ML18022A260: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(7 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{
{{#Wiki_filter:RELEASED    30441R00030 CDMA vd 2017/01/11    Revision A REACTOR-BASED MOLYBDENUM-99 SUPPLY SYSTEM PROJECT M0-99 TARGET COOLING SYSTEM SEISMIC
* Pipe sizes and material selection per "MURR Master Model.SLDASM" and as described in Section 5.3
* Pipe sizes and material selection per "MURR Master Model.SLDASM" and as described in Section 5.3
* Component weights per "MURR Master Model.SLDASM" for pipe sizes and material selection. 3.2 Loads Operating and Seismic loads are based on the "Molybdenum-99 Supply System Requirements Document" (30441S00001), ASME B31.3 (Ref. 1) and ASCE 7-10 (Ref. 2) and are as described in Section 6. 4 ASSUMPTIONS The following assumptions are made for the structural evaluation of the piping of the target cooling system.
* Component weights per "MURR Master Model.SLDASM" for pipe sizes and material selection .
* All pumps, heat exchangers, and external connections will be modeled as anchors at interface connection points. This is an accurate depiction as the mechanical components can be considered rigid, with indefinite stiffness.
3.2     Loads Operating and Seismic loads are based on the "Molybdenum-99 Supply System Requirements Document" (30441S00001), ASME B31 .3 (Ref. 1) and ASCE 7-10 (Ref. 2) and are as described in Section 6.
* All piping supports, vibration damping type, are modeled as line supports with no gaps and connected to rigid ground. This is an accurate depiction of this type of supports.
4       ASSUMPTIONS The following assumptions are made for the structural evaluation of the piping of the target cooling system.
* Bio-Shield, CoStarTower and Bridge are rigid structures. This is an accurate depiction of said structures due to low seismic loading, maximum deflections of structures within areas of interest are estimated to be< 1/161h inch.
* All pumps , heat exchangers, and external connections will be modeled as anchors at interface connection points. This is an accurate depiction as the mechanical components can be considered rigid , with indefinite stiffness.
* Maximum seismic differential movement between CoStarTower/Bridge and Bio-Shield is < 2.0 inches. This is a conservative number, as lateral movement of the CoStarTower is estimated to be less than 1/81h inch at bridge elevation. 5 METHOD Seismic loading conditions will be defined per ASCE 7-10, and evaluated against ASME B31.3 2014. Two types of analysis were performed: 1. Rigid Support Structure: 3 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A o Assumes that piping support structures, Bio-shield/pool, CoStarTower and bridge are rigid structures. No differential lateral displacements occurs between the individual structures during a seismic event. o Pipe analysis is performed in accordance with ASME 831.3 and ASCE 7-10. 2. Flexible Support Structure o Assumes that the Bioshield/pool and CoStarTower combined with the Bridge will laterally displace during a seismic event. o Pipe analysis is performed to evaluate stresses and adequacy of flexible piping. A forced displacement of 2 inches is applied to the piping located on the CoStarTower and Bridge side relative to the piping located and mounted on the Bio-Shield side to simulate differential movement between the two main structures during a seismic event. Analysis is performed in accordance with ASME 831.3 and ASCE 7-10. Further description and results can be found in Section 7. 6 AUTOPIPE MODEL AutoPIPE model is generated from Solidworks 3-D model, "MURR Master Model.SLDASM", October 12, 2016, with an update on December 5, 2016 to remove a subset of piping. Figure 2 to Figure 7 show the Solidworks/AutoPIPE details of the piping system with the pool and frame hidden. Green symbols on AutoPIPE mode figures represent constraints on the piping. 4 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 2. Solidworks Assembly (Red Box is the piping of interest) 5 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A y X Figure 3. AutoPIPE's model of the piping of interest 6 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 4. Solidworks Level 3-4 up-close view 7 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Guide+ line Supports All other supports shown are Guide Supports Only Figure 5. AutoPIPE Level 3-4 up-close view 8 30441 R00030/A Valve connections from heat exchangers. Rigid Anchor connections on the ends. Flexible Joints to simulate flexible piping. (Not shown on Solidworks model)
* All piping supports , vibration damping type, are modeled as line supports with no gaps and connected to rigid ground. This is an accurate depiction of this type of supports.
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A From these flanges all piping in the negative Y direction is aluminum ----__,J All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1 Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point. Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section. Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section. 10 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report -... --r-R -r-;;;; ..... Ci .. rtoi h,..;, (GQ .............. r,ooJ c. ... ..,. Figure 8. AutoPIPE Model Guide Support Value r'l""-* r= ._ ... .-3 C.......w.,t. ro.--r--;;;; ... -r,a ,....., rtii -Figure 9. AutoPIPE Model Line Stop Value 6.2 Valves and Flanges 30441 R00030/A The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing. See Table 1 for weights. 11 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Table 1. Flanged Valve Weight Size (inch) Ball Valve (lbf) Globe (lbf) 3 N/A 82 4 144 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified. 6.3 Piping The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6. Table 2. Pipe Properties Nominal Outer Wall Size Schedule Diameter Thickness Material (inch) (inch) (inch) 2 40 2.375 0.154 TP316L 3 40 3.5 0.216 TP316L or AL-6061 T6 4 40 4.5 0.237 TP316L or AL-6061 T6 Table 3. Material Properties Material Yield Strength Ultimate Strength (ksi) (ksi) TP316L 25 70 AL-6061 T6 35 42 12 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 10. Pipe sizes 6.4 Flexible Joints To account for independent seismic movement of the building relative to the pool, flexible piping is added to the piping connection at the bridge level. All flexible piping is 11 inches in length and flanged. A guide support is added with the flange connections on the non-flexible piping side. Flexible piping stiffness values were based on GA test data. The following stiffness is applied
* Bio-Shield, CoStarTower and Bridge are rigid structures . This is an accurate depiction of said structures due to low seismic loading , maximum deflections of structures within areas of interest are estimated to be< 1/161h inch .
* Axial -182 lb/in
* Maximum seismic differential movement between CoStarTower/Bridge and Bio-Shield is
* Shear -14 lb/in (both directions)
        < 2.0 inches. This is a conservative number, as lateral movement of the CoStarTower is estimated to be less than 1/81h inch at bridge elevation.
* Torsional -Rigid
5       METHOD Seismic loading conditions will be defined per ASCE 7-10, and evaluated against ASME B31 .3 2014.
* Bending -Rigid (both directions) / 13 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A ~-* ...... d pont. rAAil U*qfndiic.11~.,.._ r .............. OIINte* c>><: r,ti'7r OY; OZ ,-----rfoo' r-otlF ~o1t .... 1o.alobooir,g.,_... r Fllng,td r .... _, Y,ehN,""'-n r-T4oo z ........ l!ifMM,. r,<<iii ,,_,,._, rRliill Y~Rlfroe.1. Figure 11. Flexible joint input values 7 CALCUATION BODY 7.1 Operational Loading The system was analyzed subject to the following loading in Table 4. In addition to the temperature and pressure loads the piping system was also subjected to gravitational load. The liquid in the piping is assumed to be water. Table 4. Loading Inputs Gravity Temperature Pressure Notes 1g 78.8&deg;F 30 psig Ambient is 68&deg;F 7 .2 Seismic Loads ASCE 7-10, Reference 2, shall serve as the seismic design guide for the installed and operated target cooling system at MURR. 7.2.1 Site Specific Criteria Location is Latitude 38.93166 and Longitude -92.3418 is based on Columbia, MO 65211
Two types of analysis were performed:
: 1. Rigid Support Structure:
3
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report       30441 R00030/A o Assumes that piping support structures , Bio-shield/pool, CoStarTower and bridge are rigid structures. No differential lateral displacements occurs between the individual structures during a seismic event.
o Pipe analysis is performed in accordance with ASME 831 .3 and ASCE 7-10.
: 2. Flexible Support Structure o Assumes that the Bioshield/pool and CoStarTower combined with the Bridge will laterally displace during a seismic event.
o Pipe analysis is performed to evaluate stresses and adequacy of flexible piping. A forced displacement of 2 inches is applied to the piping located on the CoStarTower and Bridge side relative to the piping located and mounted on the Bio-Shield side to simulate differential movement between the two main structures during a seismic event. Analysis is performed in accordance with ASME 831.3 and ASCE 7-10.
Further description and results can be found in Section 7.
6     AUTOPIPE MODEL AutoPIPE model is generated from Solidworks 3-D model , "MURR Master Model.SLDASM",
October 12, 2016, with an update on December 5, 2016 to remove a subset of piping.
Figure 2 to Figure 7 show the Solidworks/AutoPIPE details of the piping system with the pool and frame hidden. Green symbols on AutoPIPE mode figures represent constraints on the piping .
4
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report     30441 R00030/A Figure 2. Solidworks Assembly (Red Box is the piping of interest) 5
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report   30441 R00030/A y
X Figure 3. AutoPIPE's model of the piping of interest 6
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 4. Solidworks Level 3-4 up-close view 7
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report       30441 R00030/A Valve connections from heat exchangers. Rigid Anchor connections on the ends.
Guide+ line Supports All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping. (Not shown on Solidworks model)
Figure 5. AutoPIPE Level 3-4 up-close view 8
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report           30441 R00030/A All other supports shown are Guide Supports Only From these flanges all piping in the negative Y direction is aluminum   ----__,J Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1     Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point.
Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section. Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section.
10
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report               30441 R00030/A
            -           r-;;;;
r-R Ci ..       rtoi h, ..;,     (GQ
            ..............       r,ooJ c.... ..,.     ~
Figure 8. AutoPIPE Model Guide Support Value r'.l""- 3-*   r=
C.......w.,t. ro.-
                        -         r--;;;;
                        ... -         r,a
                        ,.....,       rtii Figure 9. AutoPIPE Model Line Stop Value 6.2   Valves and Flanges The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing . See Table 1 for weights.
11
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report         30441 R00030/A Table 1. Flanged Valve Weight Size (inch)       Ball Valve (lbf)     Globe (lbf) 3                 N/A                 82 4                 144                 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified.
6.3     Piping The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6.
Table 2. Pipe Properties Nominal                   Outer           Wall Size     Schedule     Diameter       Thickness               Material (inch)                   (inch)         (inch) 2         40         2.375           0.154                 TP316L 3         40           3.5           0.216         TP316L or AL-6061 T6 4         40           4.5           0.237         TP316L or AL-6061 T6 Table 3. Material Properties Yield Strength   Ultimate Strength Material (ksi)               (ksi)
TP316L               25                 70 AL-6061 T6               35                 42 12
 
ENCLOS URE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report           30441 R00030/A Figure 10. Pipe sizes 6.4     Flexible Joints To account for independent seismic movement of the building relative to the pool , flexible piping is added to the piping connection at the bridge level. All flexible piping is 11 inches in length and flanged. A guide support is added with the flange connections on the non-flexible piping side.
Flexible piping stiffness values were based on GA test data. The following stiffness is applied
* Axial - 182 lb/in
* Shear - 14 lb/in (both directions)
* Torsional - Rigid
* Bending - Rigid (both directions)
                          /
13
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                                 30441 R00030/A
      ...... d pont .
U*qfndiic.11~ .,.._
rAAil              ~ -*
r OIINte
* c>>< : r,ti'7r
                            ~
      ~o1t .... 1o.alobooir,g.,_...
Y,ehN,""'-n z........ l!ifMM, .
                                ~
r-T4oo r,<<iii OY ;  ~
                                                ,-----rfoo' r
OZ Fllng,td   r
                                                                        ~
r-otlF
      ,,_,,._,                     rRliill Y~         Rlfroe.1 .         ~
Figure 11 . Flexible joint input values 7               CALCUATION BODY 7.1             Operational Loading The system was analyzed subject to the following loading in Table 4.                                                       In addition to the temperature and pressure loads the piping system was also subjected to gravitational load . The liquid in the piping is assumed to be water.
Table 4. Loading Inputs Gravity                             Temperature                     Pressure                     Notes 1g                                     78 .8&deg;F               30 psig                 Ambient is 68&deg;F 7.2             Seismic Loads ASCE 7-10, Reference 2, shall serve as the seismic design guide for the installed and operated target cooling system at MURR.
7.2.1 Site Specific Criteria Location is Latitude 38.93166 and Longitude -92.3418 is based on Columbia , MO 65211
* Ip= 1.0 (attached to an occupancy II building/structure)
* Ip= 1.0 (attached to an occupancy II building/structure)
* Rp = 12 (ASCE 7-10 table 13.6-1; welded piping)
* Rp = 12 (ASCE 7-10 table 13.6-1; welded piping)
* ap = 2.5 (ASCE 7-10 table 13.6-1) 14 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A
* ap = 2.5 (ASCE 7-10 table 13.6-1) 14
* Sos = 0.112g (Refs. 4 and 5-USGS APPENDIX A and APPENDIX B respectively)
 
* Site Class B (Rock, based on FEMA maps see Ref. 6 -APPENDIX C)
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report             30441 R00030/A
* Sos = 0.112g (Refs. 4 and 5- USGS APPENDIX A and APPENDIX B respectively)
* Site Class B (Rock, based on FEMA maps see Ref. 6 - APPENDIX C)
* z = 62.5 ft (Based on the Solidworks model the bottom of the building to top of the piping system)
* z = 62.5 ft (Based on the Solidworks model the bottom of the building to top of the piping system)
* h = 70ft (Based on the Solidworks model from the bottom to the top of the building) 7 .2.2 Seismic Forces Seismic forces, FP, will be determined in accordance with Section 13.3 (Ref. 2) as follows: Fp = 0.4apSosWo(1+2z/h) (Rp//p) (Eqn. 13.3-1, Ref. 2) However, Fp will not be greater than: Fp = 1.6Sos/pWo and, FP will not be less than: where: Fp = Seismic design force ap = Amplification factor Sos= Design spectral response acceleration, short period Wo = Dead load z = Attachment Height, relative to finished grade (Eqn. 13.3-2, Ref. 2) (Eqn. 13.3-3, Ref. 2) h = Roof Height, height of structure, relative to adjacent finished grade RP = Response modification factor /p = Importance factor Seismic Load per Section 12.4.2 (Ref. 2): fa: pQE Ev= 0.2Sos0 where: fa = Horizontal seismic load effect Ev = Vertical seismic load effect p = 1.0 (Redundancy Factor) OE = FP (Effect of horizontal seismic force) (Eqn. 12.4-3, Ref. 2) (Eqn. 12.4-4, Ref. 2)* Sos= Design spectral response acceleration at short period D = Dead Load (piping operating weight) *Note: In addition of applying the two shear forces simultaneously, a conservative AutoPIPE default vertical factor of 0.5 was used. Vertical force can be calculated using ASCE 7-10 12.4-4 but is much smaller than 0.5 x shear direction. The higher value is used.
* h = 70ft (Based on the Solidworks model from the bottom to the top of the building) 7 .2.2 Seismic Forces Seismic forces , FP, will be determined in accordance with Section 13.3 (Ref. 2) as follows:
* Eh = 0.035g (Shear) 15 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A
Fp = 0.4apSosWo(1+2z/h)             (Eqn . 13.3-1, Ref. 2)
* Ev= 0.0175g (Vertical) Static Earthquatr w New ModlySelected I DoieteSelected I DoleteAI ( ASCE 2010 C..o S.iemk:Coda Venal X(g) Y(g) Z(g) fectO< Si,,0-: IB ..:l r q,Code: I Et ASCE 2010 0.50 .... D.1115 .... I~ Facto, PP): ,-ll(~XXJ-r-~: pe.93166 Attachmerl Height (z): j62.500 Longh,de: 1*9234180 Rod Height (h): j70.CXXl Conl)Ol,enl R._,_ (Rp) : j 120 r Mopped Spocbol jo.17524 ii Rooponse(Ss): An1>'fication Factcr (ap): -12500--Maicinun Conoidefed jtCXXJOO Elllthquoke (Fe): M~ Focio< (ij: j1.CXXJ Show Locotion on Mop I OK H..-, OK Cancel H.-i Figure 12. AutoPIPE Seismic Inputs and corresponding G levels 8 RESULTS 8.1 ASME B31.3 Code Stress Results The ASME 831.3 code combinations results are documented in this section. Results in Table 5 show combinations with numbers in the name. Loading input is shown in Table 4. Occasional stress category is calculated by combining seismic with sustain load. Figures 13 through 24 show the stress ratio plots. The red circles indicate the general areas of the high stress. Within that circle the square box with crosshairs is the exact point of the high stress.
(Rp//p)
* GR -Gravity
However, Fp will not be greater than: Fp = 1.6Sos/pWo               (Eqn . 13.3-2, Ref. 2) and , FP will not be less than :                                   (Eqn . 13.3-3, Ref. 2) where:
* Amb to T1 -Ambient to Operating Temperature
Fp = Seismic design force ap = Amplification factor Sos = Design spectral response acceleration, short period Wo = Dead load z = Attachment Height, relative to finished grade h = Roof Height, height of structure , relative to adjacent finished grade RP = Response modification factor
* Max P -Max Pressure
    /p = Importance factor Seismic Load per Section 12.4.2 (Ref. 2):
* Sus -GR + Max P
fa: pQE                                                         (Eqn . 12.4-3, Ref. 2)
* E -Seismic Load Table 5. ASME B31.3 Code Max Stress Result Summary Stress Stress/Stress Node Combination Category Material Stress (ksi) Allowable Allowable Ratio Number Location Figure (ksi) Y-Pipe, GR+ Max P{1} Sustain 316L 0.7 16.7 0.04 AL 13 before Figure flexible 14 piping Inside GR+ Max P{1} Sustain 6061-T6 1.0 12.7 0.08 AL36F -Pool, on Figure expansion 15 loop 16 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Stress Stress/Stress Node Combination Category Material Stress (ksi) Allowable Allowable Ratio Number Location Figure (ksi) At Heat Figure Amb to T1{1} Expansion 316L 3.2 25 0.13 AK03 Exchanger Interface 17 At SS to Al Figure Amb to T1{1} Expansion 6061-T6 0.2 19 0.01 AH51 pipe interface 18 Max P{1} Hoop 316L 0.3 16.7 0.02 AL06 3"to 2"y Figure pipe 20 Max P{1} Hoop 6061-T6 0.3 12.7 0.02 AK46 AIIAI Figure piping 21 Sus. + E1{1} Occasion 316L 0.9 22.2 0.04 AL09-Y-piping Figure support 23 Inside Sus.+ E1{1} Occasion 6061-T6 1.0 16.9 0.06 AH61N+ Pool, on Figure expansion 24 loop 17 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.1 ASME B31.3 Sustain Stress Ratio Plots ....... l'IIJ(SUI) ................
Ev= 0.2Sos0                                                     (Eqn. 12.4-4, Ref. 2)*
* 004.J ** .u .. ** -o .. **-* .... UI .. ,. MAX STRESS in SS MAX STRESS in Al ,.,..-. ,., ,.,., ... GR*W*P(l) Figure 13. GR+ MaxP{1} Stress Ratio Plot 18 30441 R00030/A t II ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Mt*W*l'{1}(9UI) l'l.ti*NAll-~ltStr ...
where :
* 0.0-0.2 .0.2-0 ...
fa = Horizontal seismic load effect Ev = Vertical seismic load effect p   = 1.0 (Redundancy Factor)
* 0.40.11 .O.MU ao..e-1.0 .,1.0 MAX STRESS in SS S~(Marl* Sk-: 1:.: lc:ona,..; Figure 14. GR+ MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 19 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report H*-l'tllC-U.) .0,CMU .O.J.04 .04U .OM.I .u.1.0 **Ut Iii-............... ~"4-1*;, ....... : 12100 Allio: O.OI C:.-.: GA*M*fltl) Figure 15. GR+ MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 20 30441 R00030/A ""'' "' """ ... 6fl+MeoP(1} t II ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.2 ASME 831.3 Expansion Stress Ratio Plots .0.24.* .0.40.8 .O.Mt.l *G.9*1.0 ... ,.o MAX STRESS in SS ':J.... MAX STRESS in Al Figure 16. Amb to T1{1} Stress Ratio Plot 21 30441 R00030/A W II ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report ..,..,.11{tl(JXI') "***-l>l*h ..
OE = FP (Effect of horizontal seismic force)
* 0.0.0.2 .02 .... ao."'41* .....
Sos= Design spectral response acceleration at short period D = Dead Load (piping operating weight)
* D.1.0 **t.o y :-l. MAX STRESS in SS Figure 17. Amb to T1{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 22 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report .. ___ _ aooe.a .U0.<11 .040 .HO.I *0.1*1.0 .. ,. MAX STRESS in Al l'l:li"t. AH51. [--~-JIiii S-.: 195 ..... : 250!!0 Allio: Qtn Ca,a,.* .... 11111nJ Figure 18. Amb to T1{1} Stress Ratio Plot Close Up, Aluminum Pipes 23 30441 R00030/A ' a' ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.3 ASME 831.3 Hoop Stress Ratio Plots ........ ..._.....SR. ao.0.0.2 .G.2-0-" .04U auu .o .... ,.o **1.0 MAX STRESS in Al 11-Ptwll: AUl6 HooplM.J* plli SlteN: 314 Abt.: 16700 F1411io: am CGll'lbil\: M*POJ Figure 19. MaxP{1} Stress Ratio Plot 24 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report lil*"tllOiOOI') l(.i .. .00,0.J .02.0.* ao.011 .o ... , .01-10 ** u Pon: Al.06 HOCPIM*I* pli ,s._: JU Aloi,,!: 1670) 'R<<o: 0.02 :c.ontiin: M1111P{1) Figure 20. MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 25 30441 R00030/A ' ..
*Note: In addition of applying the two shear forces simultaneously, a conservative AutoPIPE default vertical factor of 0.5 was used. Vertical force can be calculated using ASCE 7-10 12.4-4 but is much smaller than 0.5 x shear direction . The higher value is used.
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report -l'(l)(WOOI') **-.2 .uu ..... .... .a. .... 1, **u MAX STRESS in Al -, 11*-,.... N,.C't:,."'_..,. m M,,t.* 1000 A*: o.m: Celcih.; MaP"(I) Figure 21. MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 26 30441 R00030/A ' . -*
* Eh = 0.035g (Shear) 15
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 8.1.4 ASME 831.3 Occasional Stress Ratio Plots lw.*11{1)(0CC) ,-o111,1itA11-,kft** .0..0-0.2 .0.2-0., .040.4 .0.6-0.I .o .. ,.o .J,.0 '~. Pon: AH61N* DCCNional:IM*I* PIii SIMM: Bl9 Alow.: 16891 R.rio: 005 C<<ia\: S1&
 
* El{H MAX STRESS in Al 1028 '""' om; S**E1fH Figure 22. Sus+ E{1} Stress Ratio Plot (Seismic) 27 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Sv.i. .. &#xa3;1111 (OCC) R.WoMAII-W.h..: .OJM>.2 .0.2-(J..1 .Q.4,0_8 .0.0-0.1 *U-1.0 **1.G Point: Al.09. O~IM*l* pa s11 .. : ees Alo#.: 22211 Allio; 0.04 Conti\: Sua.
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                                                               30441 R00030/A
* E 1(1} MAX STRESS in SS 883 22211 ... Sut.*EHH Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Stainless Steel Piping 28 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Sw..*11f1JCO'C) lt,hle....,_DllS-..: .00-0.2 .0.2-0.<I .040.D *o.e.o.i .0 .. 1.0 **1.0 Pon: : AH6l N
* Ev = 0.0175g (Vertical)
* Occeaicrie1"4eicJ* PIii si,.: 81S Abt.; 16891 Rlllio: O.D5 Cona,.* Sw.. + E1(1) AH61N+ 1028 """ 006 S1a.*E1l1l W t1 I Figure 24. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Aluminum Piping 29 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 8.2 Seismic Displacement The design of the system shows that the tower and the pool are two independent structures. During a seismic event these structures will displace independently. To alleviate stress caused from independent movement, flexible piping was added at the pool/tower interface (towards the pool side). To verify the flexible piping doesn't induce stresses, an analysis with an imposed displacement was done. A two inch imposed displacement was applied independently on the Tower side of the flexible piping in +/-x and +/-z direction. Figure 25 and Figure 26 show the AutoPIPE model and the Seismic results. As shown in the results box in Figure 26, the two inch imposed displacement has negligible effects on the stress ratio (Max ratio is 0.05 on the AH42F+ ). Therefore the flexible piping design is working as intended. The other three directions are similar and are not shown since stress ratios are low. Tower Side y Figure 25. Imposed displacement on the Tower Side AutoPIPE model +z direction 30 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report t-*ltft)(O(.C) **u* .,...., .. ... u .... t. -~1.0 MAX STRESS in SS II I! 11 30441 R00030/A " -Figure 26. Imposed displacement on the Tower Side Sus+ E{1} Stress Ratio Plot +z direction 9 SUPPORTANDANCHORLOADS The following section shows the support force during operation and operation plus seismic calculations. Operation is Gravity + Temperature + Pressure (Gravity, Expansion, and Hoop). Table 6 and Table 7 show a summary of the forces of the two cases. Figures 27 through 29 show the point numbers associated with the support. Please note these cases are not the same as the combination code stress. 31 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Table 6. Support Forces Summary for Normal Operation Location Support Case X (lbf) y (lbf) z (lbf) Type AH19 Guide Operation 115 7 AH30 Guide Operation 218 57 AH30 Line Stp Operation 279 0 65 AH36 Guide Operation 2 -193 -10 AH83 Guide Operation 63 1 AH41 Guide Operation -310 -85 3 AH84 Guide Operation 0 -33 0 AH84 Line Stp Operation 235 0 0 AH85 Line Stp Operation 0 -317 0 AH85 Guide Operation 11 0 -1 AK08 Guide Operation 0 199 853 AK16 Guide Operation 41 -154 -177 AK16 Line Stp Operation 627 0 146 AK17 Guide Operation 102 10 AK21 Guide Operation 13 -135 0 AK24 Guide Operation 207 0 AK47 Guide Operation 16 -166 -19 AK40 Guide Operation 35 173 29 AK40 Line Stp Operation -16 0 19 AK52 Line Stp Operation 0 -673 0 AK52 Guide Operation 13 0 -29 AL09 Guide Operation 11 -218 -47 AL09 Line Stp Operation 242 0 57 AL14 Guide Operation 0 -156 1 AL63 Guide Operation 86 1 AL19 Guide Operation -355 -88 4 AL64 Guide Operation 0 7 AL64 Line Stp Operation 259 0 0 AL65 Line Stp Operation 0 -303 0 AL65 Guide Operation 10 0 4 32 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Table 7. Support Forces Summary for Operation+ Seismic Location Support Case X (lbf) y (lbf) z (lbf) Type AH19 Guide Operation + Seismic 112 11 AH30 Guide Operation + Seismic 213 64 AH30 Line Stp Operation + Seismic 300 0 70 AH36 Guide Operation + Seismic 1 -189 -5 AH83 Guide Operation + Seismic 67 1 AH41 Guide Operation + Seismic -350 -85 4 AH84 Guide Operation + Seismic 0 -27 6 AH84 Line Stp Operation + Seismic 277 0 0 AH85 Line Stp Operation + Seismic 0 -316 0 AH85 Guide Operation + Seismic 23 0 9 AK08 Guide Operation + Seismic 0 200 855 AK16 Guide Operation + Seismic 41 -151 -175 AK16 Line Stp Operation + Seismic 639 0 149 AK17 Guide Operation + Seismic 100 13 AK21 Guide Operation + Seismic 13 -133 0 AK24 Guide Operation + Seismic 203 0 AK47 Guide Operation + Seismic 158 10 AK40 Guide Operation + Seismic 32 158 27 AK40 Line Stp Operation + Seismic 1 0 -1 AK52 Line Stp Operation + Seismic 0 -655 0 AK52 Guide Operation + Seismic 42 0 0 AL09 Guide Operation + Seismic 10 -214 -41 AL09 Line Stp Operation + Seismic 262 0 61 AL14 Guide Operation + Seismic 153 4 AL63 Guide Operation+ Seismic 90 1 AL19 Guide Operation + Seismic -386 -88 4 AL64 Guide Operation + Seismic 0 -51 0 AL64 Line Stp Operation + Seismic 291 0 0 AL65 Line Stp Operation + Seismic 0 -301 0 AL65 Guide Operation + Seismic 22 0 14 33 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 27. Piping supports point numbers on Tower side Figure 28. Piping supports point numbers for Flex Joints and along the pool 34 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A Figure 29. Piping supports point numbers in the pool As stated in the assumptions, interfaces were modeled as rigid anchors. Table 8 and Figure 30 show the anchor forces and the point numbers. Table 8. Anchor Forces Summary Location Support Case X-force Y-force z. force X-moment y. moment Z-moment Type (lbf) (lbf) (lbf) (ft-lb) (ft-lb) (ft-lb) AH08 Anchor Operation -519 -350 -130 459 -1076 -74 AK02 Anchor Operation -666 -437 -833 530 -1253 18 AH80 Anchor Operation 1 1 4 -17 AL60 Anchor Operation 1 -68 0 3 24 AH08 Anchor Operation + Seismic -511 -346 -122 455 -1070 -74 AK02 Anchor Operation + Seismic -660 -434 -826 529 -1250 18 AH80 Anchor Operation + Seismic 4 -66 3 2 -8 AL60 Anchor Operation + Seismic 4 -68 3 2 -16 35 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Heat Exchanger Interface
Static Earthquatr                                                     w New           ModlySelected I     DoieteSelected I     DoleteAI   (
* y Inside the Pool ~* "r Figure 30. Anchor supports point numbers at the Heat Exchanger and Target interface 10 CONCLUSIONS The target cooling water system piping was modeled in AutoPIPE with the operational, and ASCE 7-10 seismic loading. The results shows that piping passes ASME B31.3 2014 piping stress code. Additionally, the analysis shows that the flexible piping located at the bridge to Bio-Shield/Pool interface alleviates stress cause from independent movement of the tower and bio-shield during a seismic event and allows for an up to 2 inch movement, which is ample margin. Overall, the piping analysis shows that there is a large margin in the stress allowable, with a Factor of Safety (FoS) > 7. 11 REFERENCES Reference Document Number Description 1 ASCE 7-10 Minimum Design Loads for Buildings and Other Structures 2 ASME B31.3 Process Piping, 2014 Edition 3 30441S00001 Moved to Applicable Documents Section 4 USGS Design Maps Detail Report 5 USGS Design Maps Summary Report 6 FEMA FEMA Hazard Maps 36 ENCLOSURE l Mo-99 Target Cooling System Seismic Analysis Design Calculation Report APPENDIX A USGS DESIGN MAPS DETAIL REPORT 12113/2016 OesilJI Maps Detailed Report lJSGS Design Maps Detailed Report ASCE 7-10 Standard (38.93166&deg;N, 92.3418&deg;W) Site Class B -"Rode", Risk category I/II/III Section 11.4.1 -Mapped Acceleration Parameters Note: Ground motion values provided below are for the direction of maximum horizontal spectral response aoceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain Ss} and 1.3 (to obtain S1). Maps in the 2010 ASCE.-7 Standard are provided for Site dass B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3. 30441 R00030/A From Figure 22-1111 Ss = 0.168 g From Figure 22-2121 S1 = 0.093 g Section 11.4.2 -Site Class The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has dassified the site as Site dass B, based on the site soil properties in accordance with Chapter 20. Table 20.3-1 Site Classification Site Class A. Hard Rock B. Rock C. Very dense soil and soft rock D. Stiff Soil E. Soft day soil F. Soils requiring site response analysis in accordance with Section 21.1 vs NorNc1, Su >5,000 ft/s N/A N/A 2,500 to 5,000 ft/s N/A N/A 1,200 to 2,500 ft/s >50 >2,000 psf 600 to 1,200 ft/s 15 to 50 1,000 to 2,000 psf <600 ft/s <15 <1,000 psf Any profile with more than 10 ft of soil having the characteristics:
ASCE 2010 Ve nal C..o     S.iemk:Coda fectO<
X(g)     Y(g)     Z (g)         Si,,0- :                     IB       ..:l   r   q,Code :           I Et   ASCE 2010                   0.50             D.1115                 I~         Facto, PP) :     ,-l l(~XXJ -       r- ~       :           p e.93166 Attachmerl Height (z) :       j62.500               Longh,de :         1*92341 80 Rod Height (h) :             j70.CXXl         r    Mopped Spocbol Rooponse(Ss) :
jo.17524 Conl)Ol,enl R._,_ (Rp) :     j12 0    ii An1>'fication Factcr (ap) :   -12500--         Maicinun Conoidefed Elllthquoke (Fe) :     jtCXXJOO M ~ Focio< (ij :             j1.CXXJ Show Locotion on Mop I
H..-,                                                   OK             Cancel           H.-i OK Figure 12. AutoPIPE Seismic Inputs and corresponding G levels 8             RESULTS 8.1           ASME B31.3 Code Stress Results The ASME 831 .3 code combinations results are documented in this section . Results in Table 5 show combinations with numbers in the name. Loading input is shown in Table 4. Occasional stress category is calculated by combining seismic with sustain load. Figures 13 through 24 show the stress ratio plots. The red circles indicate the general areas of the high stress . Within that circle the square box with crosshairs is the exact point of the high stress.
* GR - Gravity
* Amb to T1 - Ambient to Operating Temperature
* Max P - Max Pressure
* Sus - GR + Max P
* E - Seismic Load Table 5. ASME B31.3 Code Max Stress Result Summary Stress Stress/Stress               Node Combination               Category             Material         Stress (ksi)       Allowable                                                           Location  Figure Allowable Ratio           Number (ksi)
Y-Pipe, before  Figure GR + Max P{1}                 Sustain               316L                 0.7             16.7                       0.04               AL 13 flexible   14 piping Inside Pool , on Figure GR + Max P{1}                 Sustain             6061 -T6                 1.0             12.7                       0.08               AL36 F -
expansion     15 loop 16
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report         30441 R00030/A Stress Stress/Stress   Node Combination   Category   Material Stress (ksi) Allowable                         Location  Figure Allowable Ratio Number (ksi)
At Heat Figure Amb to T1{1} Expansion   316L       3.2           25         0.13       AK03   Exchanger 17 Interface At SS to Al Figure Amb to T1{1} Expansion 6061-T6     0.2           19         0.01       AH51       pipe 18 interface 3" to 2" y Figure Max P{1}     Hoop     316L       0.3         16.7         0.02       AL06 pipe      20 AIIAI  Figure Max P{1}     Hoop     6061-T6     0.3         12.7         0.02       AK46 piping     21 Y-piping  Figure Sus. + E1 {1} Occasion   316L       0.9         22.2         0.04       AL09-support     23 Inside Pool, on  Figure Sus. + E1{1} Occasion   6061-T6     1.0         16.9       0.06     AH61N+
expansion     24 loop 17
 
ENCLOSURE I Mo-99 Target Cooling System Seism ic Analysis Design Calculation Report                                           30441R00030/A 8.1.1 ASME B31.3 Sustain Stress Ratio Plots
                                      ....... l'IIJ(SUI)
* 004.J MAX STRESS in SS
                                    * * .u ..
                                    * * -o ..
                                    .   ... UI                                             ,.,..- .
t II GR
* W*P(l )
MAX STRESS in Al Figure 13. GR+ MaxP{1} Stress Ratio Plot 18
 
ENC LOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                     30441 R00030/A Mt*W*l'{1}(9UI) l'l.ti*NAll-~lt Str...
* 0.0-0.2
          . 0.2-0 ...
* 0.40.11
          . O.M U a o..e-1.0
          .   , 1.0 S~(Marl
* Sk- :
1:.:
l c:ona,..;
MAX STRESS in SS Figure 14. GR+ MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 19
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                             30441 R00030/A
----~---
H * -l'tllC-U.)
0,CMU O.J.0 4 0 4U
. OM.I
. u.1.0
* *Ut Iii -                               t II
                                                                                                ~"4-1 * ;,
Allio :
C:.-.:
12100 O.OI GA*M*fltl) 6fl+MeoP(1}
Figure 15. GR+ MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 20
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                         30441 R00030/A 8.1 .2 ASME 831.3 Expansion Stress Ratio Plots W II
                                  . 0 .24.*
                                  . 0.40.8
                                  . O.Mt.l
* G.9* 1.0
                                  . .. ,.o MAX STRES S in SS MAX STRESS in Al
                                        ':J....
Figure 16. Amb to T1{1} Stress Ratio Plot 21
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                     30441 R00030/A
        ..,.. , . 11{tl (JXI')
        "***-l>l*h..
      .a o02."'.41*.
* 0.0.0 .2
* D.1 .0
      * *t.o MAX STRESS in SS y
:-l.
Figure 17. Amb to T1{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 22
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                           30441 R00030/A a ooe.a
. U0.<11
. 040
. HO.I
* 0.1*1.0
                                                                                                              ' a '
l'l:li"t . AH51 .
[--~-                 JIiii S-. :                 195
                                                                                  ..... :           250!!0 Allio :             Qtn Ca,a,. *   .... 111 11nJ MAX STRESS in Al Figure 18. Amb to T1{1} Stress Ratio Plot Close Up, Aluminum Pipes 23
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                         30441 R00030/A 8.1.3 ASME 831.3 Hoop Stress Ratio Plots
                                  ........ ..._..... SR.
a o.0.0.2
                                  . G.2-0-"
                                  .o     ..
                                  . 04U a uu                                11 -
                                            ,.o
                                  * *1.0                               Ptwll :     AUl6 HooplM.J
* plli SlteN :           31 4 Abt. :           16700 F1411io :         am CGll'lbil\:   M*POJ MAX STRESS in Al Figure 19. MaxP{1} Stress Ratio Plot 24
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Ana lysis Design Calculation Report                                             30441 R00030/A lil*"tllOiOOI')
l(.i.. " - * - -
. 00,0.J
. 02.0.*
.o. .,
a o.011
. 01-1 0
*     *u Pon :     Al.06 HOCPIM*I
* pli
                                                                                            , s._ :               JU Aloi,,! :         1670)
                                                                                            ' R<<o :               0.02
:c.ontiin : M1111P{1 )
Figure 20. MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 25
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                         30441 R00030/A
  -l'(l)(WOOI')
. uu
      *-.2
.   ....a.
. ...1,
**u 11 *-                     ' .
M,,t.
* A* :
Celcih.;
N,.C -
                                                                                      't:,."'_. . ,. m 1000 o.m:
MaP"(I)
MAX STRESS in Al Figure 21 . MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 26
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                     30441 R00030/A 8.1.4 ASME 831.3 Occasional Stress Ratio Plots lw.*11{1)(0CC)
                          ,-o111,1itA11-,kft**
                          . 0..0-0.2
                          . 0.2-0.,
                          .o
                          . J,..0
                          . 040.4
                          . 0.6-0.I
                                    ,.o Pon :   AH61N*
DCCNional:IM*I
* PIii SIMM :             Bl9       1028 Alow.:
R.rio :
C<<ia\:
16891 005 S1&
* El{H om; S*
* E1fH MAX STRESS in Al
                                  ' ~.
Figure 22. Sus+ E{1} Stress Ratio Plot (Seismic) 27
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                               30441 R00030/A Sv.i. .. &#xa3;1111 (OCC)
R.WoMAII-W.h..:
                . OJM>.2
                . 0.2-(J..1
                . Q.4,0 _8
                . 0.0-0.1
* U -1.0
                * *1.G Point : Al.09 .
O~IM*l
* pa s11.. :
Alo#.:
Allio ;
Conti\:
ees 2221 1 0.04 Sua.
* E1(1}
883 22211 Sut.* EHH MAX STRESS in SS Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Stainless Steel Piping 28
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                                     30441 R00030/A Sw..*11f1JCO'C) lt,hle....,_DllS-..:
. 00-0.2
. 0 .2-0.<I
. 040.D
* o.e.o.i
. 0 .. 1.0
* *1.0 W t1 I Pon: :     AH6l N
* AH61N +
Occeaicrie1"4eicJ
* PIii si,. :               81S           1028 Abt.;
Rlllio :
Cona,.*
16891 O.D5 Sw.. + E1 (1)           """
006 S1a.
* E1l1l Figure 24. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Aluminum Piping 29
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report         30441 R00030/A 8.2     Seismic Displacement The design of the system shows that the tower and the pool are two independent structures.
During a seismic event these structures will displace independently. To alleviate stress caused from independent movement, flexible piping was added at the pool/tower interface (towards the pool side) . To verify the flexible piping doesn't induce stresses , an analysis with an imposed displacement was done. A two inch imposed displacement was applied independently on the Tower side of the flexible piping in +/- x and +/- z direction. Figure 25 and Figure 26 show the AutoPIPE model and the Seismic results. As shown in the results box in Figure 26, the two inch imposed displacement has negligible effects on the stress ratio (Max ratio is 0.05 on the AH42F+ ).
Therefore the flexible piping design is working as intended. The other three directions are similar and are not shown since stress ratios are low.
Tower Side y
Figure 25. Imposed displacement on the Tower Side AutoPIPE model +z direction 30
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report     30441 R00030/A t-*ltft)(O(.C)
  * *u*.
  .- ..~1..0t.
  . ..u
                                                                                    ~ "-
II I!
11 MAX STRESS in SS Figure 26. Imposed displacement on the Tower Side Sus+ E{1} Stress Ratio Plot +z direction 9             SUPPORTANDANCHORLOADS The following section shows the support force during operation and operation plus seismic calculations . Operation is Gravity + Temperature + Pressure (Gravity, Expansion, and Hoop).
Table 6 and Table 7 show a summary of the forces of the two cases. Figures 27 through 29 show the point numbers associated with the support. Please note these cases are not the same as the combination code stress.
31
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report         30441 R00030/A Table 6. Support Forces Summary for Normal Operation Support Location Type Case       X (lbf)   y (lbf) z (lbf)
AH19     Guide   Operation       -2      -115       7 AH30     Guide   Operation     -13      -218       57 AH30   Line Stp Operation     279         0       65 AH36     Guide   Operation       2       -193     -10 AH83     Guide   Operation       63       -80      -1 AH41     Guide   Operation     -310       -85       3 AH84     Guide   Operation       0       -33       0 AH84   Line Stp Operation     235         0         0 AH85   Line Stp Operation       0       -317       0 AH85     Guide   Operation       11         0       -1 AK08     Guide   Operation       0       199     853 AK16     Guide   Operation       41       -154     -177 AK16   Line Stp Operation     627         0       146 AK17     Guide   Operation       -2      -102       10 AK21     Guide   Operation       13       -135       0 AK24     Guide   Operation     -60      -207       0 AK47     Guide   Operation       16       -166     -19 AK40     Guide   Operation       35       173       29 AK40   Line Stp Operation     -16         0       19 AK52   Line Stp Operation       0       -673       0 AK52     Guide   Operation       13         0       -29 AL09     Guide   Operation       11       -218     -47 AL09   Line Stp Operation     242         0       57 AL14     Guide   Operation       0       -156       1 AL63     Guide   Operation       86       -59      -1 AL19     Guide   Operation     -355       -88       4 AL64     Guide   Operation       0       -57      -7 AL64   Line Stp Operation     259         0         0 AL65   Line Stp Operation       0       -303       0 AL65     Guide   Operation       10         0         4 32
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report           30441 R00030/A Table 7. Support Forces Summary for Operation+ Seismic Support Location Type Case         X (lbf) y (lbf) z (lbf)
AH19     Guide   Operation + Seismic   -2    -112     11 AH30     Guide   Operation + Seismic   -15    -213     64 AH30     Line Stp Operation + Seismic   300     0     70 AH36     Guide   Operation + Seismic     1   -189     -5 AH83     Guide   Operation + Seismic   67     -78      -1 AH41     Guide   Operation + Seismic -350     -85       4 AH84     Guide   Operation + Seismic     0     -27       6 AH84     Line Stp Operation + Seismic   277     0       0 AH85     Line Stp Operation + Seismic     0   -316       0 AH85     Guide   Operation + Seismic   23     0       9 AK08     Guide   Operation + Seismic     0     200     855 AK16     Guide   Operation + Seismic   41   -151   -175 AK16     Line Stp Operation + Seismic   639     0     149 AK17     Guide   Operation + Seismic   -3    -100     13 AK21     Guide   Operation + Seismic   13   -133       0 AK24     Guide   Operation + Seismic   -45    -203       0 AK47     Guide   Operation + Seismic   -8    -158      10 AK40     Guide   Operation + Seismic   32     158     27 AK40   Line Stp Operation + Seismic     1     0       -1 AK52   Line Stp Operation + Seismic     0   -655       0 AK52     Guide   Operation + Seismic   42     0       0 AL09     Guide   Operation + Seismic   10   -214     -41 AL09   Line Stp Operation + Seismic   262     0       61 AL14     Guide   Operation + Seismic   -1    -153       4 AL63     Guide   Operation+ Seismic     90     -57      -1 AL19     Guide   Operation + Seismic -386     -88       4 AL64     Guide   Operation + Seismic     0     -51       0 AL64   Line Stp Operation + Seismic   291     0       0 AL65   Line Stp Operation + Seismic     0   -301       0 AL65     Guide   Operation + Seismic   22       0     14 33
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report       30441 R00030/A Figure 27. Piping supports point numbers on Tower side Figure 28. Piping supports point numbers for Flex Joints and along the pool 34
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report           30441 R00030/A Figure 29. Piping supports point numbers in the pool As stated in the assumptions , interfaces were modeled as rigid anchors. Table 8 and Figure 30 show the anchor forces and the point numbers.
Table 8. Anchor Forces Summary Location Support Case X- force   Y- force z. force X- moment y. moment Z- moment Type                             (lbf)     (lbf)   (lbf)     (ft-lb)   (ft-lb)   (ft-lb)
AH08     Anchor         Operation           -519       -350     -130       459       -1076       -74 AK02     Anchor         Operation           -666       -437     -833       530       -1253         18 AH80     Anchor         Operation             1         -67      -1         -5        -4       -17 AL60     Anchor         Operation             1         -68       0         3         -2        -24 AH08     Anchor     Operation + Seismic     -51 1      -346     -122       455       -1070       -74 AK02     Anchor     Operation + Seismic     -660       -434     -826       529       -1250         18 AH80     Anchor     Operation + Seismic       4         -66       3       -13        -2         -8 AL60     Anchor     Operation + Seismic       4         -68       3         -5        -2       -16 35
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report             30441 R00030/A Inside the Pool
                                                                    ~* "r Heat Exchanger
* y
                                                                    ~
Interface Figure 30. Anchor supports point numbers at the Heat Exchanger and Targe t interface 10       CONCLUSIONS The target cooling water system piping was modeled in AutoPIPE with the operational, and ASCE 7-10 seismic loading. The results shows that piping passes ASME B31 .3 2014 piping stress code.
Additionally, the analysis shows that the flexible piping located at the bridge to Bio-Shield/Pool interface alleviates stress cause from independent movement of the tower and bio-shield during a seismic event and allows for an up to 2 inch movement, which is ample margin. Overall, the piping analysis shows that there is a large margin in the stress allowable, with a Factor of Safety (FoS) > 7.
11       REFERENCES Reference Document Number           Description 1     ASCE 7-10               Minimum Design Loads for Buildings and Other Structures 2     ASME B31.3               Process Piping, 2014 Edition 3     30441S00001             Moved to Applicable Documents Section 4     USGS                     Design Maps Detail Report 5     USGS                     Design Maps Summary Report 6     FEMA                     FEMA Hazard Maps 36
 
ENCLOSURE l Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                           30441 R00030/A APPENDIX A USGS DESIGN MAPS DETAIL REPORT 12113/2016                                                     OesilJI Maps Detailed Report lJSGS           Design Maps Detailed Report ASCE 7-10 Standard ( 38.93166&deg;N , 92.34 18&deg;W)
Site Class B - "Rode", Risk category I/II/III Sect ion 11.4 .1 - Mapped Acceleration Pa rameters Note: Ground motion values provided below are for the direction of maximum horizontal spectral response aoceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain Ss} and 1.3 (to obtain S 1 ) . Maps in the 2010 ASCE.-7 Standard are provided for Site dass B.
Adjustments for other Site Classes are made, as needed, in Section 11.4.3.
From Figure 22-1 111                                                                          Ss = 0.168 g From Figure 22-2 12 1                                                                        S1 = 0 .093 g Sect ion 11.4.2 - Site Class The authority having jurisdiction (not t he USGS), site-specific geotechnical data, and/or the default has dassified the site as Site dass B, based on the site soil properties in accordance with Chapter 20.
Table 20 .3-1 Site Classifi cation Site Class                                                 vs                    N or Nc1,          Su A. Hard Rock                                         >5,000 ft/s                     N/A           N/A B. Rock                                          2,500 to 5,000 ft/s                 N/A           N/A C. Very dense soil and soft rock                1,200 to 2, 500 ft/s               >50         >2,000 psf D. Stiff Soil                                    600 to 1,200 ft/s               15 to 50   1,000 to 2,000 psf E. Soft d ay soil                                      <600 ft/s                     < 15       <1,000 psf Any profi le with more than 10 ft of soil having the characteristics:
* Plasticity index PI > 20,
* Plasticity index PI > 20,
* Moisture content w 40%, and
* Mo isture content w ~ 40%, and
* Undrained shear strengths.< 500 psf See Section 20.3.1 For SI: 1ft/s = 0.3048 m/s lib/ft> 0.0479 kN/m 2 A-1 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A 12/13/2011! OHiS,, Maps DM.Jiled Repcrt Section 11.4.3 -Site Coefficients and Risk-Targeted Maximum Considered Earthquake (,MCE~) Spectral Response Acceleration Parameters Site dass A B C D E F Site Class A B C D E F Table 11.4-1: Site Coefficient F. Mapped MCE R Spectral Response Acceleration Parameter at Short Period 5s S 0.25 5s = 0.50 5s = 0.75 5s = 1.00 5s 1.25 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.1 1.0 1.0 1.6 1.4 1.2 1.1 1.0 2.5 1.7 1.2 0.9 0.9 see Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of Ss For Site Class= Band S5 = 0.168 g, F. = 1.000 Table 11.4-2: Site Coefficient F, Mapped MCE R Spectral Response Acceleration Parameter at 1-s Period s, S 0.10 s, = 0.20 s, = 0.30 s, = 0.40 s, 0.50 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.7 1.6 1.5 1.4 1.3 2.4 2.0 1.8 1.6 1.5 3.5 3.2 2.8 2.4 2.4 see Section 11.4. 7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S1 For Site Class= Band S1 = 0.093 g, F, = 1.000 htipo:Hear1hqwl<e.usgs.go,,ldesignmapslus/report.p,p?lemplu=minimal&l.aii1Ude=3Ul3111G&longitude=*G2.3418&sileelau= 1&riskc.,iego,y=O&edition=asce-2... 2/0 A-2 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report Equation (11.4-1): SMS = F.ss = 1.000 x 0.168 = 0.168 g Equation (11,4-2): SHI = FySl = 1.000 X 0.093 = 0.093 g Section 11.4.4 -Design Spectral Acceleration Parameters Equation (11.4-3): Sos=% SMs = o/s X 0.168 = 0.112 g Equation (11.4-4): S01 = Y. S,41 = Y. X 0.093 = 0.062 g Section 11.4.5 -Design Response Spectrum From Figure 22-12 r31 TL = 12 seconds Figure 11.4-1: Design Response Spectrum T,sTsT *. s, -s.. { T
* Undrained shear strength s . < 500 psf F. Soils requiring site response                                        See Section 20.3.1 analysis in accordance with Section 21.1 Fo r SI : 1ft/s = 0. 3048 m/s l ib/ft> 0 .0479 kN/ m 2 A-1
* T, ,s, :*-.( 0,4
 
* 0.8T IT,) S
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                                                 30441 R00030/A 12/13/2011!                                                           OHiS,, Maps DM.Jiled Repcrt Sect ion 11 .4.3 - Sit e Coefficients and Risk- Targeted Max imum Considered Earthq uake
* O. ll2 T1 < T :s T,: S,
(,MCE~) Spect ral Response Accelerat ion Pa ram eters Table 11 .4-1: Site Coefficient F.
* S01 IT So,* 0.062 T, -O.lll T, = 0.554 T>l, :S,= S01T,IT' 1.000 Period, T (sec) A-3 30441 R00030/A ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/ A 12/13/2016 Section 11.4.6 -Risk-Targeted Maximum Considered Earthquake (MCER) Response Spectrum The MCE* Responae Spectrum is determined by multiplying the design response spectrum above by 1.5. ! : t " " < I " ct j s .. 1-0.093 T,*0.111 T,
Site dass            Mapped MCE       R Spectral Response Acceleration Parameter at Short Period 5s   S 0.25           5s = 0 .50         5s =   0 .75         5s =   1.00         5s 1.25 A                  0.8                 0 .8             0 .8                 0.8                 0.8 B                  1.0                 1.0               1.0                 1.0                 1.0 C                  1.2                 1.2               1.1                 1.0                 1.0 D                  1.6                 1.4               1.2                 1.1                 1.0 E                  2.5                 1.7               1.2                 0.9                 0.9 F                                          see Section   11.4.7 of ASCE 7 Not e: Use straight-line interpolation for intermediate values of                   Ss For Site Class = B and S 5 = 0 . 1 6 8 g, F. = 1.000 Table 11.4-2: Site Coefficient F, Site Class            Mapped MCE       R Spectral Response Acceleration Parameter at 1-s Period s, S 0 .10           s, = 0 .20         s, = 0.30           s, = 0.40           s, ~ 0 .50 A                  0.8                 0.8               0.8                   0.8                 0.8 B                  1.0                 1.0               1.0                 1.0                 1.0 C                  1.7                 1.6               1.5                 1.4                 1.3 D                  2 .4                 2.0               1.8                 1.6                 1.5 E                  3 .5                 3 .2             2 .8                 2.4                 2.4 F                                          see Section   11.4. 7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S 1 For Site Class= B an d S 1 = 0 .093 g, F,         =   1.000 htipo :Hear1hqwl<e.usgs.go,,ldesignmapslus/report.p,p?lemplu= minimal&l.aii1Ude=3Ul3111G&longitude=*G2.3418&sileelau= 1&riskc.,iego,y=O&edition=asce-2... 2/0 A-2
* 0.554 1.000 Perlod.T(sed A-4 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 12/13/2010 Oesig, Maps Detailed Repa, Section 11.8.3 -Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F From figure 22-Z 141 PGA = 0.080 Equation (11.8-1): PG~ = FPGAPGA = 1.000 x 0.080 = 0.08 g Table 11.8-1: Site Coefficient F""" Site dass Mapped MCE Geometric Mean Peak Ground Acceleration, PGA A B C D E F PGA :5: 0.10 0.8 1.0 1.2 1.6 2.5 PGA = 0.20 PGA = 0.30 PGA = 0.40 PGA 2: 0.50 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.2 1.1 1.0 1.0 1.4 1.2 1.1 1.0 1.7 1.2 0.9 0.9 See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of PGA For Site Class= Band PGA = 0.080 g, F * .,.. = 1.000 Section 21.2.1.1 -Method 1 (from Chapter 21 -Site-Specific Ground Motion Procedures for Seismic Design) From figure 22-17151 = 0.862 From Figure 22-18161 Cii1 = 0.835 A-5 ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 1211:112i11e Design M~ Data/loci R~ Section 11.6 -Seismic Design Category Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter RISK CATEGORY VALUE OF S.,5 I or II III IV S05 < 0.167g A A A 0.167g S S05 < 0.33g B B C 0.33g S S05 < 0.50g C C 0 0.50g S S05 0 0 0 For Risk Category= I and S05 = 0.112 g, Seismic Design Category= A Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter RISK CATEGORY VALUE OF S01 I or II III IV s ... < 0.067g A A A 0.067g S s.,. < 0.133g B B C 0.133g S s.,. < 0.20g C C 0 0.20g S s ... 0 0 0 For Risk Category = I and S01 = 0.062 g, Seismic Design Category = A Note: Whens, is greater than or equal to 0.75g, the Seismic Design category is E for buildings in Risk categories I, Il, and Ill, and F for those in Risk category IV, irrespective of the above. Seismic Design Category = Kthe more severe design category in accordance with Table 11.6-1 or 11.6-2" = A Note: See Section 11.6 for alternative approaches to calculating Seismic Design category. References 30441 R00030/A 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7 _Figure_22-1.pdf 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010 _ASCE-7 _Figure_22-2 .pdf 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7 _Figure_22-12.pdf 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7 _Figure_22-17 .pdf 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 lO_ASCE-7 _Figure_22-18.pdf A-6 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report APPENDIX B USGS MAPS SUMMARY REPORT 12/13/20 6 Design MiJPs St.mmary Repon lJSGS Design Maps Summary Report User-Specified Input Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available ,n 2008) Site Coordinates 38.93166&deg;N, 92.3418&deg;W Site Soil Classification Site dass B -~Rockn Risk Category J/II/IIJ USGS-Provided Output s,= 0.1689 s, = 0.093 g SMs = 0.168 g s ... = 0.093 g Sos= 0.112 g s ... = 0.062 g 30441 R00030/A For information on how the SS and Sl values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return ID the application and select the "2009 NEHRP" building code reference document. '.!
 
* Ill OU 01' OU G.12 0 10 0 08 0 0G 004 0.02 MCE11 Response Spectrum 0.00 _______ _,_ ........ _...__, ____ +--< 0 00 0 20 t 40 0 ,o O.to l 00 I 20 I ,o I ,o 1 10 2.00 Period, T (Hcl '.! II Ill Design Response Spectrnm 0.12 0.10 o oa 0 o, 0 o, 0 02 0.00 ,l----,>--+--+--,--+--+---s>---+--+--0000200 ~0~0tol00120 l l l to ~OO Period, T (s.c) For PGA,.. T,, c * ., and c., value!:, please view the detailed report. Although th,s information ts a product of the U.S. Geological Survey, \.,e pJ'Ovlde no warranty, expressed 01 implied, as to the accuracy of the data cont~ined the.rein. This tool is not a substitute for technical subjed-matter lc:nowledge.. heps ://eanhqua!<e.U5lls.gcw,-ignm ops, summary.J>l,p?tem pl3!!!"'ffl irimal&l,..tudea38..1131l!MlongiWdl,a-ll2.3418&.sil!Class* l&riskc.mgo,y*O&~tiOIP'asc... 1/1 8-1 ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A APPENDIX C FEMA MAPS Earthquake Hazard Maps I FEMA.gov Page 3 of7 mtool ft. earthquakprogrammanagers) > Information 0 lndMd als (tea uake-i ind.Mduals-a d-amiliesJ In orma *on for Comm
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                     30441 R00030/A Equation (11.4- 1):                                 SMS = F.ss = 1.000 x 0.168 = 0.168 g Equation (11,4-2):                                   SHI = FySl = 1.000 X 0.093 = 0.093 g Section 11.4.4 - Des ign Spectral Accelerati on Parameters Equation (11.4-3):                                     Sos = % SMs = o/s X 0.168 = 0.112 g Equation (11.4-4):                                     S01 = Y. S,41 = Y. X 0.093 = 0.062 g Section 11.4.5 - Des ign Response Spect rum From Figure 22- 12 r3 1                                                                TL = 12 seconds Figu re 11.4-1: Des ign Response Spectrum T
* ies (learthqua informatio comm ies) > lnformatio for Busi sses (/earthquakei formbusinand-othe -o ganizations) In ormation for Building Desig rs (/earthqua lnforma io designersmanagers-and-regulators) Earthquake Hazard Maps hazard-maps) Your Ea quake Risk (/yourearthq akrlsk) -t -:---_. *--. ......,. SOC map of the Eastern United States for low-rise Occupancy Category I and 11 structures located on sites with average alluvial soil conditions. hnps://www.fema.gov/earthquake-hazard-maps C-1 12/8/2016 
* T, ,s, : *-.( 0,4
}}
* 0.8T IT,)
T,sTs T*. s, -s..
S
* O. ll 2                                    T1 < T :s T, : S,
* S0 1 IT
{
T>l, : S,= S01T, IT' So,* 0.062 T, - O.lll       T, = 0.554     1. 000 Period, T (sec)
A-3
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                         30441 R00030/A 12/13/2016 Section 11.4.6 - Risk-Targeted Maximum Cons idered Earthquake (MCER) Response Spectrum The MCE* Responae Spectrum is determined by multiplying the design response spectrum above by 1.5.
t s..1 - 0.093 I"
ct j
T, *0.11 1    T,
* 0.554     1.000 Perlod.T(sed A-4
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                       30441 R00030/A 12/13/2010                                               Oesig, Maps Detailed Repa, Section 11.8.3 - Ad ditional Geotechnical Investigation Report Requirement s for Seismic Design Categories D through F From   figure 22-Z 14 1                                                                PGA   = 0.080 Equation (11.8-1):                                   PG~ = FPGAPGA = 1.000 x 0. 080 = 0.08 g Table 11 .8-1 : Site Coefficient F"""
Site               Mapped MCE Geometric Mean Peak Ground Acceleration, PGA dass PGA :5: 0.10     PGA = 0.20       PGA = 0 .30         PGA   = 0.40 PGA 2: 0 .50 A            0 .8            0.8               0.8                   0 .8       0.8 B            1.0            1.0               1 .0                 1.0       1.0 C            1.2             1.2                1.1                  1.0       1.0 D            1.6            1.4               1.2                   1.1       1.0 E            2 .5            1.7               1.2                   0.9       0.9 F                              See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of PGA For Site Class= Band PGA       = 0 . 080 g, F * .,.. = 1 .000 Section 21.2.1.1 - Method 1 (from Chapter 21 - Site-Specific Ground Motion Procedures for Seismic Design)
From figure     22-17 151                                                                ~    = 0.862 From Figure 22- 18 16 1                                                                  Cii1 = 0.835 A-5
 
ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                     30441 R00030/A 1211:112i11e                                               Design M~ Data/loci R ~
Section 11.6 - Seismic Design Category Table 11.6-1 Seism ic Design Category Based on Short Period Response Acceleration Parameter RISK CATEGORY VALUE OF S., 5 I or II                 III                   IV S 05  < 0.167g                 A                     A                     A 0 .167g S S 05 < 0 .33g               B                     B                     C 0.33g S S 05    < 0 .50g           C                     C                     0 0.50g S S 05                  0                     0                     0 For Risk Category= I and S05 = 0.112 g , Seismic Design Category= A Table 11.6-2 Seismic Design Category Based on 1-S Period Res ponse Acceleration Parameter RISK CATEGORY VALUE OF S 01 I or II                 III                   IV s ... < 0 .067g                 A                     A                     A 0.067g S s.,. < 0 .133g               B                     B                     C 0.133g S s.,. < 0.20g               C                     C                     0 0.20g S   s...               0                     0                     0 For Risk Category = I and S 01 = 0.062 g , Seismic Design Category = A Note: Whens, is greater than or equal to 0.75g, the Seismic Design category is E for buildings in Risk categories I, Il, and Ill, and F for those in Risk category IV, irrespective of the above.
Seismic Design Category     = Kthe more severe design category in accordance with Table 11.6- 1 or 11.6-2" = A Note: See Section 11.6 for alternative approaches to calculating Seismic Design category.
References
: 1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1 .pdf
: 2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2 .pdf
: 3. Figure 22 -12 : http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
: 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
: 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 10_ASCE-7_Figure_22-17 .pdf
: 6. Figure 22-18 : http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 lO_ASCE- 7_Figure_22-18.pdf A-6
 
ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report                                                                                   30441 R00030/A APPENDIX B USGS MAPS  
 
==SUMMARY==
REPORT 12/13/20 6                                                                   Design MiJPs St.mmary Repon lJSGS           Design Maps Summary Report User - Specifi ed Input Buildi ng Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available ,n 2008)
Site Coord inates 38.93 166&deg; N, 92 .3418&deg;W Sit e Soil Classifi cati on Site dass B - ~Rockn Risk Category             J/II/IIJ USGS-Provi de d Output s,=       0 .1689                   SMs  =   0.168 g                           Sos=         0.112 g s, =       0.093 g                   s ... =   0. 093 g                           s...   =   0.062 g For information on how the SS and Sl values above have been calculated from p robabilistic (risk-targeted) and deterministic ground motions in the directio n of maxim u m h orizontal respo nse, please return ID the application and select the "2009 NEHRP" build ing code reference document.
M CE 11 Respon se Sp ectrum                                                          Design Res pon se Sp ectrnm OU                                                                                   0 .12 0 1' OU                                                                                   0 .1 0 G.1 2                                                                                o oa
      '.!  0 10
                                                                                        '.!II Ill 0 08 Ill    0  o, 0 0G                                                                                 0  o, 0 04 0 02
: 0. 02
: 0. 00 _ _ _ _ _ _ __,_         ........_...__,_ _ _ _+--<
0 .00 ,l----,>--+--+--,--+--+---s>---+--+--
0 00 0 20 t 40 0 ,o O.to l 00 I 20 I      ,o I ,o  1 10 2.00                          000 0 20 0 ~ 0~ 0 to l 00 1 20 l       ~  l ~ l to ~OO Period, T ( Hcl                                                                    Period, T (s.c)
For PGA,.. T, ,   c*., and c. , value!:,     please view   the detailed report.
Although th,s information ts a product of the U.S . Geological Surve y, \.,e pJ'Ovlde no warranty, expressed 01 im plied , as to the accuracy of the data cont~ined the.rein . This tool is not a substitute for technica l subjed -matte r lc:nowledge..
heps ://eanhqua!<e.U5lls.gcw,-ignm ops,     summary.J>l,p?tem pl3!!!"'ffl irimal&l,..tudea38..113 1l!MlongiWdl,a-ll2.3418&.sil!Class* l &ri skc.mgo,y*O&~tiOIP'asc. .. 1/1 8 -1
 
ENCLOSURE I Mo-99 Target Cooling System Seism ic Analysis Design Calculation Report                       30441 R00030/A APPENDIX C FEMA MAPS Earthquake Hazard Maps I FEMA.gov                                                 Page 3 of7 program-managers-tool ft.
earthquake-program-managers)
                  > Information 0
lndMd als (tea     uake-i formation-ind.Mduals-a d-amiliesJ In orma *on for Comm
* ies (learthqua e-informatio comm       ies)
                  > lnformatio for Busi sses
(/earthquake-i formation-businesses-and-othe -
o ganizations)
In ormation for Building
                                            --t- -:-
SOC map of the Eastern United States for low-rise Desig rs
(/earthqua         Occupancy Category I and 11 structures located on sites lnforma io building-         with average alluvial soil condit ions.
designers-managers-and-regulators)
Earthquake Hazard Maps
(/earthquake-hazard-maps)
Your Ea quake Risk (/your-earthq ake-rlsk) hnps://www.fema.gov/earthquake-hazard-maps                                        12/8/2016 C-1}}

Latest revision as of 19:04, 3 February 2020

30441R00030, Revision a, Mo-99 Target Cooling System Eismic Analysis Design Calculation Report.
ML18022A260
Person / Time
Site: University of Missouri-Columbia
Issue date: 01/11/2017
From: Mar A
General Atomics, Univ of Missouri - Columbia
To:
Office of Nuclear Reactor Regulation, Nordion (Canada), US Dept of Energy, National Nuclear Security Admin
References
CAC A11010/05000186/L-2017-LLA-0227, DE-NA0002773 30441R00030, Rev A
Download: ML18022A260 (50)


Text

RELEASED 30441R00030 CDMA vd 2017/01/11 Revision A REACTOR-BASED MOLYBDENUM-99 SUPPLY SYSTEM PROJECT M0-99 TARGET COOLING SYSTEM SEISMIC ANALYSIS DESIGN CALCULATION REPORT Prepared by General Atomics for the U.S. Department of Energy/National Nuclear Security Administration and Nordion Canada Inc.

Cooperative Agreement DE-NA0002773 GA Project 30441 WBS 1110 M ~

/-- ;... ~ nordion

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A REVISION HISTORY Revision Date Description of Changes A 11JAN17 Initial Release POINT OF CONTACT INFORMATION PREPARED BY:

Name Position Email Phone Alvin Mar Engineer Alvin .Mar@ga.com 858-676-7602

, APPROVED BY:

Name Position Email Phone B. Schleicher Chief Engineer Bob.Schleicher@ga.com 858-455-4 733 K. Murray Project Manager Katherine .Murray@ga.com 858-455-3272 K. Partain Quality Engineer Katherine .Partain@ga.com 858-455-3225 DESIGN CONTROL SYSTEM DESCRIPTION D R&D DISC QA LEVEL SYS

[g'.J DV&S D DESIGN D T&E N II NIA D NA ii

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A TABLE OF CONTENTS REVISION HISTORY .................................................................................................................... ii POINT OF CONTACT INFORMATION ........................................................................................ ii DESIGN CONTROL SYSTEM DESCRIPTION ............................................................................ ii ACRONYMS ................................................................................................................................vi 1 OBJECTIVE ....................................... ............................................................................... 1 2 APPLICABLE DOCUMENTS .................................................................... ....................... 2 3 IN PUTS ................................................................ ............................................................. 2 3.1 General. .... ... .... ..... .. ....... ...... ........ ... ..... ... .. .. ............ ....... ... ..... .... ... .. ..... ......... ... ... ....... 2 3.2 Loads ... ..... .. .... ... .. ...... .... ... .. .. .. ......... .... .. .. ....... ... .............. .. ...... .... .. ..... ..... ...... ............ 3 4 ASSUMPTIONS ................................................................................................................ 3 5 METHOD ..................................................... ...................................................................... 3 6 AUTOPIPE MODEL .......................................................................................................... 4 6.1 Support Details .. ... .. .. .. ........ ..... ... ... .... .. .. ... .. .... ...... ........ .... .. .. ....... ..... .. ..... .. .. ... ........ . 10 6.2 Valves and Flanges ..... ... ... .. ................ ..... .. ..... .............. .... ....... ..... ...... ...... .. ... ... .. ... . 11 6.3 Piping ... .. .......... .. .. .... .. ..... .. .. .. ...... ... .... ...... ...... ..... .... ..... .... ........ ........... ... ... ...... ........ 12 6.4 Flexible Joints .. .. .. ... ..... .... .... ......... ..................... ... ....... ..... ... .............. ..... .. .... ..... ..... . 13 7 CALC UATION BODY ..................................................................................................... 14 7.1 Operational Loading ... .. ..... .... ... .... ..... ... ..... ... .. ........ ... .. ......... .... ...... ... ..... .. .. ... .......... 14 7 .2 Seismic Loads ....... ... .... .. .... .... .... ......... ...... .. ..... ......... .. .. .. ..... .. .. ....... .. .... .. .. ... ......... .. 14 7 .2.1 Site Specific Criteria ......... ........ ...... ..... ..... ... .... .. .... ... ... ...... .... .. .... ........ ... .. ....... 14 7.2.2 Seismic Forces .. ..... ............ .. ... ..... .. .. .... ... .... ..... ... .... .... .... ................. ........ ....... 15 8 RESULTS ....................................................................................................................... 16 8.1 ASME B31.3 Code Stress Results .... .... ............ .. .. ...... .. ...... .... ... ...... .. .. ... ........ .. ...... 16 8.1.1 ASME B31 .3 Sustain Stress Ratio Plots .. ... .. .......... .... ... ... .... .... ..... ... .. ... ... .... .. 18 8.1.2 ASME B31 .3 Expansion Stress Ratio Plots ......... ....... .... ................... .... .... ...... 21 8.1.3 ASME B31 .3 Hoop Stress Ratio Plots .... ... ...... ... ..... .... ..... .. ...... ... .... ..... ...... ... .. 24 8.1.4 ASME B31.3 Occasional Stress Ratio Plots ..... ........ .. ..... .... ..... ... .................... 27 8.2 Seismic Displacement ...... ....... ........ .. .... ... ... .... ... ... .. ....... .. .. .. ... ..... ...... .. ......... .. .. ..... . 30 9 SUPPORT AND ANCHOR LOADS ................................................................................ 31 10 CONCLUSIONS .............................................................................................................. 36 11 REFERENCES ................................................................................................................ 36 APPENDIX A USGS DESIGN MAPS DETAIL REPORT .................................................... A-1 APPENDIX B USGS MAPS

SUMMARY

REPORT ............................................................. B-1 APPENDIX C FEMA MAPS ................................................................................................. C-1 iii

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A LIST OF FIGURES Figure 1. Moly 99 Solidworks model ..... .. ...................... ... .... ................. ... .... ......... ... .. .. ................ 2 Figure 2. Solidworks Assembly (Red Box is the piping of interest) ..... .... .................. ..... .. ............ 5 Figure 3. AutoPIPE's model of the piping of interest .......... .. ............ ........ ...... .. ..... .. ...... .............. 6 Figure 4. Solidworks Level 3-4 up-close view ........ ........ ..... .. .. .... .. .......... .. ... ....................... .... .. .. . 7 Figure 5. AutoPIPE Level 3-4 up-close view ........................ ............ .... ... .... .. .... .. ....... .. .......... ...... 8 Figure 6. Solidworks model with pool hidden ............... .. .... ....... ...... ................... ......... .... ... ... .. ..... 9 Figure 7. AutoPIPE model with pool hidden ..................................... ...... ................................... 10 Figure 8. AutoPIPE Model Guide Support Value ..... ...... .... ....... ........ ... .. .. ........ .. ........ ..... ...... ..... 11 Figure 9. AutoPIPE Model Line Stop Value ....................... .. .. ... ........ ...................... .. .. ... .. .......... 11 Figure 10. Pipe sizes ....... .... ............... .. ...... .. ....... .......... .. ..... ... ......... ...... .. ....... .. ...... ...... ......... ... 13 Figure 11 . Flexible joint input values .... .. .................................................. ............................. .. .. . 14 Figure 12. AutoPIPE Seismic Inputs and corresponding G levels .... .. .... ................................... 16 Figure 13. GR + MaxP{1 } Stress Ratio Plot.. ........................................... .... .. ... .. .. .. .. ...... ........... 18 Figure 14. GR+ MaxP{1 } Stress Ratio Plot Close Up, Stainless Steel Pipes .. .. ....................... 19 Figure 15. GR+ MaxP{1 } Stress Ratio Plot Close Up, Aluminum Pipes .. ................................. 20 Figure 16. Amb to T1 {1} Stress Ratio Plot.. ............... .. .... .. .... .. ........... ......... .. ......... ... ................ 21 Figure 17. Amb to T1{1} Stress Ratio Plot Close Up, Stainless Steel Pipes ............................. 22 Figure 18. Amb to T1{1} Stress Ratio Plot Close Up, Aluminum Pipes ....... .. ......... ... ............... . 23 Figure 19. MaxP{1} Stress Ratio Plot .... ......... .. ................................ ...... ................................ ... 24 Fig ure 20. MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes .... ......... .. ............... .. ..... 25 Figure 21. MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes ...... .. ..................................... 26 Figure 22. Sus + E{1} Stress Ratio Plot (Seismic) ... .. .......... ...... .... ............ ....... .... ........ .. ........... 27 Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic) , in Stainless Steel Piping ............. 28 Figure 24. Sus+ E{1} Stress Ratio Plot Close Up (Seismic) , in Alu minum Piping ... .. ............... 29 Figure 25. Imposed displacement on the Tower Side AutoPIPE model +z direction ... .. ............ 30 Figure 26. Imposed displacement on the Tower Side Sus+ E{1} Stress Ratio Plot +z direction ... .... .. .. ....... .... ... ..... ... ... ... .. ................... ........ .......... ................................. ..... ....... 31 Figure 27. Piping supports point numbers on Tower side ........ .................................................. 34 Figu re 28. Piping supports point numbers fo r Flex Joints and along the pool .... .. ............. .... .... 34 Figu re 29. Piping supports point numbers in the pool ........................ ........ ........................ .. ...... 35 Figure 30 . Anchor supports point numbers at the Heat Exchanger and Target interface .... .. .... 36 iv

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A LIST OF TABLES Table 1. Flanged Valve Weight .... .... ................................... .. ...... .. ...... ...... .. ...... ... ...................... 12 Table 2. Pipe Properties ............................................................................................................ 12 Table 3. Material Properties ....... .......... .. ....... .. ......................... ................................ ............ ...... 12 Table 4. Loading Inputs ........................................................................................ .............. ....... 14 Table 5. ASME B31.3 Code Max Stress Result Summary ...................... .. ............................ .... 16 Table 6. Support Forces Summary for Normal Operation ......................................................... 32 Table 7. Support Forces Summary for Operation+ Seismic ..... .............. ........ .......................... 33 Table 8. Anchor Forces Summary ............................................................................................. 35 V

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A ACRONYMS Acronym Description AISC American Institute of Steel Construction ASCE American Society of Civil Engineering ASME American Society of Mechanical Engineering MDMT Minimum Design Metal Temperature GA General Atomics GR Gravity MDMT Minimum Design Metal Temperature p Pressure vi

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 1 OBJECTIVE The purpose of this document is to demonstrate that the Mo-99 Target Cooling System for the Once-Through Approach as part of the Reactor-Based Molybdenum-99 Selective Gas Extraction (SGE) meets the requirements of the ASME B31 .3 2014 (Ref. 1) and seismic load conditions per ASCE 7-10 (Ref. 2).

Top level design requirements for the Mo-99 Target Cooling System are defined in the Molybdenum-99 Supply System Requirements Document (30441 S00001 ).

The Once-Through Approach design will be developed and demonstrated under the RB-MSS project, co-funded by the Department of Energy, National Nuclear Security Administration (DOE-NNSA) and Nordion (Canada) , Inc. It is intended that the MSS will be installed and operated at the University of Missouri Research Reactor (MURR) to begin production of commercially-significant quantities of Mo-99 (~3000 6-day Ci/week) by the beginning of 2018.

This document provides the pipe stress calculations for the primary cooling loop, see Figure 1, excluding equipment. The analysis was performed using Bentley AutoPIPE CONNECT Advance Edition Version 10.00.00.10, a specialized nonlinear finite element piping program . The resulting piping stresses were interpreted in accordance of ASME B31 .3 (Ref. 1) and ASCE 7-10 (Ref. 2) ,

for structural adequacy. The target housing and heat exchanger interface connection will be idealized with anchors at the flange points.

1

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 1. Maly 99 Solidworks model 2 APPLICABLE DOCUMENTS Document Number Document Title 30441S00001 Molybdenum-99 Supply System Requirements Document 3 INPUTS 3.1 General The following inputs were used for the calculations presented herein:

  • Piping arrangements as depicted in Figure 2; "MURR Master Model. SLDASM",

SolidWorks .

2

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

  • Pipe sizes and material selection per "MURR Master Model.SLDASM" and as described in Section 5.3
  • Component weights per "MURR Master Model.SLDASM" for pipe sizes and material selection .

3.2 Loads Operating and Seismic loads are based on the "Molybdenum-99 Supply System Requirements Document" (30441S00001), ASME B31 .3 (Ref. 1) and ASCE 7-10 (Ref. 2) and are as described in Section 6.

4 ASSUMPTIONS The following assumptions are made for the structural evaluation of the piping of the target cooling system.

  • All pumps , heat exchangers, and external connections will be modeled as anchors at interface connection points. This is an accurate depiction as the mechanical components can be considered rigid , with indefinite stiffness.
  • All piping supports , vibration damping type, are modeled as line supports with no gaps and connected to rigid ground. This is an accurate depiction of this type of supports.
  • Bio-Shield, CoStarTower and Bridge are rigid structures . This is an accurate depiction of said structures due to low seismic loading , maximum deflections of structures within areas of interest are estimated to be< 1/161h inch .
  • Maximum seismic differential movement between CoStarTower/Bridge and Bio-Shield is

< 2.0 inches. This is a conservative number, as lateral movement of the CoStarTower is estimated to be less than 1/81h inch at bridge elevation.

5 METHOD Seismic loading conditions will be defined per ASCE 7-10, and evaluated against ASME B31 .3 2014.

Two types of analysis were performed:

1. Rigid Support Structure:

3

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A o Assumes that piping support structures , Bio-shield/pool, CoStarTower and bridge are rigid structures. No differential lateral displacements occurs between the individual structures during a seismic event.

o Pipe analysis is performed in accordance with ASME 831 .3 and ASCE 7-10.

2. Flexible Support Structure o Assumes that the Bioshield/pool and CoStarTower combined with the Bridge will laterally displace during a seismic event.

o Pipe analysis is performed to evaluate stresses and adequacy of flexible piping. A forced displacement of 2 inches is applied to the piping located on the CoStarTower and Bridge side relative to the piping located and mounted on the Bio-Shield side to simulate differential movement between the two main structures during a seismic event. Analysis is performed in accordance with ASME 831.3 and ASCE 7-10.

Further description and results can be found in Section 7.

6 AUTOPIPE MODEL AutoPIPE model is generated from Solidworks 3-D model , "MURR Master Model.SLDASM",

October 12, 2016, with an update on December 5, 2016 to remove a subset of piping.

Figure 2 to Figure 7 show the Solidworks/AutoPIPE details of the piping system with the pool and frame hidden. Green symbols on AutoPIPE mode figures represent constraints on the piping .

4

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 2. Solidworks Assembly (Red Box is the piping of interest) 5

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A y

X Figure 3. AutoPIPE's model of the piping of interest 6

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 4. Solidworks Level 3-4 up-close view 7

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Valve connections from heat exchangers. Rigid Anchor connections on the ends.

Guide+ line Supports All other supports shown are Guide Supports Only Flexible Joints to simulate flexible piping. (Not shown on Solidworks model)

Figure 5. AutoPIPE Level 3-4 up-close view 8

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 6. Solidworks model with pool hidden 9

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A All other supports shown are Guide Supports Only From these flanges all piping in the negative Y direction is aluminum ----__,J Flexible Joints to simulate flexible piping with anchors at target housing interface Figure 7. AutoPIPE model with pool hidden 6.1 Support Details As discussed in the assumptions, Rail Mount Vibration Damping Clamps will be modeled as guide supports with no gaps. An example is shown in Figure 8. Guide supports restrict the radial movement of the piping at that point.

Figure 9 shows the line stop value with no gaps in the axial direction of the piping. The line stop location is shown in the previous section. Line Stop supports restrict the axial movement of the piping at that point. Location of line stops are shown in the previous section.

10

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

- r-;;;;

r-R Ci .. rtoi h, ..;, (GQ

.............. r,ooJ c.... ..,. ~

Figure 8. AutoPIPE Model Guide Support Value r'.l""- 3-* r=

C.......w.,t. ro.-

- r--;;;;

... - r,a

,....., rtii Figure 9. AutoPIPE Model Line Stop Value 6.2 Valves and Flanges The valves in this model are flanged and rated at 150 lb with 3", and 4" sizing . See Table 1 for weights.

11

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Table 1. Flanged Valve Weight Size (inch) Ball Valve (lbf) Globe (lbf) 3 N/A 82 4 144 N/A Flanges are modeled as point elements (zero length) with weight and a weld neck connection specified.

6.3 Piping The system consists of three standard sizes. See Table 2 for properties and Figure 10 for pipe size. The entire model is assigned material properties of TP316L with the exception of the piping in the pool. Pool piping is AL-6061 T6.

Table 2. Pipe Properties Nominal Outer Wall Size Schedule Diameter Thickness Material (inch) (inch) (inch) 2 40 2.375 0.154 TP316L 3 40 3.5 0.216 TP316L or AL-6061 T6 4 40 4.5 0.237 TP316L or AL-6061 T6 Table 3. Material Properties Yield Strength Ultimate Strength Material (ksi) (ksi)

TP316L 25 70 AL-6061 T6 35 42 12

ENCLOS URE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Figure 10. Pipe sizes 6.4 Flexible Joints To account for independent seismic movement of the building relative to the pool , flexible piping is added to the piping connection at the bridge level. All flexible piping is 11 inches in length and flanged. A guide support is added with the flange connections on the non-flexible piping side.

Flexible piping stiffness values were based on GA test data. The following stiffness is applied

  • Axial - 182 lb/in
  • Shear - 14 lb/in (both directions)
  • Torsional - Rigid
  • Bending - Rigid (both directions)

/

13

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

...... d pont .

U*qfndiic.11~ .,.._

rAAil ~ -*

r OIINte

  • c>>< : r,ti'7r

~

~o1t .... 1o.alobooir,g.,_...

Y,ehN,""'-n z........ l!ifMM, .

~

r-T4oo r,<<iii OY ; ~

,-----rfoo' r

OZ Fllng,td r

~

r-otlF

,,_,,._, rRliill Y~ Rlfroe.1 . ~

Figure 11 . Flexible joint input values 7 CALCUATION BODY 7.1 Operational Loading The system was analyzed subject to the following loading in Table 4. In addition to the temperature and pressure loads the piping system was also subjected to gravitational load . The liquid in the piping is assumed to be water.

Table 4. Loading Inputs Gravity Temperature Pressure Notes 1g 78 .8°F 30 psig Ambient is 68°F 7.2 Seismic Loads ASCE 7-10, Reference 2, shall serve as the seismic design guide for the installed and operated target cooling system at MURR.

7.2.1 Site Specific Criteria Location is Latitude 38.93166 and Longitude -92.3418 is based on Columbia , MO 65211

  • Ip= 1.0 (attached to an occupancy II building/structure)
  • Rp = 12 (ASCE 7-10 table 13.6-1; welded piping)

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

  • Sos = 0.112g (Refs. 4 and 5- USGS APPENDIX A and APPENDIX B respectively)
  • Site Class B (Rock, based on FEMA maps see Ref. 6 - APPENDIX C)
  • z = 62.5 ft (Based on the Solidworks model the bottom of the building to top of the piping system)
  • h = 70ft (Based on the Solidworks model from the bottom to the top of the building) 7 .2.2 Seismic Forces Seismic forces , FP, will be determined in accordance with Section 13.3 (Ref. 2) as follows:

Fp = 0.4apSosWo(1+2z/h) (Eqn . 13.3-1, Ref. 2)

(Rp//p)

However, Fp will not be greater than: Fp = 1.6Sos/pWo (Eqn . 13.3-2, Ref. 2) and , FP will not be less than : (Eqn . 13.3-3, Ref. 2) where:

Fp = Seismic design force ap = Amplification factor Sos = Design spectral response acceleration, short period Wo = Dead load z = Attachment Height, relative to finished grade h = Roof Height, height of structure , relative to adjacent finished grade RP = Response modification factor

/p = Importance factor Seismic Load per Section 12.4.2 (Ref. 2):

fa: pQE (Eqn . 12.4-3, Ref. 2)

Ev= 0.2Sos0 (Eqn. 12.4-4, Ref. 2)*

where :

fa = Horizontal seismic load effect Ev = Vertical seismic load effect p = 1.0 (Redundancy Factor)

OE = FP (Effect of horizontal seismic force)

Sos= Design spectral response acceleration at short period D = Dead Load (piping operating weight)

  • Note: In addition of applying the two shear forces simultaneously, a conservative AutoPIPE default vertical factor of 0.5 was used. Vertical force can be calculated using ASCE 7-10 12.4-4 but is much smaller than 0.5 x shear direction . The higher value is used.
  • Eh = 0.035g (Shear) 15

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

  • Ev = 0.0175g (Vertical)

Static Earthquatr w New ModlySelected I DoieteSelected I DoleteAI (

ASCE 2010 Ve nal C..o S.iemk:Coda fectO<

X(g) Y(g) Z (g) Si,,0- : IB ..:l r q,Code : I Et ASCE 2010 0.50 D.1115 I~ Facto, PP) : ,-l l(~XXJ - r- ~  : p e.93166 Attachmerl Height (z) : j62.500 Longh,de : 1*92341 80 Rod Height (h) : j70.CXXl r Mopped Spocbol Rooponse(Ss) :

jo.17524 Conl)Ol,enl R._,_ (Rp) : j12 0 ii An1>'fication Factcr (ap) : -12500-- Maicinun Conoidefed Elllthquoke (Fe) : jtCXXJOO M ~ Focio< (ij : j1.CXXJ Show Locotion on Mop I

H..-, OK Cancel H.-i OK Figure 12. AutoPIPE Seismic Inputs and corresponding G levels 8 RESULTS 8.1 ASME B31.3 Code Stress Results The ASME 831 .3 code combinations results are documented in this section . Results in Table 5 show combinations with numbers in the name. Loading input is shown in Table 4. Occasional stress category is calculated by combining seismic with sustain load. Figures 13 through 24 show the stress ratio plots. The red circles indicate the general areas of the high stress . Within that circle the square box with crosshairs is the exact point of the high stress.

  • GR - Gravity
  • Amb to T1 - Ambient to Operating Temperature
  • Max P - Max Pressure
  • Sus - GR + Max P
  • E - Seismic Load Table 5. ASME B31.3 Code Max Stress Result Summary Stress Stress/Stress Node Combination Category Material Stress (ksi) Allowable Location Figure Allowable Ratio Number (ksi)

Y-Pipe, before Figure GR + Max P{1} Sustain 316L 0.7 16.7 0.04 AL 13 flexible 14 piping Inside Pool , on Figure GR + Max P{1} Sustain 6061 -T6 1.0 12.7 0.08 AL36 F -

expansion 15 loop 16

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Stress Stress/Stress Node Combination Category Material Stress (ksi) Allowable Location Figure Allowable Ratio Number (ksi)

At Heat Figure Amb to T1{1} Expansion 316L 3.2 25 0.13 AK03 Exchanger 17 Interface At SS to Al Figure Amb to T1{1} Expansion 6061-T6 0.2 19 0.01 AH51 pipe 18 interface 3" to 2" y Figure Max P{1} Hoop 316L 0.3 16.7 0.02 AL06 pipe 20 AIIAI Figure Max P{1} Hoop 6061-T6 0.3 12.7 0.02 AK46 piping 21 Y-piping Figure Sus. + E1 {1} Occasion 316L 0.9 22.2 0.04 AL09-support 23 Inside Pool, on Figure Sus. + E1{1} Occasion 6061-T6 1.0 16.9 0.06 AH61N+

expansion 24 loop 17

ENCLOSURE I Mo-99 Target Cooling System Seism ic Analysis Design Calculation Report 30441R00030/A 8.1.1 ASME B31.3 Sustain Stress Ratio Plots

....... l'IIJ(SUI)

  • 004.J MAX STRESS in SS
  • * .u ..
  • * -o ..

. ... UI ,.,..- .

t II GR

  • W*P(l )

MAX STRESS in Al Figure 13. GR+ MaxP{1} Stress Ratio Plot 18

ENC LOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Mt*W*l'{1}(9UI) l'l.ti*NAll-~lt Str...

  • 0.0-0.2

. 0.2-0 ...

  • 0.40.11

. O.M U a o..e-1.0

. , 1.0 S~(Marl

  • Sk- :

1:.:

l c:ona,..;

MAX STRESS in SS Figure 14. GR+ MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 19

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A


~---

H * -l'tllC-U.)

0,CMU O.J.0 4 0 4U

. OM.I

. u.1.0

  • *Ut Iii - t II

~"4-1 * ;,

Allio :

C:.-.:

12100 O.OI GA*M*fltl) 6fl+MeoP(1}

Figure 15. GR+ MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 20

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 8.1 .2 ASME 831.3 Expansion Stress Ratio Plots W II

. 0 .24.*

. 0.40.8

. O.Mt.l

  • G.9* 1.0

. .. ,.o MAX STRES S in SS MAX STRESS in Al

':J....

Figure 16. Amb to T1{1} Stress Ratio Plot 21

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

..,.. , . 11{tl (JXI')

"***-l>l*h..

.a o02."'.41*.

  • 0.0.0 .2
  • D.1 .0
  • *t.o MAX STRESS in SS y
-l.

Figure 17. Amb to T1{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 22

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A a ooe.a

. U0.<11

. 040

. HO.I

  • 0.1*1.0

' a '

l'l:li"t . AH51 .

[--~- JIiii S-. : 195

..... : 250!!0 Allio : Qtn Ca,a,. * .... 111 11nJ MAX STRESS in Al Figure 18. Amb to T1{1} Stress Ratio Plot Close Up, Aluminum Pipes 23

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 8.1.3 ASME 831.3 Hoop Stress Ratio Plots

........ ..._..... SR.

a o.0.0.2

. G.2-0-"

.o ..

. 04U a uu 11 -

,.o

  • *1.0 Ptwll : AUl6 HooplM.J
  • plli SlteN : 31 4 Abt. : 16700 F1411io : am CGll'lbil\: M*POJ MAX STRESS in Al Figure 19. MaxP{1} Stress Ratio Plot 24

ENCLOSURE I Mo-99 Target Cooling System Seismic Ana lysis Design Calculation Report 30441 R00030/A lil*"tllOiOOI')

l(.i.. " - * - -

. 00,0.J

. 02.0.*

.o. .,

a o.011

. 01-1 0

  • *u Pon : Al.06 HOCPIM*I
  • pli

, s._ : JU Aloi,,! : 1670)

' R<<o : 0.02

c.ontiin : M1111P{1 )

Figure 20. MaxP{1} Stress Ratio Plot Close Up, Stainless Steel Pipes 25

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A

-l'(l)(WOOI')

. uu

  • -.2

. ....a.

. ...1,

    • u 11 *- ' .

M,,t.

  • A* :

Celcih.;

N,.C -

't:,."'_. . ,. m 1000 o.m:

MaP"(I)

MAX STRESS in Al Figure 21 . MaxP{1} Stress Ratio Plot Close Up, Aluminum Pipes 26

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 8.1.4 ASME 831.3 Occasional Stress Ratio Plots lw.*11{1)(0CC)

,-o111,1itA11-,kft**

. 0..0-0.2

. 0.2-0.,

.o

. J,..0

. 040.4

. 0.6-0.I

,.o Pon : AH61N*

DCCNional:IM*I

  • PIii SIMM : Bl9 1028 Alow.:

R.rio :

C<<ia\:

16891 005 S1&

  • El{H om; S*
  • E1fH MAX STRESS in Al

' ~.

Figure 22. Sus+ E{1} Stress Ratio Plot (Seismic) 27

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Sv.i. .. £1111 (OCC)

R.WoMAII-W.h..:

. OJM>.2

. 0.2-(J..1

. Q.4,0 _8

. 0.0-0.1

  • U -1.0
  • *1.G Point : Al.09 .

O~IM*l

  • pa s11.. :

Alo#.:

Allio ;

Conti\:

ees 2221 1 0.04 Sua.

  • E1(1}

883 22211 Sut.* EHH MAX STRESS in SS Figure 23. Sus+ E{1} Stress Ratio Plot Close Up (Seismic), in Stainless Steel Piping 28

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Sw..*11f1JCO'C) lt,hle....,_DllS-..:

. 00-0.2

. 0 .2-0. 7.

11 REFERENCES Reference Document Number Description 1 ASCE 7-10 Minimum Design Loads for Buildings and Other Structures 2 ASME B31.3 Process Piping, 2014 Edition 3 30441S00001 Moved to Applicable Documents Section 4 USGS Design Maps Detail Report 5 USGS Design Maps Summary Report 6 FEMA FEMA Hazard Maps 36

ENCLOSURE l Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A APPENDIX A USGS DESIGN MAPS DETAIL REPORT 12113/2016 OesilJI Maps Detailed Report lJSGS Design Maps Detailed Report ASCE 7-10 Standard ( 38.93166°N , 92.34 18°W)

Site Class B - "Rode", Risk category I/II/III Sect ion 11.4 .1 - Mapped Acceleration Pa rameters Note: Ground motion values provided below are for the direction of maximum horizontal spectral response aoceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain Ss} and 1.3 (to obtain S 1 ) . Maps in the 2010 ASCE.-7 Standard are provided for Site dass B.

Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From Figure 22-1 111 Ss = 0.168 g From Figure 22-2 12 1 S1 = 0 .093 g Sect ion 11.4.2 - Site Class The authority having jurisdiction (not t he USGS), site-specific geotechnical data, and/or the default has dassified the site as Site dass B, based on the site soil properties in accordance with Chapter 20.

Table 20 .3-1 Site Classifi cation Site Class vs N or Nc1, Su A. Hard Rock >5,000 ft/s N/A N/A B. Rock 2,500 to 5,000 ft/s N/A N/A C. Very dense soil and soft rock 1,200 to 2, 500 ft/s >50 >2,000 psf D. Stiff Soil 600 to 1,200 ft/s 15 to 50 1,000 to 2,000 psf E. Soft d ay soil <600 ft/s < 15 <1,000 psf Any profi le with more than 10 ft of soil having the characteristics:

  • Plasticity index PI > 20,
  • Mo isture content w ~ 40%, and
  • Undrained shear strength s . < 500 psf F. Soils requiring site response See Section 20.3.1 analysis in accordance with Section 21.1 Fo r SI : 1ft/s = 0. 3048 m/s l ib/ft> ~ 0 .0479 kN/ m 2 A-1

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 12/13/2011! OHiS,, Maps DM.Jiled Repcrt Sect ion 11 .4.3 - Sit e Coefficients and Risk- Targeted Max imum Considered Earthq uake

(,MCE~) Spect ral Response Accelerat ion Pa ram eters Table 11 .4-1: Site Coefficient F.

Site dass Mapped MCE R Spectral Response Acceleration Parameter at Short Period 5s S 0.25 5s = 0 .50 5s = 0 .75 5s = 1.00 5s ~ 1.25 A 0.8 0 .8 0 .8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F see Section 11.4.7 of ASCE 7 Not e: Use straight-line interpolation for intermediate values of Ss For Site Class = B and S 5 = 0 . 1 6 8 g, F. = 1.000 Table 11.4-2: Site Coefficient F, Site Class Mapped MCE R Spectral Response Acceleration Parameter at 1-s Period s, S 0 .10 s, = 0 .20 s, = 0.30 s, = 0.40 s, ~ 0 .50 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.7 1.6 1.5 1.4 1.3 D 2 .4 2.0 1.8 1.6 1.5 E 3 .5 3 .2 2 .8 2.4 2.4 F see Section 11.4. 7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S 1 For Site Class= B an d S 1 = 0 .093 g, F, = 1.000 htipo :Hear1hqwl<e.usgs.go,,ldesignmapslus/report.p,p?lemplu= minimal&l.aii1Ude=3Ul3111G&longitude=*G2.3418&sileelau= 1&riskc.,iego,y=O&edition=asce-2... 2/0 A-2

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A Equation (11.4- 1): SMS = F.ss = 1.000 x 0.168 = 0.168 g Equation (11,4-2): SHI = FySl = 1.000 X 0.093 = 0.093 g Section 11.4.4 - Des ign Spectral Accelerati on Parameters Equation (11.4-3): Sos = % SMs = o/s X 0.168 = 0.112 g Equation (11.4-4): S01 = Y. S,41 = Y. X 0.093 = 0.062 g Section 11.4.5 - Des ign Response Spect rum From Figure 22- 12 r3 1 TL = 12 seconds Figu re 11.4-1: Des ign Response Spectrum T

  • T, ,s, : *-.( 0,4

T,sTs T*. s, -s..

S

  • O. ll 2 T1 < T :s T, : S,

{

T>l, : S,= S01T, IT' So,* 0.062 T, - O.lll T, = 0.554 1. 000 Period, T (sec)

A-3

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 12/13/2016 Section 11.4.6 - Risk-Targeted Maximum Cons idered Earthquake (MCER) Response Spectrum The MCE* Responae Spectrum is determined by multiplying the design response spectrum above by 1.5.

t s..1 - 0.093 I"

ct j

T, *0.11 1 T,

  • 0.554 1.000 Perlod.T(sed A-4

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 12/13/2010 Oesig, Maps Detailed Repa, Section 11.8.3 - Ad ditional Geotechnical Investigation Report Requirement s for Seismic Design Categories D through F From figure 22-Z 14 1 PGA = 0.080 Equation (11.8-1): PG~ = FPGAPGA = 1.000 x 0. 080 = 0.08 g Table 11 .8-1 : Site Coefficient F"""

Site Mapped MCE Geometric Mean Peak Ground Acceleration, PGA dass PGA :5: 0.10 PGA = 0.20 PGA = 0 .30 PGA = 0.40 PGA 2: 0 .50 A 0 .8 0.8 0.8 0 .8 0.8 B 1.0 1.0 1 .0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2 .5 1.7 1.2 0.9 0.9 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of PGA For Site Class= Band PGA = 0 . 080 g, F * .,.. = 1 .000 Section 21.2.1.1 - Method 1 (from Chapter 21 - Site-Specific Ground Motion Procedures for Seismic Design)

From figure 22-17 151 ~ = 0.862 From Figure 22- 18 16 1 Cii1 = 0.835 A-5

ENCLOSURE 1 Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A 1211:112i11e Design M~ Data/loci R ~

Section 11.6 - Seismic Design Category Table 11.6-1 Seism ic Design Category Based on Short Period Response Acceleration Parameter RISK CATEGORY VALUE OF S., 5 I or II III IV S 05 < 0.167g A A A 0 .167g S S 05 < 0 .33g B B C 0.33g S S 05 < 0 .50g C C 0 0.50g S S 05 0 0 0 For Risk Category= I and S05 = 0.112 g , Seismic Design Category= A Table 11.6-2 Seismic Design Category Based on 1-S Period Res ponse Acceleration Parameter RISK CATEGORY VALUE OF S 01 I or II III IV s ... < 0 .067g A A A 0.067g S s.,. < 0 .133g B B C 0.133g S s.,. < 0.20g C C 0 0.20g S s... 0 0 0 For Risk Category = I and S 01 = 0.062 g , Seismic Design Category = A Note: Whens, is greater than or equal to 0.75g, the Seismic Design category is E for buildings in Risk categories I, Il, and Ill, and F for those in Risk category IV, irrespective of the above.

Seismic Design Category = Kthe more severe design category in accordance with Table 11.6- 1 or 11.6-2" = A Note: See Section 11.6 for alternative approaches to calculating Seismic Design category.

References

1. Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1 .pdf
2. Figure 22-2: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2 .pdf
3. Figure 22 -12 : http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 10_ASCE-7_Figure_22-17 .pdf
6. Figure 22-18 : http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/20 lO_ASCE- 7_Figure_22-18.pdf A-6

ENCLOSURE I Mo-99 Target Cooling System Seismic Analysis Design Calculation Report 30441 R00030/A APPENDIX B USGS MAPS

SUMMARY

REPORT 12/13/20 6 Design MiJPs St.mmary Repon lJSGS Design Maps Summary Report User - Specifi ed Input Buildi ng Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available ,n 2008)

Site Coord inates 38.93 166° N, 92 .3418°W Sit e Soil Classifi cati on Site dass B - ~Rockn Risk Category J/II/IIJ USGS-Provi de d Output s,= 0 .1689 SMs = 0.168 g Sos= 0.112 g s, = 0.093 g s ... = 0. 093 g s... = 0.062 g For information on how the SS and Sl values above have been calculated from p robabilistic (risk-targeted) and deterministic ground motions in the directio n of maxim u m h orizontal respo nse, please return ID the application and select the "2009 NEHRP" build ing code reference document.

M CE 11 Respon se Sp ectrum Design Res pon se Sp ectrnm OU 0 .12 0 1' OU 0 .1 0 G.1 2 o oa

'.! 0 10

'.!II Ill 0 08 Ill 0 o, 0 0G 0 o, 0 04 0 02

0. 02
0. 00 _ _ _ _ _ _ __,_ ........_...__,_ _ _ _+--<

0 .00 ,l----,>--+--+--,--+--+---s>---+--+--

0 00 0 20 t 40 0 ,o O.to l 00 I 20 I ,o I ,o 1 10 2.00 000 0 20 0 ~ 0~ 0 to l 00 1 20 l ~ l ~ l to ~OO Period, T ( Hcl Period, T (s.c)

For PGA,.. T, , c*., and c. , value!:, please view the detailed report.

Although th,s information ts a product of the U.S . Geological Surve y, \.,e pJ'Ovlde no warranty, expressed 01 im plied , as to the accuracy of the data cont~ined the.rein . This tool is not a substitute for technica l subjed -matte r lc:nowledge..

heps ://eanhqua!<e.U5lls.gcw,-ignm ops, summary.J>l,p?tem pl3!!!"'ffl irimal&l,..tudea38..113 1l!MlongiWdl,a-ll2.3418&.sil!Class* l &ri skc.mgo,y*O&~tiOIP'asc. .. 1/1 8 -1

ENCLOSURE I Mo-99 Target Cooling System Seism ic Analysis Design Calculation Report 30441 R00030/A APPENDIX C FEMA MAPS Earthquake Hazard Maps I FEMA.gov Page 3 of7 program-managers-tool ft.

earthquake-program-managers)

> Information 0

lndMd als (tea uake-i formation-ind.Mduals-a d-amiliesJ In orma *on for Comm

  • ies (learthqua e-informatio comm ies)

> lnformatio for Busi sses

(/earthquake-i formation-businesses-and-othe -

o ganizations)

In ormation for Building

--t- -:-

SOC map of the Eastern United States for low-rise Desig rs

(/earthqua Occupancy Category I and 11 structures located on sites lnforma io building- with average alluvial soil condit ions.

designers-managers-and-regulators)

Earthquake Hazard Maps

(/earthquake-hazard-maps)

Your Ea quake Risk (/your-earthq ake-rlsk) hnps://www.fema.gov/earthquake-hazard-maps 12/8/2016 C-1