  soil depths in the "drainage    tail" were  equivalent at Stations      2 and 18. Both locations      had  higher  ATP  concentrations    than Station 30 .
In summary, biomass in the      soil,  measured  as ATP, appeared to decrease in concentration in the sequence of Stations 2,                18 and 30,  particularly in the surface layer of soil in the            "open" or non-hammock areas.        Highest biomasses were recorded at Station 2.
Differences in biomass at the three stations were less evident                as a  function of soil depth.        At depths of 25-30      cm, the biomasses were  equivalent    and about 2-3X    of the concentrations at the soi      1 surface.
Although    initially higher    at the soil surface in the "drain-age  tail" of    the hammocks, the rate of decrease of biomass with soil depth was more rapid and was equivalent to the biomass found in lower    soil strata in the "open" or        non-hammock areas.
I Generally, these findings suggested          a  gradient of  a biological system which decreased        from a  comparatively high level in the "upland" area to    a  lower level in the direction of Card Sound.          Also, black rush/salt grass soils appear to          be  less biologically active than saw  grass    soils.
Soil Moisture Soil water content      was found  to  be about 57.,0/ by  weight in samples    collected during the months of          Hay 1974-5 and October 1974.
2-37
 
These determinations      were made on standing core samples        in the lab-oratory  and  therefore the results are        a measure    of the water-retaining capacity of the soil.      The small    variation in the water content measurements  shows a    relatively constant high        water content at Stations 2, 6, 10, 14, 18, 20, and 30.            Higher water content (about 82%) was found    in cores with    a  high peat content.
                                    ~So i1  H Values  of  pH,  organic carbon,    and  inorganic carbon in soil at Station 2, 6, 14, 18,      and 30 were    functionally related to depth pro-files of soil. Average values are shown        in Figure 2-10. The  pH of 7.66 at Station    2 was  lower than the values at Stations        18 and 30  at all  depths. At these    latter  two    stations  a  transitional  zone was found at the depth      of 9-14  cm;  the upper soil levels had      a pH  of 8.04-8.05 and the lower levels      a pH  of 7.86-7.89; again indicative of "dropping out" of ions in upper soils.
Or  anic and Inor anic Carbon Organic carbon    is distinguishable from inorganic carbon in that organic carbon is produced by plants          and  animals, including bacteria, and  inorganic carbon sources are carbon dioxide (C02) and carbonates, such as those found      in limestones    and marl    soils. Organic carbon determinations therefore provide useful evidence of biological 2-38
 
I I
Or~
I I
I
 
STA 2            STA 6        STA 14          STA 18          STA 30 a    b O                                            C)
CJ                            C)
CO I                            CO 10                E E
O 20 O
LIJ 30                                                                      CO (D
40 50 a = pH b =  Organic carbon (% by weight) c =  Inorganic carbon (% by weight) 2.54  cm =  1  in Figure 2-10.      Depth profiles  by stations  and parameters, 2-39
 
I I
I I
I I
I i
 
Organic carbon concentrations        were  stratified in the soil profiles.      The 4.6X  concentration of organic carbon in the top            10 cm of soil at Station      2 was    similar to values obtained below 10-15          cm at Stations 14, 18,      and 30.      Above 10 cm the organic carbon concen-tration of 1.9-2.4/      was  similar to the uniformly constant value of 2.4X    at Station 6. Stations 6, 14,      18 and 30 had    organic carbon concentrations that were about          50%  lower than the upper      10 cm  of Station 2.      The  highest concentration of organic carbon recorded was    14/. This value was found below 10        cm  at Station  2  in the  saw grass zone of the transect.
Inorganic carbon (principally carbonates)          concentrations were uniformly high (44.9-47.4'4)          in the top    10 cm  of soil at Station 2, and    at 30-35  cm  at Stations 6, 14,      and 18. Station  30 had a low concentration (42.2/)      up  to  10 cm  in depth,    and a lower  concentration (28.2%%d)  to about  50 cm  in depth.      This lower concentration      was  close I
to the 25.3&#xc3; value found below          13 cm  at Station 2.
Organic carbon  stratification is      shown  in Table 2-7. The amount    of organic carbon in the top 0-10        cm  at Stations 2, 18,    and 30 was    less than that below      11 cm. An  inverse relationship of inorganic carbon    and soi  1  depth appeared    to  be  the trend, except at Station    18 where  stratification    was  not noted.
2-40
 
I I
I I
I I
I I
I
 
TABLE 2-7 DEPTH ANALYSIS OF ORGANIC AND INORGANIC CARBON CONTENT OF SOIL Carbon Content    of Soil    m / Dr  Soil Station No.
Sil Interval ph cm
                          ~0i N    .
C  b Mean          N          Mean Ratio of Carbon Or Means anic:Inor anic 0-10            6        46.0          6          459.2          1:10 12  24          7      140.1            7          253.3          1.2 0-  8                    19.6                                    1:24 18                                              16          474.0 11-30                      50.8                                    1:9 0-10                      24.0                      442.0          1:18 30    12-  24                    36.0                      327.0          1:9 26-  48                    51.5                      260.4          1  5
 
I I
I I
I
 
Stratification of carbon with soil depth suggests inflooding of silt-bearing water, probably marine in origin, which, when it recedes, leaves a deposit covering existing vegetation. The result-ing organic deposits and subsequent plant growth provide nutrient substrates  for carbon-utilizing bacteria. Subsequent  bacteriologi-cal findings (in Section 2.3.3) indicated that  a significant portion of the carbon-utilizing bacteria are  found at the surface and in the lower 10-48  cm  strata of soil.
2-42
 
I I
I I
I I
 
2.3.3    Soil Ni cr obiol o The  objective of this study      was  to provide information    on  the bacteriological content of the soils in the South            Dade Area as one index of the energy turnover rates, and thus the productivity of the area. Selective methods of analyses were used which would recover and  characterize the broadest        number  of species of bacteria which utilize    organic compounds as sources of energy and growth.            Such bacteria are instrumental in the cycling of carbon            compounds    in the soll  .
methods Three  sites along the study transect      were chosen    as typical of the broadly discernible          zones characterized  by saw grass, black rush/salt grass, and dwarf mangroves: Stations 2, 18, and 30, respectively.      Station  30 was  marine, Station 18    was  influenced by both brackish and freshwater sources,          and Station  2 was  predominantly freshwater in character.
Selection of representative      sites was necessary    to recover as many    bacterial types    as possible from different soil habitats.
Since no single culture medium supports the growth            of all soil bacteria, knowledge of probable essential salt growth requirements by marine forms provided more        representative culture yields.
Soil samples consisted of cylindrical cores about          5 cm  in diameter and 25-50      cm  in length. Enumeration  of viable bacteria at various soil depths        was done under    conditions that isolated 2-43
 
I I
I I
 
aerobic (those requiring oxygen), facultative anaerobic (capable of living in the    presence  or absence of atmospheric oxygen),        and obligate anaerobic heterotrophic (growing only in the absence of oxygen and using carbon as an energy source) bacteria.
Results Numbers  of bacteria in soil - Determinations of the aerobic and  facultative anaerobic bacteria content        were made from Stations 2, 18, and 30. Both groups use organic compounds        for energy  and growth.
Numbers  of bacteria are presented      as  colony-forming units (CFU),
which is  a  standard technique    for expressing bacterial populations.
Table 2-8 gives    CFU  counts of the three typical habitats at various soil depths.
In  all  cases,  larger populations of bacteria      were found on the surface, and numbers decreased        as a  function of soil depth.
Also, the rate of population decrease        was about    the same  for all three stations.      Bacterial  numbers appeared      to  have an  inverse relationship to the soil content of organic carbon, which              was found to increase with soil depth.
The  highest frequency of bacterial spores and/or thermo-duric bacteria (those that form heat-resistant spores)            was found in the 0-15  cm  depth  interval. Below  this    depth  it was  observed that these bacterial forms occurred at        a  frequency of    10%  or less.
2-44
 
I I
I I
 
TABLE  2-8 DERIVED COUNTS OF COLONY-FORMING UNITS (CFU)
OF AEROBIC AND FACULTATIVE ANAEROBIC BACTERIA Soil Depth                                      Stati on cm                                              18      30 2317      1824  854 1567      1404  551 10                                    1059      1081  356 716      832 229'48 20                                    484      641 25                                              493    95 30                                              380    61 35                                              292    39 40                                                      25 Rate of decrease per depth interval,  X                32        23    35 CFU=Nx10  /g dry soil, single core values.
2-45
 
I I
I I
I I
I I
 
This suggests    that populations below 0-15    cm  are more sensitive to heat. This population, although smaller than that at upper soi 1 depths, was more versatile in the use of different carbon compounds for metabolism.
Taxono    of Soil Bacteria - About    870  bacteria were isolated and  studied in pure culture.      Each  culture  was examined    for  a possi-ble 252 characteristics      including physiological, metabolic        and mor-phological categories.      Data were computer processed      and  coeffi-cients of association were calculated.        This is  a  numerical expression which relates the degree      of overall similarity of      one bacterium    to another. Summation  of analysis of clusters of bacteria having co-efficients of association      equal to or greater than 80K      is  shown  in Table 2-9.
Cluster analysis of bacteria isolated from Station            18 showed high percentages    of inclusion  (sameness)  in clusters at al'1 soil depth  intervals. Homogeneity  of bacterial types throughout the soil  column was also    greater at Station 18.      There was  a  general absence  of relatedness of isolates from Stations        2 and  30.
Ph  siolo ical  and  Metabolic Characteristics        All bacterial populations from Stations 2, 18,      and 30 were dominated      by forms able to live under conditions of reduced oxygen.          Populations of    all three stations  were dominated by    true facultative anaerobes at depths below 2-46
 
I I
I I
I I
I I
 
TABLE  2-9 CLUSTER ANALYSIS OF SOIL ISOLATES SHOWING GROUPS WITH
                            > 80/ COEFFICIENTS OF ASSOCIATION Station  2            Stati on  18              Station  30 Soil                No. of    No. of      No. of    No. of      No. of    No. of De th    cm          ~Grou s    ~OTU/Grou u  ~Grou s    ~OTU/Grou o  ~Grou s    ~OTU/Grou u 5;3 5;3                      2'2 7'2 6s3 10                                                          5;4 12                                                          4;2 14                                                          8;7 16                                5;2                      4;3;3;2 18                                3'2                      5;4;2;2 21                                6;3 22                                                          6;2 26                                                          7'2'2 30                                                          4;4 34                                                          8;2;2;2                  2'2'2 38                                                          6;3;2;2;2                5;4 OTU    Operational Taxonomic Unit is used instead of generic and specific names  for purposes of computer grouping by characteristics. One OTU is equal to one  isolate.
2-47
 
A % l I I
I I
I I
I I
 
12-14 cm. The near-absence      of soil bacteria growing only in the presence  of atmospheric      oxygen  reflects the    low oxygen tension usually found in water-saturated          soil.
The optimum temperature      for  growth  for the majority of isolates  was    25'C, in  a  range  of 15-35'C. Isolates from Station    18 showed a  wider temperature range (15-45'C) of growth than            was found at Stations    2 and  30.
More    acid-tolerant    (pH 5 .0) forms occurred    at depths below 6-10 cm. Station    2 showed    a generally less sensitive population capable  of growing in    pH  ranges between 6.0 to 8.0.      These  findings suggested  that different bacterial populations existed at the three stations  as  well as at different intervals of soil depth.
Separation of the bacterial populations of the saw grass, black rush/salt grass and dwarf mangrove zones            was  indicated  by the ability of    .the  bacteria to grow in    a  salt-free  medium  or  by a de-pendence  on  the salts of sodium, potassium, calcium, or magnesium.
Of the bacteria from the saw grass          soils,  80K were  not dependent  upon salts for growth. In growth        media where  three of the four elements (sodium, calcium, magnesium, potassium) were present, only bacteria from Station 30 showed a    significant    dependence  on sodium coupled    with  some dependence    on  either calcium or    magnesium. Isolates from the black rush/salt grass      zone demonstrated    no dependence    on a single element.
Growth occurred on any three elements          in combination.
2-48
 
I I
I I
I I
 
Carbon metabolism    - Isolates from the three zones were examined  for their ability to hydrolyze (break          down) a spectrum    of compounds  known  to contain complex carbon structures.            A summary of these results expressed      as averages    throughout the soil column is  shown  in Table 2-10. Generally, isolates capable of splitting the compounds were distributed throughout the soil column.                Bacteria capable of  splitting chitin      are of  interest,  as  this substance is found in the skeletal material of invertebrate animals such as crabs and insects.      The  ability to    degrade  cellulose, found in plant tissue cell walls,      was  not widespread but      was  encountered in the  saw grass  soils.
Nitro  en metabolism    - Isolates from the      saw  grass soils showed  the highest frequency of using most available compounds as nitrogeneous    sources. About 14 isolates were able to use atmospheric nitrogen.
Bacterial populations in the dwarf mangrove zones were less able to use nitrogen-containing compounds.            Atmospheric nitrogen was used  by 18/  of those isolates.
Isolates from black rush/salt grass          zones were    essentially unable to use nitrogen from available sources.
Reduction of    nitrate to nitrite      was done by    isolates from all soil depths at Stations      2 and  30. Many  bacteria were able to use the 2-49
 
I I
I
 
TABLE    2-10
 
==SUMMARY==
OF HYDROLYSIS OF VARIOUS SUBSTRATES BY        ALL ISOLATES IN A SOIL COLUMN STATIONS    2, 18, 30 Avera  e  fre  uenc  of  h drol sis Station 2              Station  18        Station 30 Total OTU                Total OTU            Total OTU Substrate                  Tested        l        Tested      X        Tested l
Aesculin        31          198        33          252      52          270 Araban          32          136        13          248      16          165 Casein          53          192        72          242      79          244 Cellulose        21          198          0                                270 Chitin          17  '95                3          194      28          201 Gelatin          16          197        33          252                  270 Starch          59          193        62          244      74          244 Tri butyrin      69          179        61          215      60          238 Xyl an                      193                      171                  213 Depth  of Soil Column (cm):          21                      38                    38 2-50
 
I oxygen found on  nitrate when grown under    conditions of reduced atmospheric oxygen tension. These  conditions would occur  when soils were waterlogged. The reduction of nitrates by such bac-teria in the soil is probably  an  adaptive mechanism for survival via nutrient cycling in environments with reduced oxygen.
2-51
 
I I
I I
I I
I I
: 2. 3.4  Soil Profile Introduction The  objective of the soil profile study        was  to  make an  eval-uation of the surface and subsurface topography of            a  mangrove hammock.
The hammock    selected for this study      was  located in    an  area  of uncon-solidated, high-magnesium calcite, interspersed with small red                man-grove peat    units,  over the limestone bedrock (l1iami        oolite) at a depth  of  1  to  2 m. The  study  hammock was    wetted by    at least all high-high tides, although the        interior was dry for several months during the    spring period of low rainfall and low-hi gh tides.
This    hammock was chosen    for intensive study for three reasons:
: 1)  it had  the characteristic "tear drop"      shape  and a core    of taller trees; 2)    it was  representative    of the  985  larger  and    smaller hammocks  on  the  site;  and 3)  it graded  into  a  smaller    hammock  which provided  a  second type    of ecotone in addition to the dwarf forest.
The species    compositon    of the study  hammock was    exclusively    man-grove, although there was evidence that other woody species, such                as the palm (paurotis      wrightii),  were once a component      of the  canopy.
The evidence    for the  palm, in  particular,    was  the presence    of many "stumpholes"    left  by long-decayed    palms. Other evidence      for sub-tropical  hardwoods    included standing-dead non-mangrove trees and trunks trapped within the mangrove proproot structure.
2-52
 
I I
I I
I
 
Methods Hammock      soil transects -      The  study    hammock  (Figure 2-11) is situated    some 250    meters south      of Station 30, which        was used as    the elevation control point.            To  control the field measurements          and ensure comparable data          relative to elevation, four survey lines were shot through the hammock and              elevations were taken at        1  m intervals; these lines          became    the study transects        (Figure 2-12).
The main    transect (A)      was    shot parallel to the long axis of the hammock.      Transect    A was 240 m      long and extended into the dwarf mangrove zone      at both ends.        Three additional transects          were shot perpendicular to transect A: transect                B  (160 m) through the head of the  hammock,    transect    C  (140 m) through the central core, and transect    D  (105 m) through the        tail  and    a'contiguous smaller      hammock.
Narrow survey      lines  were cut    to permit access of personnel and to obtain  50-m    transect shots through the            hammock. Stakes were set at 5-m  intervals along      each  transect between the access paths            and the undisturbed study area on the other side.                    All ecological    measurements were made    in the undisturbed portion of the transect                and recorded by  transect distance        and  elevation.      The    elevations were expressed as  centimeters above or below transect station marker                    b'30+00 which was shown    to  be  at the  same    elevation    as  points  0 and 240  of transect  A.
Subsurface      strati    ra  h    At  1  m  intervals along    each transect,    a  steel rod    was  inserted slowly into the sediment            down  to 2-53
 
  ~"
,3 I
I I
I
 
            .figure 2-11 Location o$ study    hammock                                                                                  )
in barf  mangrove zone.                            3 C
                                                                                                              -c Ci Q +Oo    e'.0'~      Capp C895 ga<e 1
P 4i. 1' We.      ,w"4L.
                                                                      '\'
i C
4
                                                              .! 4-0 4                                                          P~
                                                    '0, a.
i; 0''
4.
                                              -Study-mWammcck
                '"                                                                Litt1e    Card. 50,un i; ii
                                                                                                .'\
      ~~f
                                                                                          't6c
 
I I
I
 
GROUND SURFACE ELEVATION HANGROVE HAJAHOCK PEAT 60 CALCAREOUS 18JDS WITH
                                                                            -80                                                                                                                                        ROOT INTRUSION
                                                                          -120                                                                                                                                              PEAT AND FRAGMENTED
                                                                          -160                                                                                                                                              BEDROCK
                                                                          -200 TRANSECT B      .  ~'NO->>r                                160 SOLID 0                                                                          -260                                                                                                                                                BEDROCK TRANSECT B
                                                                          -280 8      10    20      30      AIO        50    60    70        80      90  100    110        120      130    140      150    160 GROUND SURFACE ELEVATION SI0                                                                                        HANGROVE HAJBNCK PEAT RAD CALCARENIS NDDS NITK 140              80 ROOT INTRUSION LI C)
                                                                            -120 CN:
CD    160                                                                                                            PEAT AND FRAGMENTEO BEDROCK CJ  -200 SOLID BEDROCK 260              TRANSECT C CS:  -280 0    10  20    30      40    50        60  70    80    90      100  110  120    130    1IIO D
                          -~rgW~r                                    I-CD.                                                                                                      GROUND SURFACE ELEVATION C/D A3:
60                                                              MANGROVE HAJAKIIJXK PEAT
                                                                              -80                                                                                                                      CALCAREOUS l%JDS WITM TRAMSECT D                                                                                                                                                                          ROOT INTRUSION 0                                    105
                                                                            -120                                                                                                                              PEAT ANO FRAGMENTEO 160                                                                                                                              BEDROCK
                                                                            -200                                                                                                                                    SOLID TRANSECT D                                                                                                        BEDROCK
                                                                            -2TDO 0        10          20          30        40        50          60      70          80          90        100  105 ODeters TRANSECT A 290 GROUND SURFACE ELEVATION 0
MANGROVE HAMMOCK PEAT 60 x  8                                                                                                                                                                                          CALCARENIS NIDS    NITII
                -80                                                                                                                                                                                      ROOT INTRUSION g~
I- < 120                                                                                                                                                                                                    PEAT AND FRAGHDITEO
          $o                                                                                                                                                                                                          BEDROCK TRANSECT A                                                                                                                            SOLID BEDROCK 200 0      10    20      30 TIO 50    60    70 80      90        100    110    120      130      3IIO    150    160    170      180  190      200      210      220  -
230      260 ODeters Figure 2-12.            Hammock        study transects.
 
RE the surface of    a  secondary      unit  composed  of bedrock fragments      and peat; the depth      was  recorded.      The rod was then    forced through this unit to determine the depth to bedrock.              At 10  m  intervals along the transect, cores were taken with 1.75-in. diameter                  PVC  tubes.
These cores were extruded and described              in the  field;  a  total of  52 descriPtions were        made. An  additional set of    16  cores, taken at 25  m  intervals,    was  retained for detailed description          and analyses.
Results Each mangrove      hammock    surveyed was. found to be topographically higher by    a few centimeters        than the surrounding dwarf mangrove community. The hammock        surface  was  normally exposed during low tide and submerged    at high tide.        The  entire surface of the      hammock was composed    of red  mangrove peat, and, when surveyed            in detail,    showed humps and    depressions      which were expressions      of differential rates of peat accumulation at the            base  of the proproots (Snedaker, 1976).
The subsurface      was  found to be highly    irregular    and  variable due  to the topography        on  the surface of the Miami      oolite. The subsur-face profiles (Figure 2-12) indicated that the bedrock surface                  was pitted    and studded    with pockets      and  pinnacles. This type  of surface is  commonly found      in other areas where the      Miami    oolite ridqe outcrops (Crai ghead, 1971)    .
2-56
 
I Q
~
I I
I i
g 1
I I
 
A secondary unit overlay the oolite bedrock. It was  composed of bedrock fragments  and peat containing partially decomposed organic material with red mangrove rootlets. This unit also had an irregular surface which roughly paralleled the bedrock surface. In some instances,  the unit filled bedrock depressions.
2-57
 
I I
I I
I I
I I
I I
I
 
2.4   
 
==SUMMARY==
 
Natural plant associations        were  strongly influenced    by two major determinants:      tolerance to water of varying chloride (salt) concentrations and the distribution of high organic-containing soils, mostly mangrove peats.        Zones  of vegetation    were delineated and main-
-tained based upon    a  plant species being able to withstand physiolog-ical stresses    imposed by  salt-induced osmotic pressure.        Density and acreage  of plant species    were  identified  and described  using principal vegetative characteristics      as  follows:
              ~Ff fringe              pf        f1
              ~g-d              d            1 a ~                                        g                        g a dense            bordering the coast
: b.                            p1    1    f  <<d red, black, or white mangroves which are not believed df to be a dwarf race or variety, but rather have dwarf characteristics imposed by high chloride concentrations and low phosphorus content of the soils.
c ~  Black rush salt rass - two grass-like species which occur between the higher saline soils of the dwarf mangroves and the fresher water saw grass habitat.
: d.  ~Saw  rass - generally in fresher water and about one mile inland from Card Sound waters.
: e. Salt water hammocks - slightly elevated oval or round masses of high organic peats which support dense stands of mangroves Brackish water hammocks - with configurations similar to salt water hammocks except that a different plant species composition occurs.
The South Dade      Site soils are nonstratified calcitic      muds which are composed    of finely-divided calcium      and magnesium  carbonates. Soil depth to bedrock varies from 1.2 meters to occasional            out-croppings 2-58
 
I l
 
which broach the surface      of the soil. Scattered randomly within the calcitic  mud    are pockets or lenses of organic peats.          These are com-prised of mostly dead roots and other degraded plant products.                Peats I
may  or may  not broach the surface.        Peat deposits which do broach the surface  may    support dense mangrove-dominated      vegetation to form salt-water or brackishwater hammocks.          Red mangrove    peats spaced between layers of  calcitic    mud strongly suggest the region      has  fluctuated between marine and freshwater influences during            its geological    past.,
The  freshwater calcareous      mud was  probably the earliest sediment type formed on  this coast.      At  some  later time,  mangroves    began  to colon-ize the calcareous      mud areas.
Stratification of      carbon with  soil depth suggests flooding      by silt-bearing water, probably marine in origin, which, when it recedes, leaves a deposit covering existing vegetation. The resulting organic deposits and subsequent      plant growth provide nutrient substrates        for carbon-utilizing bacteria.          Bacteriological findings (in Section 2.3.3) indicated that      a significant portion of the carbon-utilizing bacteria are found    at the surface and in the lower 10-48 cm strata of soi l.
Biomass    in the soil, measured    as ATP, appeared    to decrease  in concentration in the sequence of Stations 2,          18 and 30,    particularly in the surface layer of soil in the "open" or          non-hammock areas.
Differences in biomass at the three stations were less evident              as a function of soil depth.        At depths of 25-30 cm, the biomasses were equivalent    and about 2-3X    of the concentrations at the soil surface.
2-59
 
I I
 
Although  initially higher    at the soil surface in the "drain-age  tail" of  the hammocks, the rate of decrease of biomass with soil depth was more rapid and was equivalent to the biomass found in lower soil strata in the "open" or      non-hammock areas.
These  .findings suggested  a  gradient of microbiological activ-ity which  decreased  from  a comparatively high level in the "upland" area to  a  lower level in the direction of Card Sound.      Also, black rush/salt grass soils appear to      be  biologically less active than saw grass  soils. The near-absence  of soil bacteria growing only in the presence  of atmospheric  oxygen  reflects the low  oxygen tension usually found in water-saturated    soil.
2-60
 
I l
 
3.0  KINDS AND ABUNDANCE OF NATIVE ANIMALS
 
==3.1      INTRODUCTION==
 
Studies were conducted to determine the kinds and abundance of native animals that      use the  different plant    communi  ties of the South Dade    Site for food, shelter,      and  breeding. Field obser-vations and trapping techniques were used to prepare              lists of  the species noted.
Particular attention      has been paid    to any rare or endangered birds,  mammals,  amphibians,    reptiles, fishes    and  selected inverte-brates. Endangered    and  threatened  wildlife species      are  listed  by the Fish and    'Wildlife Service of the      U. S. Department    of the Interior
'Federal Register 42(135):36420-36431, July            14, 1977) and by the State of Florida    Game  and Fresh Water Fish Commission        (Wildlife Code  of the State of Florida, Chapter        16 E-3, Tallahassee,"      Florida, July 1977).      In addition to these sources,        the Florida Committee on Rare and Endangered      Plants and Animals      (FCREPA) has    prepared an  Inventory oZ    Raze and Endangered    Biota oi Florida(1976)      ~  The status categories used by      FCREPA and  referred to in this section are defined in Table 3-j-.      All three of these lists      have been used    to determine which species are considered rare and endangered              in Florida.
Species whose known range or      habitat preference probably        would preclude  their  occurrence on the Florida Power        &  Light  Company 3-1
 
I P
I l
I
 
property and in fact have not been recorded in the vicinity are not treated in this report.
3-2
 
I I
I l
I
 
TABLE 3-1 STATUS CATEGORY DEFINITIONS EXTRACTED FROM THE-INVENTORY OF RARE AND ENDANGERED BIOTA OF FLORIDA (FCREPA,    1976)
Status Category                                              Definition En dan ge red                Species  in danger of extinction  if the deleterious factors affecting their populations continue to operate. These are forms whose numbers have already declined to such a critically low level or whose habitats have been so seriously reduced or degraded that without active assist-ance their survival in Florida is questionable.
Threatened                    Species  that are likely to become endangered in the State within the foreseeable future  if current trends continue. This category includes
: 1) species in which most or all populations are decreasing because of overexploitation, habitat loss, or other factors; 2) species whose pop-ulations have already been heavily depleted by deleterious conditions and which, while not actually endangered, are nevertheless in a critical state; and 3) species which may still be relatively abundant but are being subjected to serious adverse pressures throughout their range.
Rare                          Species which, although not presently endangered or threatened as defined above, are potentially at risk because they are found only within a restricted geographic area or habitat in the State or are sparsely dis-tributed over a more extensive range.
Species    of Special        Species that do not clearly fit into one of the foregoing categories Concern                    yet warrant special attention. Included in this category are 1) species that, although they are perhaps presently relatively abundant and wide-spread in the State, are especially vulnerable to certain types of exploitation or environmental changes and have experienced long-term population declines and 2) species whose status in Florida has a potential impact on endangered or threatened populations of the same or other species outside the State.
 
I I'
 
TABLE 3-l (continued)
STATUS CATEGORY DEFINITIONS EXTRACTED FROM THE INVENTORY OF RARE AND ENDANGERED BIOTA OF FLORIDA (FCREPA,  l976)
Status Category                                          Definition Status Undetermined        Species that are suspected of falling in one of the above categories but for which available data are insufficient to provide an adequate basis for their assignment to a specific category.
 
I I
I I
 
3.2      BIRDS Bird populations      shift locally    and  seasonally so that at the South Dade  Site,  as  in southern Florida in general, there is            a continuous change in the spectrum of bird species present.                  There-fore,  any  inventory of birds must take into account            summer  residents, winter residents, permanent residents, migratory visitors, accidental visitors, and flyovers.        To  further complicate analyses, birds          use different parts of their        range  for breeding, nesting, feeding,          and basking.
Bird censuses      were made every two months        for  one  year at  12 terrestrial sites    and along the    shoreline, of the South      Dade  study area. Birds were identified by sight as well as by calls and songs.
Birds frequenting Arsenicker Keys,          some 9 km NE    of  Card  Point,  were also noted.
The  results of the bird study are presented in Tables 3-2 and 3-3 which    list  the species noted,      their status    (e.g.,summer resident, flyovers)      and the    habitats in which they are usually found.
Table 3-3  lists  the rare or endangered        birds that    have been seen    on or are presumed    to use the South      Dade  study  site.
A total of  79  species of birds were observed in the South Dade  study area. An  additional nine bird species listed          by FCREPA have been reported      in the  vicinity but    were  not noted during this 3-5
 
I I
I I
I I
I
 
TABLE  3-2 BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)
Habitat in which bird noted Observed                                                  Offshore Residency              in air            Black rush/    Dwarf    Fringe    (within Cocmon name                    Scientific    name*          status              space only Saw  grass salt grass    mangrove  forest              Other Anhinga                          anhinga anhinga            Permanent  resident                                                                      canals American  Bittern                Botaurus lenciginosvs    Minter resident Red-winged Blackbird              agelaius phoeniceus        Permanent  resident Bobolink                          Dolichonyx oryzivorus      Migratory  visitor Cardinal                          Cardinaiis cardinalis      Permanent  resident Chuck-will's liidow              Caprimvlgus vociferus      Sucmer  resident Double-crested Cormorant          l halacrocorax auritus    Permanent resident Hourning Dove                    Zenai da macroura          Permanent  resident Mood Duck                        Aix sponsa                Permanent  resident Cattle Egret                      Bubvlcvs  ibis            Permanent  resident                                                                      canals Comnon  Flicker                  Colaptes avratus          Permanent resident                  gb v'b American Goldfinch              - Carduelis  tristis        Minter resident                    gb Glue,-gray Gnatcatcher            Poliopcila caerulea        Winter resident                    gb                      gb            gb Goat-tailed Grackle              guiscal uis  ma jor        Permanent  resident                                        gb Cocmon  Grackle                  gviscalvs quiscvla        Permanent  resident Pied-billed  Grebe              Podilymbus podiceps        Permanent  resident Herring Gull                      Lares argentatus          Winter resident Found dead,  only fragments.
'n  Bayhead.
c Probably seldom lands  on South Dade    site.
Homenclature according to Bull and Farrand, 1977.
 
I' TABLE  3-2 (continued)
BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)
Habitat in which bird noted Observed                                                  Offshore Residency                in air            Black rush/      Dwarf    Fringe    (within Corwen name                      Scientific    name*              status              space only Saw grass sal t grass    mangrove    forest                Other Laughing Gull                    icarus  aericilla              Permanent    resident Ring-billed Gull                  larus delawarensis            Minter resident Red-shouldered    Hawk            BuCeo  lineatus              Permanent    resident Sharp-shined    Hawk              Accipiter striaeus            Minter resident resident                                                                      .canals Green Heron                      Butori des seri atus          Permanent Glossy  ibis                      Plcgadi s  falcinel lus      Permanent    resident criseata        Permanent    resident                                        gb Blue Jay                          Cyanoci Cea American Kestrel                  Paleo spa  rveri us          Minter resident Kil deer 1
Charadrius voci ferus        Permanent    resident Gray Kingbird                    Tyrannus domini censi s      Sumner  -resident; Belted Kingfisher                &#xc3;cgaceryle alcyon            Suamer    resident Eastern Headowlark                Sturnella    magna            Permanent    resident Ptirms  polygloetos            Permanent    resident                          gb Hockingbird Red-breaster Herganser            plergus  scrrator              Minter resident Conan ttighthawk                  Chordcilcs minor              Sucmer  resident Screech Owl                      Ocus  asio                    Permanent    resident Mhite Pelican                    Pelecanus    erythrorhynchos  Minter resident Found dead,  only fragments.
'n    Bayhead.
Probably seldom lands on South Dade        site.
ttomenclature according to Bull and Farrand, l977.
 
I I
I l
I
 
TABLE  3-2 (continued)
BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)
Habitat in which bird noted Observed                                                Offshore Residency            in air            Black rush/    Dwarf    Fringe    (within Cocmon name                    Scientific  name
* status            space only Saw grass salt grass    mangrove    forest              Other iastern  Phoebe                Sayornis phoebe            Minter resident                  /b      /b Black-bellied Plover            Pluvialis squatarola        Winter resident Yellow-bel lied Sapsucker      sphyrapicus vari us        Winter resident
                                                                                                        /a,b Sanderling                      Cali dris alba              Minter resident Coamon  Snipe                  Capella gallinago          Winter resident.
Barn Swallow                    Hir undo rus Ci ca          Migratory  visitor Tree Swallow                    Iridoprocne bicolor        Winter resident White-eyed Vireo                Vireo griseus              Permanent  resident I
Turkey Vulture                  Cacharces aura              Permanent  resident Blackpoll Warbler              Dendroica sCria Ca          Migratory  visitor                        /b Palm Warbler                    Dendroica palmarum          Minter resident                            /b Yellow-rumped Warbler          Dendroica coronata          Minter resident Horthern Waterthrush            Seiurus noveboraccnsis      Migratory  visitor Cedar Waxwing                  Bombyci lie  cedrorum      Winter resident Millet                          Catoptrophorus semipalmatus Permanent  resident House Mren                      Troglodytes aedon          Minter resident                  /b Downy Moodpecker                Picoides pubescens          Permanent  resident              /b
  " Found dead,  only fragments.
1'n  Bayhead.
c  Probably seldom lands on South Dade    site.
Homenclature according to Bull and Farrand, 1977.
 
I l
I
~
 
TABLE  3-2 (continued)
BIRDS FDUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)
Habitat in which bird noted Observed Residency              in air            Black rush/                          Offshore
* Dwarf    Fringe Cormon name                  Scientific name            status            space only Saw grass salt grass    mangrove    forest              Other Red-bellied Woodpecker        Cenrurus carolinvs        Permanent  resident            gb        gb Ye 1 1 owl egs                Trinya spp.              Winter resident Yellowthroat                  Ceorhlypis erichas        Permanent  resident a Found dead, only fragments.
In Bayhead.
Probably seldom lands on South Dade site.
Nomenclature according to Bull and Farrand, 1977.
 
l TABLE        3-3 RARE OR ENDANGERED BIRDS FPUND WITHIN OR NEAR THE SOUTH DADE SITE I  't ln  cc        not Observed                                              Of/shore Protected cate                        Residency                  in air          Black rush/    Owarf      fringe    twithin status                s  ce onl Sa ress Salt  rase  man  rove    forest          m    Other Scientific      name        Federal        State          fCREPA Peregrine falcon                  raise pereyrinvs            Endangered    Endangered    Endangered    liinter resident Brown  Pelican                  Pet ecanuc occiden ca  !is Endangered    Threatened    Threatened    Permanent  resident SOutnern Bald Eagle              ical iaeecus levcocwphalus  Endangered    Threatened    Threatened    Pecvcanent  resident wood  Stork                      nycceria amecicana                        Endangered    Endangered    Rare  winter visitor HagnifiCcnt frlgatebird          Preface mayniricens                        Threatened    Threatened    Permanent    resident Osprey                            Pamiion hcliaevs                          threatened    Threatened  . Permanent resident Colvmca levcocc'phaia                      Threatened    Threatened    Sucmer  resident White-crcnmed Pigeon Leait Tern                      S cesar    el bi franc                      Threatened    Threatened    Scsucer  resident Roseate Spoonbill                Ajija ajaja                                Threatened    Rare          Perranent resident Hcngrove Cuckoo                  Coeeycvs mfnor                              ThreatenCd    Rare          Pecccanent  resident e Laj 1
Reddish Egret                    ryrec ea rufescens                                                      Percanent resident O  w Antillean      Ceighthawk        Choraei les minor                                                        Perrancnt resident rican Redstart              Secophcya    ruCicilla                                  Race          Hlgratory visitor Black. whiskered Vireo            vireo aieliolvus                                                        Scarcer  resident yellow Warbler                    peIrirniea petechia                                      Rare          Pcrrancnt resident Louisiana Waterthrush              .eclvrvs rmcavil la                                      Rare          Hlgratocy visitor Aeerican Avocet                    aevurvlroscra americana                              Special concern    Winter  visitor Least Bittern                      irvaryrhvs    eriiis                                special concern    lilnter visitor cases.radius    ainus                              Special concern    Pervonent resident                                                                      can~la Cleat Egret cereeca Chvia                                        Special concern    Permanent resident                                                                      canals Snowy    Egret svcclcorar nvvcicnrar                                Special concern    Perranent resident                                                                      canals Black crowned iilghL Heron Creat Blue Heron                  aracw heresies                                      Specie'I concern Permanent resident                                                                      canals b I wc rorph                                                                                                                                                                            y  canals white  mOrph                                                                                      Permanent resident bV.S. OePartment Of the      interiOr. FiSh and Wildlife SerViCC. 1911. Endangered and threatened Wildlife. federal ReglStee'2()36):3642O-36431, JVly 14. 7972 state of Florida,      Came and Fresh Water fish Commission. July 1971. Wildlife code of the State of Florida. Chapter 16 E-3. Tallahassee, Florida.
dflorida Committee      on Rare and Endangered Plants and Animals. 1976; Inventory of rare and endangered biota of Florida.
Probably seldom lands on South Bade site.
ihrimrted in vicinity of South Bade study area but not observed during this bird survey.
ln Bayhcad,
      'iiorenclature according to Bull and Farrand, 1911.
 
I I
I I
 
TABLE      3-3 (continued)
RARE OR ENDANGERED BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE t  n  r    r  note Observed                                                .Offshore Protected cate o Residency              in ~ ir              Black rush/      Owarf    fringe  (within Scientlfi>>    nance          Federal        State        FCREPA        status              s  ace onl  Saw ress  Salt ress      nan rove  forest    30 n  Other tittle  Blue Heron            fprerra ceerules                                    Special concerrr  Pernanent resident                                                                      canals Louisiana Heron              rlvdranesss  tricolor                              Special concern    Perrsanent resident                                                                y    canals Yellow.crowned Might Heron RycefCorax vrolacea                                    Special concern    Pernanent resident White  ibis                  Cudccf sus claus                                    Special concern    Perrunent resident                                                      y        r'anals Black  Stirrer                Rynchcps  nl per                                  Special concern    Winter resident Caspian fern                  Sterne casple                                      Special concern  . Minter resident Royal Tern                    Sterne rMxlsus                                      Special concern    Pervranent resident Prairje Warbler              oendrclcs discolor                                  Special concern    Persranent resident Hairy Woodpecker              Plcoldes vlllosus                                  Special concern    Pernanent resident Merlin                        talco coluehsrlus                                  Status tardetervained    Minter resident Clapper  Ra II                Relies lunolroseris                                Status tardeto rrsined    Pervranent resident Stoddard'S Warbler            pendrofce dcnlnlce                                  Status
                                ~ rcddsfdl                                      tardeterrelned    Minter resident W.S. Oepartnent b State of the Interior. Fish and Wildlife Service. 1977. Endangered and threatened wildlife. Federal Register 42(136):36420-36431. Ju'ly 14 ~ 1977.
of florida. Cane and fresh Mater Fish Cosrsisslon, July 1977. Wildlife code of the State of Florida, Chapter 16 E-3. Tallahassee, Florida.
Florida  Cocllttee on Rare and fndangered Plants and Aninals. 1976. Inventory of rare and endangered biota of Florida.
d Probably soldan lands on South Dade site.
f Reported  in vicinity of South Olde study area but not observed during this bird survey.
In Bayhead.
Honenclature according to Bull and farrand, 1977.
 
g i
~
I
 
study. Red-winged blackbirds and        prairie warblers were the most fre-quently observed      birds in terrestrial areas. Among the aquatic birds the most  common    birds along the coast were, in decreasing order, the little blue    heron, white      ibis, great egret,  and snowy  egret. In-land from the    tidal    mangroves,  the number of species was reduced and the snowy egret was the most          common  aquatic bird. The  higher diversity and  density of birds along the coast reflect the abundance of prey organisms.
Of  particular interest to this study are the rookeries of the Arsenicker Keys and Mangrove-Key. An estimate of the numbers of nesting birds    was made    from counts at the    dawn  outflights from the rookery. Conservative estimates        of the  numbers  of birds nesting in these rookies were:
                    ~Secies                    Estimated Population Cattle Egret                                2500 White Ibis                                  1000 Great Blue Heron Little Blue Heron Great Egret                                  500 total Snowy    Egret Loui s i an a He ron Double-crested Cormorant                      200 In addi tion to the      above species,    six anhingas in breeding      plumage were flushed from West Arsenicker Key, and reddish            egrets, green herons, turkey vultures, and cormorants were noted.              A bald eagle nest containing one egg        was noted during two consecutive years.
3-12
 
I I
Ii I
I I
 
Three general  pathways to feeding grounds were followed by the birds in the Arsenicker Keys rookeries (Figure 3-1 ).      The major-ity of  the birds flew northwards to Turkey Point where they either continued northward or turned inland and headed northwest.      A  smaller group  left  the rookeries and flew inland and    northward. A third, much  smaller, group flew west or southwest over the South    Dade Site'.
Small numbers  of white ibises  and a very few herons and egrets, possibly less than    10% of the rookery's breeding birds, foraged in the  vicinity of  the South  Dade  Site during this study.
3-13
 
I I
I I
 
4i BLACK POINT e~                                      f ')                                                -N-FENDER POIIVT j
HOMESTEAD
                                          ~
AIR FORCE o'                        ~" BASE      .~."                            8/ SCA VIVE L                                          f' L
I 8~V I HOMESTEAD                                                e FLORIDA CITY tI9 I                                                      L                    TURKEY f                          POIjVT r--~  I C)
                    ~o 6'EST O                                                                        ARSENICKER KE I                yl    MANGROVE          ARSEIVICKER
                                                        )
TURKEY~~            KEY@              0 KEY POINT                    MANGROVE COOLING                      POINT    LONG I
                                                              ~CANALS                              ARSEIVICKER KEY I                                                                            D EAST ARSEIVICKER KEY r'o I
I  g F.P. 8 L.                                                  CARD SOUND
( PROPERTY LIMITS              Study                  r
                      \                                      r----                o>>~~co""
LEGEND I    ~
J r    ~ +POINTops CARD SCALE IN MILES I        0        I      2 W  HI T E    IB IS                                                      O    I      2 SCALE IN KILOMETERS I)III  CATTLE EGRET gggg    OTHER CICONIIFORME S Figure 3-1.          Outf1ight patterns from Hest Arsenicker        Key    rookeries,        May 1977.
3-14
 
I I
I
: 3. 3      Marana1 s The small mammal      population at the South      Dade    Site  was quantitatively      sampled by  live trapping at      sampling grids located in different vegetation zones.          Sampling was conducted every two months  for six consecutive      days over the course      of  a  year. Larger or scarce    mammals were      inventoried  by  observation or indirect evi-dence such as      tracks or droppings.
Five species of      mammals were    trapped during the study and five other species        were observed    (Table 3-4). The raccoon was .the most wide ranging        of the species trapped      and showed    little preference as  to habitat.
Three species      of rats  were  collected during the study.          Black rats are excellent climbers        and are known      to live  and  nest in trees and bushes.      During the study they were found in the saltwater marshes, hammocks,    and  fringe forest.      Cotton rats were found in areas with tall  grasses    and herbs. These  rats are poor climbers        and  nest in burrows or on the ground.          The  rice rat is found in        a  wide range of habitats but prefers cover.          This  rat is  a  good  climber    and swimmer and  constructs    its  nest in shrubs or grasses      above the high water level. The  rice rat    was  the most frequently collected          mammal.
Populations of cotton rats and rice rats increased with distance from the shore while black        rat populations      decreased.
3-15
 
I I
I I
I I
I I
 
55 TABLE  3-4 MAMMALS COLLECTED OR- SIGHTED IN THE SOUTH DADE SITE AND VICINITY Habitat in whi  h    ll    d ringe Scientific              No. trapped    Saw-    B  ac  Rus    Dwarf Common Name              Name            during 1-yr stu~      rass  Sal t Grass  Man rove  Forest Shore Rice  rat          Oryzomys  pal ustri s      175 Cotton rat          Sigmodon hispidus            85 Raccoon            Procyon  lotor              58 Black  rat          Rattus lattus                50 House mouse        Hus musculus                  1
~Si      tlb    d:
White-tailed deer odocoileus virginianus Marsh rabbit        Sylvi lagus palustris Bobcat              Lynx rufus a
Manatee              Trichechus manatus Dolphin            Tursi ops truncatus a Classified  as endangered by U.S. Dept. of the Interior, Fish    and Wildlife Service, 1977.
Endangered  and threatened wildlife and    plants. Federal  Register 42(135):36420-36431, July 14, 1977.
 
I I
i t
I,
 
White-tailed deer  and deer signs were observed in upland areas west of the present Turkey Point cooling canal system north        of the South Dade  Site. Marsh  rabbits prefer dense cover    and were observed mostly in the north and northwest.      Bobcats were not seen during the study but numerous sightings have been reported in the area by other observers. The bobcats  are believed to be found on the northern and western portions of the    FPL  property.
Two species of aquatic mammals were noted during the      mammal survey. Three Florida manatees,    classified  as endangered  by the U.S. Fish and  Wildlife Service,  were noted  in South Florida Water Management  District's canals in the study area.      Bottle-nosed dol-phin were noted on two occasions    in Card  Sound  off  the eastern bor-der of the property.
3-17
 
I I
 
3.4    REPTILES AND AMPHIBIANS Reptiles  and amphibians  were censused    from opportunistic sightings during regular ly scheduled terrestrial      and  aquatic bio-logical sampling programs.      Other species were captured by sweep nets during 36 days of insect sampling.        Additions to the census were also made through    call identifications    made on two  night field trips.
The  reptiles noted in end adjacent to the South Dade Site were a  diverse group that included crocodilians, anoles, turtles and snakes. The species  observed    in the study area are listed in Table 3-5, and four species    of reptiles sighted outside of the study area are given in Table 3-6.
Three species  classified  as  rare and endangered by the U.S.
Fish and  Wildlife Service  were observed    in the vicinity  of'he South Dade  Site. These species  are the American  alligator,  the American  crocodile,  and the  eastern indigo snake.
Although federally classified as threatened        in Florida, the American  alligator is increasing in numbers in Florida. The        FCREPA has  classified the alligator as a species of special concerns 3-18
 
I I
I I
I
 
TABLE    3-5 REPTILES AND AMPHIBIANS OBSERVED WITHIN THE SOUTH DADE SITE Habitat in which noted Black rush/      Dwarf  Fringe Cottuen name                            Scientific  name*                          w  rass Salt rass      man  rove Forest REPTILE Bark Anole                          anolis distichus Green Anole                          anolis carolinensis carolinensis Brown Anole                          anolis sagrei Corn Snake                          Elaphe guttata gutcata Eastern Diamondback Rattlesnake      Crotalus adamanteus Eastern Indigo Snake                Drymarchon  corais couperi Florida Water  Snake                Natrix -fascia ta pictiventris Hangrove Water Snake                Natri x fascia ta conpressicauda Everglades Racer                    Col uber constrictor pal udicola AHPHIBIAN Florida Cricket Frog                Rcris gryllus dorsalis Greenhouse  Frog                    Eleutherodactylus planirostris planirostris Pig Frog                            Rana  grylio Southern Leopard Frog                Rana  utricularia Cuban  Treefrog                      Nyla septentrionalis Green Treefrog                      Nyla cinerea a
Classified  as a species of special concern by Florida Connittee on Rare and Endangered Plants and Animals. 1976.
Inventory of rare and endangered biota of Florida.
Nomenclature according to Conant, 1975.
 
I I
I I
I I
 
TABLE  3-6 REPTILES SIGHTED OUTSIDE OF SOUTH DADE    SITE L-31-E Sea-Dade  Borrow Interceptor Common name              Scientific  name*        Canal    Canal    Ditch American Al 1 i gator    ajli gator missi ssi ppi ensi s AmeriCan CrOCOdile      Crocoayius acutus Water  turtles          Chrysemys Spp.
Florida Softshell        Tri onyx ferox
> Classified    as threatened in Florida by the U.S. Department of the Interior,  Fish and Wildlife Service. 1977. Endangered and threatened wildlife and plants. Federal Register 42(135):36420-36431,  July 14, 1977.
Classified as endangered      by U.S. Department    of the Interior, op. ci t.
Nomenclature according to Conant, 1975.
3-20
 
I I
I I
I
 
Alligators prefer freshwater wetlands,            so much    of the study area is marginal for this species          due  to saline conditions.      however, small numbers of      alligators    may  occur almost anywhere on the      FPL property.      The most    suitable habitat in the study area for          alli-gators is the    saw grass    zone and the adjacent canals.        The  total number  of alligators      on  the  FPL  property appears small      and  the study area contains limited          alligator habitat.
The American    crocodile is classified        as endangered    on both the  FCREPA  and  federal    lists,  and  is considered endangered through-out  its total    range. The FPL  property is within the historical and  present range of the American crocodile.              They have  occasionally been see along the mainland          shoreline of southern Biscayne Bay, Card and Barnes Sounds,        in the borrow canal of      Levee 31-E, and    in the  Sea  Dade Canal    on and  adjacent to  FPL  property. Crocodiles appear to be attracted to man-made canals and borrow                pits  because they prefer deep, quiet-water sites.
A minimum    of  3  adult-sized crocodiles      (2  m or larger) were at least seasonal      residents along the north-south leg of the Interceptor Ditch during        1975 and 1976. A  dead  juvenile (25  cm) was found  during September 1976 in the adjacent western-most cooling canal.
3-21
 
I I
I I
I I
I I
 
The  eastern indigo snake, which occurs throughout peninsular Florida,  has been reported from the  saw grass zone of the FPL  prop-erty. This snake is generally an inland species that does not utilize  brackish water habitats. Therefore, most of the South Dade  study area is marginal habitat    for this snake.
3-22
 
I I
I I
I I
 
gualitative fish surveys      were conducted bimonthly  to determine the kinds of fishes present at the South Dade Area and the habitats with which each species is associated.
The composition    of fish populations is influenced    by many factors such  as  water depth,    salinity, temperature,  and bottom cover.
Restrictive chemical factors include low      oxygen  levels in the plugged canals and high    salinity levels    on hypersaline  flats. Under these conditions, entire populations at times are restricted to        a  single species. Nevertheless,  the fish of the study area wetlands      may occur in sufficient numbers to    be  the most important food resource in    an otherwise impoverished aquatic environment.
Twenty-four species of fish were collected at the South Dade Area    and  four additional species    were observed. Table 3-7 lists  the species noted and the habitats in which they were found.
Use  of these habitats is often seasonal.      During the dry season the inland areas are dry, with the exception of scattered ponds.          During the wet season,    however, these areas often support    relatively large populations of sma'll    fish.
The most commonly    netted fishes, and probably the most import-ant in terms of    their  place in the food web, were the mosquitofish, 3-23
 
I I
I I
I I
I
 
TABLE  3-7 FISHES COLLECTED AND OBSERVED AT THE SOUTH DADE AREA Mabitat in which noted Tidal creeks c>,~  c~ co d
o+~      ee ~+  N+  c". oc
                                                                                                                            ~C      ,c, e+      q c+                        co        +        +
Conmon name                    Scientific    name Great Barracuda                Sphyraena barracuda Pygmy Fi lefish                Bonacanchus    serifer n    Canbusia rhizophorae                                                                    found occasionally in  tidal creeks Hangrove Hosquitofish Bluestripe Grunt                Haemulon  sciurus Crested Goby                  . tophogobius cyprinoides Crevalle Jack                    Caranx hippos Ki llifish                      Fundulus Sp.
Oiamond    Killifish            adinia xenica Goldspotted Ki llifish          Floridichrhys carpio Rainwater Ki llifish            sucania parve Sheepshead  Hinnow              Cyprinodon variegaeus Hojarra                          zucinosromus spp.
Sailfin Holly                    Poecilia laripinna Hosquitofish                    Card>usia  affinis Mullet                          Bugil sp.
Redfin tteedlefish              Serongylura norara ie      t reatene        t      on          ttee on are an  n angere      ants an  noma  s,          nventory n  rare an  en angere    iota ass)      as                y    e        a Comm of Florida.
ttomenclature according to Bailey, et        al.,  1970.
 
m m m m m m m m m m m m m TABLE  3-7 (continued)
FISHES COLLECTED AND OBSERVED AT THE SOUTH DADE AREA Habitat in which noted Tidal creeks Cp Cp
                                                                                    ~e      b                                    ~Q              ~C' QC      c+  <    ck <o    o~~                4'        c~
ee~      w+ e~    oc Comnon name                  Scientific  name "                              4~      ~ c~              a~ f,                        +
Pinfish                    Cagodon rhonboidcs Pipefish                    Sygnathus Sp.
Checkered  Puffer          Sphoeroidcs testudineus Blue Runner                Caranx crysos Schoolmaster                tutjanus apodus Hardhead  Silverside      ntherinoxorus stipcs Smalltooth Sawfish          pristis pcctinata Sharks                      Elasmobranchs Gray Snapper                Lutjanus griseus Snook                      Ccntropomus undccinaiis Southern Stingray          Dasyatis aneri cane Tarpon                    Hegalops  atiantica Gulf Toadfish              Opsanus beta a  Classified as threatened by the Florida Comnittee  on Rare and Endangered  Plants and Animals, 1976.      Inventory of rare and endangered biota of Florida.
  *Nomenclature according to Bailey,  et al.,  1970.
 
I I
I
 
rainwater    killifish, hardhead  silverside    and  mojarras. These  fish are fed upon by larger carnivorous fishes and wading birds.
No  species of  fish currently listed    as threatened  or endan-gered on any federal or state    list  is  known  to occur within  50 miles of the South    Dade  study area. The mangrove  mosquitofish, which was found occasionally in      tidal  creeks in the South Dade study area, is classified as threatened        by the  Florida Committee on, Rare  and Endangered  Plants and Animals (FCREPA).        This species is restricted to red    mangrove areas    and  in Florida  it occurs commonly    in tidal creeks with good water movement.
3-26
 
I I
I I
I
~
l
: 3. 6      SELECTED INVERTEBRATES 3.6.1    Soil Macroinvertebrates guantitative soil    samples were taken    at terrestrial stations in representative habitats to determine the kinds          and abundance    of soil macroinvertebrates      in the South    Dade Area. Underwater sites  were sampled  with  a  Ponar dredge. Most macroinvertebrates were found  within 20-30    cm  of the surface. Table 3-8  lists  the species of soil macroinvertebrates        and the  habitats in which they are found.
Although  a  representative range of substrates were sampled in each area,  the number of soil macroinvertebrates        collected  was generally small.      The exception    was  in the fringe forest    where  a large number of annelid      worms were    collected at the  banks  of the creeks. The  fringe forest yielded the largest      number  of species and  individuals.
Surface and Arboreal Molluscs Surface and arboreal molluscs were inventoried at each of the stations  used  for soil macroinvertebrates.        Five species of surface and  arboreal molluscs were collected (Table 3-9).          Four  of the five species were collected from the ground in the dwarf mangrove zone and  in the fringe forest zone.        These molluscs are    primarily herbi-vores and  detritivores    and are fed upon by numerous wading        birds and raccoons.
3-27
 
I I
I I
 
TABLE 3-8 SOIL  MACRO INVERTEBRATES COLLECTED AT THE SOUTH DADE AREA Habitat in which noted Saw  Black rush/  Dwarf    Fringe Common name      Scientific      name        rass Salt rush mangrove forest Sea scud        Gammarus  fasciatus Ribbon worms    Lineus Sp.
Amphi porus i mpari spi nosus Amphi porus Sp.
Flat  worm      Mgremeci plana elegans Centipede        Geophilus umbracticus Sow bug          onisci us asselus Pill bug        Cgaethura cari nata But terfly (pupa)        Lepi doptera Fly              Geosargus Polychaete worms          Cirratulus    Sp.
Nereis pelagica Nerei s  li mnocola Nereis  SP.
Harphgsa    bella" Narphgsa    lei dpi Arenicola cristata Terebellidae 01 i gochae te worm        . Tubificidae 3-28
 
I I
I I
I
 
TABLE  3-9 SURFACE AND ARBOREAL MOLLUSCS COLLECTED AT THE SOUTH DADE AREA Ha itat sn whic  noted Saw  Black rush/      Dwarf  Fringe Common name                Scientific  name*              grass  Salt rass    man  rove forest Ladder horn shell          Ceri thedi a seal ari formi s Coffee melampus            Melampus  coffeus Common  crowned conch      Melongena corona Angulate periwinkle      -Li ttorina angulifera Florida  marsh clam        Polymesoda mari tima
*Nomenclature according to Abbott, 1974.
 
I I
I I
I
 
3.6.3    Insects and  S  iders Insects and spiders were collected for three consecutive days and  nights every two months at stations in representative            habitats.
Insects were collected during the day using specialized nets for both aerial and vegetation sweeps.          Collection techniques were standardized,so    that comparisons of relative      abundance  could  be made.
Insects were collected during the night using          a CDC  miniature light trap. During the    initial  night trapping session, three locations were selected    within  each sampling  site for the  purpose  of achieving representative samples.
The 139 species    of insects,  36 spiders,  and 8  other arthro-pods  collected are listed in Table 3-10        by the  habitats in which they were found. Seasonal    changes  in diversi ty and number of individuals were seen    in both day    and  night collections. During the dry month of April    1975, the    light traps generally yielded      fewer than  10  animals.
With the onset    of  summer  and the rainy season,    there were, increases of  up  to three orders of magnitude per trap-night.          As  is generally the case with summer insect populations, the dipterans were responsible for this    marked increase.      Hosquitos were the most numerous dipterans.
The most common mosquito        in the area  was  the salt-marsh mosquito, Aedes taenia ozhgnchus.
3-30
 
I I
~
)i
 
TABLE  3-10 INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw    ac  rus  /  Dwarf  Fringe Common name      Scientific      name        rass Salt  rass  man rove forest INSECTS Plant hopper      Acanalonia Sp.
Slant faced grasshopper    Acridinae Short horned grasshopper    Zeptysma margi nicolli s Romalea microptera Paroxga clavuli ger Sebi stocera obscura Stenacris Sp.
S tenacri s vi teri penni s uni den  ti fi ed s p.
Dame  rs        Aeshni dae Flea beetles      Al ticinae Drug store beetle          Anobi i dae Flat fungus beetle          Aradidae Bees              Zylocopa Sp.
Apis m      lli fera Owl  fly          Ascalaphidae Robber    fly    As i l i dae Gi ant  waterbug Lethocerus grise        us Roaches          Latiblattel j.a rehni (?)
Cari blatta SP.
unidentified sp.
Aglaopteryx Sp.
Braconids        Braconidae
 
I
~
l
~
I
 
TABLE        3-10 (continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw    ac  rus      warf  Fringe Common name        Scientific        name*            rass Salt  rass  man rove forest INSECTS    (continued)
Ground  beetle    Poeci lus l ucublandus Agon um  docorum f
uni denti ied sp.
Wood  borer        Elaphidion
                                  'ucronatum
(?)
Spittlebug          Prosapa bi cincta unidentified sp.
Chal cid            Chalcididae Moths              Cosmopterygidae Ni dge              Chronomidae Lace wing          Chrysopa Sp.
Leaf hopper        Cicadellidae Cixiidae Mealy bugs          Pseudococcus              sp.
Tea  scale        Forinatheae Ladybird beetle Ceratonegi      lla            maculata Narrow winged damsel fly        Ischnura ramburi unidentified sp.
Beetles            Bostrichidae Chrysomel i dae Lagriidae (?)
Scarabaeidae              (?)
unidentified sp.
Mosquito            Aedes taeni orhI jnch us Anophel es Culex unidentified sp.
3-32
 
I TABLE  3-10 (continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in  whse  note Saw    ac  rus  /    warf    Fringe Common name        Scientific    name        rass Salt  rass    mangrove  forest INSECTS  (continued)
Snout beetle.      Curculionidae Flies              Di ptera Mycetophi 1 i dae Doli chopodidae Muscidae Cecidomyidae Ceratopogonidae unidentified sp.
Long-legged flies            Dol i chopodi dae Click beetle      El ateridae Shorefly          Ephydridae Pl anthopper      Flatidae Ants              Camponotus herculeanus      I unidentified sp.
Planthoppers      Acanaloni  a Sp.
Ful gori dea No common name    Gasteruptiidae Measur  ing  worm  Geometridae Water  striders  Gerridae Whirl i gi g beetle          Dineutus Sp.
No common name    camptonocus caroli nensi s 3-33
 
I I
I
 
TABLE  3-10
('continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw              ac  rus  /  warf  Fringe Common name        Scientific      name*        rass          Salt  rass  mangrove forest INSECTS    (continued)
Crickets            Remobui s Gryllus Crit oxi pha unidentified sp.
Mining bees        Hali ctidae Pl ant beetle      pti 1odactyla angustata Bugs                Miridae (?)
unidentified sp.
Ski pper            Hesperiidae Scale insect        Coccidae unidentified sp.
Water scavenger beetle            Hydrop hi 1 i dae Yellow faced bee              Hylaeinae Ichneumons        Rhyssella Sp.
unidentified sp.
Termites            Isoptera Butterf1 i es, moths            Lepidoptera Liparidae (?)
Ge 1 echi i dae Grass  fly        Leptogastridae Common  skimmers pachgdiplax longipennis/
Libellula Sp.
sp.        v'nidentified 3-34
 
I TABLE    3-10 (continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in which note Saw        ac rush/  Dwarf    Fringe Common name      Scientific      name*          rass    Salt rass mangrove forest Gossamer-winged butterfly      Lycaenidae      ( ?)
Seed    bugs      Lggae us Man  ti ds        Thesprotra grani nis Gonatista gri sea v'hanti Stagnvmanti s carolina uni denti fied s p.
Mantid    flies        spa Leaf cutting bee            Megachi  1 i dae Fl annel moth    Megal opyge    operculari    s No common name    Megal opygi dae Blister beetle    zpicauta sp.
Cotanon    fly    Muscidae Brush-footed butter fly      Danaus  plexi ppus unidentified sp.
Dragonfly        Odonata Stink    bugs    Pentatomidae Walking    stick Ani somorpha buprestoi des unidentified sp.
Ambush bug        Phymatidae Sul fur butterfly      Pieridae Mealy bugs      pseudococcus        Sp.
3-35
 
I I
I
 
TABLE  3-10 (continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw    ac  rus    Dwarf  Fringe Common name        Scientific    name*      rass Salt  rass  man rove forest INSECTS  (continued)
Bagworm            Thri doptergx ephemeraeformi
'Assassin  bug    Reduvi idae Flesh  fly        Sarcophagidae Io moth            Autom    ris io Fungus gnat        Sciaridae Engraver beetle phthorophloeus frontalis (?)
Shield back bug Scul tel 1 eri dae Solitary  wasp    Chlorion Sp.
unidentified sp.
Flower  fly      Syrphi dae Horse, deer, fly              Chrysops Sp.
Tabanus sp.
No common name    Taehinidae (?)
Crane  flies      Ri pul i dae Pygmy grasshopper      Parati  tti x rugosus      TI Katydid          Microcentrum Sp. (?)
Orcheli um sp. (? )
Mi crocentrum rhombi foji um (?)
un i den ti fied sp.
3-36
 
I I
I I
I I
 
TABLE  3-10 (continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw    ac  rus  /  warf  Fringe Common name        Scientific    name        rass Salt  rass  mangrove forest INSECTS    (continued)
Caddi s  fly        Trichoptera Hydropti 1 i dae unidentified sp.
Cri eke ts          Crytosipha    'p.
Paper wasp          Pol istinae Polistes Sp.
unidentified sp.
SPIDERS White eyed spi der            Ti tanoeca americana spider              Clubionidae Aniphaenidae unidentified sp.
unidentified sp.
Araeneae Orb  spider        Cyclosa Sp.
Argi ope aurantia Verrucosa Sp.
Gasteracantha li el psoi des Zeucauge venusta Argiope araentata Acanthepei ra stel j.ata Argiope SP. (?)
Araneus Sp.
Mecynogea lemni sea ta Eustala Sp. (?)
Nephi la  clavi pes unidentified sp.
Hunting spider      Gnaphosidae Sheet-web spider            Linyphilidae (?)
3-37
 
I I
I
 
TABLE  3-10 (continued)
INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in which note Saw  B ac  rus  /  Dwarf    ringe Common name        Scientific    name        rass Salt  rass  mangrove forest SPIDERS  (contInoed)
Wol f spider      Pardosa sp, Zycosa sp, unidentified sp.
Spider-hunting spider            pro'sp.
Nursery web spider            Pi saurina, mi ra
                  -Dojomedes sp.
Jumping  spiders'entzia      sp.
Phi di ppus audax Peckhamia pi cata Metacgrba undata Marpi ssa pikei unidentified sp.
Four jawed spiders          Leucauge Sp.
Tetragnatha straminea Cob-web spider    Argyrodes elevatus OTHER ARTHROPODS Scud              Amphipoda Scorpions          Centruroides gracilis Centruroi des hentzi Centi pedes        Geophilomorpha Sp.
l Arenophi us S p.,
I Pill  bugs        Ligia Sp.
                  -unidentified Tick              Amblyomma    maericania 3-38
 
I Generally, the    summer season    yielded the greatest abundance and    diversity of insect    life. Numbers  of insects    and  spiders corre-lated with plant diversity        due  to the increase in ecological niches.
Values    of the  mean,  standard error and range of      diversity  were  plotted against month of collection (Figure 3-2).            The mean species      diversity in the fringe forest over the course of the year            was  consistently less than one. This low    diversity    was due,  in part, to the small      numbers of niches afforded      by an almost homogeneous      plant community.      Also, tidal inundations precluded ground forms. During August, species diversity declined in all zones except the saw grass zone which showed the highest species diversity for the year.                During October, while the    saw grass    zone showed a    slight decline, all of the other zones showed    a  clear increase in diversity. It is probable that maximum    breeding success    occurred in the saw grass zone in August.
Dispersion from the      saw  grass into the other major zones resulted in a  secondary  diversity    peak  in the  more  saline areas in October.
                                                                        'I Figure 3-2 shows that the greatest          mean diversity occurred during April in      all  but the saw grass zone.        This indicates that perhaps more niches are available in these zones during the                winter-spring dry season.      Peak  insect diversity corresponds with important bird nesting seasons.        Many  birds  depend  solely  on  insects for food or  shift to  an  exclusively insect diet during breeding season.
3-39
 
I I
I I
I I
I I
 
I I.oo
)
fl CD o.so SAW GRASS  ZONE I
i.oo C/)
)
OC LU O.SO I~
BLACK RUSH/SALT GRASS ZONE l.o 0 C/I
)
M O,SO lm              DWARF NNGROVE ZONE I
Coo C/s
)
cs:
UJ oso FRINGE FOREST ZONE Figure 3-2. Diversity of  day insect collections (mean, range and standard error),
South Dade Area.
3-40
 
I I
I I
I I
I I
I I
 
No rare or endangered insects, spiders, or other arthropods were collected or noted in the South Dade Area.
3-41
 
I I
I I
 
Zooplankton is  a  major part of the food chain linking the South Dade Area to the Card Sound ecosystem.            Zooplankton feed on  detritus, phytoplankton,      and  other zooplankton.      As  the zoo-plankton is flushed from the estuaries,          it becomes  food  for other animals such as invertebrates        and  fish. Zooplankton samples were  collected monthly using      a  bilge  pump  fitted with    a  wide-mouth funnel    to minimize avoidance.
A  list  of the zooplankton groups collected at the South Dade  study area and  their relative      abundance  in various habi-tats is given in Table 3-11.        Copepod crustaceans    were the most important component      in the zooplankton.      In general, the concentrations of copepod nauplii decreased          in the direction of  mouth and embayment    stations because salinity values were higher seaward. Acm Cia tonsa, one      of the most important copepods  in Biscayne  Bay and Card Sound,      predominanted    in near-shore areas. A. tonsa  tolerates very low salinities      and achieves maximum  production at  a  salinity    about one-half that of seawater (Barlow, 1955). Therefore,    it appears    the A. fossa in Card Sound and  Little Card  Sound  is supplemented    by copepod    production 3-42
 
I I
l I
 
in lower salinity tidal creeks. Peak copepod production usually occurred in September when wet season conditions caused low salinities.
3-43
 
I, I
I I
I
 
TABLE 3-11 ZOOPLANKTON GROUPS COLLECTED AT SOUTH DADE AREA AND THEIR RELATIVE ABUNDANCE BY HABITAT (A=abundant;  C=common;  0=occasional) i  a    ree s Plugged    Open    Saw  Black Rush/    Dwarf            Mi d-          Embay-S  ecies or Grou            canal    canal    rass  salt rass    man  rove Source  creek    Mouth  ment CRUSTACEANS Copepods Nauplius Harpacticoid copepodite Calanoid copepodite Cyclopoid copepodite Harpacticoid adult Calanoid adult Ostracods Naupli us Adult Cladocerans Adult Decapods Zoea                        0 Barnacles Nauplius ROTI FERS Adult ANNEL IDS Polychaeta  1 arvae lSLLUSKS Gastropod  veliger Pelecypod  veliger TUNICATES Larvacean
 
I I
I I
 
3.6.5  A uatic Molluscs Molluscs were sampled every two months by Ponar Dredge at sampling stations located in representative      habitats throughout the South  Dade  study area. A  list  of the mollusc species collected in the study area is presented in Table 3-12.
The 36 molluscan    species collected in Ponar Dredge samples are typical members of subtropical seagrass      or mangrove habitats.
These species  exhi bit a wide range  of salinity tolerances and are found from marine to brackish environments.      The highest diversity of molluscs  was found  at the creek mouths.
3-45
 
I I
I
 
TABLE    3-12 AQUATIC MOLLUSCS COLLECTED WITHIN THE SOUTH DADE AREA Habitat in which noted Tidal Creeks 81ack rush/  Dwarf  Fringe  Plugged  Open          Ni d-Coo+on name            Scientific  name*        Saw grass Salt grass  mangrove forest  canals  canals Source creek  Youth Embayment Adam's ark              arcopsis adamsi Variable bittium        Diastona varium Channeled barrel-bubble acteocina canali cuiata Striate bubble          Bulla striata 8road-ribbed cardita    Cardi tanera  fioridana f or i da 1        marsh  clan    polynesoda  nari tiru Horse conch              Pieuropioca yi yantea Cross-barred chione    Chione canceilata Coffee-bean snail      Helanpus coffeus Atlanta cyclinella      Cyclinella teni us Greedy dove    shell    anachis avara Gem  shell              Gems yemen Black horn shell        Bati iiaria niniau Dotted horn shell        Ceri thiun nuscarum Ribbed horn    shell    Cori thidea scaiariformi s Homenclature according to Abbott, 1974.
 
I I
I I
 
TABLE    3-12 (continued)
AQUATIC MOLLUSCS COLLECTED WITHIN THE SOUTH DADE AREA Habitat in which noted Tida  Creeks Black rush/  Dwarf  Fringe  Plugged  Open            Nid-Corrrnon name          Scientific  name*        Saw grass  Salt grass  mangrove forest  canals  canals Source creek Youth Embayrrznt File keyhole limpet    zucapinella limatula Striped false limpet  slphonaria pectinata Little white  lucine  codakia orbiculari s Harginella            Harginclla apicina Atlantic  modulus    Nodulus modulus Conrad's false mussel  rrytilopsis lcucophaeata Scorched mussel        Brachidontes exustus Tulip  mussel        ra>diolus armricanus Virgin nerite          Neri tina virginea Adele's dwarf olive    olivclla adclac Southern periwinkle    bfttorina anyulifcra Caribbean risso        Rissoina bryerca Smooth  risso          Zcbina brovniana Florida rock-shell      Thais hacmastoma  floridana Spotted slipper shell  Crepidula maculosa Nomenclature according to Abbott, 1974.
 
I I
I I
 
TABLE    3-12 (continued)
A(VATIC t'tOLLUSCS COLLECTED WITHIN THE SOUTH DADE AREA Habitat in which noted ada  Creeks Black rush/    Dwarf  Fringe  Plugged  Open-            Hid-Cordon name            Scientific    name*          Saw grass Salt grass    mangrove forest  canals  canals Source creek    Youth Embayment Conrad's transennella  rransennella conradina Da'l 1's turboni lie            l rurboni la dal li Stellate turrid        Bancelia srellara Pointed venus          anortal oca rdi a a uberiana Hottled  dog whelk    Nassarius vibex Trellis wentletrap    Epi roni um  lanel losum
*Nomenclature according to Abbott, 1974.
 
I I
I
: 3. 7     
 
==SUMMARY==
 
The South Dade Area      is unsuitable to the large wading birds    as a  rookery or nesting area.      Egrets, herons, storks, and  similar forms prefer. as  nesting areas small islands, such as  the Arsenicker    Keys and Mangrove Key,      or dense  wooded areas with    tall trees. The South Dade Area    lacks the security of      tall trees and the water      barrier'ffered    by  islands. Although    it is possible that the wading species might nest            on the  site, the    easy access    by predators  renders  it marginal. Field data from several consecutive years. confirm the absence of rookeries            on  the South Dade    Area. The area    is used, however,    as a  feeding ground and forage area    for  an estimated    10&#xc3;  of the Arsenicker    Key  rookery.
The South Dade Area provides an        excellent habitat for rice and    cotton rats, black rats,      and raccoons. All are  common  and, in some  instances,  are considered nuisance species.        Deer,    rabbit  and bobcat were occasionally observed'.                            With the excep-tion of    manatees  in adjacent South Florida'Water      Management    District canals, no rare or endangered        mammals were observed      on  the South Dade    Site.
The American    alligator  and American    crocodile, both considered rare and endangered in Florida        by the U.S. Department      of the Interior, were observed    near the South Dade Area.
3-49
 
As compared with upland, drier habitats found in south-eastern Florida, the South    Dade  Site is marginal for the snakes and  turtles  common to the region.
Fish studies provided about 30 taxa,      all relatively  common to estuarine habitats. With the exception    of the  mangrove mosqui-tofish (listed  by the  Florida Committee    on Rare and Endangered Plants and Animals),    no endangered  fishes were observed.      The tidal  creeks and fringe forest areas of the South Dade Area are considered excellent feeding and forage areas        for nearshore  fish species. The remainder  of the area  may  at times-provide  good habitats for salt-tolerant    and  fresher water small fish species; however, the  majority of the area    has  insufficient water  most  of the year to support fishes.
3-50
 
I I
I I
I
 
4.0  EXPERIMENTAL STUDIES
 
==4.1      INTRODUCTION==
 
Experimental studies were performed at the South Dade Area to determine the vegetation peak standing crops, the effects of soil characteristics        on plants, nutrient turnover in salt marshes, and the  possible influence of groundwater seepage          on mangrove  eco-sytems. These    studies were relatively complex, and required        an understanding    of both energy    and  nutrient flux within the ecosystem.
The  best approach    was  to reduce the task to easily-identified        com-ponents  within the ecosystem, from this derive          a  composite of the parameters    and produce a reasonably      cohesive picture.
The conceptual      approach to determining the productivi ty      of the ecosystem was to measure        how much  energy or material entered the system, how much remained, and how much was transported              for  use elsewhere. Vegetative material in the form of peak standing crop provides  an  estimate of productivi ty, or at least carrying capaci ty, of  a  habitat,    The more  mobile, and therefore transient,,animal components    of  a  habitat are excluded.      Standing crops information, however, does not provide any        insight  as  to the rate of vegetative production. This rate must be measured        in terms of organic carbon productivity, or      how much carbon    is "fixed" or incorporated within the ecosystem.      Organic carbon, found in      living  and dead  plant  and animal tissues,      returns to the nutrient pool following death        and decay of plant  products'-1
 
I I
I
 
How organic carbon and nutrients were transported from one habitat to another required examination of the transport          mechanisms available to export particulate    and  dissolved substances    into adjacent Card Sound. Water, both from    rainfall runoff  and  cyclical hydraulic fluctuation caused    by tides,was the principal mechanism.
Elucidation of water's role in transport required        a thorough under-standing of  tidal amplitudes which control the volumes of water washed  in and out of the habitat (see Section 4.4.2: Hydraulic Studies).
4.2      VEGETATION PEAK STANDING CROPS Estimates of vegetation peak standing crops were        made  to identify the vegetative    components  of the  ecosystem  that contribute to the overall plant biomass of the area.        After the standing crop of individual plant species which inhabit the area is        measured, some  determination as to the relative importance of each species may be made. Relative importance is    a subjective evaluation,    based upon I
site study data, of the    amount of material    each species  can make available to the ecosystem. This material, in the form of roots, leaves, wood, and other    litter products,    can then be analyzed    for nutritive value.
4.2.1    Nethods In order to describe vegetation peak standing crops on the South Dade study area,  several low-level aerial surveys were made.
4-2
 
I I
 
Vegetation zones were delineated through interpretation of several infrared photographs of the study area.          The  quantitative vegetation analysis  was performed along      a 3700-m  study transect (Figure 4-1) which extended from      a point  on the Model Land Canal      southeast to Card Sound. To  determine biomass by means of destructive sampling, off-transect. study areas      were  identified  and used  to prevent the sampling from having an      effect  on  the processes  under study along the transect.
Study parameters      included species densities and areal coverage, vegetative biomass, leaf morphology, and dwarf mangrove population structure.
4.2.2    Results S  ecies densities and areal covera        e A  point-grid analysis of the area represented          by each  of these vegetative components resulted in the values given in Table 4-1.
Although major vegetation zones have been          identified  and areal coverages  computed    in terms of hectares    and percentages,    it must be  clearly understood that vegetation zonation is a gradual blending of different plant species from one habitat into another. Mangrove species are particularly well adapted to all of the habitats and salt regimes at South Oade; consequently        they appear in  all habitats, but in various amounts.      Table 4-2 demonstrates    the various densities by habitat. Red  mangroves occur    at all station locations; however, 4-3
 
E "I
I I
I
 
M W W
                            ~(jr 6 P" I 4l arlseI.T. Stat'tl 1UCa 1Qt"IS l)dd r,embers have beer. de;eted due :o space                        t tg COIISIItBrht;lo!JS.
(                                                                  I                om I
pan~
                                                          ~~QB c +2k
  'r'
        /Y                                                                  Little Card 5ouna
 
I I
I I
I
 
TABLE  4-1 VEGETATION TYPE AND AREAL COVERAGE OF MAJOR ZONES OF THE SOUTH DADE SITE Percent Ve  etation  t  e                Hectares(Acres)    Covered Fringe forest                      142.0    (35l)    3.3 Dwarf mangrove                    1304.0    (3222)  30.7 Black rush/
salt grass                      424.4    (1049)  10.0 Saw  grass                        1630.3    (4028)  38.3 Saltwater  hammock                264.8    (654)    6.2 Freshwater  hammock                488.1    (1206)  11. 5 Total                          4252.5 '(10508)  100.0 4 5
 
) i TABLE  4-2 DENSITY OF MANGROVE SPECIES    (INDIVIDUALS/m ) ALONG THE SOUTH DADE STUDY TRANSECT Station          Red man  rove          Black  man rove  Mhite mangrove 2                  0.02                    0.06            0.30 8                  0.02                    0.01            4.03 16                  0.01                    0.01            1.08 23                  2.17                    0.14            0.38 30                  3.72 37                  3.17
*The omission of values for the density of black mangrove and white mangrove below Station 23 indicates their absence as a significant component of the vegetation.      Although black mangrove is occasionally found below Station 23,  the  frequency is too small for meaningful density measurements.
4-6
 
4 I
I I
I I
 
the number of individuals per square meter changes from 3,17 to
: 0. 02/mz.
Ve  etative  Biomass The above-ground    biomass measurements      of vegetation    showed the  distribution to    be  in both horizontal    and  vertical directions.
These measurements      were taken    at randomly selected, off-transect sites in    each  of the vegetational      zones and the  saltwater    hammock.
Biomass harvest data    in the dwarf mangrove zone are given in Figures 4-2 and 4-3.        The red mangrove was    clearly the dominant bio-mass  component    in the dwarf mangrove zone, comprising over          98% of the total above-ground biomass.          The two components    that accounted for the majority of the      biomass were wood and proproots, comprising 44% and    35.5! of the    total, respectively.      The  characteristic struc-ture of the scrub mangroves        was  reflected in the distri bution of the leaf  biomass. The leaves    were  usually contained in    a  narrow band between 0.5 and 1.0      m  above the ground surface.      Again, as shown in Figure 4-3, the red mangrove        was  the predominant contributor to both leaf  biomass and area,      providing    97% of the total leaf    biomass and 95%  of the total leaf area.
I
        'he    data obtained indicated the      leaf  biomass  for the  crown of the    red mangrove was 138 g/m        and the  leaf area  was  0.23 mz/mz.
The biomass    measurements  were then used to    calculate the total      biomass 4-7
 
I' I
I'
 
BIOMASS BY COMPONENT 1.0 CI 4/
C)
I/I VI
                                              )
4I 4I I
OC I
4l K 0.5 4I C) cC 4I 0      200      4 0      6          8 BIOMASS    (B/m~)
BIOMA'S  BY  SPECIES 1.0 C'I 4I CO OC 4I CS 4I I
4I I
Vl I
CC I
I4 VI Vl I/O I/l 4I I Vl III Vl VI 4I OC I
CI 4I CC 200      4 0      6 BIOMASS    (B/m.)
Figure 4-2. Distribution and biomass of dwarf mangrove zone by component and species.
4-8
 
I I
I.
I I
I i
1 I
I
 
LEAF BIOMASS 1.0
                              )
CCC CC O
CCC CCC
                )
CCC O                W O
I
                                        <<C C/C CD              CC.
O C<<J            W      hC CC:                    V 0    10    20            30      40      50 BIOMASS          (g/m~)
I.EAF AREA 1.0 C<<C O
CL CD CCJ CXi C/C        I R    NC/C O W C/C C<<j                ~ C: C/C Q
OCC:    CD CX CD O
LU CC:
0.05            0.10        0,15    0.20 AREA        (m:/    m  )
Figure 4-3. Leaf biomass and leaf area in the dwarf mangrove zones..
4-9
 
I I
I I
I
 
of dwarf  mangroves  in  each  of the vegetative    zones  containing dwarf mangroves. Black mangrove biomass was estimated by determining            a typical structure for      a  scrub black mangrove and multiplying by the number  of individuals in    each zone as determined by      area-density relationships. The biomass    of white  mangroves was    calculated in the same  way as  that for the red      mangroves.
Figures 4-4 through 4-7 summarize the results of biomass deter-minations representative      of the black rush/salt grass      zone  of the South Dade study area.        The red mangroves,    also present in the black rush/salt grass zone,      were the    largest contributor to the total      biomass in the black rush/salt grass        zone  studies. This  was  primarily  due  to the amount  of  woody  structures.      A transition in the    gross structure of both black rush/salt grass sites        was  observed in the    distribution of  biomass, especially the photosynthetic        leaf  biomass. A  comparison of Figures 4-3    and 4-5    indicates that most of the photosynthetic structure in the dwarf      mangrove zone was found above 0.5 m, while the major portion of the photosynthetic structure of the black rush/salt grass was below 0.5    m. An  increase in both the detritus and white mangrove components    was seen    in the black rush/sal    t  grass zone as compared  with the scrub mangrove zone.        Assuming  that these sites were representative    of the standing crop of black rush        on  the South Dade  property, the total biomass      can then be  estimated. The  results of these estimates are given in Table 4-3.
4-10
 
I I
I
 
BIOMASS BY COMPONENT 1.0 Cl LO LLJ ILJ Vl
      ~ 0.5 LJL LLJ                                                      LO Cl  CI LLJ LJI LLJ CO '/I LLJ
                      )
IJI LLJ a
LLJ I
OO I
LLJ CI 0
0                200          400              600 BIOMASS    (g/m~)
BIOMASS BY SPECIES 1.0 I
                )
LJI LLJ Cl OO LO 5
OO Ci  hC LLJ a
OO I
      = 0.5
                          )
LJL I        VI
                                                        )
IJL iil Cl OO
                                                        ~ O I
OO I
LLJ    LJJ Cl    I Cl OO            hC 0
0              200          400                600 BIOMASS    (g/m.)
Figure 4-4.        Distribution of                biomass in black rush/salt grass                zone by component and      species.
4-11
 
I I
I I
I
 
LEAF BlOHASS ICJ C)
CIC I/I  C9 CC:
CC.'i                                        C)
I 0
I/C g
                                                                ~ v I/I I
ct I/O 5
CC hC CCI 0
0                      100          200 BIOMASS    (g/m~)
LEAF AREA 1.0 ICC la>
I CC!
CC; III CC I/O 5
hC CCI I/I C/I 0                  0.5        1.0          1.5 AREA    (m*/m-)
Figure 4-5.      Leaf biomass and leaf area in black rush/salt grass zone.
4-12
 
L l
I I
I
 
BIOMASS BY COMPONENT 1.0 W
C/C O 3
CC; CD I
C/C C/C O
R    D  Vl                8 D. Ch D    CCC CL  C/C
        ~~  05 CCJ O
I
                            )
CD CCC O
O O IW CCJ O
C/C 0            200          400          600 BIOMASS    {g/m2)
BIOMASS BY SPECIES 1.0              C/C C/l lU        I O
OC        C/C CD s 5
CY O
LCC        5C E 0.5
                          )O C//
CD CX I
C/C 8
CC.
Cij O
CD 0
0            200          400        600 BIOMASS    {g/m )
Figure 4-6.        Distribution of              biomass in black rush/salt grass              zone by component and species              {off transect).
4-13
 
~
gi
 
LEAF BiOMASS 1.0 I<<J I
                                    )
W    O CC I/l l
O Ial CC            S
                            <<C Kl l            )
M O
I/l          CD I/l CC le CC LJ Cl 0          100        200    300 BiOMASS        (g/m>)
LEAF AREA 1.0 W
                        )O 4J CC CD l      ID Q                                      O I/I          I<<J I
I/I    O CC I<<l                                      g  IV I
lC I/I CD m 0.5 I/I I<<I l
O
                                <<C I/l                      CD O
CC lC O
0.5                  1.0            1.5    2.0
                                    ""EA (m /m )
Figure 4-7.      Leaf biomass and leaf area in black rush/
salt grass zone (off transect).
4-14
 
I I
 
TABLE  4-3 BIOMASS ESTIMATE OF 424.4 HECTARES (1049 ACRES)
OF BLACK RUSH ON THE SOUTH DADE AREA 2a Com  onent                        /m                    Metric tons Live black rush                80.5                      341.8 Dead  black rush              130.0                      551.7 Total                          210.5                      893.6 a
Dry weight  at 70'C.
4-15
 
t I
 
The sharp    delineation between the black rush/salt grass            zone and the saw grass      zone was  indicated by the biomass harvest in this habitat. Figures 4-8      and 4-9 show    that, except for    a  slight  amount  of salt grass, the saw grass zone was solely composed of above-ground detritus and saw grass. Table 4-4 shows the total biomass of saw grass on the south Dade area.
An  examination of Figures 4-4 to 4-9 reveals several trends.
Perhaps    thy most obvious is    an  increase in the relative abundance of detritus    as a component    of the total biomass      as one approaches    the saw grass zone.      In the scrub mangrove zone, detritus represented            only 1.6/
of the total organic structure (above ground), but in the                saw grass    zone, it increased    to 51.6&#xc3; of the organic structure.            Another trend is seen in the relative increases in both leaf          biomass and    leaf area from the lower to the upper zones of the transect.              The scrub mangrove zone averaged    70.35  g  dry weight of leaves per        mz of  ground surface,    repre-senting 8.9K of the living biomass          . This is contrasted with the black rush/salt grass      and saw grass    zones, where the photosynthetic structures comprised 52.1/ and 48.4X of the          living  biomass, respectively.        Leaf area also increased      in the upper regions of the study property.            The leaf  area  of the scrub    mangrove zone averaged      0.24  m  of leaf surface per  m  of ground surface.      This increased rapidly to 1.65 mz/mz in the black rush/salt grass zone, and 2.03          mz/m". in the  saw  grass zone. A summary    of the biomass distribution calculations for the major vege-tative    components    of the  South Dade study area      is given in Table 4-5.
4-16
 
I I
 
BIOMASS BY COMPONENT 1.0 C/I CCI Cll I
0 5 C/I I/I I
0 CC I                    i@I CCI C) 2 0      400    600    8            1000 BIOMASS  (g/rn~)
BIOMASS BY SPECIES 1.0 I
CII 4J O
I/I I/I ~
(D  ~
I g 0.5 W
I CC I
CCI C) 500            1000 BIOMASS  (g/m>)
Figure 4-8. Distribution of biomass in saw grass by component and species.
 
I I
I I
 
LEAF BIOMASS 1'.0 Vl 5
m 4J O
Vl CA ~
                                                        ~
cY m Cg 0
0      100    2 0      300        400      500 BIOMASS (g/m )
LEAF AREA 1.0 L
Cl 4k Vl a
EA ~
05 W
0                      2.0 1.0 AREA  (m>/m2)
Figure 4-9. Leaf biomass and      leaf    area in the saw grass zone.
4-18
 
I TABLE  4-4 TOTAL BIOMASS OF SAW GRASS ON THE SOUTH DADE AREA (DRY WEIGHT AT 70'C)
Com onent                                  g/m~
Live sawgrass                              217.2 Dead sawgrass                              317.8 Total                                      635.0 a
Dry weight at 70'C.
4-19
 
j i l
I
 
TABLE 4-:5 DISTRIBUTION OF BIOMASS (9/m ) IN THE VARIOUS VEGETATIVE ZONES ON THE SOUTH DADE AREA EXCLUSIVE OF HAMMOCK BIOMASS Stations Ve  etative  zone    1-5    6-12      13-20      21-27    28-34  35-37 RED MANGROVES Fruit                                          0.6      1.0    0.9 Leaves            0.6    0.6        0.3      68.0  116.6    99.3 Branches          1.6    1.6        0. 8    168.0    288.0    245.4 Wood              2.1    2.1        1.1    227.7    390.3    332.6 Prop  roots        3.6    3.6        1.5    319.7    548.1    467.0 Subtotal          7.9    7.9        3.7    784.0  1344.0  1145.2 BLACK MANGROVES Leaves            3.8    0.6        1.3        8.9 Branches          7.5    1 ~ 2      2.5      17.4 Wood              1.8    0.3        0.6        4.3 Subtotal          13. 1  2.1        4.4      30.6 WHITE MANGROVES Leaves            2. 5  34.1        9.2        3.2 Branches          4.3  58.2      15.6        5.5 Wood              13.1  176.1      47.2      16.6 Subtotal          19.9  268.4      72.0      25.3 BI ACK RUSH 1.0      1.0 Live Dead 72.0 112.0 89.0 148.0        0.0    '.0 Subtotal                184.0      237.0        1.0      1.0 SAW GRASS Live            217. 0 Dead            317.8 Subtotal        534.8 SALT GRASS          17.9  19.0      12.0        2.0 Total            591.0  481.0      329.1    842.9  1344.0  1145.2 4-20
 
I I
I I
I
 
4.3      EFFECTS OF SOIL CHARACTERISTICS ON PLANT ASSOCIATION GROUPS
: 4. 3.1    Introduction The  ability of soils    in the South    Dade study area to retain both    litterfall and  the resultant microbial products of decomposi-tion is    a  major factor in the maintenance and ultimate success          of plant association groups.        The  habitat, however, is not    a  "closed system," where      litter accumulation    remains on  a  forest floor    and nutrients are recycled within the community.            The  tidal runoff    and freshwater sheet flow are major mechanisms by which            litter material and  soluble nutrients are transported into other plant communities and the waters      of Card Sound. Thus,  soil characteristics play      a minor role in      nutrient cycling. The  distribution  and sources    of water play    a  more significant part in determining the plant distri-bution at the South      Dade  study area.
: 4. 3. 2  South Dade Soils South Dade  soils fall into    two categories:    organic  .and  inor-ganic. The  majority of the plant communities are found      on  inorganic calcitic substrates (previously        described in Section 2.3:Soil Analy-ses  and  Characteristics). Calcitic soils are infertile    due  to the dominance    of calcium  and magnesium carbonates    and  only minimal amounts    of other requisite elements.      Calcitic-muds are products of the precipitation which occurs        when  calcium carbonate-saturated water interfaces with seawater.
4-21
 
I I
I I
 
Organic  soil  components      in the South    Dade  study area are associated with peats, which occur both in surface lenses forming the base of saltwater and freshwater hammocks, and in isolated pockets within the    calcitic    mud  substrate. Further discussion of peats  is included in Section 2.3.1:Major Soil          Types.
4.3.3    Distribution of      Hammocks The subsurface      stratigraphy beneath the      mangrove biome shows a  shallow surface burden of loose calcareous            mud and imbedded  masses of red  mangrove peat  overlaying      a  limestone rock surface.      Peat deposits were previously thought to          be  related to the distribution of the  mangrove hammocks      scattered throughout the study area,      and the height of the trees        was  believed to correlate roughly with the depth and thickness    of the deposit.
                          'I The  distribution of subsurface peat deposits            (see Figure 2-12 in Section 2.3.4)  may be      independent of the    distribution of  hammocks.
Peat deposits are sometimes          found to be discontinuous and do not arise  as a body from the      limestone bedrock upward to the surface.
The presence    of surface peat deposits does, of course, correlate with the presence of hammocks.
        'Beneath the dwarf mangrove forests, peat deposits are also present but are not .contiguous with the surface.              The calcareous  marl of the dwarf forest    zone contains a      scattered mixture of roots      and 4-22
 
Ii I
 
fiber  remnants which are  distributed uniformly throughout the        marl soil. Therefore there is      no evidence  to suggest that autochthonous (deposited at place of origin) peat is being deposited in          signifi-cant amounts in the dwarf mangrove zone.
4.3.4    Distribution of  Man  roves With the exception of    hammock  habitats,  mangrove  distribution (Section 2.2:Natural Plant Associations) at the South          Dade  study area was  not found to  be dependent  upon  specific soil types, but rather on  the  relative position of the    community  to the shoreline of    Card Sound. tlangroves are considered to be open systems,      that is, they are coupled    hydraulically to both upstream    and downstream systems.
Hater is the vehicle for the exchange        of nutrients  and chemical elements. Within the mangrove forest    itself,  water movements bring oxygen  to the root system; remove carbon dioxide, toxic wastes,          and organic debris; and continually maintain soil salt balance.            The absence  of flushing  may  result in    an anaerobic (without oxygen) or reducing environment, which can build        up toxic  wastes and  salt that may  stunt or eliminate    mangrove species.
4-23
 
I 4.4      NUTRIENT TURNOVER IN SALT MARSHES 4.4.1    Introduction This section discusses    the many studies conducted at the South Dade Area to determine how      nutrients are recycled in salt  marshes. Hydraulic studies demonstrated the importance of tides in moving nutrients out of      and    into the  mangrove and grass zones, and    nutrient determinations    were made    for all vegetation zones  at multiple soil depths.      These    factors were studied to de-termine the contribution of mangroves to adjacent estuaries.
4.4.2    K draulic Studies The primary  objective    of the hydraulic studies      was to de-scribe the    movement  of surface water along the study transect of the South Dade Area under various hydraulic and meteorolo-gical conditions.      To  achieve  this objective, the principal factors that affect water motion in the study area          were defined.
Methods r
Each  of six stations (2, 9, 16, 21, 30,        and 37)  contained an  instrument package that included      a  Stevens Type  A Model 71 water-level recorder      and a Hydrolab assembly      used  for gathering water-quality data.      In addition to these      six stations,  a bay station (see Figure 4-10)      was located about    25 meters  east of 4-24
 
I I
I
 
              'gtfre 4<<10 pproximate 1ocations  of fresh and salt water interface-, August,I
. 1974. Station numbers -and bay station indicate position of instrument packages.
ga<e
 
I I
 
Station 37, in Card Sound,      and equipped    with  a  Stevens water-level recorder. The  water-level recorders were      used  to monitor the  tidal cycle  and seasonal    changes  in surface-water levels along the transect.
A  dye study was performed      to permit the calculation of water velocity  as  it moved  inland from Card Sound.        Rhodamine  WT  dye  in plastic  bags was dropped    at Stations 30, 32, 34,      and 37 from a    heli-copter. The bags  burst  upon impact  with the water.      Photographs were taken about 30, 90 and 150 minutes        following the dye drops.
Because  the dye  was moving  along the transect, which was marked at 100-meter    intervals,  it was  a  relatively direct    procedure to deter-mine the distance the dye patch moved from the          point of origin.
Results Mean  tidal elevations vary    between months    of the  same  year because  of variations in relative positions of the          sun and moon.
In general, the mean monthly      tidal elevations    were highest during the months of September, October and November.            These months  coin-cide with the south Florida wet season; however, the observed rise in tidal elevation    was  not attributable to temporary      rainfall  and runoff'ccumulation.
4-26
 
I I
 
The  horizontal distance traveled        by the landward edge      of the water between high and low tides          was  generally about    300 meters.
During the period of September through November, however, water covered nearly the      entire transect during average or higher than average tides,  and  little horizontal    movement    of the landward    edge  of water occurred.      September  through November      was  also the time    when  freshwater from  rainfall runoff    covered the upper portion        of the transect    and formed  a  continuous sheet of water with Card Sound water.              Thus the majority of the study area is hydraulically linked with                bay waters for  about  25%  of the year.
Between the    saltwater  and  freshwater,    a  transition  zone exists  where mixing    of the  two types    of water occurs.      This transition zone was    identified    by sudden  increases    in electrical conductivity values. Seawater samples had    a  conductivity of about 54,000          pmhos/cmz, and  the fresher water from upland runoff demonstrated conductivities of  between 15,000      to 30,000  pmhos/cmz.      The  inland extent of salt-water  was  limited to Station    37  during August (See Figure 4-10).
However, as    tide levels increased in      subsequent    months, the edge of saltwater    extended as    far inland    as  Stati'on 21.
The impact    of water transport      was observed    at Stations    2 and 9,  well'nto      the saw grass zone.      During the wet season,        freshwater covers much of the transect and stands continuous with Card Sound water. As a  result of hydraulic continuity, tidal variations 4-27
 
I I
I
. I I
I I
I I
I
 
were observed  at these inland stations. Flow velocities near Stations  2 and 9 were low because  the  tidal amplitude was small and the ground slope was  very shallow (about 0.004,: ).
4-28
 
I I
I I
I I
I
 
4.4.3    Nutrient Determination in    Man  rove Soils Nutrient determinations were      made  in all vegetation zones at multiple soil depths.
Methods  for collecting soil    samples  have been described in Section 2.3.2 Soil Characteristics.        Standard methods were used as described  in APHA, 1971.
                                ~Nitro en Total Kjeldahl nitrogen  was  determined  for a  series of soil samples  from the study transect.      Results of these analyses are given in Table 4-6. Subsoil samples were generally      slightly richer in nitrogen than the overlying surface soils.        Although  some  of the soils  were typed as marls, some contained      plant fibers. Peat  soils were  arbitrarily  assumed  to be those soils containing greater than 101  organic carbon and marl soils, less than      10&#xc3; organic carbon.
The  fibrous marls  showed  relatively higher nitrogen percentages.
All of the samples with high nitrogen percentages were either in or close to a hammock, with the exception of the hammock soils at Station 30. Although low values of nitrogen were found in this hammock, the nitrogen content increased with organic matter.
4-29
 
I I
I I
I i I
 
TABLE  4-6 TOTAL KJELDAHL NITROGEN IN SOUTH DADE SOILS DURING NOYEHBER Station                De th              T  e              /TKN 0-6"              marl              0.38 6-12"              marl              0.49 0-6"              peat              2.82 6-12"              peat              2.16 12-18"            mal 1              0.41 0-6"              peat              1.94 6-12"              marl              2.20 0-6"              peat              0.50 6-12"              marl              0.40 12-18"            marl              0.46 0-6"              marl              0.56 6-12"              marl              0.40 0-6"              peat              2.29 6-12"              peat              2.33 15                  0-6"              marl              0.69 15                  6-12"              marl              2.12 16                  0-6"              marl              0.40 16                  6-12"              marl              0.58 17                  6-12"              marl              0.41 22                  0-6"              marl              0.37
  '22                  6-12"              peat              0.96 23                  6-12"              marl              0.66 24                  0-6"              marl              0.4?
24                  6-12"              peat              0.75 30                  0-6"              marl              1.10 30                  6-12"              marl              1.73 30                  0-6"              hammock            0.44 30                  6-12"              hammock            0.17 4-30
 
I I
I I
I I
 
Phos  horus Inorganic phosphorus determinations were          made on  the surface soils of the South    Dade Area  transect.      In  all  cases  the inor-ganic phosphorus concentration      was somewhat    lower in February than in  November. This difference indicated      a  cyclical pattern in the amount  of inorganic phosphorus in the soil.          Tables 4-7 and 4-8 show  that throughout the year the major forms of phosphorus              were the easily extractable and calcium-bound phosphates.              These two fractions  were predominant    in both the topsoil      and the  subsoil in the  same  order of magnitude of concentration.          The  topsoil,  however, showed a  greater amount of each form of phosphate than the subsoil.
Peat samples,    especially those from depths of over 30.5          cm, were especially poor in extractable phosphorus, but calcium phosphate                was present in "normal" concentrations.          The  analysis of extractable*
phosphorus    in the surface soils at Station        3 showed a    very high value, 'which is believed to    be  inaccurate.
Very few aluminum and iron phosphates        were found    in the area.
This  was not unexpected as no clay minerals were present and the              pH of the soi  1  solution  was such  that the formation of calcium phosphate and  extractable phosphorus is favored over that of aluminum              and  iron phosphates. The range  of total inorganic phosphorus along the transect  showed no  outstanding trends.      Calcium phosphate      seemed  to a
decrease  in concentrations toward the      Sound.
4-31
 
I I
. I l
 
TABLE    4-7 INORGANIC PHOSPHORUS  ANALYSES OF SOUTH DADE SOILS DURING THE MINTER (NOVEMBER) 01          xtracta  e      Ca-        '-P        'e-P      Total
                                                                                          '/~6" Station  De  th  t    e      -P(x10-~)      xl0  ~)    (xl0-~)    (xl0-~)  Inor -P              I 0-6"    marl            Oa          0. 380          0          0    0.00380  2. 745 6-12"  marl            0          0.245          0        n/db  0.00245  1. 770  4.515 0-6"    marl            0. 315      0.655          n/d        n/d    0.00970  7.007 6-12"  marl            0.065      0.330          n/d        n/d    0.00395  2.853 12-18" marl          .
0.010      0.360          n/d        n/d    0.00370  2.673  12.532 0-6"    marl            9.200      0.695          n/d        n/d    0.09895 71.479 6-12"  mar  1          0.405      0.345          n/d        n/d    0.00750  5.417  76.897 0-6"    marl            0.015      0.400          0      0.045    0.00460  3.344 6-12"  peat            0.015      0.265          0        n/d    0.00280  3.231 12-18" peat            0.010      0.275          0        n/d    0.00285  1. 151  7.726 0-6"  marl            0.045      0.043          0        n/d    0.00475  3. 453 6-12"  marl            0.020    . 0.285          0        n/d    0.00305  2. 217  5.670 0-6"  marl            0.180      0.490          n/d        n/d    0.00670  4. 817 6-12"  peat            0.015      0.350          n/d        n/d    0.00365  2.653    7.524 15      0-6"  marl            0.050      0.590          0        n/d    0.00640  5.197 6-12"  marl            0 '60      0.495          n/d        n/d    0.00550  4.451    9,630 0-6"  marl            0.035      0.360          0          0    0.00395  3.197 6-12"  marl            0.010      0.240          0        0.040  0.00295  2.387    5.584 17      0-6"  marl            0.045      0.330          0          0    0.00375  3.035 6-12"  marl            0.010        0.290          0          0    0.00300  2.428    5. 463 a  Indicates concentrations below detection limits.
>>ndicates interfering color or other matter which          prevented analysis.
 
I, I
I I
I
 
TABLE  4-7 (continued)
INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING THE WINTER (NOVEMBER)
Soil      X Extractable  X Ca-P      XA1-P  XFe-P  X  Total Station. De th  t  e        -P xl0 ~      xl0  ~    xl0 ~  x10    Inpr -P    P/m  .6"    P/m~
22      0-6"    marl          0.025      0.375        0      0    0 '0400  3. 523 6-12"  marl          0.020      0.330        0      n/d    0.00350  3.083      6.606 23      0-6"    marl          0.600      0.420        0      0    0.01020  8.985 6-12"  marl          0.020      0.285        0    0.035  0.00340  2.995      11.980 24      0-6"    marl          0.020      0.440        0      0    0.00460  4.052 6-12"  marl          0.015      0.285        0      n/d    0.00300  2.643      6.695 30      0-6"    marl          0.045      0.300        0        0    0.00345  2.634 6-12"  marl          0          0. 215      0  =
0    0.00215  1.642      4.276 0-6"    hammock      0.070      0.435      0.120    n/d    0.00625  3.781 6-12"  hammock      0.020      0.315      0.085    n/d    0.00420  2.541      6.322
 
I I
I I
 
TABLE 4-8 INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING SPRING (FEBRUARY)
Soil  5  Extractable X Ca-P    'AA1-P  XFe-P    Total Station  De  th  t  e    -P    x10-~  x10-~)  xl0-z    xl0-~) Inor -P    P  m~.6"    P m~
0-6"    marl        0 110
                                ~        0.515    0. 020'a  n/db  0.00645    4.659 6-12"  marl        0. 015    0.065              n/d  0.00080    0.578    5.237 0-6"    marl        0.105    0.515    0.040      n/d  0.00660    4 '98 6-12"  marl        0.025    0.030      0      n/d  0.00055    0.400    5.198 0-6"    marl        0.045    0.125      0      n/d  0.00175    1.272 6-12"  marl        0.010    0.055      0      n/d  0.00065    0 '73    1.745 0-6"    marl        0.165    0.445      0      n/d  0.00610    4.434 6-12"  peat        0.015    0.195      0      n/d  0.00210    0.848    5.282 15      0-6"    marl        0.090    0.275      0      n/d  0.00365    2.954 6-12"  marl        0.035    0.195      0      n/d  0.00230    1.861 12-18"  marl            0    0.011      0      n/d  0.00011    0.089    4. 904 16      0-6"    marl        0.035    0.125      0        0    0.00160    1.295 6-12"  marl        0.020    0.250      0      n/d  0.00270    2.185 12-18" marl        0.010    0.060      0      n/d  0.00070    0.566    4.046 17      0-6"    marl        0.020    0.105      0        0    0.00125    1.011 21      0-6"    marl        0.025    0.085      0        0    0.001]0    0.969 6-12,"  marl        0.025    0.120      0        0    0.00145    1.277 12-18" marl            0    0.030      0        0    0.00300    0.264    1. 385 22    0-6"    marl        0.040    0.125      0        0    0.00165    1.453 6-12"  marl        0.065    0.175        0      n/d  0.00405    3.568 12-18"  peat        0 ..015  0.130      0      n/d  0.00145    0.853    5.856 23      0-6"  marl        0. 035    0.195        0      0    0.00230    2.026 6-12"  mar 1      0.045    0.160        0      n/d  0.00205    1.806 12'18"  eat        0.010    0.125        0      n/d  0.00135    0.778    4. 610 aIndicates concentrations below detection limits.
bIndicates interfering color or other matter which prevented analysis.
 
I I
I I
 
TABLE  4-8 (continued)
INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING SPRING (FEBRUARY)
Soil  5  Extractable X  Ca-P    XAl-P  XFe-P  X  Total Station  De th  t  e      -P  x10      xl0      xl0    xl0-    Inor -P    P/m~.6"    P/m~
26      0-6"    marl          0      0.050          0    0    0.00050    0.440 6-12"  marl          0      0.050          0    0    0.00050    0.440  0.880 29      0-6"    marl        0.070    0.240          0    n/d    0.00310    2.367 6-12"  peat        0.030    0. 185      0.015  n/d    0.00230    l. 392  3. 759
 
I I
I I
I I
 
Total phosphorus values demonstrated          no  discernable trend along the transect. However, the percentage      of total phosphorus generally decreased  with increasing soil depth.
Most  of the soil phosphorus      was  in the form of organic phosphorus., The percentage of organic phosphorus ranged from                a low  of 18.35! at Station    8  to  a  high of 93.254 at Station 15, and the average percentage    ranged from 70 to      85%  of the total. Table 4-9  lists  the results of the total phosphorus determinations              for the South  Dade  study area  soils.
Substantially higher values of phosphorus were obtained in samples  that contained large    amounts    of organic matter, but the general phosphorus content was quite low compared with the              soils of other  mangrove areas. These low phosphorus        levels could indicate that phosphorus is    a  limiting nutrient in the        South Dade system.
Micronutrients Many  of the micronutrient elements in the soils            were quan-tified  by carbonate    fusion analysis.      Magnesium and potassium increased with increasing organic matter, while manganese,              strontium and  zinc decreased with increasing matter.            An  example  of  these fluctuations    can be seen  at Station    7  (Table 4-10).      Two samples were taken from the 15.25-30.50        cm  level. One sample    was marl (5.77&#xc3; organic carbon) and the other      was  peat (27. 13/ organic carbon).
4-36
 
II TABLE  4-9 INORGANIC, ORGANIC, TOTAL AND PERCENT OF TOTAL PHOSPHORUS VALUES OF SOUTH DADE SOILSa Soil            n-      rg-      ot-    rg- of Station            t  e      (x10-~)  (xl0 ~)  (xl0    ) Total -P 6-12"    marl        0.25    0. 21    0.46      46.27 0-6"    marl        0,97    0.60,    0.70      85.98 6-12"    marl        0.37    2.18      2.55      85.48 0-6"    marl        0.65    0.98      1.62      60.21 6-12"    marl        0.08    0.31      0.39      79.41 0-6"    marl        0.46    1.39      1.85      75.12 6-12"    peat      0.28    0.95      1.23      77.18 12-18"    pea.      0.29    0.14      0.43      33.48 0-6"    marl        0 '8    0. 20    0.68 0.37 29.88 18.35 6-12"    marl        0.31    0.07 0-6"    marl        0,67    2.58      3.25      79.37 6-12"    peat      0,37    1.95      2.31      84.23 15      0-6"    marl        0.37    1.53      1.89      80.70 6-12"    marl      0.23    0.62      0 '5      72.98 12-18"    marl      0.01    0.16      0.17      93.25 16      0-6"      marl      0.16    0.62      0.78      79.45 6-12"    marl      0.27    0.27      0.54      49.65 12-18"    marl      0.07    0.39      0.46      84.69 17      0-6"      marl      0.38    0.37      0.75      49,73 6-12"    marl      0.30    0.07      0.37      18.70 21      0-6"      marl      0.11    0.68      0.79      85.98 6-12"    marl      0.15    0.21      0.35      58.64 0-6"      marl      0.17    0.72      0.89      81.43 6-12"    marl      0.41    1.50      1.90      78.69 12-18"    peat      0.15    1.35      1.49      90.27 23      0-6"      marl      0.23    0.57      0.80      71.36 6-12"    marl      0.21    0.91      1,12      81, 66 12-18"    peat      0.14    0.73      0.86      84.32 24      0-6"      marl      0.46    0.76      1. 22    62.36 6-12"    marl        0.30    0.58      0,88      65,91 29      0-6"      marl        0.31    0.88      1,19      73.99 6-12"    peat        0.23    0 '1      1.14      79.87 30      6-12"    marl        0.22    0.22      0,44      50.91 0-6"      hammock    0.63    1.6<    2.27      72,45 6-12"    hammock    0.42    0.89      1.31    67,89 aAl1 values are  in Percent air-dried soil.
4-37
 
ll TABLE  4-10 MAGNESIUM, MANGANESE, POTASSIUM, STRONTIUM, AND ZINC ANALYSES OF THE SOUTH DADE SOILS Soil Station      De  th    t  e          Mnxl0        Srxl 0 Znxl0  ~
6-12"      marl  0.28      0.96  0.02  6.57  0. 70 0-6"      peat  0.47      0.15  0.18  l. 27 0.23 6-12"      peat  0.41      0.19  0.17  0.52  0.18 0-6"      peat  0.46      0.81 0.12  5.04 6-12"      marl  0.36      1.15 0.08  5.99  0. 76 0-6"      peat  0.74      0.65 0.19  3.96  1.17 6-12"      marl  0.41      0.95 0.06  5.62 6-12"      peat  0.94      0.24 0.27  2.46 12-18"    marl  0.46      0.84 0.08  6.43  1.19 0 6        peat  0.93      0.37 0.32  3.01  1.40 6-12"      peat  1.03      0.17 0.42  0.74  0.45 15        0-6"      marl  0.68      0.85 0.17  5.76  0 '2 6-12"      marl  0.56      0.78 0.14  5.43  0.29 12-18"    peat  0.74      0.66 0. 23  5.78  0.47 16        0 6ll      marl  0.44      0.99 0.05  5.56 6-12"      marl  0.44      0.95. 0.14  5.48  0.60 12-18"    mal 1 0.54      0.86 0.10  6.01  0.72 17        0-6"      marl  0.62      0.93 0.06  6.41  0.26 6-12"      marl  0.48      0.85 0.11  5.92  2.07 21        0-6"      mar 1 0.63      0.63 0.13  6.40  0.80 6-12"      marl  0.75      0.93 0.18  6.33  0.53 22        0-6"      marl  0.67      0.64 0.18  5.64 6-12"      peat  1.13      0.07 0.56  0.87  0.47 12-18"    peat  1.06      0.16 0.45  0.66 23        0-6"      marl  0. 71      0.71 0.18  6.98  1. 23 6-12"      marl  0.74      0.44 0.21  5.10 12-18"    marl  0.01      0.26 0.28  3.01  2.04 24        0          marl  0.62      0.71 0.06  7.75  1.19 1 2<i  peat  0.73      0.43 0.29  5.12  0.75 1.13 29        0-6"      marl    76      0.37 0.22  7.53 6-12"      peat  0.60      0.26 0  '3  4.35  0.57 0.72 30        6-12"      marl  0. 53      0.57 0.24  6.,65 0-6"    hammock 0.94      0. 34 0.34  4. 59  2.08 6-12"    hammock 0.86      0. 30 0.31  4. 96  0.25 All values are in percent dry weight of soi l.
4-38
 
I I
l I
 
Nitro  en  Fixation The  results of the nitrogen fixation estimates for the sedi-ments are shown      graphically in Figure 4-11      and  for the algal    mat  in Figure 4-12.      The  highest sediment fixation rate estimated          was  2.1xl0  sg nitrogen/g sediment/yr at Station 7,          and  the lowest  was  3.3xl0  ~g nitrogen/g sediment/yr at Station 8, showing the extremely varied nature of the nitrogen-fixing        abilities of    the area. The blue-green algal mat    showed a general    decrease  in nitrogen fixation from 6.5xl0        sg nitrogen/g mat/yr at the most landward station to 8.5x10              <g  nitrogen/g mat/yr at the most seaward station.
The  results of nitrogen fixation        measurements  on  the 'South Dade  Area compare favorably with the values found by other researchers    (Brooks  et al., 1969).      It must  be remembered    that the estimates    on  the South Dade property      reflect the  minimum  rate of nitrogen fixation to      be  expected over    a  yearly basis  because  minimum values are expected during winter months (Wilson, 1974) when the study was conducted.      The minimum  rates of nitrogen fixation are compar-able to average yearly rates from other estuarine areas,              indicating a  potentially significant nitrogen input (Fell, 1976).
One  outstanding feature of the data is that they indicate a  relationship    between  the presence or absence      of water  and  rela-tive nitrogen fixing abilities.          Stations 15-30    show a  relatively similar rate of nitrogen fixation, in contrast with the              more landward 4-39
 
I~
t            4 0
1                                                        4  I 4.
t 51 I
                                                                    't I ~
4
                                                                            ~ =4
        ~ 4    *                                                      ~  rr 10,                  4
                          ~ ~                                      4 t                  ~  I t
1 4
                                                                        't.
I I
I t I
I I
I 4  ~
4 1O',
4
                                                                                >>.-L I t
L 4
4    ~
1O-~          \
1 t          4 t
1 4
                                                                                          ~  ~
I  ~
I            4 4
1      2    3  7            15  16  17  2      23      24 STATION Figure 4-11.              Nitrogen fixation in grams of nitrogen per gram of sediment per year.
4-40
 
I
    ~                                                                                    '  I t
5 5
t                                                                                                                                      I T
I                                                  7-        ~
      ?
5    iT                                                    5
                                                                                                                                                      ~  I
* I'                                                    4 4                                                                                                                                    '5 I j-'          I I"
I ~
I 1O.~
7                                                                                                                            Tr~I rr t
t 7
5'5 I 4
I I
Y
                                                                                                                                    +
4 I                                                                                    'I 4
I
                  ~ -    ~
                                                                                                                                                  ~ I' I
                                                                                                                      ~    'I    7                H I  r. ~
5                                    I                                      Y 10                                  ~  -rry            Tr'                  I'                                                              ~  TT'.i
                                    'l.T                                            'i.
i T~c i
                  'l) 5  ~                                                  ,7..7 l
                          .                  4                                                                    '
Y                    7'5 I
I
                  !    IP                                                                    T'
                                                                                                                                                          ~
I  i                I                                                                                  T I
4 a
                                                                                            ~c  I I                I          ~ I      I    i''
i i        .'                                            4        5                C jr        i  I 4
II I 7
7  il I
                                                                                                                                    ~      I 4
I 4
I Y
                                                                                    'I hl                                                            ~      I  ~  I  ~ *I  ~
I                                                                                            I    I  ~
                                'I          ~  ~                                                                  ~    h                      ~      ~
I ~                                                                                        -  4      ~  I  ~    ~ ~      I I      ~  I  ~    'I                                    I                        I 10-e                                                          'T"                  " 'f ~
7 t                                                                          ~  4      I              '5  T, t                                                                                                I  5,
                                                            ~.                                              1 7
t                                                    5
                                                                    ~ ~
: i. I  1
                                                                                                                ~
I I!c 7
                                                                                                    ~  .T          I ~
I 5
                                                                                                                      \
5
* j I I  l    5" j                      ~  ~
I        'ai 4"
                                                                                ~
llJh
                                                                                    ~  ~
1                      3 laia        7 I
9 iI 7
                                                                                ~  ~  I 15 g
STATION Figure 4-12.            Nitrogen fixation in                            grams          of nitrogen per                              gram              of algal mat per year.
4-41
 
I I
 
stations, which    show    higher rates and more erratic patterns of nitrogen fixation. This difference          may  indicate    a  relationship between  nitrogen fixation rates      and  hydroperiod.      Hardy  et al. (1968) have shown    that immersion in water decreases nitrogen fixation in legume nodules.      Conversely, Hardy et      al.  (1971) have shown    that the drying of the nodules also decreases          nitrogen fixation      abilities.
These  studies contrast with the work of Paul et al. (1971), which showed  increasing nitrogen fixation in soils with increasing moisture.
These  studies could explain the trends in nitrogen fixation found on the South Dade      property. Stations 15-30 were entirely inundated with standing waters      and showed a marked    reduction in nitrogen fixation rates. Station  1  also  showed a low  nitrogen fixation rate, which could be  explained by the lack of water at the sample            site. Stations 2-9, with the exception of Station 8,        showed  the highest fixation rates.
Stations 2-7 and    9  were subjected  to alternate periods of wetting and exposure. The  wetting  and exposure    to atmospheric nitrogen possi-
                                                        'I bly provided optimum conditions for nitrogen fixation. Station                  8 was characterized by    a  slight depression    between hammocks      that held water and was  entirely  covered at the sampling time, so          its  low nitrogen fixation rate    was  not inconsistent.
4-42
 
I r
I I
I,
 
4.4.4    Or  anic Carbon Productivit An assessment    of  ecosystem  productivity is necessary in order to measure the response of        an ecosystem  to changes. A method  to compare the    productivity of different habitats is to measure the amount  of organic carbon incorporated or "fixed" within the ecosystem.
As  carbon  is, the  fundamental    element in  all biological materials,    a change  in the amount of carbon in the ecosystem is          an  indication of a  redistribution or    a change    in the biomass of the system.
The  productivity of    a  system  is generally divided into organic matter produced by plants        and  organic matter produced by animals.
These two components      are termed primary and secondary      productivity, respectively.      Primary productivity (plants)      may be  transferred to the secondary producers        (animals)  when the animals graze    on growing plants or ingest      litterfall materials.      Because  the secondary producers comprise but    a  minute  fraction of the organic    carbon  fixed on the study  site, the bulk of the study efforts        was  directed toward measure-ment  of primary productivity.
Productivity, which is usually        measured  in terms of  grams of carbon fixed per square meter per day, is divided into two categories:
net productivity and gross productivity.          Gross  productivity is the measure  of all    carbon material entering the system.        Net productivity measures    that  amount which has been deducted      from the gross produc-
 
. I I
I I
I
 
tivity for  respiration    and maintenance.      Net  productivity  measures carbon available    for incorporation into    stems, leaves and roots.
Productivity of trees    and    rasses Methods    - Metabolism  and carbon  fixation were    measured by  enclosing an area containing grasses and/or plants within            a clear plastic chamber.      When  the plant was too large to be mon-itored within    a  chamber,  a leafy. portion of    a  branch was enclosed in  a plastic "balloon," which      was held open by    means  of small.
air blowers. A Beckman  tlodel 215B infrared gas analyzer mea-sured the  COz  that entered    and  left these chambers.
Results - Estimates for carbon      fixation in    grams  of carbon per square meter of      leaf surface    on a  yearly basis are provided for the following habitats:          saw  grass, black rush/
salt grass,  hammock,  dwarf mangrovesM.>d fringe forest mangrove.
4 44
 
E I
I I
 
Once  the productivity of each species          in  each vegetative    zone of the  South Dade property was estimated,          the  total production of the area was evaluated.      The  fringe forest production        and  respira-tion  was assumed  to  be similar to that of the        hammock  red mangroves.
The  leaf  area  of the black rush/salt grass          zone was  calculated as 1,65 square meter    of leaf per square meter of habitat (mz/mz), or 8.27 grams of carbon per square decimeter per year (g C/dmz/yr) gross primary production by black rush/salt grass on            a  leaf area basis.
This is less than that of any of the mangrove species in either the dwarf mangrove zone or the saltwater hammocks.
Gas metabolism data were not obtained          for  the saw grass zone of the South Dade study area.        Therefore,    saw grass    production  was  estimated from standing crop values reported        i n Section 4.2, Vegetation        Peak Stand-ing Crops, and were based upon the following assumptions:
: 1. Saw  grass biomass turnover is at least 1005 every year; that is, at least    as many blades of grass are produced as die each year (Snedaker, 1976).
: 2. Respiration and plant maintenance require about              50%  of grass primary productivi ty (Snedaker, 1976).
The estimate for    saw  grass  productivity is the lowest of          any  of the plant associations    found on the South Dade study si          te. It was calculated  as  follows:
4-45
 
I I
 
Net  productivity      =  411 g organic    material/year 238 g C/m    /yr 411 g  organic material/year 238 g C/m~/yr Gross  productivity    =  822 g organic    material/year 476 g C/m~/yr Productivit of    Ph  to lankton  and  Benthic Al ae Methods  - In order to estimate the amount of carbon contributed by the  phytoplanktonic and benthic algal communities, daily water quality records  were assessed    for  changes  in  pH, dissolved oxygen,  and temperature. Given the  alkalinity    and'change    in pH  of a water mass, the change in  CO@ was calculated.      The carbon    production of the benthic algal community  was measured    during periods of standing water.
Results - Gross productivity      for the benthic algal    community was estimated to be 388.9 grams of carbon per square meter per year.
4-46
 
I I
I I
I I
I
 
4.4.5  Man  rove Contribution to Adjacent Estuar The  relative contribution of the        South Dade  Site to  Card Sound waters was measured by experimentally determining the amount of                detri-tal material    exchanged    between land and water.      As  tides flow across the  flat  plain during diurnal        ebb and  flood cycles, particles in the form of decomposed      litter are    swept along with the moving water.        As detritus is rich in nutrients, the          measurement  of organic particulate matter demonstrates        if the  tidal habitat is losing, gaining, or maintaining    its nutrients.
Methods The  detrital export      dynamics  of the South    Dade  Site were eval-uated by both    analytical    and experimental    methods. The  analytical method  utilized    litterfall  calculations    based upon actual monthly litterfall measured        in each vegetative zone.      The  experimental method involved direct monitoring of the detrital load during several tidal cycles over    a  representative area of the mangrove ecotone.            The  results of the experimental method, which          were not performed      for every  month of the year, were then        used  to verify the results of the analytical method.
positionnThe determination of        litterfall  involves three parameters:    the actual  litter fall,    the decomposition rate, and the actual amount of litter  remaining on the surface.          Given the  litterfall and the decom-rate,    a  steady-state    level of  litter may be calculated by 4-47
 
I I
I I
 
where:      X ss
                          =  the steady state amount, of        litter L    =  actual  1 i tter fall rate K    =  the decomposition constant If the  steady-state    level of    litter buildup      is less than that calcu-lated, then the difference        must be    that exported  by the  tidal regime.
Conversely,    if the  actual  litter amount      is greater than that calcu-lated, then the difference is that            amount  of  litter  imported. Values for  these parameters      have been    experimentally determined for each of the vegetative zones during          this study.
Detrital export      was  determined experimentally by analyzing water samples,    taken hourly over periods of co-equal            tides. These periods of co-equal tides were determined from the U.S. Coast Guard Tide Tables    for the  Card Sound area        in the vicinity of    Pumpkin Key during the years 1973 and 1974.              The periods monitored    during this study were November 17-18, 1973 and January 25-26, 1974; and February 28-29 and October 29-30, 1976.
A  sampling    site for the      November and January    periods  was selected approximately 0.5          km  northeast of transect Station      37 which Co-equal tides are those having            either the maximum or minimum levels at the  same  height in relation to a stationary datum. This insures the exchange of approximately equal amounts of water during the ebb and flood cycles of the study period.
4-48
 
I I
I I
I
 
was  characterized by being          a  slightly    depressed    area approximately 64  m  wide. The sampling        station    was  located approximately      15  m  from the southwest "bank" of the sampling area.                    All water  samples were withdrawn at      a  depth one-third the distance from the surface                of the water to the bottom; For the 1976 sampling periods, a              tidal creek located within the fringe mangrove at Station            37 was    designated    as  the sampling    site.
Water samples were pumped through                a  l-l/2" i.d. flexible    rubber hose with  a  hand-operated        diaphragm pump,        Care was taken so    that bottom materials were not disturbed during the sampling.                      The samples    were pumped,  into  a  plastic container through          a  ser ies  of soil-testing sieves having      mesh  sizes of    2000pm    (&#xb9;10),  600@m  (&#xb9;30),  250pm  (&#xb9;60),
125pm    (&#xb9;120),    and  62@m    (&#xb9;230).
Based on    information gained from the            1976 and 1974 sample periods, only the        250um and 62um      sieves Were used to describe the particulate distribution since the                amounts  of particulate matter
>62pm was found      to  be  rather small      compared  to suspended    particles
<62pm.
The  sieves were separated          and the    detrital material    contained on each one was washed          with water from the plastic container into small  plastic bags, into          which  a  solution of    HgClz was added.
4-49
 
I I
I I
I I
 
A  sample  of the water in the plastic container          was  then placed in    a glass  jar  and  also fixed with HgClz.
The samples  of detritus from      each sieve were    filtered with low suction through Matman 842      filter paper.      The samples    of water from the  plastic container    were  filtered    through 0.45am    Mi llepore filter paper. Samples  of the  filtrate    were then placed    in small glass vials  for dissolved organic analysis.          That quantity    of organic material in the 0.45pm size class is refer red to          as  "dissolved or-ganic matter."
The  filter papers  were placed    in  a  drying oven at 70'C until a  constant weight  was  obtained. The increased      weight of the pre-weighed and dried    filter paper    was  taken as the weight of        detrital material. Small amounts  (2 mg)  of the dried detrital material in each  size class were analyzed for carbon, ni trogen and hydrogen con-tent  by a Perkin-Elmer Model 240 Elemental Analyser.            ,The 'dissolved organic and total carbon content of the Millepore effluent              was determined by  a Beckman  Model 915    Total Carbon Analyser.
The  current velocity    and  water height were monitored during each  of the sampling periods.      The  current velocity      was measured    by a  Teledyne-Gurley  Pygmy  Current Heter, while the water height            was measured  in centimeters from the bottom        by a conventional meter      stick.
 
l I
 
The amount  of water passing the sampling station        was  calculated using the geometry of the    tidal aperture, the      depth  of the water and the  current velocity. This quantity, with the measured amount of detritus in the water,    was used    to determine the total quantity of detritus imported or exported over the sampling period.
A  watershed area was delineated by examining the water flow characteristics of the area    as  reflected    by the  vegetational orien-tations. This watershed area  was used    to calculate the detritus contribution of the upland areas      on a mz    basis .
Res  ul ts Visual inspection of an enlargement of the aeri'al photograph of the  South Dade Area revealed,    on the  basis of the vegetative orientation, that the predominant tidal water drainage            was a  simple linear process, described in Section 4.4.2, Hydraulic Studies.
The  majority of the detrital export      was  in the form of small particulate matter    between 0.45 and 62.04m      in size. These  particles were the major source    of detrital export that entered the contiguous estuarine system of Card Sound.
The  quantities of detrital material varied with the tides.
Table 4-11 gi ves the means and ranges of sizes of particulate organic matter obtained during late        fall. Also, the dissolved 4-51
 
I I
I I
I
 
TABLE 4-11 MEAN CONCENTRATIONS  (mg/1) OF PARTICULATE DETRITAL MATERIAL IN THE TIDAL WATERS Particulate size ran  e 0-Tidal sta  e        2000pm  600qm      250pm  125wm    62pm  0.45pm Incoming  tide Mean                0.077    0.049      0.112  0.058    0.082  46.881 Range              0. 009  0. 026      0.023  0.014    0.014    3.600
                    -0. 163 -0.085      -0.458 -0.116  -0.134 -106.829 Outgoing tide Mean                0.059    0.055      0.058  0.050    0.151  65.431 Range              0 011    0 005      0 015  0 013    0 038  11  555
                    -0.225  -0. 182      -0.224 -0. 107 -0. 728 -217. 111 4-52
 
I I
I
 
organic portion of the detritus constituted        a  higher percentage of the total  detrital transport    on the  outgoing tide than on the in-coming  tide. The reverse  is true of the particulate matter.          These data show that the    detrital export is mostly in      the form of small particulate matter.
The  dissolved organic matter      was analyzed in terms      of carbon which was separated    into three categories:      total carbon, inorganic, and  organic carbon. The  results of these determinations are given in Table 4-12. The  dissolved carbon values    show  that the outgoing waters were richer in organic carbon and poorer in inor'ganic carbon than the incoming waters.
The data  obtained for the January sampling period showed            a pattern similar to that for November, but 'lesser absolute amounts of dissolved organic matter      were present  in the water co'jumn.
The amounts    of transported detrital organic material per meter of  tidal aperture (Table 4-13)      demonstrated    a  varying influx of detrital materials from coastal vegetation into            Card Sound waters.
Upon  comparison with November and January estimates,          the actual quantities of import    and  export for February were low.        Li tterfall rates usually decline in January and February,          and  litter  is perhaps not as available    for export in this    month as    it might  be  in  December 4 ~r3
 
I I
I I
I I
I
 
TABLE 4-12 AMOUNTS OF TOTAL, INORGANIC, AND ORGANIC DISSOLVED CARBON (mg/1) IN THE TIDAL WATERS DURING NOVEMBER Tidal sta  e        Total  C            Inor anic C      Or anic C Incoming  tide          29. 4                15. 7          13. 7 Outgoing tide          27. 4                12. 8          14. 6 4-54
 
I I
I I
I I
I I
I
 
TABLE 4-13 MEASURED TRANSPORT OF DETRITAL ORGANIC MATTER (KG DRY WEIGHT OF ORGANIC MATTER PER METER OF TIDAL APERTURE)
DURING JANUARY, FEBRUARY, OCTOBER AND NOVEMBER 1976 Januar            Februar          October        November Mean Import per Hour              8.31              3.54            2.48          10.43 Mean Import per Tide              49.85              21.24          14.87          62.58 Mean Import per Day              99.70              42.48          29.75          125.16 Mean Export per Hour              8.89              1.74            2.86          11.26 Mean Export per Tide              53.89              10.44          17.16          67.56 Mean Export per Day              107.78              20.88          34.32          135.12 Total Net Export per  Day          8. 08            -21. 60          4.57            9.96
 
I I
I I
I I
I I
I
 
and January. In February more  detrital organic'matter  entered the habitat from the water    column than was exported, probably due to reduced  litterfall  in January  and February.
To  relate the potential nutrient contribution of the detrital organic matter from the various habitats of the South      Dade  study area, the elemental composition of the      litterfall was measured.
Litterfall was collected      from dwarf mangrove, saltwater haranock, fringe forest, black rush/salt grass,      and saw grass habitats. These were allowed to decompose      for 70 days, and were analyzed  for selected elements  (Table 4-14  ).
4-56
 
I I
I I
 
TABLE 4-14 ELEMENTAL COMPOSITION OF DETRITUS AFTER 70 DAYS OF DECOR'OSITION ercen    ry welg                          pm ry weig Zone                                                                    Sr              Zn Dwarf mangrove            41. 6  0.46      0.014      0.463  0.768      163      55    22 Saltwater  hammock        39. 2  0.47      0.013      0.675  0.825                64    16 Fringe Forest            33. 7  0.94      0.038      0. 310  0. 100      232      60    18 Black rush/
salt grass                54      1.2      0.022      0.285  0.079        31      53    39 Saw grass                52      0.9        0.016      0.230  0.070        25      70    16
 
I l
li I
 
4.5    EFFECTS OF GROUNDWATER SEEPAGE ON MANGROVES The  effects of increased groundwater          seepage    on mangrove communities can be inferred from the data produced from the South Dade  studies. Different  mangrove species      respond in various ways when exposed    to varying saline regimes.        Likewise, exposure to in-creasingly fresh water      was shown  to have  a  profound    effect  on the distribution of    mangrove species. This effect appears to be unre-lated to either freshwater or saltwater tolerance              by mangroves.
4.5.1    Distribution of Vegetation Frequency  of occurrence (Section 2.2) data indicate that highly saline environments support significantly fewer species than brackish or freshwater environments.          The  fringe forest, for example, is almost exclusively      composed  of red mangrove, but        19 different species were found in the saw grass habitat.              There  is a strong inverse relationship between the        salinity of available water        and the number  of plant species existing in the habitat. Mangroves have no known  metabolic need for high concentrations of salt. Their presence in high saline    zones  reflects the inability of other plant species to cope  with the physiological stresses        imposed by    salt-induced osmotic pressures. Plants which    live successfully in saline environments either physically reject salts which become i ncorporated in plant tissues, or they possess      mechanisms  which allow freshwater but deny saltwater access through the root cell        membranes.        Plants which are not adapted to saltwater habitats do not survive, and the ground and 4-58
 
g
~
I I
l I
 
air  space  become  available to those plant species that      can tolerate the habitat. As  the habitat becomes more severe, the contenders      for that habitat    become  less numerous. Not always  is habitat tolerance by  plants expressed    in absolute terms such    as "presence"  or "absence."
Gradations of tolerance      for a  habitat may be  manifested within  a single species.      As physical strength and stamina vary tremendously within the  human  population,  so hardy individuals of the plant    community will extend into    environments that  test the  maximum  capability to survive. Obviously, those individuals    living  on  the fringe of environmental acceptability      will be  few in number when compared with the whole population.
By applying the above concepts to the question of seepage        in mangroves,  one  could reasonably expect the following: increased        salt-water seepage at seawater concentrations        (about 35%,  ) would tend to favor growth of mangrove species at the expense of the less salt-tolerant vegetation.      Conversely, seepage  from freshwater sources would favor the invasion      of freshwater species into regions dominated by mangroves.
4-59
 
l l
'l I
l
 
4.6   
 
==SUMMARY==
 
During the dry season,      the influence of normal tides generally did not extend beyond Station 28.        The  distance traveled by the land-ward edge  of water  between high and low      tides    was  generally about    300 meters.
During the wet season,      and  especially September through          Novem-ber, standing freshwater from      rainfall  was    continuous with Card Sound water and covered the inland portions of the transect.                Normal  tidal motion was imparted to the freshwater, and            tidal effects    were  there-fore observed along nearly the entire length of the transect.
When  freshwater    was  continuous with Card Sound water,          a transition  zone  existed between the freshwater          and  saltwater. During the data collection period, the position of the seaward edge of this transition  zone  fluctuated    between  Stations    21  and 30.
Rainfall  had a  significant effect      on  the volume of water flushed from the site.      The  water surface    profile    responded  quickly to  rainfall.
Once  the productivity of each species          in  each  vegetation zone was  established,    the total production of the area          was  calculated.
Table 4-15 summarizes      the yearly production of the vegetative zones.
4-60
 
These data show  that the total productivity values for the entire South Dade property were:
Gross  productivity =  1.2 x 10 '~ grams carbon/year Respiration        =  8.2 x 10>o grams carbon/year Net  productivity  =  4.1 x 10>o grams carbon/year 4-61
 
I I
I I
 
TABLE 4-15 SUMMARIES OF THE RESPIRATION AND PRODUCTION VALUES BY VEGETATIVE ZONE Vegetation        Net                                Gross Zone      roductivi t      Respiration        roductivity Fringe forest    513.2,g  C/m  /yr  4165.0  g C/mz/yr 4678.2 g C/mz/yr Dwarf mangrove    60.3 g C/m  /yr  4362.0  g C/m /yr 4422.3  g C/m  /yr Saltwater hammock  790.0  g C/m  /yr  4505.0  g C/m /yr 5295.0  g C/m  /yr Black rush      362.0  g C/mz/yr  1004.0  g C/m /yr 1366.0 g C/mz/yr Saw grass    238.0  g C/m  /yr  238.0  g C/mz/yr  476.0  g C/m  /yr Algae 5 benthos    -6.4 g C/mz/yr    395. 3 g C/m /yr  388.9 g C/mz/yr The  total area of the algal mat and benthos is assumed    to  be that of the scrub  zone plus the fringe forest.
4-62
 
Q
  ~
g I
. I
 
LITERATURE CITED Abbott, R.T. 1974. American seashells,      2nd ed. Van Nostrand Rein-hold Co., New York. 663 pp.
ABI. 1976. Ecological'monitoring of'elected parameters at the Turkey Point Plant. Annual Report. AB-43. Prepared by Applied Biology, Inc., for Florida Power 8 Light Co., Miami, Florida.
ABI. 1977a. An evaluation of habitats associated with rare and endan-.
gered 'species at four sites in Dade County, Florida. AB-,36.
Prepared by Applied Biology, Inc., for 'Florida Power 8 light Co.,
Miami,, Florida.
ABI. 1977b. An  evaluation "of agricultural potential of five sites in Dade  County, Florida. AB-45. Prepared by Applied Biology, Inc.,
for Florida Power 8 Light Co., Miami,, Florida.
APHA. 1971. Standard methods for the examination of water and waste water., 13th ed. Amer ican Public Health Association, Washington, D.C. 874 pp.
Bailey, R.M., J.E. Fitch, E.S. Herald; E.A. Lachner, C.C. Lindsey, C.R. Robins, and W.B. Scott. 1970. A list of common and
    'cientific names of fishes from the United States and Canada, 3rd ed. "Amer. Fish. Soc. Spec. Publ. No. 6.      149 pp.
r Barlow, T.P. '955. Physical and biological processes determining the distribution of zooplankton in a tidal estuary.      Biol.
Bul. Mar. Biol. Lab., Woods Hole, 109:211-'225.
Brooks, R., P.L. Br ezonik, H.D. Putnam, and M.A. Kerra. 1969. Nitrogen fixation in an estuarine environment: the Waccasassa on the Florida Gulf Coast. Limn. and Oceanog. 16:701-710.
Bull, J. and J. Farrand, Jr. 1977. The Audubon Society field quide to North American birds - eastern region. Alfred A, Knopf, New  York. 775 pp.
Conant, R. 1975. Field guide to reptiles and amphibians of Eastern and  Central North America. Houghton Mifflin,Co., Boston. 429 pp.
4-63
 
I I
I I
I I'
 
LITERATURE CITED    (continued)
Craighead, F.C., Sr. 1971. The trees of South Florida, Volume I:
the natural environments and their succession.      Univ. of Miami Press, Coral Gables, Fla. 212 pp.
Dames  8  Moore. 1976. Surface water investigation; South Dade biological study, South Dade area. Prepared for Florida Power & Light Co.,
Miami, Florida Fell,  J.W. et al., 1976. The role of microorganisms as indicators of changi ng environmental condi tions in mangrove and marsh communi-ties. A final report (Section A) on a research project in South Dade County submitted to Florida Power 5 Light Co., Miami, Florida.
Fincher, E.L. 1976. Ecological studies of a subtropical terrestrial biome: microbial ecology. Suraaary report, March 1, 1976-August 31, 1976. Project No. G32-630. Prepared for Florida Power 5 Light Co., Miami, Florida.
Hardy, R.W.F., R,C. Burns, and R.D. Holsten. 1971. Applications of the acetylene-ethylene assay for measuring of nitrogen fixation.
Symposium Nitr. Econ. of Plant Commun., 12th Pac. Sci. Conf.,
Canberra, Australia.
Hardy, R.W.F., R.D. Holsten, E.K. Jackson, and R.C. Burns. 1968.
The acetylene-ethylene assay for Nz fixation: laboratory and field evaluation. Plant Physiology 43:1185-1207.
Paul, E.A., W.A. Rice, and R.J. Myers. 1971. Nitrogen fixation in grassland and associated cultivated ecosystems.        rn. T.A. Lie and E.G. Mulder,  eds. Biological nitrogen  fixation  in natural and  agricultural habitats.
Snedaker, S.C. 1976. Ecological studies on a subtropical terrestrial biome. Final report. Prepared for Florida Power 5 Light Co.,
Miami, Florida.
Wi lson,  S.U. 1974. Metabolism and biology    of a  blue-green algal mat. M.S. Thesis, Univ. of Miami.
4-64}}

Latest revision as of 00:41, 23 February 2020

Submits Baseline Ecological Study of a Subtropical Terrestrial Biome in Southern Dade County, Floroda.
ML18227E210
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 01/31/1978
From:
Applied Biology
To:
Florida Power & Light Co, Office of Nuclear Reactor Regulation
References
Download: ML18227E210 (396)


Text

AB-97 p--p:~"YII gg~iJk R~~

moLfI 'L'ILG BASELINE ECOLOGICAL STUDY OF A SUBTROPICAL TERRESTRIAL BIOME IN.SOUTHERN DADE COUNTY, FLORIDA Docket 0 CmIrglm g

~/8S/

~>IF~cDQ F,:)!.'.m'R'OYCacumenh 0'"GCUYCGY 00 CIIET FILE jANUARY 1978 APPLIED BIOLOGY, INC.

Ecological Consultants 8

641 DeKALB INDUSTRIALWAY ATLANTA,GEORGIA 30033 TELEPHONE (404) 296-3900

I I

I I

I I

I

AB-97 BASELINE ECOLOG I CAL STUDY OF A SUBTROP I CAL TERRESTRIAL BIONE IN SOUTHERN DADE COUNTY, FLORIDA Prepared for FLORXDA PONER 6 LIGHT COMPANY MIAMI, FLORIDA By APPLIED BXOLOGY, INC.

ATLANTA, GEORGIA January l978

I I

I I

I l~

I

CONTENTS Pa<ac

1.0 INTRODUCTION

- 1-1 1.1 Background Information 1-1 1.2 Description of the Region 1-4 1.3 Study Rationale 1-5

1. 4 Summa ry 1-9 1.4.1 Natural Plant Associ ations 1-9 1.4.2 Soil Analyses and Characteristics - -- -- 1-10 1.4.3 Kinds and Abundance of Native Animals --- 1-11 1.4.4 Experimental Studies- 1-13 2.0 DEFINITION OF TYPES AND RELATIVE ABUNDANCE OF OF NATURAL PLANT ASSOCIATIONS 2-1 2.1 Introduction 2-1 2.2 Natural Plant Associations 2-4 2.2.1 Fringe Forest 2-4 2.2.2 Dwarf Mangrove 2-4 2.2.3 Black Rush/Salt Grass 2-5 2.2.4 Saw Grass 2-5 2.2.5 Hammocks- 2-9 2.3 Soil Analyses and Characteristics 2-15 2.3.1 Major Soil. Types 2-15 Miami Oolite 2-15 Naris 2-15 Peats 2-16 2.3.2 Soil Characteristics 2-18 Soil Sampling Station;Locations (for Stratigraphy, Bulk Density, Carbon and Carbonate, and Salinity Studies)---- 2-18 Soil Stratigraphy 2-18 Methods 2-18 Results- 1 2-19 Bulk Density 2-23 Methods 2-23 Results 2-23 Carbon and Carbonate Analyses --- -- -- 2-25 Methods 2-25 Results 2-25 Soil Salinity 2-26 Methods 2-28 Results 2-28 Soil Sampling Station Locations (for ATP, Soil Moisture, pH, and Organic and Inorganic Carbon Studies 2-32 ATP 2-33 Soil Moisture 2-37 S oil pH 2-38 Organic and Inorganic Carbon ---- -- -- 2-38 11

I I

I

CONTENTS (continued)

~Pa e 2.3.3 Soil Microbiology 2-43 Methods 2-43 Results 2-44 Numbers of Bacteria in Soi 1--- 2-44 Taxonomy of Soil Bacteria----- 2-46 Physiological and Metabolic Characteristics 2-46 Carbon Metabolism 2-49 Nitrogen Metabolism 2-49 2.3.4 Soil Profile 2-52 Introduction 2-52 Methods 2-53 Hammock Soil Transects --------- 2-53 Subsurface Stratigraphy --- ----- 2-53 Results 2-56 2.4 Summary 2-58 3.0 KINDS AND ABUNDANCE OF NATIVE ANIMALS 3-1 3.1 Introducti on 3-1 3.2 Birds 3-5 3.3 Mammals 3-15 3.4 Reptiles and Amphibians 3-18 3.5 Fish 3-23 3.6 Selected Invertebrates 3-27 3.6.1 Soil Macroinvertebrates 3-27 3.6.2 Surface and Arboreal Molluscs 3-27 3.6.3 Insects and Spiders 3-30 3.6.4 Zooplankton 3-42 3.6.5 Aquatic Molluscs 3-45 3.7 Su'mmary 3-49

4. 0 EXPERIMENTAL STUDIES 4-1 4.1 Introduction 4-1 4.2 Vegetation Peak Standing Crops 4-2 4.2.1 Methods 4-2 4.2.2 Results 4-3 Species Density and Areal Coverage- 4-3 Vegetative Biomass - 4-7 4.3 Effects of Soil Characteristics on Plant .

Association Groups 4-21 4.3.1 Introduction 4-21 4.3.2 South Dade Soils 4-21 4.3.3 Distribution of Hammocks 4-22 4.3.4 Distribution of Mangroves 4-23 4.4 Nutrient Turnover in Salt Marshes 4-24 4;4.1 Introduction 4-24 111

I I

I I

I I

I I

I

CONTENTS (continued)

~Pa e 4.4.2 Hydraulic Studies 4-24 Methods 4-24 Results 4-26 4.4.'3 Nutrient Determination in Mangrove Soils 4-29 Nitrogen 4-29 Phosphorus 4-31 Micronutrients 4-36 Nitrogen Fixation 4-39 4.4.4 Organic Carbon Productivity ---- ------- 4-43 Productivity of Trees and Grasses ------- 4-44 Methods 4-44 Results 4-44 Productivity of Phytoplankton and Benthic Algae 4-46 Methods 4-46 Results 4-46 4.4.5 Mangrove Contribution to Adjacent Estuary 4-47 Methods 4-47 Results 4-51 4.5 Effects of Groundwater Seepage on Mangroves ---- 4-58 4.5.1 Distribution of Vegetation 4-58 4.6 Summary 4-60 LITERATURE CITED 4-63

I I

I I

LIST OF FIGURES Figure ~Pa e Location of South Dade Site 1-3 2-1 Distribution of major vegetation zones at the South Dade study area- 2-3 2-2 South Dade Area dwarf mangrove zone vegetation inventory 2-6 2-3 South Dade Area black rush/salt grass zone vegetation inventory 2-7 South Dade Area saw grass zone vegetation inventory 2-8 2-5 South Dade Area saltwater hammock vegetation

'inventory 2-11 2-6 South Dade Area brackish water hammock vegetation inventory 2-12 2-7 Bright band of calcitic mud deposition parallel to shoreline, and study transect station locations 2-17 2-8 So i 1 strati graphy at 17 s tat i ons in di ffere n t vegetation zones 2-20 2-9 Salinity and chlorinity values along study transect 2-30 2-10 Depth profiles by stations and parameters----- 2-39 2-11 Location of study hammock in dwarf mangrove zone 2-54 2-12 Hamock study transects 2-55 3-1 Outflight patterns from West Arsenicker Key rookeries, Hay 1977 3-14 3-2 Diversity of day insect collections (mean, range and standard error), South Dade Area---- 3-40 4-1 Study transect station locations -----;------ 4-4 4-2 Distribution and biomass of dwarf mangrove zone by component and species 4-8 4-3 Leaf biomass and leaf area in the dwarf mangrove zones 4-9 4-4 Distribution of biomass in black rush/salt grass zone by component and species -- ------- 4-11

I I

I I

I I

I

LIST OF FIGURES (continued)

~Fi ures ~Pa e Leaf biomass and leaf area in black rush/

salt grass zone 4-12 4-6 Distribution of biomass in black rush/salt grass zone by component and species ------------ 4-13 4-7 Leaf biomass and leaf area in black rush/

salt grass zone (off transect) 4-14 4-8 Distribution of biomass in saw grass zone by component and species 4-17 4-9 Leaf biomass and leaf area in the saw grass zone 4-18 Approximate locations of fresh and sal t water interface, August 1974 4-25 4-11 Nitrogen fixation in grams of ni trogen per gram of sediment per year 4-40 4-12 Nitrogen fixation in grams of nitrogen per gram of algal mat per year 4-41

I I

I I

LIST OF TABLES Table ~Pa e Major contributors of South Dade Area research material 1-8 2-1 Vegetation zone acreage of South Dade Site ----- 2-14 2-2 Bulk density measurements for South Dade Area soils 2-24 2-3 Average calcium, magnesium and strontium composition of the carbonate fraction of marls and peats along the South Dade study transect--

2-4 Salinity in parts per thousand (%, ) from ground water of major vegetation areas --- --

2-5 Adenosine triphosphate (ATP) in soil samples from non-hammock areas near Stations 2, 18, and 30 2-35 2-6 Adenosine triphosphate in soil from 'drainage 2, 18, and 30 tail'f (ATP) hammocks samples near Stations 2-36 2-7 Depth analysis of organic and inorganic carbon content of soil 2-41 2-8 Derived counts of colony-forming units (CFU) of aerobic and facultative anaerobic bacteria ----- 2-45 2-9 Cluster analysis of soil isolates showing groups with > 80% coefficients of association -- 2-47 2-10 Summary of hydrolysis of various substrates by, all isolates in a soil column, Stations 2, 18 and 30 2-50 3-1 Status category definitions extracted from the inventory of rare and endangered biota in Florida 3-3 3-2 Birds found within or near the South Dade Site (not on r.are or endangered list) -------- 3-6 3-3 Rare or endangered birds found within or near the South Dade Site 3-10 3-4 Mammals collected or sighted in the South Dade Si te and vi cini ty 3-16 3-5 Reptiles and amphibians observed within the South Dade Site 3-19

I I

I

LIST OF TABLES continued Table ~Pa e 3-6 Reptiles sighted outside of South Dade Site ---- 3-20 3-7 Fishes collected and observed at the South Dade Area 3-24 3-8 Soil macroinvertebrates collected at the South Dade Area 3-28 3-9 Surface and arboreal molluscs collected at the South Dade Area 3-29 3-10 Insects collected in the South Dade Area ------- 3-31 3-11 Zooplankton groups collected at South Dade Area and their relative abundance by habitat --- 3-44 3-12 Aquatic molluscs collected within the South Dade Area 4-1 Vegetation type and areal coverage of major zones of the South Dade Site 4-5 4-2 Density of mangrove species (individuals/mz) along the South Dade study transect --- ------- 4-6 4-3 Biomass estimate of 424.4 hectares of black rush on the South Dade Area Total biomass of saw grass on the South Dade Area 4-19 4-5 Distribution of biomass (g/mz) in the various vegetative zones on the South Dade Area exclusive of hammock biomass 4-20 4-6 Total Kjeldahl nitrogen in south Dade soils during November 4-30 4-7 Inorganic phosphorus analyses of south Dade soils during the winter (November) ----------- 4-32 4-8 Inorganic phosphorus analyses of south Dade soils during spring (February) 4-34 4-9 Inorganic, organic, total and percent of total phosphorus values of south Dade soils -- ------ 4-37 4-10 Magnesium, manganese, potassium, strontium, and zinc analyses of south Dade soils ---------- 4-38

I I

I I

LIST OF TABLES continued Tabl e ~Pa e 4-11 Mean concentrations of particulate detrital material in the tidal waters 4-52 4-12 Amounts of total, inorganic, and organic dissolved carbon in the tidal waters during November 4-54 4-13 Measured transport of detrital organic matter dpring January, February, October and November 1976 4-55 4-14 Elemental composition of detritus after 70 days of decomposition - - --- - -- 57 4-15 "

Summaries of the respiration and production values by vegetative zone 4-62

I 4 I

I I

1.0 INTRODUCTION

1.1 BACKGROUND

INFORMATION This document has been prepared in response to Operating License Nos. DPR-31 and DPR-41, Section 4.0-8-1, a, b, and c of the Technical Specifications prepared by the Nuclear Regulatory Commis-sion (NRC) for Florida Power & Light Company's (FPL) Turkey Point Units 3 and 4. The specifications are as follows:

a. Definition of different types and relative abundance of natural plant association as a function of topography over a 10,000-acre tract [actually about 10,500 acresj that includes tidal, mangrove salt marsh, fresh-water wetlands, and dry land communities.

This will include analyses of the character-istics of the soils in which these plants are formed (e.g., depth of organic layer, pH, available nutrients, soil profile, salinity, etc.) as a basis for predicting conditions under which these plant associa-tions will survive.

b. Study the kinds and abundance of native animals that live in association with the different plant communities and utilize them for food and shelter and breeding.

In this phase of the study, field observa-tions and trapping techniques will be used to prepare accurate lists of the species noted, especially any rare or endangered species, and will include birds, mammals, amphibians, reptiles, fishes and selected invertebrates.

c. Experimental studies on selected parameters such as:

1-1

I I

I I

I I

I

(a) peak standing crop of different plant species as a function of seasons of the year, (b) effects of certain soil characteristics on occurrence of plant association groups, (c) nutrient turnover in the mangrove salt marsh and its relative contribution to the adjacent estuary areas, and (d) effects of possible ground water seepage on mangrove ecosystems.

NRC further stated that "... an intensive and comprehensive three-year program would be undertaken to establish baseline ecolog-ical conditions and characterize the flora and fauna of a tract of land that was ecologically similar to the Turkey Point Site." FPL complied by starting a program in 1973 which responded to all of the environmental parameters in the Appendix B Technical Specifications.

There were valid reasons for not conducting a baseline program on the Turkey Point Site itself. Construction of the canal cooling system was started prior to finalization of the proposed ecological programs, and it would have been scientifically unsound to study a 1

habitat undergoing modification. Also, from a purely practical standpoint, environmental surveys would have been difficult to conduct amid heavy drag line and earth-moving equipment.

A habitat ecologically similar to the Turkey Point Site was available for study in southern Dade County. This 4252-hectare (10,500-acre) site, designated as the South Dade Site, was already owned by FPL (Figure l-l) and shared a cordon boundary 1-2

I I

I I

I

) 'ccc$64$

Itchy

~c ~

~fPcdI c Ijvcc Ejg@$ I $

r+r,fA4~+4~IIv cjrc rcpt

'v>>

E

,v Jgt +J sy. f cvrrj v

'c<<! .) c 0

ICI n',,r

. ~'f~~ cV 0 CII

~

.~kcIv crrvgcg+I 0C +J c

c c III III O

0 0ccj CI UO C

.5'tV I,

I jc pCcct )c "r Ntc p c cv+

cjjc 4

"a~@

~ ~ ..C ~ > cc Il *, )0gg I ~ II '

vr

~ I Q I I lg d I ~ I t<< ~

V.

Qcj IP C" "CjjaP I ccj I

0' S (Q '"

8 .,rp

/ Gf O .v ~+." t~~d -C O

'c 0 j. ","

~ Ir P jf I ~

a +

~@y.<hajj" I I~i ct

~ cj C

0 I

~ I

~

v

~

Gf cj (5

co--- I <

I tr vj>'j'Cc

~4 v 'p<<*tvCr"jr C<<

v jr co .".aPI C~

U) m CO I

c ~

~ 'p

4

~~

with the Turkey Point Site. Therefore, biological data from the South Dade Site were evaluated to assess the impact of the construc-tion of the closed-loop cooling canal system on the Turkey Point Site.

1.2 DESCRIPTION

OF THE REGION Both the Turkey Point canal system and the immediately adjacent South Dade Site lie to the west and south of Card Sound and Little Card Sound (hereafter referred to as Card Sound for brevity). These two small water bodies are contiguous with the southern reaches of Biscayne Bay.

The region is subject to heavy periodic inundation by rainfall, about 127 to 152 centimeters (50 to 60 inches) per year. The volume of runoff resulting from a rainfall depends on the groundwater le'vel at the time of the rainfall. During the dry season when groundwater levels are low, the aquifer will hold additional water, so, infiltra-tion of surface water is greater and runoff is small. During the wet season when groundwater levels are near the ground surface, the aquifer has little capacity to store water, and the amount of infil-tration is small. Runoff is inhibited during the wet season, however, due to increased tidal levels in Card Sound. As a result, much of the site is covered with standing water during the wet season that is continuous with tidal waters (Dames & Hoore, 1976).

1-4

I I

I I

I

The topography of the land is low and flat, thus rainfall drainage is slow. The slight downward slope of the land, about 1.8 centimeters per 100 meters, keeps the inland regions draining into Card Sound. The construction of the Model Land Canal and the South Florida Water Management District's borrow canal and Levee 31-E have interrupted fresher water sheet flow and directed surface water flow away from the study areas.

1. 3 STUDY RATIONALE Mangroves and saltwater wetlands are believed to be vital to the well-being of nearshore and offshore fisheries. The coastal fringes of the South Dade Site and the Turkey Point Site support mangroves and saltwater wetlands, which lie further inland and blend into freshwater plant communities. What effects, if any, will the presence of the Turkey Point canals have on the mangroves and adjacent Card Sound?

Without proper baseline data, statements about environmental effects of the Turkey Point canal system would be pure conjecture.

Complex questions needed to be answered, such as how productive are these associations and what are the physical parameters that control them? What are the native animals of the area and how do they rely on the vegetation? How will the presence of canals, buildings, and roadways directly a'djacent to this coastal zone affect this productivity?

1-5

I I

I I

I I

I I

Answers to these and other related questions were not forth-coming from published scientific literature, for enormous gaps existed in many technical aspects of estuarine and terrestrial ecology. Salt marshes and coastal zones had received little scientific scrutiny un-til the past several decades, when the role played by coastal zones was recognized as being crucial to the cycling of nutrients into the marine food chains. Therefore, explanation of the complex biochemi-cal and thermodynamic (energy-flow) networks are scarcely given by present-day science and technology. Basic research was needed to identify the complex life systems which interact in the zones where the land meets the sea. Accordingly, teams of researchers from three universities and several consulting firms were engaged by FPL to con-duct field and laboratory studies which would identify and describe the biological, biochemical and microbial activity of the South Dade habitat. With these data, reasonable estimations might be made which would apply to the habitat at the Turkey Point Site.

To study in depth each of the 4252 hectares (10,500 acres) present in the South Dade Site was not practical. Therefore, as in other ecological baseline studies of this magnitude, the scientific efforts were focused upon the habitats that were most representative of those found throughout the South Dade Site. In the opinion of the scientific community, the most critical habitats from an ecological standpoint were located in the transition between the upland saw grass prairies and the marine waters of Card Sound. Accordingly, a measured 1-6

I I

I I

transect of land 100 meters (330 ft) wide was established which extended from a point just south of the Sea Dade Canal to a nearshore point in Card Sound. The transect extended sufficiently far inland to include most major habitats found within the South Dade Site boundary and representative of conditions at Turkey Point. In some instances it was necessary to locate research projects away from the transect to serve as a control or when destructive sampling of vege-tation was required. Although the study was most intense in and around the transect, it was not limited to the transect. The area encompassed by the Model Land Canal, the Sea Dade Canal, Canal and Levee 31-E, and Old Dixie Highway, known as the South Dade Area, was evaluated in detail for its flora and fauna.

Over 70 scientists and .technicians from three univerisities were engaged between 1973 and 1976. These research teams, identified in Table l-l, conducted field and laboratory studies which would iden-tify and describe the biological, biochemical, and microbial acti vity of the South Dade Area. Other subcontractors also provided environ-mental data during the study period.

Thi,s report is a summary of the three-year program that was con-ducted in coastal salt marsh and saw grass ecology of the South Dade Area. In order to facilitate readability, only a fraction of the tabu-lar, graphic, and mathematical data has been included in this report. *

  • See Literature Cited, page 4-61 and 4-62.

1-7

I I

I I

I I

TABLE l-l MAJOR CONTRIBUTORS OF SOUTH DADE AREA RESEARCH MATERIAL Major Contributors Ma 'or Stud Area Reference Samuel C. Snedaker Natural plant associations and Ecological studies on a subtrop Rosenstiel School of Marine soil characteri s ti cs. ical terrestrial biome. Final and Atmospheric Sciences report. Prepared for Florida 4600 Rickenbacker Causeway Power & Light Co., Miami, Florida.

Miami, Florida Connell, Metcalf & Eddy Kinds and abundance of native Biological data collected for PPL Engineering and Environ animals. for this report only.

mental Consultants Miami, Florida Dames & Moore Surface water hydrology. Surface water investigations, South Consul tants in Environmental Dade biological study, South Dade and Applied Earth Sciences Area. Prepared for Florida Power &

Boca Raton, Florida Light Co., Miami, Florida Jack H. Fell Vegetative litterfall, micro- The role of microorganisms as indi-Rosenstiel School of Marine biology, nutrient turnover in cators of changing environmental con-and Atmospheric Sciences salt marshes. ditions in mangrove and marsh commun-4600 Rickenbacker Causeway ities. A final report (Section A) on Miami, Florida a research project in South Dade County'submitted to Florida Power 8 Light Co., Miami, Florida Edward L. Fincher Microbiology, organic and Ecological stodies of a subtropical School of Biology inorganic carbon content of terrestrial .biome: microbial ecology.

Georgia Institute of soils. Summary report, March 1, 1976-August Technology 31, 1976. Project No. G 32-630.

Atlanta, Georgia Prepared for Florida Power & Light Co.,

Miami, Florida.

I I

I

1. 4

SUMMARY

The intent of this report is to establish baseline ecological conditions of habitats similar to Turkey Point. The parameters studied in-depth were natural plant associations, soil analysis and characteristics and kinds and abundance of native animals. Additional experimental studies were conducted on surface water hydrology, nutrient turnover and microbiology of salt marshes, and nutrient con-tribution to adjacent Card Sound.

1.4.1 Natural Plant Associations Natural plant associations (Section 2.2) were strongly influ-enced by two major determinants: tolerance to water of varying chloride (salt) concentrations and the distribution of high organic-containing soils, mostly mangrove peats.. Zones of vegetation were delineated and maintained based upon a plant species being able to withstand physio-logical stresses imposed by salt-induced osmotic pressure. Density and acreage of plant species were identified and described using prin-cipal vegetative characteristics, as follows:

a. Frin e forest - comprised of large red mangroves forming a ense fringe bordering the coast
b. Dwarf man rove - a population of stunted or diminutive red, lac , or white mangroves which are not believed to be a dwarf race or variety, but rather have dwarf characteris-tics imposed by the high chloride concentrations and low phosphorus content of the soils
c. Black rush salt rass - two grass-like species which occur etween t e more sa >ne soils of the dwarf mangroves and

.the fresher water saw grass habitat 1-9

I I

I I

d. Saw rass - generally in fresher. water and about one mile in and from Card Sound waters
e. Salt water hammocks - slightly elevated oval or round masses of rich organic peat which support dense stands of mangroves
f. Brackish water haomocks - with configuration similar to salt water hammoc s except that a different plant species composition occurs.

1.4.2 Soil Anal ses and Characteristics The South Dade Site soils (Section 2.3) are comprised of non-stratified calcitic mud which is lai gely finely-divided calcium and magnesium carbonates. Soil depth to bedrock varies from 1.2 meters (4 ft) to occasional out-croppings which broach the surface of the soil. Scattered randomly within the calcitic mud are pockets or lenses of organic peat. These are comprised of mostly dead roots and other degraded plant products. Peats may or may not broach the surface.

Peat deposits which do broach the surface may characteristically support dense mangrove-dominated vegetation to form salt water or brackish water hammocks. Red mangrove peats spaced between layers of calcitic mud strongly suggests the region has fluctuated between marine and freshwater influences during its geological past. The freshwater calcareous mud was probably the earliest sediment type formed on this coast. At some later time, mangroves began to colonize the calcareous mud areas.

1-10

I 1.4.3 Kinds and Abundance of Native Animals Studies were conducted to determine the kinds and abundance of birds, mammals, reptiles, amphibians, fish, arboreal and aquatic molluscs, insects, spiders, and soil macroinvertebrates (Section 3.0).

Animal species observed at the South Dade Site were researched to determine their status with respect to the U.S. Department of the Interior's endangered and threatened wildlife lists, the State of Florida Game and Fresh Hater Fish Commission wildlife code, and the Florida Committee on Rare and Endangered Plants and Animals inventory of rare and endangered biota of Florida.

The South Dade Site is unattractive to the large wading birds as a rookery or nesting area. These species prefer the security of small islands and densely wooded areas with tall trees which provide a measure of protection against predators. The Arsenicker Keys and Mangrove Key, small mangrove-covered islands lying about 3 kilometers (1.8 miles) east of the Turkey Point cooling canals, provides the requisite isolation for the location of rookeries. An estimated 4,000 wading birds have been observed in these small islands. Ten percent or less of this population use the South Dade Site as a forage area.

Among the aquatic birds the most common birds observed along the coast were, in decreasing order, the little blue heron, white ibis, great egret and snowy egret.

1-11

I I

I I

I I

I

Only five species of mammals were sampled during the study and five other species observed. Sampled species were the rice rat, cotton rat, raccoon, black rat and house mouse. Observed species included the white-tailed deer, marsh rabbits, bobcat, manatee and bottle-nosed dol-phin; the latter two aquatic mammals occurring in South Florida Water Man-agement District canals and offshore, respectively.

Reptiles observed within the South Dade Site were anoles, water snakes, indigo snakes, racers and rattlesnakes. Amphibians were represented by cricket frogs, greenhouse frogs, pig and leopard frogs and various tree-frogs. No alligators or crocodiles were observed on the site; however, these species were seen within the adjacent cooling canal system, Intercep-tor Ditch and Canal, and Levee 31-E. It is possible that small numbers of alligators may occur almost anywhere on FPL property. Crocodiles seem to be attracted to man-made canals and borrow pits because they prefer deep, quiet-water sites.

Twenty-four species of fish'ere collected at the South Dade Area.

With the exception of scattered ponds, the inland areas are usually dry.

During the wet season, especially September through November, the inland areas may support relatively large populations of fish. The species most coranonly collected included mosquitofish, killifish, silversides and mo-jarras. These species provide forage for wading birds and larger carnivor-ous fishes. No species of fish currently listed as threatened or endan-gered on federeal or state lists are known to occur within the South Dade Si te.

1-12

l l

1.4.4 Ex erimental Studies Experimental studies (Section 4.0) were conducted in the South Dade Area to determine peak standing crops, the effects of soil char-acteristics on plants, nutrient turnover in salt marshes, and possible influences of groundwater seepage on mangroves. Within the mangrove zones, red mangroves comprised over 78Ã of the total above-ground biomass. Leaf biomass was found to be 139 g/mz and leaf area was 0.2 mz/m2. Values for black rush/salt grass and saw grass zones were also calculated. Detritus accumulation, leaf biomass, and leaf area were found to increase as a function of distance from the shoreline.

Soil characteristics were found to play a minor role in nutrient cycling. The distribution and sources of water played a more signifi-cant role in determining plant distribution. The majority of the plant coranunities were found on inorganic calcitic substrates. The calcitic soils at the South Dade Site are relatively infertile due to the dominance of calcium and magnesium carbonates and only minimal amounts of other requisite elements. Mangrove distribution was not found to depend upon specific soil types, but rather on the relative position to the shoreline of Card Sound and tidal influences, Tidal flow and amplitude studies determined that the horizontal distance traveled by the landward edge of the water during the dry season did not extend more than 700 meters from the shoreline. During the wet season, standi ng freshwater from rainfall was continuous with 1-13

I I

I I

Card Sound water. Normal tidal motion was imparted, and tidal effects were therefore observed throughout the study area. Tidal movements and storms are believed to be the mechanisms that release and transport nutrients from the black rush/salt grass and saw grass zones to Card Sound.

The detrital export dynamics of the South Dade Site were evaluated in relation to actual litterfall, the decomposition rate, and the amount of litter remaining on the surface. The majority of the detrital export was in the form of small particles between 0.45 and 62.0pm in size. Organic matter may be either exported to or imported from Card Sound; that is, particulate matter may leave the system and enter Card, Sound or be transported from Card Sound into the South Dade Site habitats..

The effects of groundwater seepage on mangroves were deter-mined. Different mangrove species respond in various ways .when exposed to varying saline regimes. Exposure to increasingly fresh water likewise was shown to have a profound effect upon the distri-bution of mangrove species. The presence of mangrove species in higher saline habitats reflects the inability of other species to cope with physiological stresses induced by salts. Therefore, in-creased seepage of saltwater at concentrations near that of seawater in the South Dade Site soils could be expected to favor the growth of mangrove:species at the expense of the less salt-tolerant vegetative species.

1-14

l I

2.0 DEFINITION OF TYPES AND RELATIVE ABUNDANCE OF NATURAL PLANT ASSOCIATIONS"

2. 1 INTRODUCTION The first part of this section discusses the different types and relative abundance of natural plant associations found in the South Dade Area. The various plant associations that comprise the mangrove salt marshes, wetlands and dry land communities are defined.

The second part of this section investigates how these plant associa-tions relate to the topography and soil characteristics of the study area as a basis for predicting conditions under which plant associa-tions will survive.

The vegetative characteristics of the South Dade Area change from northwest to southeast. Plant communities differ dramatically as a result of slight variations in topography which affect the tidal intrusion of saline waters from adjacent Card Sound. Dense mangroves flourish along the coast. This mangrove community recedes into salt-tolerant grasses, that, in turn, blend into freshwater dominanted by saw grass. Throughout these vegetation zones are hammocks, or tree islands, so named for their appearance as islands protruding above the expanse of grasses upon a flat plain. Viewed from low-flying air-craft, these teardrop or circular-shaped islands appear to punctuate the fields of saw grass and rushes below. Hammocks are rich with peat and other accumulations of organic matter that support heavy 2-1

vegetative growth. The geological origins of these rich organic deposits have not been identified.

The major natural plant associations found in the South Dade Area are fringe forest (comprised of mangroves}, dwarf .

mangrove, black rush/salt grass, saw grass, and hammocks (Figure 2-1).

The fringe forest and dwarf mangrove zones are part of the mangrove salt marshes. The black rush and salt grass zone is also predominately a saltwater association, but the upland portions of this zone merge into the wetlands of the saw grass zone. Hammocks are the only dry land community during the summer wet season, but during the dry winter season the saw grass and black rush/salt grass zones are also essentially dry -land habitats.

2~2

'wp A

~ \'

e I

I

Fi (FW Distr'1bu GIagor vegetation zones af the de Study Area. Photo data taken in 1964. ~ o/e.l-0 r ,1 "F 4 fig Sca fe. 1;, cm = 266 v,:

q~a

>age

~e8

<< << I

(' EVE STUDY AREA \

r z/e

-BOUNDARY I'

~ H<<

I

,-r <<'. H >>" E A, <<QJ ~<<g. >> H e

h ci r 4 P:

H l+

(H>>

H ,g<<~ I

~

I l I F a

Q.'

(

g I,H(

Fi I~ glQ

<<H (<<',

FRl,"f'6E mREST '4 fktle Car-5:.Siiind

) Qa 4 ~H ~ ~ C-I 1(

/+

I

2. 2 NATURAL PLANT ASSOCIATIONS 2.2.1 ~Fi The shoreline of the South Dade study area is a fringe forest of mangroves. The fringe forest does not extend sufficiently inland to allow for species zonation but is composed solelv of the red mangrove, Bhisopho~a mangle. The red mangrove coranunity is best developed along shorelines with elevations above the mean tide line. The proproot system, characteristic of red mangroves, is generally very dense and serves to entrap most of the organic debris produced in situ. The accumulation of organic matter by mangrove proproots, added to the debris from frequent breakage of the upper canopy structure by winds and storms, results in rela-tively large amounts of organic matter in the soils of the fringe forest.

2.2.2 ~0f N Landward of the fringe forest is a broad area characterized by sparsely-distributed individuals of very short (generally less than 2 m [7 ft] tall) red mangroves. Interspersed with these dwarf red mangroves are equally short individuals of the black mangrove (Avicennia gezvninan8), and the white mangrove (Laguncula~ia

~acemosa). This area, known as the dwarf, or scrub, mangrove zone, is found along the lower southeast coast of Florida and the Florida Keys. The dwarf mangrove zone occupies about 30/ of the study area 2-4

(see Section 4.5.3 Dwarf Mangroves). Also observed in this area are black rush and scattered clumps of salt grass. Figure 2-2 shows the frequency of the occurrence of plant species in 75 sample quadrats located in the dwarf mangrove zone.

2.2.3 Black Rush/Salt Grass Just landward of the dwarf mangrove area is a zone composed of black rush (t'uncut zoemezianus) and salt grass (DistichiEis spica'). Occasional isolated individuals of each of the mangrove species are also present. Frequency of species occurrence in the black rush/salt grass zone is given in Figure 2-3. Also character-istic of this zone is a well-developed blue-green algal mat which covers the surface of the marl substrate.

2.2.4 Saw Grass The upland vegetation zone on the study property is dominated by saw grass (Clad~urn jamaiceneis). Unlike the familiar saw grass expanses of the Everglades, this zone has a large amount of open area in which the marl substrate is exposed. A thin layer of algae is present in this area, but it is not so well defined as that in the black rush/salt grass zone (Figure 2-4), largely due to the presence of fresher water.

V I

I

FRE(UENCY OF OCCURRENCE (X)

IO 4l W Ch Ch M 0)

Tl 0 0 0 0 0 0 0 0 0 0 0 EC) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ 0 ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~

~ ~ ~ ~

~ ~

~

~

~ ~ ~ ~ ~ ~

tD S ~ ~ ~

~

~

~ ~

~

~ ~ ~

~ ~

~ ~ ~

~

~

RHI ZOPHORA

~

~ ~

~ ~

~ ~ ~ ~ ~

~ ~ ~

~ ~ ~

~ ~

MANGLE::::

~

~ ~

~ ~

~

~ ~

~

~ ~

~

~ ~

~

~ ~

~

~

~

~

~

~

~

~ ~

~ ~

~ ~

~ ~

~ 0

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ ~

~ ~

~ ~

~ ~

~ 0

~

~

~

~

~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ o ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I L IS .SP I CATA . ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~

~

~

~

~ ~

~

~

~

~ ~

DISTICH

~ ~ ~ ~ ~ ~

~ ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ ~

~ J

~

~

~

~

~

~

~

~

~

~

~ ~

~

~

~

~ ~ ~

C/l ~ ~ ~ ~

0~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~ ~ ~ ~

CD ED 0 ~

~

~

~

~

~

~

~

~ ~ ~ ~

~ ~

~

~

~

~ ~

~

~ ~ ~

~

~

~

~

~

~

~

~

~ ~

~ ~

~ ~ ~

0 ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

lD el.

H GI'

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ ~

~

~ ~

~

~

~

~

~ ~ ~

~

~

~

~

~

LAGUNCUL

~

~ ~

~

~

~

~

~

~

RIA

~ ~

RACEMOS

~ ~ ~

Ql ~ ~ ~ ~

O CL ~

~

~

~

~ ~

~ ~

~ ~

lD ~

~

~

~

~

~

~

~

~

~

~

~

~ ~

~

~

~

~

BORRICHIA FRUTESCENS (8

A) Ol

~

~

~

~

~

~ ~

~

~

~

~

~ ~

~

~ ~

~

~ ~

r+ CL ~

~ ~

~ SALICORNIA VIRGINICA O Z ~

~

~ ~

~ ~

~

~ ~

~

~

~

'c a ~

~

~

~

~ ~

~ ~

~ ~

~

~

~

~

~

~

JUNCUS ROEMERIANUS

~ ~

~ ~

O CONOCARPUS ERECTA lD N

O ID

I I

I I

ICI FREQUENCY OF OCCURRENCE (X)

ID N 0 0 0IO 4) 0 04 0(h 0(h 0 CD 0 0 0

~

~ t~ ~

~ ~

~

~

~

~

~

~ ~

~

~

~

~

~

~ ~

~

~

~

~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~

~

~

~ ~

~

~

~

~ ~

~

~

~

~ ~ ~

~

~ ~ ~

~ ~

~

~

~

~

~

~

~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~

~

~

~ ~

~

~

DISTICHILIS SP ICATA ~

~

~

~

~

~ ~ ~ ~

~ ~ ~

~

~ ~

~ ~

~ ~

( 0Vl ID

~ ~

~ ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ ~

~

~ ~ ~

~

~ ~

~ ~

~ ~ ~

~ ~ ~

~ ~ 0

~ ~ ~

~ ~ ~

~

~

~

~

e

~

~

~

~

~

~

~ ~

~

~

~ ~

~

~

~ ~

~

~

~

~

~

~

~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~

~

~

~

~

~ ~

~

~

~

~

~

~

Ct C ~

~

~

~ ~

~ ~ ~

~

~

~

~ ~ ~ ~ ~ ~ ~ ~ ~

~

~ ~

~ ~

~

~

ID ~ ~ ~ ~ ~ ~

rt K ~ ~ ~

~ ~

~ ~

~ ~

~

~

~

~:.: JUNCUS

~ ~

ROEMERIANUS:

~ ~ ~ ~

~

~

~

~

~ ~

~

~ ~

~

~

~

~

~

~

4

~

~

NO Qp

~ ~

0 ~~

~ ~ ~

~

~ ~ ~

~ ~ ~

~ ~ ~

~

~

~

~

~

~

~ ~

~

~ ~

~

~

~ ~ ~

~ ~

~

~

~

~

~

~

~ ~

~ ~

~

~ ~

~

~

~

~

0 Q. ~

~

~

~

~

~ ~

~

~ ~

~

~ ~

~

~

0

~

~ ~

0

~

~

~ ~

~ ~

~ ~

~

~

~

~

~

~

~

ID ~

~

~ ~

~ ~ ~

~ ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ ~

t ~

~

~

~

~ ~

~ ~

~ ~ ~

~

~

~ ~

~ ~

~ ~ 0

~ ~

~

~

~ ~

~

~

~ ~

~

~

~

~

~

~ 0

~ ~

0

~ RH IZOPHORA MANGLE

~ ~ ~ ~ ~

( ID CU

~

~

~ ~

~ ~

~ ~ ~

~ ~

~ ~

~ ~

~ ~

~ ~ ~

~~ ~ ~

~

~ ~

~

~

~

~ ~

~

~

~

~

~ ~

~

~ ~ ~ ~

~ ~

~ ~ ~

~ ~

m ~ ~

~ ~

~ ~

~

~

~ ~ ~

~ ~

~

~

~ ~

~

~ ~

~

~

~

~

~

~ ~ ~

~ ~

~ ~ ~

et CF' ~

~

~ ~

~

~

~

~

~

~ ~

~

~

~

~

~ ~

~

~

~ ~

~

~

~

~

~

~

~

~ ~

~ ~

~ ~

~ BORRI CHIA FRUTESCENS

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

W n m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ 1 ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~ ~

~ ~

~

~

~

~

~ ~

~

~

~

~ ~

~ ~

~ ~

~ ~ ~

0 ~ ~

~

~

~

~

~

~

LAGUNCULARIA RACEMOSA

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~

~

~

~

~

~

~

~

~

~

~

~ ~

~

~ ~ ~

\ ~ ~

~

~

~

~ ~

~

~ ~ ~ ~ ~ ~ ~

~

~

~

~

~

~ ~

~ ~

~ ~

~ ~ ~

~

~

~ CONOCARPUS ERECTA

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

0N ID

I I

l I

FREQUENCY OF OCCURRENCE (I)

N 0 0 0 0 0 0 0al 0 0

~

~

~ ~

~ ~ ~

~

~ ~

~

~

~ ~

~

~ ~

~ ~

~ ~ ~

~

~

~ ~

~ ~

~ ~ ~

~

~

~ ~ ~

~ ~

~ ~ ~

~

. CLADIUH JAMAICENSIS::::::

~

~ ~ ~

~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~

~ 0

~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

CONOCARPUS ERECTA

~

~

~

~ ~ ~ ~

~

~ ~

~ ~

~ ~ ~

~

I EUPATORIUM CAP ILL FOLI UM

~ ~ ~

~

~

~ ~

~ ~

~ ~ HYDROCOTYLE UHBRELLATA

~ ~ ~

~ ~

~ ~ ~ ~ ~

~ ~ ~

PASPALUM

~ ~

DISTI CHILI S SP I CATA CRINUH AMERICANUH MIKANIA SCANDENS TALI NUM PANI CULATUH ELEUSINE INDICA PLUCHEA ROSEA SCHOENUS NIGRICANS LAGUNCULARIA RACEHOSA LIPP IA NODI FLORA PROSERPINACA PALUSTRIS VAR. PALUSTRIS SABATIA SESUVIUM PORTULACASTRUH BAT IS MARITIMA PENSTEHON

I I

I I

2.2.5 Hammocks One of the striking features of the study area is the presence of hammocks. Hammocks are slight promontories covered with dense shrubs and trees. From an aerial perspective, the hammocks are "teardrop" shaped with the rounded "heads" pointing inland and tapering "tails" directed toward the shoreline. Forested hammocks with this distinctive shape and spatial pattern are found in areas where the general topography is flat and there is a characteristic unidirectional surface water flow pattern. The hammocks in the area range in size from less than 0.10 hectares (0.2 acres) to over 10 hectares (25 acres), and occur in approximate density of 40/km (15 miles ) (Snedaker, 1976). The tallest trees within the hammocks are 3 to 4 m (10 to 13 ft.) taller than the surrounding dwarf forest, which has a mean height of approximately 1.5 m (5 ft.). Any of the four mangrove species may be encountered within a hammock', red and black mangroves dominate in the more saline areas, and in the more inland areas the hammocks are increas-ingly dominated by buttonwood, particularly around the fringes. In the more inland areas, the dominance is increasingly shared by trees such as Australian pine (C'asucuina equieet~folia), Brazilian pepper (Sohinue tezebinthifoHus), and other exotic and native plants common in subtropical south Florida. The more inland hammocks eventually grade into the strand or island forests of the Florida Everglades, 2-9

I I

I

Scattered over the study area are two types of hammock which are described as either freshwater or saltwater depending upon the species composition. Saltwater hammocks are largely comprised of red mangroves, but both the black and white mangroves, and occasionally buttonwoods (Conocmpus ejecta), are present (see Figure 2-5). These hammock trees .are significantly taller than the surrounding dwarf forms. Saltwater mangrove hammocks generally occur in inland areas along depressions which channel runoff to the shoreline. They differ slightly from freshwater hammocks in that they are found in areas that are only slightly elevated relative to the surrounding area.

Found in the dwarf and black rush/salt grass zones, they are generally "teardrop" shaped. No true understory and generally few seedlings are found in the interior of the saltwater hammocks. A few herbaceous species such as glasswort (SaEicozmia uirginica), salt grass (Distichs'Lis spica'), and batis (Bat~e mcuitima) form the dominant ground cover, but 'they are usually quite dispersed and a continuous cover is seldom formed.

The brackish water hammocks, generally more rounded than the salt-water hammocks, are found in the upper black rush/salt grass and saw grass zones. These hammocks receive fresher water from rainfall runoffs, as evidenced by the species composition (Figure 2-6). Also found in brackish hammocks are the palmetto (Sabal palmetto) and the leather-fern (Acrostichum a+sewn). The brackish water hammocks are more diverse than the saltwater hammocks, and may contain some mangroves.

2-10

I I

I I

I I

100 ~ ~ I

~ ~

~ ~ ~

~ ~ ~

UJ

~ ~ ~ UJ

~ ~ ~ C/)

90 LLI

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~

I I O I

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ CY I CY CY 80

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Q LLI CD

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

UJ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

o

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~

w 70 ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ CL cL

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ CA

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ CD

~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ UJ C/I CO 60 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

CD ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 50 o Q ~ ~ ~

~ ~

~ ~ ~

'O'

~

C/l Zo

~ cL ~

'V'Mo ~

~ ~

~

C/I ~

~ ~ ~

~ ~.I-,

~

cL ~

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

UJ ~ UJ

~

Mo ~ ~

~o cC

~ ~ ~

~ ~ ~ ~ oW

~ ~ ~

~ ~ ~ ~

40 o ~

c~

CO

5. ~ (g o ~ M

~o

~ ~ ~ ~ ~ O Wo

~ ~ ~ ~

I o'~'o ~ ~ ~

)

~ ~ ~

~ ~ ~ ~ M ~ +o ~ C/I o

~ Qo ~ ~ ~ ~

~ ~ ~

o cL ~ o ~ Mo ~ UJ ~ ~ ~ ~

30

~ (g o ~

C/I ~ ~

I ~ ~ ~ ~ ~

<o M

~

$Q ~

~ cC

~o

~

cC:,

KIo

~

~ o Mo ~o ~ +o 0

~ ~

~ ~ ~ ~

~

~o ~ ~ ~ Qo

~

~

~

LJ

~

~

~ ~

~

~ oo

~o

~ ~

~ CoC.'

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~

O 20 oO Ko ~ U, ~o LJo

~

I+ ~

Mo ~ UJ ~ ~

~ o O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

10

~ m

~o 'cC CC

~ ~ ~

~

~ ~

~

~ ~

~ +

C/)

~ ~ ~

~

~

~

)

~ O

~ ~ ~ ~

o

~

M o '/Io I

~ ~ ~

~

~

~

I

~

~ ~ ~

~

~

~

'Q

~ ~ ~ ~

~

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~

~ ~ ~

o

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0 SPECIES Figure 2-5. South Dade Area saltwater hammock vegetation inventory.

I I

I I

I I

100 .. ~ ~ ~ ~

t/)

~ ~ ~ ~ ~ ~

~ ~

~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ t/I

~ t CD LD 90 LI LLI I/I U CD

~ ~ ~ ~ ~ ~ ~ ~ UJ

~ ~ ~ ~ ~ ~ <<C I U

~ ~

~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ LJLI I M

~ ~ ~ ~ ~ ~ ~ ~ C/l CL 80 tD

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ CO CO

~ ~ ~ ~ ~ ~ ~ ~

CD'J CC UJ <<C

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ CO

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ UJ C/l UJ 70 <<C cC tD I t/I Cn

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O O

~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

CC.'

<<C tD K CY LIJ

~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~

~ ~

~ ~

LIJ

<<C X

O tD O IM CY OC LLI CD O

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

tD tD tD ~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~

~ ~ ~ ~

~ ~ CO t/) CO M UJ

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

50 ~ ~ LD ~ ~ ~ ~

~ ~ ~ ~

~ ~

~ ~ tD cC ~ ~

0 LLI <<L ~ ~

tD ~ ~

40 ~ ~ ~ ~

~ ~ ~ ~

LJJ UJ tD ~ ~ ~ ~

OC I I ~ ~ ~ ~

LLI I OC ~ ~

30 I/I tD ~ ~ ~ ~

OC O ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

tD ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~

~ ~ ~ ~

CY 20 O tD

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

tD IV I tD CL ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

CB t/I OC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

ID <<C tD ~ ~

~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

10 CX ID CO

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0 SPECIES Figure 2-6. South Dade Area brackish water hammock vegetation inventory.

2-12

I Both saltwater and brackish water haranocks are characterized by large accumulations of peat which sometimes reach to the bedrock.

The peat creates a reducing environment and any standing water in the hammocks is usually highly colored, indicating high organic matter content.

A representation of the spatial distribution of these vegeta-tive zones, shown in Figure 2-1, shows that the boundaries delineating the vegetative zones are roughly parallel to the shoreline. The acreage of the vegetation zones described above is given in Table 2-1.

2-13

I I

5~yV ",a '

I I

I I

TABLE 2-1 VEGETATION ZONE ACREAGE OF THE SOUTH DADE SITE Percent Ve etation t e Hectares Acres Covera e Fringe forest 142.0 (350) 3.3 Dwarf mangrove 1304.0 (3222) 30. 7 Black rush/

salt grass 424.4 (1049) 10.0 Saw grass 1630.3 (4028) 38.3 Saltwater hammock 264 ' (654) 6.2 Brackish water hammock 488.1 (1206) 11. 5 Total 4252.5 (10509) 100.0 2-14

I I

I I

I I

I

2.3 SOIL ANALYSES AND CHARACTERISTICS 2.3.1 Ma or Soil T es Miami oolite The geologic formation underlying the surface in the South Dade study area is Miami oolite. This bedrock is a soft, sandy limestone, containing as much as 95! calcium carbonate, and consis'ting of small spherical ovules. This rock of marine origin is believed to be Pleistocene in age (Snedaker, 1976).

Depth to bedrock varies from about 1.2 m below the surface to occasional outcroppings which broach the surface of the soil (see Section 2.3.2, Soil Stratigraphy).

Marls Overlying the Miami oolite is a nonstratified calcitic mud or marl similar to that found in other environments in south Florida. Marl is formed from carbonates transported in freshwater by heavy seasonal rainfall. These rains dissolve calcium and magnesium carbonates found in the soft limestone outcroppings common in Dade County. Carbonate-laden water slowly flows into regions of higher salinity and pH which causes precipitation of calcium and magnesium carbonate crystals.

These sink to the bottom of standing or slow-moving pools to form a blanket of white, finely divided material which looks similar to white or gray-white chalk and is called calcitic mud or marl.

2-15

I I

I

The surface of the marl is generally covered by an inch-thick blanket of periphyton, mostly blue-green algae. The accumulation of calcitic sheaths from the blue-green algal mats also contribute to the calcitic muds. The mud is cream colored when pure, but darker brown when mixed with various amounts of organic matter.

The junction between the mangrove salt marshes and the fresher water wetlands is a prime location for calcitic mud accumulation.

This region appears on aerial photographs as a bright band bordering the coast (Figure 2-7).

Peats The distribution of peat deposits at the South Dade Site varies from scattered pockets interspersed among the calcitic mud to more cohesive masses of up to 2 meters in depth. This peat appears reddish-brown when fresh, but turns darker brown to black when exposed to air, and grayish-brown when mixed with carbonates.

The peats of this region are primarily red mangrove peats that occur in marine situatiOns and in the subsurface of present-day fresh-water areas. Red mangrove peat is a fibrous, spongy, reddish-brown material composed of dead (and sometimes living) roots and other de-graded plant products. The presence of red mangrove peats spaced between layers of calcitic mud strongly suggests that the region has fluctuated between marine and freshwater influences during its geological past.

2-16

I I

I I

I I

t" +"

I

ure 2-7 8 band of calcitic ad deposi-i;ion LL L

0

(

-";paratfel Xo -shoreline, and study transec+

C 5

station locations. I aq

'Qq QO(5 C 0 Cana )

/$ 8 l 1'r 55{

C5 (5 c 5

' {

~ ~ ~

~

g{'

C5 ~

P A ~~+ t 6( '

h--.

f<-

'5 y p

, .AF.;.~

5 (55, O'0'

.I C C5, G~

Litt'le Card Sound S

I I

I

2.3.2 Soil Characteristics Soil Sam 1in Station Locations (For Stratigraphy, Bulk Density, Carbon/Carbonate and Salinity Studies)

The stations (Figure 2-7) which were examined for the soil stratigraphy, bulk density, carbon and carbonate, and salinity studies are indicated in each respective section. For purposes of discussion, Stations 1-9 are characterized as sawgrass vegeta-tion; Stations 10-17 are in the black rush/sa'It grass zone; Stations 18-26 are in the dwarf mangrove zone; and Stations 26 to Card Sound are in the fringe forest.

Soil Stratigra h Methods - Core samples were taken at 17 transect locations by means of a piston core sampling device. This device was designed to obtain relatively undisturbed and uncompressed core samples of the marl and peat layers. Core samples were extruded in the field on a portable table, split into two halves and described. Color, origin of root material, gastropods, carbonate content, water content and any allochthonous (deposited away from point of origin) material were reported at their corresponding depths. After this, the cores were sealed with a plastic wrapper and then covered with aluminum 2-18

I I

I

foil. The samples were frozen upon their return to the laboratory.

Samples of each core were cut into 5 cm intervals from one-half of the sample, then dried, ground and weighed out into sample splits for carbonate, ash-free .weight, and elemental analysis by atomic absorption. Additional core samples were taken with a 3.8 cm inside diameter PVC cylinder, which was stoppered and brought to the laboratory intact. At the laboratory the soils were extruded onto waxed paper and described 'as to color, origin of root material, gastropod shells and any unusual materials present. The cores were then cut into lengths representing the top,l5 cm of the soil, the second 15 cm of soil, and in the cases of some of the deeper cores, the bottom 15 cm of soil. These 15 cm lengths were placed in individual glass dishes and oven-dried at 70'C to a constant weight. The samples were then ground to pass through a 0.84-mm mesh screen and placed in small manila envelopes.

Results (Snedaker, 1976) - Figure 2-8 is a diagrammatic representation of the subsurface units encountered during core samp-ling. White calcareous mud (Perrine marl) was ubiquitous throughout the transect and was always present in the upper 10 cm of the core samples. This mud is typically more gray in color at the seaward stations and may be of marine origin at these particular locations.

Freshwater gastropods were common constituents of these muds and were also found within red mangrove peat.

2-1 9

I I

I I

SAW GRASS BLACK RUSH - SALT GRASS DWARF HANGROVE FRINGE FOREST 1 2 4 5 6 7 8 9 'l1 12 17 18 19 20 21 22 23 26 27 29 3'1 32 0

10 20 Vertical scale 30(centimeters) Periphyton (surface only)

Horizontal scale (meters) 0 White Calcareous Hud Mixed Juncus 8 Rhi zophorn Peat

~Calcareous

~8 Juncus Rhizophorn Peat Rhi zophora Calcareous Juncus Peat Peat Rhi zophora Peat ggg Figure 2-8. Soil stratigraphy at l7 stations in different vegetation zones.

I I

I I

I I

Red mangrove peat was a common deposit. This peat consists of a dense mesh of intertwined roots and rootlets and fine-grained organic or calcareous interstitial material. This peat is reddish-brown in color; when mixed with carbonate it is characteristically a dark gray or gray-brown color. In some cases the peat has a mottled appearance due to irregular mixing of root material with the calcareous mud. Older red mangrove peat is quite black and contains roots with dissolved cortices. Freshwater gastropod shells were usually abundant but quite fragile or partially dissolved from the organic acids within the peat. The red mangrove peat under the scrub mangrove was slightly different from that which formed under red mangrove hammocks in that the hammock peat was distinctly more reddish and "clean" in appearance. Apparently, hammock peat Y

lacks the copious amounts of fine-grained organic matrix that is associated with scrub mangrove peat.

Calcareous peat or calcareous mud containing appr'eciable amounts of red mangrove root material was usually found under the white calcareous mud. In some cases, black rush roots occurred with red mangrove roots, but only in the upper stations of the transect.

The color varied from white to gray-brown, indicating a change in the carbonate-organic ratio within the peat matrix.

Black rush peat was found at stations northwest of Station 15.

This peat had a yellowish-brown or. grayish-brown color and displayed an 2-21

I I

I

intertwined mass of small roots and rootlets with a fine-grained matrix penetrated by larger roots and an occasional black rush leaf fragment. In general, black rush peat has a slippery feel and becomes sticky when pressed between the fingers.

Fine fragments of limestone bedrock were also present at the base of the cores. In a few cases, larger fragments were found as much as 10 cm above the contact with the limestone. Apparently, root growth has displaced these fragments from their original position at the limestone surface. The presence of these fragments indicates that a reaction between the limestone and overlying peats is causing calcium carbonate to decompose from the limestone surface.

The geological significance of the stratigraphic sequence is difficult to interpret because the peat accumulations are autoch-thonous and are not subject to the layer-cake stratigraphic principles so commonly used. The freshwater calcareous mud was probably the earliest sediment type formed on this coast. The fringe forest may also have been present at the incipient stages of carbonate deposition. At some later time, the mangroves began to colonize the calcareous mud areas. Evidence for this is tenuous at present, but the difference in gastropod shells within the peats and the mud is striking. It is possible that the growth and expansion of peat accumulating in the active rooting zone have dissolved the original matrix of carbonate silt and left behind the coarse, relatively 2-22

I I

I I

I I

insoluble gastropod shells. If peat accumulation occurred largely as a result of root addition and growth (as suggested by the lack of leaf, twig and bark in the peat mass), then replacement and displacement of the calcareous mud would occur within the active rooting zone.

Bulk Densit Methods - Samples for the determination of the bulk density of surface soils were taken at six stations along the South Dade study transect. These samples were representative of the four vegetation zones and the two hammock types. Ten 30-cms samples were taken from several cm below the surface at each site and placed in plastic soil sample bags. The samples were oven-dried at 70'C to constant weight and then weighed. The bulk density was calculated as g/cm~.

Results - The bulk density measurements for soils in the South Dade study area are important in the determination of other soil properties. Soil porosity and the estimation of the mass of a sample of soil too large to be conveniently weighed are both dependent on the bulk density. Bulk density determinations for the various stations and soil areas are given in Table 2-2.

2-23

I I

I I

I I

TABLE 2-2 BULK DENSITY MEASUREMENTS FOR SOUTH DADE AREA SOILS Station Habitat Saw grass 0.474 Black rush/salt grass 0.477 Hammock 0.265 16 Black rush/salt grass 0.531 23 Dwarf mangrove 0.578 23 Hammock 0.378 30 Dwarf mangrove 0.501 30 Hammock 0.397 37 Fringe forest 0.143 2-24

I I

I I

I I

I I

I I

The hammock samples are less dense than all other samples with the exception of fringe forest samples.

Carbon and Carbonate Anal ses Methods - Both organic and inorganic carbon were determined for the South Dade study area soils. Several samples were analyzed for total carbon using the wet combustion method. Concurrently, samples of the same soil were analyzed for carbonate carbon by the volumetric calcimeter method. The difference between these two amounts was taken to be the organic carbon content. The soil was then analyzed for organic carbon by the Walkley-Black wet oxidation method. All results were presented as percentage dry weight of soil (Fell, 1976).

Results - The results of the carbon analyses demonstrated that the total carbon content of the soils was quite varied, with a high value of 35.01% in the peat soil at Station 2 and a low value of 10.13/ in the lower depths of the marl soils at Station 8. The total carbon content has been divided into its organic and inorganic components. Inorganic carbon comprised from 0.09K to as much as 10.6/ of the soil carbon, while organic carbon ranged from 1.12/

to 34.33K of the total soil carbon. The percentage of organic carbon was about twice as much in the surface peats in the hammock at Station 2 as that in the surface peats in the hammock at Station 30.

2-25

I I

I I

I I

I I

I

This could possibly reflect the differences in the amount of tidal scouring present between the two stations. Calcium carbonate formed a major portion of the soil, comprising up to 90 .805 of the soil. The surface sediments consisted mainly of calcium carbonate.

The analysis of the calcium, magnesium and strontium contents of the calcium carbonate fraction provided valuable informati on on the character and composition of the precipitate. Table 2-3 is a summary of the averages of the composition of the marls and peats at three depths over the entire transect. The concentrations of all three elements were influenced by the amount of organic matter present. Calcium decreased with increasing organic matter, while magnesium and strontium both increased with increasing organic matter. Calcium content increased slightly with increasing proximity to Card Sound and with depth. Magnesium also showed a slight increase both down the transect and with depth through the soil column.

Soil Salinit This study was conducted to determine the amount of dissolved chlorides (salts) in the interstitial and surface waters from soils of the South Oade study area.

2-26

I I

I I

I I

I I

I I

TABLE 2-3 AVERAGE CALCIUM, MAGNESIUM AND STRONTIUM COMPOSITION OF THE CARBONATE FRACTION OF THE MARLS AND PEATS ALONG THE SOUTH DADE STUDY TRANSECT a sons an Habitat Depths  % Calcium  % Ma nesium  % Strontium MARLS Saw grass Stations 1-9 0- 6 97.08 2.74 0.048 6- 12" 97.58 2.28 0.060 12- 18" 94.30 5.50 0.070 Black rush/ Stations 15-17 Salt grass 0- 6 96.90 2.90 0.060 6- 12" 96.50 3.30 0.045 12- 18" 96.66 3.17 0.066 Dwarf mangrove Stations 21-26 0- 6" 96.83 2. 97 0.070 6- 12" 95.70 4.12 0.068 12- 18" 97.40 2.45 0.060 Fringe forest Stations 29-32 0- 6" 96.07 3.57 0. 073 6- 12" 94.90 4 '5 0.089 PEATS Brackish water hammock Stations 1-17 0- 6" 70.45 29.35 0.100 6- 12" 80.13 19.63 0.112 12- 18" 85.00 14.70 0.060 Saltwater hammock Stations 18-32 0- 6'-

94.75 5.15 0.070 12" 92.10 7,80 0.080 12- 18" 88.85 11. 00 0.045 2-27

I I

I I

I I

I I

Methods - Data for surface water and ground water salinities were obtained from Automatic Hydrolab recorders, described in Section 4.4.2, Hydraulic Studies. Chlorinity values for Stations 2, 9, 16, 21, 30 and 37 (Table 2-4) were used to construct graphs of salinity changes along the transect for 1974. In May and October 1976, additional salinity surveys were made along the transect using an American Optical refractometer.

Results - Figure 2-9 shows the variations recorded in surface and ground water chlorinities on the South Dade study area for 1974. The maximum chlorinities occurred at Station 30 during the spring when reduced rainfall and increased insolation concentrated the salts in the tidal 'waters. Decreased chlori n-ities at this time at the upper transect stations may reflect ground water input, which would dilute the seawater. The chlor-inity measurements at Station 37 show little variation in the I

Card Sound waters throughout the year. The average chlorinity at this station is approximately 19 parts per thousand (%,)

which is essentially that of "normal" seawater. 'Chlorinity values may be multiplied by 1.86 to approximate salt concentration in parts per thousand. During the latter part of the year, when standing water covered Station 2, the chlorinity at the upper transect stations was about 5%,, which is about 27/ of normal seawater.

2-28

I I

I I

I I

I I

TABLE 2-4 SALINITY IN PARTS PER THOUSAND (%o )

FROM GROUND WATER OF MAJOR VEGETATION AREAS Station Number Area %o 37 Fringe forest shoreline 34 30 Dwarf mangrove/f ringe f orest 38 21 Black rush/salt grass 28 16 Black rush/salt grass 18 Saw grass 16 Saw grass 2-29

I I

I I

I I

BLACK RUSH/

SAW GRASS SALT GRASS DWARF MANGROVE FRINGE FOREST CARD SOUND 45 25 40 30 20 10 5 0

0 0 0

0 0 (a) MEAtt SURFACE WATER 0 0 I

z 40 z 22.5 20 Vl 30 15 20 10 10 (b) MEAN GROUND WATER 0 37 9 16 21 30 DISTAttCE ALOttG TRANSECT (m X 100)

Figure 2-9. Salinity and chlorinity values along study transect.

2-30

I I

I I

I I

I I

Salinity values at Station 9 varied more than at any other station. Because data from Station 16 were limited they did not reflect the true variation observed at the station. However, the figures do indicate a close correlation between surface and ground water sal ini ties.

The highest salt concentrations were observed in the soils from the dwarf mangrove zone. This hypersaline region landward of the fringe forest comprises 30.66! of the South Oade Site.

Tidal cycles vary in amplitude and thus the distance traveled inland also varies; the soils are subject to repeated periods of saturation and drying by evaporation which effectively concentrates the soluble components of seawater and brackish ground water.

Also, drainage of the region is generally slow. Thus, evaporative processes build up the concentrations of salts and minerals to levels which are toxic to all but salt-tolerant species such as mangroves ~ Soil salinities from the open flats have been measured as high as 80.3'/, in isolated instances, which is roughly two and one-half that of bay waters.

Salt-tolerant plants proliferate in regions of high salt concentrations not due to metabolic need for excessive chloride, but due to their ability to survive where other plant species, 2-31

I I

I I

I I

I

competing for the same space, light, and nutrients, are unable to withstand the osmotic stresses placed upon them by the environ-ment.

Soil Sam lin Locations (for ATP, Soil Moisture, pH, and Organic/Inorganic Carbon Studies)

Transect stations selected as representative of the differ-ent ecotones were 2, 6, 10, 14, 18, 20 and 30. Soil samples consisted of cylindrical cores about 5 cm in diameter and 25-50 cm in length. Multiple sections of approximately 1 cm were taken down the length of the core for analysis. Subsurface sampling was done because undegraded plant detritus was present at varying depths in test cores. Also, water levels fluctuated, which could affect cyclic exchange mechanisms in the transport of nutrients and degraded products of metabolism.

These samples were analyzed for ATP, soil moisture, pH, and organic and inorganic carbon.

2-32

I 4

I I

ATP - Studies were undertaken to defi ne biological activi ty in South Dade soils. Biological activity was determined by measuring the adenosine triphosphate (ATP) content of the soil.

ATP is part of a system of chemicals found only in living cells; thus measurement of ATP concentrations provides an indirect measure of living organisms whether they are bacterial, protozoal, or higher life forms. High ATP concentrations indicate biologi-cal activity, but do not differentiate between plant or animal tissue. The relatively constant ratio of ATP to carbon in living cells permits estimates to be made of living biomass which cannot be otherwise calculated from the samples while i n the field.

Determination of the ATP content of soil collected from Stations 2, 18, and 30 in open land areas well away from the hammock area corresponded to other samples taken for carbon analysis, pH, and moisture. Open land collection sites were considered representative of the predominant character of the transect. Additional samples were taken from the "drainage tail" of hammocks at Stations 2, 18, and 30 for comparative purposes to confirm an anticipated higher biomass in soil from areas of higher plant detritus production.

2-33

I I

I

Results of ATP concentration analyses at 5-cm soil depth intervals at Stations 2, 18, and 30 are" shown in Table 2-5 . Con-sidering only the mean concentration of ATP at all depths of soil, it appeared that the concentration progressively decreased from Station 2 to Station 30. The relatively constant rate of decrease of ATP concentration as a function of soil depth was about the same at Stations 2, 18, and 30. The ATP concentration at any level was about 50% that of the preceding level (Fi ncher, 1976).

Similar determinations of ATP concentrations were made on soil cores from the "drainage tail" of hammocks in the areas of Stations 2, 18, and 30. Expectations were for higher levels of ATP on the premise that these areas received higher quantities of plant detritus which would support a larger biomass, measured as ATP, than in the non-hammock or "open" areas of the transect. Such expectations were found to be true at all stations in the top 1 cm of soil, as shown in Table 2-6 . At Station 2, ATP concentrations at 5-15 cm of depth were equivalent in the "drainage tail" and "open" area sites. However, the two-fold higher concentration in the surface layer of the "drainage tail" at Station 2 declined more rapidly with soil depths The concentration of ATP in the "drainage tail" decreased 64% with each soil stratum,,whereas in the "open,"

non-hammock location, ATP decreased 50% with each soil depth. The rate of decrease with soil depth was also higher in soil from the "drainage tail" at Stations 18 and 30.

2-34

I I

I I

TABLE 2-5 ADENOSINE TRIPHOSPHATE (ATP) IN SOIL SAMPLES FROM NON-HAMMOCK AREAS NEAR STATIONS 2, 18, and'30 Mean concentration of ATP - g / dr soil Soil Depth CN Station 2 Station 18 Station 30

2. 38 1. 01 0. 66 1.20 0.57 0.37 10 0.60 0.32 0.21
0. 29 0.18 0. 12 20 0.14 0.10 0.06 25 0.07 0.05 0.04 30 0.04 0.03 0. 02 Rate of decrease per depth interval, 1 50 43 2-35

I II, t I

j I

1

TABLE 2-6 ADENOSINE TRIPHOSPHATE (ATP) IN SOIL SAMPLES FROM 'DRAINAGE TAIL'F HAMMOCKS NEAR STATIONS 2, 18, and 30 Mean concentration of ATP - u / dr soil Soil Depth (cm Station 2 Station 18 Station 30 4.78 4.47 1.66 1.90 0.66 10 0. 60 0. 76 0.26 15 0. 21 0. 30 0.10 20 0.-1 2 0.04 25 0.04 0.01

'0 0.02 0.006 Rate of decrease per depth interval,'4 64 57 60 2-36

I l

I

Concentrations of ATP at the same soil depths in the "drainage tail" were equivalent at Stations 2 and 18. Both locations had higher ATP concentrations than Station 30 .

In summary, biomass in the soil, measured as ATP, appeared to decrease in concentration in the sequence of Stations 2, 18 and 30, particularly in the surface layer of soil in the "open" or non-hammock areas. Highest biomasses were recorded at Station 2.

Differences in biomass at the three stations were less evident as a function of soil depth. At depths of 25-30 cm, the biomasses were equivalent and about 2-3X of the concentrations at the soi 1 surface.

Although initially higher at the soil surface in the "drain-age tail" of the hammocks, the rate of decrease of biomass with soil depth was more rapid and was equivalent to the biomass found in lower soil strata in the "open" or non-hammock areas.

I Generally, these findings suggested a gradient of a biological system which decreased from a comparatively high level in the "upland" area to a lower level in the direction of Card Sound. Also, black rush/salt grass soils appear to be less biologically active than saw grass soils.

Soil Moisture Soil water content was found to be about 57.,0/ by weight in samples collected during the months of Hay 1974-5 and October 1974.

2-37

These determinations were made on standing core samples in the lab-oratory and therefore the results are a measure of the water-retaining capacity of the soil. The small variation in the water content measurements shows a relatively constant high water content at Stations 2, 6, 10, 14, 18, 20, and 30. Higher water content (about 82%) was found in cores with a high peat content.

~So i1 H Values of pH, organic carbon, and inorganic carbon in soil at Station 2, 6, 14, 18, and 30 were functionally related to depth pro-files of soil. Average values are shown in Figure 2-10. The pH of 7.66 at Station 2 was lower than the values at Stations 18 and 30 at all depths. At these latter two stations a transitional zone was found at the depth of 9-14 cm; the upper soil levels had a pH of 8.04-8.05 and the lower levels a pH of 7.86-7.89; again indicative of "dropping out" of ions in upper soils.

Or anic and Inor anic Carbon Organic carbon is distinguishable from inorganic carbon in that organic carbon is produced by plants and animals, including bacteria, and inorganic carbon sources are carbon dioxide (C02) and carbonates, such as those found in limestones and marl soils. Organic carbon determinations therefore provide useful evidence of biological 2-38

I I

Or~

I I

I

STA 2 STA 6 STA 14 STA 18 STA 30 a b O C)

CJ C)

CO I CO 10 E E

O 20 O

LIJ 30 CO (D

40 50 a = pH b = Organic carbon (% by weight) c = Inorganic carbon (% by weight) 2.54 cm = 1 in Figure 2-10. Depth profiles by stations and parameters, 2-39

I I

I I

I I

I i

Organic carbon concentrations were stratified in the soil profiles. The 4.6X concentration of organic carbon in the top 10 cm of soil at Station 2 was similar to values obtained below 10-15 cm at Stations 14, 18, and 30. Above 10 cm the organic carbon concen-tration of 1.9-2.4/ was similar to the uniformly constant value of 2.4X at Station 6. Stations 6, 14, 18 and 30 had organic carbon concentrations that were about 50% lower than the upper 10 cm of Station 2. The highest concentration of organic carbon recorded was 14/. This value was found below 10 cm at Station 2 in the saw grass zone of the transect.

Inorganic carbon (principally carbonates) concentrations were uniformly high (44.9-47.4'4) in the top 10 cm of soil at Station 2, and at 30-35 cm at Stations 6, 14, and 18. Station 30 had a low concentration (42.2/) up to 10 cm in depth, and a lower concentration (28.2%%d) to about 50 cm in depth. This lower concentration was close I

to the 25.3Ã value found below 13 cm at Station 2.

Organic carbon stratification is shown in Table 2-7. The amount of organic carbon in the top 0-10 cm at Stations 2, 18, and 30 was less than that below 11 cm. An inverse relationship of inorganic carbon and soi 1 depth appeared to be the trend, except at Station 18 where stratification was not noted.

2-40

I I

I I

I I

I I

I

TABLE 2-7 DEPTH ANALYSIS OF ORGANIC AND INORGANIC CARBON CONTENT OF SOIL Carbon Content of Soil m / Dr Soil Station No.

Sil Interval ph cm

~0i N .

C b Mean N Mean Ratio of Carbon Or Means anic:Inor anic 0-10 6 46.0 6 459.2 1:10 12 24 7 140.1 7 253.3 1.2 0- 8 19.6 1:24 18 16 474.0 11-30 50.8 1:9 0-10 24.0 442.0 1:18 30 12- 24 36.0 327.0 1:9 26- 48 51.5 260.4 1 5

I I

I I

I

Stratification of carbon with soil depth suggests inflooding of silt-bearing water, probably marine in origin, which, when it recedes, leaves a deposit covering existing vegetation. The result-ing organic deposits and subsequent plant growth provide nutrient substrates for carbon-utilizing bacteria. Subsequent bacteriologi-cal findings (in Section 2.3.3) indicated that a significant portion of the carbon-utilizing bacteria are found at the surface and in the lower 10-48 cm strata of soil.

2-42

I I

I I

I I

2.3.3 Soil Ni cr obiol o The objective of this study was to provide information on the bacteriological content of the soils in the South Dade Area as one index of the energy turnover rates, and thus the productivity of the area. Selective methods of analyses were used which would recover and characterize the broadest number of species of bacteria which utilize organic compounds as sources of energy and growth. Such bacteria are instrumental in the cycling of carbon compounds in the soll .

methods Three sites along the study transect were chosen as typical of the broadly discernible zones characterized by saw grass, black rush/salt grass, and dwarf mangroves: Stations 2, 18, and 30, respectively. Station 30 was marine, Station 18 was influenced by both brackish and freshwater sources, and Station 2 was predominantly freshwater in character.

Selection of representative sites was necessary to recover as many bacterial types as possible from different soil habitats.

Since no single culture medium supports the growth of all soil bacteria, knowledge of probable essential salt growth requirements by marine forms provided more representative culture yields.

Soil samples consisted of cylindrical cores about 5 cm in diameter and 25-50 cm in length. Enumeration of viable bacteria at various soil depths was done under conditions that isolated 2-43

I I

I I

aerobic (those requiring oxygen), facultative anaerobic (capable of living in the presence or absence of atmospheric oxygen), and obligate anaerobic heterotrophic (growing only in the absence of oxygen and using carbon as an energy source) bacteria.

Results Numbers of bacteria in soil - Determinations of the aerobic and facultative anaerobic bacteria content were made from Stations 2, 18, and 30. Both groups use organic compounds for energy and growth.

Numbers of bacteria are presented as colony-forming units (CFU),

which is a standard technique for expressing bacterial populations.

Table 2-8 gives CFU counts of the three typical habitats at various soil depths.

In all cases, larger populations of bacteria were found on the surface, and numbers decreased as a function of soil depth.

Also, the rate of population decrease was about the same for all three stations. Bacterial numbers appeared to have an inverse relationship to the soil content of organic carbon, which was found to increase with soil depth.

The highest frequency of bacterial spores and/or thermo-duric bacteria (those that form heat-resistant spores) was found in the 0-15 cm depth interval. Below this depth it was observed that these bacterial forms occurred at a frequency of 10% or less.

2-44

I I

I I

TABLE 2-8 DERIVED COUNTS OF COLONY-FORMING UNITS (CFU)

OF AEROBIC AND FACULTATIVE ANAEROBIC BACTERIA Soil Depth Stati on cm 18 30 2317 1824 854 1567 1404 551 10 1059 1081 356 716 832 229'48 20 484 641 25 493 95 30 380 61 35 292 39 40 25 Rate of decrease per depth interval, X 32 23 35 CFU=Nx10 /g dry soil, single core values.

2-45

I I

I I

I I

I I

This suggests that populations below 0-15 cm are more sensitive to heat. This population, although smaller than that at upper soi 1 depths, was more versatile in the use of different carbon compounds for metabolism.

Taxono of Soil Bacteria - About 870 bacteria were isolated and studied in pure culture. Each culture was examined for a possi-ble 252 characteristics including physiological, metabolic and mor-phological categories. Data were computer processed and coeffi-cients of association were calculated. This is a numerical expression which relates the degree of overall similarity of one bacterium to another. Summation of analysis of clusters of bacteria having co-efficients of association equal to or greater than 80K is shown in Table 2-9.

Cluster analysis of bacteria isolated from Station 18 showed high percentages of inclusion (sameness) in clusters at al'1 soil depth intervals. Homogeneity of bacterial types throughout the soil column was also greater at Station 18. There was a general absence of relatedness of isolates from Stations 2 and 30.

Ph siolo ical and Metabolic Characteristics All bacterial populations from Stations 2, 18, and 30 were dominated by forms able to live under conditions of reduced oxygen. Populations of all three stations were dominated by true facultative anaerobes at depths below 2-46

I I

I I

I I

I I

TABLE 2-9 CLUSTER ANALYSIS OF SOIL ISOLATES SHOWING GROUPS WITH

> 80/ COEFFICIENTS OF ASSOCIATION Station 2 Stati on 18 Station 30 Soil No. of No. of No. of No. of No. of No. of De th cm ~Grou s ~OTU/Grou u ~Grou s ~OTU/Grou o ~Grou s ~OTU/Grou u 5;3 5;3 2'2 7'2 6s3 10 5;4 12 4;2 14 8;7 16 5;2 4;3;3;2 18 3'2 5;4;2;2 21 6;3 22 6;2 26 7'2'2 30 4;4 34 8;2;2;2 2'2'2 38 6;3;2;2;2 5;4 OTU Operational Taxonomic Unit is used instead of generic and specific names for purposes of computer grouping by characteristics. One OTU is equal to one isolate.

2-47

A % l I I

I I

I I

I I

12-14 cm. The near-absence of soil bacteria growing only in the presence of atmospheric oxygen reflects the low oxygen tension usually found in water-saturated soil.

The optimum temperature for growth for the majority of isolates was 25'C, in a range of 15-35'C. Isolates from Station 18 showed a wider temperature range (15-45'C) of growth than was found at Stations 2 and 30.

More acid-tolerant (pH 5 .0) forms occurred at depths below 6-10 cm. Station 2 showed a generally less sensitive population capable of growing in pH ranges between 6.0 to 8.0. These findings suggested that different bacterial populations existed at the three stations as well as at different intervals of soil depth.

Separation of the bacterial populations of the saw grass, black rush/salt grass and dwarf mangrove zones was indicated by the ability of .the bacteria to grow in a salt-free medium or by a de-pendence on the salts of sodium, potassium, calcium, or magnesium.

Of the bacteria from the saw grass soils, 80K were not dependent upon salts for growth. In growth media where three of the four elements (sodium, calcium, magnesium, potassium) were present, only bacteria from Station 30 showed a significant dependence on sodium coupled with some dependence on either calcium or magnesium. Isolates from the black rush/salt grass zone demonstrated no dependence on a single element.

Growth occurred on any three elements in combination.

2-48

I I

I I

I I

Carbon metabolism - Isolates from the three zones were examined for their ability to hydrolyze (break down) a spectrum of compounds known to contain complex carbon structures. A summary of these results expressed as averages throughout the soil column is shown in Table 2-10. Generally, isolates capable of splitting the compounds were distributed throughout the soil column. Bacteria capable of splitting chitin are of interest, as this substance is found in the skeletal material of invertebrate animals such as crabs and insects. The ability to degrade cellulose, found in plant tissue cell walls, was not widespread but was encountered in the saw grass soils.

Nitro en metabolism - Isolates from the saw grass soils showed the highest frequency of using most available compounds as nitrogeneous sources. About 14 isolates were able to use atmospheric nitrogen.

Bacterial populations in the dwarf mangrove zones were less able to use nitrogen-containing compounds. Atmospheric nitrogen was used by 18/ of those isolates.

Isolates from black rush/salt grass zones were essentially unable to use nitrogen from available sources.

Reduction of nitrate to nitrite was done by isolates from all soil depths at Stations 2 and 30. Many bacteria were able to use the 2-49

I I

I

TABLE 2-10

SUMMARY

OF HYDROLYSIS OF VARIOUS SUBSTRATES BY ALL ISOLATES IN A SOIL COLUMN STATIONS 2, 18, 30 Avera e fre uenc of h drol sis Station 2 Station 18 Station 30 Total OTU Total OTU Total OTU Substrate Tested l Tested X Tested l

Aesculin 31 198 33 252 52 270 Araban 32 136 13 248 16 165 Casein 53 192 72 242 79 244 Cellulose 21 198 0 270 Chitin 17 '95 3 194 28 201 Gelatin 16 197 33 252 270 Starch 59 193 62 244 74 244 Tri butyrin 69 179 61 215 60 238 Xyl an 193 171 213 Depth of Soil Column (cm): 21 38 38 2-50

I oxygen found on nitrate when grown under conditions of reduced atmospheric oxygen tension. These conditions would occur when soils were waterlogged. The reduction of nitrates by such bac-teria in the soil is probably an adaptive mechanism for survival via nutrient cycling in environments with reduced oxygen.

2-51

I I

I I

I I

I I

2. 3.4 Soil Profile Introduction The objective of the soil profile study was to make an eval-uation of the surface and subsurface topography of a mangrove hammock.

The hammock selected for this study was located in an area of uncon-solidated, high-magnesium calcite, interspersed with small red man-grove peat units, over the limestone bedrock (l1iami oolite) at a depth of 1 to 2 m. The study hammock was wetted by at least all high-high tides, although the interior was dry for several months during the spring period of low rainfall and low-hi gh tides.

This hammock was chosen for intensive study for three reasons:

1) it had the characteristic "tear drop" shape and a core of taller trees; 2) it was representative of the 985 larger and smaller hammocks on the site; and 3) it graded into a smaller hammock which provided a second type of ecotone in addition to the dwarf forest.

The species compositon of the study hammock was exclusively man-grove, although there was evidence that other woody species, such as the palm (paurotis wrightii), were once a component of the canopy.

The evidence for the palm, in particular, was the presence of many "stumpholes" left by long-decayed palms. Other evidence for sub-tropical hardwoods included standing-dead non-mangrove trees and trunks trapped within the mangrove proproot structure.

2-52

I I

I I

I

Methods Hammock soil transects - The study hammock (Figure 2-11) is situated some 250 meters south of Station 30, which was used as the elevation control point. To control the field measurements and ensure comparable data relative to elevation, four survey lines were shot through the hammock and elevations were taken at 1 m intervals; these lines became the study transects (Figure 2-12).

The main transect (A) was shot parallel to the long axis of the hammock. Transect A was 240 m long and extended into the dwarf mangrove zone at both ends. Three additional transects were shot perpendicular to transect A: transect B (160 m) through the head of the hammock, transect C (140 m) through the central core, and transect D (105 m) through the tail and a'contiguous smaller hammock.

Narrow survey lines were cut to permit access of personnel and to obtain 50-m transect shots through the hammock. Stakes were set at 5-m intervals along each transect between the access paths and the undisturbed study area on the other side. All ecological measurements were made in the undisturbed portion of the transect and recorded by transect distance and elevation. The elevations were expressed as centimeters above or below transect station marker b'30+00 which was shown to be at the same elevation as points 0 and 240 of transect A.

Subsurface strati ra h At 1 m intervals along each transect, a steel rod was inserted slowly into the sediment down to 2-53

~"

,3 I

I I

I

.figure 2-11 Location o$ study hammock )

in barf mangrove zone. 3 C

-c Ci Q +Oo e'.0'~ Capp C895 ga<e 1

P 4i. 1' We. ,w"4L.

'\'

i C

4

.! 4-0 4 P~

'0, a.

i; 0

4.

-Study-mWammcck

'" Litt1e Card. 50,un i; ii

.'\

~~f

't6c

I I

I

GROUND SURFACE ELEVATION HANGROVE HAJAHOCK PEAT 60 CALCAREOUS 18JDS WITH

-80 ROOT INTRUSION

-120 PEAT AND FRAGMENTED

-160 BEDROCK

-200 TRANSECT B . ~'NO->>r 160 SOLID 0 -260 BEDROCK TRANSECT B

-280 8 10 20 30 AIO 50 60 70 80 90 100 110 120 130 140 150 160 GROUND SURFACE ELEVATION SI0 HANGROVE HAJBNCK PEAT RAD CALCARENIS NDDS NITK 140 80 ROOT INTRUSION LI C)

-120 CN:

CD 160 PEAT AND FRAGMENTEO BEDROCK CJ -200 SOLID BEDROCK 260 TRANSECT C CS: -280 0 10 20 30 40 50 60 70 80 90 100 110 120 130 1IIO D

-~rgW~r I-CD. GROUND SURFACE ELEVATION C/D A3:

60 MANGROVE HAJAKIIJXK PEAT

-80 CALCAREOUS l%JDS WITM TRAMSECT D ROOT INTRUSION 0 105

-120 PEAT ANO FRAGMENTEO 160 BEDROCK

-200 SOLID TRANSECT D BEDROCK

-2TDO 0 10 20 30 40 50 60 70 80 90 100 105 ODeters TRANSECT A 290 GROUND SURFACE ELEVATION 0

MANGROVE HAMMOCK PEAT 60 x 8 CALCARENIS NIDS NITII

-80 ROOT INTRUSION g~

I- < 120 PEAT AND FRAGHDITEO

$o BEDROCK TRANSECT A SOLID BEDROCK 200 0 10 20 30 TIO 50 60 70 80 90 100 110 120 130 3IIO 150 160 170 180 190 200 210 220 -

230 260 ODeters Figure 2-12. Hammock study transects.

RE the surface of a secondary unit composed of bedrock fragments and peat; the depth was recorded. The rod was then forced through this unit to determine the depth to bedrock. At 10 m intervals along the transect, cores were taken with 1.75-in. diameter PVC tubes.

These cores were extruded and described in the field; a total of 52 descriPtions were made. An additional set of 16 cores, taken at 25 m intervals, was retained for detailed description and analyses.

Results Each mangrove hammock surveyed was. found to be topographically higher by a few centimeters than the surrounding dwarf mangrove community. The hammock surface was normally exposed during low tide and submerged at high tide. The entire surface of the hammock was composed of red mangrove peat, and, when surveyed in detail, showed humps and depressions which were expressions of differential rates of peat accumulation at the base of the proproots (Snedaker, 1976).

The subsurface was found to be highly irregular and variable due to the topography on the surface of the Miami oolite. The subsur-face profiles (Figure 2-12) indicated that the bedrock surface was pitted and studded with pockets and pinnacles. This type of surface is commonly found in other areas where the Miami oolite ridqe outcrops (Crai ghead, 1971) .

2-56

I Q

~

I I

I i

g 1

I I

A secondary unit overlay the oolite bedrock. It was composed of bedrock fragments and peat containing partially decomposed organic material with red mangrove rootlets. This unit also had an irregular surface which roughly paralleled the bedrock surface. In some instances, the unit filled bedrock depressions.

2-57

I I

I I

I I

I I

I I

I

2.4

SUMMARY

Natural plant associations were strongly influenced by two major determinants: tolerance to water of varying chloride (salt) concentrations and the distribution of high organic-containing soils, mostly mangrove peats. Zones of vegetation were delineated and main-

-tained based upon a plant species being able to withstand physiolog-ical stresses imposed by salt-induced osmotic pressure. Density and acreage of plant species were identified and described using principal vegetative characteristics as follows:

~Ff fringe pf f1

~g-d d 1 a ~ g g a dense bordering the coast

b. p1 1 f <<d red, black, or white mangroves which are not believed df to be a dwarf race or variety, but rather have dwarf characteristics imposed by high chloride concentrations and low phosphorus content of the soils.

c ~ Black rush salt rass - two grass-like species which occur between the higher saline soils of the dwarf mangroves and the fresher water saw grass habitat.

d. ~Saw rass - generally in fresher water and about one mile inland from Card Sound waters.
e. Salt water hammocks - slightly elevated oval or round masses of high organic peats which support dense stands of mangroves Brackish water hammocks - with configurations similar to salt water hammocks except that a different plant species composition occurs.

The South Dade Site soils are nonstratified calcitic muds which are composed of finely-divided calcium and magnesium carbonates. Soil depth to bedrock varies from 1.2 meters to occasional out-croppings 2-58

I l

which broach the surface of the soil. Scattered randomly within the calcitic mud are pockets or lenses of organic peats. These are com-prised of mostly dead roots and other degraded plant products. Peats I

may or may not broach the surface. Peat deposits which do broach the surface may support dense mangrove-dominated vegetation to form salt-water or brackishwater hammocks. Red mangrove peats spaced between layers of calcitic mud strongly suggest the region has fluctuated between marine and freshwater influences during its geological past.,

The freshwater calcareous mud was probably the earliest sediment type formed on this coast. At some later time, mangroves began to colon-ize the calcareous mud areas.

Stratification of carbon with soil depth suggests flooding by silt-bearing water, probably marine in origin, which, when it recedes, leaves a deposit covering existing vegetation. The resulting organic deposits and subsequent plant growth provide nutrient substrates for carbon-utilizing bacteria. Bacteriological findings (in Section 2.3.3) indicated that a significant portion of the carbon-utilizing bacteria are found at the surface and in the lower 10-48 cm strata of soi l.

Biomass in the soil, measured as ATP, appeared to decrease in concentration in the sequence of Stations 2, 18 and 30, particularly in the surface layer of soil in the "open" or non-hammock areas.

Differences in biomass at the three stations were less evident as a function of soil depth. At depths of 25-30 cm, the biomasses were equivalent and about 2-3X of the concentrations at the soil surface.

2-59

I I

Although initially higher at the soil surface in the "drain-age tail" of the hammocks, the rate of decrease of biomass with soil depth was more rapid and was equivalent to the biomass found in lower soil strata in the "open" or non-hammock areas.

These .findings suggested a gradient of microbiological activ-ity which decreased from a comparatively high level in the "upland" area to a lower level in the direction of Card Sound. Also, black rush/salt grass soils appear to be biologically less active than saw grass soils. The near-absence of soil bacteria growing only in the presence of atmospheric oxygen reflects the low oxygen tension usually found in water-saturated soil.

2-60

I l

3.0 KINDS AND ABUNDANCE OF NATIVE ANIMALS

3.1 INTRODUCTION

Studies were conducted to determine the kinds and abundance of native animals that use the different plant communi ties of the South Dade Site for food, shelter, and breeding. Field obser-vations and trapping techniques were used to prepare lists of the species noted.

Particular attention has been paid to any rare or endangered birds, mammals, amphibians, reptiles, fishes and selected inverte-brates. Endangered and threatened wildlife species are listed by the Fish and 'Wildlife Service of the U. S. Department of the Interior

'Federal Register 42(135):36420-36431, July 14, 1977) and by the State of Florida Game and Fresh Water Fish Commission (Wildlife Code of the State of Florida, Chapter 16 E-3, Tallahassee," Florida, July 1977). In addition to these sources, the Florida Committee on Rare and Endangered Plants and Animals (FCREPA) has prepared an Inventory oZ Raze and Endangered Biota oi Florida(1976) ~ The status categories used by FCREPA and referred to in this section are defined in Table 3-j-. All three of these lists have been used to determine which species are considered rare and endangered in Florida.

Species whose known range or habitat preference probably would preclude their occurrence on the Florida Power & Light Company 3-1

I P

I l

I

property and in fact have not been recorded in the vicinity are not treated in this report.

3-2

I I

I l

I

TABLE 3-1 STATUS CATEGORY DEFINITIONS EXTRACTED FROM THE-INVENTORY OF RARE AND ENDANGERED BIOTA OF FLORIDA (FCREPA, 1976)

Status Category Definition En dan ge red Species in danger of extinction if the deleterious factors affecting their populations continue to operate. These are forms whose numbers have already declined to such a critically low level or whose habitats have been so seriously reduced or degraded that without active assist-ance their survival in Florida is questionable.

Threatened Species that are likely to become endangered in the State within the foreseeable future if current trends continue. This category includes

1) species in which most or all populations are decreasing because of overexploitation, habitat loss, or other factors; 2) species whose pop-ulations have already been heavily depleted by deleterious conditions and which, while not actually endangered, are nevertheless in a critical state; and 3) species which may still be relatively abundant but are being subjected to serious adverse pressures throughout their range.

Rare Species which, although not presently endangered or threatened as defined above, are potentially at risk because they are found only within a restricted geographic area or habitat in the State or are sparsely dis-tributed over a more extensive range.

Species of Special Species that do not clearly fit into one of the foregoing categories Concern yet warrant special attention. Included in this category are 1) species that, although they are perhaps presently relatively abundant and wide-spread in the State, are especially vulnerable to certain types of exploitation or environmental changes and have experienced long-term population declines and 2) species whose status in Florida has a potential impact on endangered or threatened populations of the same or other species outside the State.

I I'

TABLE 3-l (continued)

STATUS CATEGORY DEFINITIONS EXTRACTED FROM THE INVENTORY OF RARE AND ENDANGERED BIOTA OF FLORIDA (FCREPA, l976)

Status Category Definition Status Undetermined Species that are suspected of falling in one of the above categories but for which available data are insufficient to provide an adequate basis for their assignment to a specific category.

I I

I I

3.2 BIRDS Bird populations shift locally and seasonally so that at the South Dade Site, as in southern Florida in general, there is a continuous change in the spectrum of bird species present. There-fore, any inventory of birds must take into account summer residents, winter residents, permanent residents, migratory visitors, accidental visitors, and flyovers. To further complicate analyses, birds use different parts of their range for breeding, nesting, feeding, and basking.

Bird censuses were made every two months for one year at 12 terrestrial sites and along the shoreline, of the South Dade study area. Birds were identified by sight as well as by calls and songs.

Birds frequenting Arsenicker Keys, some 9 km NE of Card Point, were also noted.

The results of the bird study are presented in Tables 3-2 and 3-3 which list the species noted, their status (e.g.,summer resident, flyovers) and the habitats in which they are usually found.

Table 3-3 lists the rare or endangered birds that have been seen on or are presumed to use the South Dade study site.

A total of 79 species of birds were observed in the South Dade study area. An additional nine bird species listed by FCREPA have been reported in the vicinity but were not noted during this 3-5

I I

I I

I I

I

TABLE 3-2 BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)

Habitat in which bird noted Observed Offshore Residency in air Black rush/ Dwarf Fringe (within Cocmon name Scientific name* status space only Saw grass salt grass mangrove forest Other Anhinga anhinga anhinga Permanent resident canals American Bittern Botaurus lenciginosvs Minter resident Red-winged Blackbird agelaius phoeniceus Permanent resident Bobolink Dolichonyx oryzivorus Migratory visitor Cardinal Cardinaiis cardinalis Permanent resident Chuck-will's liidow Caprimvlgus vociferus Sucmer resident Double-crested Cormorant l halacrocorax auritus Permanent resident Hourning Dove Zenai da macroura Permanent resident Mood Duck Aix sponsa Permanent resident Cattle Egret Bubvlcvs ibis Permanent resident canals Comnon Flicker Colaptes avratus Permanent resident gb v'b American Goldfinch - Carduelis tristis Minter resident gb Glue,-gray Gnatcatcher Poliopcila caerulea Winter resident gb gb gb Goat-tailed Grackle guiscal uis ma jor Permanent resident gb Cocmon Grackle gviscalvs quiscvla Permanent resident Pied-billed Grebe Podilymbus podiceps Permanent resident Herring Gull Lares argentatus Winter resident Found dead, only fragments.

'n Bayhead.

c Probably seldom lands on South Dade site.

Homenclature according to Bull and Farrand, 1977.

I' TABLE 3-2 (continued)

BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)

Habitat in which bird noted Observed Offshore Residency in air Black rush/ Dwarf Fringe (within Corwen name Scientific name* status space only Saw grass sal t grass mangrove forest Other Laughing Gull icarus aericilla Permanent resident Ring-billed Gull larus delawarensis Minter resident Red-shouldered Hawk BuCeo lineatus Permanent resident Sharp-shined Hawk Accipiter striaeus Minter resident resident .canals Green Heron Butori des seri atus Permanent Glossy ibis Plcgadi s falcinel lus Permanent resident criseata Permanent resident gb Blue Jay Cyanoci Cea American Kestrel Paleo spa rveri us Minter resident Kil deer 1

Charadrius voci ferus Permanent resident Gray Kingbird Tyrannus domini censi s Sumner -resident; Belted Kingfisher Ãcgaceryle alcyon Suamer resident Eastern Headowlark Sturnella magna Permanent resident Ptirms polygloetos Permanent resident gb Hockingbird Red-breaster Herganser plergus scrrator Minter resident Conan ttighthawk Chordcilcs minor Sucmer resident Screech Owl Ocus asio Permanent resident Mhite Pelican Pelecanus erythrorhynchos Minter resident Found dead, only fragments.

'n Bayhead.

Probably seldom lands on South Dade site.

ttomenclature according to Bull and Farrand, l977.

I I

I l

I

TABLE 3-2 (continued)

BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)

Habitat in which bird noted Observed Offshore Residency in air Black rush/ Dwarf Fringe (within Cocmon name Scientific name

  • status space only Saw grass salt grass mangrove forest Other iastern Phoebe Sayornis phoebe Minter resident /b /b Black-bellied Plover Pluvialis squatarola Winter resident Yellow-bel lied Sapsucker sphyrapicus vari us Winter resident

/a,b Sanderling Cali dris alba Minter resident Coamon Snipe Capella gallinago Winter resident.

Barn Swallow Hir undo rus Ci ca Migratory visitor Tree Swallow Iridoprocne bicolor Winter resident White-eyed Vireo Vireo griseus Permanent resident I

Turkey Vulture Cacharces aura Permanent resident Blackpoll Warbler Dendroica sCria Ca Migratory visitor /b Palm Warbler Dendroica palmarum Minter resident /b Yellow-rumped Warbler Dendroica coronata Minter resident Horthern Waterthrush Seiurus noveboraccnsis Migratory visitor Cedar Waxwing Bombyci lie cedrorum Winter resident Millet Catoptrophorus semipalmatus Permanent resident House Mren Troglodytes aedon Minter resident /b Downy Moodpecker Picoides pubescens Permanent resident /b

" Found dead, only fragments.

1'n Bayhead.

c Probably seldom lands on South Dade site.

Homenclature according to Bull and Farrand, 1977.

I l

I

~

TABLE 3-2 (continued)

BIRDS FDUND WITHIN OR NEAR THE SOUTH DADE SITE (NOT ON RARE OR ENDANGERED LIST)

Habitat in which bird noted Observed Residency in air Black rush/ Offshore

  • Dwarf Fringe Cormon name Scientific name status space only Saw grass salt grass mangrove forest Other Red-bellied Woodpecker Cenrurus carolinvs Permanent resident gb gb Ye 1 1 owl egs Trinya spp. Winter resident Yellowthroat Ceorhlypis erichas Permanent resident a Found dead, only fragments.

In Bayhead.

Probably seldom lands on South Dade site.

Nomenclature according to Bull and Farrand, 1977.

l TABLE 3-3 RARE OR ENDANGERED BIRDS FPUND WITHIN OR NEAR THE SOUTH DADE SITE I 't ln cc not Observed Of/shore Protected cate Residency in air Black rush/ Owarf fringe twithin status s ce onl Sa ress Salt rase man rove forest m Other Scientific name Federal State fCREPA Peregrine falcon raise pereyrinvs Endangered Endangered Endangered liinter resident Brown Pelican Pet ecanuc occiden ca !is Endangered Threatened Threatened Permanent resident SOutnern Bald Eagle ical iaeecus levcocwphalus Endangered Threatened Threatened Pecvcanent resident wood Stork nycceria amecicana Endangered Endangered Rare winter visitor HagnifiCcnt frlgatebird Preface mayniricens Threatened Threatened Permanent resident Osprey Pamiion hcliaevs threatened Threatened . Permanent resident Colvmca levcocc'phaia Threatened Threatened Sucmer resident White-crcnmed Pigeon Leait Tern S cesar el bi franc Threatened Threatened Scsucer resident Roseate Spoonbill Ajija ajaja Threatened Rare Perranent resident Hcngrove Cuckoo Coeeycvs mfnor ThreatenCd Rare Pecccanent resident e Laj 1

Reddish Egret ryrec ea rufescens Percanent resident O w Antillean Ceighthawk Choraei les minor Perrancnt resident rican Redstart Secophcya ruCicilla Race Hlgratory visitor Black. whiskered Vireo vireo aieliolvus Scarcer resident yellow Warbler peIrirniea petechia Rare Pcrrancnt resident Louisiana Waterthrush .eclvrvs rmcavil la Rare Hlgratocy visitor Aeerican Avocet aevurvlroscra americana Special concern Winter visitor Least Bittern irvaryrhvs eriiis special concern lilnter visitor cases.radius ainus Special concern Pervonent resident can~la Cleat Egret cereeca Chvia Special concern Permanent resident canals Snowy Egret svcclcorar nvvcicnrar Special concern Perranent resident canals Black crowned iilghL Heron Creat Blue Heron aracw heresies Specie'I concern Permanent resident canals b I wc rorph y canals white mOrph Permanent resident bV.S. OePartment Of the interiOr. FiSh and Wildlife SerViCC. 1911. Endangered and threatened Wildlife. federal ReglStee'2()36):3642O-36431, JVly 14. 7972 state of Florida, Came and Fresh Water fish Commission. July 1971. Wildlife code of the State of Florida. Chapter 16 E-3. Tallahassee, Florida.

dflorida Committee on Rare and Endangered Plants and Animals. 1976; Inventory of rare and endangered biota of Florida.

Probably seldom lands on South Bade site.

ihrimrted in vicinity of South Bade study area but not observed during this bird survey.

ln Bayhcad,

'iiorenclature according to Bull and Farrand, 1911.

I I

I I

TABLE 3-3 (continued)

RARE OR ENDANGERED BIRDS FOUND WITHIN OR NEAR THE SOUTH DADE SITE t n r r note Observed .Offshore Protected cate o Residency in ~ ir Black rush/ Owarf fringe (within Scientlfi>> nance Federal State FCREPA status s ace onl Saw ress Salt ress nan rove forest 30 n Other tittle Blue Heron fprerra ceerules Special concerrr Pernanent resident canals Louisiana Heron rlvdranesss tricolor Special concern Perrsanent resident y canals Yellow.crowned Might Heron RycefCorax vrolacea Special concern Pernanent resident White ibis Cudccf sus claus Special concern Perrunent resident y r'anals Black Stirrer Rynchcps nl per Special concern Winter resident Caspian fern Sterne casple Special concern . Minter resident Royal Tern Sterne rMxlsus Special concern Pervranent resident Prairje Warbler oendrclcs discolor Special concern Persranent resident Hairy Woodpecker Plcoldes vlllosus Special concern Pernanent resident Merlin talco coluehsrlus Status tardetervained Minter resident Clapper Ra II Relies lunolroseris Status tardeto rrsined Pervranent resident Stoddard'S Warbler pendrofce dcnlnlce Status

~ rcddsfdl tardeterrelned Minter resident W.S. Oepartnent b State of the Interior. Fish and Wildlife Service. 1977. Endangered and threatened wildlife. Federal Register 42(136):36420-36431. Ju'ly 14 ~ 1977.

of florida. Cane and fresh Mater Fish Cosrsisslon, July 1977. Wildlife code of the State of Florida, Chapter 16 E-3. Tallahassee, Florida.

Florida Cocllttee on Rare and fndangered Plants and Aninals. 1976. Inventory of rare and endangered biota of Florida.

d Probably soldan lands on South Dade site.

f Reported in vicinity of South Olde study area but not observed during this bird survey.

In Bayhead.

Honenclature according to Bull and farrand, 1977.

g i

~

I

study. Red-winged blackbirds and prairie warblers were the most fre-quently observed birds in terrestrial areas. Among the aquatic birds the most common birds along the coast were, in decreasing order, the little blue heron, white ibis, great egret, and snowy egret. In-land from the tidal mangroves, the number of species was reduced and the snowy egret was the most common aquatic bird. The higher diversity and density of birds along the coast reflect the abundance of prey organisms.

Of particular interest to this study are the rookeries of the Arsenicker Keys and Mangrove-Key. An estimate of the numbers of nesting birds was made from counts at the dawn outflights from the rookery. Conservative estimates of the numbers of birds nesting in these rookies were:

~Secies Estimated Population Cattle Egret 2500 White Ibis 1000 Great Blue Heron Little Blue Heron Great Egret 500 total Snowy Egret Loui s i an a He ron Double-crested Cormorant 200 In addi tion to the above species, six anhingas in breeding plumage were flushed from West Arsenicker Key, and reddish egrets, green herons, turkey vultures, and cormorants were noted. A bald eagle nest containing one egg was noted during two consecutive years.

3-12

I I

Ii I

I I

Three general pathways to feeding grounds were followed by the birds in the Arsenicker Keys rookeries (Figure 3-1 ). The major-ity of the birds flew northwards to Turkey Point where they either continued northward or turned inland and headed northwest. A smaller group left the rookeries and flew inland and northward. A third, much smaller, group flew west or southwest over the South Dade Site'.

Small numbers of white ibises and a very few herons and egrets, possibly less than 10% of the rookery's breeding birds, foraged in the vicinity of the South Dade Site during this study.

3-13

I I

I I

4i BLACK POINT e~ f ') -N-FENDER POIIVT j

HOMESTEAD

~

AIR FORCE o' ~" BASE .~." 8/ SCA VIVE L f' L

I 8~V I HOMESTEAD e FLORIDA CITY tI9 I L TURKEY f POIjVT r--~ I C)

~o 6'EST O ARSENICKER KE I yl MANGROVE ARSEIVICKER

)

TURKEY~~ KEY@ 0 KEY POINT MANGROVE COOLING POINT LONG I

~CANALS ARSEIVICKER KEY I D EAST ARSEIVICKER KEY r'o I

I g F.P. 8 L. CARD SOUND

( PROPERTY LIMITS Study r

\ r---- o>>~~co""

LEGEND I ~

J r ~ +POINTops CARD SCALE IN MILES I 0 I 2 W HI T E IB IS O I 2 SCALE IN KILOMETERS I)III CATTLE EGRET gggg OTHER CICONIIFORME S Figure 3-1. Outf1ight patterns from Hest Arsenicker Key rookeries, May 1977.

3-14

I I

I

3. 3 Marana1 s The small mammal population at the South Dade Site was quantitatively sampled by live trapping at sampling grids located in different vegetation zones. Sampling was conducted every two months for six consecutive days over the course of a year. Larger or scarce mammals were inventoried by observation or indirect evi-dence such as tracks or droppings.

Five species of mammals were trapped during the study and five other species were observed (Table 3-4). The raccoon was .the most wide ranging of the species trapped and showed little preference as to habitat.

Three species of rats were collected during the study. Black rats are excellent climbers and are known to live and nest in trees and bushes. During the study they were found in the saltwater marshes, hammocks, and fringe forest. Cotton rats were found in areas with tall grasses and herbs. These rats are poor climbers and nest in burrows or on the ground. The rice rat is found in a wide range of habitats but prefers cover. This rat is a good climber and swimmer and constructs its nest in shrubs or grasses above the high water level. The rice rat was the most frequently collected mammal.

Populations of cotton rats and rice rats increased with distance from the shore while black rat populations decreased.

3-15

I I

I I

I I

I I

55 TABLE 3-4 MAMMALS COLLECTED OR- SIGHTED IN THE SOUTH DADE SITE AND VICINITY Habitat in whi h ll d ringe Scientific No. trapped Saw- B ac Rus Dwarf Common Name Name during 1-yr stu~ rass Sal t Grass Man rove Forest Shore Rice rat Oryzomys pal ustri s 175 Cotton rat Sigmodon hispidus 85 Raccoon Procyon lotor 58 Black rat Rattus lattus 50 House mouse Hus musculus 1

~Si tlb d:

White-tailed deer odocoileus virginianus Marsh rabbit Sylvi lagus palustris Bobcat Lynx rufus a

Manatee Trichechus manatus Dolphin Tursi ops truncatus a Classified as endangered by U.S. Dept. of the Interior, Fish and Wildlife Service, 1977.

Endangered and threatened wildlife and plants. Federal Register 42(135):36420-36431, July 14, 1977.

I I

i t

I,

White-tailed deer and deer signs were observed in upland areas west of the present Turkey Point cooling canal system north of the South Dade Site. Marsh rabbits prefer dense cover and were observed mostly in the north and northwest. Bobcats were not seen during the study but numerous sightings have been reported in the area by other observers. The bobcats are believed to be found on the northern and western portions of the FPL property.

Two species of aquatic mammals were noted during the mammal survey. Three Florida manatees, classified as endangered by the U.S. Fish and Wildlife Service, were noted in South Florida Water Management District's canals in the study area. Bottle-nosed dol-phin were noted on two occasions in Card Sound off the eastern bor-der of the property.

3-17

I I

3.4 REPTILES AND AMPHIBIANS Reptiles and amphibians were censused from opportunistic sightings during regular ly scheduled terrestrial and aquatic bio-logical sampling programs. Other species were captured by sweep nets during 36 days of insect sampling. Additions to the census were also made through call identifications made on two night field trips.

The reptiles noted in end adjacent to the South Dade Site were a diverse group that included crocodilians, anoles, turtles and snakes. The species observed in the study area are listed in Table 3-5, and four species of reptiles sighted outside of the study area are given in Table 3-6.

Three species classified as rare and endangered by the U.S.

Fish and Wildlife Service were observed in the vicinity of'he South Dade Site. These species are the American alligator, the American crocodile, and the eastern indigo snake.

Although federally classified as threatened in Florida, the American alligator is increasing in numbers in Florida. The FCREPA has classified the alligator as a species of special concerns 3-18

I I

I I

I

TABLE 3-5 REPTILES AND AMPHIBIANS OBSERVED WITHIN THE SOUTH DADE SITE Habitat in which noted Black rush/ Dwarf Fringe Cottuen name Scientific name* w rass Salt rass man rove Forest REPTILE Bark Anole anolis distichus Green Anole anolis carolinensis carolinensis Brown Anole anolis sagrei Corn Snake Elaphe guttata gutcata Eastern Diamondback Rattlesnake Crotalus adamanteus Eastern Indigo Snake Drymarchon corais couperi Florida Water Snake Natrix -fascia ta pictiventris Hangrove Water Snake Natri x fascia ta conpressicauda Everglades Racer Col uber constrictor pal udicola AHPHIBIAN Florida Cricket Frog Rcris gryllus dorsalis Greenhouse Frog Eleutherodactylus planirostris planirostris Pig Frog Rana grylio Southern Leopard Frog Rana utricularia Cuban Treefrog Nyla septentrionalis Green Treefrog Nyla cinerea a

Classified as a species of special concern by Florida Connittee on Rare and Endangered Plants and Animals. 1976.

Inventory of rare and endangered biota of Florida.

Nomenclature according to Conant, 1975.

I I

I I

I I

TABLE 3-6 REPTILES SIGHTED OUTSIDE OF SOUTH DADE SITE L-31-E Sea-Dade Borrow Interceptor Common name Scientific name* Canal Canal Ditch American Al 1 i gator ajli gator missi ssi ppi ensi s AmeriCan CrOCOdile Crocoayius acutus Water turtles Chrysemys Spp.

Florida Softshell Tri onyx ferox

> Classified as threatened in Florida by the U.S. Department of the Interior, Fish and Wildlife Service. 1977. Endangered and threatened wildlife and plants. Federal Register 42(135):36420-36431, July 14, 1977.

Classified as endangered by U.S. Department of the Interior, op. ci t.

Nomenclature according to Conant, 1975.

3-20

I I

I I

I

Alligators prefer freshwater wetlands, so much of the study area is marginal for this species due to saline conditions. however, small numbers of alligators may occur almost anywhere on the FPL property. The most suitable habitat in the study area for alli-gators is the saw grass zone and the adjacent canals. The total number of alligators on the FPL property appears small and the study area contains limited alligator habitat.

The American crocodile is classified as endangered on both the FCREPA and federal lists, and is considered endangered through-out its total range. The FPL property is within the historical and present range of the American crocodile. They have occasionally been see along the mainland shoreline of southern Biscayne Bay, Card and Barnes Sounds, in the borrow canal of Levee 31-E, and in the Sea Dade Canal on and adjacent to FPL property. Crocodiles appear to be attracted to man-made canals and borrow pits because they prefer deep, quiet-water sites.

A minimum of 3 adult-sized crocodiles (2 m or larger) were at least seasonal residents along the north-south leg of the Interceptor Ditch during 1975 and 1976. A dead juvenile (25 cm) was found during September 1976 in the adjacent western-most cooling canal.

3-21

I I

I I

I I

I I

The eastern indigo snake, which occurs throughout peninsular Florida, has been reported from the saw grass zone of the FPL prop-erty. This snake is generally an inland species that does not utilize brackish water habitats. Therefore, most of the South Dade study area is marginal habitat for this snake.

3-22

I I

I I

I I

gualitative fish surveys were conducted bimonthly to determine the kinds of fishes present at the South Dade Area and the habitats with which each species is associated.

The composition of fish populations is influenced by many factors such as water depth, salinity, temperature, and bottom cover.

Restrictive chemical factors include low oxygen levels in the plugged canals and high salinity levels on hypersaline flats. Under these conditions, entire populations at times are restricted to a single species. Nevertheless, the fish of the study area wetlands may occur in sufficient numbers to be the most important food resource in an otherwise impoverished aquatic environment.

Twenty-four species of fish were collected at the South Dade Area and four additional species were observed. Table 3-7 lists the species noted and the habitats in which they were found.

Use of these habitats is often seasonal. During the dry season the inland areas are dry, with the exception of scattered ponds. During the wet season, however, these areas often support relatively large populations of sma'll fish.

The most commonly netted fishes, and probably the most import-ant in terms of their place in the food web, were the mosquitofish, 3-23

I I

I I

I I

I

TABLE 3-7 FISHES COLLECTED AND OBSERVED AT THE SOUTH DADE AREA Mabitat in which noted Tidal creeks c>,~ c~ co d

o+~ ee ~+ N+ c". oc

~C ,c, e+ q c+ co + +

Conmon name Scientific name Great Barracuda Sphyraena barracuda Pygmy Fi lefish Bonacanchus serifer n Canbusia rhizophorae found occasionally in tidal creeks Hangrove Hosquitofish Bluestripe Grunt Haemulon sciurus Crested Goby . tophogobius cyprinoides Crevalle Jack Caranx hippos Ki llifish Fundulus Sp.

Oiamond Killifish adinia xenica Goldspotted Ki llifish Floridichrhys carpio Rainwater Ki llifish sucania parve Sheepshead Hinnow Cyprinodon variegaeus Hojarra zucinosromus spp.

Sailfin Holly Poecilia laripinna Hosquitofish Card>usia affinis Mullet Bugil sp.

Redfin tteedlefish Serongylura norara ie t reatene t on ttee on are an n angere ants an noma s, nventory n rare an en angere iota ass) as y e a Comm of Florida.

ttomenclature according to Bailey, et al., 1970.

m m m m m m m m m m m m m TABLE 3-7 (continued)

FISHES COLLECTED AND OBSERVED AT THE SOUTH DADE AREA Habitat in which noted Tidal creeks Cp Cp

~e b ~Q ~C' QC c+ < ck <o o~~ 4' c~

ee~ w+ e~ oc Comnon name Scientific name " 4~ ~ c~ a~ f, +

Pinfish Cagodon rhonboidcs Pipefish Sygnathus Sp.

Checkered Puffer Sphoeroidcs testudineus Blue Runner Caranx crysos Schoolmaster tutjanus apodus Hardhead Silverside ntherinoxorus stipcs Smalltooth Sawfish pristis pcctinata Sharks Elasmobranchs Gray Snapper Lutjanus griseus Snook Ccntropomus undccinaiis Southern Stingray Dasyatis aneri cane Tarpon Hegalops atiantica Gulf Toadfish Opsanus beta a Classified as threatened by the Florida Comnittee on Rare and Endangered Plants and Animals, 1976. Inventory of rare and endangered biota of Florida.

  • Nomenclature according to Bailey, et al., 1970.

I I

I

rainwater killifish, hardhead silverside and mojarras. These fish are fed upon by larger carnivorous fishes and wading birds.

No species of fish currently listed as threatened or endan-gered on any federal or state list is known to occur within 50 miles of the South Dade study area. The mangrove mosquitofish, which was found occasionally in tidal creeks in the South Dade study area, is classified as threatened by the Florida Committee on, Rare and Endangered Plants and Animals (FCREPA). This species is restricted to red mangrove areas and in Florida it occurs commonly in tidal creeks with good water movement.

3-26

I I

I I

I

~

l

3. 6 SELECTED INVERTEBRATES 3.6.1 Soil Macroinvertebrates guantitative soil samples were taken at terrestrial stations in representative habitats to determine the kinds and abundance of soil macroinvertebrates in the South Dade Area. Underwater sites were sampled with a Ponar dredge. Most macroinvertebrates were found within 20-30 cm of the surface. Table 3-8 lists the species of soil macroinvertebrates and the habitats in which they are found.

Although a representative range of substrates were sampled in each area, the number of soil macroinvertebrates collected was generally small. The exception was in the fringe forest where a large number of annelid worms were collected at the banks of the creeks. The fringe forest yielded the largest number of species and individuals.

Surface and Arboreal Molluscs Surface and arboreal molluscs were inventoried at each of the stations used for soil macroinvertebrates. Five species of surface and arboreal molluscs were collected (Table 3-9). Four of the five species were collected from the ground in the dwarf mangrove zone and in the fringe forest zone. These molluscs are primarily herbi-vores and detritivores and are fed upon by numerous wading birds and raccoons.

3-27

I I

I I

TABLE 3-8 SOIL MACRO INVERTEBRATES COLLECTED AT THE SOUTH DADE AREA Habitat in which noted Saw Black rush/ Dwarf Fringe Common name Scientific name rass Salt rush mangrove forest Sea scud Gammarus fasciatus Ribbon worms Lineus Sp.

Amphi porus i mpari spi nosus Amphi porus Sp.

Flat worm Mgremeci plana elegans Centipede Geophilus umbracticus Sow bug onisci us asselus Pill bug Cgaethura cari nata But terfly (pupa) Lepi doptera Fly Geosargus Polychaete worms Cirratulus Sp.

Nereis pelagica Nerei s li mnocola Nereis SP.

Harphgsa bella" Narphgsa lei dpi Arenicola cristata Terebellidae 01 i gochae te worm . Tubificidae 3-28

I I

I I

I

TABLE 3-9 SURFACE AND ARBOREAL MOLLUSCS COLLECTED AT THE SOUTH DADE AREA Ha itat sn whic noted Saw Black rush/ Dwarf Fringe Common name Scientific name* grass Salt rass man rove forest Ladder horn shell Ceri thedi a seal ari formi s Coffee melampus Melampus coffeus Common crowned conch Melongena corona Angulate periwinkle -Li ttorina angulifera Florida marsh clam Polymesoda mari tima

  • Nomenclature according to Abbott, 1974.

I I

I I

I

3.6.3 Insects and S iders Insects and spiders were collected for three consecutive days and nights every two months at stations in representative habitats.

Insects were collected during the day using specialized nets for both aerial and vegetation sweeps. Collection techniques were standardized,so that comparisons of relative abundance could be made.

Insects were collected during the night using a CDC miniature light trap. During the initial night trapping session, three locations were selected within each sampling site for the purpose of achieving representative samples.

The 139 species of insects, 36 spiders, and 8 other arthro-pods collected are listed in Table 3-10 by the habitats in which they were found. Seasonal changes in diversi ty and number of individuals were seen in both day and night collections. During the dry month of April 1975, the light traps generally yielded fewer than 10 animals.

With the onset of summer and the rainy season, there were, increases of up to three orders of magnitude per trap-night. As is generally the case with summer insect populations, the dipterans were responsible for this marked increase. Hosquitos were the most numerous dipterans.

The most common mosquito in the area was the salt-marsh mosquito, Aedes taenia ozhgnchus.

3-30

I I

~

)i

TABLE 3-10 INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw ac rus / Dwarf Fringe Common name Scientific name rass Salt rass man rove forest INSECTS Plant hopper Acanalonia Sp.

Slant faced grasshopper Acridinae Short horned grasshopper Zeptysma margi nicolli s Romalea microptera Paroxga clavuli ger Sebi stocera obscura Stenacris Sp.

S tenacri s vi teri penni s uni den ti fi ed s p.

Dame rs Aeshni dae Flea beetles Al ticinae Drug store beetle Anobi i dae Flat fungus beetle Aradidae Bees Zylocopa Sp.

Apis m lli fera Owl fly Ascalaphidae Robber fly As i l i dae Gi ant waterbug Lethocerus grise us Roaches Latiblattel j.a rehni (?)

Cari blatta SP.

unidentified sp.

Aglaopteryx Sp.

Braconids Braconidae

I

~

l

~

I

TABLE 3-10 (continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw ac rus warf Fringe Common name Scientific name* rass Salt rass man rove forest INSECTS (continued)

Ground beetle Poeci lus l ucublandus Agon um docorum f

uni denti ied sp.

Wood borer Elaphidion

'ucronatum

(?)

Spittlebug Prosapa bi cincta unidentified sp.

Chal cid Chalcididae Moths Cosmopterygidae Ni dge Chronomidae Lace wing Chrysopa Sp.

Leaf hopper Cicadellidae Cixiidae Mealy bugs Pseudococcus sp.

Tea scale Forinatheae Ladybird beetle Ceratonegi lla maculata Narrow winged damsel fly Ischnura ramburi unidentified sp.

Beetles Bostrichidae Chrysomel i dae Lagriidae (?)

Scarabaeidae (?)

unidentified sp.

Mosquito Aedes taeni orhI jnch us Anophel es Culex unidentified sp.

3-32

I TABLE 3-10 (continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whse note Saw ac rus / warf Fringe Common name Scientific name rass Salt rass mangrove forest INSECTS (continued)

Snout beetle. Curculionidae Flies Di ptera Mycetophi 1 i dae Doli chopodidae Muscidae Cecidomyidae Ceratopogonidae unidentified sp.

Long-legged flies Dol i chopodi dae Click beetle El ateridae Shorefly Ephydridae Pl anthopper Flatidae Ants Camponotus herculeanus I unidentified sp.

Planthoppers Acanaloni a Sp.

Ful gori dea No common name Gasteruptiidae Measur ing worm Geometridae Water striders Gerridae Whirl i gi g beetle Dineutus Sp.

No common name camptonocus caroli nensi s 3-33

I I

I

TABLE 3-10

('continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw ac rus / warf Fringe Common name Scientific name* rass Salt rass mangrove forest INSECTS (continued)

Crickets Remobui s Gryllus Crit oxi pha unidentified sp.

Mining bees Hali ctidae Pl ant beetle pti 1odactyla angustata Bugs Miridae (?)

unidentified sp.

Ski pper Hesperiidae Scale insect Coccidae unidentified sp.

Water scavenger beetle Hydrop hi 1 i dae Yellow faced bee Hylaeinae Ichneumons Rhyssella Sp.

unidentified sp.

Termites Isoptera Butterf1 i es, moths Lepidoptera Liparidae (?)

Ge 1 echi i dae Grass fly Leptogastridae Common skimmers pachgdiplax longipennis/

Libellula Sp.

sp. v'nidentified 3-34

I TABLE 3-10 (continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in which note Saw ac rush/ Dwarf Fringe Common name Scientific name* rass Salt rass mangrove forest Gossamer-winged butterfly Lycaenidae ( ?)

Seed bugs Lggae us Man ti ds Thesprotra grani nis Gonatista gri sea v'hanti Stagnvmanti s carolina uni denti fied s p.

Mantid flies spa Leaf cutting bee Megachi 1 i dae Fl annel moth Megal opyge operculari s No common name Megal opygi dae Blister beetle zpicauta sp.

Cotanon fly Muscidae Brush-footed butter fly Danaus plexi ppus unidentified sp.

Dragonfly Odonata Stink bugs Pentatomidae Walking stick Ani somorpha buprestoi des unidentified sp.

Ambush bug Phymatidae Sul fur butterfly Pieridae Mealy bugs pseudococcus Sp.

3-35

I I

I

TABLE 3-10 (continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw ac rus Dwarf Fringe Common name Scientific name* rass Salt rass man rove forest INSECTS (continued)

Bagworm Thri doptergx ephemeraeformi

'Assassin bug Reduvi idae Flesh fly Sarcophagidae Io moth Autom ris io Fungus gnat Sciaridae Engraver beetle phthorophloeus frontalis (?)

Shield back bug Scul tel 1 eri dae Solitary wasp Chlorion Sp.

unidentified sp.

Flower fly Syrphi dae Horse, deer, fly Chrysops Sp.

Tabanus sp.

No common name Taehinidae (?)

Crane flies Ri pul i dae Pygmy grasshopper Parati tti x rugosus TI Katydid Microcentrum Sp. (?)

Orcheli um sp. (? )

Mi crocentrum rhombi foji um (?)

un i den ti fied sp.

3-36

I I

I I

I I

TABLE 3-10 (continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in whic note Saw ac rus / warf Fringe Common name Scientific name rass Salt rass mangrove forest INSECTS (continued)

Caddi s fly Trichoptera Hydropti 1 i dae unidentified sp.

Cri eke ts Crytosipha 'p.

Paper wasp Pol istinae Polistes Sp.

unidentified sp.

SPIDERS White eyed spi der Ti tanoeca americana spider Clubionidae Aniphaenidae unidentified sp.

unidentified sp.

Araeneae Orb spider Cyclosa Sp.

Argi ope aurantia Verrucosa Sp.

Gasteracantha li el psoi des Zeucauge venusta Argiope araentata Acanthepei ra stel j.ata Argiope SP. (?)

Araneus Sp.

Mecynogea lemni sea ta Eustala Sp. (?)

Nephi la clavi pes unidentified sp.

Hunting spider Gnaphosidae Sheet-web spider Linyphilidae (?)

3-37

I I

I

TABLE 3-10 (continued)

INSECTS COLLECTED IN THE SOUTH DADE AREA Habitat in which note Saw B ac rus / Dwarf ringe Common name Scientific name rass Salt rass mangrove forest SPIDERS (contInoed)

Wol f spider Pardosa sp, Zycosa sp, unidentified sp.

Spider-hunting spider pro'sp.

Nursery web spider Pi saurina, mi ra

-Dojomedes sp.

Jumping spiders'entzia sp.

Phi di ppus audax Peckhamia pi cata Metacgrba undata Marpi ssa pikei unidentified sp.

Four jawed spiders Leucauge Sp.

Tetragnatha straminea Cob-web spider Argyrodes elevatus OTHER ARTHROPODS Scud Amphipoda Scorpions Centruroides gracilis Centruroi des hentzi Centi pedes Geophilomorpha Sp.

l Arenophi us S p.,

I Pill bugs Ligia Sp.

-unidentified Tick Amblyomma maericania 3-38

I Generally, the summer season yielded the greatest abundance and diversity of insect life. Numbers of insects and spiders corre-lated with plant diversity due to the increase in ecological niches.

Values of the mean, standard error and range of diversity were plotted against month of collection (Figure 3-2). The mean species diversity in the fringe forest over the course of the year was consistently less than one. This low diversity was due, in part, to the small numbers of niches afforded by an almost homogeneous plant community. Also, tidal inundations precluded ground forms. During August, species diversity declined in all zones except the saw grass zone which showed the highest species diversity for the year. During October, while the saw grass zone showed a slight decline, all of the other zones showed a clear increase in diversity. It is probable that maximum breeding success occurred in the saw grass zone in August.

Dispersion from the saw grass into the other major zones resulted in a secondary diversity peak in the more saline areas in October.

'I Figure 3-2 shows that the greatest mean diversity occurred during April in all but the saw grass zone. This indicates that perhaps more niches are available in these zones during the winter-spring dry season. Peak insect diversity corresponds with important bird nesting seasons. Many birds depend solely on insects for food or shift to an exclusively insect diet during breeding season.

3-39

I I

I I

I I

I I

I I.oo

)

fl CD o.so SAW GRASS ZONE I

i.oo C/)

)

OC LU O.SO I~

BLACK RUSH/SALT GRASS ZONE l.o 0 C/I

)

M O,SO lm DWARF NNGROVE ZONE I

Coo C/s

)

cs:

UJ oso FRINGE FOREST ZONE Figure 3-2. Diversity of day insect collections (mean, range and standard error),

South Dade Area.

3-40

I I

I I

I I

I I

I I

No rare or endangered insects, spiders, or other arthropods were collected or noted in the South Dade Area.

3-41

I I

I I

Zooplankton is a major part of the food chain linking the South Dade Area to the Card Sound ecosystem. Zooplankton feed on detritus, phytoplankton, and other zooplankton. As the zoo-plankton is flushed from the estuaries, it becomes food for other animals such as invertebrates and fish. Zooplankton samples were collected monthly using a bilge pump fitted with a wide-mouth funnel to minimize avoidance.

A list of the zooplankton groups collected at the South Dade study area and their relative abundance in various habi-tats is given in Table 3-11. Copepod crustaceans were the most important component in the zooplankton. In general, the concentrations of copepod nauplii decreased in the direction of mouth and embayment stations because salinity values were higher seaward. Acm Cia tonsa, one of the most important copepods in Biscayne Bay and Card Sound, predominanted in near-shore areas. A. tonsa tolerates very low salinities and achieves maximum production at a salinity about one-half that of seawater (Barlow, 1955). Therefore, it appears the A. fossa in Card Sound and Little Card Sound is supplemented by copepod production 3-42

I I

l I

in lower salinity tidal creeks. Peak copepod production usually occurred in September when wet season conditions caused low salinities.

3-43

I, I

I I

I

TABLE 3-11 ZOOPLANKTON GROUPS COLLECTED AT SOUTH DADE AREA AND THEIR RELATIVE ABUNDANCE BY HABITAT (A=abundant; C=common; 0=occasional) i a ree s Plugged Open Saw Black Rush/ Dwarf Mi d- Embay-S ecies or Grou canal canal rass salt rass man rove Source creek Mouth ment CRUSTACEANS Copepods Nauplius Harpacticoid copepodite Calanoid copepodite Cyclopoid copepodite Harpacticoid adult Calanoid adult Ostracods Naupli us Adult Cladocerans Adult Decapods Zoea 0 Barnacles Nauplius ROTI FERS Adult ANNEL IDS Polychaeta 1 arvae lSLLUSKS Gastropod veliger Pelecypod veliger TUNICATES Larvacean

I I

I I

3.6.5 A uatic Molluscs Molluscs were sampled every two months by Ponar Dredge at sampling stations located in representative habitats throughout the South Dade study area. A list of the mollusc species collected in the study area is presented in Table 3-12.

The 36 molluscan species collected in Ponar Dredge samples are typical members of subtropical seagrass or mangrove habitats.

These species exhi bit a wide range of salinity tolerances and are found from marine to brackish environments. The highest diversity of molluscs was found at the creek mouths.

3-45

I I

I

TABLE 3-12 AQUATIC MOLLUSCS COLLECTED WITHIN THE SOUTH DADE AREA Habitat in which noted Tidal Creeks 81ack rush/ Dwarf Fringe Plugged Open Ni d-Coo+on name Scientific name* Saw grass Salt grass mangrove forest canals canals Source creek Youth Embayment Adam's ark arcopsis adamsi Variable bittium Diastona varium Channeled barrel-bubble acteocina canali cuiata Striate bubble Bulla striata 8road-ribbed cardita Cardi tanera fioridana f or i da 1 marsh clan polynesoda nari tiru Horse conch Pieuropioca yi yantea Cross-barred chione Chione canceilata Coffee-bean snail Helanpus coffeus Atlanta cyclinella Cyclinella teni us Greedy dove shell anachis avara Gem shell Gems yemen Black horn shell Bati iiaria niniau Dotted horn shell Ceri thiun nuscarum Ribbed horn shell Cori thidea scaiariformi s Homenclature according to Abbott, 1974.

I I

I I

TABLE 3-12 (continued)

AQUATIC MOLLUSCS COLLECTED WITHIN THE SOUTH DADE AREA Habitat in which noted Tida Creeks Black rush/ Dwarf Fringe Plugged Open Nid-Corrrnon name Scientific name* Saw grass Salt grass mangrove forest canals canals Source creek Youth Embayrrznt File keyhole limpet zucapinella limatula Striped false limpet slphonaria pectinata Little white lucine codakia orbiculari s Harginella Harginclla apicina Atlantic modulus Nodulus modulus Conrad's false mussel rrytilopsis lcucophaeata Scorched mussel Brachidontes exustus Tulip mussel ra>diolus armricanus Virgin nerite Neri tina virginea Adele's dwarf olive olivclla adclac Southern periwinkle bfttorina anyulifcra Caribbean risso Rissoina bryerca Smooth risso Zcbina brovniana Florida rock-shell Thais hacmastoma floridana Spotted slipper shell Crepidula maculosa Nomenclature according to Abbott, 1974.

I I

I I

TABLE 3-12 (continued)

A(VATIC t'tOLLUSCS COLLECTED WITHIN THE SOUTH DADE AREA Habitat in which noted ada Creeks Black rush/ Dwarf Fringe Plugged Open- Hid-Cordon name Scientific name* Saw grass Salt grass mangrove forest canals canals Source creek Youth Embayment Conrad's transennella rransennella conradina Da'l 1's turboni lie l rurboni la dal li Stellate turrid Bancelia srellara Pointed venus anortal oca rdi a a uberiana Hottled dog whelk Nassarius vibex Trellis wentletrap Epi roni um lanel losum

  • Nomenclature according to Abbott, 1974.

I I

I

3. 7

SUMMARY

The South Dade Area is unsuitable to the large wading birds as a rookery or nesting area. Egrets, herons, storks, and similar forms prefer. as nesting areas small islands, such as the Arsenicker Keys and Mangrove Key, or dense wooded areas with tall trees. The South Dade Area lacks the security of tall trees and the water barrier'ffered by islands. Although it is possible that the wading species might nest on the site, the easy access by predators renders it marginal. Field data from several consecutive years. confirm the absence of rookeries on the South Dade Area. The area is used, however, as a feeding ground and forage area for an estimated 10Ã of the Arsenicker Key rookery.

The South Dade Area provides an excellent habitat for rice and cotton rats, black rats, and raccoons. All are common and, in some instances, are considered nuisance species. Deer, rabbit and bobcat were occasionally observed'. With the excep-tion of manatees in adjacent South Florida'Water Management District canals, no rare or endangered mammals were observed on the South Dade Site.

The American alligator and American crocodile, both considered rare and endangered in Florida by the U.S. Department of the Interior, were observed near the South Dade Area.

3-49

As compared with upland, drier habitats found in south-eastern Florida, the South Dade Site is marginal for the snakes and turtles common to the region.

Fish studies provided about 30 taxa, all relatively common to estuarine habitats. With the exception of the mangrove mosqui-tofish (listed by the Florida Committee on Rare and Endangered Plants and Animals), no endangered fishes were observed. The tidal creeks and fringe forest areas of the South Dade Area are considered excellent feeding and forage areas for nearshore fish species. The remainder of the area may at times-provide good habitats for salt-tolerant and fresher water small fish species; however, the majority of the area has insufficient water most of the year to support fishes.

3-50

I I

I I

I

4.0 EXPERIMENTAL STUDIES

4.1 INTRODUCTION

Experimental studies were performed at the South Dade Area to determine the vegetation peak standing crops, the effects of soil characteristics on plants, nutrient turnover in salt marshes, and the possible influence of groundwater seepage on mangrove eco-sytems. These studies were relatively complex, and required an understanding of both energy and nutrient flux within the ecosystem.

The best approach was to reduce the task to easily-identified com-ponents within the ecosystem, from this derive a composite of the parameters and produce a reasonably cohesive picture.

The conceptual approach to determining the productivi ty of the ecosystem was to measure how much energy or material entered the system, how much remained, and how much was transported for use elsewhere. Vegetative material in the form of peak standing crop provides an estimate of productivi ty, or at least carrying capaci ty, of a habitat, The more mobile, and therefore transient,,animal components of a habitat are excluded. Standing crops information, however, does not provide any insight as to the rate of vegetative production. This rate must be measured in terms of organic carbon productivity, or how much carbon is "fixed" or incorporated within the ecosystem. Organic carbon, found in living and dead plant and animal tissues, returns to the nutrient pool following death and decay of plant products'-1

I I

I

How organic carbon and nutrients were transported from one habitat to another required examination of the transport mechanisms available to export particulate and dissolved substances into adjacent Card Sound. Water, both from rainfall runoff and cyclical hydraulic fluctuation caused by tides,was the principal mechanism.

Elucidation of water's role in transport required a thorough under-standing of tidal amplitudes which control the volumes of water washed in and out of the habitat (see Section 4.4.2: Hydraulic Studies).

4.2 VEGETATION PEAK STANDING CROPS Estimates of vegetation peak standing crops were made to identify the vegetative components of the ecosystem that contribute to the overall plant biomass of the area. After the standing crop of individual plant species which inhabit the area is measured, some determination as to the relative importance of each species may be made. Relative importance is a subjective evaluation, based upon I

site study data, of the amount of material each species can make available to the ecosystem. This material, in the form of roots, leaves, wood, and other litter products, can then be analyzed for nutritive value.

4.2.1 Nethods In order to describe vegetation peak standing crops on the South Dade study area, several low-level aerial surveys were made.

4-2

I I

Vegetation zones were delineated through interpretation of several infrared photographs of the study area. The quantitative vegetation analysis was performed along a 3700-m study transect (Figure 4-1) which extended from a point on the Model Land Canal southeast to Card Sound. To determine biomass by means of destructive sampling, off-transect. study areas were identified and used to prevent the sampling from having an effect on the processes under study along the transect.

Study parameters included species densities and areal coverage, vegetative biomass, leaf morphology, and dwarf mangrove population structure.

4.2.2 Results S ecies densities and areal covera e A point-grid analysis of the area represented by each of these vegetative components resulted in the values given in Table 4-1.

Although major vegetation zones have been identified and areal coverages computed in terms of hectares and percentages, it must be clearly understood that vegetation zonation is a gradual blending of different plant species from one habitat into another. Mangrove species are particularly well adapted to all of the habitats and salt regimes at South Oade; consequently they appear in all habitats, but in various amounts. Table 4-2 demonstrates the various densities by habitat. Red mangroves occur at all station locations; however, 4-3

E "I

I I

I

M W W

~(jr 6 P" I 4l arlseI.T. Stat'tl 1UCa 1Qt"IS l)dd r,embers have beer. de;eted due :o space t tg COIISIItBrht;lo!JS.

( I om I

pan~

~~QB c +2k

'r'

/Y Little Card 5ouna

I I

I I

I

TABLE 4-1 VEGETATION TYPE AND AREAL COVERAGE OF MAJOR ZONES OF THE SOUTH DADE SITE Percent Ve etation t e Hectares(Acres) Covered Fringe forest 142.0 (35l) 3.3 Dwarf mangrove 1304.0 (3222) 30.7 Black rush/

salt grass 424.4 (1049) 10.0 Saw grass 1630.3 (4028) 38.3 Saltwater hammock 264.8 (654) 6.2 Freshwater hammock 488.1 (1206) 11. 5 Total 4252.5 '(10508) 100.0 4 5

) i TABLE 4-2 DENSITY OF MANGROVE SPECIES (INDIVIDUALS/m ) ALONG THE SOUTH DADE STUDY TRANSECT Station Red man rove Black man rove Mhite mangrove 2 0.02 0.06 0.30 8 0.02 0.01 4.03 16 0.01 0.01 1.08 23 2.17 0.14 0.38 30 3.72 37 3.17

  • The omission of values for the density of black mangrove and white mangrove below Station 23 indicates their absence as a significant component of the vegetation. Although black mangrove is occasionally found below Station 23, the frequency is too small for meaningful density measurements.

4-6

4 I

I I

I I

the number of individuals per square meter changes from 3,17 to

0. 02/mz.

Ve etative Biomass The above-ground biomass measurements of vegetation showed the distribution to be in both horizontal and vertical directions.

These measurements were taken at randomly selected, off-transect sites in each of the vegetational zones and the saltwater hammock.

Biomass harvest data in the dwarf mangrove zone are given in Figures 4-2 and 4-3. The red mangrove was clearly the dominant bio-mass component in the dwarf mangrove zone, comprising over 98% of the total above-ground biomass. The two components that accounted for the majority of the biomass were wood and proproots, comprising 44% and 35.5! of the total, respectively. The characteristic struc-ture of the scrub mangroves was reflected in the distri bution of the leaf biomass. The leaves were usually contained in a narrow band between 0.5 and 1.0 m above the ground surface. Again, as shown in Figure 4-3, the red mangrove was the predominant contributor to both leaf biomass and area, providing 97% of the total leaf biomass and 95% of the total leaf area.

I

'he data obtained indicated the leaf biomass for the crown of the red mangrove was 138 g/m and the leaf area was 0.23 mz/mz.

The biomass measurements were then used to calculate the total biomass 4-7

I' I

I'

BIOMASS BY COMPONENT 1.0 CI 4/

C)

I/I VI

)

4I 4I I

OC I

4l K 0.5 4I C) cC 4I 0 200 4 0 6 8 BIOMASS (B/m~)

BIOMA'S BY SPECIES 1.0 C'I 4I CO OC 4I CS 4I I

4I I

Vl I

CC I

I4 VI Vl I/O I/l 4I I Vl III Vl VI 4I OC I

CI 4I CC 200 4 0 6 BIOMASS (B/m.)

Figure 4-2. Distribution and biomass of dwarf mangrove zone by component and species.

4-8

I I

I.

I I

I i

1 I

I

LEAF BIOMASS 1.0

)

CCC CC O

CCC CCC

)

CCC O W O

I

<<C C/C CD CC.

O C<<J W hC CC: V 0 10 20 30 40 50 BIOMASS (g/m~)

I.EAF AREA 1.0 C<<C O

CL CD CCJ CXi C/C I R NC/C O W C/C C<<j ~ C: C/C Q

OCC: CD CX CD O

LU CC:

0.05 0.10 0,15 0.20 AREA (m:/ m )

Figure 4-3. Leaf biomass and leaf area in the dwarf mangrove zones..

4-9

I I

I I

I

of dwarf mangroves in each of the vegetative zones containing dwarf mangroves. Black mangrove biomass was estimated by determining a typical structure for a scrub black mangrove and multiplying by the number of individuals in each zone as determined by area-density relationships. The biomass of white mangroves was calculated in the same way as that for the red mangroves.

Figures 4-4 through 4-7 summarize the results of biomass deter-minations representative of the black rush/salt grass zone of the South Dade study area. The red mangroves, also present in the black rush/salt grass zone, were the largest contributor to the total biomass in the black rush/salt grass zone studies. This was primarily due to the amount of woody structures. A transition in the gross structure of both black rush/salt grass sites was observed in the distribution of biomass, especially the photosynthetic leaf biomass. A comparison of Figures 4-3 and 4-5 indicates that most of the photosynthetic structure in the dwarf mangrove zone was found above 0.5 m, while the major portion of the photosynthetic structure of the black rush/salt grass was below 0.5 m. An increase in both the detritus and white mangrove components was seen in the black rush/sal t grass zone as compared with the scrub mangrove zone. Assuming that these sites were representative of the standing crop of black rush on the South Dade property, the total biomass can then be estimated. The results of these estimates are given in Table 4-3.

4-10

I I

I

BIOMASS BY COMPONENT 1.0 Cl LO LLJ ILJ Vl

~ 0.5 LJL LLJ LO Cl CI LLJ LJI LLJ CO '/I LLJ

)

IJI LLJ a

LLJ I

OO I

LLJ CI 0

0 200 400 600 BIOMASS (g/m~)

BIOMASS BY SPECIES 1.0 I

)

LJI LLJ Cl OO LO 5

OO Ci hC LLJ a

OO I

= 0.5

)

LJL I VI

)

IJL iil Cl OO

~ O I

OO I

LLJ LJJ Cl I Cl OO hC 0

0 200 400 600 BIOMASS (g/m.)

Figure 4-4. Distribution of biomass in black rush/salt grass zone by component and species.

4-11

I I

I I

I

LEAF BlOHASS ICJ C)

CIC I/I C9 CC:

CC.'i C)

I 0

I/C g

~ v I/I I

ct I/O 5

CC hC CCI 0

0 100 200 BIOMASS (g/m~)

LEAF AREA 1.0 ICC la>

I CC!

CC; III CC I/O 5

hC CCI I/I C/I 0 0.5 1.0 1.5 AREA (m*/m-)

Figure 4-5. Leaf biomass and leaf area in black rush/salt grass zone.

4-12

L l

I I

I

BIOMASS BY COMPONENT 1.0 W

C/C O 3

CC; CD I

C/C C/C O

R D Vl 8 D. Ch D CCC CL C/C

~~ 05 CCJ O

I

)

CD CCC O

O O IW CCJ O

C/C 0 200 400 600 BIOMASS {g/m2)

BIOMASS BY SPECIES 1.0 C/C C/l lU I O

OC C/C CD s 5

CY O

LCC 5C E 0.5

)O C//

CD CX I

C/C 8

CC.

Cij O

CD 0

0 200 400 600 BIOMASS {g/m )

Figure 4-6. Distribution of biomass in black rush/salt grass zone by component and species {off transect).

4-13

~

gi

LEAF BiOMASS 1.0 I<<J I

)

W O CC I/l l

O Ial CC S

<<C Kl l )

M O

I/l CD I/l CC le CC LJ Cl 0 100 200 300 BiOMASS (g/m>)

LEAF AREA 1.0 W

)O 4J CC CD l ID Q O I/I I<<J I

I/I O CC I<<l g IV I

lC I/I CD m 0.5 I/I I<<I l

O

<<C I/l CD O

CC lC O

0.5 1.0 1.5 2.0

""EA (m /m )

Figure 4-7. Leaf biomass and leaf area in black rush/

salt grass zone (off transect).

4-14

I I

TABLE 4-3 BIOMASS ESTIMATE OF 424.4 HECTARES (1049 ACRES)

OF BLACK RUSH ON THE SOUTH DADE AREA 2a Com onent /m Metric tons Live black rush 80.5 341.8 Dead black rush 130.0 551.7 Total 210.5 893.6 a

Dry weight at 70'C.

4-15

t I

The sharp delineation between the black rush/salt grass zone and the saw grass zone was indicated by the biomass harvest in this habitat. Figures 4-8 and 4-9 show that, except for a slight amount of salt grass, the saw grass zone was solely composed of above-ground detritus and saw grass. Table 4-4 shows the total biomass of saw grass on the south Dade area.

An examination of Figures 4-4 to 4-9 reveals several trends.

Perhaps thy most obvious is an increase in the relative abundance of detritus as a component of the total biomass as one approaches the saw grass zone. In the scrub mangrove zone, detritus represented only 1.6/

of the total organic structure (above ground), but in the saw grass zone, it increased to 51.6Ã of the organic structure. Another trend is seen in the relative increases in both leaf biomass and leaf area from the lower to the upper zones of the transect. The scrub mangrove zone averaged 70.35 g dry weight of leaves per mz of ground surface, repre-senting 8.9K of the living biomass . This is contrasted with the black rush/salt grass and saw grass zones, where the photosynthetic structures comprised 52.1/ and 48.4X of the living biomass, respectively. Leaf area also increased in the upper regions of the study property. The leaf area of the scrub mangrove zone averaged 0.24 m of leaf surface per m of ground surface. This increased rapidly to 1.65 mz/mz in the black rush/salt grass zone, and 2.03 mz/m". in the saw grass zone. A summary of the biomass distribution calculations for the major vege-tative components of the South Dade study area is given in Table 4-5.

4-16

I I

BIOMASS BY COMPONENT 1.0 C/I CCI Cll I

0 5 C/I I/I I

0 CC I i@I CCI C) 2 0 400 600 8 1000 BIOMASS (g/rn~)

BIOMASS BY SPECIES 1.0 I

CII 4J O

I/I I/I ~

(D ~

I g 0.5 W

I CC I

CCI C) 500 1000 BIOMASS (g/m>)

Figure 4-8. Distribution of biomass in saw grass by component and species.

I I

I I

LEAF BIOMASS 1'.0 Vl 5

m 4J O

Vl CA ~

~

cY m Cg 0

0 100 2 0 300 400 500 BIOMASS (g/m )

LEAF AREA 1.0 L

Cl 4k Vl a

EA ~

05 W

0 2.0 1.0 AREA (m>/m2)

Figure 4-9. Leaf biomass and leaf area in the saw grass zone.

4-18

I TABLE 4-4 TOTAL BIOMASS OF SAW GRASS ON THE SOUTH DADE AREA (DRY WEIGHT AT 70'C)

Com onent g/m~

Live sawgrass 217.2 Dead sawgrass 317.8 Total 635.0 a

Dry weight at 70'C.

4-19

j i l

I

TABLE 4-:5 DISTRIBUTION OF BIOMASS (9/m ) IN THE VARIOUS VEGETATIVE ZONES ON THE SOUTH DADE AREA EXCLUSIVE OF HAMMOCK BIOMASS Stations Ve etative zone 1-5 6-12 13-20 21-27 28-34 35-37 RED MANGROVES Fruit 0.6 1.0 0.9 Leaves 0.6 0.6 0.3 68.0 116.6 99.3 Branches 1.6 1.6 0. 8 168.0 288.0 245.4 Wood 2.1 2.1 1.1 227.7 390.3 332.6 Prop roots 3.6 3.6 1.5 319.7 548.1 467.0 Subtotal 7.9 7.9 3.7 784.0 1344.0 1145.2 BLACK MANGROVES Leaves 3.8 0.6 1.3 8.9 Branches 7.5 1 ~ 2 2.5 17.4 Wood 1.8 0.3 0.6 4.3 Subtotal 13. 1 2.1 4.4 30.6 WHITE MANGROVES Leaves 2. 5 34.1 9.2 3.2 Branches 4.3 58.2 15.6 5.5 Wood 13.1 176.1 47.2 16.6 Subtotal 19.9 268.4 72.0 25.3 BI ACK RUSH 1.0 1.0 Live Dead 72.0 112.0 89.0 148.0 0.0 '.0 Subtotal 184.0 237.0 1.0 1.0 SAW GRASS Live 217. 0 Dead 317.8 Subtotal 534.8 SALT GRASS 17.9 19.0 12.0 2.0 Total 591.0 481.0 329.1 842.9 1344.0 1145.2 4-20

I I

I I

I

4.3 EFFECTS OF SOIL CHARACTERISTICS ON PLANT ASSOCIATION GROUPS

4. 3.1 Introduction The ability of soils in the South Dade study area to retain both litterfall and the resultant microbial products of decomposi-tion is a major factor in the maintenance and ultimate success of plant association groups. The habitat, however, is not a "closed system," where litter accumulation remains on a forest floor and nutrients are recycled within the community. The tidal runoff and freshwater sheet flow are major mechanisms by which litter material and soluble nutrients are transported into other plant communities and the waters of Card Sound. Thus, soil characteristics play a minor role in nutrient cycling. The distribution and sources of water play a more significant part in determining the plant distri-bution at the South Dade study area.
4. 3. 2 South Dade Soils South Dade soils fall into two categories: organic .and inor-ganic. The majority of the plant communities are found on inorganic calcitic substrates (previously described in Section 2.3:Soil Analy-ses and Characteristics). Calcitic soils are infertile due to the dominance of calcium and magnesium carbonates and only minimal amounts of other requisite elements. Calcitic-muds are products of the precipitation which occurs when calcium carbonate-saturated water interfaces with seawater.

4-21

I I

I I

Organic soil components in the South Dade study area are associated with peats, which occur both in surface lenses forming the base of saltwater and freshwater hammocks, and in isolated pockets within the calcitic mud substrate. Further discussion of peats is included in Section 2.3.1:Major Soil Types.

4.3.3 Distribution of Hammocks The subsurface stratigraphy beneath the mangrove biome shows a shallow surface burden of loose calcareous mud and imbedded masses of red mangrove peat overlaying a limestone rock surface. Peat deposits were previously thought to be related to the distribution of the mangrove hammocks scattered throughout the study area, and the height of the trees was believed to correlate roughly with the depth and thickness of the deposit.

'I The distribution of subsurface peat deposits (see Figure 2-12 in Section 2.3.4) may be independent of the distribution of hammocks.

Peat deposits are sometimes found to be discontinuous and do not arise as a body from the limestone bedrock upward to the surface.

The presence of surface peat deposits does, of course, correlate with the presence of hammocks.

'Beneath the dwarf mangrove forests, peat deposits are also present but are not .contiguous with the surface. The calcareous marl of the dwarf forest zone contains a scattered mixture of roots and 4-22

Ii I

fiber remnants which are distributed uniformly throughout the marl soil. Therefore there is no evidence to suggest that autochthonous (deposited at place of origin) peat is being deposited in signifi-cant amounts in the dwarf mangrove zone.

4.3.4 Distribution of Man roves With the exception of hammock habitats, mangrove distribution (Section 2.2:Natural Plant Associations) at the South Dade study area was not found to be dependent upon specific soil types, but rather on the relative position of the community to the shoreline of Card Sound. tlangroves are considered to be open systems, that is, they are coupled hydraulically to both upstream and downstream systems.

Hater is the vehicle for the exchange of nutrients and chemical elements. Within the mangrove forest itself, water movements bring oxygen to the root system; remove carbon dioxide, toxic wastes, and organic debris; and continually maintain soil salt balance. The absence of flushing may result in an anaerobic (without oxygen) or reducing environment, which can build up toxic wastes and salt that may stunt or eliminate mangrove species.

4-23

I 4.4 NUTRIENT TURNOVER IN SALT MARSHES 4.4.1 Introduction This section discusses the many studies conducted at the South Dade Area to determine how nutrients are recycled in salt marshes. Hydraulic studies demonstrated the importance of tides in moving nutrients out of and into the mangrove and grass zones, and nutrient determinations were made for all vegetation zones at multiple soil depths. These factors were studied to de-termine the contribution of mangroves to adjacent estuaries.

4.4.2 K draulic Studies The primary objective of the hydraulic studies was to de-scribe the movement of surface water along the study transect of the South Dade Area under various hydraulic and meteorolo-gical conditions. To achieve this objective, the principal factors that affect water motion in the study area were defined.

Methods r

Each of six stations (2, 9, 16, 21, 30, and 37) contained an instrument package that included a Stevens Type A Model 71 water-level recorder and a Hydrolab assembly used for gathering water-quality data. In addition to these six stations, a bay station (see Figure 4-10) was located about 25 meters east of 4-24

I I

I

'gtfre 4<<10 pproximate 1ocations of fresh and salt water interface-, August,I

. 1974. Station numbers -and bay station indicate position of instrument packages.

ga<e

I I

Station 37, in Card Sound, and equipped with a Stevens water-level recorder. The water-level recorders were used to monitor the tidal cycle and seasonal changes in surface-water levels along the transect.

A dye study was performed to permit the calculation of water velocity as it moved inland from Card Sound. Rhodamine WT dye in plastic bags was dropped at Stations 30, 32, 34, and 37 from a heli-copter. The bags burst upon impact with the water. Photographs were taken about 30, 90 and 150 minutes following the dye drops.

Because the dye was moving along the transect, which was marked at 100-meter intervals, it was a relatively direct procedure to deter-mine the distance the dye patch moved from the point of origin.

Results Mean tidal elevations vary between months of the same year because of variations in relative positions of the sun and moon.

In general, the mean monthly tidal elevations were highest during the months of September, October and November. These months coin-cide with the south Florida wet season; however, the observed rise in tidal elevation was not attributable to temporary rainfall and runoff'ccumulation.

4-26

I I

The horizontal distance traveled by the landward edge of the water between high and low tides was generally about 300 meters.

During the period of September through November, however, water covered nearly the entire transect during average or higher than average tides, and little horizontal movement of the landward edge of water occurred. September through November was also the time when freshwater from rainfall runoff covered the upper portion of the transect and formed a continuous sheet of water with Card Sound water. Thus the majority of the study area is hydraulically linked with bay waters for about 25% of the year.

Between the saltwater and freshwater, a transition zone exists where mixing of the two types of water occurs. This transition zone was identified by sudden increases in electrical conductivity values. Seawater samples had a conductivity of about 54,000 pmhos/cmz, and the fresher water from upland runoff demonstrated conductivities of between 15,000 to 30,000 pmhos/cmz. The inland extent of salt-water was limited to Station 37 during August (See Figure 4-10).

However, as tide levels increased in subsequent months, the edge of saltwater extended as far inland as Stati'on 21.

The impact of water transport was observed at Stations 2 and 9, well'nto the saw grass zone. During the wet season, freshwater covers much of the transect and stands continuous with Card Sound water. As a result of hydraulic continuity, tidal variations 4-27

I I

I

. I I

I I

I I

I

were observed at these inland stations. Flow velocities near Stations 2 and 9 were low because the tidal amplitude was small and the ground slope was very shallow (about 0.004,: ).

4-28

I I

I I

I I

I

4.4.3 Nutrient Determination in Man rove Soils Nutrient determinations were made in all vegetation zones at multiple soil depths.

Methods for collecting soil samples have been described in Section 2.3.2 Soil Characteristics. Standard methods were used as described in APHA, 1971.

~Nitro en Total Kjeldahl nitrogen was determined for a series of soil samples from the study transect. Results of these analyses are given in Table 4-6. Subsoil samples were generally slightly richer in nitrogen than the overlying surface soils. Although some of the soils were typed as marls, some contained plant fibers. Peat soils were arbitrarily assumed to be those soils containing greater than 101 organic carbon and marl soils, less than 10Ã organic carbon.

The fibrous marls showed relatively higher nitrogen percentages.

All of the samples with high nitrogen percentages were either in or close to a hammock, with the exception of the hammock soils at Station 30. Although low values of nitrogen were found in this hammock, the nitrogen content increased with organic matter.

4-29

I I

I I

I i I

TABLE 4-6 TOTAL KJELDAHL NITROGEN IN SOUTH DADE SOILS DURING NOYEHBER Station De th T e /TKN 0-6" marl 0.38 6-12" marl 0.49 0-6" peat 2.82 6-12" peat 2.16 12-18" mal 1 0.41 0-6" peat 1.94 6-12" marl 2.20 0-6" peat 0.50 6-12" marl 0.40 12-18" marl 0.46 0-6" marl 0.56 6-12" marl 0.40 0-6" peat 2.29 6-12" peat 2.33 15 0-6" marl 0.69 15 6-12" marl 2.12 16 0-6" marl 0.40 16 6-12" marl 0.58 17 6-12" marl 0.41 22 0-6" marl 0.37

'22 6-12" peat 0.96 23 6-12" marl 0.66 24 0-6" marl 0.4?

24 6-12" peat 0.75 30 0-6" marl 1.10 30 6-12" marl 1.73 30 0-6" hammock 0.44 30 6-12" hammock 0.17 4-30

I I

I I

I I

Phos horus Inorganic phosphorus determinations were made on the surface soils of the South Dade Area transect. In all cases the inor-ganic phosphorus concentration was somewhat lower in February than in November. This difference indicated a cyclical pattern in the amount of inorganic phosphorus in the soil. Tables 4-7 and 4-8 show that throughout the year the major forms of phosphorus were the easily extractable and calcium-bound phosphates. These two fractions were predominant in both the topsoil and the subsoil in the same order of magnitude of concentration. The topsoil, however, showed a greater amount of each form of phosphate than the subsoil.

Peat samples, especially those from depths of over 30.5 cm, were especially poor in extractable phosphorus, but calcium phosphate was present in "normal" concentrations. The analysis of extractable*

phosphorus in the surface soils at Station 3 showed a very high value, 'which is believed to be inaccurate.

Very few aluminum and iron phosphates were found in the area.

This was not unexpected as no clay minerals were present and the pH of the soi 1 solution was such that the formation of calcium phosphate and extractable phosphorus is favored over that of aluminum and iron phosphates. The range of total inorganic phosphorus along the transect showed no outstanding trends. Calcium phosphate seemed to a

decrease in concentrations toward the Sound.

4-31

I I

. I l

TABLE 4-7 INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING THE MINTER (NOVEMBER) 01 xtracta e Ca- '-P 'e-P Total

'/~6" Station De th t e -P(x10-~) xl0 ~) (xl0-~) (xl0-~) Inor -P I 0-6" marl Oa 0. 380 0 0 0.00380 2. 745 6-12" marl 0 0.245 0 n/db 0.00245 1. 770 4.515 0-6" marl 0. 315 0.655 n/d n/d 0.00970 7.007 6-12" marl 0.065 0.330 n/d n/d 0.00395 2.853 12-18" marl .

0.010 0.360 n/d n/d 0.00370 2.673 12.532 0-6" marl 9.200 0.695 n/d n/d 0.09895 71.479 6-12" mar 1 0.405 0.345 n/d n/d 0.00750 5.417 76.897 0-6" marl 0.015 0.400 0 0.045 0.00460 3.344 6-12" peat 0.015 0.265 0 n/d 0.00280 3.231 12-18" peat 0.010 0.275 0 n/d 0.00285 1. 151 7.726 0-6" marl 0.045 0.043 0 n/d 0.00475 3. 453 6-12" marl 0.020 . 0.285 0 n/d 0.00305 2. 217 5.670 0-6" marl 0.180 0.490 n/d n/d 0.00670 4. 817 6-12" peat 0.015 0.350 n/d n/d 0.00365 2.653 7.524 15 0-6" marl 0.050 0.590 0 n/d 0.00640 5.197 6-12" marl 0 '60 0.495 n/d n/d 0.00550 4.451 9,630 0-6" marl 0.035 0.360 0 0 0.00395 3.197 6-12" marl 0.010 0.240 0 0.040 0.00295 2.387 5.584 17 0-6" marl 0.045 0.330 0 0 0.00375 3.035 6-12" marl 0.010 0.290 0 0 0.00300 2.428 5. 463 a Indicates concentrations below detection limits.

>>ndicates interfering color or other matter which prevented analysis.

I, I

I I

I

TABLE 4-7 (continued)

INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING THE WINTER (NOVEMBER)

Soil X Extractable X Ca-P XA1-P XFe-P X Total Station. De th t e -P xl0 ~ xl0 ~ xl0 ~ x10 Inpr -P P/m .6" P/m~

22 0-6" marl 0.025 0.375 0 0 0 '0400 3. 523 6-12" marl 0.020 0.330 0 n/d 0.00350 3.083 6.606 23 0-6" marl 0.600 0.420 0 0 0.01020 8.985 6-12" marl 0.020 0.285 0 0.035 0.00340 2.995 11.980 24 0-6" marl 0.020 0.440 0 0 0.00460 4.052 6-12" marl 0.015 0.285 0 n/d 0.00300 2.643 6.695 30 0-6" marl 0.045 0.300 0 0 0.00345 2.634 6-12" marl 0 0. 215 0 =

0 0.00215 1.642 4.276 0-6" hammock 0.070 0.435 0.120 n/d 0.00625 3.781 6-12" hammock 0.020 0.315 0.085 n/d 0.00420 2.541 6.322

I I

I I

TABLE 4-8 INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING SPRING (FEBRUARY)

Soil 5 Extractable X Ca-P 'AA1-P XFe-P Total Station De th t e -P x10-~ x10-~) xl0-z xl0-~) Inor -P P m~.6" P m~

0-6" marl 0 110

~ 0.515 0. 020'a n/db 0.00645 4.659 6-12" marl 0. 015 0.065 n/d 0.00080 0.578 5.237 0-6" marl 0.105 0.515 0.040 n/d 0.00660 4 '98 6-12" marl 0.025 0.030 0 n/d 0.00055 0.400 5.198 0-6" marl 0.045 0.125 0 n/d 0.00175 1.272 6-12" marl 0.010 0.055 0 n/d 0.00065 0 '73 1.745 0-6" marl 0.165 0.445 0 n/d 0.00610 4.434 6-12" peat 0.015 0.195 0 n/d 0.00210 0.848 5.282 15 0-6" marl 0.090 0.275 0 n/d 0.00365 2.954 6-12" marl 0.035 0.195 0 n/d 0.00230 1.861 12-18" marl 0 0.011 0 n/d 0.00011 0.089 4. 904 16 0-6" marl 0.035 0.125 0 0 0.00160 1.295 6-12" marl 0.020 0.250 0 n/d 0.00270 2.185 12-18" marl 0.010 0.060 0 n/d 0.00070 0.566 4.046 17 0-6" marl 0.020 0.105 0 0 0.00125 1.011 21 0-6" marl 0.025 0.085 0 0 0.001]0 0.969 6-12," marl 0.025 0.120 0 0 0.00145 1.277 12-18" marl 0 0.030 0 0 0.00300 0.264 1. 385 22 0-6" marl 0.040 0.125 0 0 0.00165 1.453 6-12" marl 0.065 0.175 0 n/d 0.00405 3.568 12-18" peat 0 ..015 0.130 0 n/d 0.00145 0.853 5.856 23 0-6" marl 0. 035 0.195 0 0 0.00230 2.026 6-12" mar 1 0.045 0.160 0 n/d 0.00205 1.806 12'18" eat 0.010 0.125 0 n/d 0.00135 0.778 4. 610 aIndicates concentrations below detection limits.

bIndicates interfering color or other matter which prevented analysis.

I I

I I

TABLE 4-8 (continued)

INORGANIC PHOSPHORUS ANALYSES OF SOUTH DADE SOILS DURING SPRING (FEBRUARY)

Soil 5 Extractable X Ca-P XAl-P XFe-P X Total Station De th t e -P x10 xl0 xl0 xl0- Inor -P P/m~.6" P/m~

26 0-6" marl 0 0.050 0 0 0.00050 0.440 6-12" marl 0 0.050 0 0 0.00050 0.440 0.880 29 0-6" marl 0.070 0.240 0 n/d 0.00310 2.367 6-12" peat 0.030 0. 185 0.015 n/d 0.00230 l. 392 3. 759

I I

I I

I I

Total phosphorus values demonstrated no discernable trend along the transect. However, the percentage of total phosphorus generally decreased with increasing soil depth.

Most of the soil phosphorus was in the form of organic phosphorus., The percentage of organic phosphorus ranged from a low of 18.35! at Station 8 to a high of 93.254 at Station 15, and the average percentage ranged from 70 to 85% of the total. Table 4-9 lists the results of the total phosphorus determinations for the South Dade study area soils.

Substantially higher values of phosphorus were obtained in samples that contained large amounts of organic matter, but the general phosphorus content was quite low compared with the soils of other mangrove areas. These low phosphorus levels could indicate that phosphorus is a limiting nutrient in the South Dade system.

Micronutrients Many of the micronutrient elements in the soils were quan-tified by carbonate fusion analysis. Magnesium and potassium increased with increasing organic matter, while manganese, strontium and zinc decreased with increasing matter. An example of these fluctuations can be seen at Station 7 (Table 4-10). Two samples were taken from the 15.25-30.50 cm level. One sample was marl (5.77Ã organic carbon) and the other was peat (27. 13/ organic carbon).

4-36

II TABLE 4-9 INORGANIC, ORGANIC, TOTAL AND PERCENT OF TOTAL PHOSPHORUS VALUES OF SOUTH DADE SOILSa Soil n- rg- ot- rg- of Station t e (x10-~) (xl0 ~) (xl0 ) Total -P 6-12" marl 0.25 0. 21 0.46 46.27 0-6" marl 0,97 0.60, 0.70 85.98 6-12" marl 0.37 2.18 2.55 85.48 0-6" marl 0.65 0.98 1.62 60.21 6-12" marl 0.08 0.31 0.39 79.41 0-6" marl 0.46 1.39 1.85 75.12 6-12" peat 0.28 0.95 1.23 77.18 12-18" pea. 0.29 0.14 0.43 33.48 0-6" marl 0 '8 0. 20 0.68 0.37 29.88 18.35 6-12" marl 0.31 0.07 0-6" marl 0,67 2.58 3.25 79.37 6-12" peat 0,37 1.95 2.31 84.23 15 0-6" marl 0.37 1.53 1.89 80.70 6-12" marl 0.23 0.62 0 '5 72.98 12-18" marl 0.01 0.16 0.17 93.25 16 0-6" marl 0.16 0.62 0.78 79.45 6-12" marl 0.27 0.27 0.54 49.65 12-18" marl 0.07 0.39 0.46 84.69 17 0-6" marl 0.38 0.37 0.75 49,73 6-12" marl 0.30 0.07 0.37 18.70 21 0-6" marl 0.11 0.68 0.79 85.98 6-12" marl 0.15 0.21 0.35 58.64 0-6" marl 0.17 0.72 0.89 81.43 6-12" marl 0.41 1.50 1.90 78.69 12-18" peat 0.15 1.35 1.49 90.27 23 0-6" marl 0.23 0.57 0.80 71.36 6-12" marl 0.21 0.91 1,12 81, 66 12-18" peat 0.14 0.73 0.86 84.32 24 0-6" marl 0.46 0.76 1. 22 62.36 6-12" marl 0.30 0.58 0,88 65,91 29 0-6" marl 0.31 0.88 1,19 73.99 6-12" peat 0.23 0 '1 1.14 79.87 30 6-12" marl 0.22 0.22 0,44 50.91 0-6" hammock 0.63 1.6< 2.27 72,45 6-12" hammock 0.42 0.89 1.31 67,89 aAl1 values are in Percent air-dried soil.

4-37

ll TABLE 4-10 MAGNESIUM, MANGANESE, POTASSIUM, STRONTIUM, AND ZINC ANALYSES OF THE SOUTH DADE SOILS Soil Station De th t e Mnxl0 Srxl 0 Znxl0 ~

6-12" marl 0.28 0.96 0.02 6.57 0. 70 0-6" peat 0.47 0.15 0.18 l. 27 0.23 6-12" peat 0.41 0.19 0.17 0.52 0.18 0-6" peat 0.46 0.81 0.12 5.04 6-12" marl 0.36 1.15 0.08 5.99 0. 76 0-6" peat 0.74 0.65 0.19 3.96 1.17 6-12" marl 0.41 0.95 0.06 5.62 6-12" peat 0.94 0.24 0.27 2.46 12-18" marl 0.46 0.84 0.08 6.43 1.19 0 6 peat 0.93 0.37 0.32 3.01 1.40 6-12" peat 1.03 0.17 0.42 0.74 0.45 15 0-6" marl 0.68 0.85 0.17 5.76 0 '2 6-12" marl 0.56 0.78 0.14 5.43 0.29 12-18" peat 0.74 0.66 0. 23 5.78 0.47 16 0 6ll marl 0.44 0.99 0.05 5.56 6-12" marl 0.44 0.95. 0.14 5.48 0.60 12-18" mal 1 0.54 0.86 0.10 6.01 0.72 17 0-6" marl 0.62 0.93 0.06 6.41 0.26 6-12" marl 0.48 0.85 0.11 5.92 2.07 21 0-6" mar 1 0.63 0.63 0.13 6.40 0.80 6-12" marl 0.75 0.93 0.18 6.33 0.53 22 0-6" marl 0.67 0.64 0.18 5.64 6-12" peat 1.13 0.07 0.56 0.87 0.47 12-18" peat 1.06 0.16 0.45 0.66 23 0-6" marl 0. 71 0.71 0.18 6.98 1. 23 6-12" marl 0.74 0.44 0.21 5.10 12-18" marl 0.01 0.26 0.28 3.01 2.04 24 0 marl 0.62 0.71 0.06 7.75 1.19 1 2<i peat 0.73 0.43 0.29 5.12 0.75 1.13 29 0-6" marl 76 0.37 0.22 7.53 6-12" peat 0.60 0.26 0 '3 4.35 0.57 0.72 30 6-12" marl 0. 53 0.57 0.24 6.,65 0-6" hammock 0.94 0. 34 0.34 4. 59 2.08 6-12" hammock 0.86 0. 30 0.31 4. 96 0.25 All values are in percent dry weight of soi l.

4-38

I I

l I

Nitro en Fixation The results of the nitrogen fixation estimates for the sedi-ments are shown graphically in Figure 4-11 and for the algal mat in Figure 4-12. The highest sediment fixation rate estimated was 2.1xl0 sg nitrogen/g sediment/yr at Station 7, and the lowest was 3.3xl0 ~g nitrogen/g sediment/yr at Station 8, showing the extremely varied nature of the nitrogen-fixing abilities of the area. The blue-green algal mat showed a general decrease in nitrogen fixation from 6.5xl0 sg nitrogen/g mat/yr at the most landward station to 8.5x10 <g nitrogen/g mat/yr at the most seaward station.

The results of nitrogen fixation measurements on the 'South Dade Area compare favorably with the values found by other researchers (Brooks et al., 1969). It must be remembered that the estimates on the South Dade property reflect the minimum rate of nitrogen fixation to be expected over a yearly basis because minimum values are expected during winter months (Wilson, 1974) when the study was conducted. The minimum rates of nitrogen fixation are compar-able to average yearly rates from other estuarine areas, indicating a potentially significant nitrogen input (Fell, 1976).

One outstanding feature of the data is that they indicate a relationship between the presence or absence of water and rela-tive nitrogen fixing abilities. Stations 15-30 show a relatively similar rate of nitrogen fixation, in contrast with the more landward 4-39

I~

t 4 0

1 4 I 4.

t 51 I

't I ~

4

~ =4

~ 4 * ~ rr 10, 4

~ ~ 4 t ~ I t

1 4

't.

I I

I t I

I I

I 4 ~

4 1O',

4

>>.-L I t

L 4

4 ~

1O-~ \

1 t 4 t

1 4

~ ~

I ~

I 4 4

1 2 3 7 15 16 17 2 23 24 STATION Figure 4-11. Nitrogen fixation in grams of nitrogen per gram of sediment per year.

4-40

I

~ ' I t

5 5

t I T

I 7- ~

?

5 iT 5

~ I

  • I' 4 4 '5 I j-' I I"

I ~

I 1O.~

7 Tr~I rr t

t 7

5'5 I 4

I I

Y

+

4 I 'I 4

I

~ - ~

~ I' I

~ 'I 7 H I r. ~

5 I Y 10 ~ -rry Tr' I' ~ TT'.i

'l.T 'i.

i T~c i

'l) 5 ~ ,7..7 l

. 4 '

Y 7'5 I

I

! IP T'

~

I i I T I

4 a

~c I I I ~ I I i

i i .' 4 5 C jr i I 4

II I 7

7 il I

~ I 4

I 4

I Y

'I hl ~ I ~ I ~ *I ~

I I I ~

'I ~ ~ ~ h ~ ~

I ~ - 4 ~ I ~ ~ ~ I I ~ I ~ 'I I I 10-e 'T" " 'f ~

7 t ~ 4 I '5 T, t I 5,

~. 1 7

t 5

~ ~

i. I 1

~

I I!c 7

~ .T I ~

I 5

\

5

  • j I I l 5" j ~ ~

I 'ai 4"

~

llJh

~ ~

1 3 laia 7 I

9 iI 7

~ ~ I 15 g

STATION Figure 4-12. Nitrogen fixation in grams of nitrogen per gram of algal mat per year.

4-41

I I

stations, which show higher rates and more erratic patterns of nitrogen fixation. This difference may indicate a relationship between nitrogen fixation rates and hydroperiod. Hardy et al. (1968) have shown that immersion in water decreases nitrogen fixation in legume nodules. Conversely, Hardy et al. (1971) have shown that the drying of the nodules also decreases nitrogen fixation abilities.

These studies contrast with the work of Paul et al. (1971), which showed increasing nitrogen fixation in soils with increasing moisture.

These studies could explain the trends in nitrogen fixation found on the South Dade property. Stations 15-30 were entirely inundated with standing waters and showed a marked reduction in nitrogen fixation rates. Station 1 also showed a low nitrogen fixation rate, which could be explained by the lack of water at the sample site. Stations 2-9, with the exception of Station 8, showed the highest fixation rates.

Stations 2-7 and 9 were subjected to alternate periods of wetting and exposure. The wetting and exposure to atmospheric nitrogen possi-

'I bly provided optimum conditions for nitrogen fixation. Station 8 was characterized by a slight depression between hammocks that held water and was entirely covered at the sampling time, so its low nitrogen fixation rate was not inconsistent.

4-42

I r

I I

I,

4.4.4 Or anic Carbon Productivit An assessment of ecosystem productivity is necessary in order to measure the response of an ecosystem to changes. A method to compare the productivity of different habitats is to measure the amount of organic carbon incorporated or "fixed" within the ecosystem.

As carbon is, the fundamental element in all biological materials, a change in the amount of carbon in the ecosystem is an indication of a redistribution or a change in the biomass of the system.

The productivity of a system is generally divided into organic matter produced by plants and organic matter produced by animals.

These two components are termed primary and secondary productivity, respectively. Primary productivity (plants) may be transferred to the secondary producers (animals) when the animals graze on growing plants or ingest litterfall materials. Because the secondary producers comprise but a minute fraction of the organic carbon fixed on the study site, the bulk of the study efforts was directed toward measure-ment of primary productivity.

Productivity, which is usually measured in terms of grams of carbon fixed per square meter per day, is divided into two categories:

net productivity and gross productivity. Gross productivity is the measure of all carbon material entering the system. Net productivity measures that amount which has been deducted from the gross produc-

. I I

I I

I

tivity for respiration and maintenance. Net productivity measures carbon available for incorporation into stems, leaves and roots.

Productivity of trees and rasses Methods - Metabolism and carbon fixation were measured by enclosing an area containing grasses and/or plants within a clear plastic chamber. When the plant was too large to be mon-itored within a chamber, a leafy. portion of a branch was enclosed in a plastic "balloon," which was held open by means of small.

air blowers. A Beckman tlodel 215B infrared gas analyzer mea-sured the COz that entered and left these chambers.

Results - Estimates for carbon fixation in grams of carbon per square meter of leaf surface on a yearly basis are provided for the following habitats: saw grass, black rush/

salt grass, hammock, dwarf mangrovesM.>d fringe forest mangrove.

4 44

E I

I I

Once the productivity of each species in each vegetative zone of the South Dade property was estimated, the total production of the area was evaluated. The fringe forest production and respira-tion was assumed to be similar to that of the hammock red mangroves.

The leaf area of the black rush/salt grass zone was calculated as 1,65 square meter of leaf per square meter of habitat (mz/mz), or 8.27 grams of carbon per square decimeter per year (g C/dmz/yr) gross primary production by black rush/salt grass on a leaf area basis.

This is less than that of any of the mangrove species in either the dwarf mangrove zone or the saltwater hammocks.

Gas metabolism data were not obtained for the saw grass zone of the South Dade study area. Therefore, saw grass production was estimated from standing crop values reported i n Section 4.2, Vegetation Peak Stand-ing Crops, and were based upon the following assumptions:

1. Saw grass biomass turnover is at least 1005 every year; that is, at least as many blades of grass are produced as die each year (Snedaker, 1976).
2. Respiration and plant maintenance require about 50% of grass primary productivi ty (Snedaker, 1976).

The estimate for saw grass productivity is the lowest of any of the plant associations found on the South Dade study si te. It was calculated as follows:

4-45

I I

Net productivity = 411 g organic material/year 238 g C/m /yr 411 g organic material/year 238 g C/m~/yr Gross productivity = 822 g organic material/year 476 g C/m~/yr Productivit of Ph to lankton and Benthic Al ae Methods - In order to estimate the amount of carbon contributed by the phytoplanktonic and benthic algal communities, daily water quality records were assessed for changes in pH, dissolved oxygen, and temperature. Given the alkalinity and'change in pH of a water mass, the change in CO@ was calculated. The carbon production of the benthic algal community was measured during periods of standing water.

Results - Gross productivity for the benthic algal community was estimated to be 388.9 grams of carbon per square meter per year.

4-46

I I

I I

I I

I

4.4.5 Man rove Contribution to Adjacent Estuar The relative contribution of the South Dade Site to Card Sound waters was measured by experimentally determining the amount of detri-tal material exchanged between land and water. As tides flow across the flat plain during diurnal ebb and flood cycles, particles in the form of decomposed litter are swept along with the moving water. As detritus is rich in nutrients, the measurement of organic particulate matter demonstrates if the tidal habitat is losing, gaining, or maintaining its nutrients.

Methods The detrital export dynamics of the South Dade Site were eval-uated by both analytical and experimental methods. The analytical method utilized litterfall calculations based upon actual monthly litterfall measured in each vegetative zone. The experimental method involved direct monitoring of the detrital load during several tidal cycles over a representative area of the mangrove ecotone. The results of the experimental method, which were not performed for every month of the year, were then used to verify the results of the analytical method.

positionnThe determination of litterfall involves three parameters: the actual litter fall, the decomposition rate, and the actual amount of litter remaining on the surface. Given the litterfall and the decom-rate, a steady-state level of litter may be calculated by 4-47

I I

I I

where: X ss

= the steady state amount, of litter L = actual 1 i tter fall rate K = the decomposition constant If the steady-state level of litter buildup is less than that calcu-lated, then the difference must be that exported by the tidal regime.

Conversely, if the actual litter amount is greater than that calcu-lated, then the difference is that amount of litter imported. Values for these parameters have been experimentally determined for each of the vegetative zones during this study.

Detrital export was determined experimentally by analyzing water samples, taken hourly over periods of co-equal tides. These periods of co-equal tides were determined from the U.S. Coast Guard Tide Tables for the Card Sound area in the vicinity of Pumpkin Key during the years 1973 and 1974. The periods monitored during this study were November 17-18, 1973 and January 25-26, 1974; and February 28-29 and October 29-30, 1976.

A sampling site for the November and January periods was selected approximately 0.5 km northeast of transect Station 37 which Co-equal tides are those having either the maximum or minimum levels at the same height in relation to a stationary datum. This insures the exchange of approximately equal amounts of water during the ebb and flood cycles of the study period.

4-48

I I

I I

I

was characterized by being a slightly depressed area approximately 64 m wide. The sampling station was located approximately 15 m from the southwest "bank" of the sampling area. All water samples were withdrawn at a depth one-third the distance from the surface of the water to the bottom; For the 1976 sampling periods, a tidal creek located within the fringe mangrove at Station 37 was designated as the sampling site.

Water samples were pumped through a l-l/2" i.d. flexible rubber hose with a hand-operated diaphragm pump, Care was taken so that bottom materials were not disturbed during the sampling. The samples were pumped, into a plastic container through a ser ies of soil-testing sieves having mesh sizes of 2000pm (¹10), 600@m (¹30), 250pm (¹60),

125pm (¹120), and 62@m (¹230).

Based on information gained from the 1976 and 1974 sample periods, only the 250um and 62um sieves Were used to describe the particulate distribution since the amounts of particulate matter

>62pm was found to be rather small compared to suspended particles

<62pm.

The sieves were separated and the detrital material contained on each one was washed with water from the plastic container into small plastic bags, into which a solution of HgClz was added.

4-49

I I

I I

I I

A sample of the water in the plastic container was then placed in a glass jar and also fixed with HgClz.

The samples of detritus from each sieve were filtered with low suction through Matman 842 filter paper. The samples of water from the plastic container were filtered through 0.45am Mi llepore filter paper. Samples of the filtrate were then placed in small glass vials for dissolved organic analysis. That quantity of organic material in the 0.45pm size class is refer red to as "dissolved or-ganic matter."

The filter papers were placed in a drying oven at 70'C until a constant weight was obtained. The increased weight of the pre-weighed and dried filter paper was taken as the weight of detrital material. Small amounts (2 mg) of the dried detrital material in each size class were analyzed for carbon, ni trogen and hydrogen con-tent by a Perkin-Elmer Model 240 Elemental Analyser. ,The 'dissolved organic and total carbon content of the Millepore effluent was determined by a Beckman Model 915 Total Carbon Analyser.

The current velocity and water height were monitored during each of the sampling periods. The current velocity was measured by a Teledyne-Gurley Pygmy Current Heter, while the water height was measured in centimeters from the bottom by a conventional meter stick.

l I

The amount of water passing the sampling station was calculated using the geometry of the tidal aperture, the depth of the water and the current velocity. This quantity, with the measured amount of detritus in the water, was used to determine the total quantity of detritus imported or exported over the sampling period.

A watershed area was delineated by examining the water flow characteristics of the area as reflected by the vegetational orien-tations. This watershed area was used to calculate the detritus contribution of the upland areas on a mz basis .

Res ul ts Visual inspection of an enlargement of the aeri'al photograph of the South Dade Area revealed, on the basis of the vegetative orientation, that the predominant tidal water drainage was a simple linear process, described in Section 4.4.2, Hydraulic Studies.

The majority of the detrital export was in the form of small particulate matter between 0.45 and 62.04m in size. These particles were the major source of detrital export that entered the contiguous estuarine system of Card Sound.

The quantities of detrital material varied with the tides.

Table 4-11 gi ves the means and ranges of sizes of particulate organic matter obtained during late fall. Also, the dissolved 4-51

I I

I I

I

TABLE 4-11 MEAN CONCENTRATIONS (mg/1) OF PARTICULATE DETRITAL MATERIAL IN THE TIDAL WATERS Particulate size ran e 0-Tidal sta e 2000pm 600qm 250pm 125wm 62pm 0.45pm Incoming tide Mean 0.077 0.049 0.112 0.058 0.082 46.881 Range 0. 009 0. 026 0.023 0.014 0.014 3.600

-0. 163 -0.085 -0.458 -0.116 -0.134 -106.829 Outgoing tide Mean 0.059 0.055 0.058 0.050 0.151 65.431 Range 0 011 0 005 0 015 0 013 0 038 11 555

-0.225 -0. 182 -0.224 -0. 107 -0. 728 -217. 111 4-52

I I

I

organic portion of the detritus constituted a higher percentage of the total detrital transport on the outgoing tide than on the in-coming tide. The reverse is true of the particulate matter. These data show that the detrital export is mostly in the form of small particulate matter.

The dissolved organic matter was analyzed in terms of carbon which was separated into three categories: total carbon, inorganic, and organic carbon. The results of these determinations are given in Table 4-12. The dissolved carbon values show that the outgoing waters were richer in organic carbon and poorer in inor'ganic carbon than the incoming waters.

The data obtained for the January sampling period showed a pattern similar to that for November, but 'lesser absolute amounts of dissolved organic matter were present in the water co'jumn.

The amounts of transported detrital organic material per meter of tidal aperture (Table 4-13) demonstrated a varying influx of detrital materials from coastal vegetation into Card Sound waters.

Upon comparison with November and January estimates, the actual quantities of import and export for February were low. Li tterfall rates usually decline in January and February, and litter is perhaps not as available for export in this month as it might be in December 4 ~r3

I I

I I

I I

I

TABLE 4-12 AMOUNTS OF TOTAL, INORGANIC, AND ORGANIC DISSOLVED CARBON (mg/1) IN THE TIDAL WATERS DURING NOVEMBER Tidal sta e Total C Inor anic C Or anic C Incoming tide 29. 4 15. 7 13. 7 Outgoing tide 27. 4 12. 8 14. 6 4-54

I I

I I

I I

I I

I

TABLE 4-13 MEASURED TRANSPORT OF DETRITAL ORGANIC MATTER (KG DRY WEIGHT OF ORGANIC MATTER PER METER OF TIDAL APERTURE)

DURING JANUARY, FEBRUARY, OCTOBER AND NOVEMBER 1976 Januar Februar October November Mean Import per Hour 8.31 3.54 2.48 10.43 Mean Import per Tide 49.85 21.24 14.87 62.58 Mean Import per Day 99.70 42.48 29.75 125.16 Mean Export per Hour 8.89 1.74 2.86 11.26 Mean Export per Tide 53.89 10.44 17.16 67.56 Mean Export per Day 107.78 20.88 34.32 135.12 Total Net Export per Day 8. 08 -21. 60 4.57 9.96

I I

I I

I I

I I

I

and January. In February more detrital organic'matter entered the habitat from the water column than was exported, probably due to reduced litterfall in January and February.

To relate the potential nutrient contribution of the detrital organic matter from the various habitats of the South Dade study area, the elemental composition of the litterfall was measured.

Litterfall was collected from dwarf mangrove, saltwater haranock, fringe forest, black rush/salt grass, and saw grass habitats. These were allowed to decompose for 70 days, and were analyzed for selected elements (Table 4-14 ).

4-56

I I

I I

TABLE 4-14 ELEMENTAL COMPOSITION OF DETRITUS AFTER 70 DAYS OF DECOR'OSITION ercen ry welg pm ry weig Zone Sr Zn Dwarf mangrove 41. 6 0.46 0.014 0.463 0.768 163 55 22 Saltwater hammock 39. 2 0.47 0.013 0.675 0.825 64 16 Fringe Forest 33. 7 0.94 0.038 0. 310 0. 100 232 60 18 Black rush/

salt grass 54 1.2 0.022 0.285 0.079 31 53 39 Saw grass 52 0.9 0.016 0.230 0.070 25 70 16

I l

li I

4.5 EFFECTS OF GROUNDWATER SEEPAGE ON MANGROVES The effects of increased groundwater seepage on mangrove communities can be inferred from the data produced from the South Dade studies. Different mangrove species respond in various ways when exposed to varying saline regimes. Likewise, exposure to in-creasingly fresh water was shown to have a profound effect on the distribution of mangrove species. This effect appears to be unre-lated to either freshwater or saltwater tolerance by mangroves.

4.5.1 Distribution of Vegetation Frequency of occurrence (Section 2.2) data indicate that highly saline environments support significantly fewer species than brackish or freshwater environments. The fringe forest, for example, is almost exclusively composed of red mangrove, but 19 different species were found in the saw grass habitat. There is a strong inverse relationship between the salinity of available water and the number of plant species existing in the habitat. Mangroves have no known metabolic need for high concentrations of salt. Their presence in high saline zones reflects the inability of other plant species to cope with the physiological stresses imposed by salt-induced osmotic pressures. Plants which live successfully in saline environments either physically reject salts which become i ncorporated in plant tissues, or they possess mechanisms which allow freshwater but deny saltwater access through the root cell membranes. Plants which are not adapted to saltwater habitats do not survive, and the ground and 4-58

g

~

I I

l I

air space become available to those plant species that can tolerate the habitat. As the habitat becomes more severe, the contenders for that habitat become less numerous. Not always is habitat tolerance by plants expressed in absolute terms such as "presence" or "absence."

Gradations of tolerance for a habitat may be manifested within a single species. As physical strength and stamina vary tremendously within the human population, so hardy individuals of the plant community will extend into environments that test the maximum capability to survive. Obviously, those individuals living on the fringe of environmental acceptability will be few in number when compared with the whole population.

By applying the above concepts to the question of seepage in mangroves, one could reasonably expect the following: increased salt-water seepage at seawater concentrations (about 35%, ) would tend to favor growth of mangrove species at the expense of the less salt-tolerant vegetation. Conversely, seepage from freshwater sources would favor the invasion of freshwater species into regions dominated by mangroves.

4-59

l l

'l I

l

4.6

SUMMARY

During the dry season, the influence of normal tides generally did not extend beyond Station 28. The distance traveled by the land-ward edge of water between high and low tides was generally about 300 meters.

During the wet season, and especially September through Novem-ber, standing freshwater from rainfall was continuous with Card Sound water and covered the inland portions of the transect. Normal tidal motion was imparted to the freshwater, and tidal effects were there-fore observed along nearly the entire length of the transect.

When freshwater was continuous with Card Sound water, a transition zone existed between the freshwater and saltwater. During the data collection period, the position of the seaward edge of this transition zone fluctuated between Stations 21 and 30.

Rainfall had a significant effect on the volume of water flushed from the site. The water surface profile responded quickly to rainfall.

Once the productivity of each species in each vegetation zone was established, the total production of the area was calculated.

Table 4-15 summarizes the yearly production of the vegetative zones.

4-60

These data show that the total productivity values for the entire South Dade property were:

Gross productivity = 1.2 x 10 '~ grams carbon/year Respiration = 8.2 x 10>o grams carbon/year Net productivity = 4.1 x 10>o grams carbon/year 4-61

I I

I I

TABLE 4-15 SUMMARIES OF THE RESPIRATION AND PRODUCTION VALUES BY VEGETATIVE ZONE Vegetation Net Gross Zone roductivi t Respiration roductivity Fringe forest 513.2,g C/m /yr 4165.0 g C/mz/yr 4678.2 g C/mz/yr Dwarf mangrove 60.3 g C/m /yr 4362.0 g C/m /yr 4422.3 g C/m /yr Saltwater hammock 790.0 g C/m /yr 4505.0 g C/m /yr 5295.0 g C/m /yr Black rush 362.0 g C/mz/yr 1004.0 g C/m /yr 1366.0 g C/mz/yr Saw grass 238.0 g C/m /yr 238.0 g C/mz/yr 476.0 g C/m /yr Algae 5 benthos -6.4 g C/mz/yr 395. 3 g C/m /yr 388.9 g C/mz/yr The total area of the algal mat and benthos is assumed to be that of the scrub zone plus the fringe forest.

4-62

Q

~

g I

. I

LITERATURE CITED Abbott, R.T. 1974. American seashells, 2nd ed. Van Nostrand Rein-hold Co., New York. 663 pp.

ABI. 1976. Ecological'monitoring of'elected parameters at the Turkey Point Plant. Annual Report. AB-43. Prepared by Applied Biology, Inc., for Florida Power 8 Light Co., Miami, Florida.

ABI. 1977a. An evaluation of habitats associated with rare and endan-.

gered 'species at four sites in Dade County, Florida. AB-,36.

Prepared by Applied Biology, Inc., for 'Florida Power 8 light Co.,

Miami,, Florida.

ABI. 1977b. An evaluation "of agricultural potential of five sites in Dade County, Florida. AB-45. Prepared by Applied Biology, Inc.,

for Florida Power 8 Light Co., Miami,, Florida.

APHA. 1971. Standard methods for the examination of water and waste water., 13th ed. Amer ican Public Health Association, Washington, D.C. 874 pp.

Bailey, R.M., J.E. Fitch, E.S. Herald; E.A. Lachner, C.C. Lindsey, C.R. Robins, and W.B. Scott. 1970. A list of common and

'cientific names of fishes from the United States and Canada, 3rd ed. "Amer. Fish. Soc. Spec. Publ. No. 6. 149 pp.

r Barlow, T.P. '955. Physical and biological processes determining the distribution of zooplankton in a tidal estuary. Biol.

Bul. Mar. Biol. Lab., Woods Hole, 109:211-'225.

Brooks, R., P.L. Br ezonik, H.D. Putnam, and M.A. Kerra. 1969. Nitrogen fixation in an estuarine environment: the Waccasassa on the Florida Gulf Coast. Limn. and Oceanog. 16:701-710.

Bull, J. and J. Farrand, Jr. 1977. The Audubon Society field quide to North American birds - eastern region. Alfred A, Knopf, New York. 775 pp.

Conant, R. 1975. Field guide to reptiles and amphibians of Eastern and Central North America. Houghton Mifflin,Co., Boston. 429 pp.

4-63

I I

I I

I I'

LITERATURE CITED (continued)

Craighead, F.C., Sr. 1971. The trees of South Florida, Volume I:

the natural environments and their succession. Univ. of Miami Press, Coral Gables, Fla. 212 pp.

Dames 8 Moore. 1976. Surface water investigation; South Dade biological study, South Dade area. Prepared for Florida Power & Light Co.,

Miami, Florida Fell, J.W. et al., 1976. The role of microorganisms as indicators of changi ng environmental condi tions in mangrove and marsh communi-ties. A final report (Section A) on a research project in South Dade County submitted to Florida Power 5 Light Co., Miami, Florida.

Fincher, E.L. 1976. Ecological studies of a subtropical terrestrial biome: microbial ecology. Suraaary report, March 1, 1976-August 31, 1976. Project No. G32-630. Prepared for Florida Power 5 Light Co., Miami, Florida.

Hardy, R.W.F., R,C. Burns, and R.D. Holsten. 1971. Applications of the acetylene-ethylene assay for measuring of nitrogen fixation.

Symposium Nitr. Econ. of Plant Commun., 12th Pac. Sci. Conf.,

Canberra, Australia.

Hardy, R.W.F., R.D. Holsten, E.K. Jackson, and R.C. Burns. 1968.

The acetylene-ethylene assay for Nz fixation: laboratory and field evaluation. Plant Physiology 43:1185-1207.

Paul, E.A., W.A. Rice, and R.J. Myers. 1971. Nitrogen fixation in grassland and associated cultivated ecosystems. rn. T.A. Lie and E.G. Mulder, eds. Biological nitrogen fixation in natural and agricultural habitats.

Snedaker, S.C. 1976. Ecological studies on a subtropical terrestrial biome. Final report. Prepared for Florida Power 5 Light Co.,

Miami, Florida.

Wi lson, S.U. 1974. Metabolism and biology of a blue-green algal mat. M.S. Thesis, Univ. of Miami.

4-64