ML17228B237: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
(11 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
| number = ML17228B237 | | number = ML17228B237 | ||
| issue date = 07/14/1995 | | issue date = 07/14/1995 | ||
| title = Stresses for St Lucie Unit 2, | | title = Stresses for St Lucie Unit 2,PZR Lefm. | ||
| author name = | | author name = Miller A, Wiger T | ||
| author affiliation = BABCOCK & WILCOX CO. | | author affiliation = BABCOCK & WILCOX CO. | ||
| addressee name = | | addressee name = | ||
Line 14: | Line 14: | ||
| document type = ARCHIVE RECORDS, OPERATIONS SUPPORT-CALCULATIONS | | document type = ARCHIVE RECORDS, OPERATIONS SUPPORT-CALCULATIONS | ||
| page count = 77 | | page count = 77 | ||
}} | }} | ||
=Text= | |||
{{#Wiki_filter:BNT-20697-2 (11/B9) | |||
(BNNP.20697.1) | |||
I jIPBBMfNllClSAR CALCULATION | |||
==SUMMARY== | |||
SHEET (CSS) | |||
%M TECHNOLOGIES DOCUMENT IDENTIFIER 32-1235127" 02 TI TLF Stresses for St . Lucie Unit 2, Pzr LEFM 4100533 PREPARED BY: REVIENEO BY: | |||
T.M. Wi er A.M. Miller SIGNATURE SIGNATURE TITLE En r III | |||
. TIT E En r. IV ,7 // 9s-COST CENTER REF. PAGE(S) TM STATEMENT: REVIEllER INDEPENDENCE PURPOSE AND | |||
==SUMMARY== | |||
OF RESULTS: | |||
The purpose of this document is to determine enveloping Normal, Upset and Emergency Condition stresses for the six 1" instrumentation nozzles in the upper and lower spherical regions in the pressurizer at St. Lucie Unit 2. Results from this document were used as input to the fracture mechanics evaluation, Reference [7] . | |||
The stress results are summarized in Tables 6.1 through 6.15 in Section 6.0. | |||
No conclusions are drawn by, these calculations. | |||
** BWNT Non-Proprietary ** | |||
This document consists of pages 1 through 51 including 20a, 33a and 33b. | |||
THE FOLLONING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT: | |||
CODE / VERSION / REV CODE / VERSION / REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED ISRK | |||
'75081'00'l84 '950802 PDR ADOCk 0500038'P | |||
'. YES ( ) NO ( X ) | |||
PDR PAGE 1 oF 51 Q | |||
tie' at) | |||
I BRA NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127<<02 RECORD OF REVISIONS Pages Revision Added/ | |||
Number Chanched Descri tion 0 All Original issue All Issue of Non-Proprietary Version Removed assumption 5. | |||
Corrected Young's modulus of base material. | |||
Modulus used in the analysis of previous revisions was correct, but reported incorrectly in this table. | |||
Corrected equation for K,. | |||
8-40 Performed the analysis for only the spherical region with corrected hillside stress concentration factor and actual thickness. New model covers all nozzles in the upper and lower spherical regions. | |||
Replaced with pages 8 through 50. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 2 | |||
BaW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 1.0 Introduction 4 2.0 Assumptions 3.0 Design Input 5 3.1 Design Characteristics 5 3.2 Material Properties 6 3.3 Model Geometry 8 | |||
: 4. 0 Finite Element Model 10 | |||
: 5. 0 Thermal Analysis 11 6.0 Stress Analysis 20 7.0 ANSYS 5.0A Verification 48 8.0 References 49 9.0 Microfiche 50 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 3 | |||
B&W'UCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power & Light Company's St. | |||
Lucie Unit 2. Subsequent NDE identified indications on the J-welds for all four steam space instrument nozzles. Modifications were made and justifications performed to determine the potential for crack growth during plant operation. The evaluation performed at the time was conservatively limited to one cycle based on the design information available. The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all six instrument/temperature 1" nozzles in the spherical regions of the pressurizer. I Results from this document are used as input to the fracture mechanics evaluation, Reference [7] . The results are presented in the coordinate system shown in figure 6.2, which is orthogonal to the postulated flaw, as required by Reference [7] . The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS'5.0A finite element software. | |||
2.0 Assumptions | |||
: 1) Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell. | |||
: 2) The effects of the nozzle were neglected in determining the shell/head stresses (i.e. the nozzle was omitted from the finite element model) . | |||
: 3) The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be 15'F for calculating the natural convection heat transfer coefficient. | |||
: 4) Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head. | |||
5)'Removed) | |||
: 6) Hydrotest was assumed to be shop hydrotest only. Therefore, no future hydrotests are assumed to occur. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 4 | |||
BEcT4 NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 3.0 Design Input 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference [8] . | |||
Heatup 100 F/hr | |||
'Cooldown 200 F/hr Operating Pressure 2250 psia Operating Temperature 653 F Minimum Pressure (Reactor Trip transient) 1740 psia (653-616 'F hT) | |||
Maximum Pressure (Abnormal Loss of Load transient) 2400 psia (664-614 'F hT) | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 5 | |||
B&k NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis. The material types come from References [8-10] | |||
and assumption 1. References for the material properties are given in the tables below. The material property designation and units are: | |||
KXX - thermal conductivity, btu/(hr-in-'F) | |||
DENS - density, lb/in' | |||
- specific heat, btu/(lb-'F) | |||
C is a calculated value based on C = KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX - Young's Modulus, psi x | |||
- coefficient of thermal expansion, in/in/'F x 10'LPX | |||
- design stress intensity, ksi 10'm Sy - yield strength, ksi Su - ultimate strength, ksi v - Poisson's ratio = .3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.5Ni) | |||
TEMP DENS EX ALPX Sy Su 100 .2839 1.8833 .1079 29.0 7.06 26.7 50 ' 80. 0 200 ~ 2831 1.9500 .1139 28.5 7.25 26.7 47.5 80.0 300 .2823 1.9833 .1196 28.0 7.43 26.7 46.1 80.0 400 .2817 1.9833 .1257 27.4 7.58 26.7 45.1 80.0 500 .2809 1.9583 .1323 27.0 7.70 26.7 44.S 80.0 600 .2802 1.9167 .1389 26.4 7.83 26.7 43.8 80.0 700 .2794 1.8583 .1448 25.3 7.94 26.7 43.1 80. 0 REF .3 Prepared By: -T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 6 | |||
I 0 | |||
I 4'8 1 | |||
1 | |||
BED NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni) | |||
TEMP DENS EX ALPX Sy Su 100 .2862 .7250 .1157 28.1 8.55 20 ' 30.0 75.0 200 .2853 .7750 .1209 27.6 8.79 20 ' 25.0 71.0 300 .2844 .8167 .1246 27.0 9.00 20.0 22.5 66.0 400 .2836 ~ 8667 .1286 26.5 9.19 18.7 20.7 64.4 500 .2827 ~ 9083 .1313 25.8 9.37 17.5 19.4 63.5 600 .2818 . 9417 . 1334 25. 3 9. 53 16.4 18.2 63. 5 700 .2810 .9833 . 1358 24. 8 9.69 16.0 17.7 63.5 REF Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 7 | |||
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRXETARY ** 32-1235127-02 3.3 Model Geometry The model is axisymmetric with the axis of rotation at the center of the penetration, as if the penetration was located radially. Both the base metal and the cladding are represented thermally and mechanically (see Figure 3.1) . | |||
R Clo,clcllng ( Lp D RNaz Figure 3.1 Model Geometry The cladding and base metal thicknesses, T~~ and T,~, respectively, and the penetration radius, RNoz come from References [10] and [12] . The radius R, is not the actual radius to the base metal but is modified as discussed later to account for hillside effects. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 8 | |||
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 The dimensions in Figure 3.1 above as used in the analysis are: | |||
R, = 1.52(48 7/16) = 73.63 in. (1.52 = hillside stress factor) | |||
R = 11/16 = 0.6875 in. | |||
T~~ = 7/32 = 0. 219 in. | |||
T,~, = 3 7/8 = 3.875 in. | |||
The model was built such that the hoop stress was increased by an appropriate value to account for the hillside (non-radial) penetrations which are not inherent in an axisymmetric model. This increase was accomplished by increasing the radius to the base metal (R,) by an appropriate factor K, calculated later. | |||
A sufficient portion of the head was modeled to attenuate the stress concentration effects at nozzle penetration (discussed in Section 4.0). | |||
Hillside Effect Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration. | |||
From Ref. [4, p. '337], the following stress concentration factor was calculated for the hillside effect. The maximum stress concentration was present at the instrument nozzles in the lower head where P (the angle between the penetration centerline and the normal to the head) was a maximum. | |||
sin '(24.5625/48.21875) = 30.62~ Refs. [9 & 10] | |||
K, = K,(1 + 2sin'$) Ref. [4, p. 337] | |||
K r = Kr (1 + 2sin'0. 62o) 1, 52 K, Where:, K, = radial nozzle stress concentration factor K, = non-radial nozzle stress concentration factor P = angle the axis of the nozzle makes with the normal to the vessel wall Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 9 | |||
I B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** '2-1235127-02 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference [6], was used to perform the axisymmetric thermal and stress analyses of the nozzle penetration in the spherical regions. | |||
The model extends away from the penetration far enough that the increase in stress due to the penetration is not present at the boundary. This will insure that any inaccuracies at the location of boundary condition application will not affect the results at the penetration. | |||
J The head and cladding were modeled using axisymmetric elements PLANE42 for the structural and PLANE55 for the thermal. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 10 | |||
BEcl NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRXETARY ** 32-1235127-02 5.0 Thermal Analysis The transients in Ref. [8] were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference [7]). | |||
Based on the review, the following transients were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure = 1740 psia) and a 53 F Step-up (pressure = 2400 psia), and Loss of Secondary Pressure. The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche SPHTHERM.OUT) with"Heatup from 70'F to 653'F (ramped over 5.83 hours, then held constant until t=7.0 hours), 53'F Step-down (instantaneously dropped at t=7.0 hrs, then held for 1.0 hour), 53'F Step-up (instantaneously raised at t=8.0, then held for 1 hour) and Cooldown from 653'F to 70'F (ramped over 2.915 hours starting at t=9.0 hours, then held constant until t=13.0 hours) ~ | |||
The Loss of Secondary Pressure transient consists of a step decrease to 504F which is then ramped to 348F over the next 90 seconds at which time it is held constant out to t=0.50 hours. The thermal results are 4 | |||
contained in microfiche SPHTHLP.OUT. | |||
Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures. Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1. All other surfaces, including the penetration surface, were assumed to be insulated. | |||
A constant heat transfer coefficient was used to simplify the analysis in a conservative manner. Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference [7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 11 | |||
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32"1235127-02 During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer. Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses. Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile) stresses. Therefore, nozzles in the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space). Zn the case of the Step Down and Loss of Secondary Pressure transients, however, boiling may occur, raising the heat transfer coefficient significantly. | |||
The -heat transfer correlations in Ref. [2] were reviewed for horizontal | |||
'and vertical plates. The correlation for a horizontal heating plate, face up (T > Tco) was selected as a representative heat transfer coefficient for the nozzles in the water space. | |||
HORIZONTAL PLATE, NATURAL CO1VVECTION, TURBULENT REGIME ST~yg 650 FI ASSUME 15 F IT 1 1 H = (hT) K4~Kt; = (15) (.17) (1100) = 461 HR-FT2-oF H=3 HR IN2 oF For the Step Down transient, where boiling can occur, the heat transfer coefficient comes from Table 2.2 of Ref. [11] . The maximum coefficient is conservatively used. | |||
H = 10, 000 (BTU/f t'r. P) = 70 (BTU/in.'r. 'F) | |||
The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred. The Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 12 | |||
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 temperatures as function of time at the base metal-to-cladding interface and at the outer radius of the pressurizer shell are plotted in Figure 5.2. The radial dT is shown in figure 5.3. | |||
The temperature distribution at times of extreme hT's were used to load the structure since the extreme hT's resulted in extreme thermal stresses. For Cooldown, other time points were also considered since the pressure at the time of maximum hT is significantly lower than at earlier times where the tT is almost as large. | |||
Steady state temperature cases were also run at 653'F/2250 psig without material discontinuity effects (T, = T<< = 653'F) and at- 653'F/ 2400 psig with material discontinuity effects (T, = 70'F). | |||
Table 5.1 summarize the critical transient times and identifies the associated pressures for each model. The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.1 and the POST26 results are contained at the end of the thermal runs in the microfiche in Section 9.0. Note that although the node pair used for evaluating the radial hT was at a 45'ngle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface isothermal). | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 13 | |||
fl BAH NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 TABLE 5.1 CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR) PRESSURE (PSIG) | |||
Heatup 5.83 2,250 Step-down 7.0667 1,740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown'.2915 1,472 9.4081 1I 232 9.8162 607 11.915 Steady State'/A 2,250 Loss of Secondary 0.010 310 Pressure 0.015 210 0.020 185 0.063 116 | |||
'The pressure was assumed to equal the saturation pressure of the steam at the current fluid temperature. | |||
'Includes material discontinuity temperature effects (T, = 70'F) . | |||
'Excludes material discontinuity temperature effects (Tf T 653 F) . | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 14 | |||
I I | |||
I l l I lHQISk NOQNHOO+++ | |||
l88llSQ51115580+++ gg'g ulngaaaiaaaaaaaI1ay lll8lRHISR550%88++++ | |||
lll8085REOOSN'I++++gy gg Illllll!IISQOESH%8++++ | |||
e e IIIIIIIIII) ~ +++++ | |||
Illlllllll1%5%%%%%~~~~~ | |||
IN5558 I | |||
Illlllllllll5%88%%%~~~~~ | |||
lllllllll55%%5555%8++++~ | |||
IllllllHSIISN5555'8+++g IlllllllllllNERNSI''+++ | |||
I I, g I | |||
0 | |||
'I ~ | |||
ANSYS 5.0 A JUN 20 1995 18: 44.:10 PLOT NO. I W W POST26 "C | |||
ZV = I DIST=0.75 XF =0.5 n YF =0.5 ZF =0.5 CENTROID HIDDEN 0 | |||
gI 0 | |||
H W' | |||
TEMP | |||
'6 TEMP 0 Id 0 12 M 10 I hl | |||
'0 TIME Cd UI lg I hl 6 | |||
~~ | |||
ST. LUCIE PRESSURIZER SPHERICAL REGION IFMPERATURE NOZZLE I | |||
CO M | |||
R ANSYS 5.0 A JUN 20 1995 18: 0 4: 10 n PI.OT NO. 2 POST26 ZV = I DIST=0.75 XF =0.5 n YF =0.5 H | |||
ZF =0.5 CENTROIO HIODEN a | |||
A 8O A | |||
tid 8 | |||
TOIF F g0 I ~ | |||
0 I Q. 0 Q H C4 0 | |||
4J 12 10 I hl TIME VJ Ul 8 | |||
~~ ST. I.UCIE PRESSURIZER SPHERICAL REGION TEMPERATURE NOZZLE hl I | |||
C) h) | |||
ANSYS 5.0 A JUN 20 I995 I7:04:01 PI.OT NO. I POST26 2V = I OIST=0.~5 XF =0.5 YF =0.5 ZF =0.5 CENTROID HIOOEN | |||
<<C gO I | |||
0 H | |||
t4 TEMP TEMP (s IOtt-1) 4J 0.5 2.5 3,5 I M | |||
TIME 4l Vl ST. lUCIE PRESSURllER SPHERICAl REGION TEMPERATURE NOlllE M I | |||
C) | |||
M | |||
~g CD ANSZS 5.0 A CD JVN 20 I995 5 Ij:04:07 PLOT NO. 2 | |||
~~ | |||
CO CD POST26 RB LV = I CD 0 I S T =0.15 XF =0.5 n YF =0.5 0 CD ZF =0.5 CENTROIO IIIOOEN C~ | |||
8O Cl TOIFF 8 <<C g0 gI Ba Ql 0 | |||
H W | |||
Q K | |||
Q FL CL B | |||
[ a 1044-0 GJ 0.6 1.6 2+6 I kO TIME bJ Ul ST. I.VCIE PRESSVRILER SPHERICAL REGION TEMPERATURE N022LE h) | |||
I C) hl | |||
B6cW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell. The pressure boundary conditions are shown in Figure 6.1. Since the fracture mechanics evaluation in Reference [7] requires stresses along the flaw line that is approximately 45 from the axis of the nozzle penetration, the ANSYS POST1 post processor was used to transform the stresses into the flaw line coordinate system as shown in Figure 6.1. | |||
Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction. A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load = mr'(pressure) = m(.6875)'(pressure) 1.4849(pressure)). The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest. | |||
Stress results for the given model are contained in the microfiche of Section 9.0. The stresses along the 45 degree flaw line are summarized for each transient analyzed in the Tables 6.1 through 6.13 and the figures on pages 35 to 47. | |||
The results reported by the finite element model have accounted for the stress concentration for a hillside penetration subject to pressure by the increase of the radius by a factor of 1.52, however, the increase in thermal stresses due to the hillside positioning is not included. From | |||
: p. 200 of Reference [13] the stress concentration due to an elliptical hole in a biaxially stressed plate where e,=e, and b/a=1.16, the stress concentration should be 2.32 (say 2.4). The model is picking up a stress concentration of 2 0 from the radially positioned circular hole (b/a=1. 0) | |||
~ | |||
in the model. The increase in hoop stress due to the hillside positioning when subject to pressure has been included by the increase in radius, but the model is only picking up the inherent SCF of 2.0 for thermal stress since the thermal stresses are essentially unaffected by radius'he thermal stresses, therefore, must be increased by a factor of 1.2 to account for the hillside positioning. | |||
This increase has been performed by separating the thermal and pressure stress components, multiplying the thermal component by 1.2, and adding the pressure component and the increased thermal component to arrive at the total stress. Since hoop stress (Sz) is dominant, the increase will only be performed for that stress component. A sample calculation appears below. | |||
Page 20a has been inserted between 20 and 21. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 20 | |||
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 For Cooldown-1 (Table 6.5), at position S=0.3360 inches: | |||
Sz = 25288.0 Pressure component is taken from the pressure only case in table 6.9. | |||
This pressure must be multiplied by the ratio of pressures Sz-press = (P/Ppo) Sz-po (1472/2250)'32353 21166 psi Hence, the thermal component is 25288 - 21166 = 4122 psi This is multiplied by 1.2 and the pressure stress is added to arrive at the corrected total stress. I Sz = 4122 (1.2)+21166 = 26112.4 psi which is exactly what the table reports. | |||
h Two additional transients, fluctuations from steady state, are calculated using the results from the 53'F Step Up and Step Down. They use the method above to isolate the thermal stresses and approximate a 20'F Step change by multiplying the thermal component by the ratio 20/53.'he transient also includes a pressure change as described in the relevant tables, 6.14 and 6.15. | |||
Note that the stresses (in psi) are in the local coordinate system of the 45 degree flaw line as shown in Figure 6.1 and "S" is the distance from the inside surface,to the outside surface along the flaw line. | |||
Note also that the figures on pages 37 through 47 show the stresses not including the'actor of 1.2 on thermal stress and are for information only. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 20a | |||
P 0 | |||
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.1 END OF HEATUP, P=2250 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -2539. 5 -721.5 23098.0 19234 ' | |||
0.1120 -62.5 229.6 25811.0 23322.0 0.2240 1818.2 554.0 26602.0 25004.4 0.3360 2846.5 770.8 26553.0 25393.0 0.4480 3962.3 2596.5 26346.0 25538.0 0.5600 4368.8 3683.5 26134.0 25564.6 0.6720 5035.5 4580.2 25733.0 25332.8 0.7840 5502.6 5303.1 25458.0 25185.6 0.8960 5928.8 5957.6 25138.0 24974.2 1.0080 6268.7 6449.9 24927.0 24844.6 1.1200 6662.0 6937.1 24672.0 24661.4 1.2319 6889.8 7336.4 24532.0 24584.2 1.3439 7167.5 7706.5 24373.0 24479.0 1.4559 7420.0 8045.6 24238.0 24392.0 1.5679 7609.0 8346.2 24157.0 24356.0 1 '799 7819.5 8638.4 24057.0 24297.0 1.7919 7990.3 8886.6 24001.0 24277.4 1.9039 8150.1 9125.0 23954 ' 24265.8 2.0159 8307.7 9358.4 23906.0 24251.8 2.1279 8439.3 9550.6 23885.0 24260.2 2.2399 8571.5 9739.5 23861.0 24265.0 2.3519 8699.6 9923.2 23840.0 24272.0 2.4639 8803.1 10083.0 23844.0 24302.6 2.5759 8912.0 10230.0 23834.0 24316.0 2.6879 9020.4 10376.0 23823.0 24328.2 2.7999 9106.7 10508.0 23838.0 24366.2 2.9119 9194.0 10629.0 23842.0 24391.0 3.0239 9281.5 10742.0 23837.0 24404.8 3.1359 9358.4 10850.0 23843.0 24429.4 3.2479 9428.8 10953.0 23857 ' 24462.2 3.3599 9497.7 11048.0 23860.0 24481.6 3.4719 9564.2 11135.0 23853.0 24488.8 3.5838 9619.0 11216.0 23861.0 24511.4 3.6958 9673.2 11298.0 23867.0 24531.6 3.8078 9725.5 11376.0 23868.0 24545.8 3.9198 9771.3 11442.0 23856.0 24544.0 4.0318 9810.2 11505.0 23852.0 24550.0 4.1438 9848.6 11569.0 23847.0 24555.0 4.2558 9886.5 11633.0 23842 ' 24559.8 4.3678 9917.6 11686.0 23822.0 24546.6 4.4798 9941.3 11733.0 23804.0 24534.2 4.5918 9964.7 11781.0 23785 ' 24520.8 4.7038 9987.5 11830.0 23766.0 24507.2 4.8158 10010.0 11878.0 23746.0 24492.6 4.9278 10243.0 11671.0 23704.0 24451.4 5.0398 10468.0 11472.0 23664.0 24412.2 5.1518 10683.0 11281.0 23623 ' 24372.0 5.2638 10890.0 11100.0 23582.0 24331.6 5.3758 11089.0 10927.0 23540.0 24290.2 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 21 | |||
0 | |||
~ BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.2 53F STEP DOWN, P=1740 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -3039.0 2198.3 37940.0 38967.8 0.1120 350.3 2565.5 37707.0 39331.5 0.2240 3114 F 1 2497.1 36148.0 38027.7 0.3360 4598.9 2587.3 34456.0 36343.3 0.4480 5658.2 4413.0 32768.0 34621.9 0.5600 5966.2 5425.9 31306.0 33084.8 0.6720 6461.3 6193.7 29778.0 31444.1 0.7840 6718.8 6719.7 28489.0 30038.6 0.8960 6909.5 7143.2 27210.0 28637.3 1.0080 7003.0 7373.5 26132.0 27439.3 1.1200 7130.5 7576.9 25054.0 26240.7 1.2319 7091 ' 7673.8 24121.0 25191.3 1.3439 7102.1 7738.3 23233.0 24191.9 1.4559 7089.2 7767.7 22410 ' 23262.3 1.5679 7011.9 7752.5 21650.0 22397.6 1.6799 6957.8 7730.6 20917.0 21565.2 1.7919 6885.6 7682.3 20280.0 20837.6 1.9039 6798.5 7620.5 19659.0 20127.0 2.0159 6703.7 7549.2 19044.0 19422.8 2.1279 6620.4 7475.0 18538.0 18841.5 2.2399 6535.1 7396.6 18038.0 18267.5 2.3519 6443.1 7311.8 17544.0 17699.6 2.4639 6342.5 7220.2 17102.0 17189.2 2.5759 6267.6 7142 ' 16707.0 16734.8 2.6879 6189.8 7062.3 16314.0 16282.9 2.7999 6095.0 6972.0 15942.0 15851.9 2.9119 6017.0 6892.9 15607.0 15465.4 3.0239 5954.0 6825 ' 15304.0 15117.1 3.1359 5883.0 6753.7 15011.0 14779.0 3.2479 5806.9 6679 ' 14724.0 14446.9 3.3599 5744.0 6616.3 14466.0 14149.6 3.4719 5694.7 6566.5 14241.0 13891.6 3.5838 5638.0 6513.3 14026.0 13643.7 3.6958 5580.4 6459.5 13812.0 13396.9 3.8078 5527.8 6411.2 13610.0 13164.6 3.9198 5492.6 6381.7 13451.0 12983.5 4.0318 5453 ' 6349.9 13298.0 12808.3 4.1438 5414.1 6318.0 13146.0 12634.4 4.2558 5374.2 6285.9 12994.0 12460.3 4.3678 5349.5 6270.9 12878.0 12329.5 4.4798 5327.8 6260.2 12780.0 12219.0 4.5918 5305.8 6249.4 12682.0 12108 ' | |||
4.7038 5283.7 6238.4 12584.0 11998.2 4.8158 5261 ' 6227.3 12486.0 11887.9 4.9278 5374.0 6112.2 12433.0 11831.4 5.0398 5481.8 6000.5 12382.0 11777.0 5.1518 5585.2 5893.2 12330.0 11721.5 5.2638 5684.0 5790.2 12279.0 11667.1 5.3758 5778.2 5691.4 12228.0 11612 ' | |||
r Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 22 | |||
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.3 53F STEP UP, P=2400 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ | |||
'0.0000 -2467. -1533.7 18740.0 13439.5 0.1120 -260. -449.6 22212.0 18493.1 0.2240 1372. -23.8 23644.0 20993.6 0.3360 2283. 227.7 24080.0 21994.0 0.4480 3417. 2023.0 24327.0 22710.1 0.5600 3872. 3125.1 24510.0 23229.4 0.6720 4601. 4062.3 24475.0 23453 ' | |||
0.7840 5143. 4851.0 24534.0 23719.2 0.8960 5655. 5585.5 24533.0 23902.1 1.0080 6080. 6168.4 24609.0 24125.1 1.1200 6562. 6753.1 24625.0 24275.3 1.2319 6882. 7256.2 24749.0 24521.0 1.3439 7247. 7729.0 24826.0 24704.7 1.4559 7584. 8170.5 24911.0 24886.7 1.5679 7860. 8575.2 25047.0 25115 ' | |||
1.6799 8153. 8969.0 25146.0 25299.0 1.7919 8398. 9309.9 25266.0 25493.8 1.9039 8632. 9642.0 25393.0 25694.0 2.0159 8867. 9970.2 25516.0 25888.1 2.1279 9059. 10240.0 25632.0 26063.1 2.2399 9252. 10507.0 25742.0 26231.0 2.3519 9442. 10768.0 25853.0 26398.5 2.4639 9601. 10998.0 25980.0 26578.5 2.5759 9757. 11206.0 26067.0 26709.9 2.6879 9914. 11412 ' 26153.0 26840.2 2.7999 10047. 11602.0 26266.0 26997.2 2.9119 10174. 11775.0 26353.0 27122.9 3.0239 10297. 11931.0 26414 ' 27217.2 3.1359 10407. 12080 ' 26487.0 27323.4 3.2479 10511. 12226.0 26568.0 27437.7 3.3599 10609. 12356.0 26626.0 27524.1 3.4719 10699. 12472.0 26660.0 27581.5 3.5838 10776. 12582.0 26710.0 27655.4 3.6958 10853. 12691.0 26759.0 27728.1 3.8078 10926. 12795.0 26798.0 27788.7 3.9198 .10986. 12878 ' 26808.0 27814.2 4.0318 11039. 12959 ' 26828.0 27849.7 4.1438 11091. 13040.0 26847.0 27884.2 4.2558 11143. 13121.0 26864.0 27916.2 4.3678 11183. 13186.0 26857.0 27919.3 4.4798 11214 13242.0 26849.0 27919.5 4.5918 '1244. | |||
13300.0 26840.0 27918.7 4.7038 11273. 13358.0 26829.0 27915.3 4.8158 11303. 13416.0 26818.0 27912.2 4.9278 11567. 13182 ' 26775.0 27870.4 5.0398 11820. 12956.0 26734.0 27830.6 5.1518 12065. 12741.0 26692.0 27789.8 5.2638 12299. 12536.0 26648.0 27746.3 5.3758 12524. 12341.0 26604.0 27703.1 V | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 23 | |||
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-123S127-02 Table 6.4 STEADY STATE, Tref 70F, Tunif = 653F, P = 2400 PSZG STRESSES WZ THOUT WITH 1.2 SCF THERMAL S CF ~ | |||
ON THERMAL S SX SY SZ SZ 0.0000 -3281.3 478.1 32074.0 29440.3 0.1120 -156.3 1203.2 33605.0 32164.7 0.2240 2331.3 1373.3 33377.0 32673.2 0.3360 3706.3 1568.8 32639.0 32264.8 0.4480 4926.7 3540.3 31826.0 31708.9 0.5600 5382.5 4706.3 31127.0 31169.8 0.6720 6081.6 5658.2 30290.0 30431.4 0.7840 6551.0 6399.5 29651.0 29859.6 0.8960 6969.9 7059.4 28985.0 29244.5 1.0080 7285.6 7534.5 28484.0 28775.1 1.1200 7651.4 7999.4 27950.0 28265.3 1.2319 7839.6 8361.1 27560.0 27894.2 1.3439 8076.6 8690.7 27167.0 27513.9 1.4559 8285.5 8984.4 26816.0 27172.7 1.5679 8425.7 9233.4 26529.0 26893.6 1.6799 8587.6 9473.2 26233.0 26603.4 1.7919 8709.8 9667.6 26000.0 26374.6 1.9039 8819.1 9849.9 25779.0 26157.2 2.0159 8924.6 10025.0 25560.0 25940.9 2.1279 9008.3 10163.0 25391.0 25773.9 2.2399 9092.0 10297.0 25221.0 25605.8 2.3519 9170.7 10424.0 25055.0 25440.9 2.4639 9225.9 10528.0 24923.0 25310.1 2.5759 9290.6 10625.0 24791.0 25178.7 2.6879 9354.1 10720.0 24658.0 25046.2 2.7999 93.95.0 10799.0 24553.0 24941.6 2.9119 9440.3 10873.0 24448.0 24836.9 3.0239 9489.0 10942.0 24343.0 24732.0 3.1359 9526.9 11005.0 24250.0 24639.0 3.2479 9558.0 11064.0 24166.0 24555.3 3.3599 9591.2 11119.0 24081.0 24470.1 | |||
'3.4719 9625.8 11170.0 23996.0 24384.7 3.5838 9648.7 11217.0 23926.0 24314.6 3.6958 9671.0 11263 ' 23855.0 24243.3 3.8078 9693.2 11308.0 23784.0 24171.9 3.9198 9715.3 11349.0 23715.0 24102.6 4.0318 9730.7 11387.0 23656.0 24043.3 4.1438 9745 ' 11425.0 23595.0 23981.8 4.2558 9759.9 11463.0 23535.0 23921.4 4.3678 9774.1 11499.0 23475.0 23860.9 4.4798 9783.5 11532.0 23423.0 23808.3 4.5918 9792.6 11565.0 23370.0 23754.7 4.7038 9801.3 11598.0 23317.0 23700.9 4.8158 9809.7 11632.0 23264.0 23647 ' | |||
4.9278 10034.0 11427.0 23211.0 23593.6 5.0398 10250.0 11229.0 23160.0 23541.8 5.1518 10457.0 11039.0 23108.0 23489.0 5.2638 10655.0 10858.0 23056.0 23435.9 5.3758 10846.0 10686.0 23003.0 23381.9 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 24, | |||
pl BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.5 COOLDOWN-1, Psat=1472 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL S SX SY SZ SZ 0.0000 -1570.8 738. 8 24997 ' 24446.6 0.1120 702.6 1302.8 26308.0 26564.0 0 '240 2447.1 1350.6 26075.0 26764 ' | |||
0 '360 3354.6 1419.9 25288.0 26112.4 0.4480 4226.8 3004.3 24449.0 25363.0 0.5600 4436.0 3871.3 23660.0 24600.0 0 '720 4868.4 4536.8 22761.0 23684.4 0.7840 5119.2 5025.9 22012.0 22905.2 0.8960 5317.2 5432.4 21247.0 22100.1 1.0080 5449.6 5688.6 20613.0 21420.1 1.1200 5622.6 5928.9 19967.0 20725.3 1.2319 5649.7 6087.5 19425.0 20134.3 1.3439 5725.6 6218.6 18900.0 19560.3 1.4559 5782.7 6322.2 18415.0 19027 ' | |||
1.5679 5783.9 6391.2 17977.0 18541.8 1.6799 5805.3 6452.3 17545.0 18063.3 1.7919 5804 ' 6485.4 17173.0 17648.0 1.9039 5792.6 6508.3 16810.0 17241.7 2.0159 5775.2 6524.4 16451.0 16839.5 2.1279 5754.8 6523.7 16150.0 16500.2 2.2399 5733.2 6519.5 15850.0 16162.2 2.3519 5706.4 6510.2 15555.0 15829.3 2 ~ 4639 5666.7 6489.4 15292.0 15530.6 2 '759 5641.5 6470.5 15046.0 15252.0 2.6879 5614.4 6449.2 14801.0 14974.6 2.7999 5571.2 6418.9 14574.0 14715.3 2.9119 5537 ' 6390.6 14362.0 14474.0 3.0239 5510.8 6365.2 14164.0 14249.3 3.1359 5476.8 6335.9 13973 ' 14031 ' | |||
3.2479 5438.1 6303.9 13788.0 13820.0 3 '599 5406.7 6275.8 13617.0 13625.1 3.4719 5382.4 6252.6 13461.0 13448.1 3.5838 5350 ' 6226.1 13313.0 13279.0 3.6958 5318.3 6199.1 13166.0 13111.1 3.8078 5288.7 6174.5 13026.0 12951.6 3.9198 5268.9 6158.8 12910.0 12820.7 4.0318 5245.0 6141.2 12798.0 12693.3 4.1438 5220.7 6123.4 12687.0 12567.3 4.2558 5196.0 6105.5 12576.0 12441.2 4.3678 5181.1 6097.5 12488.0 12342.7 4.4798 5166.9 6091.6 12412.0 12257.5 4.5918 5152.3 6085.8 12335.0 12171.2 4.7038 5137.5 6080.0 12259.0 12086.1 4.8158 5122.4 6074.2 12183.0 12001.0 4.9278 5233.3 5960.4 12138.0 11953.0 5.0398 5339.6 5850.3 12094.0 11906.0 5.1518 5441.3 5744.7 12050.0 11859 ' | |||
5.2638 5538.6 5643.3 12005.0 11810.8 5.3758 5631.5 5546.4 11961.0 11763.9 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 25 | |||
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.6 COOLDOWN-2, Psat=1232 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -1131. 7 694. 8 22395 .0 22229 F 1 0.1120 875.9 1231 ' 23714 .0 24267.3 0.2240 2390.7 1265.8 23554 .0 24476.8 0.3360 3159.7 1310.0 22821 .0 23842.2 0.4480 3934.4 2771.6 22035 .0 23114.4 0.5600 4084.5 3553.5 21278 .0 22359.9 0.6720 4449.9 4141.8 20413 .0 21458.4 0.7840 4649.1 4566.6 19680 .0 20678.9 0.8960 4796.9 4911.0 18932 .0 19875.8 1 F 0080 4889.0 5116.4 18302 .0 19187.5 1.1200 5018.9 5305.2 17662 .0 18486.7 1.2319 5013.3 5419.3 17114 .0 17878.9 1.3439 5055.3 5507.5 16585 .0 17290.9 1.4559 5081.0 5570.7 16093 .0 16741.6 1.5679 5055.0 5602.5 15643 .0 16235.1 1.6799 5048.3 5626.8 15201 .0 15738.1 1.7919 5024.1 5627.4 14815 .0 15301.0 1.9039 4988.4 5618.4 14439 .0 14874.3 2.0159 4947.6 5602.8 14066 .0 14450.6 2.1279 4907.2 5574.9 13749 .0 14088.6 2.2399 4865.6 5543.6 13435 .0 13730.2 2.3519 4818.8 5507.5 13124 .0 13374 ' | |||
2.4639 4761.5 5462 ' 12844 .0 13052.7 2.5759 4719.2 5421.2 12584 .0 12754.6 2.6879 4674.7 5377.4 12325 .0 12457.7 2.7999 4616.0 5326.0 12081 .0 12175.9 2.9119 4566..9 5278.1 11854 .0 11914.4 3.0239 4526.3 5234.1 11643 .0 11672.1 3.1359 4478.8 5187.0 11439 .0 11436.8 3.2479 4427.1 5137.4 11240 .0 11206.8 3.3599 4383.4 5093.2 11056 .0 10994.6 3.4719 4347.8 .5055.1 10890 .0 10804.0 3.5838 4305.7 5014.3 10732 .0 10621.5 3.6958 4263.0 4973.0 10573 .0 10437.8 3.8078 4223.5 4934.7 10423 .0 10264.9 3.9198 4195.6 4907.4 10300 .0 10124.2 4.0318 4164.2 4878.6 10181 .0 9987.3 4.1438 4132.5 4849.6 10062 .0 9850.6 4.2558 4100.3 4820.3 9943 .8 9714.6 4.3678 4079 ' 4803.1 9851 .8 9610.1 4.4798 4060.8 4789 ' 9772 .7 9520.3 4.5918 4041.7 4775.1 9693 .6 9430.5 4.7038 4022.3 4761.1 9614 .5 9340.6 4.8158 4002.7 4747 ' 9535 .3 9250.7 4.9278 4086.8 4655.3 9493 .2 9205.2 5.0398 4167.2 4566.4 9451 .9 9160.5 5.1518 4244.1 4480.9 9410 .6 9115.9 5.2638 4317.5 4398.8 9369 .2 9071.0 5.3758 4387.4 4320.1 9327 .7 9026.1 Prepared By: T.M. Wi er Date: | |||
Reviewed By.: A.M. Miller Date: Page: 26 | |||
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.7 COOLDOWN-3, Psat=607 PSIG STRESSES WITHOUT WITH 1. 2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 57.3 340.1 13615.0 14049 ' | |||
0.1120 1224 ' 817.4 15087.0 16040.3 0.2240 2018.2 840.3 15283.0 16473.3 0.3360 2366.1 825.9 14838.0 16060.0 0.4480 2858.6 1898.7 14332.0 15558.9 0.5600 2859.8 2429.0 13780.0 14972.3 0.6720 3050.5 2801.8 13130.0 14259.6 0.7840 3126.0 3058.0 12552.0 13615.3 0.8960 3158.0 3246.6 11958.0 12949.1 1 '080 3162.9 3334.5 11433.0 12352.4 1.1200 3198 ' 3406.4 10905.0 11751.9 1.2319 3131.7 3426.8 10432.0 11208.8 1.3439 3107.0 3426.2 9975.5 10684.1 1.4559 3072.6 3408.3 9545.6 10188.5 1.5679 2999.8 3369.2 9140.7 9719.1 1.6799 2943 ' 3323.6 8746.9 9263.0 1.7919 2878.4 3265.0 8392.8 8850.9 1.9039 2804.7 3199.3 8045.0 8445.7 2.0159 2726.3 3128.3 7700.2 8043.7 2.1279 2655.4 3054.4 7401 ' 7693 ' | |||
2.2399 2582.9 2978.0 7104 ' 7347.2 2.3519 2506.1 2898.2 6811.3 7003.8 2.4639 2424.4 2815.5 6539.7 6684.8 2.5759 2356.7 2738.3 6290.4 6392.5 2.6879 2287.1 2659.4 6042.4 6101.8 2.7999 2207.9 2576.4 5802.1 5818.8 2.9119 2138.3 2499.0 5580.8 5558.7 3.0239 2077.2 2427.1 5376.7 5319.1 3.1359 2011.6 2353.5 5176.2 5083.2 3.2479 1943.2 2278.4 4978.0 4849.7 3.3599 1883;2 2210.3 4798.0 4637.9 3.4719 1831.9 2149.9 4637.4 4449.4 3.5838 1776.8 2088.1 4480.0 4264.0 3.6958 1721.2 2025.8 4323.0 4079.1 3.8078 1669.2 1967.1 4175.0 3905.0 3.9198 1630.5 1922.0 4057.4 3767.3 4.0318 1589.8 1876.0 3941.5 3631.2 4.1438 1548.8 1829.7 3825.9 3495.4 4.2558 1507.5 1783.1 3710.5 3359.8 4.3678 1479.4 1750.9 3625.0 3260.2 4.4798 1454.9 1723.4 3551.6 3174.6 4.5918 1430.2 1695.7 3478.2 3089.0 4.7038 1405.1 1668.0 3404.9 3003 ' | |||
4.8158 1379.8 1640.1 3331.8 2918.3 4.9278 1402.8 1601.2 3300 ' 2883 ' | |||
5.0398 1424.5 1563.3 3270.2 2849 ' | |||
5.1518 1444.8 1526.6 3239.7 2815 ' | |||
5.2638 1463.8 1490.9 3209.3 2781 ' | |||
5.3758 1481.5 1456.4 3178.8 2746 ' | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 27 | |||
BEc'PJ NUCLEAR TECHNOLOGZES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6. 8 END OF COOLDOWN, P = 0 PSIG STRESSES WITHOUT WITH 1. 2 SCF THERMAL SCF ON THERMAL S SX SY SZ SZ 0.0000 -408.5 1474.9 9157.4 10988.9 0.1120 141.8 1166.1 7776.0 9331.2 0.2240 671.7 945.8 6596.7 7916.0 0.3360 968.2 890.6 5783.7 6940.4 0.4480 1026 ' 1004.8 5081.0 6097.2 0.5600 1033.0 1048.0 4499.2 5399.0 0.6720 1020.8 1063.3 3979.7 4775.6 0.7840 981.6 1041.5 3533.7 4240.4 0.8960 930.7 1003.0 3110.8 3733 ' | |||
1.0080 867.3 943.2 2744 F 9 3293.9 1.1200 799 ' 876.2 2396.6 2875.9 1.2319 721.0 794.6 2072.2 2486.6 1.3439 642.6 710.0 1772.0 2126.4 1.4559 562.3 621.0 1490.2 1788.2 1 '679 477.9 526.1 1218.1 1461.7 1.6799 393.6 430.5 960.1 1152.1 1.7919 312.3 335.9 722.8 867.4 1.9039 228.8 238.8 489.4 587.3 2.0159 143.3 139.6 259.4 311.3 2.1279 66 1 F 48.1 56.3 67.6 2.2399 -12.1 -44.3 -143.6 -172.3 2.3519 -91.5 -137.8 -341.4 -409.7 2.4639 -167.6 -227.7 -529.0 -634.8 2.5759 -237.8 -310.8 -697.9 -837.5 2.6879 -308.9 -394.5 -865.3 -1038.4 2.7999 -379.6 -478.0 -1032.6 -1239.1 2.9119 -445.3 -555.1 -1184.6 -1421.5 3.0239 -506.3 -626.1 -1322.6 -1587.1 3.1359 -567.0 -697.2 -1460 ' -1752.5 3.2479 -627.7 -768.3 -1597.9 -1917.5 3.3599 -683.1 -832.4 -1720.8 -2065.0 3.4719 -732.8 -889.2 -1828.5 -2194.2 3.5838 -781.7 -946 ' -1936.8 -2324.2 3.6958 -830.7 -1002.9 -2044.5 -2453.4 3.8078 -877.0 -1056.4 -2144.9 -2573.9 3.9198 -913.6 -1097.6 -2222 ' -2666.5 4.0318 -949.7 -1139.1 -2299.8 -2759.8 4.1438 -985.6 -1180.8 -2377 ' -2852.4 4.2558 -1021.5 -1222.8 -2453.8 -2944.6 4.3678 -1047.5 -1252 ' -2507.4 -3008.9 4.4798 -1069.4 -1277.6 -2553.4 -3064.1 4.5918 -1091.2 -1303 ' -2599.1 -3118.9 4.7038 -1112.9 -1329.1 -2644.4 3 173 ~ 3 4.8158 -1134.5 -1355.2 -2689 ' -3227.3 4.9278 -1167.0 -1335.9 -2701.7 -3242.0 5.0398 -1198.4 1317 7~ -2714.0 -3256.8 5.1518 -1228.9 -1300.7 -2726.0 -3271.2 5.2638 -1258.4 -1284.9 -2737.7 -3285.2 5.3758 -1286.9 -1270.3 -2749.0 -3298.8 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 28 | |||
B&rf NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.9 PRESSURE ONLY AT STEADY STATE, P = 2250 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -6135.0 3634.1 42415.0 XXX 0.1120 -2413.7 3040.1 38256.0 0.2240 1029.4 2733.2 34590.0 0.3360 3102.0 2906.6 32353.0 0.4480 4040.0 3907.9 30386.0 0.5600 4710.5 4642.9 28981.0 0.6720 5309.2 5310.3 27734.0 0.7840 5736.4 5811.8 26820.0 0.8960 6146.0 6288.1 25957.0 1.0080 6428.9 6643.5 25339.0 1.1200 6710.7 6997.3 24725.0 1.2319 6914.1 7268.2 24271.0 1.3439 7103.6 7526 ' 23843.0 1.4559 7266.9 7756 ' 23468.0 1.5679 7397.1 7949.9 23162.0 1.6799 7526.9 8140 ' 22857.0 1.7919 7623.5 8295.2 22619.0 1.9039 7714.0 8440.1 22395.0 2.0159 7803.0 8580.3 22177.0 2.1279 7867.5 8691.6 22009.0 2.2399 7932.5 8800.0 21841.0 2.3519 7995.6 8903.5 21680.0 2 '639 8043.1 8988.1 21551.0 2.5759 8091.3 9069.0 21424.0 2.6879 8139.6 9147.8 21297.0 2.7999 8175.3 9214.1 21197.0 2.9119 8210.9 9277.1 21097 ' | |||
3.0239 8246.6 9337.5 20998.0 3.1359 8276.2 9393.0 20911.0 3.2479 8301.8 9445.2 20831.0 3.3599 8327.1 9495.8 20752.0 3.4719 8351.8 9544.9 20674.0 3.5838 8369.3 9589.4 20609.0 3.6958 8386.6 9634.0 20544.0'0479.0 3.8078 8403.5 9678.4 3.9198 8418.4 9721.5 20416.0 4.0318 8429.3 9761.6 20362.0 4.1438 8440.3 9801.9 20307.0 4.2558 8451.2 9842.4 20253 ' | |||
4.3678 8460.9 9882.6 20199.0 | |||
'4.4798 8467.4 9919.7 20153.0 4.5918 8474.0 9956.9 20106.0 4.7038 8480.8 9994 ' 20060.0 4.8158 8487.8 10031.0 20013.0 4.9278 8682.2 9862.2 19967.0 5.0398 8869.3 9698.9 19923.0 5.1518 9049.3 9542.7 19878.0 5.2638 9222.3 9393.5 19834.0 5.3758 9388.3 9251.3 19789.0 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 29 | |||
BRW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.10 LOSS OF SECONDARY PRESSURE - 1, T=0.010, P=310 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL SX SY SZ 0.0000 2295.1 639. 7 8290.4 8779.7 0.1120 2366.7 877.6 9822.5 10732.8 0.2240 2150.7 600.6 9932.2 10965.5 0.3360 1851.8 366.1 9277.8 10241.9 0.4480 2023.4 1256.9 8725.2 9632 ' | |||
0.5600 1710.0 1544.1 8014.0 8818.2 0.6720 1674.6 1679.3 7321.9 8022.1 0.7840 1601.3 1749.7 6732.4 7339.8 0.8960 1471.5 1742.7 6116.7 6624.8 1.0080 1401.6 1704.8 5652.5 6084.8 1.1200 1379.5 1669.7 5234.5 5600.1 1.2319 1271.0 1607.2 4839.3 5138.4 1.3439 1236.7 1558.6 4530.5 4779.6 1.4559 1216.6 1521.0 4278.6 4487.6 1.5679 1165.7 1475.2 4037.8 4207.1 1.6799 1139.0 1437.6 3831.4 3967.8 1 '919 1129.9 1416.2 3690.2 3805.0 1.9039 1113.0 1392.7 3551.5 3644.7 2.0159 1091.4 1367.5 3413.8 3485.5 | |||
: 2. 1279 1092.3 1359 ' 3335.2 3395.8 2.2399 1092.1 1350.8 3258.9 3308.8 2.3519 1088.5 1341.9 3183.7 3223.0 2.4639 1083.2 1334.9 3123.5 3154.4 2.5759 1089.9 1334.5 3082.1 3108.2 2.6879 1095.1 1334.0 3040.9 3062.2 2.7999 1094.3 1332.5 3003.9 3020.6 2.9119 1097.9 1333.0 2974.1 2987.6 3.0239 1105.2 1335.7 2950.9 2962.5 3.1359 1109.8 1338.0 2929.6 2939.3 3.2479 1112.5 1340.0 2909.4 2917.3 3.3599 1117.0 1342.5 2892.0 2898.6 3.4719 1123.1 1345.8 2877.7 2883.6 3.5838 1126.8 1348.8 2865.4 2870.6 3.6958 1130 ' 1351.8 2853.1 2857.6 3.8078 1133.6 1354.8 2841.3 2845.2 | |||
: 3. 9198 1137.9 1357.7 2831.5 2835.2 4 '318 1140 ' 1360.5 2822.9 2826.4 4.1438 1143.7 1363.3 2814.2 2817.5 4.2558 1146.2 1366.2 2805.5 2808.5 4.3678 1149.0 1368.7 2797.4 2800.3 4.4798 1151 ' 1371.0 2790.6 2793.4 4.5918 1153.0 1373.5 2783.7 2786.4 4.7038 1154 ' 1376.0 2776.6 2779.2 4.8158 1156.2 1378.6 2769.6 2772.1 4.9278 1183.1 1353.1 2762.9 2765.3 5.0398 1208.8 1328.5 2756.4 2758.7 5.1518 1233.5 1305.0 2749.8 2752.0 5.2638 1257 ' 1282.6 2743.1 2745.2 5.3758 1279.8 1261.2 2736 ' 2738.3 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 30 | |||
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.11 LOSS OF SECONDARY PRESSURE - 2, T=0.015, P=210 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL S SX SY SZ SZ 0.0000 2043.4 2272.8 16343.0 18819.9 0.1120 2493.2 2111.6 16086.0 18589.1 0.2240 2665.6 1564.2 14776.0 17085.5 0.3360 2562.6 1241 ' 13160.0 15188.1 0.4480 2669.3 2101.1 11786.0 13576.0 0.5600 2285.7 2320.2 10380.0 11915.0 0.6720 2149.8 2366.1 9102.2 10404.9 0.7840 1972.1 2320.9 8008.8 9109.9 0.8960 1724.1 2181.8 6916.9 7815.7 1.0080 1547.7 2013 ' 6062.0 6801.4 1.1200 1413.3 1844.7 5288.9 5885.1 1.2319 1196.9 1643.3 4552.8 5010.3 1.3439 1062.7 1468.1 3961.4 4308.6 1.4559 950.8 1311.0 3460.9 3715.0 1.5679 809.5 1145.5 2976.3 3139.2 1.6799 697.1 996.8 2558.3 2643 ' | |||
1.7919 621.1 883.2 2249.4 2277.1 1.9039 536.2 767.5 1945.5 1916.6 2.0159 444.2 649.5 1645.2 1560.3 2.1279 399.0 575.3 1458.8 1339.7 2.2399 352.3 502.5 1278.6 1126.6 2.3519 301.1 429.5 1100.9 916.4 2.4639 256.8 367.4 952.0 740.1 2.5759 234.1 325.8 851.3 621.6 2.6879 209.2 284.4 751.9 504.7 2.7999 181.1 244.0 655.4 390.8 2.9119 162.3 213.5 581.8 304.4 3.0239 151.9 192.7 529.4 243.3 3.1359 140.1 172.5 478.4 183.8 3.2479 127 ' 152.8 428.5 125 ' | |||
3.3599 118.8 138.6 390.3 81.0 3.4719 114 ' 130.4 364.5 51.5 3.5838 110.3 122.6 339.7 23.0 3.6958 105.4 115.0 315.4 -5.0 3.8078 101.'2 109.0 294.0 -29.5 3.9198 100. 1 107.7 281.8 -43.0 4.0318 99.0 106.4 270.1 -56.0 4.1438 97.7 105.2 258 ' -68 ' | |||
4.2558 96.3 104.1 247.7 -80.8 4.3678 96.1 105.2 240.7 -88.3 4.4798 96.4 106.8 235.3 -93.9 4.5918 96.7 108.4 230.1 -99.2 4.7038 97.0 109.9 225.2 -104.2 4.8158 97.3 111.4 220.6 -108.9 4.9278 100.6 111.7 218.2 -110.9 5.0398 103.8 112.0 216.0 -112.7 5.1518 106.9 112.2 214.0 -114.3 5.2638 109 ' 112.4 212.2 -115.7 5.3758 112.7 112.6 210.5 -116.8 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 31 | |||
B&Q NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.12 LOSS OF SECONDARY PRESSURE - 3, T=0.0201 P=185 PSIG STRESSES WITHOUT WITH 1. 2 SCF THERMAL SCF ON THERMAL S. SX SY SZ SZ 0.0000 1500 ~ 4 3990.9 26048.0 30560 .1 0 '120 2511 .6 3432.7 23922.0 28077 .3 0.2240 3241 .7 2625.1 21115.0 24769 .2 0.3360 3441 ~ 3 2234.2 18499.0 21666 .8 0.4480 3540 ~ 4 3117.2 16257.0 19008 .7 0.5600 3129 .7 3315.1 14133.0 16483 .0 0.6720 2930 .9 3316.5 12237.0 14228 .3 0.7840 2674 .7 3191.9 10616.0 12298 .2 0.8960 2334 .8 2956.4 9025.2 10403 ~ 4 1.0080 2065 ~ 4 2681.6 7753.3 8887 .3 1.1200 1830 .8 2399.9 6593.2 7505 .3 1.2319 1513 .7 2075.1 5491.7 6190 .9 1.3439 1282 ~ 4 1782.9 4583.3 5107 .9 1.4559 1077 .3 1511.1 3796.4 4169 .8 1.5679 842 ~ 4 1227.6 3033.3 3259 .1 1.6799 639 ~ 4 966.7 2365.0 2462 .1 1.7919 486 .9 754.3 1845.6 1842 .8 1.9039 323 .7 538.5 1334.5 1233 .1 2.0159 151 .2 319.3 830.2 631 .6 2.1279 46 .9 167.3 492.8 229 ,4 2.2399 -59 .8 17 ' 165.6 -160 .5 2.3519 -171 .7 -133 ' -157.3 -545 3 | |||
~ | |||
2.4639 -269 .2 -264.6 -435.5 -877 .0 2.5759 -334 .3 -361.1 -634.4 -1113 .5 2.6879 -402 4 | |||
~ -457.2 -830.6 -1346 .9 2.7999 -471 .7 -551.1 -1024.3 -1577 .7 2.9119 -525 .2 -625.5 -1175 ' -1757 .6 3.0239 -564 .0 -681.4 -1287.7 -1890 .5 3.1359 -603 .2 -735.9 -1398.5 -2022 .1 3.2479 -642 .8 -789 ' -1508.0 -2152 .2 3.3599 -673 .9 -830.6 -1592.8 -2252 .6 3.4719 -695 4 | |||
~ -858.3 -1651.5 -2321 .8 3.5838 -715 .9 -885.2 -1709.7 -2390 .5 3.6958 -736 .9 -911.7 -1766.9 -2458 .1 3.8078 -756 .0 -934.2 -1816.9 -2517 .0 3.9198 -766 .8 -944.4 -1844.7 -2549 4 4.0318 -776 .6 -954.5 -1872.4 -2581 .7 4.1438 -786 .6 -964.6 -1899.2 -2613 .0 4 '558 -796 .5 -974.5 -1925.4 -2643 .5 4.3678 -802 4 | |||
~ -977.5 -1939.9 -2660 .0 4.4798 -806 .0 -978.6 -1950.7 -2672 .2 4.5918 -809 4 | |||
~ -979.9 -1960.9 -2683 .7 4.7038 -812 .6 -981.5 -1970.5 -2694 .5 4.8158 -815 .7 -983.3 -1979.5 -2704 .5 4.9278 -833 .3 -960 ' -1980.3 -2704 .7 5.0398 -850 .0 -938.9 -1980.8 -2704 .6 5.1518 -866 .0 -918.3 -1980.9 -2704 0 | |||
~ | |||
5.2638 -881 .3 -898.6 -1980.5 -2702 .8 5.3758 -895 .8 -880.0 -1979.6 -2700 .9 I | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 32 | |||
14 'I 4 | |||
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.13 LOSS OF SECONDARY PRESSURE - 4, T=0.063, P=116 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -3873.7 12867.0 86107.0 102891.1 0.1120 1715.5 10563.0 74667.0 89205.9 0.2240 6852.0 8736.5 64405.0 76929.3 0.3360 9623.1 8235.7 56957.0 68014 ' | |||
0.4480 10312.0 9692.4 50389.0 60153.5 0.5600 10289.0 10260.0 44855.0 53527.2 0.6720 10200.0 10509.0 39860.0 47546.0 0.7840 9828.8 10380.0 35555.0 42389.5 0.8960 9326.0 10068.0 31453.0 37476.0 1.0080 8711.3 9522.3 27886.0 33201.9 1.1200 8066.5 8900.6 24484.0 29125.9 1.2319 7290.8 8128.1 21310.0 25321.7 1.3439 6529.6 7312.8 18359.0 21785.0 1.4559 5746.8 6447.7 15582.0 18456.4 1.5679 4911.5 5522.5 12897.0 15237.6 1.6799 4085.8 4,587. 0 10351.0 12185.5 1.7919 3289.3 3659.4 8015.0 9384.8 1.9039 2469.6 2707.7 5714.8 6626.8 2.0159 1628.5 1733.5 3445.9 3906.4 2.1279 881.9 844.6 1468.2 1534.9 2.2399 125.4 -52.4 -478.9 -799.9 2.3519 -644.2 -960.4 -2406.3 -3111.1 2.4639 1 3 77 ~ 2 -1826.9 -4219.1 -5285.1 2 '759 -2037.6 -2613.7 -5822.0 -7207 ' | |||
2.6879 -2706.6 -3405.7 -7411.4 -9113.3 2.7999 -3375.1. -4195 ' -8997.9 -11016.0 2.9119 -3980.3 -4908.5 -10409.0 -12708.3 3.0239 -4526.6 -5549.2 -11656.0 -14203.7 3.1359 -5072.1 -6188.9 -12901.0 -15696.8 3.2479 -5617.5 -6828.9 -14144.0 -17187.6 3.3599 -6100.7 -7390.7 -15224.0 -18482.8 3.4719 -6516.6 -7869.0 -16132.0 -19571.6 3.5838 -6926.3 -8346.4 -17046.0 -20667.7 3.6958 -7337.0 -8825.3 -17954.0 -21756.6 3.8078 -7720.7 -9269.7 -18791.0 -22760.4 3.9198 -8008.2 -9594.4 -19399.0 -23489 ' | |||
4.0318 -8290.3 -9920.7 -20012.0 -24224.4 4.1438 -8572.2 -10249.0 -20620.0 -24953.4 4.2558 -8854.0 -10579.0 -21225.0. -25678.8 4.3678 -9050.7 -10803.0 -21631.0 -26165.5 4.4798 -9212 ' -10991.0 -21973.0 -26575.4 4.5918 -9372.7 -11181.0 -22312.0 -26981.7 4.7038 -9532.7 -11374.0 -22647.0 -27383 ' | |||
4.8158 -9692.2 -11569.0 -22979.0 -27781.2 4.9278 -9957.5 -11392.0 -23063 ' -27881.5 5.0398 -10214.0 -11225.0 -23147.0 -27981.8 5.1518 -10463.0 -11069.0 -23228.0 -28078 ' Pa ges 33a and 33b 5.2638 -10703.0 -10922.0 -23306.0 -28171.7 ha ve been inserted 5.3758 -10935.0 -10786.0 -23382.0V | |||
-28262.4 be tween 33 and 34. | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 33 | |||
II )4, B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.14 FLUCTUATION DN-20F STEP DN, 100 PSI DECREASE TO 2150 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL S SZ SZmod 0.0000 42469.2 42857.0 0.1120 39620 ' 40233.8 0.2240 36599.2 37308.5 0.3360 34476.0 35188.2 0.4480 32533 ' 33233.0 0.5600 31049.2 31720.4 0.6720 29644.9 30273.6 0.7840 28551.8 29136.6 0.8960 27496.4 28035.0 1.0080 26679 ' 27172.7 1.1200 25865.1 26312.9 1.2319 25211 ' 25615.6 1.3439 24592.5 24954.4 1 '559 24033.1 24354.7 1 '679 23543.2 23825.3 1.6799 23064.1 23308.7 1.7919 22665.8 22876.2 1.9039 22282.8 22459.4 2.0159 21906.0 22048.9 2.1279 21603.5 21718.1 2.2399 21303.4 21390.0 2.3519 21010.1 21068.8 2.4639 20757.7 20790.6 2.5759 20524.3 20534.8 2.6879 20291.7 20280.0 2.7999 20085.0 20051.0 2.9119 19892'.2 19838.7 3.0239 19712.1 19641.6 3.1359 19543.8 19456.3 3.2479 19382.4 19277.9 3.3599 19232.6 19113.2 3.4719 19096.0 18964.1 3.5838 18971.7 18827.4 3.6958 18847.8 18691.1 3.8078 18728.4 18560.3 3.9198 18626.6 18450.2 4.0318 18533.0 18348.2 4.1438 18439.2 18246.1 4.2558 18346.0 18144.6 4.3678 18266.3 18059.4 4.4798 18198.8 17987.1 4.5918 18130.6 17914.3 4.7038 18063.1 17842.1 4.8158 17995.0 17769.2 4.9278 17944.4 17717.4 5.0398 17896.0 17667.7 5.1518 17846.5 17616.9 5.2638 17798.0 17567.1 5.3758 17748.9 17516.8 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 33'. | |||
BSW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.15 FLUCTUATION UP-20F STEP UP, 100 PSI INCREASE TO 2350 PSIG STRESSES WITHOUT WITH 1 ' SCF THERMAL SCF ON THERMAL S SZ SZmod 0.0000 34299.1 32298.9 0.1120 32939.5 31536.2 0.2240 31126.6 30126.4 0.3360 29855.1 29068.0 0.4480 28685.6 28075.5 0.5600 27852.8 27369.5 0.6720 27039.1 26653.6 0.7840 26474.6 26167.2 0.8960 25920.3 25682.2 1.0080 25552.2 25369.7 1.1200 25164.1 25032.2 1.2319 24919.5 24833.5 1.3439 24673.8 24628.0 1.4559 24465.2 24456.0 1.5679 24320.1 24345.8 1.6799 24161 ' 24219.4 1.7919 24054.1 24140.1 1.9039 23958 ' 24071.8 2.0159 23864.7 24005.2 2.1279 23800.7 23963.4 2.2399 23734.3 23918.9 2.3519 23672.9 23878.7 2.4639 23638 ' 23863.8 2.5759 23589.3 23831.9 2.6879 23540.2 23799.5 2.7999 23518.7 23794.6 2.9119 23487.3 23777.8 3.0239 23446.8 23749.9 3.1359 23418.5 23734.1 3.2479 23397.7 23725.8 3.3599 23368.9 23707.8 3.4719 23331.6 23679.4 3.5838 23308.8 23665 ' | |||
3.6958 23285.5 23651 ' | |||
3.8078 23258.5 23632.4 3.9198 23221.8 23601.5 4.0318 23194.7 23580.3 4 '438 23166.6 23558.0 4.2558 23138.3 23535.4 4.3678 23101. 0 23501.9 4.4798 23068.5 23472.4 4.5918 23034.9 23442.0 4.7038 23001.2 23411 ' | |||
4.8158 22966.9 23379.8 4.9278 22921.2 23334.5 5.0398 22877.4 23291.2 5.1518 22832.7 23247 ' | |||
5.2638 22787.9 23202.3 5.3758 22742.4 23157.1 Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 33b | |||
L)t I | |||
I I I | |||
I | |||
~ ~ | |||
'I I Il zssg~~~~~1> | |||
~ssaseeaaamww&w~~~~~ | |||
lli58(ESS) SHOS+5 IBBlREISISSSSHgg 1 | |||
"iiiaRhaYaFaa5%58'8+++ | |||
I IIIQI8158%E1%00++++ ggg IBRBE1SQ1OSOSOO++++ggg pygmy>~ | |||
I+g~y gg+ | |||
r | |||
~ | |||
e I | |||
8885501115OSN+'+++ | |||
IIIIIIRIL~0%550%%%%~~~ | |||
llllllll18(IIIE55SS+ | |||
lilllilaNh%aaaaaaaeeaaa lllllll8llh1i5%558++++ | |||
llllllggllaaraaaaaaaaa g = | |||
IlllllllllllS%585NI+'+++g= | |||
IlllllllllSISOEN'1+++ | |||
~ ~, ~ | |||
I | |||
ANSTS 5.0 A JUN 21 1995 10: 43: 39 PI.OT NO. | |||
POSTI STEP=I | |||
( ~ 104!O SUB =I TIME=I PATH PI.OT NOD I =2 N002=10& | |||
S2 2V = I OIST=0.75 211 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN 156 gO gI 0 | |||
747e H | |||
474+3 201. 0 | |||
-72o15 4J 1 o075 2o 15 4m 301 0o537 1.613 2odm 3.763 I I | |||
DIST 4J Ul h) | |||
ENO OF HEATUP, P=2250 PSIG I | |||
C) | |||
ANSTS 5.0 A JUN 21 1995 10:43:44 PI.OT NO. 2 POSTI STEP=2 (a10ffo SUB =I TIME=2 PATH PI.OT N001=2 N002=108 2'V = I OIST=0.75 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN g | |||
0 gI 0 | |||
S2 H | |||
K ST 577.2 219+ 533 44 0 1+075 2o 15 ~ 225 i.301 5+376 M 0o 537 1e613 2eam 3o763 4e535 I M | |||
'5 DIST 4J Vl 8 h) | |||
~ ~ | |||
53F STEP OOWN, P= 1740 PSIG I | |||
ED | |||
ANSYS 5.0 A JUN 21 1995 10:43:48 PLOT NO. 3 POSTI STEP=3 (a 100' SUB =I T IME=3 SE PATH PLOT N001=2 N002= 108 2V = I OIST=0.75 211 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIDDEN SY gO gI 0 | |||
H 130.6 | |||
-153+371 4l 0 1 a075 2m 15 4o301 h) 0+ 537 1.613 2+666 3.763 I DIST 4J Ul hl 53F STEP- UP, P=2400 PSIG I | |||
oh) | |||
0 R. | |||
ANSYS 5.0 A JUN 21 1995 10:43:53 PI.OT NO. | |||
POSTI STEP=4 | |||
( ~ 10'1) SUB TIME=% | |||
PATH PI,OT N001=2 N002= 108 ZV = I OIST=0.75 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN SZ 20 0 | |||
gI 0 | |||
SY 14 710m 370.0 47+805 1.075 2. 15 3 0 225 4.301 5o37d 0+537 1+d13 2 Idm 3.7d3 DIST EQ rtr | |||
~ ~ | |||
STEAOY STATE, TreI = 10F, Tunif = 653F, P = 2400 PSIG | |||
S r- 4Sc ANSYS 5.0 A R | |||
S Q JUN 21 1095 S S IO:43:57 n Q PI.OT NO. 5 W P0 5 'T I | |||
'C 'C STEP=5 | |||
( ~ 109 fl) SUB TIME=5 PATH PI.OT n N001=2 NOOZ=I08 ZV = I OIST=0.75 211 XF =0.5 YF =0.5 ZF =0.5 CENTROID HIDDEN g0 SZ g e e S S 0 | |||
M SY 329.57 | |||
: 73. baal 0 1.07d 2old io301 o376 4) h) | |||
Oe d37 1+613 2I665 3o763 I M | |||
DEST Vl Vl COOlOOWN- I, Psa1= 1<72 PS IG hl I | |||
CI hl | |||
ANSYS 5.0 A JUN 21 1995 10:44:02 PLOT NO. 6 POSTI STEP=6 (a109 91) SUB =I TIME=6 PATH PI.OT N001=2 N002=108 214 ZV = I OIST=0.75 XF =0.5 191 YF =0.5 ZF =0.5 CENTROIO HIDDEN 0 | |||
gI SZ 0 | |||
760. 06 H | |||
SY 299. d7 69.475 0 1 s075 2. 15 .225 4o301 5+576 bb Oslo 1e 615 2e dbb 5o765 4.515 I hD 0 DIST 4J Vl 8 | |||
~~ COOI.OOWN.2, Psal=1232 PSIG I | |||
C) h) | |||
ANSYS 5.0 A JUN 21 IS95 IO:44:06 PI.OT NO. 7 POSTI STEP=7 (a 104' SUB = I TIME=7 PATH PI.OT N001=2 N002 = 108 2V = I OIST=0.75 XF =0.5 YF =0.5 ZF =0.5 CENTROID HIOOEN 7Il.i g0 g | |||
631 ~ | |||
0 | |||
à H | |||
0a Sl 183. SY 3io007 0 1 a075 2o 15 is 301 5.376 M hP 0.537 1+613 2+6M 3.763 I hP DIST VJ Ul COOI.OOWN-3, PsaI=607 PSIG hP I | |||
CI hP | |||
ANSYS 5 .0 A JUN 21 1995 IO: (4: I I PLOT NO 8 POST I 5 I' P = 8 SUB TIME=8 91 PATH PI. OT NOD1=2 NOD2 =10 ZV =I DIST=0. 75 XF =0. 5 YF =0. 5 ZF =0. 5 CENTROI D HIDDEN 0 | |||
gI 0t(f H | |||
14 | |||
-3d7o7 sv SZ M749 4J 0 lo075 2s15 3 0 225 4. 301 5o376 h) 0.537 lod13 2odb5 3.763 4s63$ I M | |||
DIST 4l Vl h) | |||
END OF COOLDOWN, P = 0 PSIG I | |||
M | |||
8 r- 'dS ANSYS 5.4 A 0 JUN 21 Icq5 8 8 10: 44:15 P A PI OT NO. 9 POSTI W W STEP=9 (a 1040O SUB =I I' ME = 9 424 PATH PLOT n N001=2 NOO2=100 zr. 2V = I 17ISTc0.75 XF =0.5 8 YF =0,5 ZF =0.5 CENTROIO HIOOEN 0 | |||
52 gI 0 | |||
H W | |||
SY 670. 1 273.3 la 4J 0 1.075 2o15 3.225 ho301 0.376 h) | |||
OI537 1+613 2odbb 3e763 heKR I h) | |||
DIST GJ Ul I | |||
8 h) | |||
~~ | |||
PRESSURE ONLY AT STEAOY STATE, P = 2250 PSIG I | |||
oM | |||
ANSYS 5.0 A JUN 21 1995 10:44:20 PLOT NO. 10 POSTI STEP=IO SUB TIME=10 PAI'H PLOT N001= 2 N002=108 ZV =I DIST=0.15 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN 61 514 0 | |||
gI 41 0 | |||
H SZ W SY 366al3 4l 0 1 +075 2m 15 o225 4+301 5 +376 M OICP le613 2+6M 3.7IL$ 4 e Md I M | |||
DlST 4J Vl hl LOSS OF SECONOARY PRESSURE - I, 1=0.010, P=310 PSIG I | |||
ED bJ | |||
R ANSYS 5.0 A JUN 21 1055 10: 41:24 n PLOT HO. 11 POS I' STEP= I I SUB = I | |||
( ~ 1040O TIME=II PAT'N PlOT n H001=2 H002= 108 14 LV = I DIST=0.15 XF =0.5 YF =0.5 2F =0.5 CENTROIO HIDDEN 114 9M.71 gO gI 0 | |||
497. H 335,1 K | |||
S2 172. SY 10.406 La) 1 a075 2,15 3e 225 4.301 5.376 2odbb 3e763 4m 535 I 0 I 537 1+613 M | |||
DIST 4J Ul lg h) 8 lOSS OF SECOHOARY PRESSURE - 2, T=0.015, P=210 PSIG | |||
~~ | |||
I M | |||
$ 41 | |||
ANSYS 5.0 A JUN 21 1995 IO:41:29 n PLOT NO. 12 POS I' ST EP =12 (s 109$ O SUB =I TIME=12 PATH PLOT n NOD1=2 NOO2=100 2V = I O OIST=O.)5 Q XF =0.5 H YF =0.5 ZF =0.5 CENTROIO HIOOEN 17 0g gI 0 | |||
642 o7 H | |||
3d2o4 K | |||
52 II2. 1 ST | |||
-19bo09 4J 0 1.075 2olm 4.301 Oo37d M 0.537 l.dl3 2odbb 3e7d3 4eES I | |||
I hl DIST 4J Ul I | |||
8 | |||
~~ LOSS OF SECONOARZ PRESSURE . 3, T=0.020, P= 185 PSIG I | |||
ED h) | |||
ANSYS 5.0 A JUN 21 1995 I 0: 11: 3 3 PLOT NO. 13 POST I STEP=13 | |||
[I10661) SUB =I | |||
'T IME =13 661 PATH PI.OI'001=2 N002=108 2Y =I OI SI =0.15 XF =0.5 YF =0.5 2F =0.5 CENTROIO HIOOEN gO gI 0 | |||
946o4 H | |||
-146+39 Pl SY | |||
-12 SL 4J 1 +075 2o 16 ~ 226 4o361 o376 M 0.537 1 o613 2.666 3+763 4. 636, I M | |||
DIST Vl Ul T=0.063, P=116 PSIG M lOSS Of SECONOARY PRESSURE ~ | |||
1, I | |||
M | |||
4 BOW NUCLEAR TECHNOLOGZES ** BWNT NON-PROPRZETARY ** 32-1235127-02 7.0 ANSYS 5.0A Verification The ANSYS analysis code, version S.OA, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors. | |||
The following comparison of finite element (FE) stress results and closed form solut'ns indicated that the software provided accu.ate results. | |||
Therefore, ANSYS 5.0A was verified for this application. | |||
Finite Element Results from Table 6.9, Pressure = 2250 psia Distance Hoo Stress Sz 0.0(clad/base) 42,415 psi | |||
: 2. 6879 (mid base) 21, 297 psi | |||
: 5. 3758 (external) 19, 789 psi Hoop Stress (using thin shell theory) e = pr/2t Ref. [5, Table 28 case 3a.] | |||
e = 2250 (73 .63) / [2 (4 .094)] = 20, 233 psi Compared to: | |||
21g297 psi (FE), b%' )21297/20233 - 1)(100%) = 5.26%'nd 19,789 psi (FE), b%' )19789/20233 - 1~(100%') = | |||
2.19%'hese percent differences are attributable to the differences b'etween thin and thick pressure vessel theory and the fact that at the mid point of the line there may still be some stress concentration effect due to the penetration. | |||
Stress Concentration at Hole SCF = a,,/e, = 42415/19789 = 2.143 (FE) k Compared to 2.0 (from Sect. 3.3), h% = ]2.14/2.0 - 1] (100%) = 7.2% | |||
Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 48 | |||
J | |||
B&W'UCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 8.0 References | |||
: 1) ASME Boiler and Pressure Vessel Code, Section ZZI, Division 1, Appendices, 1986 Edition with no Addenda. | |||
: 2) BWNS Document No. 51-1155656-00, "Standard Correlations for Natural Convection". | |||
: 3) BWNS Document No. NPGD-TM-500, "NPGD Material Properties Program User's Manual", Rev. D, March, 1985. | |||
: 4) Harvey, J. F., "Theory and Design of Modern Pressure Vessels", Van Nostrand Reinhold Co., New York, 1974. | |||
: 5) Young, W. C., "Roark's Formulas for Stress & Strain", 6th Edition McGraw-Hill, New York, 1989. | |||
: 6) DeSalvo, G. J. and Gorman, R. W., "ANSYS User's Manual for Revision 5. 0", 1992, Swanson Analysis Systems, Houston, Pennsylvania. | |||
: 7) BWNT Document 32-1235128-02, "FM Analysis of St. Lucie Pressurizer Instrument Nozzles" . | |||
: 8) BWNT Document 38-1210588-00, "Pressurizer Instrument Nozzles, FM Design Input," for St. Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14). | |||
: 9) Florida Power & Light Drawing No. 2998-19321, Rev. 0, "Top Head Instrument Nozzles Repair". | |||
: 10) Florida Power & Light Drawing No. 2998-18709, Rev. 1, "Pressurizer General Arrangement". | |||
: 11) Arpaci, V.S., Conduction Heat Transfer, Adelson-Wesley Publishing, 1966. | |||
: 12) *Florida Power and Light Drawing No. 2998-18594 Rev. 0, "Pressurizer Top Head Details and Assembly." | |||
: 13) Peterson, R.E., "Stress Concentration Factors", Wiley & Sons, 1974. | |||
*References marked with an "asterisk" are retrievable from the Utilities Record System. | |||
A horize Project ger's Signature Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 49 | |||
BSc't~'UCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 9.0 Microfiche The following table contains a list of microfiche of the ANSYS S.OA computer output. The nodes and elements were identical among all the models. | |||
FILE NAME FILE DATE DESCRIPTION S PHTHERM. OUT 6/20/95 Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown SPHTHLP.OUT 6/20/95 Loss of pressure thermal run SPHSTRES.OUT 6/21/95 Stress runs for all cases MATPROP . MAC 6/14/95 Macro file containing all material property date used in the analysis. | |||
PRESS.MAC 6/15/95 Macro for applying pressure during the stress runs FILMCOEF.MAC 6/14/95 Macro for applying thermal loads during thermal runs Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 50 | |||
'4 | |||
\ > | |||
B&Vl NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Computer Output Mi.crofiche Prepared By: T.M. Wi er Date: | |||
Reviewed By: A.M. Miller Date: Page: 51 | |||
r tl}} |
Latest revision as of 12:30, 4 February 2020
ML17228B237 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 07/14/1995 |
From: | Miller A, Wiger T BABCOCK & WILCOX CO. |
To: | |
Shared Package | |
ML17228B236 | List: |
References | |
32-1235127-02, 32-1235127-2, NUDOCS 9508100184 | |
Download: ML17228B237 (77) | |
Text
BNT-20697-2 (11/B9)
(BNNP.20697.1)
I jIPBBMfNllClSAR CALCULATION
SUMMARY
SHEET (CSS)
%M TECHNOLOGIES DOCUMENT IDENTIFIER 32-1235127" 02 TI TLF Stresses for St . Lucie Unit 2, Pzr LEFM 4100533 PREPARED BY: REVIENEO BY:
T.M. Wi er A.M. Miller SIGNATURE SIGNATURE TITLE En r III
. TIT E En r. IV ,7 // 9s-COST CENTER REF. PAGE(S) TM STATEMENT: REVIEllER INDEPENDENCE PURPOSE AND
SUMMARY
OF RESULTS:
The purpose of this document is to determine enveloping Normal, Upset and Emergency Condition stresses for the six 1" instrumentation nozzles in the upper and lower spherical regions in the pressurizer at St. Lucie Unit 2. Results from this document were used as input to the fracture mechanics evaluation, Reference [7] .
The stress results are summarized in Tables 6.1 through 6.15 in Section 6.0.
No conclusions are drawn by, these calculations.
- BWNT Non-Proprietary **
This document consists of pages 1 through 51 including 20a, 33a and 33b.
THE FOLLONING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:
CODE / VERSION / REV CODE / VERSION / REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED ISRK
'75081'00'l84 '950802 PDR ADOCk 0500038'P
'. YES ( ) NO ( X )
PDR PAGE 1 oF 51 Q
tie' at)
I BRA NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127<<02 RECORD OF REVISIONS Pages Revision Added/
Number Chanched Descri tion 0 All Original issue All Issue of Non-Proprietary Version Removed assumption 5.
Corrected Young's modulus of base material.
Modulus used in the analysis of previous revisions was correct, but reported incorrectly in this table.
Corrected equation for K,.
8-40 Performed the analysis for only the spherical region with corrected hillside stress concentration factor and actual thickness. New model covers all nozzles in the upper and lower spherical regions.
Replaced with pages 8 through 50.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 2
BaW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 1.0 Introduction 4 2.0 Assumptions 3.0 Design Input 5 3.1 Design Characteristics 5 3.2 Material Properties 6 3.3 Model Geometry 8
- 4. 0 Finite Element Model 10
- 5. 0 Thermal Analysis 11 6.0 Stress Analysis 20 7.0 ANSYS 5.0A Verification 48 8.0 References 49 9.0 Microfiche 50 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 3
B&W'UCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power & Light Company's St.
Lucie Unit 2. Subsequent NDE identified indications on the J-welds for all four steam space instrument nozzles. Modifications were made and justifications performed to determine the potential for crack growth during plant operation. The evaluation performed at the time was conservatively limited to one cycle based on the design information available. The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all six instrument/temperature 1" nozzles in the spherical regions of the pressurizer. I Results from this document are used as input to the fracture mechanics evaluation, Reference [7] . The results are presented in the coordinate system shown in figure 6.2, which is orthogonal to the postulated flaw, as required by Reference [7] . The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS'5.0A finite element software.
2.0 Assumptions
- 1) Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell.
- 2) The effects of the nozzle were neglected in determining the shell/head stresses (i.e. the nozzle was omitted from the finite element model) .
- 3) The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be 15'F for calculating the natural convection heat transfer coefficient.
- 4) Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head.
5)'Removed)
- 6) Hydrotest was assumed to be shop hydrotest only. Therefore, no future hydrotests are assumed to occur.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 4
BEcT4 NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 3.0 Design Input 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference [8] .
Heatup 100 F/hr
'Cooldown 200 F/hr Operating Pressure 2250 psia Operating Temperature 653 F Minimum Pressure (Reactor Trip transient) 1740 psia (653-616 'F hT)
Maximum Pressure (Abnormal Loss of Load transient) 2400 psia (664-614 'F hT)
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 5
B&k NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis. The material types come from References [8-10]
and assumption 1. References for the material properties are given in the tables below. The material property designation and units are:
KXX - thermal conductivity, btu/(hr-in-'F)
DENS - density, lb/in'
- specific heat, btu/(lb-'F)
C is a calculated value based on C = KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX - Young's Modulus, psi x
- coefficient of thermal expansion, in/in/'F x 10'LPX
- design stress intensity, ksi 10'm Sy - yield strength, ksi Su - ultimate strength, ksi v - Poisson's ratio = .3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.5Ni)
TEMP DENS EX ALPX Sy Su 100 .2839 1.8833 .1079 29.0 7.06 26.7 50 ' 80. 0 200 ~ 2831 1.9500 .1139 28.5 7.25 26.7 47.5 80.0 300 .2823 1.9833 .1196 28.0 7.43 26.7 46.1 80.0 400 .2817 1.9833 .1257 27.4 7.58 26.7 45.1 80.0 500 .2809 1.9583 .1323 27.0 7.70 26.7 44.S 80.0 600 .2802 1.9167 .1389 26.4 7.83 26.7 43.8 80.0 700 .2794 1.8583 .1448 25.3 7.94 26.7 43.1 80. 0 REF .3 Prepared By: -T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 6
I 0
I 4'8 1
1
BED NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni)
TEMP DENS EX ALPX Sy Su 100 .2862 .7250 .1157 28.1 8.55 20 ' 30.0 75.0 200 .2853 .7750 .1209 27.6 8.79 20 ' 25.0 71.0 300 .2844 .8167 .1246 27.0 9.00 20.0 22.5 66.0 400 .2836 ~ 8667 .1286 26.5 9.19 18.7 20.7 64.4 500 .2827 ~ 9083 .1313 25.8 9.37 17.5 19.4 63.5 600 .2818 . 9417 . 1334 25. 3 9. 53 16.4 18.2 63. 5 700 .2810 .9833 . 1358 24. 8 9.69 16.0 17.7 63.5 REF Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 7
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRXETARY ** 32-1235127-02 3.3 Model Geometry The model is axisymmetric with the axis of rotation at the center of the penetration, as if the penetration was located radially. Both the base metal and the cladding are represented thermally and mechanically (see Figure 3.1) .
R Clo,clcllng ( Lp D RNaz Figure 3.1 Model Geometry The cladding and base metal thicknesses, T~~ and T,~, respectively, and the penetration radius, RNoz come from References [10] and [12] . The radius R, is not the actual radius to the base metal but is modified as discussed later to account for hillside effects.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 8
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 The dimensions in Figure 3.1 above as used in the analysis are:
R, = 1.52(48 7/16) = 73.63 in. (1.52 = hillside stress factor)
R = 11/16 = 0.6875 in.
T~~ = 7/32 = 0. 219 in.
T,~, = 3 7/8 = 3.875 in.
The model was built such that the hoop stress was increased by an appropriate value to account for the hillside (non-radial) penetrations which are not inherent in an axisymmetric model. This increase was accomplished by increasing the radius to the base metal (R,) by an appropriate factor K, calculated later.
A sufficient portion of the head was modeled to attenuate the stress concentration effects at nozzle penetration (discussed in Section 4.0).
Hillside Effect Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration.
From Ref. [4, p. '337], the following stress concentration factor was calculated for the hillside effect. The maximum stress concentration was present at the instrument nozzles in the lower head where P (the angle between the penetration centerline and the normal to the head) was a maximum.
sin '(24.5625/48.21875) = 30.62~ Refs. [9 & 10]
K, = K,(1 + 2sin'$) Ref. [4, p. 337]
K r = Kr (1 + 2sin'0. 62o) 1, 52 K, Where:, K, = radial nozzle stress concentration factor K, = non-radial nozzle stress concentration factor P = angle the axis of the nozzle makes with the normal to the vessel wall Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 9
I B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** '2-1235127-02 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference [6], was used to perform the axisymmetric thermal and stress analyses of the nozzle penetration in the spherical regions.
The model extends away from the penetration far enough that the increase in stress due to the penetration is not present at the boundary. This will insure that any inaccuracies at the location of boundary condition application will not affect the results at the penetration.
J The head and cladding were modeled using axisymmetric elements PLANE42 for the structural and PLANE55 for the thermal.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 10
BEcl NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRXETARY ** 32-1235127-02 5.0 Thermal Analysis The transients in Ref. [8] were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference [7]).
Based on the review, the following transients were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure = 1740 psia) and a 53 F Step-up (pressure = 2400 psia), and Loss of Secondary Pressure. The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche SPHTHERM.OUT) with"Heatup from 70'F to 653'F (ramped over 5.83 hours9.606481e-4 days <br />0.0231 hours <br />1.372354e-4 weeks <br />3.15815e-5 months <br />, then held constant until t=7.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />), 53'F Step-down (instantaneously dropped at t=7.0 hrs, then held for 1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br />), 53'F Step-up (instantaneously raised at t=8.0, then held for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />) and Cooldown from 653'F to 70'F (ramped over 2.915 hours0.0106 days <br />0.254 hours <br />0.00151 weeks <br />3.481575e-4 months <br /> starting at t=9.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, then held constant until t=13.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />) ~
The Loss of Secondary Pressure transient consists of a step decrease to 504F which is then ramped to 348F over the next 90 seconds at which time it is held constant out to t=0.50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br />. The thermal results are 4
contained in microfiche SPHTHLP.OUT.
Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures. Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1. All other surfaces, including the penetration surface, were assumed to be insulated.
A constant heat transfer coefficient was used to simplify the analysis in a conservative manner. Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference [7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 11
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32"1235127-02 During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer. Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses. Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile) stresses. Therefore, nozzles in the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space). Zn the case of the Step Down and Loss of Secondary Pressure transients, however, boiling may occur, raising the heat transfer coefficient significantly.
The -heat transfer correlations in Ref. [2] were reviewed for horizontal
'and vertical plates. The correlation for a horizontal heating plate, face up (T > Tco) was selected as a representative heat transfer coefficient for the nozzles in the water space.
HORIZONTAL PLATE, NATURAL CO1VVECTION, TURBULENT REGIME ST~yg 650 FI ASSUME 15 F IT 1 1 H = (hT) K4~Kt; = (15) (.17) (1100) = 461 HR-FT2-oF H=3 HR IN2 oF For the Step Down transient, where boiling can occur, the heat transfer coefficient comes from Table 2.2 of Ref. [11] . The maximum coefficient is conservatively used.
H = 10, 000 (BTU/f t'r. P) = 70 (BTU/in.'r. 'F)
The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred. The Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 12
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 temperatures as function of time at the base metal-to-cladding interface and at the outer radius of the pressurizer shell are plotted in Figure 5.2. The radial dT is shown in figure 5.3.
The temperature distribution at times of extreme hT's were used to load the structure since the extreme hT's resulted in extreme thermal stresses. For Cooldown, other time points were also considered since the pressure at the time of maximum hT is significantly lower than at earlier times where the tT is almost as large.
Steady state temperature cases were also run at 653'F/2250 psig without material discontinuity effects (T, = T<< = 653'F) and at- 653'F/ 2400 psig with material discontinuity effects (T, = 70'F).
Table 5.1 summarize the critical transient times and identifies the associated pressures for each model. The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.1 and the POST26 results are contained at the end of the thermal runs in the microfiche in Section 9.0. Note that although the node pair used for evaluating the radial hT was at a 45'ngle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface isothermal).
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 13
fl BAH NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 TABLE 5.1 CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR) PRESSURE (PSIG)
Heatup 5.83 2,250 Step-down 7.0667 1,740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown'.2915 1,472 9.4081 1I 232 9.8162 607 11.915 Steady State'/A 2,250 Loss of Secondary 0.010 310 Pressure 0.015 210 0.020 185 0.063 116
'The pressure was assumed to equal the saturation pressure of the steam at the current fluid temperature.
'Includes material discontinuity temperature effects (T, = 70'F) .
'Excludes material discontinuity temperature effects (Tf T 653 F) .
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 14
I I
I l l I lHQISk NOQNHOO+++
l88llSQ51115580+++ gg'g ulngaaaiaaaaaaaI1ay lll8lRHISR550%88++++
lll8085REOOSN'I++++gy gg Illllll!IISQOESH%8++++
e e IIIIIIIIII) ~ +++++
Illlllllll1%5%%%%%~~~~~
IN5558 I
Illlllllllll5%88%%%~~~~~
lllllllll55%%5555%8++++~
IllllllHSIISN5555'8+++g IlllllllllllNERNSI+++
I I, g I
0
'I ~
ANSYS 5.0 A JUN 20 1995 18: 44.:10 PLOT NO. I W W POST26 "C
ZV = I DIST=0.75 XF =0.5 n YF =0.5 ZF =0.5 CENTROID HIDDEN 0
gI 0
H W'
TEMP
'6 TEMP 0 Id 0 12 M 10 I hl
'0 TIME Cd UI lg I hl 6
~~
ST. LUCIE PRESSURIZER SPHERICAL REGION IFMPERATURE NOZZLE I
CO M
R ANSYS 5.0 A JUN 20 1995 18: 0 4: 10 n PI.OT NO. 2 POST26 ZV = I DIST=0.75 XF =0.5 n YF =0.5 H
ZF =0.5 CENTROIO HIODEN a
A 8O A
tid 8
TOIF F g0 I ~
0 I Q. 0 Q H C4 0
4J 12 10 I hl TIME VJ Ul 8
~~ ST. I.UCIE PRESSURIZER SPHERICAL REGION TEMPERATURE NOZZLE hl I
C) h)
ANSYS 5.0 A JUN 20 I995 I7:04:01 PI.OT NO. I POST26 2V = I OIST=0.~5 XF =0.5 YF =0.5 ZF =0.5 CENTROID HIOOEN
<<C gO I
0 H
t4 TEMP TEMP (s IOtt-1) 4J 0.5 2.5 3,5 I M
TIME 4l Vl ST. lUCIE PRESSURllER SPHERICAl REGION TEMPERATURE NOlllE M I
C)
M
~g CD ANSZS 5.0 A CD JVN 20 I995 5 Ij:04:07 PLOT NO. 2
~~
CO CD POST26 RB LV = I CD 0 I S T =0.15 XF =0.5 n YF =0.5 0 CD ZF =0.5 CENTROIO IIIOOEN C~
8O Cl TOIFF 8 <<C g0 gI Ba Ql 0
H W
Q K
Q FL CL B
[ a 1044-0 GJ 0.6 1.6 2+6 I kO TIME bJ Ul ST. I.VCIE PRESSVRILER SPHERICAL REGION TEMPERATURE N022LE h)
I C) hl
B6cW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell. The pressure boundary conditions are shown in Figure 6.1. Since the fracture mechanics evaluation in Reference [7] requires stresses along the flaw line that is approximately 45 from the axis of the nozzle penetration, the ANSYS POST1 post processor was used to transform the stresses into the flaw line coordinate system as shown in Figure 6.1.
Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction. A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load = mr'(pressure) = m(.6875)'(pressure) 1.4849(pressure)). The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest.
Stress results for the given model are contained in the microfiche of Section 9.0. The stresses along the 45 degree flaw line are summarized for each transient analyzed in the Tables 6.1 through 6.13 and the figures on pages 35 to 47.
The results reported by the finite element model have accounted for the stress concentration for a hillside penetration subject to pressure by the increase of the radius by a factor of 1.52, however, the increase in thermal stresses due to the hillside positioning is not included. From
- p. 200 of Reference [13] the stress concentration due to an elliptical hole in a biaxially stressed plate where e,=e, and b/a=1.16, the stress concentration should be 2.32 (say 2.4). The model is picking up a stress concentration of 2 0 from the radially positioned circular hole (b/a=1. 0)
~
in the model. The increase in hoop stress due to the hillside positioning when subject to pressure has been included by the increase in radius, but the model is only picking up the inherent SCF of 2.0 for thermal stress since the thermal stresses are essentially unaffected by radius'he thermal stresses, therefore, must be increased by a factor of 1.2 to account for the hillside positioning.
This increase has been performed by separating the thermal and pressure stress components, multiplying the thermal component by 1.2, and adding the pressure component and the increased thermal component to arrive at the total stress. Since hoop stress (Sz) is dominant, the increase will only be performed for that stress component. A sample calculation appears below.
Page 20a has been inserted between 20 and 21.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 20
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 For Cooldown-1 (Table 6.5), at position S=0.3360 inches:
Sz = 25288.0 Pressure component is taken from the pressure only case in table 6.9.
This pressure must be multiplied by the ratio of pressures Sz-press = (P/Ppo) Sz-po (1472/2250)'32353 21166 psi Hence, the thermal component is 25288 - 21166 = 4122 psi This is multiplied by 1.2 and the pressure stress is added to arrive at the corrected total stress. I Sz = 4122 (1.2)+21166 = 26112.4 psi which is exactly what the table reports.
h Two additional transients, fluctuations from steady state, are calculated using the results from the 53'F Step Up and Step Down. They use the method above to isolate the thermal stresses and approximate a 20'F Step change by multiplying the thermal component by the ratio 20/53.'he transient also includes a pressure change as described in the relevant tables, 6.14 and 6.15.
Note that the stresses (in psi) are in the local coordinate system of the 45 degree flaw line as shown in Figure 6.1 and "S" is the distance from the inside surface,to the outside surface along the flaw line.
Note also that the figures on pages 37 through 47 show the stresses not including the'actor of 1.2 on thermal stress and are for information only.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 20a
P 0
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.1 END OF HEATUP, P=2250 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -2539. 5 -721.5 23098.0 19234 '
0.1120 -62.5 229.6 25811.0 23322.0 0.2240 1818.2 554.0 26602.0 25004.4 0.3360 2846.5 770.8 26553.0 25393.0 0.4480 3962.3 2596.5 26346.0 25538.0 0.5600 4368.8 3683.5 26134.0 25564.6 0.6720 5035.5 4580.2 25733.0 25332.8 0.7840 5502.6 5303.1 25458.0 25185.6 0.8960 5928.8 5957.6 25138.0 24974.2 1.0080 6268.7 6449.9 24927.0 24844.6 1.1200 6662.0 6937.1 24672.0 24661.4 1.2319 6889.8 7336.4 24532.0 24584.2 1.3439 7167.5 7706.5 24373.0 24479.0 1.4559 7420.0 8045.6 24238.0 24392.0 1.5679 7609.0 8346.2 24157.0 24356.0 1 '799 7819.5 8638.4 24057.0 24297.0 1.7919 7990.3 8886.6 24001.0 24277.4 1.9039 8150.1 9125.0 23954 ' 24265.8 2.0159 8307.7 9358.4 23906.0 24251.8 2.1279 8439.3 9550.6 23885.0 24260.2 2.2399 8571.5 9739.5 23861.0 24265.0 2.3519 8699.6 9923.2 23840.0 24272.0 2.4639 8803.1 10083.0 23844.0 24302.6 2.5759 8912.0 10230.0 23834.0 24316.0 2.6879 9020.4 10376.0 23823.0 24328.2 2.7999 9106.7 10508.0 23838.0 24366.2 2.9119 9194.0 10629.0 23842.0 24391.0 3.0239 9281.5 10742.0 23837.0 24404.8 3.1359 9358.4 10850.0 23843.0 24429.4 3.2479 9428.8 10953.0 23857 ' 24462.2 3.3599 9497.7 11048.0 23860.0 24481.6 3.4719 9564.2 11135.0 23853.0 24488.8 3.5838 9619.0 11216.0 23861.0 24511.4 3.6958 9673.2 11298.0 23867.0 24531.6 3.8078 9725.5 11376.0 23868.0 24545.8 3.9198 9771.3 11442.0 23856.0 24544.0 4.0318 9810.2 11505.0 23852.0 24550.0 4.1438 9848.6 11569.0 23847.0 24555.0 4.2558 9886.5 11633.0 23842 ' 24559.8 4.3678 9917.6 11686.0 23822.0 24546.6 4.4798 9941.3 11733.0 23804.0 24534.2 4.5918 9964.7 11781.0 23785 ' 24520.8 4.7038 9987.5 11830.0 23766.0 24507.2 4.8158 10010.0 11878.0 23746.0 24492.6 4.9278 10243.0 11671.0 23704.0 24451.4 5.0398 10468.0 11472.0 23664.0 24412.2 5.1518 10683.0 11281.0 23623 ' 24372.0 5.2638 10890.0 11100.0 23582.0 24331.6 5.3758 11089.0 10927.0 23540.0 24290.2 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 21
0
~ BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.2 53F STEP DOWN, P=1740 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -3039.0 2198.3 37940.0 38967.8 0.1120 350.3 2565.5 37707.0 39331.5 0.2240 3114 F 1 2497.1 36148.0 38027.7 0.3360 4598.9 2587.3 34456.0 36343.3 0.4480 5658.2 4413.0 32768.0 34621.9 0.5600 5966.2 5425.9 31306.0 33084.8 0.6720 6461.3 6193.7 29778.0 31444.1 0.7840 6718.8 6719.7 28489.0 30038.6 0.8960 6909.5 7143.2 27210.0 28637.3 1.0080 7003.0 7373.5 26132.0 27439.3 1.1200 7130.5 7576.9 25054.0 26240.7 1.2319 7091 ' 7673.8 24121.0 25191.3 1.3439 7102.1 7738.3 23233.0 24191.9 1.4559 7089.2 7767.7 22410 ' 23262.3 1.5679 7011.9 7752.5 21650.0 22397.6 1.6799 6957.8 7730.6 20917.0 21565.2 1.7919 6885.6 7682.3 20280.0 20837.6 1.9039 6798.5 7620.5 19659.0 20127.0 2.0159 6703.7 7549.2 19044.0 19422.8 2.1279 6620.4 7475.0 18538.0 18841.5 2.2399 6535.1 7396.6 18038.0 18267.5 2.3519 6443.1 7311.8 17544.0 17699.6 2.4639 6342.5 7220.2 17102.0 17189.2 2.5759 6267.6 7142 ' 16707.0 16734.8 2.6879 6189.8 7062.3 16314.0 16282.9 2.7999 6095.0 6972.0 15942.0 15851.9 2.9119 6017.0 6892.9 15607.0 15465.4 3.0239 5954.0 6825 ' 15304.0 15117.1 3.1359 5883.0 6753.7 15011.0 14779.0 3.2479 5806.9 6679 ' 14724.0 14446.9 3.3599 5744.0 6616.3 14466.0 14149.6 3.4719 5694.7 6566.5 14241.0 13891.6 3.5838 5638.0 6513.3 14026.0 13643.7 3.6958 5580.4 6459.5 13812.0 13396.9 3.8078 5527.8 6411.2 13610.0 13164.6 3.9198 5492.6 6381.7 13451.0 12983.5 4.0318 5453 ' 6349.9 13298.0 12808.3 4.1438 5414.1 6318.0 13146.0 12634.4 4.2558 5374.2 6285.9 12994.0 12460.3 4.3678 5349.5 6270.9 12878.0 12329.5 4.4798 5327.8 6260.2 12780.0 12219.0 4.5918 5305.8 6249.4 12682.0 12108 '
4.7038 5283.7 6238.4 12584.0 11998.2 4.8158 5261 ' 6227.3 12486.0 11887.9 4.9278 5374.0 6112.2 12433.0 11831.4 5.0398 5481.8 6000.5 12382.0 11777.0 5.1518 5585.2 5893.2 12330.0 11721.5 5.2638 5684.0 5790.2 12279.0 11667.1 5.3758 5778.2 5691.4 12228.0 11612 '
r Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 22
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.3 53F STEP UP, P=2400 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ
'0.0000 -2467. -1533.7 18740.0 13439.5 0.1120 -260. -449.6 22212.0 18493.1 0.2240 1372. -23.8 23644.0 20993.6 0.3360 2283. 227.7 24080.0 21994.0 0.4480 3417. 2023.0 24327.0 22710.1 0.5600 3872. 3125.1 24510.0 23229.4 0.6720 4601. 4062.3 24475.0 23453 '
0.7840 5143. 4851.0 24534.0 23719.2 0.8960 5655. 5585.5 24533.0 23902.1 1.0080 6080. 6168.4 24609.0 24125.1 1.1200 6562. 6753.1 24625.0 24275.3 1.2319 6882. 7256.2 24749.0 24521.0 1.3439 7247. 7729.0 24826.0 24704.7 1.4559 7584. 8170.5 24911.0 24886.7 1.5679 7860. 8575.2 25047.0 25115 '
1.6799 8153. 8969.0 25146.0 25299.0 1.7919 8398. 9309.9 25266.0 25493.8 1.9039 8632. 9642.0 25393.0 25694.0 2.0159 8867. 9970.2 25516.0 25888.1 2.1279 9059. 10240.0 25632.0 26063.1 2.2399 9252. 10507.0 25742.0 26231.0 2.3519 9442. 10768.0 25853.0 26398.5 2.4639 9601. 10998.0 25980.0 26578.5 2.5759 9757. 11206.0 26067.0 26709.9 2.6879 9914. 11412 ' 26153.0 26840.2 2.7999 10047. 11602.0 26266.0 26997.2 2.9119 10174. 11775.0 26353.0 27122.9 3.0239 10297. 11931.0 26414 ' 27217.2 3.1359 10407. 12080 ' 26487.0 27323.4 3.2479 10511. 12226.0 26568.0 27437.7 3.3599 10609. 12356.0 26626.0 27524.1 3.4719 10699. 12472.0 26660.0 27581.5 3.5838 10776. 12582.0 26710.0 27655.4 3.6958 10853. 12691.0 26759.0 27728.1 3.8078 10926. 12795.0 26798.0 27788.7 3.9198 .10986. 12878 ' 26808.0 27814.2 4.0318 11039. 12959 ' 26828.0 27849.7 4.1438 11091. 13040.0 26847.0 27884.2 4.2558 11143. 13121.0 26864.0 27916.2 4.3678 11183. 13186.0 26857.0 27919.3 4.4798 11214 13242.0 26849.0 27919.5 4.5918 '1244.
13300.0 26840.0 27918.7 4.7038 11273. 13358.0 26829.0 27915.3 4.8158 11303. 13416.0 26818.0 27912.2 4.9278 11567. 13182 ' 26775.0 27870.4 5.0398 11820. 12956.0 26734.0 27830.6 5.1518 12065. 12741.0 26692.0 27789.8 5.2638 12299. 12536.0 26648.0 27746.3 5.3758 12524. 12341.0 26604.0 27703.1 V
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 23
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-123S127-02 Table 6.4 STEADY STATE, Tref 70F, Tunif = 653F, P = 2400 PSZG STRESSES WZ THOUT WITH 1.2 SCF THERMAL S CF ~
ON THERMAL S SX SY SZ SZ 0.0000 -3281.3 478.1 32074.0 29440.3 0.1120 -156.3 1203.2 33605.0 32164.7 0.2240 2331.3 1373.3 33377.0 32673.2 0.3360 3706.3 1568.8 32639.0 32264.8 0.4480 4926.7 3540.3 31826.0 31708.9 0.5600 5382.5 4706.3 31127.0 31169.8 0.6720 6081.6 5658.2 30290.0 30431.4 0.7840 6551.0 6399.5 29651.0 29859.6 0.8960 6969.9 7059.4 28985.0 29244.5 1.0080 7285.6 7534.5 28484.0 28775.1 1.1200 7651.4 7999.4 27950.0 28265.3 1.2319 7839.6 8361.1 27560.0 27894.2 1.3439 8076.6 8690.7 27167.0 27513.9 1.4559 8285.5 8984.4 26816.0 27172.7 1.5679 8425.7 9233.4 26529.0 26893.6 1.6799 8587.6 9473.2 26233.0 26603.4 1.7919 8709.8 9667.6 26000.0 26374.6 1.9039 8819.1 9849.9 25779.0 26157.2 2.0159 8924.6 10025.0 25560.0 25940.9 2.1279 9008.3 10163.0 25391.0 25773.9 2.2399 9092.0 10297.0 25221.0 25605.8 2.3519 9170.7 10424.0 25055.0 25440.9 2.4639 9225.9 10528.0 24923.0 25310.1 2.5759 9290.6 10625.0 24791.0 25178.7 2.6879 9354.1 10720.0 24658.0 25046.2 2.7999 93.95.0 10799.0 24553.0 24941.6 2.9119 9440.3 10873.0 24448.0 24836.9 3.0239 9489.0 10942.0 24343.0 24732.0 3.1359 9526.9 11005.0 24250.0 24639.0 3.2479 9558.0 11064.0 24166.0 24555.3 3.3599 9591.2 11119.0 24081.0 24470.1
'3.4719 9625.8 11170.0 23996.0 24384.7 3.5838 9648.7 11217.0 23926.0 24314.6 3.6958 9671.0 11263 ' 23855.0 24243.3 3.8078 9693.2 11308.0 23784.0 24171.9 3.9198 9715.3 11349.0 23715.0 24102.6 4.0318 9730.7 11387.0 23656.0 24043.3 4.1438 9745 ' 11425.0 23595.0 23981.8 4.2558 9759.9 11463.0 23535.0 23921.4 4.3678 9774.1 11499.0 23475.0 23860.9 4.4798 9783.5 11532.0 23423.0 23808.3 4.5918 9792.6 11565.0 23370.0 23754.7 4.7038 9801.3 11598.0 23317.0 23700.9 4.8158 9809.7 11632.0 23264.0 23647 '
4.9278 10034.0 11427.0 23211.0 23593.6 5.0398 10250.0 11229.0 23160.0 23541.8 5.1518 10457.0 11039.0 23108.0 23489.0 5.2638 10655.0 10858.0 23056.0 23435.9 5.3758 10846.0 10686.0 23003.0 23381.9 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 24,
pl BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.5 COOLDOWN-1, Psat=1472 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL S SX SY SZ SZ 0.0000 -1570.8 738. 8 24997 ' 24446.6 0.1120 702.6 1302.8 26308.0 26564.0 0 '240 2447.1 1350.6 26075.0 26764 '
0 '360 3354.6 1419.9 25288.0 26112.4 0.4480 4226.8 3004.3 24449.0 25363.0 0.5600 4436.0 3871.3 23660.0 24600.0 0 '720 4868.4 4536.8 22761.0 23684.4 0.7840 5119.2 5025.9 22012.0 22905.2 0.8960 5317.2 5432.4 21247.0 22100.1 1.0080 5449.6 5688.6 20613.0 21420.1 1.1200 5622.6 5928.9 19967.0 20725.3 1.2319 5649.7 6087.5 19425.0 20134.3 1.3439 5725.6 6218.6 18900.0 19560.3 1.4559 5782.7 6322.2 18415.0 19027 '
1.5679 5783.9 6391.2 17977.0 18541.8 1.6799 5805.3 6452.3 17545.0 18063.3 1.7919 5804 ' 6485.4 17173.0 17648.0 1.9039 5792.6 6508.3 16810.0 17241.7 2.0159 5775.2 6524.4 16451.0 16839.5 2.1279 5754.8 6523.7 16150.0 16500.2 2.2399 5733.2 6519.5 15850.0 16162.2 2.3519 5706.4 6510.2 15555.0 15829.3 2 ~ 4639 5666.7 6489.4 15292.0 15530.6 2 '759 5641.5 6470.5 15046.0 15252.0 2.6879 5614.4 6449.2 14801.0 14974.6 2.7999 5571.2 6418.9 14574.0 14715.3 2.9119 5537 ' 6390.6 14362.0 14474.0 3.0239 5510.8 6365.2 14164.0 14249.3 3.1359 5476.8 6335.9 13973 ' 14031 '
3.2479 5438.1 6303.9 13788.0 13820.0 3 '599 5406.7 6275.8 13617.0 13625.1 3.4719 5382.4 6252.6 13461.0 13448.1 3.5838 5350 ' 6226.1 13313.0 13279.0 3.6958 5318.3 6199.1 13166.0 13111.1 3.8078 5288.7 6174.5 13026.0 12951.6 3.9198 5268.9 6158.8 12910.0 12820.7 4.0318 5245.0 6141.2 12798.0 12693.3 4.1438 5220.7 6123.4 12687.0 12567.3 4.2558 5196.0 6105.5 12576.0 12441.2 4.3678 5181.1 6097.5 12488.0 12342.7 4.4798 5166.9 6091.6 12412.0 12257.5 4.5918 5152.3 6085.8 12335.0 12171.2 4.7038 5137.5 6080.0 12259.0 12086.1 4.8158 5122.4 6074.2 12183.0 12001.0 4.9278 5233.3 5960.4 12138.0 11953.0 5.0398 5339.6 5850.3 12094.0 11906.0 5.1518 5441.3 5744.7 12050.0 11859 '
5.2638 5538.6 5643.3 12005.0 11810.8 5.3758 5631.5 5546.4 11961.0 11763.9 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 25
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.6 COOLDOWN-2, Psat=1232 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -1131. 7 694. 8 22395 .0 22229 F 1 0.1120 875.9 1231 ' 23714 .0 24267.3 0.2240 2390.7 1265.8 23554 .0 24476.8 0.3360 3159.7 1310.0 22821 .0 23842.2 0.4480 3934.4 2771.6 22035 .0 23114.4 0.5600 4084.5 3553.5 21278 .0 22359.9 0.6720 4449.9 4141.8 20413 .0 21458.4 0.7840 4649.1 4566.6 19680 .0 20678.9 0.8960 4796.9 4911.0 18932 .0 19875.8 1 F 0080 4889.0 5116.4 18302 .0 19187.5 1.1200 5018.9 5305.2 17662 .0 18486.7 1.2319 5013.3 5419.3 17114 .0 17878.9 1.3439 5055.3 5507.5 16585 .0 17290.9 1.4559 5081.0 5570.7 16093 .0 16741.6 1.5679 5055.0 5602.5 15643 .0 16235.1 1.6799 5048.3 5626.8 15201 .0 15738.1 1.7919 5024.1 5627.4 14815 .0 15301.0 1.9039 4988.4 5618.4 14439 .0 14874.3 2.0159 4947.6 5602.8 14066 .0 14450.6 2.1279 4907.2 5574.9 13749 .0 14088.6 2.2399 4865.6 5543.6 13435 .0 13730.2 2.3519 4818.8 5507.5 13124 .0 13374 '
2.4639 4761.5 5462 ' 12844 .0 13052.7 2.5759 4719.2 5421.2 12584 .0 12754.6 2.6879 4674.7 5377.4 12325 .0 12457.7 2.7999 4616.0 5326.0 12081 .0 12175.9 2.9119 4566..9 5278.1 11854 .0 11914.4 3.0239 4526.3 5234.1 11643 .0 11672.1 3.1359 4478.8 5187.0 11439 .0 11436.8 3.2479 4427.1 5137.4 11240 .0 11206.8 3.3599 4383.4 5093.2 11056 .0 10994.6 3.4719 4347.8 .5055.1 10890 .0 10804.0 3.5838 4305.7 5014.3 10732 .0 10621.5 3.6958 4263.0 4973.0 10573 .0 10437.8 3.8078 4223.5 4934.7 10423 .0 10264.9 3.9198 4195.6 4907.4 10300 .0 10124.2 4.0318 4164.2 4878.6 10181 .0 9987.3 4.1438 4132.5 4849.6 10062 .0 9850.6 4.2558 4100.3 4820.3 9943 .8 9714.6 4.3678 4079 ' 4803.1 9851 .8 9610.1 4.4798 4060.8 4789 ' 9772 .7 9520.3 4.5918 4041.7 4775.1 9693 .6 9430.5 4.7038 4022.3 4761.1 9614 .5 9340.6 4.8158 4002.7 4747 ' 9535 .3 9250.7 4.9278 4086.8 4655.3 9493 .2 9205.2 5.0398 4167.2 4566.4 9451 .9 9160.5 5.1518 4244.1 4480.9 9410 .6 9115.9 5.2638 4317.5 4398.8 9369 .2 9071.0 5.3758 4387.4 4320.1 9327 .7 9026.1 Prepared By: T.M. Wi er Date:
Reviewed By.: A.M. Miller Date: Page: 26
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.7 COOLDOWN-3, Psat=607 PSIG STRESSES WITHOUT WITH 1. 2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 57.3 340.1 13615.0 14049 '
0.1120 1224 ' 817.4 15087.0 16040.3 0.2240 2018.2 840.3 15283.0 16473.3 0.3360 2366.1 825.9 14838.0 16060.0 0.4480 2858.6 1898.7 14332.0 15558.9 0.5600 2859.8 2429.0 13780.0 14972.3 0.6720 3050.5 2801.8 13130.0 14259.6 0.7840 3126.0 3058.0 12552.0 13615.3 0.8960 3158.0 3246.6 11958.0 12949.1 1 '080 3162.9 3334.5 11433.0 12352.4 1.1200 3198 ' 3406.4 10905.0 11751.9 1.2319 3131.7 3426.8 10432.0 11208.8 1.3439 3107.0 3426.2 9975.5 10684.1 1.4559 3072.6 3408.3 9545.6 10188.5 1.5679 2999.8 3369.2 9140.7 9719.1 1.6799 2943 ' 3323.6 8746.9 9263.0 1.7919 2878.4 3265.0 8392.8 8850.9 1.9039 2804.7 3199.3 8045.0 8445.7 2.0159 2726.3 3128.3 7700.2 8043.7 2.1279 2655.4 3054.4 7401 ' 7693 '
2.2399 2582.9 2978.0 7104 ' 7347.2 2.3519 2506.1 2898.2 6811.3 7003.8 2.4639 2424.4 2815.5 6539.7 6684.8 2.5759 2356.7 2738.3 6290.4 6392.5 2.6879 2287.1 2659.4 6042.4 6101.8 2.7999 2207.9 2576.4 5802.1 5818.8 2.9119 2138.3 2499.0 5580.8 5558.7 3.0239 2077.2 2427.1 5376.7 5319.1 3.1359 2011.6 2353.5 5176.2 5083.2 3.2479 1943.2 2278.4 4978.0 4849.7 3.3599 1883;2 2210.3 4798.0 4637.9 3.4719 1831.9 2149.9 4637.4 4449.4 3.5838 1776.8 2088.1 4480.0 4264.0 3.6958 1721.2 2025.8 4323.0 4079.1 3.8078 1669.2 1967.1 4175.0 3905.0 3.9198 1630.5 1922.0 4057.4 3767.3 4.0318 1589.8 1876.0 3941.5 3631.2 4.1438 1548.8 1829.7 3825.9 3495.4 4.2558 1507.5 1783.1 3710.5 3359.8 4.3678 1479.4 1750.9 3625.0 3260.2 4.4798 1454.9 1723.4 3551.6 3174.6 4.5918 1430.2 1695.7 3478.2 3089.0 4.7038 1405.1 1668.0 3404.9 3003 '
4.8158 1379.8 1640.1 3331.8 2918.3 4.9278 1402.8 1601.2 3300 ' 2883 '
5.0398 1424.5 1563.3 3270.2 2849 '
5.1518 1444.8 1526.6 3239.7 2815 '
5.2638 1463.8 1490.9 3209.3 2781 '
5.3758 1481.5 1456.4 3178.8 2746 '
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 27
BEc'PJ NUCLEAR TECHNOLOGZES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6. 8 END OF COOLDOWN, P = 0 PSIG STRESSES WITHOUT WITH 1. 2 SCF THERMAL SCF ON THERMAL S SX SY SZ SZ 0.0000 -408.5 1474.9 9157.4 10988.9 0.1120 141.8 1166.1 7776.0 9331.2 0.2240 671.7 945.8 6596.7 7916.0 0.3360 968.2 890.6 5783.7 6940.4 0.4480 1026 ' 1004.8 5081.0 6097.2 0.5600 1033.0 1048.0 4499.2 5399.0 0.6720 1020.8 1063.3 3979.7 4775.6 0.7840 981.6 1041.5 3533.7 4240.4 0.8960 930.7 1003.0 3110.8 3733 '
1.0080 867.3 943.2 2744 F 9 3293.9 1.1200 799 ' 876.2 2396.6 2875.9 1.2319 721.0 794.6 2072.2 2486.6 1.3439 642.6 710.0 1772.0 2126.4 1.4559 562.3 621.0 1490.2 1788.2 1 '679 477.9 526.1 1218.1 1461.7 1.6799 393.6 430.5 960.1 1152.1 1.7919 312.3 335.9 722.8 867.4 1.9039 228.8 238.8 489.4 587.3 2.0159 143.3 139.6 259.4 311.3 2.1279 66 1 F 48.1 56.3 67.6 2.2399 -12.1 -44.3 -143.6 -172.3 2.3519 -91.5 -137.8 -341.4 -409.7 2.4639 -167.6 -227.7 -529.0 -634.8 2.5759 -237.8 -310.8 -697.9 -837.5 2.6879 -308.9 -394.5 -865.3 -1038.4 2.7999 -379.6 -478.0 -1032.6 -1239.1 2.9119 -445.3 -555.1 -1184.6 -1421.5 3.0239 -506.3 -626.1 -1322.6 -1587.1 3.1359 -567.0 -697.2 -1460 ' -1752.5 3.2479 -627.7 -768.3 -1597.9 -1917.5 3.3599 -683.1 -832.4 -1720.8 -2065.0 3.4719 -732.8 -889.2 -1828.5 -2194.2 3.5838 -781.7 -946 ' -1936.8 -2324.2 3.6958 -830.7 -1002.9 -2044.5 -2453.4 3.8078 -877.0 -1056.4 -2144.9 -2573.9 3.9198 -913.6 -1097.6 -2222 ' -2666.5 4.0318 -949.7 -1139.1 -2299.8 -2759.8 4.1438 -985.6 -1180.8 -2377 ' -2852.4 4.2558 -1021.5 -1222.8 -2453.8 -2944.6 4.3678 -1047.5 -1252 ' -2507.4 -3008.9 4.4798 -1069.4 -1277.6 -2553.4 -3064.1 4.5918 -1091.2 -1303 ' -2599.1 -3118.9 4.7038 -1112.9 -1329.1 -2644.4 3 173 ~ 3 4.8158 -1134.5 -1355.2 -2689 ' -3227.3 4.9278 -1167.0 -1335.9 -2701.7 -3242.0 5.0398 -1198.4 1317 7~ -2714.0 -3256.8 5.1518 -1228.9 -1300.7 -2726.0 -3271.2 5.2638 -1258.4 -1284.9 -2737.7 -3285.2 5.3758 -1286.9 -1270.3 -2749.0 -3298.8 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 28
B&rf NUCLEAR TECHNOLOGIES NON-PROPRIETARY ** 32-1235127-02 Table 6.9 PRESSURE ONLY AT STEADY STATE, P = 2250 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -6135.0 3634.1 42415.0 XXX 0.1120 -2413.7 3040.1 38256.0 0.2240 1029.4 2733.2 34590.0 0.3360 3102.0 2906.6 32353.0 0.4480 4040.0 3907.9 30386.0 0.5600 4710.5 4642.9 28981.0 0.6720 5309.2 5310.3 27734.0 0.7840 5736.4 5811.8 26820.0 0.8960 6146.0 6288.1 25957.0 1.0080 6428.9 6643.5 25339.0 1.1200 6710.7 6997.3 24725.0 1.2319 6914.1 7268.2 24271.0 1.3439 7103.6 7526 ' 23843.0 1.4559 7266.9 7756 ' 23468.0 1.5679 7397.1 7949.9 23162.0 1.6799 7526.9 8140 ' 22857.0 1.7919 7623.5 8295.2 22619.0 1.9039 7714.0 8440.1 22395.0 2.0159 7803.0 8580.3 22177.0 2.1279 7867.5 8691.6 22009.0 2.2399 7932.5 8800.0 21841.0 2.3519 7995.6 8903.5 21680.0 2 '639 8043.1 8988.1 21551.0 2.5759 8091.3 9069.0 21424.0 2.6879 8139.6 9147.8 21297.0 2.7999 8175.3 9214.1 21197.0 2.9119 8210.9 9277.1 21097 '
3.0239 8246.6 9337.5 20998.0 3.1359 8276.2 9393.0 20911.0 3.2479 8301.8 9445.2 20831.0 3.3599 8327.1 9495.8 20752.0 3.4719 8351.8 9544.9 20674.0 3.5838 8369.3 9589.4 20609.0 3.6958 8386.6 9634.0 20544.0'0479.0 3.8078 8403.5 9678.4 3.9198 8418.4 9721.5 20416.0 4.0318 8429.3 9761.6 20362.0 4.1438 8440.3 9801.9 20307.0 4.2558 8451.2 9842.4 20253 '
4.3678 8460.9 9882.6 20199.0
'4.4798 8467.4 9919.7 20153.0 4.5918 8474.0 9956.9 20106.0 4.7038 8480.8 9994 ' 20060.0 4.8158 8487.8 10031.0 20013.0 4.9278 8682.2 9862.2 19967.0 5.0398 8869.3 9698.9 19923.0 5.1518 9049.3 9542.7 19878.0 5.2638 9222.3 9393.5 19834.0 5.3758 9388.3 9251.3 19789.0 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 29
BRW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.10 LOSS OF SECONDARY PRESSURE - 1, T=0.010, P=310 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL SX SY SZ 0.0000 2295.1 639. 7 8290.4 8779.7 0.1120 2366.7 877.6 9822.5 10732.8 0.2240 2150.7 600.6 9932.2 10965.5 0.3360 1851.8 366.1 9277.8 10241.9 0.4480 2023.4 1256.9 8725.2 9632 '
0.5600 1710.0 1544.1 8014.0 8818.2 0.6720 1674.6 1679.3 7321.9 8022.1 0.7840 1601.3 1749.7 6732.4 7339.8 0.8960 1471.5 1742.7 6116.7 6624.8 1.0080 1401.6 1704.8 5652.5 6084.8 1.1200 1379.5 1669.7 5234.5 5600.1 1.2319 1271.0 1607.2 4839.3 5138.4 1.3439 1236.7 1558.6 4530.5 4779.6 1.4559 1216.6 1521.0 4278.6 4487.6 1.5679 1165.7 1475.2 4037.8 4207.1 1.6799 1139.0 1437.6 3831.4 3967.8 1 '919 1129.9 1416.2 3690.2 3805.0 1.9039 1113.0 1392.7 3551.5 3644.7 2.0159 1091.4 1367.5 3413.8 3485.5
- 2. 1279 1092.3 1359 ' 3335.2 3395.8 2.2399 1092.1 1350.8 3258.9 3308.8 2.3519 1088.5 1341.9 3183.7 3223.0 2.4639 1083.2 1334.9 3123.5 3154.4 2.5759 1089.9 1334.5 3082.1 3108.2 2.6879 1095.1 1334.0 3040.9 3062.2 2.7999 1094.3 1332.5 3003.9 3020.6 2.9119 1097.9 1333.0 2974.1 2987.6 3.0239 1105.2 1335.7 2950.9 2962.5 3.1359 1109.8 1338.0 2929.6 2939.3 3.2479 1112.5 1340.0 2909.4 2917.3 3.3599 1117.0 1342.5 2892.0 2898.6 3.4719 1123.1 1345.8 2877.7 2883.6 3.5838 1126.8 1348.8 2865.4 2870.6 3.6958 1130 ' 1351.8 2853.1 2857.6 3.8078 1133.6 1354.8 2841.3 2845.2
- 3. 9198 1137.9 1357.7 2831.5 2835.2 4 '318 1140 ' 1360.5 2822.9 2826.4 4.1438 1143.7 1363.3 2814.2 2817.5 4.2558 1146.2 1366.2 2805.5 2808.5 4.3678 1149.0 1368.7 2797.4 2800.3 4.4798 1151 ' 1371.0 2790.6 2793.4 4.5918 1153.0 1373.5 2783.7 2786.4 4.7038 1154 ' 1376.0 2776.6 2779.2 4.8158 1156.2 1378.6 2769.6 2772.1 4.9278 1183.1 1353.1 2762.9 2765.3 5.0398 1208.8 1328.5 2756.4 2758.7 5.1518 1233.5 1305.0 2749.8 2752.0 5.2638 1257 ' 1282.6 2743.1 2745.2 5.3758 1279.8 1261.2 2736 ' 2738.3 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 30
B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.11 LOSS OF SECONDARY PRESSURE - 2, T=0.015, P=210 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL S SX SY SZ SZ 0.0000 2043.4 2272.8 16343.0 18819.9 0.1120 2493.2 2111.6 16086.0 18589.1 0.2240 2665.6 1564.2 14776.0 17085.5 0.3360 2562.6 1241 ' 13160.0 15188.1 0.4480 2669.3 2101.1 11786.0 13576.0 0.5600 2285.7 2320.2 10380.0 11915.0 0.6720 2149.8 2366.1 9102.2 10404.9 0.7840 1972.1 2320.9 8008.8 9109.9 0.8960 1724.1 2181.8 6916.9 7815.7 1.0080 1547.7 2013 ' 6062.0 6801.4 1.1200 1413.3 1844.7 5288.9 5885.1 1.2319 1196.9 1643.3 4552.8 5010.3 1.3439 1062.7 1468.1 3961.4 4308.6 1.4559 950.8 1311.0 3460.9 3715.0 1.5679 809.5 1145.5 2976.3 3139.2 1.6799 697.1 996.8 2558.3 2643 '
1.7919 621.1 883.2 2249.4 2277.1 1.9039 536.2 767.5 1945.5 1916.6 2.0159 444.2 649.5 1645.2 1560.3 2.1279 399.0 575.3 1458.8 1339.7 2.2399 352.3 502.5 1278.6 1126.6 2.3519 301.1 429.5 1100.9 916.4 2.4639 256.8 367.4 952.0 740.1 2.5759 234.1 325.8 851.3 621.6 2.6879 209.2 284.4 751.9 504.7 2.7999 181.1 244.0 655.4 390.8 2.9119 162.3 213.5 581.8 304.4 3.0239 151.9 192.7 529.4 243.3 3.1359 140.1 172.5 478.4 183.8 3.2479 127 ' 152.8 428.5 125 '
3.3599 118.8 138.6 390.3 81.0 3.4719 114 ' 130.4 364.5 51.5 3.5838 110.3 122.6 339.7 23.0 3.6958 105.4 115.0 315.4 -5.0 3.8078 101.'2 109.0 294.0 -29.5 3.9198 100. 1 107.7 281.8 -43.0 4.0318 99.0 106.4 270.1 -56.0 4.1438 97.7 105.2 258 ' -68 '
4.2558 96.3 104.1 247.7 -80.8 4.3678 96.1 105.2 240.7 -88.3 4.4798 96.4 106.8 235.3 -93.9 4.5918 96.7 108.4 230.1 -99.2 4.7038 97.0 109.9 225.2 -104.2 4.8158 97.3 111.4 220.6 -108.9 4.9278 100.6 111.7 218.2 -110.9 5.0398 103.8 112.0 216.0 -112.7 5.1518 106.9 112.2 214.0 -114.3 5.2638 109 ' 112.4 212.2 -115.7 5.3758 112.7 112.6 210.5 -116.8 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 31
B&Q NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.12 LOSS OF SECONDARY PRESSURE - 3, T=0.0201 P=185 PSIG STRESSES WITHOUT WITH 1. 2 SCF THERMAL SCF ON THERMAL S. SX SY SZ SZ 0.0000 1500 ~ 4 3990.9 26048.0 30560 .1 0 '120 2511 .6 3432.7 23922.0 28077 .3 0.2240 3241 .7 2625.1 21115.0 24769 .2 0.3360 3441 ~ 3 2234.2 18499.0 21666 .8 0.4480 3540 ~ 4 3117.2 16257.0 19008 .7 0.5600 3129 .7 3315.1 14133.0 16483 .0 0.6720 2930 .9 3316.5 12237.0 14228 .3 0.7840 2674 .7 3191.9 10616.0 12298 .2 0.8960 2334 .8 2956.4 9025.2 10403 ~ 4 1.0080 2065 ~ 4 2681.6 7753.3 8887 .3 1.1200 1830 .8 2399.9 6593.2 7505 .3 1.2319 1513 .7 2075.1 5491.7 6190 .9 1.3439 1282 ~ 4 1782.9 4583.3 5107 .9 1.4559 1077 .3 1511.1 3796.4 4169 .8 1.5679 842 ~ 4 1227.6 3033.3 3259 .1 1.6799 639 ~ 4 966.7 2365.0 2462 .1 1.7919 486 .9 754.3 1845.6 1842 .8 1.9039 323 .7 538.5 1334.5 1233 .1 2.0159 151 .2 319.3 830.2 631 .6 2.1279 46 .9 167.3 492.8 229 ,4 2.2399 -59 .8 17 ' 165.6 -160 .5 2.3519 -171 .7 -133 ' -157.3 -545 3
~
2.4639 -269 .2 -264.6 -435.5 -877 .0 2.5759 -334 .3 -361.1 -634.4 -1113 .5 2.6879 -402 4
~ -457.2 -830.6 -1346 .9 2.7999 -471 .7 -551.1 -1024.3 -1577 .7 2.9119 -525 .2 -625.5 -1175 ' -1757 .6 3.0239 -564 .0 -681.4 -1287.7 -1890 .5 3.1359 -603 .2 -735.9 -1398.5 -2022 .1 3.2479 -642 .8 -789 ' -1508.0 -2152 .2 3.3599 -673 .9 -830.6 -1592.8 -2252 .6 3.4719 -695 4
~ -858.3 -1651.5 -2321 .8 3.5838 -715 .9 -885.2 -1709.7 -2390 .5 3.6958 -736 .9 -911.7 -1766.9 -2458 .1 3.8078 -756 .0 -934.2 -1816.9 -2517 .0 3.9198 -766 .8 -944.4 -1844.7 -2549 4 4.0318 -776 .6 -954.5 -1872.4 -2581 .7 4.1438 -786 .6 -964.6 -1899.2 -2613 .0 4 '558 -796 .5 -974.5 -1925.4 -2643 .5 4.3678 -802 4
~ -977.5 -1939.9 -2660 .0 4.4798 -806 .0 -978.6 -1950.7 -2672 .2 4.5918 -809 4
~ -979.9 -1960.9 -2683 .7 4.7038 -812 .6 -981.5 -1970.5 -2694 .5 4.8158 -815 .7 -983.3 -1979.5 -2704 .5 4.9278 -833 .3 -960 ' -1980.3 -2704 .7 5.0398 -850 .0 -938.9 -1980.8 -2704 .6 5.1518 -866 .0 -918.3 -1980.9 -2704 0
~
5.2638 -881 .3 -898.6 -1980.5 -2702 .8 5.3758 -895 .8 -880.0 -1979.6 -2700 .9 I
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 32
14 'I 4
BOW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.13 LOSS OF SECONDARY PRESSURE - 4, T=0.063, P=116 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL S CF ON THERMAL S SX SY SZ SZ 0.0000 -3873.7 12867.0 86107.0 102891.1 0.1120 1715.5 10563.0 74667.0 89205.9 0.2240 6852.0 8736.5 64405.0 76929.3 0.3360 9623.1 8235.7 56957.0 68014 '
0.4480 10312.0 9692.4 50389.0 60153.5 0.5600 10289.0 10260.0 44855.0 53527.2 0.6720 10200.0 10509.0 39860.0 47546.0 0.7840 9828.8 10380.0 35555.0 42389.5 0.8960 9326.0 10068.0 31453.0 37476.0 1.0080 8711.3 9522.3 27886.0 33201.9 1.1200 8066.5 8900.6 24484.0 29125.9 1.2319 7290.8 8128.1 21310.0 25321.7 1.3439 6529.6 7312.8 18359.0 21785.0 1.4559 5746.8 6447.7 15582.0 18456.4 1.5679 4911.5 5522.5 12897.0 15237.6 1.6799 4085.8 4,587. 0 10351.0 12185.5 1.7919 3289.3 3659.4 8015.0 9384.8 1.9039 2469.6 2707.7 5714.8 6626.8 2.0159 1628.5 1733.5 3445.9 3906.4 2.1279 881.9 844.6 1468.2 1534.9 2.2399 125.4 -52.4 -478.9 -799.9 2.3519 -644.2 -960.4 -2406.3 -3111.1 2.4639 1 3 77 ~ 2 -1826.9 -4219.1 -5285.1 2 '759 -2037.6 -2613.7 -5822.0 -7207 '
2.6879 -2706.6 -3405.7 -7411.4 -9113.3 2.7999 -3375.1. -4195 ' -8997.9 -11016.0 2.9119 -3980.3 -4908.5 -10409.0 -12708.3 3.0239 -4526.6 -5549.2 -11656.0 -14203.7 3.1359 -5072.1 -6188.9 -12901.0 -15696.8 3.2479 -5617.5 -6828.9 -14144.0 -17187.6 3.3599 -6100.7 -7390.7 -15224.0 -18482.8 3.4719 -6516.6 -7869.0 -16132.0 -19571.6 3.5838 -6926.3 -8346.4 -17046.0 -20667.7 3.6958 -7337.0 -8825.3 -17954.0 -21756.6 3.8078 -7720.7 -9269.7 -18791.0 -22760.4 3.9198 -8008.2 -9594.4 -19399.0 -23489 '
4.0318 -8290.3 -9920.7 -20012.0 -24224.4 4.1438 -8572.2 -10249.0 -20620.0 -24953.4 4.2558 -8854.0 -10579.0 -21225.0. -25678.8 4.3678 -9050.7 -10803.0 -21631.0 -26165.5 4.4798 -9212 ' -10991.0 -21973.0 -26575.4 4.5918 -9372.7 -11181.0 -22312.0 -26981.7 4.7038 -9532.7 -11374.0 -22647.0 -27383 '
4.8158 -9692.2 -11569.0 -22979.0 -27781.2 4.9278 -9957.5 -11392.0 -23063 ' -27881.5 5.0398 -10214.0 -11225.0 -23147.0 -27981.8 5.1518 -10463.0 -11069.0 -23228.0 -28078 ' Pa ges 33a and 33b 5.2638 -10703.0 -10922.0 -23306.0 -28171.7 ha ve been inserted 5.3758 -10935.0 -10786.0 -23382.0V
-28262.4 be tween 33 and 34.
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 33
II )4, B&W NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.14 FLUCTUATION DN-20F STEP DN, 100 PSI DECREASE TO 2150 PSIG STRESSES WITHOUT WITH 1.2 SCF THERMAL SCF ON THERMAL S SZ SZmod 0.0000 42469.2 42857.0 0.1120 39620 ' 40233.8 0.2240 36599.2 37308.5 0.3360 34476.0 35188.2 0.4480 32533 ' 33233.0 0.5600 31049.2 31720.4 0.6720 29644.9 30273.6 0.7840 28551.8 29136.6 0.8960 27496.4 28035.0 1.0080 26679 ' 27172.7 1.1200 25865.1 26312.9 1.2319 25211 ' 25615.6 1.3439 24592.5 24954.4 1 '559 24033.1 24354.7 1 '679 23543.2 23825.3 1.6799 23064.1 23308.7 1.7919 22665.8 22876.2 1.9039 22282.8 22459.4 2.0159 21906.0 22048.9 2.1279 21603.5 21718.1 2.2399 21303.4 21390.0 2.3519 21010.1 21068.8 2.4639 20757.7 20790.6 2.5759 20524.3 20534.8 2.6879 20291.7 20280.0 2.7999 20085.0 20051.0 2.9119 19892'.2 19838.7 3.0239 19712.1 19641.6 3.1359 19543.8 19456.3 3.2479 19382.4 19277.9 3.3599 19232.6 19113.2 3.4719 19096.0 18964.1 3.5838 18971.7 18827.4 3.6958 18847.8 18691.1 3.8078 18728.4 18560.3 3.9198 18626.6 18450.2 4.0318 18533.0 18348.2 4.1438 18439.2 18246.1 4.2558 18346.0 18144.6 4.3678 18266.3 18059.4 4.4798 18198.8 17987.1 4.5918 18130.6 17914.3 4.7038 18063.1 17842.1 4.8158 17995.0 17769.2 4.9278 17944.4 17717.4 5.0398 17896.0 17667.7 5.1518 17846.5 17616.9 5.2638 17798.0 17567.1 5.3758 17748.9 17516.8 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 33'.
BSW NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Table 6.15 FLUCTUATION UP-20F STEP UP, 100 PSI INCREASE TO 2350 PSIG STRESSES WITHOUT WITH 1 ' SCF THERMAL SCF ON THERMAL S SZ SZmod 0.0000 34299.1 32298.9 0.1120 32939.5 31536.2 0.2240 31126.6 30126.4 0.3360 29855.1 29068.0 0.4480 28685.6 28075.5 0.5600 27852.8 27369.5 0.6720 27039.1 26653.6 0.7840 26474.6 26167.2 0.8960 25920.3 25682.2 1.0080 25552.2 25369.7 1.1200 25164.1 25032.2 1.2319 24919.5 24833.5 1.3439 24673.8 24628.0 1.4559 24465.2 24456.0 1.5679 24320.1 24345.8 1.6799 24161 ' 24219.4 1.7919 24054.1 24140.1 1.9039 23958 ' 24071.8 2.0159 23864.7 24005.2 2.1279 23800.7 23963.4 2.2399 23734.3 23918.9 2.3519 23672.9 23878.7 2.4639 23638 ' 23863.8 2.5759 23589.3 23831.9 2.6879 23540.2 23799.5 2.7999 23518.7 23794.6 2.9119 23487.3 23777.8 3.0239 23446.8 23749.9 3.1359 23418.5 23734.1 3.2479 23397.7 23725.8 3.3599 23368.9 23707.8 3.4719 23331.6 23679.4 3.5838 23308.8 23665 '
3.6958 23285.5 23651 '
3.8078 23258.5 23632.4 3.9198 23221.8 23601.5 4.0318 23194.7 23580.3 4 '438 23166.6 23558.0 4.2558 23138.3 23535.4 4.3678 23101. 0 23501.9 4.4798 23068.5 23472.4 4.5918 23034.9 23442.0 4.7038 23001.2 23411 '
4.8158 22966.9 23379.8 4.9278 22921.2 23334.5 5.0398 22877.4 23291.2 5.1518 22832.7 23247 '
5.2638 22787.9 23202.3 5.3758 22742.4 23157.1 Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 33b
L)t I
I I I
I
~ ~
'I I Il zssg~~~~~1>
~ssaseeaaamww&w~~~~~
lli58(ESS) SHOS+5 IBBlREISISSSSHgg 1
"iiiaRhaYaFaa5%58'8+++
I IIIQI8158%E1%00++++ ggg IBRBE1SQ1OSOSOO++++ggg pygmy>~
I+g~y gg+
r
~
e I
8885501115OSN+'+++
IIIIIIRIL~0%550%%%%~~~
llllllll18(IIIE55SS+
lilllilaNh%aaaaaaaeeaaa lllllll8llh1i5%558++++
llllllggllaaraaaaaaaaa g =
IlllllllllllS%585NI+'+++g=
IlllllllllSISOEN'1+++
~ ~, ~
I
ANSTS 5.0 A JUN 21 1995 10: 43: 39 PI.OT NO.
POSTI STEP=I
( ~ 104!O SUB =I TIME=I PATH PI.OT NOD I =2 N002=10&
S2 2V = I OIST=0.75 211 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN 156 gO gI 0
747e H
474+3 201. 0
-72o15 4J 1 o075 2o 15 4m 301 0o537 1.613 2odm 3.763 I I
DIST 4J Ul h)
C)
ANSTS 5.0 A JUN 21 1995 10:43:44 PI.OT NO. 2 POSTI STEP=2 (a10ffo SUB =I TIME=2 PATH PI.OT N001=2 N002=108 2'V = I OIST=0.75 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN g
0 gI 0
S2 H
K ST 577.2 219+ 533 44 0 1+075 2o 15 ~ 225 i.301 5+376 M 0o 537 1e613 2eam 3o763 4e535 I M
'5 DIST 4J Vl 8 h)
~ ~
53F STEP OOWN, P= 1740 PSIG I
ANSYS 5.0 A JUN 21 1995 10:43:48 PLOT NO. 3 POSTI STEP=3 (a 100' SUB =I T IME=3 SE PATH PLOT N001=2 N002= 108 2V = I OIST=0.75 211 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIDDEN SY gO gI 0
H 130.6
-153+371 4l 0 1 a075 2m 15 4o301 h) 0+ 537 1.613 2+666 3.763 I DIST 4J Ul hl 53F STEP- UP, P=2400 PSIG I
oh)
0 R.
ANSYS 5.0 A JUN 21 1995 10:43:53 PI.OT NO.
POSTI STEP=4
( ~ 10'1) SUB TIME=%
PATH PI,OT N001=2 N002= 108 ZV = I OIST=0.75 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN SZ 20 0
gI 0
SY 14 710m 370.0 47+805 1.075 2. 15 3 0 225 4.301 5o37d 0+537 1+d13 2 Idm 3.7d3 DIST EQ rtr
~ ~
STEAOY STATE, TreI = 10F, Tunif = 653F, P = 2400 PSIG
S r- 4Sc ANSYS 5.0 A R
S Q JUN 21 1095 S S IO:43:57 n Q PI.OT NO. 5 W P0 5 'T I
'C 'C STEP=5
( ~ 109 fl) SUB TIME=5 PATH PI.OT n N001=2 NOOZ=I08 ZV = I OIST=0.75 211 XF =0.5 YF =0.5 ZF =0.5 CENTROID HIDDEN g0 SZ g e e S S 0
M SY 329.57
- 73. baal 0 1.07d 2old io301 o376 4) h)
Oe d37 1+613 2I665 3o763 I M
DEST Vl Vl COOlOOWN- I, Psa1= 1<72 PS IG hl I
CI hl
ANSYS 5.0 A JUN 21 1995 10:44:02 PLOT NO. 6 POSTI STEP=6 (a109 91) SUB =I TIME=6 PATH PI.OT N001=2 N002=108 214 ZV = I OIST=0.75 XF =0.5 191 YF =0.5 ZF =0.5 CENTROIO HIDDEN 0
gI SZ 0
760. 06 H
SY 299. d7 69.475 0 1 s075 2. 15 .225 4o301 5+576 bb Oslo 1e 615 2e dbb 5o765 4.515 I hD 0 DIST 4J Vl 8
~~ COOI.OOWN.2, Psal=1232 PSIG I
C) h)
ANSYS 5.0 A JUN 21 IS95 IO:44:06 PI.OT NO. 7 POSTI STEP=7 (a 104' SUB = I TIME=7 PATH PI.OT N001=2 N002 = 108 2V = I OIST=0.75 XF =0.5 YF =0.5 ZF =0.5 CENTROID HIOOEN 7Il.i g0 g
631 ~
0
à H
0a Sl 183. SY 3io007 0 1 a075 2o 15 is 301 5.376 M hP 0.537 1+613 2+6M 3.763 I hP DIST VJ Ul COOI.OOWN-3, PsaI=607 PSIG hP I
CI hP
ANSYS 5 .0 A JUN 21 1995 IO: (4: I I PLOT NO 8 POST I 5 I' P = 8 SUB TIME=8 91 PATH PI. OT NOD1=2 NOD2 =10 ZV =I DIST=0. 75 XF =0. 5 YF =0. 5 ZF =0. 5 CENTROI D HIDDEN 0
gI 0t(f H
14
-3d7o7 sv SZ M749 4J 0 lo075 2s15 3 0 225 4. 301 5o376 h) 0.537 lod13 2odb5 3.763 4s63$ I M
DIST 4l Vl h)
END OF COOLDOWN, P = 0 PSIG I
M
8 r- 'dS ANSYS 5.4 A 0 JUN 21 Icq5 8 8 10: 44:15 P A PI OT NO. 9 POSTI W W STEP=9 (a 1040O SUB =I I' ME = 9 424 PATH PLOT n N001=2 NOO2=100 zr. 2V = I 17ISTc0.75 XF =0.5 8 YF =0,5 ZF =0.5 CENTROIO HIOOEN 0
52 gI 0
H W
SY 670. 1 273.3 la 4J 0 1.075 2o15 3.225 ho301 0.376 h)
OI537 1+613 2odbb 3e763 heKR I h)
DIST GJ Ul I
8 h)
~~
PRESSURE ONLY AT STEAOY STATE, P = 2250 PSIG I
oM
ANSYS 5.0 A JUN 21 1995 10:44:20 PLOT NO. 10 POSTI STEP=IO SUB TIME=10 PAI'H PLOT N001= 2 N002=108 ZV =I DIST=0.15 XF =0.5 YF =0.5 ZF =0.5 CENTROIO HIOOEN 61 514 0
gI 41 0
H SZ W SY 366al3 4l 0 1 +075 2m 15 o225 4+301 5 +376 M OICP le613 2+6M 3.7IL$ 4 e Md I M
DlST 4J Vl hl LOSS OF SECONOARY PRESSURE - I, 1=0.010, P=310 PSIG I
ED bJ
R ANSYS 5.0 A JUN 21 1055 10: 41:24 n PLOT HO. 11 POS I' STEP= I I SUB = I
( ~ 1040O TIME=II PAT'N PlOT n H001=2 H002= 108 14 LV = I DIST=0.15 XF =0.5 YF =0.5 2F =0.5 CENTROIO HIDDEN 114 9M.71 gO gI 0
497. H 335,1 K
S2 172. SY 10.406 La) 1 a075 2,15 3e 225 4.301 5.376 2odbb 3e763 4m 535 I 0 I 537 1+613 M
DIST 4J Ul lg h) 8 lOSS OF SECOHOARY PRESSURE - 2, T=0.015, P=210 PSIG
~~
I M
$ 41
ANSYS 5.0 A JUN 21 1995 IO:41:29 n PLOT NO. 12 POS I' ST EP =12 (s 109$ O SUB =I TIME=12 PATH PLOT n NOD1=2 NOO2=100 2V = I O OIST=O.)5 Q XF =0.5 H YF =0.5 ZF =0.5 CENTROIO HIOOEN 17 0g gI 0
642 o7 H
3d2o4 K
52 II2. 1 ST
-19bo09 4J 0 1.075 2olm 4.301 Oo37d M 0.537 l.dl3 2odbb 3e7d3 4eES I
I hl DIST 4J Ul I
8
~~ LOSS OF SECONOARZ PRESSURE . 3, T=0.020, P= 185 PSIG I
ED h)
ANSYS 5.0 A JUN 21 1995 I 0: 11: 3 3 PLOT NO. 13 POST I STEP=13
[I10661) SUB =I
'T IME =13 661 PATH PI.OI'001=2 N002=108 2Y =I OI SI =0.15 XF =0.5 YF =0.5 2F =0.5 CENTROIO HIOOEN gO gI 0
946o4 H
-146+39 Pl SY
-12 SL 4J 1 +075 2o 16 ~ 226 4o361 o376 M 0.537 1 o613 2.666 3+763 4. 636, I M
DIST Vl Ul T=0.063, P=116 PSIG M lOSS Of SECONOARY PRESSURE ~
1, I
M
4 BOW NUCLEAR TECHNOLOGZES ** BWNT NON-PROPRZETARY ** 32-1235127-02 7.0 ANSYS 5.0A Verification The ANSYS analysis code, version S.OA, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors.
The following comparison of finite element (FE) stress results and closed form solut'ns indicated that the software provided accu.ate results.
Therefore, ANSYS 5.0A was verified for this application.
Finite Element Results from Table 6.9, Pressure = 2250 psia Distance Hoo Stress Sz 0.0(clad/base) 42,415 psi
- 2. 6879 (mid base) 21, 297 psi
- 5. 3758 (external) 19, 789 psi Hoop Stress (using thin shell theory) e = pr/2t Ref. [5, Table 28 case 3a.]
e = 2250 (73 .63) / [2 (4 .094)] = 20, 233 psi Compared to:
21g297 psi (FE), b%' )21297/20233 - 1)(100%) = 5.26%'nd 19,789 psi (FE), b%' )19789/20233 - 1~(100%') =
2.19%'hese percent differences are attributable to the differences b'etween thin and thick pressure vessel theory and the fact that at the mid point of the line there may still be some stress concentration effect due to the penetration.
Stress Concentration at Hole SCF = a,,/e, = 42415/19789 = 2.143 (FE) k Compared to 2.0 (from Sect. 3.3), h% = ]2.14/2.0 - 1] (100%) = 7.2%
Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 48
J
B&W'UCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 8.0 References
- 1) ASME Boiler and Pressure Vessel Code, Section ZZI, Division 1, Appendices, 1986 Edition with no Addenda.
- 2) BWNS Document No. 51-1155656-00, "Standard Correlations for Natural Convection".
- 3) BWNS Document No. NPGD-TM-500, "NPGD Material Properties Program User's Manual", Rev. D, March, 1985.
- 4) Harvey, J. F., "Theory and Design of Modern Pressure Vessels", Van Nostrand Reinhold Co., New York, 1974.
- 5) Young, W. C., "Roark's Formulas for Stress & Strain", 6th Edition McGraw-Hill, New York, 1989.
- 6) DeSalvo, G. J. and Gorman, R. W., "ANSYS User's Manual for Revision 5. 0", 1992, Swanson Analysis Systems, Houston, Pennsylvania.
- 7) BWNT Document 32-1235128-02, "FM Analysis of St. Lucie Pressurizer Instrument Nozzles" .
- 8) BWNT Document 38-1210588-00, "Pressurizer Instrument Nozzles, FM Design Input," for St. Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14).
- 9) Florida Power & Light Drawing No. 2998-19321, Rev. 0, "Top Head Instrument Nozzles Repair".
- 10) Florida Power & Light Drawing No. 2998-18709, Rev. 1, "Pressurizer General Arrangement".
- 11) Arpaci, V.S., Conduction Heat Transfer, Adelson-Wesley Publishing, 1966.
- 12) *Florida Power and Light Drawing No. 2998-18594 Rev. 0, "Pressurizer Top Head Details and Assembly."
- 13) Peterson, R.E., "Stress Concentration Factors", Wiley & Sons, 1974.
- References marked with an "asterisk" are retrievable from the Utilities Record System.
A horize Project ger's Signature Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 49
BSc't~'UCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 9.0 Microfiche The following table contains a list of microfiche of the ANSYS S.OA computer output. The nodes and elements were identical among all the models.
FILE NAME FILE DATE DESCRIPTION S PHTHERM. OUT 6/20/95 Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown SPHTHLP.OUT 6/20/95 Loss of pressure thermal run SPHSTRES.OUT 6/21/95 Stress runs for all cases MATPROP . MAC 6/14/95 Macro file containing all material property date used in the analysis.
PRESS.MAC 6/15/95 Macro for applying pressure during the stress runs FILMCOEF.MAC 6/14/95 Macro for applying thermal loads during thermal runs Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 50
'4
\ >
B&Vl NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Computer Output Mi.crofiche Prepared By: T.M. Wi er Date:
Reviewed By: A.M. Miller Date: Page: 51
r tl