ML18267A088: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 09/24/2018
| issue date = 09/24/2018
| title = 1300 CS LAS SS LF-GF
| title = 1300 CS LAS SS LF-GF
| author name = Tregoning R L
| author name = Tregoning R
| author affiliation = NRC/RES/DE
| author affiliation = NRC/RES/DE
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:© 2015 Electric Power Research Institute, Inc. All rights reserved.Steve Gosselin, PE, FellowLPI, Inc.Gary Stevens, PEEPRILife & Gradient Factorsfor ASME Class 1 Piping Component  AnalysesWorking Group Design MethodologyAugust 2018 2© 2015 Electric Power Research Institute, Inc. All rights reserved.SummaryIntroductionFatigue Life Test DataLife and Gradient FactorsStage I LifeStage II LifeLife and Gradient Factor RegressionsExample Problem Status 3© 2015 Electric Power Research Institute, Inc. All rights reserved.IntroductionThis work examined two aspects of ASME Code fatigue life (Usage) fatigue calculation procedures -e.g. NB-3222.4, NB-3650, or XIII 3222.4(e)(5)allowable fatigue life is based on fatigue testing small diameter test specimens that are subsequently applied to all piping regardless of the actual thickness, andall component cyclic stresses are treated as uniform through-thickness membrane stresses and do not consider the presence of actual through-thickness stress gradients.
{{#Wiki_filter:Life & Gradient Factors for ASME Class 1 Piping Component Analyses Steve Gosselin, PE, Fellow LPI, Inc.
4© 2015 Electric Power Research Institute, Inc. All rights reserved.FATIGUE LIFE TEST DATA 5© 2015 Electric Power Research Institute, Inc. All rights reserved.Test Specimen 25% Load Drop Crack SizeFor constant displacement test: 25% load drop (F25%) occurs when crack area equals 25% of original test specimen area.
Gary Stevens, PE EPRI            Working Group Design Methodology August 2018
6© 2015 Electric Power Research Institute, Inc. All rights reserved.Fatigue Strain-Life TestingASTM Standard E 606-04 Smooth push-pull specimens tested under fully reversed through-thickness uniform (membrane) displacement controlled loadingDetermination of number of cycles to failure may vary. Current data based on force (load) drop of 25% or 50%. NUREG/CR-6909 Rev. 1 Argonne National Laboratory and Japanese dataMixture of 25% and 50% load drop data (all data normalized to 25% load drop criteria)Air test temperatures between 25°C and 290°CGauge diameters 0.2 in. (5-mm) to 0.375 in. (9.5-mm)Observation: 25% load drop criteria was associated with an average 3-mm deep crack (Chopra and Shack 2001) 7© 2015 Electric Power Research Institute, Inc. All rights reserved.LIFE & GRADIENT FACTORS 8© 2015 Electric Power Research Institute, Inc. All rights reserved.Life and Gradient FactorsGFaccounts for the increase in room temperature air Stage II life associated with through thickness stress gradientsLFaccounts for increased Stage II life associated a with piping thicknesses greater than the 0.304 inch median gauge thickness associated with the NUREG/CR-6909 Rev. 1 room temperature air test data.Stage I and Stage II life calculations for carbon steel (CS), low alloy steel (LAS) and stainless steel (SS) materials were based on material properties at room temperature (25°C).
                                  © 2015 Electric Power Research Institute, Inc. All rights reserved.
9© 2015 Electric Power Research Institute, Inc. All rights reserved.Life Factor, LFA life factor LF corrects fatigue usage estimates for increased Stage II life associated with component thicknesses greater than the 0.304 inch median gaugethickness associated with the NUREG/CR-6909 solid pin test specimens.
 
10© 2015 Electric Power Research Institute, Inc. All rights reserved.GradientFactor, GFGF accounts for the increase in Stage II life associated with through thickness stress gradients 11© 2015 Electric Power Research Institute, Inc. All rights reserved.STAGE I LIFE 12© 2015 Electric Power Research Institute, Inc. All rights reserved.Stage I and Stage II LifeTwo stages of fatigue crack growth 13© 2015 Electric Power Research Institute, Inc. All rights reserved.Stage I Life (i)Assumption:Stage I initiation and growth occurs under uniform membrane loading regardless of the absence or presence of linear and non-linear through-wall stress gradients.
Summary Introduction Fatigue Life Test Data Life and Gradient Factors Stage I Life Stage II Life Life and Gradient Factor Regressions Example Problem Status 2                           © 2015 Electric Power Research Institute, Inc. All rights reserved.
14© 2015 Electric Power Research Institute, Inc. All rights reserved.Test Specimen 25% load drop crack depths25% load-drop crack depth of 0.118 in. (3-mm) is associated with a 0.304 in. (7.72 mm) specimen gauge diameter that represents the median NUREG/CR-6909 test specimen size 15© 2015 Electric Power Research Institute, Inc. All rights reserved.CS, LAS, SS Stage I Life for 1.150% Strain 16© 2015 Electric Power Research Institute, Inc. All rights reserved.LAS Stage 1 Life: 1.150% Strain Range (ii) 17© 2015 Electric Power Research Institute, Inc. All rights reserved.Pin Crack Depth vs Life Fraction Comparison (Damiani and Smith) 18© 2015 Electric Power Research Institute, Inc. All rights reserved.STAGE II LIFE FOR A CYLINDER 19© 2015 Electric Power Research Institute, Inc. All rights reserved.StageII Life (i)Crack growth of a mechanically small crack (0.008 in.) to a crack depth associated with a 25% load dropStage II deterministic crack growth calculations were performed using the NRC PRAISE computer codePRAISE was modified to include a best estimate (50/50) of the C/LAS crack relationship in ASME Section XI Non-Mandatory Appendix C The alternating stress intensity was corrected for elastic-plastic material response in the HIGH strain LOW cycle region.
 
20© 2015 Electric Power Research Institute, Inc. All rights reserved.Stage II Life (ii)PRAISE was modified to include a best estimate version of the C, LAS and SS crack growth relationships in room temperature air The elastic alternating stress intensity, KI, is subsequently adjusted for elastic-plastic material response in the high-strain low---tip.Elastic J-integral range, Jelastic, was obtained from linear elastic finite element analyses, and the elastic-plastic J-integral range, Jelastic-plastic, was computed by performing elastic-plastic finite element analyses 21© 2015 Electric Power Research Institute, Inc. All rights reserved.C/LAS Stage II Life 22© 2015 Electric Power Research Institute, Inc. All rights reserved.SS Stage II Life 23© 2015 Electric Power Research Institute, Inc. All rights reserved.LIFE & GRADIENT FACTOR REGRESSIONS 24© 2015 Electric Power Research Institute, Inc. All rights reserved.Life & Gradient Factor DataCarbon/Low Alloy Steel and Stainless SteelRoom temperature air environmentCyclic Loads: % Strain Range () = 0.48, 0.8, 1.15, 1.5, 2, 2.5Nominal Pipe Sizes: NPS 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 14, 16,18, 20, 22, and 24Pipe Schedules:80 and 160Pipe Thickness Range: 0.154 in. to 2.344 in.Data3780 Life Factors3780 Gradient Factors 25© 2015 Electric Power Research Institute, Inc. All rights reserved.C/LAS Life & Gradient Factor Data* (ii)* Carbon steel data shown 26© 2015 Electric Power Research Institute, Inc. All rights reserved.SS Life & Gradient Factor Data* (ii)* Stainless steel data shown 27© 2015 Electric Power Research Institute, Inc. All rights reserved.C/LAS Life Factor Regression ModelsCarbon SteelLow Alloy Steel 28© 2015 Electric Power Research Institute, Inc. All rights reserved.SS Life Factor Regression ModelsStainless Steel 29© 2015 Electric Power Research Institute, Inc. All rights reserved.C/LAS Gradient Factor Regression ModelsCarbon SteelLow Alloy Steel 30© 2015 Electric Power Research Institute, Inc. All rights reserved.SS Gradient Factor Regression ModelsStainless Steel 31© 2015 Electric Power Research Institute, Inc. All rights reserved.EXAMPLE NPS 10 Schedule 80 Reducing Elbow 32© 2015 Electric Power Research Institute, Inc. All rights reserved.BWR 4 LPCS 10 x 12 Reducing Elbow60 year design fatigue usage calculation at a Schedule 80 (LPCS) systemOriginal calculation performed according to stress analysis procedures specified in ASME III NB-3600The highest fatigue usage was located at Node 330 where -60 year fatigue usage estimates are corrected the component thickness and the presence of through-wall stress gradients.
Introduction This work examined two aspects of ASME Code fatigue life (Usage) fatigue calculation procedures - e.g. NB-3222.4, NB-3650, or XIII 3222.4(e)(5)
33© 2015 Electric Power Research Institute, Inc. All rights reserved.Node 330 60-yr Air and Water Fatigue Usages 34© 2015 Electric Power Research Institute, Inc. All rights reserved.Node 330 Membrane-to-Gradient Ratios 35© 2015 Electric Power Research Institute, Inc. All rights reserved.Node 330 Stage I Life 36© 2015 Electric Power Research Institute, Inc. All rights reserved.Node 330 LF and GF Calculation 37© 2015 Electric Power Research Institute, Inc. All rights reserved.Node 330: C/LAS/SS Life FactorCarbon SteelLow Alloy SteelStainless Steel 38© 2015 Electric Power Research Institute, Inc. All rights reserved.Node 330: C/LAS/SS Gradient FactorCarbon SteelLow Alloy SteelStainless Steel 39© 2015 Electric Power Research Institute, Inc. All rights reserved.CS/LAS/SS LF & GF Comparisons 40© 2015 Electric Power Research Institute, Inc. All rights reserved.
    - allowable fatigue life is based on fatigue testing small diameter test specimens that are subsequently applied to all piping regardless of the actual thickness, and
41© 2015 Electric Power Research Institute, Inc. All rights reserved.DISCUSSION 42© 2015 Electric Power Research Institute, Inc. All rights reserved.}}
    - all component cyclic stresses are treated as uniform through-thickness membrane stresses and do not consider the presence of actual through-thickness stress gradients.
3                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
FATIGUE LIFE TEST DATA 4          © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Test Specimen 25% Load Drop Crack Size For constant displacement test: 25% load drop (F25%) occurs when crack area equals 25% of original test specimen area.
5                                    © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Fatigue Strain-Life Testing ASTM Standard E 606-04
    - Smooth push-pull specimens tested under fully reversed through-thickness uniform (membrane) displacement controlled loading
    - Determination of number of cycles to failure may vary. Current data based on force (load) drop of 25% or 50%.
NUREG/CR-6909 Rev. 1
    - Argonne National Laboratory and Japanese data
    - Mixture of 25% and 50% load drop data (all data normalized to 25% load drop criteria)
    - Air test temperatures between 25°C and 290°C
    - Gauge diameters 0.2 in. (5-mm) to 0.375 in. (9.5-mm)
Observation: 25% load drop criteria was associated with an average 3-mm deep crack (Chopra and Shack 2001) 6                                    © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
LIFE & GRADIENT FACTORS 7          © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Life and Gradient Factors U
* air  = U air LFair  GFair LF accounts for increased Stage II life associated a with piping thicknesses greater than the 0.304 inch median gauge thickness associated with the NUREG/CR-6909 Rev. 1 room temperature air test data.
GF accounts for the increase in room temperature air Stage II life associated with through thickness stress gradients U water = U
* air      Fen Stage I and Stage II life calculations for carbon steel (CS), low alloy steel (LAS) and stainless steel (SS) materials were based on material properties at room temperature (25°C).
8                                            © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Life Factor, LF A life factor LF corrects fatigue usage estimates for increased Stage II life associated with component thicknesses greater than the 0.304 inch median gauge thickness associated with the NUREG/CR-6909 solid pin test specimens.
N3mm            N I + N II (3mm )
LF =            =
N 25% ( N I + N II (25%) )
N I = Stage 1 life in number of cycles between 10 m (0.0004 inch) and 200 m (0.008 inch) under uniform membrane cyclic strain N II (3mm) = Stage II life in number of cycles between 200 m (0.008 inch) and 3mm crack depth under uniform membrane cyclic strain N II (25%) = Stage II life in number of cycles between 200 m (0.008 inch) and 25% load drop crack depth under uniform membrane cyclic strain 9                                          © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Gradient Factor, GF GF accounts for the increase in Stage II life associated with through thickness stress gradients
( N I + N II ) Membrane GF =
( N I ) Membrane + ( N II )Gradient where:
N I = Stage 1 life between 10 m (0.0004 inch) and 200 m (0.008 inch)
N II = Stage II life between 200 m (0.008 inch) and crack depth associated with a 25% load drop for the actual component thickness 10                                      © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
STAGE I LIFE 11    © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Stage I and Stage II Life Two stages of fatigue crack growth
    - Stage I: Initiation and growth of microstructurally small cracks
    - Stage II: Growth of mechanically small cracks 12                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Stage I Life (i)
N I = NTotal  N II Assumption: Stage I initiation and growth occurs under uniform membrane loading regardless of the absence or presence of linear and non-linear through-wall stress gradients.
13                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Test Specimen 25% load drop crack depths 25% load-drop crack depth of 0.118 in. (3-mm) is associated with a 0.304 in. (7.72 mm) specimen gauge diameter that represents the median NUREG/CR-6909 test specimen size 14                                        © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
CS, LAS, SS Stage I Life for 1.150% Strain 15                  © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
LAS Stage 1 Life: 1.150% Strain Range (ii)
Low Alloy Steel Strain    Stage I Range    (cycles) 0.48%    35,202 0.80%      3,797 1.15%      1,249 1.50%      627 2.00%      320 2.50%      197 16                    © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Pin Crack Depth vs Life Fraction Comparison (Damiani and Smith) 17                  © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
STAGE II LIFE FOR A CYLINDER 18              © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Stage II Life (i)
Crack growth of a mechanically small crack (0.008 in.) to a crack depth associated with a 25% load drop Stage II deterministic crack growth calculations were performed using the NRC PRAISE computer code PRAISE was modified to include a best estimate (50/50) of the C/LAS crack relationship in ASME Section XI Non-Mandatory Appendix C The alternating stress intensity was corrected for elastic-plastic material response in the HIGH strain LOW cycle region.
19                            © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Stage II Life (ii)
PRAISE was modified to include a best estimate version of the C, LAS and SS crack growth relationships in room temperature air The elastic alternating stress intensity, KI, is subsequently adjusted for elastic-plastic material response in the high-strain low-cycle region at the crack a-tip and b-tip.
Elastic J-integral range, Jelastic, was obtained from linear elastic finite element analyses, and the elastic-plastic J-integral range, Jelastic-plastic, was computed by performing elastic-plastic finite element analyses 20                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
C/LAS Stage II Life 21                    © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
SS Stage II Life Stainless Steel Plastic Correction Factors (DKJ/DKI)
Strain A-TIP                                                        B-TIP Range K J K J
                                                                                                = 0.0478 ( a/t ) + 0.0023 ( a/t ) + 0.6072 2
0.48%            = 0.0564(a/t)2 - 0.0025(a/t) + 0.7253 K I                                                        K I K J                                                        K J
                                                                                                = 0.0642 ( a/t ) - 0.0040 ( a/t ) +0.5305 2
0.80%            = 0.0734(a/t)2 - 0.0089(a/t) + 0.6542 K I                                                        K I K J                                                        K J
                                    = 0.083 ( a/t ) - 0.0093 ( a/t ) + 0.6068                  = 0.0707 ( a/t ) - 0.0091( a/t ) + 0.4768 2                                                              2 1.15%
K I                                                        K I K J                                                        K J
                                    = 0.0702 ( a / t ) +0.0004 ( a / t ) + 0.5697              = 0.0086 ( a/t ) + 0.0191( a/t ) + 0.4302 2                                                        2 1.50%
K I                                                        K I K J                                                        K J
                                    = 0.0660 ( a/t ) + 0.0002 ( a/t ) +0.5376                  = 0.0085 ( a/t ) + 0.0161( a/t ) + 0.3848 2                                                        2 2.00%
K I                                                        K I K J                                                        K J
                                    = 0.0629 ( a/t ) + 0.0009 ( a/t ) + 0.5138                  = 0.0251( a/t ) + 0.0027 ( a/t ) + 0.3468 2                                                          2 2.50%
K I                                                        K I 22                      © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
LIFE & GRADIENT FACTOR REGRESSIONS 23          © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Life & Gradient Factor Data Carbon/Low Alloy Steel and Stainless Steel
    - Room temperature air environment Cyclic Loads:
    - % Strain Range (e) = 0.48, 0.8, 1.15, 1.5, 2, 2.5 Nominal Pipe Sizes:
    - NPS 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 14, 16,18, 20, 22, and 24 Pipe Schedules:
    - 80 and 160 Pipe Thickness Range:
    - 0.154 in. to 2.344 in.
Data
    - 3780 Life Factors
    - 3780 Gradient Factors 24                                      © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
C/LAS Life & Gradient Factor Data* (ii)
* Carbon steel data shown N3mm      N I + N II (3mm )                                            ( N I + N II ) Membrane LF =        =                                    GF =
N 25% ( N I + N II (25%) )                                ( N I ) Membrane + ( N II )Gradient 25                                    © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
SS Life & Gradient Factor Data* (ii)
* Stainless steel data shown N3mm      N I + N II (3mm )                                            ( N I + N II ) Membrane LF =        =                                      GF =
N 25% ( N I + N II (25%) )                                ( N I ) Membrane + ( N II )Gradient 26                                      © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
C/LAS Life Factor Regression Models
( )                            ( )  / 1000 2                                  3 LF =  A + B  t * + C  t *                          + D t
* Carbon Steel                                                                    where:
t * = ln ( t )
( )  11.250  (e )
2                        3 A = 52.295  590.26  e  139.14  e e * = ln ( e range )
B = 77.704 + 75.874  e * + 10.331  ( e * )
2 t = Thickness (in.)
C = 37.423 + 5.2371  e
* D = 0.74926 Low Alloy Steel A = 180.96  545.24  e  138.58  e
( )  11.933  (e )
* 2
* 3
                            + 17.919  ( e )
2 B = 220.80 + 142.17  e *
* C = 35.254 + 4.8640  e
* D = 1.5080 27                                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
SS Life Factor Regression Models
( )                            ( )  / 1000 2                                  3 LF =  A + B  t * + C  t *                      + D t
* Stainless Steel                                                                where:
( )                    ( )                                          t * = ln ( t )
2                        3 A = 600.28  303.60  e
* 84.289  e
* 7.3023  e
* e * = ln ( e range )
B = 195.04 + 103.10  e + 11.053  ( e )
                          *
* 2 t = Thickness (in.)
C = 4.2302  2.0595  e
* D = 0.87079 28                                            © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
C/LAS Gradient Factor Regression Models GF = 1  (1  )  A + B + C + D  / 1000 where:
Carbon Steel m
                                                                                                                  =
A = 486.03  124.65  t * + 60.446    240.41    477.06  e
* m + b +  g
( )                                                                                                            b 2
B = 15.873  t *    + 25.591  t *  + 28.354  t
* 14.676  t
* e *                              =
m + b +  g C = 26.691  2  229.76    + 31.654    e
* and
( )
2 D = 12.153    27.369    e  62.559  e 2                    *
* m = Uniform membrane stress b = Linear bending stress Low Alloy Steel g = Non-linear gradient stress
( )
A = 1254.3  131.44 t * + 42.095 (  )  263.20 (  )  831.82 e*                  ( )                                              (
t * = ln ( t ) e * = ln e range )
B = 15.484 ( t ) + 24.215 ( t ) (  ) + 28.095 ( t ) (  )  16.569 ( t )( e )
2 C = 27.324 (  )  221.22 (  )(  ) + 27.642 (  ) ( e )
2
* D = 10.828 (  )  33.048 (  ) ( e )  103.34 ( e )
* 2 2
* 29                                                  © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
SS Gradient Factor Regression Models GF = 1  (1  )  A + B + C + D  / 1000 where:
Stainless Steel m
                                                                                                                =
A = 914.68  45.507  t
* 155.40    40.507    559.38  e
* m + b +  g
( )                                                                                                            b 2
B = 19.835  t *    + 33.757  t *  + 33.359  t *  + 6.1255  t
* e *                              =
m + b +  g C = 32.740  2  202.8      13.47    e
* and
( )
2 D = 24.029  + 20.685    e  59.375  e 2                  *
* m = Uniform membrane stress b = Linear bending stress g = Non-linear gradient stress
(
t * = ln ( t ) e * = ln e range )
30                                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
EXAMPLE NPS 10 Schedule 80 Reducing Elbow 31            © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
BWR 4 LPCS 10 x 12 Reducing Elbow 60 year design fatigue usage calculation at a Schedule 80 10 X 12 reducing elbow in a Low Pressure Core Spray (LPCS) system Original calculation performed according to stress analysis procedures specified in ASME III NB-3600 The highest fatigue usage was located at Node 330 where a 3/4 socket-welded elbolet is attached to Schedule 80 10 X 12 reducing elbow The reducing elbow thickness at the location is 0.594.
60 year fatigue usage estimates are corrected the component thickness and the presence of through-wall stress gradients.
32                            © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Node 330 60-yr Air and Water Fatigue Usages 33                  © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Node 330 Membrane-to-Gradient Ratios 34                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Node 330 Stage I Life 35                  © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Node 330 LF and GF Calculation 36                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Node 330: C/LAS/SS Life Factor
( )                                  ( )  / 1000 2                                      3 LF =  A + B  t * + C  t *                  + D t
* Carbon Steel      Low Alloy Steel                  Stainless Steel                                where:
t * = ln ( t )
A = 915.309        A = 1732.397                        A = 925.461 e * = ln ( e range )
B = 55.105        B = 35.2658                          B = 44.948 t = Thickness (in.)
C = 14.037        C = 56.8178                        C = 13.427 and, D = 0.74926        D = 1246.04                          D = 0.871 t * = 0.5209 LF = 0.9440          LF = 0.9476                    LF = 0.9526                                      e * = 4.4654 37                                © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
Node 330: C/LAS/SS Gradient Factor GF = 1  (1  )  A + B + C + D  / 1000 Carbon Steel  Low Alloy Steel                Stainless Steel                                where:
                                                                                                  = 0.4289 A = 1732.397    A = 2543.655                    A = 1539.775
                                                                                                  = 0.0112 B = 35.2658    B = 39.9132                    B = 11.894 and C = 56.8178    C = 48.9774                  C = 30.846 m = 61.406 ksi D = 1246.04    D = 2059.01                    D = 1184.960 b = 1.609 ksi g = 80.161 ksi GF = 0.7634      GF = 0.7735                  GF = 0.7730 t * = 0.5209 e * = 4.4654 38                            © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
CS/LAS/SS LF & GF Comparisons LF and GF Comparison for CS at 1.15% Strain Range pcPRAISE                  Regression                        % error Life Factor, LF          0.9430                      0.9440                          0.1060 Gradient Factor, GF        0.7635                      0.7634                          -0.0131 LF x GF              0.7200                      0.7206                          0.0929 Note: The CS LF and GF regressions agree with the pcPRAISE solution to within 0.11%.
LF and GF Comparison for LAS at 1.15% Strain Range pcPRAISE                  Regression                        % error Life Factor, LF          0.9471                      0.9476                          0.0528 Gradient Factor, GF        0.7732                      0.7735                          0.0388 LF x GF              0.7323                      0.7330                          0.0916 Note: The LAS LF and GF regressions agree with the pcPRAISE solution to within 0.10%.
LF and GF Comparison for SS at 1.15% Strain Range pcPRAISE                  Regression                        % error Life Factor, LF          0.9523                      0.9526                          0.0315 Gradient Factor, GF        0.7729                      0.7730                          0.0129 LF x GF              0.7360                      0.7364                          0.0444 Note: The SS LF and GF regressions agree with the pcPRAISE solution to within 0.05%.
39                                      © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
40 © 2015 Electric Power Research Institute, Inc. All rights reserved.
DISCUSSION 41     © 2015 Electric Power Research Institute, Inc. All rights reserved.
 
TogetherShaping the Future of Electricity 42                 © 2015 Electric Power Research Institute, Inc. All rights reserved.}}

Latest revision as of 18:18, 2 February 2020

1300 CS LAS SS LF-GF
ML18267A088
Person / Time
Issue date: 09/24/2018
From: Robert Tregoning
NRC/RES/DE
To:
Shared Package
ML18267A083 List:
References
Download: ML18267A088 (42)


Text

Life & Gradient Factors for ASME Class 1 Piping Component Analyses Steve Gosselin, PE, Fellow LPI, Inc.

Gary Stevens, PE EPRI Working Group Design Methodology August 2018

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Summary Introduction Fatigue Life Test Data Life and Gradient Factors Stage I Life Stage II Life Life and Gradient Factor Regressions Example Problem Status 2 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Introduction This work examined two aspects of ASME Code fatigue life (Usage) fatigue calculation procedures - e.g. NB-3222.4, NB-3650, or XIII 3222.4(e)(5)

- allowable fatigue life is based on fatigue testing small diameter test specimens that are subsequently applied to all piping regardless of the actual thickness, and

- all component cyclic stresses are treated as uniform through-thickness membrane stresses and do not consider the presence of actual through-thickness stress gradients.

3 © 2015 Electric Power Research Institute, Inc. All rights reserved.

FATIGUE LIFE TEST DATA 4 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Test Specimen 25% Load Drop Crack Size For constant displacement test: 25% load drop (F25%) occurs when crack area equals 25% of original test specimen area.

5 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Fatigue Strain-Life Testing ASTM Standard E 606-04

- Smooth push-pull specimens tested under fully reversed through-thickness uniform (membrane) displacement controlled loading

- Determination of number of cycles to failure may vary. Current data based on force (load) drop of 25% or 50%.

NUREG/CR-6909 Rev. 1

- Argonne National Laboratory and Japanese data

- Mixture of 25% and 50% load drop data (all data normalized to 25% load drop criteria)

- Air test temperatures between 25°C and 290°C

- Gauge diameters 0.2 in. (5-mm) to 0.375 in. (9.5-mm)

Observation: 25% load drop criteria was associated with an average 3-mm deep crack (Chopra and Shack 2001) 6 © 2015 Electric Power Research Institute, Inc. All rights reserved.

LIFE & GRADIENT FACTORS 7 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Life and Gradient Factors U

  • air = U air LFair GFair LF accounts for increased Stage II life associated a with piping thicknesses greater than the 0.304 inch median gauge thickness associated with the NUREG/CR-6909 Rev. 1 room temperature air test data.

GF accounts for the increase in room temperature air Stage II life associated with through thickness stress gradients U water = U

  • air Fen Stage I and Stage II life calculations for carbon steel (CS), low alloy steel (LAS) and stainless steel (SS) materials were based on material properties at room temperature (25°C).

8 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Life Factor, LF A life factor LF corrects fatigue usage estimates for increased Stage II life associated with component thicknesses greater than the 0.304 inch median gauge thickness associated with the NUREG/CR-6909 solid pin test specimens.

N3mm N I + N II (3mm )

LF = =

N 25% ( N I + N II (25%) )

N I = Stage 1 life in number of cycles between 10 m (0.0004 inch) and 200 m (0.008 inch) under uniform membrane cyclic strain N II (3mm) = Stage II life in number of cycles between 200 m (0.008 inch) and 3mm crack depth under uniform membrane cyclic strain N II (25%) = Stage II life in number of cycles between 200 m (0.008 inch) and 25% load drop crack depth under uniform membrane cyclic strain 9 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Gradient Factor, GF GF accounts for the increase in Stage II life associated with through thickness stress gradients

( N I + N II ) Membrane GF =

( N I ) Membrane + ( N II )Gradient where:

N I = Stage 1 life between 10 m (0.0004 inch) and 200 m (0.008 inch)

N II = Stage II life between 200 m (0.008 inch) and crack depth associated with a 25% load drop for the actual component thickness 10 © 2015 Electric Power Research Institute, Inc. All rights reserved.

STAGE I LIFE 11 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Stage I and Stage II Life Two stages of fatigue crack growth

- Stage I: Initiation and growth of microstructurally small cracks

- Stage II: Growth of mechanically small cracks 12 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Stage I Life (i)

N I = NTotal N II Assumption: Stage I initiation and growth occurs under uniform membrane loading regardless of the absence or presence of linear and non-linear through-wall stress gradients.

13 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Test Specimen 25% load drop crack depths 25% load-drop crack depth of 0.118 in. (3-mm) is associated with a 0.304 in. (7.72 mm) specimen gauge diameter that represents the median NUREG/CR-6909 test specimen size 14 © 2015 Electric Power Research Institute, Inc. All rights reserved.

CS, LAS, SS Stage I Life for 1.150% Strain 15 © 2015 Electric Power Research Institute, Inc. All rights reserved.

LAS Stage 1 Life: 1.150% Strain Range (ii)

Low Alloy Steel Strain Stage I Range (cycles) 0.48% 35,202 0.80% 3,797 1.15% 1,249 1.50% 627 2.00% 320 2.50% 197 16 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Pin Crack Depth vs Life Fraction Comparison (Damiani and Smith) 17 © 2015 Electric Power Research Institute, Inc. All rights reserved.

STAGE II LIFE FOR A CYLINDER 18 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Stage II Life (i)

Crack growth of a mechanically small crack (0.008 in.) to a crack depth associated with a 25% load drop Stage II deterministic crack growth calculations were performed using the NRC PRAISE computer code PRAISE was modified to include a best estimate (50/50) of the C/LAS crack relationship in ASME Section XI Non-Mandatory Appendix C The alternating stress intensity was corrected for elastic-plastic material response in the HIGH strain LOW cycle region.

19 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Stage II Life (ii)

PRAISE was modified to include a best estimate version of the C, LAS and SS crack growth relationships in room temperature air The elastic alternating stress intensity, KI, is subsequently adjusted for elastic-plastic material response in the high-strain low-cycle region at the crack a-tip and b-tip.

Elastic J-integral range, Jelastic, was obtained from linear elastic finite element analyses, and the elastic-plastic J-integral range, Jelastic-plastic, was computed by performing elastic-plastic finite element analyses 20 © 2015 Electric Power Research Institute, Inc. All rights reserved.

C/LAS Stage II Life 21 © 2015 Electric Power Research Institute, Inc. All rights reserved.

SS Stage II Life Stainless Steel Plastic Correction Factors (DKJ/DKI)

Strain A-TIP B-TIP Range K J K J

= 0.0478 ( a/t ) + 0.0023 ( a/t ) + 0.6072 2

0.48% = 0.0564(a/t)2 - 0.0025(a/t) + 0.7253 K I K I K J K J

= 0.0642 ( a/t ) - 0.0040 ( a/t ) +0.5305 2

0.80% = 0.0734(a/t)2 - 0.0089(a/t) + 0.6542 K I K I K J K J

= 0.083 ( a/t ) - 0.0093 ( a/t ) + 0.6068 = 0.0707 ( a/t ) - 0.0091( a/t ) + 0.4768 2 2 1.15%

K I K I K J K J

= 0.0702 ( a / t ) +0.0004 ( a / t ) + 0.5697 = 0.0086 ( a/t ) + 0.0191( a/t ) + 0.4302 2 2 1.50%

K I K I K J K J

= 0.0660 ( a/t ) + 0.0002 ( a/t ) +0.5376 = 0.0085 ( a/t ) + 0.0161( a/t ) + 0.3848 2 2 2.00%

K I K I K J K J

= 0.0629 ( a/t ) + 0.0009 ( a/t ) + 0.5138 = 0.0251( a/t ) + 0.0027 ( a/t ) + 0.3468 2 2 2.50%

K I K I 22 © 2015 Electric Power Research Institute, Inc. All rights reserved.

LIFE & GRADIENT FACTOR REGRESSIONS 23 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Life & Gradient Factor Data Carbon/Low Alloy Steel and Stainless Steel

- Room temperature air environment Cyclic Loads:

- % Strain Range (e) = 0.48, 0.8, 1.15, 1.5, 2, 2.5 Nominal Pipe Sizes:

- NPS 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 14, 16,18, 20, 22, and 24 Pipe Schedules:

- 80 and 160 Pipe Thickness Range:

- 0.154 in. to 2.344 in.

Data

- 3780 Life Factors

- 3780 Gradient Factors 24 © 2015 Electric Power Research Institute, Inc. All rights reserved.

C/LAS Life & Gradient Factor Data* (ii)

  • Carbon steel data shown N3mm N I + N II (3mm ) ( N I + N II ) Membrane LF = = GF =

N 25% ( N I + N II (25%) ) ( N I ) Membrane + ( N II )Gradient 25 © 2015 Electric Power Research Institute, Inc. All rights reserved.

SS Life & Gradient Factor Data* (ii)

  • Stainless steel data shown N3mm N I + N II (3mm ) ( N I + N II ) Membrane LF = = GF =

N 25% ( N I + N II (25%) ) ( N I ) Membrane + ( N II )Gradient 26 © 2015 Electric Power Research Institute, Inc. All rights reserved.

C/LAS Life Factor Regression Models

( ) ( ) / 1000 2 3 LF = A + B t * + C t * + D t

t * = ln ( t )

( ) 11.250 (e )

2 3 A = 52.295 590.26 e 139.14 e e * = ln ( e range )

B = 77.704 + 75.874 e * + 10.331 ( e * )

2 t = Thickness (in.)

C = 37.423 + 5.2371 e

  • D = 0.74926 Low Alloy Steel A = 180.96 545.24 e 138.58 e

( ) 11.933 (e )

  • 2
  • 3

+ 17.919 ( e )

2 B = 220.80 + 142.17 e *

  • C = 35.254 + 4.8640 e
  • D = 1.5080 27 © 2015 Electric Power Research Institute, Inc. All rights reserved.

SS Life Factor Regression Models

( ) ( ) / 1000 2 3 LF = A + B t * + C t * + D t

  • Stainless Steel where:

( ) ( ) t * = ln ( t )

2 3 A = 600.28 303.60 e

  • 84.289 e
  • 7.3023 e
  • e * = ln ( e range )

B = 195.04 + 103.10 e + 11.053 ( e )

  • 2 t = Thickness (in.)

C = 4.2302 2.0595 e

  • D = 0.87079 28 © 2015 Electric Power Research Institute, Inc. All rights reserved.

C/LAS Gradient Factor Regression Models GF = 1 (1 ) A + B + C + D / 1000 where:

Carbon Steel m

=

A = 486.03 124.65 t * + 60.446 240.41 477.06 e

  • m + b + g

( ) b 2

B = 15.873 t * + 25.591 t * + 28.354 t

  • 14.676 t
  • e * =

m + b + g C = 26.691 2 229.76 + 31.654 e

  • and

( )

2 D = 12.153 27.369 e 62.559 e 2 *

  • m = Uniform membrane stress b = Linear bending stress Low Alloy Steel g = Non-linear gradient stress

( )

A = 1254.3 131.44 t * + 42.095 ( ) 263.20 ( ) 831.82 e* ( ) (

t * = ln ( t ) e * = ln e range )

B = 15.484 ( t ) + 24.215 ( t ) ( ) + 28.095 ( t ) ( ) 16.569 ( t )( e )

2 C = 27.324 ( ) 221.22 ( )( ) + 27.642 ( ) ( e )

2

  • D = 10.828 ( ) 33.048 ( ) ( e ) 103.34 ( e )
  • 2 2
  • 29 © 2015 Electric Power Research Institute, Inc. All rights reserved.

SS Gradient Factor Regression Models GF = 1 (1 ) A + B + C + D / 1000 where:

Stainless Steel m

=

A = 914.68 45.507 t

  • 155.40 40.507 559.38 e
  • m + b + g

( ) b 2

B = 19.835 t * + 33.757 t * + 33.359 t * + 6.1255 t

  • e * =

m + b + g C = 32.740 2 202.8 13.47 e

  • and

( )

2 D = 24.029 + 20.685 e 59.375 e 2 *

  • m = Uniform membrane stress b = Linear bending stress g = Non-linear gradient stress

(

t * = ln ( t ) e * = ln e range )

30 © 2015 Electric Power Research Institute, Inc. All rights reserved.

EXAMPLE NPS 10 Schedule 80 Reducing Elbow 31 © 2015 Electric Power Research Institute, Inc. All rights reserved.

BWR 4 LPCS 10 x 12 Reducing Elbow 60 year design fatigue usage calculation at a Schedule 80 10 X 12 reducing elbow in a Low Pressure Core Spray (LPCS) system Original calculation performed according to stress analysis procedures specified in ASME III NB-3600 The highest fatigue usage was located at Node 330 where a 3/4 socket-welded elbolet is attached to Schedule 80 10 X 12 reducing elbow The reducing elbow thickness at the location is 0.594.

60 year fatigue usage estimates are corrected the component thickness and the presence of through-wall stress gradients.

32 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Node 330 60-yr Air and Water Fatigue Usages 33 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Node 330 Membrane-to-Gradient Ratios 34 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Node 330 Stage I Life 35 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Node 330 LF and GF Calculation 36 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Node 330: C/LAS/SS Life Factor

( ) ( ) / 1000 2 3 LF = A + B t * + C t * + D t

  • Carbon Steel Low Alloy Steel Stainless Steel where:

t * = ln ( t )

A = 915.309 A = 1732.397 A = 925.461 e * = ln ( e range )

B = 55.105 B = 35.2658 B = 44.948 t = Thickness (in.)

C = 14.037 C = 56.8178 C = 13.427 and, D = 0.74926 D = 1246.04 D = 0.871 t * = 0.5209 LF = 0.9440 LF = 0.9476 LF = 0.9526 e * = 4.4654 37 © 2015 Electric Power Research Institute, Inc. All rights reserved.

Node 330: C/LAS/SS Gradient Factor GF = 1 (1 ) A + B + C + D / 1000 Carbon Steel Low Alloy Steel Stainless Steel where:

= 0.4289 A = 1732.397 A = 2543.655 A = 1539.775

= 0.0112 B = 35.2658 B = 39.9132 B = 11.894 and C = 56.8178 C = 48.9774 C = 30.846 m = 61.406 ksi D = 1246.04 D = 2059.01 D = 1184.960 b = 1.609 ksi g = 80.161 ksi GF = 0.7634 GF = 0.7735 GF = 0.7730 t * = 0.5209 e * = 4.4654 38 © 2015 Electric Power Research Institute, Inc. All rights reserved.

CS/LAS/SS LF & GF Comparisons LF and GF Comparison for CS at 1.15% Strain Range pcPRAISE Regression  % error Life Factor, LF 0.9430 0.9440 0.1060 Gradient Factor, GF 0.7635 0.7634 -0.0131 LF x GF 0.7200 0.7206 0.0929 Note: The CS LF and GF regressions agree with the pcPRAISE solution to within 0.11%.

LF and GF Comparison for LAS at 1.15% Strain Range pcPRAISE Regression  % error Life Factor, LF 0.9471 0.9476 0.0528 Gradient Factor, GF 0.7732 0.7735 0.0388 LF x GF 0.7323 0.7330 0.0916 Note: The LAS LF and GF regressions agree with the pcPRAISE solution to within 0.10%.

LF and GF Comparison for SS at 1.15% Strain Range pcPRAISE Regression  % error Life Factor, LF 0.9523 0.9526 0.0315 Gradient Factor, GF 0.7729 0.7730 0.0129 LF x GF 0.7360 0.7364 0.0444 Note: The SS LF and GF regressions agree with the pcPRAISE solution to within 0.05%.

39 © 2015 Electric Power Research Institute, Inc. All rights reserved.

40 © 2015 Electric Power Research Institute, Inc. All rights reserved.

DISCUSSION 41 © 2015 Electric Power Research Institute, Inc. All rights reserved.

TogetherShaping the Future of Electricity 42 © 2015 Electric Power Research Institute, Inc. All rights reserved.