ML14091A410: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(2 intermediate revisions by the same user not shown)
Line 19: Line 19:
=Text=
=Text=
{{#Wiki_filter:ATTACHMENT 4 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 Calculation Cover Page EC # 49514 Flaw Evaluation of SSW Discharge Piping Leaking Elbow Structural Integrity Associates Calculation No. 1400287.302, Rev. 0 (20 Pages)
{{#Wiki_filter:ATTACHMENT 4 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 Calculation Cover Page EC # 49514 Flaw Evaluation of SSW Discharge Piping Leaking Elbow Structural Integrity Associates Calculation No. 1400287.302, Rev. 0 (20 Pages)
ATTACHMENT 9.2 ENGINEERING CALCULATION COVER PAGE Sheet 1 of 2 13 ANO-1 n3 ANO-2 El GGNS [1 IP-2 [3 IP-3 E3 PLP 13JAF 0 PNPS 13RBS El VY Ej W3 13 NP-GGNS-3 E] NP-RBS-3 CALCULATION ( EC # 49514 (2) Page 1 of 20 COVER PAGE (3) Design Basis Calc. i-- YES (4) CALCULATION E-7 EC Markup (5) Calculation No: M1398 t") Revision:
 
0 (7) Title: Flaw Evaluation of SSW Discharge Piping Leaking Elbow (3) Editorial DYES Z NO (9) System(s):
ATTACHMENT 9.2                                                         ENGINEERING CALCULATION COVER PAGE Sheet 1 of 2 13 ANO-1           n3 ANO-2             El GGNS             [1 IP-2           [3 IP-3       E3 PLP 13JAF               0 PNPS               13RBS               El VY             Ej W3 13 NP-GGNS-3       E] NP-RBS-3 CALCULATION             (   EC # 49514                                       Page 1 of (2)             20 COVER PAGE (3) Design Basis Calc. i-- YES         [*NO        (4) Z* CALCULATION             E-7 EC Markup (5) Calculation No: M1398                                                             t") Revision: 0 (7)
29 (10) Review Org (Department):
 
(11) Safety Class: (12) Component/Equipment/Structure Type/Number:
==Title:==
Z Safety / Quality Related PIPE / JF29-8-4 F-I Augmented Quality Program LI Non-Safety Related (13) Document Type: CALC (14) Keywords (DescriptioniTopical Codes): JF29-8-4, spool, SIA, Structural Integrity Associates, flaw, leak, rubber lining, 1400287.302,1400287 REVIEWS (15) Name/Signature/Date (16) Name/Sigp ature/Date (17) Name/Signature/Date Structural Integrity Assoc. John A. Tucker iq See AS Responsible Engineer I- Design Verifier Supervisor/Approval Z Reviewer[_L Comments Attached I Comments Attached EN-DC-126 R005 ATTACHMENT 9.3 CALCULATION REFERENCE SHEET Sheet 1 of 3 CALCULATION CALCULATION NO: M1398 REFERENCE SHEET REVISION:
Flaw Evaluation of SSW Discharge Piping Leaking Elbow                   (3) Editorial DYES Z NO (9) System(s): 29                               (10) Review Org (Department):
0 I. EC Markups Incorporated (N/A to NP calculations) 1.N/A 2.3.4.5.II. Relationships:
(11)   Safety Class:                           (12)   Component/Equipment/Structure Type/Number:
Sht Rev Input Output Impact Tracking Doc Doc Y/N No.1. Specification M300 2-12 109 x _ _ N 2. MIOO-7250  
Z Safety / Quality Related                     PIPE / JF29-8-4 F-I Augmented Quality Program LI   Non-Safety Related (13) Document Type: CALC (14) Keywords (DescriptioniTopical Codes):
-5 x _ N 3. 0_ _4. [] 0 _5. 0 0_Ill. CROSS  
JF29-8-4, spool, SIA, Structural Integrity Associates, flaw, leak, rubber lining, 1400287.302,1400287 REVIEWS (15) Name/Signature/Date             (16) Name/Sigp ature/Date         (17) Name/Signature/Date Structural Integrity Assoc.         John A. Tucker                 iq             See AS Responsible Engineer             I- Design Verifier                       Supervisor/Approval Z     Reviewer
[_L   Comments Attached                 I   Comments Attached EN-DC-126 R005
 
ATTACHMENT   9.3                                                     CALCULATION REFERENCE SHEET Sheet 1 of 3 CALCULATION                       CALCULATION NO: M1398 REFERENCE SHEET                   REVISION: 0 I. EC Markups Incorporated (N/A to NP calculations) 1.N/A 2.
3.
4.
5.
II. Relationships:               Sht   Rev     Input     Output     Impact   Tracking Doc       Doc         Y/N     No.
: 1. Specification M300           2-12     109       x     _       _     N
: 2. MIOO-7250                   -       5         x     _             N
: 3.                                                 0_     _
: 4.                                                 []         0   _
: 5.                                                 0         0_
Ill. CROSS  


==REFERENCES:==
==REFERENCES:==
: 1. ASME B&PV Code, Section XI, App C, 2001 Edition wI Add through 2003 2. ASME B31.1, Power Piping, 1967 Edition 3. ASME Code Case N-513-3 4. Flow of Fluids Through valves, Fittings and Pipe, Crane Co,., Technical Paper No.410 IV. SOFTWARE USED: Title: N/A Version/Release:  
: 1. ASME B&PV Code, Section XI, App C, 2001 Edition wI Add through 2003
-- Disk/CD No.--V. DISKICDS INCLUDED: Title: N/A Version/Release Disk/CD No.VI. OTHER CHANGES: EN-DC-126 R005 V Structural Integrity Associates, File No.: 1400287.302 VProject No.: 1400287 CALCULATION PACKAGE Quality Program: 0 Nuclear [] Commercial PROJECT NAME: Pilgrim Leaking Elbow Evaluation Support CONTRACT NO.: 10404807, Change Order No. 001 CLIENT: PLANT: Entergy Nuclear Pilgrim Nuclear Power Station CALCULATION TITLE: Flaw Evaluation of SSW Discharge Piping Leaking Elbow Document Affected Project Manager Preparer(s)  
: 2. ASME B31.1, Power Piping, 1967 Edition
&Revision Pages Revision Description Approval Checker(s)
: 3. ASME Code Case N-513-3
Signature  
: 4. Flow of Fluids Through valves, Fittings and Pipe, Crane Co,., Technical Paper No.
& Date Signatures  
410 IV. SOFTWARE USED:
& Date 0 1 -15 Initial Issue A-i -A-3 Eric Houston Brad Dawson EJH 3/3/14 BPD 3/3/14 Raoul Gnagne LRG 3/3/14 Robert McGill ROM 3/3/14 Page 1 of 15 F0306-01 RI C Structural Integrity Associates, Inc!Table of Contents 1.0 IN T R O D U CT IO N ....................................................................................................
 
3 2.0 TECHNICAL APPROACH ....................................................................................
==Title:==
3 3.0 DESIGN INPUTS / ASSUMPTIONS  
N/A     Version/Release: --       Disk/CD No.--
.....................................................................
V.     DISKICDS INCLUDED:
4 4.0 C A LC U L A T IO N S ...................................................................................................
 
5 4.1 A pplied L oads ..............................................................................................
==Title:==
5 4 .1.1 H o op S tress ........................................................................................................
N/A                 Version/Release           Disk/CD No.
5 4.1.2 A x ial S tresses ..............................................................................................  
VI. OTHER CHANGES:
..6 4.2 Stress Intensity Factor Calculations  
EN-DC-126 R005
.............................................................
 
7 4.3 Critical Fracture Toughness Determination  
V VProject StructuralIntegrity Associates, Inc*              File No.: 1400287.302 No.: 1400287 CALCULATION PACKAGE                               Quality Program: 0 Nuclear   [] Commercial PROJECT NAME:
..................................................
Pilgrim Leaking Elbow Evaluation Support CONTRACT NO.:
8 5 .0 R E S U L T S ......................................................................................................................
10404807, Change Order No. 001 CLIENT:                                         PLANT:
8 6.0 C O N C LU SIO N S .....................................................................................................
Entergy Nuclear                                 Pilgrim Nuclear Power Station CALCULATION TITLE:
8 7.0 R E F E R E N C E S ............................................................................................................
Flaw Evaluation of SSW Discharge Piping Leaking Elbow Document       Affected                                     Project Manager           Preparer(s) &
10 APPENDIX A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EV A LU A TIO N ......................................................................................
Revision       Pages         Revision Description             Approval                 Checker(s)
A -1 List of Tables Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10] 11 Table 2: Axial and Circumferential Structural Factors [4] ...............................................
Signature & Date       Signatures & Date 0         1 - 15             Initial Issue A-i - A-3 Eric Houston             Brad Dawson EJH 3/3/14               BPD 3/3/14 Raoul Gnagne LRG 3/3/14 Robert McGill ROM 3/3/14 Page 1 of 15 F0306-01 RI
12 Table 3: Load Combinations for Circumferential Flaw Analyses .....................................
 
12 Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312") ............................
C     StructuralIntegrity Associates, Inc!
12 List of Figures Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow .......................................
Table of Contents 1.0       INT RO D UCT IO N ....................................................................................................                   3 2.0       TECHNICAL APPROACH ....................................................................................                                   3 3.0       DESIGN INPUTS / ASSUMPTIONS .....................................................................                                         4 4.0       C A LC UL A T ION S ...................................................................................................                   5 4.1         A pplied L oads ..............................................................................................                   5 4.1.1 Ho op Stress ........................................................................................................               5 4.1.2 A x ial Stresses..............................................................................................                 .. 6 4.2         Stress Intensity Factor Calculations .............................................................                               7 4.3         Critical Fracture Toughness Determination ..................................................                                     8 5 .0     RE S U L T S ......................................................................................................................       8 6.0       C O N CLU SIO N S .....................................................................................................                   8 7.0       RE FE R E NC E S ............................................................................................................           10 APPENDIX A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EV A LU ATIO N ......................................................................................                         A -1 List of Tables Table   1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10]                                                         11 Table   2: Axial and Circumferential Structural Factors [4] ...............................................                                     12 Table   3: Load Combinations for Circumferential Flaw Analyses .....................................                                             12 Table   4: Allowable Through-Wall Flaw Lengths (based on t = 0.312") ............................                                               12 List of Figures Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow .......................................                                             13 Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow ................... 14 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow ................... 15 File No.: 1400287.302                                                                                                                                   Page 2 of 15 Revision: 0 F0306-01 RI
13 Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow ...................
* SiructuralIntegrity Associates, Inc.0
14 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow ...................
15 File No.: 1400287.302 Page 2 of 15 Revision:
0 F0306-01 RI
* Siructural Integrity Associates, Inc.0  


==1.0 INTRODUCTION==
==1.0 INTRODUCTION==


A weeping flaw, shown on Figure 1, was discovered near the extrados of a 90 degree elbow in the Salt Service Water (SSW) piping at Pilgrim Nuclear Power Station (Pilgrim).
A weeping flaw, shown on Figure 1, was discovered near the extrados of a 90 degree elbow in the Salt Service Water (SSW) piping at Pilgrim Nuclear Power Station (Pilgrim). The leak is located on the JF29-8-4 pipe spool of the SSW system [1]. Ultrasonic testing has been conducted in order to characterize the flaw [1]. Allowable through-wall flaw lengths are determined using methods consistent with an upcoming revision of Code Case N-513-3 [2] as described below.
The leak is located on the JF29-8-4 pipe spool of the SSW system [1]. Ultrasonic testing has been conducted in order to characterize the flaw [1]. Allowable through-wall flaw lengths are determined using methods consistent with an upcoming revision of Code Case N-513-3 [2] as described below.2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in an upcoming revision of ASME Code Case N-513-3. This Code Case allows for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-3 has been conditionally accepted by the NRC with the stipulation that, "The repair or replacement activity temporarily deferred under the provisions of this Code Case shall be performed during the next scheduled outage," and is published in the latest revision of Regulatory Guide 1.147 [3]. N-513-3 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.
2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in an upcoming revision of ASME Code Case N-513-3. This Code Case allows for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-3 has been conditionally accepted by the NRC with the stipulation that, "The repair or replacement activity temporarily deferred under the provisions of this Code Case shall be performed during the next scheduled outage," and is published in the latest revision of Regulatory Guide 1.147 [3]. N-513-3 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.
The evaluation criteria provided in N-513-3 are only for straight pipe since the technical approach relies on ASME Section XI, Appendix C [4] methods. A new revision of the Code Case (N-513-4) includes rules for the evaluation of piping components such as elbows, branch tees and reducers.
The evaluation criteria provided in N-513-3 are only for straight pipe since the technical approach relies on ASME Section XI, Appendix C [4] methods. A new revision of the Code Case (N-513-4) includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences. For elbows, hoop stress is adjusted by considering flaw location and primary stress due to elbow ovalization from axial loads. For axial stresses, the stress scaling follows the same approach given in ASME Section III, ND-3600 [5] design by rule using stress indices and stress intensification factors for the adjustment. Details are provided in N-513-4 for determining these adjusted stresses.
Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences.
N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for more sophisticated analysis by the user.
For elbows, hoop stress is adjusted by considering flaw location and primary stress due to elbow ovalization from axial loads. For axial stresses, the stress scaling follows the same approach given in ASME Section III, ND-3600 [5] design by rule using stress indices and stress intensification factors for the adjustment.
As stated above, Code Case N-513-3 evaluation criteria rely on the methods given in ASME Section XI, Appendix C. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Since a through-wall flaw is being evaluated, through-wall shape factors Fm, Fb and F are used which are given in Appendix I of the Code Case. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.
Details are provided in N-513-4 for determining these adjusted stresses.N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative.
This evaluation utilizes finite element methods (FEM) to calculate the primary membrane stress in the hoop direction due to ovalization from axial loads. Section 3.3 of the Code Case's new revision states File No.: 1400287.302                                                                                 Page 3 of 15 Revision: 0 F0306-01 RI
Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for more sophisticated analysis by the user.As stated above, Code Case N-513-3 evaluation criteria rely on the methods given in ASME Section XI, Appendix C. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Since a through-wall flaw is being evaluated, through-wall shape factors Fm, Fb and F are used which are given in Appendix I of the Code Case. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.This evaluation utilizes finite element methods (FEM) to calculate the primary membrane stress in the hoop direction due to ovalization from axial loads. Section 3.3 of the Code Case's new revision states File No.: 1400287.302 Page 3 of 15 Revision:
 
0 F0306-01 RI 7Slructural Integrity Associates, Inc!that "Alternative methods may be used to calculate the stresses used in evaluation," which justifies the use of FEM techniques.
7Slructural Integrity Associates, Inc!
Details of the Code Case N-513-4 evaluation procedure for elbows are given in Appendix A.3.0 DESIGN INPUTS / ASSUMPTIONS The SSW Code of Construction is ANSI B31.1 1967 Edition [6].Based on information provided by Entergy, the 18 inch elbow is located on SSW spool JF29-8-4 [1].The 90 degree elbow located on JF29-8-4 is a schedule 20, long radius elbow [7]. The design pressure and temperature are 10 psig and 100°F, respectively
that "Alternative methods may be used to calculate the stresses used in evaluation," which justifies the use of FEM techniques.
[8].The elbow material is ASTM A-234 WPB [7] carbon steel. For the analysis, A106 Gr. B carbon steel is judged to have equivalent material properties.
Details of the Code Case N-513-4 evaluation procedure for elbows are given in Appendix A.
The nominal composition of the two materials is essentially the same and the minimum yield and tensile strengths are the same for both materials.
3.0 DESIGN INPUTS / ASSUMPTIONS The SSW Code of Construction is ANSI B31.1 1967 Edition [6].
In addition, the longitudinal and transverse elongations are similar between these materials.
Based on information provided by Entergy, the 18 inch elbow is located on SSW spool JF29-8-4 [1].
The applied moment loadings are obtained from the ME-101 output listings in Reference
The 90 degree elbow located on JF29-8-4 is a schedule 20, long radius elbow [7]. The design pressure and temperature are 10 psig and 100°F, respectively [8].
[9]. Based on information provided by Entergy, the location of interest is node 22. The moments for each load case are provided in three dimensions (MA, MB, and MC), which are combined by square-root-of-the-sum-of-the-squares (SRSS). The resulting SRSS moments at each location along the elbow (beginning, middle, and end) are compared for each loading, and the bounding moment is used in this analysis.Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [4], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kic. The NRC's Pipe Fracture Encyclopedia
The elbow material is ASTM A-234 WPB [7] carbon steel. For the analysis, A106 Gr. B carbon steel is judged to have equivalent material properties. The nominal composition of the two materials is essentially the same and the minimum yield and tensile strengths are the same for both materials. In addition, the longitudinal and transverse elongations are similar between these materials.
[10]contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which are reproduced in Table 1. The minimum reported value of 293 in-lb/in 2 is used in the analysis for both axial and circumferential flaws.Finite element methods are used to determine the primary membrane stress in the hoop direction due to ovalization from axial loads in Reference
The applied moment loadings are obtained from the ME-101 output listings in Reference [9]. Based on information provided by Entergy, the location of interest is node 22. The moments for each load case are provided in three dimensions (MA, MB, and MC), which are combined by square-root-of-the-sum-of-the-squares (SRSS). The resulting SRSS moments at each location along the elbow (beginning, middle, and end) are compared for each loading, and the bounding moment is used in this analysis.
[11]. A unit moment of 10,000 in-lbs is applied to the FEM and linearized stresses are extracted at paths in the axial direction from the flaw. A stress of 100 psi conservatively bounds the tensile hoop stress reported in Reference
Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [4], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kic. The NRC's Pipe Fracture Encyclopedia [10]
[11]. This bounding stress is factored based on the ratio of the applied moment for the applicable service level to the unit moment of 10,000 in-lbs. The factored stress is used as described in Section 4.1.1 below.The following design inputs are used in this calculation:
contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which are reproduced in Table 1. The minimum reported value of 293 in-lb/in 2 is used in the analysis for both axial and circumferential flaws.
: 1. Long radius 900 elbow OD = 18 inches [7]2. Nominal elbow thickness  
Finite element methods are used to determine the primary membrane stress in the hoop direction due to ovalization from axial loads in Reference [11]. A unit moment of 10,000 in-lbs is applied to the FEM and linearized stresses are extracted at paths in the axial direction from the flaw. A stress of 100 psi conservatively bounds the tensile hoop stress reported in Reference [11]. This bounding stress is factored based on the ratio of the applied moment for the applicable service level to the unit moment of 10,000 in-lbs. The factored stress is used as described in Section 4.1.1 below.
= 0.312 inch (based on Schedule 20 piping [7])3. Design pressure = 10 psig [8]File No.: 1400287.302 Page 4 of 15 Revision:
The following design inputs are used in this calculation:
0 F0306-0 I RI rStructural Integrity Associates, 4. Design temperature  
: 1. Long radius 900 elbow OD = 18 inches [7]
= 100'F [8]5. Young's modulus = 27,900 ksi [6, Table C-i]6. Allowable stress = 15 ksi [6, Table A-2]7. Enveloped SRSS Deadweight Moment = 43,973 in-lbs [9]8. Enveloped SRSS OBE Moment = 38,820 in-lbs [9]9. Enveloped SRSS SSE Moment = 72,789 in-lbs [9]10. Enveloped SRSS Thermal Moment = 22,047 in-lbs [9]11. Stress intensification factor, i = 3.98 [6]12. Jic for axial flaws = 293 in-lb/in 2 [4, 10]13. Jic for circumferential flaws = 293 in-lb/in 2 [4, 10]14. Bounding primary membrane stress in the hoop direction due to unit moment load = 100 psi [11 ]Note that the wall thickness surrounding the flaw is greater than the elbow nominal thickness
: 2. Nominal elbow thickness = 0.312 inch (based on Schedule 20 piping [7])
[ I].Therefore, the use of the 0.312 inch surrounding wall thickness is considered conservative.
: 3. Design pressure = 10 psig [8]
File No.: 1400287.302                                                                                 Page 4 of 15 Revision: 0 F0306-0 I RI
 
rStructuralIntegrity Associates, Inc!*
: 4. Design temperature = 100'F [8]
: 5. Young's modulus = 27,900 ksi [6, Table C-i]
: 6. Allowable stress = 15 ksi [6, Table A-2]
: 7. Enveloped SRSS Deadweight Moment = 43,973 in-lbs [9]
: 8. Enveloped SRSS OBE Moment = 38,820 in-lbs [9]
: 9. Enveloped SRSS SSE Moment = 72,789 in-lbs [9]
: 10. Enveloped SRSS Thermal Moment = 22,047 in-lbs [9]
: 11. Stress intensification factor, i = 3.98 [6]
: 12. Jic for axial flaws = 293 in-lb/in 2 [4, 10]
: 13. Jic for circumferential flaws = 293 in-lb/in 2 [4, 10]
: 14. Bounding primary membrane stress in the hoop direction due to unit moment load       = 100 psi [11 ]
Note that the wall thickness surrounding the flaw is greater than the elbow nominal thickness [ I].
Therefore, the use of the 0.312 inch surrounding wall thickness is considered conservative.
The following assumptions are used in this calculation:
The following assumptions are used in this calculation:
: 1. Poisson's ratio is assumed to be 0.3.2. Due to the flaw remoteness from a weld, residual stress effects are assumed negligible.
: 1. Poisson's ratio is assumed to be 0.3.
: 3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-3 address the possibility of flaw growth during the temporary acceptance period).4.0 CALCULATIONS 4.1 Applied Loads 4.1.1 Hoop Stress For the allowable axial flaw length, the hoop stress, Gh, due to internal pressure and elbow ovalization from the axial moments may be determined from Equation 9 of N-513-4 (see Appendix A):=( pD 0' 2 Rbend +JRk sin 0 1 (1.95 ) RoM, 17h 2 t L 2 (RbeAd +Rsin0)j h 2 1 1) I where: p = internal pressure, psig D, = outside diameter, in t = wall thickness, in Rbend = elbow bend radius (27 inches)Ro = outside radius, in 0 = circumferential angle from elbow flank (see Figure 7 in Appendix A)File No.: 1400287.302 Page 5 of 15 Revision:
: 2. Due to the flaw remoteness from a weld, residual stress effects are assumed negligible.
0 F0306-01 RI SIructural Integrity Associates, IncO h = flexibility characteristic  
: 3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-3 address the possibility of flaw growth during the temporary acceptance period).
= t*Rbencd/(Rlnean) 2 [6]Rmean = elbow mean radius, in Mb = primary bending moment, in-lbs.4 I = moment of inertia, in.Note that the first term of Equation 1 accounts for the hoop stress due to internal pressure and includes a scaling factor to account for the circumferential location of the flaw (assuming uniform thickness, pressure based hoop stress is a maximum at the elbow intrados, while a minimum at the elbow extrados).
4.0 CALCULATIONS 4.1 Applied Loads 4.1.1   Hoop Stress For the allowable axial flaw length, the hoop stress, Gh, due to internal pressure and elbow ovalization from the axial moments may be determined from Equation 9 of N-513-4 (see Appendix A):
At the flank, the pressure based hoop stress is equal to that of straight pipe. For the analysis herein, it is conservative to set 0 = 0 since the flaw is between the flank and extrados as shown on Figure 2.The second term of Equation I accounts for the hoop stress resulting from the axial moments acting to ovalize the elbow. This term is replaced with the scaled primary membrane stress in the hoop direction as discussed in the previous section.Finally, N-513-4 limits the use of Equation I for h > 0.1. For this elbow, h z 0.11.4.1.2 Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight, seismic, and thermal loading is presented below. For axial membrane stress due to pressure, Cm, Equation 10 of N-513-4 is used: (7.=Bj(pD. (2)°"=i,2tJ where Bi is an ASME Section III primary stress index for internal pressure.
                      =( pD0 '
N-513-4 sets this value to 0.5.For axial bending stress, ab, due to deadweight and seismic moments, Equation 11 of N-513-4 may be used: rb = B 2 (MbJ (3)where B2 is an ASME Section III primary stress index for moment loading. From Figure ND-3673.2(b)-I of Reference
2 2
[5], B2 = 1.30/h 2/3.For this elbow, B2 = 5.74.For axial bending stress due to thermal moments, Cre, Equation 12 of N-513-4 may be used: j(Ro~eJ(4)
Rbend +JRk sin 0 1   (1.95 ) RoM, 17h       t L 2(RbeAd +Rsin0)j h 211) I where:
File No.: 1400287.302 Page 6 of 15 Revision:
p = internal pressure, psig D, = outside diameter, in t = wall thickness, in Rbend = elbow bend radius (27 inches)
0 F0306-01 RI rStructural Integrity Associates, IncO where i is the stress intensification factor. From [6, Appendix D], i = 3.98.4.2 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, Ki, for an axial flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below: K, = Kim + KI, (5)where: Kim = (SFm)F~h(7ta/Q) 0" 5 SFm = structural factor for membrane stress (see Table 2)F = through-wall shape factor for an axial flaw under hoop stress (given in Appendix I of N-513-3)ah = hoop stress, ksi a = flaw depth (half flaw length for through-wall flaw), in Q = flaw shape parameter (unity per Appendix I of N-513-3)KIr = Ki from residual stresses at flaw location (assumed negligible).
Ro = outside radius, in 0 = circumferential angle from elbow flank (see Figure 7 in Appendix A)
Only the hoop stress influences the allowable axial flaw length which is a function of pressure and primary bending stress.For LEFM analysis, the stress intensity factor, Ki, for a circumferential flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below: K 1 = Ki + Klb + K 1 r (6)where: Kim = (SFm)Fmam(7ta) 0°5 Fm = through-wall shape factor for a circumferential flaw under membrane stress (given in Appendix I of N-513-3)Gm = membrane stress, ksi KIb = [(SFb)O'b  
File No.: 1400287.302                                                                               Page 5 of 15 Revision: 0 F0306-01 RI
+ ae]Fb(nta) 0" 5 SFb = structural factor for bending stress (see Table 2)Gb = bending stress, ksi Ge = thermal stress, ksi Fb = through-wall shape factor for a circumferential flaw under bending stress (given in Appendix I of N-513-3).Note that the through-wall flaw shape factors are a function of flaw length.Table 3 shows the specific load combinations considered herein for the allowable circumferential flaw calculations.
 
Since the load combination for Service Level C and D are equivalent, the more limiting flaw length associated with the Service Level C structural factors are presented.
SIructuralIntegrity Associates, IncO h = flexibility characteristic = t*Rbencd/(Rlnean) 2 [6]
File No.: 1400287.302 Page 7 of 15 Revision:
Rmean = elbow mean radius, in Mb = primary bending moment, in-lbs
0 F0306-01 RI  
                                      .4 I = moment of inertia, in.
$Structural Integrity Associates, Inc.*4.3 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Ki,, is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below: Klfc= ,jjE' (7)1 1000 where: Jic = material toughness, in-lb/in 2 E'= E/(l-v 2)E = Young's modulus, ksi v = Poisson's ratio.Based on the design input listed previously, Kic is 94.7 ksi-in°5 for both axial and circumferential flaws.The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.
Note that the first term of Equation 1 accounts for the hoop stress due to internal pressure and includes a scaling factor to account for the circumferential location of the flaw (assuming uniform thickness, pressure based hoop stress is a maximum at the elbow intrados, while a minimum at the elbow extrados).
5.0 RESULTS Table 4 shows the allowable through-wall flaw lengths resulting from the analysis based on a surrounding nominal wall thickness.
At the flank, the pressure based hoop stress is equal to that of straight pipe. For the analysis herein, it is conservative to set 0 = 0 since the flaw is between the flank and extrados as shown on Figure 2.
The most limiting flaw length is 8 inches in the circumferential direction.
The second term of Equation I accounts for the hoop stress resulting from the axial moments acting to ovalize the elbow. This term is replaced with the scaled primary membrane stress in the hoop direction as discussed in the previous section.
The UT results for the leaking elbow are shown in Figure 3 [1 ]. The leak is easily bounded in the axial and circumferential directions by 8 inches. Thus, the acceptance criteria of Code Case N-513-4 are met.Finally, Paragraph 3.2(d) requires that N-513-3 Equation 9 be satisfied (i.e., the remaining ligament average thickness over the degraded area bounded by the limiting flaw size will resist pressure blowout).The average remaining wall thickness requirement covering the degraded area from Equation 9 is 0.07 inch (using a dadj = 8 inches). From the inspection data given in Figure 3, only the grids nearest to the leak are less than this value. Thus, this Code Case requirement is met.
Finally, N-513-4 limits the use of Equation I for h > 0.1. For this elbow, h z 0.11.
4.1.2   Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight, seismic, and thermal loading is presented below. For axial membrane stress due to pressure, Cm, Equation 10 of N-513-4 is used:
                      °"=i,2tJ (7. =Bj(pD.                                                                                   (2) where Bi is an ASME Section III primary stress index for internal pressure. N-513-4 sets this value to 0.5.
For axial bending stress, ab, due to deadweight and seismic moments, Equation 11 of N-513-4 may be used:
rb = B 2 (MbJ                                                                                 (3) where B2 is an ASME Section III primary stress index for moment loading. From Figure ND-3673.2(b)-I of Reference [5], B2 = 1.30/h 2/3. For this elbow, B2 = 5.74.
For axial bending stress due to thermal moments, Cre, Equation 12 of N-513-4 may be used:
j(Ro~eJ(4)
File No.: 1400287.302                                                                                 Page 6 of 15 Revision: 0 F0306-01 RI
 
rStructuralIntegrity Associates, IncO where i is the stress intensification factor. From [6, Appendix D], i = 3.98.
4.2 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, Ki, for an axial flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:
K, = Kim + KI,                                                                             (5) where:
Kim = (SFm)F~h(7ta/Q) 0 5" SFm = structural factor for membrane stress (see Table 2)
F = through-wall shape factor for an axial flaw under hoop stress (given in Appendix I of N-513-3) ah = hoop stress, ksi a = flaw depth (half flaw length for through-wall flaw), in Q = flaw shape parameter (unity per Appendix I of N-513-3)
KIr = Ki from residual stresses at flaw location (assumed negligible).
Only the hoop stress influences the allowable axial flaw length which is a function of pressure and primary bending stress.
For LEFM analysis, the stress intensity factor, Ki, for a circumferential flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:
K 1 = Ki + Klb + K1 r                                                                       (6) where:
Kim = (SFm)Fmam(7ta) 0° 5 Fm = through-wall shape factor for a circumferential flaw under membrane stress (given in Appendix I of N-513-3)
Gm = membrane stress, ksi KIb = [(SFb)O'b + ae]Fb(nta) 0 "5 SFb = structural factor for bending stress (see Table 2)
Gb = bending stress, ksi Ge = thermal stress, ksi Fb = through-wall shape factor for a circumferential flaw under bending stress (given in Appendix I of N-513-3).
Note that the through-wall flaw shape factors are a function of flaw length.
Table 3 shows the specific load combinations considered herein for the allowable circumferential flaw calculations. Since the load combination for Service Level C and D are equivalent, the more limiting flaw length associated with the Service Level C structural factors are presented.
File No.: 1400287.302                                                                               Page 7 of 15 Revision: 0 F0306-01 RI
 
          $Structural Integrity Associates, Inc.*
4.3 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Ki,, is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:
Klfc= ,jjE'                                                                                 (7) 11000 where:
Jic = material toughness, in-lb/in 2 E'= E/(l-v 2)
E = Young's modulus, ksi v = Poisson's ratio.
Based on the design input listed previously, Kic is 94.7 ksi-in° 5 for both axial and circumferential flaws.
The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.
5.0 RESULTS Table 4 shows the allowable through-wall flaw lengths resulting from the analysis based on a surrounding nominal wall thickness. The most limiting flaw length is 8 inches in the circumferential direction. The UT results for the leaking elbow are shown in Figure 3 [1 ]. The leak is easily bounded in the axial and circumferential directions by 8 inches. Thus, the acceptance criteria of Code Case N-513-4 are met.
Finally, Paragraph 3.2(d) requires that N-513-3 Equation 9 be satisfied (i.e., the remaining ligament average thickness over the degraded area bounded by the limiting flaw size will resist pressure blowout).
The average remaining wall thickness requirement covering the degraded area from Equation 9 is 0.07 inch (using a dadj = 8 inches). From the inspection data given in Figure 3, only the grids nearest to the leak are less than this value. Thus, this Code Case requirement is met.


==6.0 CONCLUSION==
==6.0 CONCLUSION==
S The flaw evaluation of the weeping flaw in a 18-inch elbow of the SSW piping at Pilgrim has been evaluated using the methods of a pending revision to Code Case N-513-3 (designated N-513-4) currently in the ASME approval process (N-513-3 does not provide evaluation criteria for flaws in elbows, while N-513-4 does). N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative.
S The flaw evaluation of the weeping flaw in a 18-inch elbow of the SSW piping at Pilgrim has been evaluated using the methods of a pending revision to Code Case N-513-3 (designated N-513-4) currently in the ASME approval process (N-513-3 does not provide evaluation criteria for flaws in elbows, while N-513-4 does). N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Table 4 shows the axial and circumferential allowable flaw lengths based on a surrounding nominal wall thickness of 0.312 inch. The most limiting flaw size is 8 inches in the circumferential direction. The leak is easily bounded File No.: 1400287.302                                                                                 Page 8 of 15 Revision: 0 F0306-01 RI
Table 4 shows the axial and circumferential allowable flaw lengths based on a surrounding nominal wall thickness of 0.312 inch. The most limiting flaw size is 8 inches in the circumferential direction.
 
The leak is easily bounded File No.: 1400287.302 Page 8 of 15 Revision:
rStructuralIntegrity Associates, Inc!
0 F0306-01 RI rStructural Integrity Associates, Inc!in the axial and circumferential directions by 8 inches (as shown in Figure 3). Thus, the acceptance criteria of Code Case N-513-4 are met.File No.: 1400287.302 Revision:
in the axial and circumferential directions by 8 inches (as shown in Figure 3). Thus, the acceptance criteria of Code Case N-513-4 are met.
0 Page 9 of 15 F0306-01RI rSlructural Integrity Associates,  
File No.: 1400287.302                                                                               Page 9 of 15 Revision: 0 F0306-01RI
 
rSlructuralIntegrity Associates, Inc.'*


==7.0 REFERENCES==
==7.0 REFERENCES==
: 1. Pilgrim NDE Inspection Report, File Name "JF29 4 8 0.dmsdr," February 25, 2014, SI File Number 1400287.201.
: 1. Pilgrim NDE Inspection Report, File Name "JF29 4 8 0.dmsdr," February 25, 2014, SI File Number 1400287.201.
: 2. ASME Code Case N-513-3, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, January 26, 2009.3. Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, Nuclear Regulatory Commission, October, 2010.4. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with addenda through 2003.5. ASME Boiler and Pressure Vessel Code, Section III, Subsection ND, 2004 Edition.6. ANSI B3 1.1, Power Piping, 1967 Edition.7. Entergy Drawing Number M100-7250, Revision E5, "Service Water System E209B SSW Backwash Drain Piping," SI File Number 1400287.201.
: 2. ASME Code Case N-513-3, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, January 26, 2009.
: 3. Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, Nuclear Regulatory Commission, October, 2010.
: 4. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with addenda through 2003.
: 5. ASME Boiler and Pressure Vessel Code, Section III, Subsection ND, 2004 Edition.
: 6. ANSI B3 1.1, Power Piping, 1967 Edition.
: 7. Entergy Drawing Number M100-7250, Revision E5, "Service Water System E209B SSW Backwash Drain Piping," SI File Number 1400287.201.
: 8. Pilgrim Nuclear Power Station Specification Number M300, System 29 Service Water, SI File Number 1400287.201.
: 8. Pilgrim Nuclear Power Station Specification Number M300, System 29 Service Water, SI File Number 1400287.201.
: 9. Pilgrim Nuclear Power Station Pipe Stress Calculation 638, SI File Number 1400057.201.
: 9. Pilgrim Nuclear Power Station Pipe Stress Calculation 638, SI File Number 1400057.201.
: 10. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.11. SI Calculation Number 1400287.301, Revision 0, "Pilgrim Salt Service Water Discharge Piping Elbow (JF29-8-4 Spool) Wall Thinning Stress Analysis." File No.: 1400287.302 Page 10 of 15 Revision:
: 10. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
0 F0306-01 RI  
: 11. SI Calculation Number 1400287.301, Revision 0, "Pilgrim Salt Service Water Discharge Piping Elbow (JF29-8-4 Spool) Wall Thinning Stress Analysis."
File No.: 1400287.302                                                                       Page 10 of 15 Revision: 0 F0306-01 RI
 
r*Structural Integrity Associates, Inc.!
Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [101 A1O68Grade~c                                                                      2 Database Reference Temperature (°C) Temperature (F)  JIC (kJ/m)    JIC (ibf-in/in )  KIC (ks-in) 2              24              75            97              552            133 2              24              75          336              1919            249 16              25              77            81              464            122 16              25              77          418              2386            277 16              25              77          270              1542            223 16              25              77          193              1104            189 22              24              75          224              1278            203 22              20              68          112                641            144 22              20              68          117                668            147 22              23              73          214              1223            199 22              20              66          167                954            175 22              20              68          223              1271            202 22              20              68          108                617            141 23              52              126          116                663            146 23              23              73          103                590            138 23              23              73          105                600            139 23              23              73          93                528            131 24              23              73            76              431            118 24              23              73          82                469            123 24 25 57 23 135 73 51 77 293 43--
97 119 4-25              23              73            70              400            114 25              57              135          62                356            107 90              20              68          235              1342            208 90              20              68          219              1251            201 90              20              68          255              1456            217 90              20              68          281              1605            228 90              20              68          281              1605            228 90              20              68          335              1913            248 90              20              68          421              2404            279 90              20              68          385              2198            266 90              20              68          175                999            180 90              20              68          172                982            178 90              20              68          178              1016            181 90              20              68          214              1222            199 90              20              68          275              1570            225 90              20              68          133                759            157 90              20              68          140                799            161 90              20              68          174                994            179 90              20              68          1!1l              634.          143 90              20              68          190              1085            187 90              20              68          71                405            114 90              20              68          110                628            142 90              20              68          104                594            138 90              20              68          104                594            138 90              20              68          97                554            134 90              20              68            28              508            128 90              20              68          88                502            127 90              20              68        267              1525            222 File No.: 1400287.302                                                                                                      Page 11I of 15 Revision: 0 F0306-0IRI
 
XjStructuralIntegrity Associates, Inc.
Table 2: Axial and Circumferential Structural Factors [41 Service Level      Membrane Stress, SFn      Bending Stress, SFb A                      2.7                      2.3 B                      2.4                      2.0 C                      1.8                      1.6 D                      1.3                      1.4 Table 3: Load Combinations for Circumferential Flaw Analyses Load Combination              Service Level P+DW+TH                          A P+DW+OBE+TH                        B P+DW+SSE+TH                      C/D Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312")
Service      Allowable Axial Flaw    Allowable Circumferential Level            Length (in)            Flaw Length (in)
A                16.0                      13.2 B                16.0                      8.8 C/D                16.0                      8.0 File No.: 1400287.302                                                                Page 12 of 15 Revision: 0 F0306-01 RI
 
VjStructuralIntegrity Associates, Inc.
Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow Page 13 of 15 File No.: 1400287.302 Revision: 0 FO306-01 RI
 
StructuralIntegrity Associates, Inc.r
                                            ".1      ý-- k\ y4h
                                                              -roep 4-
                                                .0 CS~o'~4 N-~k Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow File No.: 1400287.302                                                                    Page 14 of 15 Revision: 0 F0396-01 RI
 
r    StructuralIntegrity Associates, Inc.l LOCATION  AJ:      AK:    AL:    AM:      AN:  AO:  AP:    AQ:  AR:    AS:    AT:    AU:      AV:
1    0.396    0.397  0.397  0.380    0.369 0.352 0.348  0.344 0.342  0.335  0.328  0.315    0.328 2    0.398    0.396  0.393  0.371    0.334 0.353 0.347  0.343 0.345  0.341  0.337  0.311    0.325 3      0.393    0.390  0.393  0.369    0.309 0.361 0,347  0.338 0.343  0.335  0.327  0.308    0.326 4      0.387    0.389  0.389  0.383    0.150 0.051 0.109  0.336 0.299  0.336  0.327  0.308    0.318 5      0.386    0.390  0.394  0.192    0.087 0.064 0.083  0.334 0.313  0.328  0.328  0.315    0.320 6      0.389    0.388  0.392  0.108    0.352 0.362 0.332  0.333 0.334  0.298  0.292  0.317    0.323 7      0.390    0.390  0.393  0.390    0.380 0.343 0.342  0.339 0.341  0.296  0.337  0.321    0.323 8      0.385    0.388  0.392  0.388    0.386 0.366 0.360  0.356 0.349  0.349  0.348  0.327    0.326 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow File No.: 1400287.302                                                                          Page 15 of 15 Revision: 0 F0306-0I RI
 
Appendix A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVALUATION File No.: 1400287.302                                          Page A- I of A-3 Revision: 0 F0306-OIRI
 
3.3 Through-wall Flaws In Elbows and Bent Pipe Through-wall flaws in elbows and bent pipe may be evaluated using the straight pipe procedures given in 3.1 or 3.2(d) provided the stresses used in the evaluation are adjusted as described below to account for the geometry differences. Alternate methods may be used to calculate the stresses used in evaluation.
The hoop stress. aL,, for elbow and bent pipe evaluation shall be:
k,2, ( , +R,sin 0)j 1.hl95 orý:=(pD."F[ 2R*j, +R,sin¢l]              ..h2' )R3    (9) where Rb,,,a =  elbow or bent pipe bend radius 0    =  circumferential angle defined in Figure 7 h      =  flexibility characteristic Mb    =  resultant primary bending moment I      =    ontoent of inertia based on evaluation wall thickness, t Equation 9 is only applicable for elbows and bent pipe where h > 0. 1.
The axial membrane presslue stress, a,,,_ for elbow and bent pipe evaluation shall be:
C B,,
B(pDJ                          (10) where Bj is a primary stress index as defined in ASIME Section III for the piping item. B, shall be equal to 0.5 for elbows and bent pipe.
The axial bending stress, a,, for elbow and bent pipe evaluation shall be:
B'z,        .)(I)              0 where B, is a primary stress index as defined in ASME Section III for the piping item.
The thermal expansion stress, oa,. for elbow and bent pipe evaluation shall be:
a.o=                                  (12) where i = stress intensificatio flactor as defined ill the Code of Record for fthe pipin2 item
                          ,11, = resultant Thermal expansion mlom1t1ent File No.: 1400287.302                                                                Page A-2 of A-3 Revision: 0 F0306-01 RI
 
Figure 7 from N-513-4:
FIG. 7 CIRCUMFERENTIAL ANGLE DEFINED extrados File No.: 1400287.302                                          Page A-3 of A-3 Revision: 0 F0306-01 RI
 
ATTACHMENT 5 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 SSW Spool JF 29-8-4 NDE Data Sheet (4 pages)
 
UT Erosion/Corrosion Examination Entergy Site/Unit    PNPS      I            1                                              Procedure;            CEP-NDE-0505                        Outage No.:          NIA Summary No.              SSW Pipe Spool                                            Procedure Rev.:                    .004                          Report No.:  BOP-UT-14-001 VVorKscope:                  BOP                                                Work Order No.:                  375247-04                              Page:    I      of    X_    .
C3oe              ASME Sec-XI, 2001-2003 Ada.                          Cat.Jltem:              C-H/C7.10                      Location:                      "B" Aux Bay Drawing No.                              M100-7250                                   
 
== Description:==
18" Elbow System ID.          Service Water System (29)
Component ID: Pipe Spool JF29-8-4                                                                                            SizelLength:    18"16"-12"        Thickness/Diameter    Sch.-20/18" Lunitations          NIA                                            Component File No.. NIA                                              Start Time:      9:45        Finish Time.      14:10 Calibration Intomiation                                          Partitioning Information                                        Component Information Caiwa'.son Truckncsb (in)            Caiorabton Times I Initais        Component        B6eqgJCoURow      Ending/CoiiRow      Component Geometry:                  Pipe Elbow
      ,*cwal            muro                                                M. UPST Ext.            NIA              NIA            Outside Diameter:        18"          Grid Size:    314" Start      9:40        RDA 0.100              0.100                                -              Main UPST.              N/A              NIA            Max Thickness:      0.457      Min. Thjkness:      0.051 Verfy:      12:00        RDA 0.200              0.1-9                                              Main                    1A                8iB            Nominal Thickness:        0.312          Tmin.:    0.270 0.300              0.299        Venty:      WA N              A        Main DNST.              NWA              NJA 0.400              0.400        Verity      WA          WNA        M. DNST Ext.            N/A              NWA 0.500                              Final:    14:15        RDA                                                                    Max. Thickness 0.500                        -          -          Branch                  W/A              WJA            Mx      hcns Location:
oain                    aZ Branch Ext.              NIA              NWA            Surface Condition:                    SMOOTH Inururer:                                            Transducer:                                              ReferencelSimulator Block:                        Temp. Tool:
Mant'.'actuer:                  GE                  Manufacturer                    KBA                    Serial No.:              94-5570                  Manufacturer,        Elcometer Mooei.                      USM-GO                  Serial No.:                    01550W                    Type:                    0.                        Serial No.:        PNPTEM-288 Serial No.            USMGO1 2915119                                                      _____Rf~mltrBokTm.                                          0~
Size:        0.375"        Freq.:      5.0 MHz                                                            Couplant:
Gain                            6_Model:                                    113-550-001                                                                        Type                Ultrage11 Range:                        0.500                  # of Elements:                    2                    Material/Component Temp.:              73      'F Batch No.:            05125 Comnients/Oustructons.            UT performed do to a through wall hole. See CR-PNP.2014-00815. This is not a Code required exam.
Resiuts                Accept    _        Reject  3-          Eval *j O'ther            Level WA                                Signature                              Date ANII Review                                            Signature                            Date N/A                                                                                                      N/A
 
Supplemental Report Report No.: BOP-UT-14-001 E- ergy                                                                                                                Page:  2  of    4 Summary No. SSW Pipe Spool File Name Spool JF29-8-4 Descnptlion      '18    Elbow Creation D ale: 2/25/2014 Proue      See UT Report Cdi Comment                See report Irnspector    . R. AVERY                Company        i      Entergy Instrument Type : DMS Go                    Instrument S.N: USMGO12015119 Units              INCH            Vel ocity(in/us)    0.2360 Nunmoor or Readings : 488                  Number of Empties es; 0 Numoer of Ousiructs. 0                    Number of Attachments : 0 Range              : 0.406          Points Below MinAlarm: 0 Mean                0.368          Slanoard Dae*anon : 0.047 Minimum Value            0.051 Minimum Value Loc. 4:AO:1 Maximum Value            .0.457 Maximum Value Loc.          8:Z:
OCATIO            A:            B:          C:        0:          E:    F:      G:      H:      I:      J:      K:    L:    M:        N:
1      0.344          0.348      0.365      0.372      0.374 0.375  0.377  0.373  0.372    0.364  0.361 0.364 0.358      0.359 2        0.346          0.356      0.365      0.370      0.372 0.376  0.373  0.377  0.375    0.370  0.367 0.367 0.364      0.365 3        0.348          0.358      0.363      0.366      0.373 0.376  0.375  0.377  0.376    0.374  0.369 0.367 0.366      0.366 4        0.354          0.352      0.365      0.369      0,375 0.379  0.381  0.380  0.380    0.380  0.372 0.367 0.366      0.368 5        0.349          0.354      0.366      0.368      0.375  0.378  0.378  0.382  0.382    0.380  0.377 0.372 0.369      0.372 6        0.353          0.357      0.364      0.367      0.378  0.378  0.381  0.382  0.36a    0.381  0.375 0.372 0.373      0.372 7        0.354          0.357      0.365      0.374      0.375  0.380  0.381  0.385  0.381    0.379  0.379 0.371 0.372      0.371 8        0.360          0.359        0.363      0.374      0.373  0.363  0.369  1 0.382  0,380    0.378  0.377 0.377 0.374      01372 TOP CiL oi PiPE Direction of Flow    t                                        -71
 
Supplemental Report                                        Report No.: BOP-UT-14-001
    -- tergy                                                                                                            page:    3    ot  4 Suinrnarý No SSW Pipe SpoCt.
(D: 1 P:      Q:    R:    S:    T:      U:      V:  .W:      X:    Y      Z:    AA. A1:  AC:      AD:    AF:
367 0.371  0.380  0.386  0.398  0.400    0.373  0.413  0.419  0.425  0.427  0.421  0.417  0.415 0.417  0.413  0.404 20.372" 0.378      0.385  0.392  0.398  0.401    0.409  0.411  0.419  0.431  0.428  0.428  0.421  0.422 0.417  0.414  0-405 372  0.378  0.385  0.392  0.394  0.401    0.409  0.410  0.415 0.423    0.429  0.428  0.428  0.422 0.417  0.414  0.404 0.374  0.382  0.383  0.396  0.400  0.405    0.409  0.413  0.423 0.427    0.429  0.4.23 0.421  0.418 0.419  0.415  0.403 5 0.378    0.384  0.385  0.400  0.403  0.407    0.412  0.416  0.426  0.428  0.429 0.4.31  0.427  0.423 0.423  0.421  0.409 6_ 0.380    0.389  0.393  0.404  0.407  0.414    0.421  0.419  0.429  0.437  0.433 0.430  0.428  0.425 0.422  0.426  0.408 1 70.380 1 0.387    0.390  0.400  0.406  0.412    0.416  0.419  0.430  0.433  0.430 0.4.30  0.427  0.425 0.423    0.426  0.414 8Jl0.383 0-389    0.395  0.401  0.407  0.412    0.418  0.422  0.426  0.428  0.427 0.457  0.421  0.419 0.422  0.421  0.406 AF:    AG:    AH:    IAl:  AJ:  AK:      AL:    AM:    AN:    AO:    AP      AQ:    AR:    AS:  AT:      AU:    AV:
1  0.400  0.395  0.391  0.396  0.396  0.397    0.397  0.380  0.369 0,352    0.348  0.344  0.342  0.335  0.328  0.315  0.328 2  0.393  0.394  0.389  0.397  0.398  0.396  0.393  0.371  0.334 0.353    0.347  0.343  0.345  0.341  0.337  0.311  0.325 3  0.394  0.390  0.388  0.389  0.393  0.390  0.393  0.369  0.309 0.361    0.347  0.-338 0.343  0.335  0.327  0.308  0.326 4  0.391  0.385  0.383  0.383  0.387  0.389  0.389  0.383  . 0.0651  W5    0.336  0.299  0.336  0.327  0.308  0.318 5  0.378  0.388  0.380  0.380  0.386  0.390  0.394 [01                            0.334  0.313  0.328_0.328    0.315  0.320 6  0.390  0.380  0.382  0.383  0.389 0.388    0.3            0.352 0.362    0.332  0.333  0.334                    17  0.323 7  0.398  0-385  0.385  0.380  0.390 0.390    0.393  0.390  0.380 0.343    0.342  0.3139 0.341        0.337  0.321  0.323 8  0.401  0.392  0.388  0.381  0.385 0.388    0.392  0.388  0.386 0.366    0.360  0.356  0.349  0.349  0.348  0.327  0.326
                                                      -      l  "                    f" AW'  I AX:    AY:    AZ:  BA:    BB:      BC:    BD:    BE:    BF:    BG:    SH:    BI:
1  0.336  0.345  0.346  0.340  0.339  0.339    0.335  0.338  0.333  0.332 0.338 0.341    0.338 2    0.337  0.341  0.344  0.345  0.341  0.337    0.332  0.328  0.331  0.330 0.336 0.339    0.343 3    0.332  0.336  0.343  0.346  0.339  0.337    0.327  0.335  0.334  0.336 0.336 0.339    0.344 4    0.326  0.338  0.344  0.343  0.339  0.331    0.336  0.336  0.334  0.336 0.336 0.340    0.349 5    0.331  0.337  0.343  0.345  0.341  0.339    0.333  0.339  0.335  0.335  0.330 0.346  0.343 t6 7
0.336 0.337 0.341 0.347 0.347 0.350 0.348 0.380 0.349 0.348 0.346    0.339  0.335  0.338 0.343    0.345  0.339  0.345 0.347    0.339  0.335  0.344 0.340    0.339  0.341  0.377 8    0.332  0.343  0.351  0.356  0.351  0.348    0.338  0.343  0.343 0.341    0.339  0.343  0.351 7///
 
Supplemental Report Rkýpurt No BOP-UT-14-O01 Page  4    ot  4 rvSSWv hpip SP.0oi ______
7
 
ATTACHMENT 6 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev I Mechanical Clamp Information (2 Pages)
 
Mechanical Clamp Information Structural / Seismic Loadinc:
Approximate total weight of clamp assembly is:
U-Bolt = 13.5 lb ( 1" Rod stock per Piping Technology & Products Catalog, Feb 1995)
L3x3x1/4 Strong back = ( 4.9 lb/ft)* (2 ft) = 10 lb ( AISC Steel Manual 8th Edition)
Contoured bearing plate, gasket and misc. = 6.5 lb (conservative estimate by inspection)
Total = 30 lb Maximum seismic acceleration = 2.51g conservatively using Reactor Building El. 23' spectra and 1% damping (Ref. Spec Cl 14ERQE1 Sheet A-6). Maximum combined deadweight and seismic force in any direction is therefore approximately (2.51 + 1 )* 30 lb = 105 lb.
This is a very small force with respect to the strength of the steel clamp assembly. The clamp becoming completely detached from the piping/elbow is therefore not credible. Consider the possibility the of clamp slipping along the elbow. This would be resisted by the friction force due to the clamping action.
Clamp Force F*u;rnc = 1N = 105        -'+2 (two points o/f contact) p= 0. 2 5 N = 210  lbf S= 105lbfper leg T = FKD = 105 bf .0.2 "1i T = 21 in tbf rin. per nut Suggested Torque = 5 ft-lb T =5 ft. -b    -' 60 in. -b F -      F = 300 lbf per nut 2D F7,tG,.I=F X 2 =600!bf  to 2.14.032                                                                Sheet 1 of 2
 
Mechanical Clamp Information (Cont.)
Strong Back
      = lbf *20 in ~=3000 vn 'b 600 M
4 3000 zin lb 0.577 in&
Pressure on Pipe 2
A  = 4in x4in = 16 in F = 600 lbf P =  F = 37.5 psi  Based on Suggested Torque of 5 ft-lb A
Attachment 6 to 2.14.032                                        Sheet 2 of 2
 
ATTACHMENT 7 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 SSW Spool JF29-8-4 NDE Data Sheets (10 Pages)
 
SSW Spool JF29-8-4 UT Exam-i) 2/25/2014
: 1. Gridded 18" elbow, grid was approx. 6" wide at top of pipe and 10" wide on bottom of elbow, 360 digress around pipe. Performed 100% UT scan of each grid block and recorded low reading for each location.
: 2. Only readings found to violate the elbow T-min.
dimension of 0.212 (ref. specification M591) where in the vicinity of the through wall hole.
UT Exam-2) 3/04/2014
: 1. Performed another UT exam on the east lower side of the elbow. A compression was made to the UT readings obtained on 2/25/2014.
: 2. Most areas remained the same, however; several areas had a slight change in wall thickness (See attached for actual readings obtained.
UT Exams 3 & 4) 3/06/2014, 3/11/2014
: 1. Only changes in wall thickness were in the area of the hole UT Exam 5) 3/19/2014
: 1. Again slight changes in thickness around the location of the hole.
 
Notes:
  " Areas that were marked "same" had reading within +/- 0.005 of previous readings
  " These exams were a best effort UT's for the following reasons
: 1. West lower side of the pipe (side with hole) is very restricted do to other pipes in this location.
: 2. Water was flowing from the hole, during several exams.
: 3. Portions of existing grid gets washed away from water
: 4. Official UT reports to be issued and reviewed by another individual with UT certifications.
R. Avery  Ii            3/25/2014, UT Level-Il
 
        /-;'Wfr
                                                                                                                            -VA)
        -- -------------    File Header ...........................
File Name        JF29-S O.dmsdr Description                /W Creation Date : 20,14-02--25'10:23:02 Probe Cal Comment Inspector      R. AVERY              Company Units            INCH            Velocity(in/us)      0.2360 File statistics Number of Readings 488                    Number of Empties : 800 Number of Obstructs: 0                  Number of Attachments: 0 Range            :0.406          Points Below MinAlarm : 0 Mean            :0.368            Standard Deviation : 0.047 Minimum Value        : 0.051 Minimum Value Loc. : 4:AO:1 Maximum Value          :0.457 Maximum Value Loc. : 8:Z:1 4OCATION      A:        B:      C:        D:      E:      F:    G:    H:    I:    J:    K:    L:    M:    N:  0:    P:      Q:    R:    S:    T:
1    0.344    0.348    0.365    0.372    0.374    0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.359 0.367 0.371    0.380 0.386 0.398 0.400 2      0.346    0.356    0.365    0.370    0.372    0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0.365 0.372 0.378    0.385 0.392 0.398 0.401 3      0.348    0.358    0.363    0.366    0.373    0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0.366 0.373 0.380    0.383 0.394 0.400 0.405 4      0.354    0.352    0.365    0.369    0.375    0.379 0.381 0.380 0.380 0.380 0.372 0.367 0.366 0.368 0.374 0.382    0.383 0.396 0.400 0.405 5      0.349    0.354    0.366    0.368    0.375    0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.372 0.378 0.384    0.385 0.400 0.403 0.407 6      0.353    0.357    0.364    0.367    0.378    0.378 0.381 0.382 0.366 0.381 0.375 0.372 0.373 0.372 0.380 0.389    0.393 0.404 0.407 0.414 7      0.354    0.357    0.365    0.374    0.375    0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.371 0.380 0.387    0.390 0.400 0.406 0.412 8      0.360    0.359    0.363    0.374    0.373    0.363 0.369 0.382 0.380 0.378 0.377 0.377 0.374 0.372 0.383 0.389    0.395 0.401 0.407 0.412 TOP C/L of PIPE Direction of Flow              1
 
fP/--
C-    S -.7 1,"- 3 U:    V:  W:    X:    Y:    Z:  AA:    AB:  AC:  AD:  AE:    AF:  AG:    AH:    Al:    AJ:      AK:    AL:    AM:      AN:  AO:
0.373 0.413 0.419 0.425 0.427 0.421 0.417  0.415 0.417 0.413 0.404 0.400 0.395  0.391  0.396  0.396  0.397  0.397  0.380    0.369 0.352 0.409 0.411 0.419 0.431 0.428 0.428 0.421  0.422 0.417 0.414 0.405 0.393 0.394  0.389  0.397  0.398  0.396  0.393  0.371    0.334 0.353 0.410 0.415 0.420 0.429 0.437 0.428 0.422  0.417 0.418 0.410 0.404 0.394 0.390  0.388  0.389  0.393  0.390  0.393  0.369    0.309 0.361 0.409 0.413 0.423 0.427 0.429 0.423 0.421  0.418 0.419 0.415 0.403 0.391 0.385  0.383  0.383  0.387  0.389  0.389  0.383    0.150 0.051 0.412 0.416 0.426 0.428 0.429 0.431 0.427  0.423 0.423 0.421 0.409 0.378 0.388  0.380  0.380  0.386  0.390  0.394  0.192    0.087 0.064 0.421 0.419 0.429 0.437 0.433 0.430 0.428  0.425 0.422 0.426 0.408 0.390 0.380  0.382  0.383  0.389  0.388  0.392  0.108    0.352 0.362 0.416 0.419 0.430 0.433 0.430 0.430 0.427  0.425 0.423 0.426 0.414 0.398 0.385  0.385  0.380  0.390  0.390  0.393  0.390    0.380 0.343 0.418 0.422 0.426 0.428 0.427 0.457 10.421 0.419 0.422 0.421 0.406 0.401 0.392  0.388  0.381  0.385  0.388  0.392  0.388    0.386 0.366 Yellow are the areas that are below 0.300. Area of hole
 
                                                                                                          )00ýý    .?;;ý 1,-, ý3 17 AP:  AQ:  AR:    AS:  AT:  AU:  AV:  AW:    AX:  AY:  AZ:    BA:  BB:  BC:  BD:  BE:  BF:  BG:    BH:      BI:
0.348 0.344 0.342 0.335  0.328 0.315 0.328 0.336 0.345 0.346 0.340 0.339 0.339 0.335 0.338 0.333 0.332 0.338  0.341    0.338 0.347 0.343 0.345 0.341  0.337 0.311 0.325 0.337 0.341 0.344 0.345 0.341 0.337 0.332 0.328 0.331 0.330 0.336  0.339    0.343 0.347 0.338 0.343 0.335  0.327 0.308 0.326 0.332 0.336 0.343 0.346 0.339 0.337 0.327 0.335 0.334 0.336 0.336  0.339    0.344 0.109 0.336 0.299 0.336  0.327 0.308 0.318 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336  0.340    0.349 0.083 0.334 0.313 0.328  0.328 0.315 0.320 0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330  0.346    0.343 0.332 0.333 0.334 0.298  0.292 0.317 0.323 0.336 0.341 0.347 0.348 0.349 0.346 0.339 0.335 0.338 0.343 0.345  0.339    0.345 0.342 0.339 0.341 0.296  0.337 0.321 0.323 0.337 0.347 0.350 0.380 0.348 0.347 0.339 0.335 0.344 0.340 0.339  0.341    0.377 0.360 0.356 0.349 0.349  0.348 0.327 0.326 0.332 0.343 0.351 0.356 0.351 0.348 0.338 0.343 0.343 0.341 0.339  0.343    0.351


Integrity Associates, Inc.!Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [101 A1O68Grade~c Database Reference Temperature
        -Top C/L ofpipe Approx.
(°C) Temperature (F) JIC (kJ/m) JIC (ibf-in/in
C/L of Hole
: 2) KIC (ks-in)2 24 75 97 552 133 2 24 75 336 1919 249 16 25 77 81 464 122 16 25 77 418 2386 277 16 25 77 270 1542 223 16 25 77 193 1104 189 22 24 75 224 1278 203 22 20 68 112 641 144 22 20 68 117 668 147 22 23 73 214 1223 199 22 20 66 167 954 175 22 20 68 223 1271 202 22 20 68 108 617 141 23 52 126 116 663 146 23 23 73 103 590 138 23 23 73 105 600 139 23 23 73 93 528 131 24 23 73 76 431 118 24 23 73 82 469 123 24 57 135 51 293 97 25 23 73 77 43-- 119 25 23 73 70 400 114 25 57 135 62 356 107 90 20 68 235 1342 208 90 20 68 219 1251 201 90 20 68 255 1456 217 90 20 68 281 1605 228 90 20 68 281 1605 228 90 20 68 335 1913 248 90 20 68 421 2404 279 90 20 68 385 2198 266 90 20 68 175 999 180 90 20 68 172 982 178 90 20 68 178 1016 181 90 20 68 214 1222 199 90 20 68 275 1570 225 90 20 68 133 759 157 90 20 68 140 799 161 90 20 68 174 994 179 90 20 68 1!1l 634. 143 90 20 68 190 1085 187 90 20 68 71 405 114 90 20 68 110 628 142 90 20 68 104 594 138 90 20 68 104 594 138 90 20 68 97 554 134 90 20 68 28 508 128 90 20 68 88 502 127 90 20 68 267 1525 222 4-File No.: 1400287.302 Revision:
;SW SPOOL IF29-4-8
0 Page 11I of 15 F0306-0IRI XjStructural Integrity Associates, Inc.Table 2: Axial and Circumferential Structural Factors [41 Service Level Membrane Stress, SFn Bending Stress, SFb A 2.7 2.3 B 2.4 2.0 C 1.8 1.6 D 1.3 1.4 Table 3: Load Combinations for Circumferential Flaw Analyses Load Combination Service Level P+DW+TH A P+DW+OBE+TH B P+DW+SSE+TH C/D Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312")Service Allowable Axial Flaw Allowable Circumferential Level Length (in) Flaw Length (in)A 16.0 13.2 B 16.0 8.8 C/D 16.0 8.0 File No.: 1400287.302 Revision:
.OOKING VEST
0 Page 12 of 15 F0306-01 RI VjStructural Integrity Associates, Inc.Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow File No.: 1400287.302 Revision:
0 Page 13 of 15 FO306-01 RI Structural Integrity Associates, Inc.r".1 ý-- k\ y4h-roep 4-.0 CS~o'~4 N-~k Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow File No.: 1400287.302 Revision:
0 Page 14 of 15 F0396-01 RI r Structural Integrity Associates, Inc.l LOCATION AJ: AK: AL: AM: AN: AO: AP: AQ: AR: AS: AT: AU: AV: 1 0.396 0.397 0.397 0.380 0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315 0.328 2 0.398 0.396 0.393 0.371 0.334 0.353 0.347 0.343 0.345 0.341 0.337 0.311 0.325 3 0.393 0.390 0.393 0.369 0.309 0.361 0,347 0.338 0.343 0.335 0.327 0.308 0.326 4 0.387 0.389 0.389 0.383 0.150 0.051 0.109 0.336 0.299 0.336 0.327 0.308 0.318 5 0.386 0.390 0.394 0.192 0.087 0.064 0.083 0.334 0.313 0.328 0.328 0.315 0.320 6 0.389 0.388 0.392 0.108 0.352 0.362 0.332 0.333 0.334 0.298 0.292 0.317 0.323 7 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.339 0.341 0.296 0.337 0.321 0.323 8 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow File No.: 1400287.302 Revision:
0 Page 15 of 15 F0306-0I RI Appendix A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVALUATION File No.: 1400287.302 Revision:
0 Page A- I of A-3 F0306-OIRI 3.3 Through-wall Flaws In Elbows and Bent Pipe Through-wall flaws in elbows and bent pipe may be evaluated using the straight pipe procedures given in 3.1 or 3.2(d) provided the stresses used in the evaluation are adjusted as described below to account for the geometry differences.
Alternate methods may be used to calculate the stresses used in evaluation.
The hoop stress. aL,, for elbow and bent pipe evaluation shall be: orý:=(pD."F[ +R,sin¢l]
1.hl95 )R3 (9)k, 2, ( , + R, sin 0)j ..h2'where Rb,,,a = elbow or bent pipe bend radius 0 = circumferential angle defined in Figure 7 h = flexibility characteristic Mb = resultant primary bending moment I = ontoent of inertia based on evaluation wall thickness, t Equation 9 is only applicable for elbows and bent pipe where h > 0. 1.The axial membrane presslue stress, a,,,_ for elbow and bent pipe evaluation shall be: C B,, B(pDJ (10)where Bj is a primary stress index as defined in ASIME Section III for the piping item. B, shall be equal to 0.5 for elbows and bent pipe.The axial bending stress, a,, for elbow and bent pipe evaluation shall be: B' z, 0 .)(I)where B, is a primary stress index as defined in ASME Section III for the piping item.The thermal expansion stress, oa,. for elbow and bent pipe evaluation shall be: a.o= (12)where i = stress intensificatio flactor as defined ill the Code of Record for fthe pipin2 item ,11, = resultant Thermal expansion mlom1t1ent File No.: 1400287.302 Page A-2 of A-3 Revision:
0 F0306-01 RI Figure 7 from N-513-4: FIG. 7 CIRCUMFERENTIAL ANGLE DEFINED extrados File No.: 1400287.302 Revision:
0 Page A-3 of A-3 F0306-01 RI ATTACHMENT 5 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 SSW Spool JF 29-8-4 NDE Data Sheet (4 pages)
UT Erosion/Corrosion Examination Entergy Site/Unit PNPS I 1 Summary No. SSW Pipe Spool VVorKscope:
BOP Procedure; Procedure Rev.: Work Order No.: CEP-NDE-0505
.004 375247-04 Outage No.: NIA Report No.: BOP-UT-14-001 Page: I of X_ .C3oe ASME Sec-XI, 2001-2003 Ada. Cat.Jltem:
C-H/C7.10 Location: "B" Aux Bay Drawing No. M100-7250


==
    )  AJS)  Z~X,4*l  a (." 3/; 'z 8          7          6        5          4              3          DATE AU      0.327      0.321      0.317      0.315    0.308            0.308    2/25/2014d- Ivr-same        same        same      same      same            same      3/04/2014 AT      0.348      0.337      0.292      0.328    0.327            0.327    2/25/2014 same      same        0.333      same      0.31            0.321    3/04/2014 AS      0.349      0.296      0.298      0.328    0.336            0.335    2/25/2014 same      same        0.292      same      0.322            same      3/04/2014 AR        0.349      0.341      0.334      0.313    0.299            0.343    2/25/2014 same      same        same      same      0.293            same      3/04/2014 AQ        0.356      0.339      0.333      0.334    0.336            0.338      2/25/2014 0.344      same        0.328      same      same            same      3/04/2014 AP        0.360      0.342      0.332      0.083    0.109            0.347    2/25/2014 same      same        same      same      0.              samme    3/042014 AO        0.366      0.343      0.362      0.064    0.051            0.361      2/25/2014 same      same        0.340      same      same            same      3/04/2014 AN        0.386      0.380      0.352      0.087    0.150            0.309      2/25/2014 0.378      0.374      same      same      same            same      3/04/2014 0 56*    -*--------
Description:==
                                                              -....                  2 14 AM        0.388      0.390      0.10      0.192    0.383            0.369      2/25/2014 same        same      0          0.06S    same            same      3/04/2014 AL      0.392      0.393      0.392      0.394    0.389            0.393      2/25/2014 0.386      same        same      same      same            same      3/04/2014
[Type text]                            Looking West See next sheet for notes            A4s'Th~, /9(4' ~9,d&


18" Elbow System ID. Service Water System (29)Component ID: Pipe Spool JF29-8-4 SizelLength:
8       7        6          5           4         3 AP    0.360   0.342     0.332     0.083        0.109    0.347     2/25/2014 same    same      same      same          0.104    same      3/04/2014 0.090              3/06/2014   4/IL Li' same same             I same           same same               same               '7                      3/11/2014-i AO    0.366  0.343      0.362      0.064        0.051              2/25/2014 same     same     0.349      same          same               3/04/2014 same     same      same       same   A    same               3/11/2014 0.8    0.8        0.35 AN    0.386  0.380      0.352      0.087      0.150 same  0.309    2/25/2014 0.378  0.374      same       same                   same     3/04/2014 0.056        same               3/06/2014 same     same     0. 120~  /0.0 48                  same     3/11/2014
18"16"-12" Thickness/Diameter Sch.-20/18" Lunitations NIA Component File No.. NIA Start Time: 9:45 Finish Time. 14:10 Calibration Intomiation Partitioning Information Component Information Caiwa'.son Truckncsb (in) Caiorabton Times I Initais Component B6eqgJCoURow Ending/CoiiRow Component Geometry:
                                            .4-                     +
Pipe Elbowmuro M. UPST Ext. NIA NIA Outside Diameter:
AM   0.388   0.390     0.1081  ! 0.192         0.383   0.369     2/25/2014 same   Same      0.096,  p0.065          same     same     3/04/2014 same    same      same      same          same    same      3/11/2014 AL   0.392   0.393     0.392     0.394         0.389   0.393     2/25/2014 0.386   same       same       same         same     same     3/04/2014 same    same      same      same          same    same      3/11/2014
18" Grid Size: 314" Start 9:40 RDA 0.100 0.100 -Main UPST. N/A NIA Max Thickness:
* Hole,   Green = only changes identified on 3/06/2014, Changes identified on 3/11/2014 31111111
0.457 Min. Thjkness:
0.051 Verfy: 12:00 RDA 0.200 0.1-9 Main 1 A 8i B Nominal Thickness:
0.312 Tmin.: 0.270 0.300 0.299 Venty: WA N A Main DNST. NWA NJA 0.400 0.400 Verity WA WNA M. DNST Ext. N/A NWA Final: 14:15 RDA Max. Thickness Location:
a Z 0.500 0.500 --Branch W/A WJA Mx hcns oain Branch Ext. NIA NWA Surface Condition:
SMOOTH Inururer:
Transducer:
ReferencelSimulator Block: Temp. Tool: Mant'.'actuer:
GE Manufacturer KBA Serial No.: 94-5570 Manufacturer, Elcometer Mooei. USM-GO Serial No.: 01550W Type: 0. Serial No.: PNPTEM-288 Serial No. USMGO1 2915119 _____Rf~mltrBokTm.
0~Size: 0.375" Freq.: 5.0 MHz Couplant: Gain 6_Model: 113-550-001 Type Ultrage11 Range: 0.500 # of Elements:
2 Material/Component Temp.: 73 'F Batch No.: 05125 Comnients/Oustructons.
UT performed do to a through wall hole. See CR-PNP.2014-00815.
This is not a Code required exam.Resiuts Accept _ Reject 3- Eval  O'ther Level WA Signature Date ANII Review Signature Date N/A N/A E- ergy Supplemental Report Report No.: BOP-UT-14-001 Page: 2 of 4 Summary No. SSW Pipe Spool File Name Spool JF29-8-4 Descnptlion
'18 Elbow Creation D ale: 2/25/2014 Proue See UT Report Cdi Comment See report Irnspector
.R. AVERY Instrument Type : DMS Go Vel Company i Entergy Instrument S.N: USMGO12015119 ocity(in/us) 0.2360 Units INCH Nunmoor or Readings : 488 Number of Empties es; 0 Numoer of Ousiructs.
0 Number of Attachments
: 0 Range : 0.406 Points Below MinAlarm:
0 Mean 0.368 Slanoard : 0.047 Minimum Value 0.051 Minimum Value Loc. 4:AO:1 Maximum Value .0.457 Maximum Value Loc. 8:Z: OCATIO A: B: C: 0: E: F: G: H: I: J: K: L: M: N: 1 0.344 0.348 0.365 0.372 0.374 0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.359 2 0.346 0.356 0.365 0.370 0.372 0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0.365 3 0.348 0.358 0.363 0.366 0.373 0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0.366 4 0.354 0.352 0.365 0.369 0,375 0.379 0.381 0.380 0.380 0.380 0.372 0.367 0.366 0.368 5 0.349 0.354 0.366 0.368 0.375 0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.372 6 0.353 0.357 0.364 0.367 0.378 0.378 0.381 0.382 0.36a 0.381 0.375 0.372 0.373 0.372 7 0.354 0.357 0.365 0.374 0.375 0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.371 8 0.360 0.359 0.363 0.374 0.373 0.363 0.369 1 0.382 0,380 0.378 0.377 0.377 0.374 01372 TOP CiL oi PiPE Direction of Flow t-71 Supplemental Report-- tergy Report No.: BOP-UT-14-001 page: 3 ot 4 Suinrnarý No SSW Pipe SpoCt.(D: 1 P: Q: R: S: T: U: V: .W: X: Y Z: AA. A1: AC: AD: AF: 367 0.371 0.380 0.386 0.398 0.400 0.373 0.413 0.419 0.425 0.427 0.421 0.417 0.415 0.417 0.413 0.404 20.372" 0.378 0.385 0.392 0.398 0.401 0.409 0.411 0.419 0.431 0.428 0.428 0.421 0.422 0.417 0.414 0-405 372 0.378 0.385 0.392 0.394 0.401 0.409 0.410 0.415 0.423 0.429 0.428 0.428 0.422 0.417 0.414 0.404 0.374 0.382 0.383 0.396 0.400 0.405 0.409 0.413 0.423 0.427 0.429 0.4.23 0.421 0.418 0.419 0.415 0.403 5 0.378 0.384 0.385 0.400 0.403 0.407 0.412 0.416 0.426 0.428 0.429 0.4.31 0.427 0.423 0.423 0.421 0.409 6_ 0.380 0.389 0.393 0.404 0.407 0.414 0.421 0.419 0.429 0.437 0.433 0.430 0.428 0.425 0.422 0.426 0.408 1 70.380 1 0.387 0.390 0.400 0.406 0.412 0.416 0.419 0.430 0.433 0.430 0.4.30 0.427 0.425 0.423 0.426 0.414 8J l0.383 0-389 0.395 0.401 0.407 0.412 0.418 0.422 0.426 0.428 0.427 0.457 0.421 0.419 0.422 0.421 0.406 AF: AG: AH: IAl: AJ: AK: AL: AM: AN: AO: AP AQ: AR: AS: AT: AU: AV: 1 0.400 0.395 0.391 0.396 0.396 0.397 0.397 0.380 0.369 0,352 0.348 0.344 0.342 0.335 0.328 0.315 0.328 2 0.393 0.394 0.389 0.397 0.398 0.396 0.393 0.371 0.334 0.353 0.347 0.343 0.345 0.341 0.337 0.311 0.325 3 0.394 0.390 0.388 0.389 0.393 0.390 0.393 0.369 0.309 0.361 0.347 0.-338 0.343 0.335 0.327 0.308 0.326 4 0.391 0.385 0.383 0.383 0.387 0.389 0.389 0.383 .0.0651 W5 0.336 0.299 0.336 0.327 0.308 0.318 5 0.378 0.388 0.380 0.380 0.386 0.390 0.394 [01 0.334 0.313 0.328_0.328 0.315 0.320 6 0.390 0.380 0.382 0.383 0.389 0.388 0.3 0.352 0.362 0.332 0.333 0.334 17 0.323 7 0.398 0-385 0.385 0.380 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.3139 0.341 0.337 0.321 0.323 8 0.401 0.392 0.388 0.381 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326-l " f" AW' I AX: AY: AZ: BA: BB: BC: BD: BE: BF: BG: SH: BI: 1 0.336 0.345 0.346 0.340 0.339 0.339 0.335 0.338 0.333 0.332 0.338 0.341 0.338 2 0.337 0.341 0.344 0.345 0.341 0.337 0.332 0.328 0.331 0.330 0.336 0.339 0.343 3 0.332 0.336 0.343 0.346 0.339 0.337 0.327 0.335 0.334 0.336 0.336 0.339 0.344 4 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336 0.340 0.349 5 0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330 0.346 0.343 t6 0.336 0.341 0.347 0.348 0.349 0.346 0.339 0.335 0.338 0.343 0.345 0.339 0.345 7 0.337 0.347 0.350 0.380 0.348 0.347 0.339 0.335 0.344 0.340 0.339 0.341 0.377 8 0.332 0.343 0.351 0.356 0.351 0.348 0.338 0.343 0.343 0.341 0.339 0.343 0.351 7///
Supplemental Report rvSSWv hpip SP.0oi ______Rkýpurt No BOP-UT-14-O01 Page 4 ot 4 7 ATTACHMENT 6 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev I Mechanical Clamp Information (2 Pages)
Mechanical Clamp Information Structural
/ Seismic Loadinc: Approximate total weight of clamp assembly is: U-Bolt = 13.5 lb ( 1" Rod stock per Piping Technology
& Products Catalog, Feb 1995)L3x3x1/4 Strong back = ( 4.9 lb/ft)* (2 ft) = 10 lb ( AISC Steel Manual 8th Edition)Contoured bearing plate, gasket and misc. = 6.5 lb (conservative estimate by inspection)
Total = 30 lb Maximum seismic acceleration
= 2.51g conservatively using Reactor Building El. 23' spectra and 1% damping (Ref. Spec Cl 14ERQE1 Sheet A-6). Maximum combined deadweight and seismic force in any direction is therefore approximately (2.51 + 1 )* 30 lb = 105 lb.This is a very small force with respect to the strength of the steel clamp assembly.
The clamp becoming completely detached from the piping/elbow is therefore not credible.
Consider the possibility the of clamp slipping along the elbow. This would be resisted by the friction force due to the clamping action.Clamp Force= 1N = 105 -'+ 2 (two points o/f contact)p= 0.2 5 N = 210 lbf S= 105 lbfper leg T = FKD = 105 bf .0.2 "1i T = 21 in tbf rin. per nut Suggested Torque = 5 ft-lb T =5 ft. -b -' 60 in. -b F -F = 300 lbf per nut 2D F7,tG,.I=
F X 2 =600 !bf Attachment 6 to 2.14.032 Sheet 1 of 2 Mechanical Clamp Information (Cont.)Strong Back 600 lb f *20 in M = ~= 3000 vn 'b 4 3000 zin lb 0.577 in&Pressure on Pipe A = 4in x4in = 16 in 2 F = 600 lbf P = F = 37.5 psi Based on Suggested Torque of 5 ft-lb A Attachment 6 to 2.14.032 Sheet 2 of 2 ATTACHMENT 7 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 SSW Spool JF29-8-4 NDE Data Sheets (10 Pages)
SSW Spool JF29-8-4 UT Exam-i) 2/25/2014 1. Gridded 18" elbow, grid was approx. 6" wide at top of pipe and 10" wide on bottom of elbow, 360 digress around pipe. Performed 100% UT scan of each grid block and recorded low reading for each location.2. Only readings found to violate the elbow T-min.dimension of 0.212 (ref. specification M591) where in the vicinity of the through wall hole.UT Exam-2) 3/04/2014 1. Performed another UT exam on the east lower side of the elbow. A compression was made to the UT readings obtained on 2/25/2014.
: 2. Most areas remained the same, however; several areas had a slight change in wall thickness (See attached for actual readings obtained.UT Exams 3 & 4) 3/06/2014, 3/11/2014 1. Only changes in wall thickness were in the area of the hole UT Exam 5) 3/19/2014 1. Again slight changes in thickness around the location of the hole.
Notes: " Areas that were marked "same" had reading within +/- 0.005 of previous readings" These exams were a best effort UT's for the following reasons 1. West lower side of the pipe (side with hole) is very restricted do to other pipes in this location.2. Water was flowing from the hole, during several exams.3. Portions of existing grid gets washed away from water 4. Official UT reports to be issued and reviewed by another individual with UT certifications.
R. Avery Ii 3/25/2014, UT Level-Il
/-;'Wfr-VA)-- -------------
File Header ...........................
File Name JF29-S O.dmsdr Description
/W Creation Date : 20,14-02--25'10:23:02 Probe Cal Comment Inspector R. AVERY Company Units INCH Velocity(in/us) 0.2360 File statistics Number of Readings 488 Number of Obstructs:
0 Range :0.406 Mean :0.368 Minimum Value : 0.051 Minimum Value Loc. : 4:AO:1 Number of Empties : 800 Number of Attachments:
0 Points Below MinAlarm : 0 Standard Deviation
: 0.047 Maximum Value:0.457 Maximum Value Loc. : 8:Z:1 4OCATION A: B: C: D: E: F: G: H: I: J: K: L: M: N: 0: P: Q: R: S: T: 1 0.344 0.348 0.365 0.372 0.374 0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.359 0.367 0.371 0.380 0.386 0.398 0.400 2 0.346 0.356 0.365 0.370 0.372 0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0.365 0.372 0.378 0.385 0.392 0.398 0.401 3 0.348 0.358 0.363 0.366 0.373 0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0.366 0.373 0.380 0.383 0.394 0.400 0.405 4 0.354 0.352 0.365 0.369 0.375 0.379 0.381 0.380 0.380 0.380 0.372 0.367 0.366 0.368 0.374 0.382 0.383 0.396 0.400 0.405 5 0.349 0.354 0.366 0.368 0.375 0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.372 0.378 0.384 0.385 0.400 0.403 0.407 6 0.353 0.357 0.364 0.367 0.378 0.378 0.381 0.382 0.366 0.381 0.375 0.372 0.373 0.372 0.380 0.389 0.393 0.404 0.407 0.414 7 0.354 0.357 0.365 0.374 0.375 0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.371 0.380 0.387 0.390 0.400 0.406 0.412 8 0.360 0.359 0.363 0.374 0.373 0.363 0.369 0.382 0.380 0.378 0.377 0.377 0.374 0.372 0.383 0.389 0.395 0.401 0.407 0.412 TOP C/L of PIPE Direction of Flow 1 P/-- S -.7 1,"- 3 f C-U: V: W: X: Y: Z: AA: AB: AC: AD: AE: AF: AG: AH: Al: AJ: AK: AL: AM: AN: AO: 0.373 0.413 0.419 0.425 0.427 0.421 0.417 0.415 0.417 0.413 0.404 0.400 0.395 0.391 0.396 0.396 0.397 0.397 0.380 0.369 0.352 0.409 0.411 0.419 0.431 0.428 0.428 0.421 0.422 0.417 0.414 0.405 0.393 0.394 0.389 0.397 0.398 0.396 0.393 0.371 0.334 0.353 0.410 0.415 0.420 0.429 0.437 0.428 0.422 0.417 0.418 0.410 0.404 0.394 0.390 0.388 0.389 0.393 0.390 0.393 0.369 0.309 0.361 0.409 0.413 0.423 0.427 0.429 0.423 0.421 0.418 0.419 0.415 0.403 0.391 0.385 0.383 0.383 0.387 0.389 0.389 0.383 0.150 0.051 0.412 0.416 0.426 0.428 0.429 0.431 0.427 0.423 0.423 0.421 0.409 0.378 0.388 0.380 0.380 0.386 0.390 0.394 0.192 0.087 0.064 0.421 0.419 0.429 0.437 0.433 0.430 0.428 0.425 0.422 0.426 0.408 0.390 0.380 0.382 0.383 0.389 0.388 0.392 0.108 0.352 0.362 0.416 0.419 0.430 0.433 0.430 0.430 0.427 0.425 0.423 0.426 0.414 0.398 0.385 0.385 0.380 0.390 0.390 0.393 0.390 0.380 0.343 0.418 0.422 0.426 0.428 0.427 0.457 10.421 0.419 0.422 0.421 0.406 0.401 0.392 0.388 0.381 0.385 0.388 0.392 0.388 0.386 0.366 Yellow are the areas that are below 0.300. Area of hole 17)00ýý .? ;;ý 1,-, ý3 AP: AQ: AR: AS: AT: AU: AV: AW: AX: AY: AZ: BA: BB: BC: BD: BE: BF: BG: BH: BI: 0.348 0.344 0.342 0.335 0.328 0.315 0.328 0.336 0.345 0.346 0.340 0.339 0.339 0.335 0.338 0.333 0.332 0.338 0.341 0.338 0.347 0.343 0.345 0.341 0.337 0.311 0.325 0.337 0.341 0.344 0.345 0.341 0.337 0.332 0.328 0.331 0.330 0.336 0.339 0.343 0.347 0.338 0.343 0.335 0.327 0.308 0.326 0.332 0.336 0.343 0.346 0.339 0.337 0.327 0.335 0.334 0.336 0.336 0.339 0.344 0.109 0.336 0.299 0.336 0.327 0.308 0.318 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336 0.340 0.349 0.083 0.334 0.313 0.328 0.328 0.315 0.320 0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330 0.346 0.343 0.332 0.333 0.334 0.298 0.292 0.317 0.323 0.336 0.341 0.347 0.348 0.349 0.346 0.339 0.335 0.338 0.343 0.345 0.339 0.345 0.342 0.339 0.341 0.296 0.337 0.321 0.323 0.337 0.347 0.350 0.380 0.348 0.347 0.339 0.335 0.344 0.340 0.339 0.341 0.377 0.360 0.356 0.349 0.349 0.348 0.327 0.326 0.332 0.343 0.351 0.356 0.351 0.348 0.338 0.343 0.343 0.341 0.339 0.343 0.351
-Top C/L ofpipe Approx.C/L of Hole;SW SPOOL IF29-4-8.OOKING VEST
) AJS) Z~X,4*l a (." 3/; 'z 8 7 6 5 4 3 DATE AU 0.327 0.321 0.317 0.315 0.308 0.308 2/25/2014d-same same same same same same 3/04/2014 AT 0.348 0.337 0.292 0.328 0.327 0.327 2/25/2014 same same 0.333 same 0.31 0.321 3/04/2014 AS 0.349 0.296 0.298 0.328 0.336 0.335 2/25/2014 same same 0.292 same 0.322 same 3/04/2014 AR 0.349 0.341 0.334 0.313 0.299 0.343 2/25/2014 same same same same 0.293 same 3/04/2014 AQ 0.356 0.339 0.333 0.334 0.336 0.338 2/25/2014 0.344 same 0.328 same same same 3/04/2014 AP 0.360 0.342 0.332 0.083 0.109 0.347 2/25/2014 same same same same 0. samme 3/042014 AO 0.366 0.343 0.362 0.064 0.051 0.361 2/25/2014 same same 0.340 same same same 3/04/2014 AN 0.386 0.380 0.352 0.087 0.150 0.309 2/25/2014 0.378 0.374 same same same same 3/04/2014 0 -------- -....2 14 AM 0.388 0.390 0.10 0.192 0.383 0.369 2/25/2014 same same 0 0.06S same same 3/04/2014 AL 0.392 0.393 0.392 0.394 0.389 0.393 2/25/2014 0.386 same same same same same 3/04/2014 Ivr-[Type text]Looking West See next sheet for notes A4s'Th~, /9(4' ~9,d&


8 7 6 5 4 3 AP 0.360 same same 0.342 same same 0.332 same same 0.083 same same 0.109 0.104 0.090 same 0.347 same same 2/25/2014 3/04/2014 3/06/2014 3/11/2014-
c,4/~ I
'7 4/IL Li'i AO 0.366 same same 0.343 same same 0.362 0.349 same I 0.064 same same 0.051 same same 2/25/2014 3/04/2014 3/11/2014 A 0.8 0.8 0.35 AN 0.386 0.378 same 0.380 0.374 same 0.352 same 0. 120~0.087 same 0.056/0.0 48 0.150 same 0.309 same same 2/25/2014 3/04/2014 3/06/2014 3/11/2014 same.4- +AM 0.388 same same 0.390 Same same 0.1081 0.096, same! 0.192 p0.065 same 0.383 same same 0.369 same same 2/25/2014 3/04/2014 3/11/2014 AL 0.392 0.393 0.392 0.394 0.389 0.393 2/25/2014 0.386 same same same same same 3/04/2014 same same same same same same 3/11/2014* Hole, Green = only changes identified on 3/06/2014, Changes identified on 3/11/2014 31111111 U I Exam on 3/),1/2014, c,4/~ I 571) 1&#xfd;41 e&#xfd; -26'~' f /~ 6%4A1.--5 41/962 P/v't I'm 0.332 SAME /0.083 0.090 o 3'c/-2 0.349 0.051 SAME Q v 0.352 SAME 1201v 008XOZA4,O3 Of"-- (_. 0.096 0.065 0.383 S0.081 *.062 same 0,300, 0v3o0 A 62-~~-<}}
                                                                                                  *'~'   f/
U I Exam on 3/),1/2014,                   571)   1&#xfd;41 e&#xfd; -                 26
                                                                                                      ~ 6%4A1 5                               41 0.332 SAME                 /0.083                   0.090         o     3'c/-2 0.349                                         0.051 SAME               v                                          Q
        /962 0.352 SAME P/v' t 1201v 008XOZA4,O3       Of"-- (_. WAT'*
0.096 0.065                                         0.383
                                      *.062    S0.081                               same I'm 0,300,                       0v3o0 A 62-~~-<}}

Latest revision as of 21:14, 5 February 2020

Calculation 1400287.302, Rev. 0, Flaw Evaluation of SSW Discharge Piping Leaking Elbow
ML14091A410
Person / Time
Site: Pilgrim
Issue date: 03/03/2014
From:
Structural Integrity Associates
To:
Office of Nuclear Reactor Regulation
Shared Package
ML14091A466 List:
References
2.14.032, 49514 1400287.302, Rev. 0, PRR-25, Rev. 1
Download: ML14091A410 (40)


Text

ATTACHMENT 4 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 Calculation Cover Page EC # 49514 Flaw Evaluation of SSW Discharge Piping Leaking Elbow Structural Integrity Associates Calculation No. 1400287.302, Rev. 0 (20 Pages)

ATTACHMENT 9.2 ENGINEERING CALCULATION COVER PAGE Sheet 1 of 2 13 ANO-1 n3 ANO-2 El GGNS [1 IP-2 [3 IP-3 E3 PLP 13JAF 0 PNPS 13RBS El VY Ej W3 13 NP-GGNS-3 E] NP-RBS-3 CALCULATION ( EC # 49514 Page 1 of (2) 20 COVER PAGE (3) Design Basis Calc. i-- YES [*NO (4) Z* CALCULATION E-7 EC Markup (5) Calculation No: M1398 t") Revision: 0 (7)

Title:

Flaw Evaluation of SSW Discharge Piping Leaking Elbow (3) Editorial DYES Z NO (9) System(s): 29 (10) Review Org (Department):

(11) Safety Class: (12) Component/Equipment/Structure Type/Number:

Z Safety / Quality Related PIPE / JF29-8-4 F-I Augmented Quality Program LI Non-Safety Related (13) Document Type: CALC (14) Keywords (DescriptioniTopical Codes):

JF29-8-4, spool, SIA, Structural Integrity Associates, flaw, leak, rubber lining, 1400287.302,1400287 REVIEWS (15) Name/Signature/Date (16) Name/Sigp ature/Date (17) Name/Signature/Date Structural Integrity Assoc. John A. Tucker iq See AS Responsible Engineer I- Design Verifier Supervisor/Approval Z Reviewer

[_L Comments Attached I Comments Attached EN-DC-126 R005

ATTACHMENT 9.3 CALCULATION REFERENCE SHEET Sheet 1 of 3 CALCULATION CALCULATION NO: M1398 REFERENCE SHEET REVISION: 0 I. EC Markups Incorporated (N/A to NP calculations) 1.N/A 2.

3.

4.

5.

II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc Y/N No.

1. Specification M300 2-12 109 x _ _ N
2. MIOO-7250 - 5 x _ N
3. 0_ _
4. [] 0 _
5. 0 0_

Ill. CROSS

REFERENCES:

1. ASME B&PV Code,Section XI, App C, 2001 Edition wI Add through 2003
2. ASME B31.1, Power Piping, 1967 Edition
3. ASME Code Case N-513-3
4. Flow of Fluids Through valves, Fittings and Pipe, Crane Co,., Technical Paper No.

410 IV. SOFTWARE USED:

Title:

N/A Version/Release: -- Disk/CD No.--

V. DISKICDS INCLUDED:

Title:

N/A Version/Release Disk/CD No.

VI. OTHER CHANGES:

EN-DC-126 R005

V VProject StructuralIntegrity Associates, Inc* File No.: 1400287.302 No.: 1400287 CALCULATION PACKAGE Quality Program: 0 Nuclear [] Commercial PROJECT NAME:

Pilgrim Leaking Elbow Evaluation Support CONTRACT NO.:

10404807, Change Order No. 001 CLIENT: PLANT:

Entergy Nuclear Pilgrim Nuclear Power Station CALCULATION TITLE:

Flaw Evaluation of SSW Discharge Piping Leaking Elbow Document Affected Project Manager Preparer(s) &

Revision Pages Revision Description Approval Checker(s)

Signature & Date Signatures & Date 0 1 - 15 Initial Issue A-i - A-3 Eric Houston Brad Dawson EJH 3/3/14 BPD 3/3/14 Raoul Gnagne LRG 3/3/14 Robert McGill ROM 3/3/14 Page 1 of 15 F0306-01 RI

C StructuralIntegrity Associates, Inc!

Table of Contents 1.0 INT RO D UCT IO N .................................................................................................... 3 2.0 TECHNICAL APPROACH .................................................................................... 3 3.0 DESIGN INPUTS / ASSUMPTIONS ..................................................................... 4 4.0 C A LC UL A T ION S ................................................................................................... 5 4.1 A pplied L oads .............................................................................................. 5 4.1.1 Ho op Stress ........................................................................................................ 5 4.1.2 A x ial Stresses.............................................................................................. .. 6 4.2 Stress Intensity Factor Calculations ............................................................. 7 4.3 Critical Fracture Toughness Determination .................................................. 8 5 .0 RE S U L T S ...................................................................................................................... 8 6.0 C O N CLU SIO N S ..................................................................................................... 8 7.0 RE FE R E NC E S ............................................................................................................ 10 APPENDIX A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EV A LU ATIO N ...................................................................................... A -1 List of Tables Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [10] 11 Table 2: Axial and Circumferential Structural Factors [4] ............................................... 12 Table 3: Load Combinations for Circumferential Flaw Analyses ..................................... 12 Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312") ............................ 12 List of Figures Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow ....................................... 13 Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow ................... 14 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow ................... 15 File No.: 1400287.302 Page 2 of 15 Revision: 0 F0306-01 RI

  • SiructuralIntegrity Associates, Inc.0

1.0 INTRODUCTION

A weeping flaw, shown on Figure 1, was discovered near the extrados of a 90 degree elbow in the Salt Service Water (SSW) piping at Pilgrim Nuclear Power Station (Pilgrim). The leak is located on the JF29-8-4 pipe spool of the SSW system [1]. Ultrasonic testing has been conducted in order to characterize the flaw [1]. Allowable through-wall flaw lengths are determined using methods consistent with an upcoming revision of Code Case N-513-3 [2] as described below.

2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in an upcoming revision of ASME Code Case N-513-3. This Code Case allows for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-3 has been conditionally accepted by the NRC with the stipulation that, "The repair or replacement activity temporarily deferred under the provisions of this Code Case shall be performed during the next scheduled outage," and is published in the latest revision of Regulatory Guide 1.147 [3]. N-513-3 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.

The evaluation criteria provided in N-513-3 are only for straight pipe since the technical approach relies on ASME Section XI, Appendix C [4] methods. A new revision of the Code Case (N-513-4) includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences. For elbows, hoop stress is adjusted by considering flaw location and primary stress due to elbow ovalization from axial loads. For axial stresses, the stress scaling follows the same approach given in ASME Section III, ND-3600 [5] design by rule using stress indices and stress intensification factors for the adjustment. Details are provided in N-513-4 for determining these adjusted stresses.

N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for more sophisticated analysis by the user.

As stated above, Code Case N-513-3 evaluation criteria rely on the methods given in ASME Section XI, Appendix C. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Since a through-wall flaw is being evaluated, through-wall shape factors Fm, Fb and F are used which are given in Appendix I of the Code Case. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.

This evaluation utilizes finite element methods (FEM) to calculate the primary membrane stress in the hoop direction due to ovalization from axial loads. Section 3.3 of the Code Case's new revision states File No.: 1400287.302 Page 3 of 15 Revision: 0 F0306-01 RI

7Slructural Integrity Associates, Inc!

that "Alternative methods may be used to calculate the stresses used in evaluation," which justifies the use of FEM techniques.

Details of the Code Case N-513-4 evaluation procedure for elbows are given in Appendix A.

3.0 DESIGN INPUTS / ASSUMPTIONS The SSW Code of Construction is ANSI B31.1 1967 Edition [6].

Based on information provided by Entergy, the 18 inch elbow is located on SSW spool JF29-8-4 [1].

The 90 degree elbow located on JF29-8-4 is a schedule 20, long radius elbow [7]. The design pressure and temperature are 10 psig and 100°F, respectively [8].

The elbow material is ASTM A-234 WPB [7] carbon steel. For the analysis, A106 Gr. B carbon steel is judged to have equivalent material properties. The nominal composition of the two materials is essentially the same and the minimum yield and tensile strengths are the same for both materials. In addition, the longitudinal and transverse elongations are similar between these materials.

The applied moment loadings are obtained from the ME-101 output listings in Reference [9]. Based on information provided by Entergy, the location of interest is node 22. The moments for each load case are provided in three dimensions (MA, MB, and MC), which are combined by square-root-of-the-sum-of-the-squares (SRSS). The resulting SRSS moments at each location along the elbow (beginning, middle, and end) are compared for each loading, and the bounding moment is used in this analysis.

Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [4], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kic. The NRC's Pipe Fracture Encyclopedia [10]

contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which are reproduced in Table 1. The minimum reported value of 293 in-lb/in 2 is used in the analysis for both axial and circumferential flaws.

Finite element methods are used to determine the primary membrane stress in the hoop direction due to ovalization from axial loads in Reference [11]. A unit moment of 10,000 in-lbs is applied to the FEM and linearized stresses are extracted at paths in the axial direction from the flaw. A stress of 100 psi conservatively bounds the tensile hoop stress reported in Reference [11]. This bounding stress is factored based on the ratio of the applied moment for the applicable service level to the unit moment of 10,000 in-lbs. The factored stress is used as described in Section 4.1.1 below.

The following design inputs are used in this calculation:

1. Long radius 900 elbow OD = 18 inches [7]
2. Nominal elbow thickness = 0.312 inch (based on Schedule 20 piping [7])
3. Design pressure = 10 psig [8]

File No.: 1400287.302 Page 4 of 15 Revision: 0 F0306-0 I RI

rStructuralIntegrity Associates, Inc!*

4. Design temperature = 100'F [8]
5. Young's modulus = 27,900 ksi [6, Table C-i]
6. Allowable stress = 15 ksi [6, Table A-2]
7. Enveloped SRSS Deadweight Moment = 43,973 in-lbs [9]
8. Enveloped SRSS OBE Moment = 38,820 in-lbs [9]
9. Enveloped SRSS SSE Moment = 72,789 in-lbs [9]
10. Enveloped SRSS Thermal Moment = 22,047 in-lbs [9]
11. Stress intensification factor, i = 3.98 [6]
12. Jic for axial flaws = 293 in-lb/in 2 [4, 10]
13. Jic for circumferential flaws = 293 in-lb/in 2 [4, 10]
14. Bounding primary membrane stress in the hoop direction due to unit moment load = 100 psi [11 ]

Note that the wall thickness surrounding the flaw is greater than the elbow nominal thickness [ I].

Therefore, the use of the 0.312 inch surrounding wall thickness is considered conservative.

The following assumptions are used in this calculation:

1. Poisson's ratio is assumed to be 0.3.
2. Due to the flaw remoteness from a weld, residual stress effects are assumed negligible.
3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-3 address the possibility of flaw growth during the temporary acceptance period).

4.0 CALCULATIONS 4.1 Applied Loads 4.1.1 Hoop Stress For the allowable axial flaw length, the hoop stress, Gh, due to internal pressure and elbow ovalization from the axial moments may be determined from Equation 9 of N-513-4 (see Appendix A):

=( pD0 '

2 2

Rbend +JRk sin 0 1 (1.95 ) RoM, 17h t L 2(RbeAd +Rsin0)j h 211) I where:

p = internal pressure, psig D, = outside diameter, in t = wall thickness, in Rbend = elbow bend radius (27 inches)

Ro = outside radius, in 0 = circumferential angle from elbow flank (see Figure 7 in Appendix A)

File No.: 1400287.302 Page 5 of 15 Revision: 0 F0306-01 RI

SIructuralIntegrity Associates, IncO h = flexibility characteristic = t*Rbencd/(Rlnean) 2 [6]

Rmean = elbow mean radius, in Mb = primary bending moment, in-lbs

.4 I = moment of inertia, in.

Note that the first term of Equation 1 accounts for the hoop stress due to internal pressure and includes a scaling factor to account for the circumferential location of the flaw (assuming uniform thickness, pressure based hoop stress is a maximum at the elbow intrados, while a minimum at the elbow extrados).

At the flank, the pressure based hoop stress is equal to that of straight pipe. For the analysis herein, it is conservative to set 0 = 0 since the flaw is between the flank and extrados as shown on Figure 2.

The second term of Equation I accounts for the hoop stress resulting from the axial moments acting to ovalize the elbow. This term is replaced with the scaled primary membrane stress in the hoop direction as discussed in the previous section.

Finally, N-513-4 limits the use of Equation I for h > 0.1. For this elbow, h z 0.11.

4.1.2 Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight, seismic, and thermal loading is presented below. For axial membrane stress due to pressure, Cm, Equation 10 of N-513-4 is used:

°"=i,2tJ (7. =Bj(pD. (2) where Bi is an ASME Section III primary stress index for internal pressure. N-513-4 sets this value to 0.5.

For axial bending stress, ab, due to deadweight and seismic moments, Equation 11 of N-513-4 may be used:

rb = B 2 (MbJ (3) where B2 is an ASME Section III primary stress index for moment loading. From Figure ND-3673.2(b)-I of Reference [5], B2 = 1.30/h 2/3. For this elbow, B2 = 5.74.

For axial bending stress due to thermal moments, Cre, Equation 12 of N-513-4 may be used:

j(Ro~eJ(4)

File No.: 1400287.302 Page 6 of 15 Revision: 0 F0306-01 RI

rStructuralIntegrity Associates, IncO where i is the stress intensification factor. From [6, Appendix D], i = 3.98.

4.2 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, Ki, for an axial flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:

K, = Kim + KI, (5) where:

Kim = (SFm)F~h(7ta/Q) 0 5" SFm = structural factor for membrane stress (see Table 2)

F = through-wall shape factor for an axial flaw under hoop stress (given in Appendix I of N-513-3) ah = hoop stress, ksi a = flaw depth (half flaw length for through-wall flaw), in Q = flaw shape parameter (unity per Appendix I of N-513-3)

KIr = Ki from residual stresses at flaw location (assumed negligible).

Only the hoop stress influences the allowable axial flaw length which is a function of pressure and primary bending stress.

For LEFM analysis, the stress intensity factor, Ki, for a circumferential flaw is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:

K 1 = Ki + Klb + K1 r (6) where:

Kim = (SFm)Fmam(7ta) 0° 5 Fm = through-wall shape factor for a circumferential flaw under membrane stress (given in Appendix I of N-513-3)

Gm = membrane stress, ksi KIb = [(SFb)O'b + ae]Fb(nta) 0 "5 SFb = structural factor for bending stress (see Table 2)

Gb = bending stress, ksi Ge = thermal stress, ksi Fb = through-wall shape factor for a circumferential flaw under bending stress (given in Appendix I of N-513-3).

Note that the through-wall flaw shape factors are a function of flaw length.

Table 3 shows the specific load combinations considered herein for the allowable circumferential flaw calculations. Since the load combination for Service Level C and D are equivalent, the more limiting flaw length associated with the Service Level C structural factors are presented.

File No.: 1400287.302 Page 7 of 15 Revision: 0 F0306-01 RI

$Structural Integrity Associates, Inc.*

4.3 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Ki,, is taken from Article C-7000 [4] as prescribed by N-513-3 and is given below:

Klfc= ,jjE' (7) 11000 where:

Jic = material toughness, in-lb/in 2 E'= E/(l-v 2)

E = Young's modulus, ksi v = Poisson's ratio.

Based on the design input listed previously, Kic is 94.7 ksi-in° 5 for both axial and circumferential flaws.

The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.

5.0 RESULTS Table 4 shows the allowable through-wall flaw lengths resulting from the analysis based on a surrounding nominal wall thickness. The most limiting flaw length is 8 inches in the circumferential direction. The UT results for the leaking elbow are shown in Figure 3 [1 ]. The leak is easily bounded in the axial and circumferential directions by 8 inches. Thus, the acceptance criteria of Code Case N-513-4 are met.

Finally, Paragraph 3.2(d) requires that N-513-3 Equation 9 be satisfied (i.e., the remaining ligament average thickness over the degraded area bounded by the limiting flaw size will resist pressure blowout).

The average remaining wall thickness requirement covering the degraded area from Equation 9 is 0.07 inch (using a dadj = 8 inches). From the inspection data given in Figure 3, only the grids nearest to the leak are less than this value. Thus, this Code Case requirement is met.

6.0 CONCLUSION

S The flaw evaluation of the weeping flaw in a 18-inch elbow of the SSW piping at Pilgrim has been evaluated using the methods of a pending revision to Code Case N-513-3 (designated N-513-4) currently in the ASME approval process (N-513-3 does not provide evaluation criteria for flaws in elbows, while N-513-4 does). N-513-4 has not been approved by the ASME or reviewed by the NRC; however, it is recognized in ASME committee that the technical approach is very conservative. Table 4 shows the axial and circumferential allowable flaw lengths based on a surrounding nominal wall thickness of 0.312 inch. The most limiting flaw size is 8 inches in the circumferential direction. The leak is easily bounded File No.: 1400287.302 Page 8 of 15 Revision: 0 F0306-01 RI

rStructuralIntegrity Associates, Inc!

in the axial and circumferential directions by 8 inches (as shown in Figure 3). Thus, the acceptance criteria of Code Case N-513-4 are met.

File No.: 1400287.302 Page 9 of 15 Revision: 0 F0306-01RI

rSlructuralIntegrity Associates, Inc.'*

7.0 REFERENCES

1. Pilgrim NDE Inspection Report, File Name "JF29 4 8 0.dmsdr," February 25, 2014, SI File Number 1400287.201.
2. ASME Code Case N-513-3, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, January 26, 2009.
3. Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, Nuclear Regulatory Commission, October, 2010.
4. ASME Boiler and Pressure Vessel Code,Section XI, Appendix C, 2001 Edition with addenda through 2003.
5. ASME Boiler and Pressure Vessel Code,Section III, Subsection ND, 2004 Edition.
6. ANSI B3 1.1, Power Piping, 1967 Edition.
7. Entergy Drawing Number M100-7250, Revision E5, "Service Water System E209B SSW Backwash Drain Piping," SI File Number 1400287.201.
8. Pilgrim Nuclear Power Station Specification Number M300, System 29 Service Water, SI File Number 1400287.201.
9. Pilgrim Nuclear Power Station Pipe Stress Calculation 638, SI File Number 1400057.201.
10. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
11. SI Calculation Number 1400287.301, Revision 0, "Pilgrim Salt Service Water Discharge Piping Elbow (JF29-8-4 Spool) Wall Thinning Stress Analysis."

File No.: 1400287.302 Page 10 of 15 Revision: 0 F0306-01 RI

r*Structural Integrity Associates, Inc.!

Table 1: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [101 A1O68Grade~c 2 Database Reference Temperature (°C) Temperature (F) JIC (kJ/m) JIC (ibf-in/in ) KIC (ks-in) 2 24 75 97 552 133 2 24 75 336 1919 249 16 25 77 81 464 122 16 25 77 418 2386 277 16 25 77 270 1542 223 16 25 77 193 1104 189 22 24 75 224 1278 203 22 20 68 112 641 144 22 20 68 117 668 147 22 23 73 214 1223 199 22 20 66 167 954 175 22 20 68 223 1271 202 22 20 68 108 617 141 23 52 126 116 663 146 23 23 73 103 590 138 23 23 73 105 600 139 23 23 73 93 528 131 24 23 73 76 431 118 24 23 73 82 469 123 24 25 57 23 135 73 51 77 293 43--

97 119 4-25 23 73 70 400 114 25 57 135 62 356 107 90 20 68 235 1342 208 90 20 68 219 1251 201 90 20 68 255 1456 217 90 20 68 281 1605 228 90 20 68 281 1605 228 90 20 68 335 1913 248 90 20 68 421 2404 279 90 20 68 385 2198 266 90 20 68 175 999 180 90 20 68 172 982 178 90 20 68 178 1016 181 90 20 68 214 1222 199 90 20 68 275 1570 225 90 20 68 133 759 157 90 20 68 140 799 161 90 20 68 174 994 179 90 20 68 1!1l 634. 143 90 20 68 190 1085 187 90 20 68 71 405 114 90 20 68 110 628 142 90 20 68 104 594 138 90 20 68 104 594 138 90 20 68 97 554 134 90 20 68 28 508 128 90 20 68 88 502 127 90 20 68 267 1525 222 File No.: 1400287.302 Page 11I of 15 Revision: 0 F0306-0IRI

XjStructuralIntegrity Associates, Inc.

Table 2: Axial and Circumferential Structural Factors [41 Service Level Membrane Stress, SFn Bending Stress, SFb A 2.7 2.3 B 2.4 2.0 C 1.8 1.6 D 1.3 1.4 Table 3: Load Combinations for Circumferential Flaw Analyses Load Combination Service Level P+DW+TH A P+DW+OBE+TH B P+DW+SSE+TH C/D Table 4: Allowable Through-Wall Flaw Lengths (based on t = 0.312")

Service Allowable Axial Flaw Allowable Circumferential Level Length (in) Flaw Length (in)

A 16.0 13.2 B 16.0 8.8 C/D 16.0 8.0 File No.: 1400287.302 Page 12 of 15 Revision: 0 F0306-01 RI

VjStructuralIntegrity Associates, Inc.

Figure 1. Pinhole Leak in Service Water Piping, 18-inch Elbow Page 13 of 15 File No.: 1400287.302 Revision: 0 FO306-01 RI

StructuralIntegrity Associates, Inc.r

".1 ý-- k\ y4h

-roep 4-

.0 CS~o'~4 N-~k Figure 2. Sketch of Leak Location in Service Water Piping, 18-inch Elbow File No.: 1400287.302 Page 14 of 15 Revision: 0 F0396-01 RI

r StructuralIntegrity Associates, Inc.l LOCATION AJ: AK: AL: AM: AN: AO: AP: AQ: AR: AS: AT: AU: AV:

1 0.396 0.397 0.397 0.380 0.369 0.352 0.348 0.344 0.342 0.335 0.328 0.315 0.328 2 0.398 0.396 0.393 0.371 0.334 0.353 0.347 0.343 0.345 0.341 0.337 0.311 0.325 3 0.393 0.390 0.393 0.369 0.309 0.361 0,347 0.338 0.343 0.335 0.327 0.308 0.326 4 0.387 0.389 0.389 0.383 0.150 0.051 0.109 0.336 0.299 0.336 0.327 0.308 0.318 5 0.386 0.390 0.394 0.192 0.087 0.064 0.083 0.334 0.313 0.328 0.328 0.315 0.320 6 0.389 0.388 0.392 0.108 0.352 0.362 0.332 0.333 0.334 0.298 0.292 0.317 0.323 7 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.339 0.341 0.296 0.337 0.321 0.323 8 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326 Figure 3. UT Data (3/4 Inch Grid) for Service Water Piping, 18-inch Elbow File No.: 1400287.302 Page 15 of 15 Revision: 0 F0306-0I RI

Appendix A DRAFT CODE CASE N-513-4 PROCEDURES FOR ELBOW FLAW EVALUATION File No.: 1400287.302 Page A- I of A-3 Revision: 0 F0306-OIRI

3.3 Through-wall Flaws In Elbows and Bent Pipe Through-wall flaws in elbows and bent pipe may be evaluated using the straight pipe procedures given in 3.1 or 3.2(d) provided the stresses used in the evaluation are adjusted as described below to account for the geometry differences. Alternate methods may be used to calculate the stresses used in evaluation.

The hoop stress. aL,, for elbow and bent pipe evaluation shall be:

k,2, ( , +R,sin 0)j 1.hl95 orý:=(pD."F[ 2R*j, +R,sin¢l] ..h2' )R3 (9) where Rb,,,a = elbow or bent pipe bend radius 0 = circumferential angle defined in Figure 7 h = flexibility characteristic Mb = resultant primary bending moment I = ontoent of inertia based on evaluation wall thickness, t Equation 9 is only applicable for elbows and bent pipe where h > 0. 1.

The axial membrane presslue stress, a,,,_ for elbow and bent pipe evaluation shall be:

C B,,

B(pDJ (10) where Bj is a primary stress index as defined in ASIME Section III for the piping item. B, shall be equal to 0.5 for elbows and bent pipe.

The axial bending stress, a,, for elbow and bent pipe evaluation shall be:

B'z, .)(I) 0 where B, is a primary stress index as defined in ASME Section III for the piping item.

The thermal expansion stress, oa,. for elbow and bent pipe evaluation shall be:

a.o= (12) where i = stress intensificatio flactor as defined ill the Code of Record for fthe pipin2 item

,11, = resultant Thermal expansion mlom1t1ent File No.: 1400287.302 Page A-2 of A-3 Revision: 0 F0306-01 RI

Figure 7 from N-513-4:

FIG. 7 CIRCUMFERENTIAL ANGLE DEFINED extrados File No.: 1400287.302 Page A-3 of A-3 Revision: 0 F0306-01 RI

ATTACHMENT 5 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 SSW Spool JF 29-8-4 NDE Data Sheet (4 pages)

UT Erosion/Corrosion Examination Entergy Site/Unit PNPS I 1 Procedure; CEP-NDE-0505 Outage No.: NIA Summary No. SSW Pipe Spool Procedure Rev.: .004 Report No.: BOP-UT-14-001 VVorKscope: BOP Work Order No.: 375247-04 Page: I of X_ .

C3oe ASME Sec-XI, 2001-2003 Ada. Cat.Jltem: C-H/C7.10 Location: "B" Aux Bay Drawing No. M100-7250

Description:

18" Elbow System ID. Service Water System (29)

Component ID: Pipe Spool JF29-8-4 SizelLength: 18"16"-12" Thickness/Diameter Sch.-20/18" Lunitations NIA Component File No.. NIA Start Time: 9:45 Finish Time. 14:10 Calibration Intomiation Partitioning Information Component Information Caiwa'.son Truckncsb (in) Caiorabton Times I Initais Component B6eqgJCoURow Ending/CoiiRow Component Geometry: Pipe Elbow

,*cwal muro M. UPST Ext. NIA NIA Outside Diameter: 18" Grid Size: 314" Start 9:40 RDA 0.100 0.100 - Main UPST. N/A NIA Max Thickness: 0.457 Min. Thjkness: 0.051 Verfy: 12:00 RDA 0.200 0.1-9 Main 1A 8iB Nominal Thickness: 0.312 Tmin.: 0.270 0.300 0.299 Venty: WA N A Main DNST. NWA NJA 0.400 0.400 Verity WA WNA M. DNST Ext. N/A NWA 0.500 Final: 14:15 RDA Max. Thickness 0.500 - - Branch W/A WJA Mx hcns Location:

oain aZ Branch Ext. NIA NWA Surface Condition: SMOOTH Inururer: Transducer: ReferencelSimulator Block: Temp. Tool:

Mant'.'actuer: GE Manufacturer KBA Serial No.: 94-5570 Manufacturer, Elcometer Mooei. USM-GO Serial No.: 01550W Type: 0. Serial No.: PNPTEM-288 Serial No. USMGO1 2915119 _____Rf~mltrBokTm. 0~

Size: 0.375" Freq.: 5.0 MHz Couplant:

Gain 6_Model: 113-550-001 Type Ultrage11 Range: 0.500 # of Elements: 2 Material/Component Temp.: 73 'F Batch No.: 05125 Comnients/Oustructons. UT performed do to a through wall hole. See CR-PNP.2014-00815. This is not a Code required exam.

Resiuts Accept _ Reject 3- Eval *j O'ther Level WA Signature Date ANII Review Signature Date N/A N/A

Supplemental Report Report No.: BOP-UT-14-001 E- ergy Page: 2 of 4 Summary No. SSW Pipe Spool File Name Spool JF29-8-4 Descnptlion '18 Elbow Creation D ale: 2/25/2014 Proue See UT Report Cdi Comment See report Irnspector . R. AVERY Company i Entergy Instrument Type : DMS Go Instrument S.N: USMGO12015119 Units INCH Vel ocity(in/us) 0.2360 Nunmoor or Readings : 488 Number of Empties es; 0 Numoer of Ousiructs. 0 Number of Attachments : 0 Range  : 0.406 Points Below MinAlarm: 0 Mean 0.368 Slanoard Dae*anon : 0.047 Minimum Value 0.051 Minimum Value Loc. 4:AO:1 Maximum Value .0.457 Maximum Value Loc. 8:Z:

OCATIO A: B: C: 0: E: F: G: H: I: J: K: L: M: N:

1 0.344 0.348 0.365 0.372 0.374 0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.359 2 0.346 0.356 0.365 0.370 0.372 0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0.365 3 0.348 0.358 0.363 0.366 0.373 0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0.366 4 0.354 0.352 0.365 0.369 0,375 0.379 0.381 0.380 0.380 0.380 0.372 0.367 0.366 0.368 5 0.349 0.354 0.366 0.368 0.375 0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.372 6 0.353 0.357 0.364 0.367 0.378 0.378 0.381 0.382 0.36a 0.381 0.375 0.372 0.373 0.372 7 0.354 0.357 0.365 0.374 0.375 0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.371 8 0.360 0.359 0.363 0.374 0.373 0.363 0.369 1 0.382 0,380 0.378 0.377 0.377 0.374 01372 TOP CiL oi PiPE Direction of Flow t -71

Supplemental Report Report No.: BOP-UT-14-001

-- tergy page: 3 ot 4 Suinrnarý No SSW Pipe SpoCt.

(D: 1 P: Q: R: S: T: U: V: .W: X: Y Z: AA. A1: AC: AD: AF:

367 0.371 0.380 0.386 0.398 0.400 0.373 0.413 0.419 0.425 0.427 0.421 0.417 0.415 0.417 0.413 0.404 20.372" 0.378 0.385 0.392 0.398 0.401 0.409 0.411 0.419 0.431 0.428 0.428 0.421 0.422 0.417 0.414 0-405 372 0.378 0.385 0.392 0.394 0.401 0.409 0.410 0.415 0.423 0.429 0.428 0.428 0.422 0.417 0.414 0.404 0.374 0.382 0.383 0.396 0.400 0.405 0.409 0.413 0.423 0.427 0.429 0.4.23 0.421 0.418 0.419 0.415 0.403 5 0.378 0.384 0.385 0.400 0.403 0.407 0.412 0.416 0.426 0.428 0.429 0.4.31 0.427 0.423 0.423 0.421 0.409 6_ 0.380 0.389 0.393 0.404 0.407 0.414 0.421 0.419 0.429 0.437 0.433 0.430 0.428 0.425 0.422 0.426 0.408 1 70.380 1 0.387 0.390 0.400 0.406 0.412 0.416 0.419 0.430 0.433 0.430 0.4.30 0.427 0.425 0.423 0.426 0.414 8Jl0.383 0-389 0.395 0.401 0.407 0.412 0.418 0.422 0.426 0.428 0.427 0.457 0.421 0.419 0.422 0.421 0.406 AF: AG: AH: IAl: AJ: AK: AL: AM: AN: AO: AP AQ: AR: AS: AT: AU: AV:

1 0.400 0.395 0.391 0.396 0.396 0.397 0.397 0.380 0.369 0,352 0.348 0.344 0.342 0.335 0.328 0.315 0.328 2 0.393 0.394 0.389 0.397 0.398 0.396 0.393 0.371 0.334 0.353 0.347 0.343 0.345 0.341 0.337 0.311 0.325 3 0.394 0.390 0.388 0.389 0.393 0.390 0.393 0.369 0.309 0.361 0.347 0.-338 0.343 0.335 0.327 0.308 0.326 4 0.391 0.385 0.383 0.383 0.387 0.389 0.389 0.383 . 0.0651 W5 0.336 0.299 0.336 0.327 0.308 0.318 5 0.378 0.388 0.380 0.380 0.386 0.390 0.394 [01 0.334 0.313 0.328_0.328 0.315 0.320 6 0.390 0.380 0.382 0.383 0.389 0.388 0.3 0.352 0.362 0.332 0.333 0.334 17 0.323 7 0.398 0-385 0.385 0.380 0.390 0.390 0.393 0.390 0.380 0.343 0.342 0.3139 0.341 0.337 0.321 0.323 8 0.401 0.392 0.388 0.381 0.385 0.388 0.392 0.388 0.386 0.366 0.360 0.356 0.349 0.349 0.348 0.327 0.326

- l " f" AW' I AX: AY: AZ: BA: BB: BC: BD: BE: BF: BG: SH: BI:

1 0.336 0.345 0.346 0.340 0.339 0.339 0.335 0.338 0.333 0.332 0.338 0.341 0.338 2 0.337 0.341 0.344 0.345 0.341 0.337 0.332 0.328 0.331 0.330 0.336 0.339 0.343 3 0.332 0.336 0.343 0.346 0.339 0.337 0.327 0.335 0.334 0.336 0.336 0.339 0.344 4 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336 0.340 0.349 5 0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330 0.346 0.343 t6 7

0.336 0.337 0.341 0.347 0.347 0.350 0.348 0.380 0.349 0.348 0.346 0.339 0.335 0.338 0.343 0.345 0.339 0.345 0.347 0.339 0.335 0.344 0.340 0.339 0.341 0.377 8 0.332 0.343 0.351 0.356 0.351 0.348 0.338 0.343 0.343 0.341 0.339 0.343 0.351 7///

Supplemental Report Rkýpurt No BOP-UT-14-O01 Page 4 ot 4 rvSSWv hpip SP.0oi ______

7

ATTACHMENT 6 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev I Mechanical Clamp Information (2 Pages)

Mechanical Clamp Information Structural / Seismic Loadinc:

Approximate total weight of clamp assembly is:

U-Bolt = 13.5 lb ( 1" Rod stock per Piping Technology & Products Catalog, Feb 1995)

L3x3x1/4 Strong back = ( 4.9 lb/ft)* (2 ft) = 10 lb ( AISC Steel Manual 8th Edition)

Contoured bearing plate, gasket and misc. = 6.5 lb (conservative estimate by inspection)

Total = 30 lb Maximum seismic acceleration = 2.51g conservatively using Reactor Building El. 23' spectra and 1% damping (Ref. Spec Cl 14ERQE1 Sheet A-6). Maximum combined deadweight and seismic force in any direction is therefore approximately (2.51 + 1 )* 30 lb = 105 lb.

This is a very small force with respect to the strength of the steel clamp assembly. The clamp becoming completely detached from the piping/elbow is therefore not credible. Consider the possibility the of clamp slipping along the elbow. This would be resisted by the friction force due to the clamping action.

Clamp Force F*u;rnc = 1N = 105 -'+2 (two points o/f contact) p= 0. 2 5 N = 210 lbf S= 105lbfper leg T = FKD = 105 bf .0.2 "1i T = 21 in tbf rin. per nut Suggested Torque = 5 ft-lb T =5 ft. -b -' 60 in. -b F - F = 300 lbf per nut 2D F7,tG,.I=F X 2 =600!bf to 2.14.032 Sheet 1 of 2

Mechanical Clamp Information (Cont.)

Strong Back

= lbf *20 in ~=3000 vn 'b 600 M

4 3000 zin lb 0.577 in&

Pressure on Pipe 2

A = 4in x4in = 16 in F = 600 lbf P = F = 37.5 psi Based on Suggested Torque of 5 ft-lb A

Attachment 6 to 2.14.032 Sheet 2 of 2

ATTACHMENT 7 TO ENTERGY LETTER 2.14.032 PILGRIM RELIEF REQUEST PRR-25, Rev 1 SSW Spool JF29-8-4 NDE Data Sheets (10 Pages)

SSW Spool JF29-8-4 UT Exam-i) 2/25/2014

1. Gridded 18" elbow, grid was approx. 6" wide at top of pipe and 10" wide on bottom of elbow, 360 digress around pipe. Performed 100% UT scan of each grid block and recorded low reading for each location.
2. Only readings found to violate the elbow T-min.

dimension of 0.212 (ref. specification M591) where in the vicinity of the through wall hole.

UT Exam-2) 3/04/2014

1. Performed another UT exam on the east lower side of the elbow. A compression was made to the UT readings obtained on 2/25/2014.
2. Most areas remained the same, however; several areas had a slight change in wall thickness (See attached for actual readings obtained.

UT Exams 3 & 4) 3/06/2014, 3/11/2014

1. Only changes in wall thickness were in the area of the hole UT Exam 5) 3/19/2014
1. Again slight changes in thickness around the location of the hole.

Notes:

" Areas that were marked "same" had reading within +/- 0.005 of previous readings

" These exams were a best effort UT's for the following reasons

1. West lower side of the pipe (side with hole) is very restricted do to other pipes in this location.
2. Water was flowing from the hole, during several exams.
3. Portions of existing grid gets washed away from water
4. Official UT reports to be issued and reviewed by another individual with UT certifications.

R. Avery Ii 3/25/2014, UT Level-Il

/-;'Wfr

-VA)

-- ------------- File Header ...........................

File Name JF29-S O.dmsdr Description /W Creation Date : 20,14-02--25'10:23:02 Probe Cal Comment Inspector R. AVERY Company Units INCH Velocity(in/us) 0.2360 File statistics Number of Readings 488 Number of Empties : 800 Number of Obstructs: 0 Number of Attachments: 0 Range :0.406 Points Below MinAlarm : 0 Mean :0.368 Standard Deviation : 0.047 Minimum Value  : 0.051 Minimum Value Loc. : 4:AO:1 Maximum Value :0.457 Maximum Value Loc. : 8:Z:1 4OCATION A: B: C: D: E: F: G: H: I: J: K: L: M: N: 0: P: Q: R: S: T:

1 0.344 0.348 0.365 0.372 0.374 0.375 0.377 0.373 0.372 0.364 0.361 0.364 0.358 0.359 0.367 0.371 0.380 0.386 0.398 0.400 2 0.346 0.356 0.365 0.370 0.372 0.376 0.373 0.377 0.375 0.370 0.367 0.367 0.364 0.365 0.372 0.378 0.385 0.392 0.398 0.401 3 0.348 0.358 0.363 0.366 0.373 0.376 0.375 0.377 0.376 0.374 0.369 0.367 0.366 0.366 0.373 0.380 0.383 0.394 0.400 0.405 4 0.354 0.352 0.365 0.369 0.375 0.379 0.381 0.380 0.380 0.380 0.372 0.367 0.366 0.368 0.374 0.382 0.383 0.396 0.400 0.405 5 0.349 0.354 0.366 0.368 0.375 0.378 0.378 0.382 0.382 0.380 0.377 0.372 0.369 0.372 0.378 0.384 0.385 0.400 0.403 0.407 6 0.353 0.357 0.364 0.367 0.378 0.378 0.381 0.382 0.366 0.381 0.375 0.372 0.373 0.372 0.380 0.389 0.393 0.404 0.407 0.414 7 0.354 0.357 0.365 0.374 0.375 0.380 0.381 0.385 0.381 0.379 0.379 0.371 0.372 0.371 0.380 0.387 0.390 0.400 0.406 0.412 8 0.360 0.359 0.363 0.374 0.373 0.363 0.369 0.382 0.380 0.378 0.377 0.377 0.374 0.372 0.383 0.389 0.395 0.401 0.407 0.412 TOP C/L of PIPE Direction of Flow 1

fP/--

C- S -.7 1,"- 3 U: V: W: X: Y: Z: AA: AB: AC: AD: AE: AF: AG: AH: Al: AJ: AK: AL: AM: AN: AO:

0.373 0.413 0.419 0.425 0.427 0.421 0.417 0.415 0.417 0.413 0.404 0.400 0.395 0.391 0.396 0.396 0.397 0.397 0.380 0.369 0.352 0.409 0.411 0.419 0.431 0.428 0.428 0.421 0.422 0.417 0.414 0.405 0.393 0.394 0.389 0.397 0.398 0.396 0.393 0.371 0.334 0.353 0.410 0.415 0.420 0.429 0.437 0.428 0.422 0.417 0.418 0.410 0.404 0.394 0.390 0.388 0.389 0.393 0.390 0.393 0.369 0.309 0.361 0.409 0.413 0.423 0.427 0.429 0.423 0.421 0.418 0.419 0.415 0.403 0.391 0.385 0.383 0.383 0.387 0.389 0.389 0.383 0.150 0.051 0.412 0.416 0.426 0.428 0.429 0.431 0.427 0.423 0.423 0.421 0.409 0.378 0.388 0.380 0.380 0.386 0.390 0.394 0.192 0.087 0.064 0.421 0.419 0.429 0.437 0.433 0.430 0.428 0.425 0.422 0.426 0.408 0.390 0.380 0.382 0.383 0.389 0.388 0.392 0.108 0.352 0.362 0.416 0.419 0.430 0.433 0.430 0.430 0.427 0.425 0.423 0.426 0.414 0.398 0.385 0.385 0.380 0.390 0.390 0.393 0.390 0.380 0.343 0.418 0.422 0.426 0.428 0.427 0.457 10.421 0.419 0.422 0.421 0.406 0.401 0.392 0.388 0.381 0.385 0.388 0.392 0.388 0.386 0.366 Yellow are the areas that are below 0.300. Area of hole

)00ýý .?;;ý 1,-, ý3 17 AP: AQ: AR: AS: AT: AU: AV: AW: AX: AY: AZ: BA: BB: BC: BD: BE: BF: BG: BH: BI:

0.348 0.344 0.342 0.335 0.328 0.315 0.328 0.336 0.345 0.346 0.340 0.339 0.339 0.335 0.338 0.333 0.332 0.338 0.341 0.338 0.347 0.343 0.345 0.341 0.337 0.311 0.325 0.337 0.341 0.344 0.345 0.341 0.337 0.332 0.328 0.331 0.330 0.336 0.339 0.343 0.347 0.338 0.343 0.335 0.327 0.308 0.326 0.332 0.336 0.343 0.346 0.339 0.337 0.327 0.335 0.334 0.336 0.336 0.339 0.344 0.109 0.336 0.299 0.336 0.327 0.308 0.318 0.326 0.338 0.344 0.343 0.339 0.331 0.336 0.336 0.334 0.336 0.336 0.340 0.349 0.083 0.334 0.313 0.328 0.328 0.315 0.320 0.331 0.337 0.343 0.345 0.341 0.339 0.333 0.339 0.335 0.335 0.330 0.346 0.343 0.332 0.333 0.334 0.298 0.292 0.317 0.323 0.336 0.341 0.347 0.348 0.349 0.346 0.339 0.335 0.338 0.343 0.345 0.339 0.345 0.342 0.339 0.341 0.296 0.337 0.321 0.323 0.337 0.347 0.350 0.380 0.348 0.347 0.339 0.335 0.344 0.340 0.339 0.341 0.377 0.360 0.356 0.349 0.349 0.348 0.327 0.326 0.332 0.343 0.351 0.356 0.351 0.348 0.338 0.343 0.343 0.341 0.339 0.343 0.351

-Top C/L ofpipe Approx.

C/L of Hole

SW SPOOL IF29-4-8

.OOKING VEST

) AJS) Z~X,4*l a (." 3/; 'z 8 7 6 5 4 3 DATE AU 0.327 0.321 0.317 0.315 0.308 0.308 2/25/2014d- Ivr-same same same same same same 3/04/2014 AT 0.348 0.337 0.292 0.328 0.327 0.327 2/25/2014 same same 0.333 same 0.31 0.321 3/04/2014 AS 0.349 0.296 0.298 0.328 0.336 0.335 2/25/2014 same same 0.292 same 0.322 same 3/04/2014 AR 0.349 0.341 0.334 0.313 0.299 0.343 2/25/2014 same same same same 0.293 same 3/04/2014 AQ 0.356 0.339 0.333 0.334 0.336 0.338 2/25/2014 0.344 same 0.328 same same same 3/04/2014 AP 0.360 0.342 0.332 0.083 0.109 0.347 2/25/2014 same same same same 0. samme 3/042014 AO 0.366 0.343 0.362 0.064 0.051 0.361 2/25/2014 same same 0.340 same same same 3/04/2014 AN 0.386 0.380 0.352 0.087 0.150 0.309 2/25/2014 0.378 0.374 same same same same 3/04/2014 0 56* -*--------

-.... 2 14 AM 0.388 0.390 0.10 0.192 0.383 0.369 2/25/2014 same same 0 0.06S same same 3/04/2014 AL 0.392 0.393 0.392 0.394 0.389 0.393 2/25/2014 0.386 same same same same same 3/04/2014

[Type text] Looking West See next sheet for notes A4s'Th~, /9(4' ~9,d&

8 7 6 5 4 3 AP 0.360 0.342 0.332 0.083 0.109 0.347 2/25/2014 same same same same 0.104 same 3/04/2014 0.090 3/06/2014 4/IL Li' same same I same same same same '7 3/11/2014-i AO 0.366 0.343 0.362 0.064 0.051 2/25/2014 same same 0.349 same same 3/04/2014 same same same same A same 3/11/2014 0.8 0.8 0.35 AN 0.386 0.380 0.352 0.087 0.150 same 0.309 2/25/2014 0.378 0.374 same same same 3/04/2014 0.056 same 3/06/2014 same same 0. 120~ /0.0 48 same 3/11/2014

.4- +

AM 0.388 0.390 0.1081  ! 0.192 0.383 0.369 2/25/2014 same Same 0.096, p0.065 same same 3/04/2014 same same same same same same 3/11/2014 AL 0.392 0.393 0.392 0.394 0.389 0.393 2/25/2014 0.386 same same same same same 3/04/2014 same same same same same same 3/11/2014

  • Hole, Green = only changes identified on 3/06/2014, Changes identified on 3/11/2014 31111111

c,4/~ I

  • '~' f/

U I Exam on 3/),1/2014, 571) 1ý41 eý - 26

~ 6%4A1 5 41 0.332 SAME /0.083 0.090 o 3'c/-2 0.349 0.051 SAME v Q

/962 0.352 SAME P/v' t 1201v 008XOZA4,O3 Of"-- (_. WAT'*

0.096 0.065 0.383

  • .062 S0.081 same I'm 0,300, 0v3o0 A 62-~~-<