ML14309A187: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(9 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 10/31/2014
| issue date = 10/31/2014
| title = Structural Integrity Associates, Inc. Calculation 1401289.301, ANO Leaking Flaw Evaluation, Revision 0
| title = Structural Integrity Associates, Inc. Calculation 1401289.301, ANO Leaking Flaw Evaluation, Revision 0
| author name = Roukema A C
| author name = Roukema A
| author affiliation = Entergy Operations, Inc
| author affiliation = Entergy Operations, Inc
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ATTACHMENT 2 TO2CAN111401STRUCTURAL INTEGRITY ASSOCIATES CALCULATION 1401289.301 V l Structural Integrity Associates, Inc. File No.: 1401289.301Project No.: 1401289CALCULATION PACKAGE Quality Program: Z Nuclear E] CommercialPROJECT NAME:ANO Leaking Flaw EvaluationCONTRACT NO.:10423246, Change Request No. 00109841CLIENT: PLANT:Entergy Arkansas, Inc. Arkansas Nuclear One, Unit 2CALCULATION TITLE:Evaluation of a Through-Wall Leak in a Service Water Tee (Dwg 2HCC-2003-1)Document Affected Project Manager Preparer(s) &Revision Pages Revision Description Approval Checker(s)Signature & Date Signatures & Date0 1 -12 Initial Issue Preparer:Eric J. Houston Adam C. Roukema10/31/2014 10/31/2014Checker:Brad P. Dawson10/31/2014Page 1 of 12F0306-OI RI CStructural Integrity Associates, Inc.Table of Contents
{{#Wiki_filter:ATTACHMENT 2 TO 2CAN111401 STRUCTURAL INTEGRITY ASSOCIATES CALCULATION 1401289.301
 
V     l StructuralIntegrity Associates, Inc.               File No.: 1401289.301 Project No.: 1401289 CALCULATION PACKAGE                               Quality Program: Z Nuclear E] Commercial PROJECT NAME:
ANO Leaking Flaw Evaluation CONTRACT NO.:
10423246, Change Request No. 00109841 CLIENT:                                         PLANT:
Entergy Arkansas, Inc.                           Arkansas Nuclear One, Unit 2 CALCULATION TITLE:
Evaluation of a Through-Wall Leak in a Service Water Tee (Dwg 2HCC-2003-1)
Document       Affected                                   Project Manager           Preparer(s) &
Revision       Pages         Revision Description             Approval               Checker(s)
Signature & Date         Signatures & Date 0            1 - 12           Initial Issue                                 Preparer:
Eric J. Houston         Adam C. Roukema 10/31/2014               10/31/2014 Checker:
Brad P. Dawson 10/31/2014 Page 1 of 12 F0306-OI RI
 
CStructuralIntegrity Associates, Inc.
Table of Contents
 
==1.0      INTRODUCTION==
.....................................................................................................            3 2.0      TECHNICAL APPROACH ......................................................................................                    3 3.0      DESIGN INPUTS AND ASSUMPTIONS ..............................................................                                  3 4.0      CALCULATIONS ...................................................................................................              4 4.1          Minimum Required Wall Thickness ...........................                                                          5 4.2          A pplied Loads ..............................................................................................        5 4.2.1 Hoop Stress........................................................................................................ 5 4.2.2 A xial Stresses..................................................................................................... 5 4.3          Stress Intensity Factor Calculations ...............................................................                  6 4.4          Critical Fracture Toughness Determination ..................................................                          7 5.0      R E SU LT S ............................................................................................................. 8
 
==6.0      CONCLUSION==
S .......................................................................................................          8
 
==7.0      REFERENCES==
.........................................................................................................          9 List of Tables Table    1: Applied Moment Loading for Bounding Moments .............................................                                  10 Table  2:  Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [9].. 11 Table  3:  Axial and Circumferential Structural Factors [2] ...............................................                          12 Table  4:  Load Combinations for Circumferential Flaw Analyses ......................................                                12 Table  5:  Pressure Blowout Check .......................................................................................            12 File No.: 1401289.301                                                                                                                        Page 2 of 12 Revision: 0 F0306-OIRI
 
CStructuralIntegrity Associates, Inc!


==1.0 INTRODUCTION==
==1.0 INTRODUCTION==
..................................................................................................... 32.0 TECHNICAL APPROACH ...................................................................................... 33.0 DESIGN INPUTS AND ASSUMPTIONS .............................................................. 34.0 CALCULATIONS ................................................................................................... 44.1 Minimum Required Wall Thickness ........................... 54.2 A pplied Loads .............................................................................................. 54.2.1 H oop Stress ........................................................................................................ 54.2.2 A xial Stresses ..................................................................................................... 54.3 Stress Intensity Factor Calculations ............................................................... 64.4 Critical Fracture Toughness Determination .................................................. 75.0 R E SU LT S .............................................................................................................


==86.0 CONCLUSION==
Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in the service water system. The system is safety related, and therefore requires an evaluation to demonstrate operability. The objective of this calculation is to determine the allowable through-wall flaw lengths in accordance with ASME Code Case N-513-4 [1].
S .......................................................................................................  
2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in ASME Code Case N-513-4, allowing for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-4 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.
In addition to straight pipe, N-513-4 evaluation criteria includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences.
Details are provided in N-513-4 for determining these adjusted stresses. The leaking flaw is in the carbon steel sweep-o-let, near the dissimilar metal weld at the adjoining stainless steel elbow. Therefore, the evaluation approach for branch connections in N-513-4 is appropriate. Although the attached elbow material has significantly higher toughness than the carbon steel (which if used would result in a much larger allowable through-wall flaw) the influence of the higher toughness on the allowable through-wall flaw is ignored and the system is evaluated as only carbon steel.
N-513-4 has been approved and published by ASME. It is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for alternative methods to calculate the stresses used in the analysis to reduce conservatism. N-513-4 has not been generically reviewed by the NRC.
Code Case N-513-4 evaluation criteria rely on the methods given in ASME Section XI, Appendix C [2].
Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Equations for through-wall stress intensity factor parameters Fm, Fb and F are given in the Code Case, Appendix I. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.
3.0 DESIGN INPUTS AND ASSUMPTIONS The piping design Code of Construction is ASME Section III - 1971 with Addenda through Summer 1971
[3] except for the items listed below:
A) Use ASME Section III - 1971 Winter 1972 Addenda, NC-3611.1 (b)(4)(c) and NC-3650 with Code Case 1606-1, for the following:
: a. Moments                                            b. Design Loading Combinations File No.: 1401289.301                                                                                Page 3 of 12 Revision: 0 F0306-01R I


==87.0 REFERENCES==
CStructuralIntegrity Associates, Inc
......................................................................................................... 9List of TablesTable 1: Applied Moment Loading for Bounding Moments ............................................. 10Table 2: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [9].. 11Table 3: Axial and Circumferential Structural Factors [2] ............................................... 12Table 4: Load Combinations for Circumferential Flaw Analyses ...................................... 12Table 5: Pressure Blowout Check ....................................................................................... 12File No.: 1401289.301Revision: 0Page 2 of 12F0306-OIRI CStructural Integrity Associates, Inc!
: c. Section Modulus                                      d. Stress Limits B) Use ASME Section III - 1974 [4], NC-3673.2 for the following:
: a. Flexibility Factors                                  b. Stress Intensification Factors The sweep-o-let material is ASME A105 Gr II carbon steel and the run piping is A106 Gr. B [5] carbon steel. For the analysis, A 106 Gr. B carbon properties are conservatively used. In addition, the fracture toughness of the two materials are assumed to be comparable.
The following design inputs are used in this calculation:
: 1. Outside diameter = 6.625 inches [5, Line Item 14]
: 2. Nominal wall thickness = 0.280 inch (based on standard pipe size) [5, Line Item 14]
: 3. Design temperature = 130'F [6, Page 114]
: 4. Design pressure = 150 psig [6, Page 114]
: 5. Material stress allowable = 15 ksi [7, PDF Page 19]
: 6. Young's modulus = 27,900 ksi [7, PDF Page 19]
: 7. NDE inspection results [8]
The moment loadings applied to the piping are obtained from the piping stress report [7] for the element located between nodes 25 and 225. The bounding moments are shown in Table 1.
Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [2], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kl,. The NRC's Pipe Fracture Encyclopedia [9] contains numerous CVN test results for A 106 Gr. B carbon steel at low temperature, which are reproduced in Table 2. The minimum reported value of 293 in-lb/in 2 is used in the analysis.
The following assumptions are used in this calculation:
: 1. Poisson's ratio is assumed to be 0.3.
: 2. The impact of weld residual stress on the structural stability of the observed flaw is assumed negligible. Weld residual stresses are secondary (i.e., self-limiting) and do not contribute significantly to gross structural failure in ductile materials in the presence of a through-wall flaw. In addition, the contribution, if any, to flaw growth due to secondary weld residual stresses is not required as the Code Case specifies a frequent re-inspection interval.
: 3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-4 address the possibility of flaw growth during the temporary acceptance period).
4.0 CALCULATIONS The applied stresses and resulting stress intensity factors are conservatively calculated using an evaluated wall thickness, teval, 0.175 inches.
File No.: 1401289.301                                                                                    Page 4 of 12 Revision: 0 F0306-OIRI


==1.0 INTRODUCTION==
CStructuralIntegrity Associates, Inc!
Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in theservice water system. The system is safety related, and therefore requires an evaluation to demonstrateoperability. The objective of this calculation is to determine the allowable through-wall flaw lengths inaccordance with ASME Code Case N-513-4 [1].2.0 TECHNICAL APPROACHThe flaw evaluation herein is based on the criteria prescribed in ASME Code Case N-513-4, allowing forthe temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-4allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.In addition to straight pipe, N-513-4 evaluation criteria includes rules for the evaluation of pipingcomponents such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if instraight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences.Details are provided in N-513-4 for determining these adjusted stresses. The leaking flaw is in the carbonsteel sweep-o-let, near the dissimilar metal weld at the adjoining stainless steel elbow. Therefore, theevaluation approach for branch connections in N-513-4 is appropriate. Although the attached elbowmaterial has significantly higher toughness than the carbon steel (which if used would result in a muchlarger allowable through-wall flaw) the influence of the higher toughness on the allowable through-wallflaw is ignored and the system is evaluated as only carbon steel.N-513-4 has been approved and published by ASME. It is recognized in ASME committee that thetechnical approach is very conservative. Simple treatment of piping component flaw evaluation using handcalculations was an important objective in the development of the approach recognizing the trade-off beingconservative results. N-513-4 allows for alternative methods to calculate the stresses used in the analysis toreduce conservatism. N-513-4 has not been generically reviewed by the NRC.Code Case N-513-4 evaluation criteria rely on the methods given in ASME Section XI, Appendix C [2].Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Equations for through-wall stress intensity factor parameters Fm, Fb and F are given in the Code Case,Appendix I. Allowable flaw lengths are determined through iteration comparing calculated stress intensityfactors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.3.0 DESIGN INPUTS AND ASSUMPTIONSThe piping design Code of Construction is ASME Section III -1971 with Addenda through Summer 1971[3] except for the items listed below:A) Use ASME Section III -1971 Winter 1972 Addenda, NC-3611.1 (b)(4)(c) and NC-3650 with CodeCase 1606-1, for the following:a. Moments b. Design Loading CombinationsFile No.: 1401289.301 Page 3 of 12Revision: 0F0306-01R I CStructural Integrity Associates, Incc. Section Modulus d. Stress LimitsB) Use ASME Section III -1974 [4], NC-3673.2 for the following:a. Flexibility Factors b. Stress Intensification FactorsThe sweep-o-let material is ASME A105 Gr II carbon steel and the run piping is A106 Gr. B [5] carbonsteel. For the analysis, A 106 Gr. B carbon properties are conservatively used. In addition, the fracturetoughness of the two materials are assumed to be comparable.The following design inputs are used in this calculation:1. Outside diameter = 6.625 inches [5, Line Item 14]2. Nominal wall thickness = 0.280 inch (based on standard pipe size) [5, Line Item 14]3. Design temperature = 130'F [6, Page 114]4. Design pressure = 150 psig [6, Page 114]5. Material stress allowable = 15 ksi [7, PDF Page 19]6. Young's modulus = 27,900 ksi [7, PDF Page 19]7. NDE inspection results [8]The moment loadings applied to the piping are obtained from the piping stress report [7] for the elementlocated between nodes 25 and 225. The bounding moments are shown in Table 1.Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [2], which specifies that 'reasonable lower bound fracture toughness data' may be used to determinethe allowable stress intensity factor, Kl,. The NRC's Pipe Fracture Encyclopedia [9] contains numerousCVN test results for A 106 Gr. B carbon steel at low temperature, which are reproduced in Table 2. Theminimum reported value of 293 in-lb/in2 is used in the analysis.The following assumptions are used in this calculation:1. Poisson's ratio is assumed to be 0.3.2. The impact of weld residual stress on the structural stability of the observed flaw is assumednegligible. Weld residual stresses are secondary (i.e., self-limiting) and do not contributesignificantly to gross structural failure in ductile materials in the presence of a through-wall flaw. Inaddition, the contribution, if any, to flaw growth due to secondary weld residual stresses is notrequired as the Code Case specifies a frequent re-inspection interval.3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-4address the possibility of flaw growth during the temporary acceptance period).4.0 CALCULATIONSThe applied stresses and resulting stress intensity factors are conservatively calculated using an evaluatedwall thickness, teval, 0.175 inches.File No.: 1401289.301 Page 4 of 12Revision: 0F0306-OIRI CStructural Integrity Associates, Inc!4.1 Minimum Required Wall ThicknessAn evaluation of ASME Section 111, NC-3650 equations 3, 8, 9B, 9D, and 10 has been conducted usinginputs discussed in Section 3.0. Based on these equations the minimum required wall thickness is 0.115inch.4.2 Applied LoadsAxial and circumferential (i.e., hoop) stresses are calculated from the moment loads in Table 1 and thedesign pressure. The evaluated wall thickness, teval, is used to determine the section properties. Thenominal wall thickness, tnom, is used to calculate the flexibility characteristic 'h' in accordance with theguidance of N-513-4.4.2.1 Hoop StressFor the allowable axial flaw length on a branch tee, the hoop stress, ch, may be determined fromEquation 13 of N-513-4:h = PDo(1)2twhere:p = internal design pressure, psigDo = outside diameter, int = evaluated wall thickness = teval, in4.2.2 Axial StressesFor the allowable circumferential flaw length, the axial stress due to pressure, deadweight and seismicloading is presented below. For axial membrane stress due to pressure, am, Equation 14 of N-513-4 is used.Note that there is a typo in the published version of this equation; the correct form is:PD0am = B, "pD" (2)2(2B1 is the primary stress index for pressure loading. As allowed by the Code Case, the primary stress indicesB, and B2 are taken from a more recent edition of the ASME Code [10, Table NB-3681(a)-I]. For branchconnections, BI is 0.5.For axial bending stress, Ob, due to deadweight and seismic moments, Equation 15 ofN-513-4 may be used:Do MbOb = B2 -'M (3)21File No.: 1401289.301 Page 5 of 12Revision: 0F0306-O1RI V Structural Integrity Associates, Inc.where:Mb = resultant primary bending moment, in-lbs.I = moment of inertia based on evaluated wall thickness, in4The coefficient B2 for branch connections is 0.5"C2 (but not < 1.0) and [10, NB-3683.8]:C2  n1 2/3 (rIm\1/2 (Tlib= 1('m5 (4)kTr- kRm- k Tr )\ rp)where:Rm = mean nominal radius of run pipe, inTr = nominal wall thickness of run pipe, inr'm = mean nominal radius of branch pipe, inT'b = nominal wall of branch pipe, inrp = outside nominal radius of branch pipe, inFor axial bending stress, oe, due to thermal expansion, Equation 16 of N-513-4 may be used:DoMee=L21 (5)where:i = stress intensification factorMe = resultant thermal expansion moment, in-lbs.The stress intensification factor is calculated based on a welding tee as [4, Figure NC-3673.2(b)-1]:= 0.9and h -(6,7)h2/- .rwhere:h = flexibility characteristict, = nominal wall thickness of run piping, inr = mean radius of run piping, in4.3 Stress Intensity Factor CalculationsFor LEFM analysis, the stress intensity factor, KI, for an axial flaw is taken from Article C-7000 [2] asprescribed by N-513-4 and is given below:K= KIK + Kirwhere:Kim = (SFm)Fah(na/Q)&deg;05SFm = structural factor for membrane stress (see Table 3)F = through-wall stress intensity factor parameter for an axial flaw under hoop stress (given inAppendix I of N-513-4)File No.: 1401289.301 Page 6 of 12Revision: 0F0306-OIRI Structural Integrity Associates, lnc.Gh = hoop stress, ksia = flaw depth (taken as half flaw length for through-wall flaw per Appendix I of N-513-4), inQ = flaw shape parameter (unity per Appendix I of N-513-4)Ki1 = Kl from residual stresses at flaw location (assumed negligible)Only the hoop stress influences the allowable axial flaw length, which is a function of pressure.For LEFM analysis, the stress intensity factor, K1, for a circumferential flaw is taken from Article C-7000[2] as prescribed by N-513-4 and is given below:KI= K, + Klb + Kirwhere:Kim = (SFm)Fma5m(ia)0"5Fm = through-wall stress intensity factor parameter for a circumferential flaw under membranestress (given in Appendix I of N-513-4)am = membrane stress, ksiK1b = [(SFb)mb + oe]Fb(lta)&deg;'5SFb -structural factor for bending stress (see Table 3)Ob = bending stress, ksiGe = thermal stress, ksiFb = through-wall stress intensity factor parameter for a circumferential flaw under bendingstress (given in Appendix I ofN-513-4)Kir = K1 from residual stresses at flaw location (assumed negligible)Note that the through-wall flaw stress intensity factor parameters are a function of flaw length.Table 4 shows the specific load combinations considered herein for the allowable circumferential flawcalculations.4.4 Critical Fracture Toughness DeterminationFor LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Kic, istaken from Article C-7000 [2] as prescribed by N-513-4 and is given below:Kl= IE'1000where:Jc = material toughness, in-lb/in2E'= E/( I-V2)E = Young's modulus, ksiv = Poisson's ratioFile No.: 1401289.301 Page 7 of 12Revision: 0F0306-OIRI Structural Integrity Associates, Inc.Based on the design input listed above, K1, = 94.7 ksi-in&deg;5.The allowable flaw lengths are determinediteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.5.0 RESULTSBased on inputs in Section 3.0, moments in Table I and using equations from Section 4.0, the allowablethrough-wall flaw in the circumferential direction is 2.7 inches and the allowable through-wall flaw in theaxial direction is 5.8 inches. The allowable through-wall flaw lengths are based on an evaluated wallthickness of 0.175 inch. Based on the inspection data given in Reference [8], the analyzed thickness andflaw lengths easily bound the observed thinning. Thus, the acceptance criteria of Code Case N-513-4 aremet.Code Case N-513-4, Paragraph 3.2(c) requires that the remaining ligament average thickness over thedegraded area be sufficient to resist pressure blowout [ 1, Equation 8]. Table 5 shows the required averagethickness, tc,avg, as a function of the equivalent diameter of the circular region, dadj, for which the wallthickness is less than tadj. Based on the inspection data given in Reference [8], the values in Table 5 easilybound the observed thinning. Thus, the Code Case requirement is met.
4.1 Minimum Required Wall Thickness An evaluation of ASME Section 111, NC-3650 equations 3, 8, 9B, 9D, and 10 has been conducted using inputs discussed in Section 3.0. Based on these equations the minimum required wall thickness is 0.115 inch.
4.2 Applied Loads Axial and circumferential (i.e., hoop) stresses are calculated from the moment loads in Table 1 and the design pressure. The evaluated wall thickness, teval, is used to determine the section properties. The nominal wall thickness, tnom, is used to calculate the flexibility characteristic 'h' in accordance with the guidance of N-513-4.
4.2.1  Hoop Stress For the allowable axial flaw length on a branch tee, the hoop stress, ch, may be determined from Equation 13 of N-513-4:
h = PDo(1) 2t where:
p = internal design pressure, psig Do = outside diameter, in t = evaluated wall thickness = teval, in 4.2.2  Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight and seismic loading is presented below. For axial membrane stress due to pressure, am, Equation 14 of N-513-4 is used.
Note that there is a typo in the published version of this equation; the correct form is:
PD0 am = B, "pD"                          (2) 2(2 B1 is the primary stress index for pressure loading. As allowed by the Code Case, the primary stress indices B, and B2 are taken from a more recent edition of the ASME Code [10, Table NB-3681(a)-I]. For branch connections, BI is 0.5.
For axial bending stress, Ob, due to deadweight and seismic moments, Equation 15 ofN-513-4 may be used:
DoMb Ob = B2 -'M                            (3) 21 File No.: 1401289.301                                                                                  Page 5 of 12 Revision: 0 F0306-O1RI
 
V      StructuralIntegrity Associates, Inc.
where:
Mb = resultant primary bending moment, in-lbs.
I = moment of inertia based on evaluated wall thickness, in4 The coefficient B2 for branch connections is 0.5"C 2 (but not < 1.0) and [10, NB-3683.8]:
C2    1('m5  n1 2 / 3 (rIm\1/2 (Tlib=            (4) kTr-      kRm-     k Tr )\  rp) where:
Rm = mean nominal radius of run pipe, in Tr = nominal wall thickness of run pipe, in r'm = mean nominal radius of branch pipe, in T'b = nominal wall of branch pipe, in rp = outside nominal radius of branch pipe, in For axial bending stress, oe, due to thermal expansion, Equation 16 of N-513-4 may be used:
DoMe e=L21                            (5) where:
i = stress intensification factor Me = resultant thermal expansion moment, in-lbs.
The stress intensification factor is calculated based on a welding tee as [4, Figure NC-3673.2(b)-1]:
                                      = 0.9and                              h    -    (6,7) h2/-                                      .r where:
h = flexibility characteristic t, = nominal wall thickness of run piping, in r = mean radius of run piping, in 4.3 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, KI, for an axial flaw is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:
K= KIK + Kir where:
Kim = (SFm)Fah(na/Q)&deg;0 5 SFm = structural factor for membrane stress (see Table 3)
F = through-wall stress intensity factor parameter for an axial flaw under hoop stress (given in Appendix I of N-513-4)
File No.: 1401289.301                                                                                Page 6 of 12 Revision: 0 F0306-OIRI
 
StructuralIntegrity Associates, lnc.
Gh = hoop stress, ksi a = flaw depth (taken as half flaw length for through-wall flaw per Appendix I of N-513-4), in Q = flaw shape parameter (unity per Appendix I of N-513-4)
Ki1 = Kl from residual stresses at flaw location (assumed negligible)
Only the hoop stress influences the allowable axial flaw length, which is a function of pressure.
For LEFM analysis, the stress intensity factor, K1, for a circumferential flaw is taken from Article C-7000
[2] as prescribed by N-513-4 and is given below:
KI= K, + Klb + Kir where:                          05 Kim  =  (SFm)Fma5m(ia) "
Fm =  through-wall stress intensity factor parameter for a circumferential flaw under membrane stress (given in Appendix I of N-513-4) am =  membrane stress, ksi 5 K1 b = [(SFb)mb + oe]Fb(lta)&deg;'
SFb -    structural factor for bending stress (see Table 3)
Ob = bending stress, ksi Ge = thermal stress, ksi Fb =  through-wall stress intensity factor parameter for a circumferential flaw under bending stress (given in Appendix I ofN-513-4)
Kir = K1 from residual stresses at flaw location (assumed negligible)
Note that the through-wall flaw stress intensity factor parameters are a function of flaw length.
Table 4 shows the specific load combinations considered herein for the allowable circumferential flaw calculations.
4.4 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Kic, is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:
Kl= IE' 1000 where:
2 Jc = material toughness, in-lb/in E'= E/( I-V2)
E = Young's modulus, ksi v = Poisson's ratio File No.: 1401289.301                                                                                Page 7 of 12 Revision: 0 F0306-OIRI
 
StructuralIntegrity Associates, Inc.
Based on the design input listed above, K1, = 94.7 ksi-in&deg; 5 . The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.
5.0 RESULTS Based on inputs in Section 3.0, moments in Table I and using equations from Section 4.0, the allowable through-wall flaw in the circumferential direction is 2.7 inches and the allowable through-wall flaw in the axial direction is 5.8 inches. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175 inch. Based on the inspection data given in Reference [8], the analyzed thickness and flaw lengths easily bound the observed thinning. Thus, the acceptance criteria of Code Case N-513-4 are met.
Code Case N-513-4, Paragraph 3.2(c) requires that the remaining ligament average thickness over the degraded area be sufficient to resist pressure blowout [ 1, Equation 8]. Table 5 shows the required average thickness, tc,avg, as a function of the equivalent diameter of the circular region, dadj, for which the wall thickness is less than tadj. Based on the inspection data given in Reference [8], the values in Table 5 easily bound the observed thinning. Thus, the Code Case requirement is met.


==6.0 CONCLUSION==
==6.0 CONCLUSION==
SArkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in theservice water system. Allowable through-wall flaw lengths have been calculated in accordance with ASMECode Case N-513-4. Because N-513-4 has not been generically reviewed by the NRC, justification forcontinued operation without repair or replacement until the next scheduled outage requires NRC review andapproval.The allowable through-wall flaw in the circumferential and axial directions is 2.7 inches and 5.8 inches,respectively. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175inch. Table 5 shows the requirements to meet the Code Case pressure blowout limits.The observed pinhole leak is easily bounded by the results of the analysis; thus, the acceptance criteria ofCode Case N-513-4 are met. The system should be considered operable but degraded.File No.: 1401289.301 Page 8 of 12Revision: 0F0306-OIRI V Structural Integrity Associates, Inc!
S Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in the service water system. Allowable through-wall flaw lengths have been calculated in accordance with ASME Code Case N-513-4. Because N-513-4 has not been generically reviewed by the NRC, justification for continued operation without repair or replacement until the next scheduled outage requires NRC review and approval.
The allowable through-wall flaw in the circumferential and axial directions is 2.7 inches and 5.8 inches, respectively. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175 inch. Table 5 shows the requirements to meet the Code Case pressure blowout limits.
The observed pinhole leak is easily bounded by the results of the analysis; thus, the acceptance criteria of Code Case N-513-4 are met. The system should be considered operable but degraded.
File No.: 1401289.301                                                                                   Page 8 of 12 Revision: 0 F0306-OIRI
 
V     StructuralIntegrity Associates, Inc!


==7.0 REFERENCES==
==7.0 REFERENCES==
: 1. ASME Code Case N-513-4, "Evaluation Criteria for Temporary Acceptance of Flaws in ModerateEnergy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure VesselCode, May 7, 2014.2. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with 2003 Addenda.3. ASME Boiler and Pressure Vessel Code, Section III, 1971 Edition with Addenda through Summer1971.4. ASME Boiler and Pressure Vessel Code, Section III, 1974 Edition.5. Entergy Drawing No. 2HBC-33-2, Sheet 1, Revision 16, "Large Pipe Isometric Service WaterSupply Header #1," SI File No. 1401289.201.6. Entergy Calculation No. 88-E-0200-15, Revision 3, "P-T Calculation for Unit 2 Service WaterSystem," SI File No. 1401289.201.7. Entergy Calculation No. 90-D-2003-08, Revision 3, "Supply Piping Analysis for Piping in DCP 90-2003," SI File No 1401289.201.8. Entergy UT Thickness Examination Report No. 2-BOP-UT-14-040, SI File No. 1401289.201.9. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.10. ASME Boiler and Pressure Vessel Code, Section III, 2004 Edition.File No.: 1401289.301Revision: 0Page 9 of 12F0306-OIRI CStructural Integrity Associates, Inc!Table 1: Applied Moment Loading for Bounding MomentsDeadweight(in-lbs)OBE(in-lbs)DBE(in-lbs)Thermal(in-lbs)6902 21471 30657 5408Notes:1. Square Root Sum of the Squares (SRSS) is used to calculate moments fromReference [7].2. Moments are from the bounding location, which is at node 225.File No.: 1401289.301Revision: 0Page 10 ofl12F0306-01R I  
: 1. ASME Code Case N-513-4, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, May 7, 2014.
$Structural Integrity Associates, Inc.Table 2: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [91Database Reference Temperature (&deg;C) Temperature (F) JIC (kJ/m') JIC (tbrin/in-) KIC(ks-in&#xfd;')2 24 75 97 552 1332 24 75 336 1919 24916 25 77 81 464 12216 25 77 418 2386 27716 25. 77 270 1542 22316 25 77 193 1104 18922 24 75 224 1278 20322 20 68 112 641 14422 20 68 117 668 14722 23 73 214 1223 19922 20 68 167 954 17522 20 68 223 1271 20222 20 68 108 617 14123 52 126 116 663 14623 23 73 103 590 13823 23 73 105 600 13923 23 73 93 528 13124 23 73 76 431 11824 23 73 821 469 12324 57 135 511 293 97 425 23 73 771 439 11925 23 73 70 400 11425 57 135 62 356 10790 20 68 235 1342 20890 20 68 219 1251 20190 20 68 255 1456 21790 20 68 281 1605 22890 20 68 281 1605 22890 20 68 335 1913 24890 20 68 421 2404 27990 20 68 385 2198 26690 20 68 175 999 18090 20 68 172 982 17890 20 68 178 1016 18190 20 68 214 1222 19990 20 68 275 1570 22590 20 68 133 759 15790 20 68 140 799 16190 20 68, 174 994 17990 20 68 111 634 14390 20 68 190 1085 18790 20 68 71 405 11490 20 68 110 628 14290 20 68 104 594 13890 20 68 104 594 13890 201 68 97 554 13490 201 68 89 508 12890 201 68 88 502 12790 201 68 267 1525 222File No.: 1401289.301Revision: 0Page 11 of 12F0306-0IRI VStructural Integrity Associates, Inc!Table 3: Axial and Circumferential Structural Factors [21Service Level Membrane Stress, SFm Bending Stress, SFbA 2.7 2.3B 2.4 2.0C 1.8 1.6D 1.3 1.4Table 4: Load Combinations for Circumferential Flaw AnalysesLoad Combination Service LevelP+DW+TH AP+DW+TH+OBE BP+DW+TH+DBE DTable 5: Pressure Blowout Checkdadj tc,avg0.25 0.010.75 0.031.25 0.041.75 0.062.25 0.082.75 0.103.25 0.113.75 0.134.25 0.154.75 0.175.25 0.19File No.: 1401289.301Revision: 0Page 12 of 12F0306-OIRI ATTACHMENT 3 TO2CAN111401UT THICKNESS EXAMINATIONREPORT 2-BOP-UT-14-040  
: 2. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with 2003 Addenda.
*EnleigyUT Thickness ExaminationSite/Unit: ANO-2 / 2Summary No.: FW-1 2HCC-2003-1Workscope: BOP\Non-OutageProcedure: CEP-NDE-0505Procedure Rev.: 004Work Order No.: 396448:Outage No.: NIAReport No.: 2-BOP-UT-14-040Page: 1 of 4Code: Info Only Cat./Item: NIA/N/A Location: U2 TB 335'Drawing No.: 2HCC-2003-1
: 3. ASME Boiler and Pressure Vessel Code, Section III, 1971 Edition with Addenda through Summer 1971.
: 4. ASME Boiler and Pressure Vessel Code, Section III, 1974 Edition.
: 5. Entergy Drawing No. 2HBC-33-2, Sheet 1, Revision 16, "Large Pipe Isometric Service Water Supply Header #1," SI File No. 1401289.201.
: 6. Entergy Calculation No. 88-E-0200-15, Revision 3, "P-T Calculation for Unit 2 Service Water System," SI File No. 1401289.201.
: 7. Entergy Calculation No. 90-D-2003-08, Revision 3, "Supply Piping Analysis for Piping in DCP 90-2003," SI File No 1401289.201.
: 8. Entergy UT Thickness Examination Report No. 2-BOP-UT-14-040, SI File No. 1401289.201.
: 9. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
: 10. ASME Boiler and Pressure Vessel Code, Section III, 2004 Edition.
File No.: 1401289.301                                                                          Page 9 of 12 Revision: 0 F0306-OIRI
 
CStructuralIntegrity Associates, Inc!
Table 1: Applied Moment Loading for Bounding Moments Deadweight      OBE            DBE          Thermal (in-lbs)     (in-lbs)       (in-lbs)       (in-lbs) 6902       21471         30657           5408 Notes:
: 1. Square Root Sum of the Squares (SRSS) is used to calculate moments from Reference [7].
: 2. Moments are from the bounding location, which is at node 225.
File No.: 1401289.301                                                                      Page 10 ofl12 Revision: 0 F0306-01R I
 
        $StructuralIntegrity Associates, Inc.
Table 2: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [91 Database Reference Temperature (&deg;C) Temperature (F) JIC (kJ/m') JIC (tbrin/in-) KIC(ks-in&#xfd;')
2             24               75         97           552           133 2              24               75       336           1919           249 16              25               77         81           464           122 16              25               77       418           2386           277 16              25.             77       270           1542           223 16              25               77       193           1104           189 22              24               75       224           1278           203 22              20             68       112             641           144 22              20             68       117             668           147 22              23             73       214           1223           199 22              20             68       167             954           175 22              20             68       223           1271           202 22              20             68       108             617           141 23              52             126       116             663           146 23               23              73       103             590           138 23               23              73       105             600           139 23               23              73         93           528           131 24              23             73         76           431           118 24              23             73         821           469           123 24              57             135         511           293             97 4 25              23             73         771           439           119 25              23             73         70           400           114 25              57             135         62           356           107 90              20             68       235           1342           208 90              20             68       219           1251           201 90              20             68       255           1456           217 90              20             68       281           1605           228 90              20             68       281           1605           228 90              20             68       335           1913           248 90              20             68       421           2404           279 90              20             68       385           2198           266 90              20             68         175           999           180 90              20             68         172           982           178 90              20             68         178         1016             181 90              20             68       214           1222             199 90              20             68       275           1570           225 90              20             68         133           759           157 90              20             68         140           799           161 90              20             68,       174           994           179 90              20             68       111             634           143 90              20             68         190         1085             187 90              20             68         71           405           114 90              20             68         110           628           142 90              20             68         104           594           138 90              20             68         104           594           138 90              201             68         97           554           134 90              201             68         89           508           128 90              201             68         88           502           127 90              201             68       267           1525             222 File No.: 1401289.301                                                                                                    Page 11 of 12 Revision: 0 F0306-0IRI
 
VStructural   Integrity Associates, Inc!
Table 3: Axial and Circumferential Structural Factors [21 Service Level         Membrane Stress, SFm         Bending Stress, SFb A                      2.7                         2.3 B                      2.4                         2.0 C                      1.8                         1.6 D                      1.3                         1.4 Table 4: Load Combinations for Circumferential Flaw Analyses Load Combination                 Service Level P+DW+TH                             A P+DW+TH+OBE                             B P+DW+TH+DBE                             D Table 5: Pressure Blowout Check dadj      tc,avg 0.25       0.01 0.75       0.03 1.25       0.04 1.75       0.06 2.25       0.08 2.75       0.10 3.25       0.11 3.75       0.13 4.25       0.15 4.75       0.17 5.25       0.19 File No.: 1401289.301                                                                      Page 12 of 12 Revision: 0 F0306-OIRI
 
ATTACHMENT 3 TO 2CAN111401 UT THICKNESS EXAMINATION REPORT 2-BOP-UT-14-040
 
      *Enleigy                                      UT Thickness Examination Site/Unit:   ANO-2     /       2                      Procedure:        CEP-NDE-0505          :Outage No.:      NIA Summary No.:         FW-1 2HCC-2003-1                Procedure Rev.:                 004              Report No.: 2-BOP-UT-14-040 Workscope:          BOP\Non-Outage                  Work Order No.:              396448                    Page:   1   of   4 Code:               Info Only                 Cat./Item:         NIA/N/A           Location:                 U2 TB 335' Drawing No.:               2HCC-2003-1                    


== Description:==
== Description:==
SW Leak at SS to CS FW41System ID: SWComponent ID: 2HCC-2003-1 SW Leak Size/Length: 6" Thickness/Diameter: 0.280"Limitations: NoneTemp. Tool Mfg.: PTC Serial No..: 109537 Surface Temp.: 70 'FCouplant: ULTRAGEL II Batch No.: 12M020 Cal. Report No.: N/AExamination Surface: Inside [2 Outside V. Surface Condition: Ground FlushLo Location: TDC (leak at 24") to, iq, Wo Location: Centerline of WeldTmin scan .069" -o 24" o .3"Tmin grid .226"Tmax grid .577"Tavg grid .353"Comments:*See Supplemental Report for 3600 readings around pipe and Star pattern readings at leak location. Lowest scanned readingwas 0.069" near leak. Equipment used: Panametrics 37DL Plus #51324510, Panametrics transducer D795 5 Mhz ,2" #10101,CS Step #93-6900, SS Stepl0-3009 CAL INIOUT acceptable. This flaw is considered Non-PlanarResults: Accept [3 Reject .J Info jPercent Of Coverage Obtained > 90%:. NIARef. CR-ANO-2-2014-2970Reviewed Previous Data:NIAExaminer Level II S." j hSgat .Date Reviewer Signature DateTaylor, Michael W. (10121/2014 NIAExaminer Level NIA Signay t ' Date Site Review Signature DaleN/A Panther, Ken &#xfd;4-.4... 10/22/2014Other Level ,gnatre Date ANII Review Signature DateJackson, Rickey p/&tA/ 1012112014 NIAUT Thickness Examination
SW Leak at SS to CS FW41 System ID:       SW Component ID: 2HCC-2003-1 SW Leak                                     Size/Length:         6"         Thickness/Diameter:     0.280" Limitations:     None Temp. Tool Mfg.:                       PTC                         Serial No..:           109537           Surface Temp.:     70     'F Couplant:           ULTRAGEL II                 Batch No.:         12M020         Cal. Report No.:               N/A Examination Surface:       Inside   [2   Outside V.             Surface Condition: Ground Flush Lo Location:                   TDC (leak at 24") to,       iq,               Wo Location:             Centerline of Weld Tmin      scan   .069"     -o 24"     o .3" Tmin     grid   .226" Tmax     grid   .577" Tavg     grid   .353" Comments:
* EntergySummary No.: FW-1 2HCC-2003-1Supplemental ReportReport No.: 2-BOP-UT-14-040Page:' 2 of 4Examiner: Taylor, Michael W.lidLevel: IIReviewer: N/ADate:Examiner: N/AOther: Jackson. Rickev 4']Level: N/A Site Review: Panther, KenDate: 10/22/2014Date:Level: / ANII Review:Comments: The leak was located at the toe of weld on the Sweep-o-!et side of weld. UT readings taken In a Star patternaround leak location to establish a wear area. Each row is Incremented every 450 with each reading takenevery .25" away from leak. This flaw is considered Non-Planar.Sketch or Photo: Ver 8\lddeal_Server\lddeal BOP 2014\MICQ2HCC Star.jpg/7/7'/'./ Ii.31vIe~.T -(ci; '\~.' fIvSi.. Z37.1'7;*~s~7 ./Jj.3g4 7*~'~8 7'~7'.1'71oli. ZIlv' O''Aj?Supplemental Report  
  *See Supplemental Report for 3600 readings around pipe and Star pattern readings at leak location. Lowest scanned reading was 0.069" near leak. Equipment used: Panametrics 37DL Plus #51324510, Panametrics transducer D795 5 Mhz ,2" #10101, CS Step #93-6900, SS Stepl0-3009 CAL INIOUT acceptable. This flaw is considered Non-Planar Results:             Accept     [3     Reject .J         Info   j        Ref. CR-ANO-2-2014-2970 Percent Of Coverage Obtained > 90%:.                NIA                    Reviewed Previous Data:           NIA Examiner        Level II               S."
*EntergySummary No.: FW-1 2HCC-2003-1Supplemental ReportReport No.: 2-BOP-UT-14-040Page: 3 of 4Examiner: Taylor, Michael W.Level: IIReviewer: NWADate:Examiner: NIAOther: Jackson. Rickey .Level: NIA Site Review: Panther, KenDate: 10/22/2014Date:Level: A ANII Review:VComments: UT readings taken 360* around pipe at the plane of the leak for circuferential thicknesses. 01 reading wastaken at TDC. Also scanneq 100% circumferentially around pipe looking for other low readings and nonewerefound. OX r(Asit,'9 ,5 ivc oF oF f,;dJ y. r, 1 V/L/z/"A"- taken on CS Sweep-O.Let, "B". taken on weld, "C"- taken on SS ElbowSketch or Photo: \jdcnsetsp001\lDDEAL~lddeal Ver 8\lddealServer~lddealANODocuments\ANO BOP 2014\MIC\2HCC Grid.jpgSupplemental Report  
j hSgat                 . Date Reviewer                             Signature             Date Taylor, Michael W.                                     (10121/2014 NIA Examiner        Level NIA               Signay t         '         Date Site Review                         Signature             Dale N/A                                                                       Panther, Ken           &#xfd;4-.4...                 10/22/2014 Other          Level       ,gnatre                               Date ANII Review                         Signature             Date Jackson, Rickey                       p/&tA/             1012112014 NIA UT Thickness Examination
*EnteySupplemental ReportReport No.: 2-B0P-UT-14.04Page: 4 of 4Summary No.: FWA- 2HCC-2003-1Examiner: Taylor, Michael W.Examiner: N/AOther. Jackson, Rickey jLevel: ItLevel: NIALevel:Reviewer; N/ASite Review. Panther, Ken -F i .$%ANII Review: NIADate:Date: 10/22/2014Date:Comments: Pictures before and after grinding weld flat. Picture on left shows weld still painted with stain appearing on SS elbow. Picture on the right is aftergrinding weld flat showing the leak to be at the toe of the weld on the Sweep-o-*et side. L&#xa3; j A $ iS i /low 3; S u'v ll'[AA)l~ gw..4Sketch or Photo:%*:Iwses9O0IlDDEALVddea1 Ver N~ddeaIServerliddsak_ANO1DocuensANOBOP 2014%PhotosXWO396448 U2 SW feakDSCF2747.JPG%"=cnetspWotlDOEAL~ddeal Ver 8aideal Servesiiddeal ANOMDocumnentsaLANOSJOP 2O14*Photos~WO39W48 U2 SW ieakx7DscF2897.J;G-wZ -73Supplemental Report   to2CAN111401List of Regulatory Commitments   to2CAN 111401Page 1 of 1LIST OF REGULATORY COMMITMENTSThe following table identifies those actions committed to by Entergy in this document. Anyother statements in this submittal are provided for information purposes and are notconsidered to be regulatory commitments.TYPE(Check one) SCHEDULEDCOMMITMENT -COMPLETIONONE-TIME CONTINUING DATEACTION COMPLIANCEPrior to startupfrom the nextrefueling outage(fall of 2015) orprior to exceedingthe structuralA Section XI compliant repair / replacement limits identified bymust be completed for the subject flaw. the evaluation asapproved by thisrelief request, orprior to a leakrate greater than5 gpm, whichevercomes first.}}
* Entergy                                  Supplemental Report Report No.: 2-BOP-UT-14-040 Page:'   2   of   4 Summary No.: FW-1 2HCC-2003-1 Examiner: Taylor, Michael W.         lid      Level:     II          Reviewer: N/A                                  Date:
Examiner: N/A                                  Level:   N/A       Site Review: Panther, Ken                          Date: 10/22/2014 Other: Jackson. Rickev        4']          Level:     /       ANII Review:                                       Date:
Comments: The leak was located at the toe of weld on the Sweep-o-!et side of weld. UT readings taken In a Star pattern around leak location to establish a wear area. Each row is Incremented every 450 with each reading taken every .25" away from leak. This flaw is considered Non-Planar.
Sketch or Photo: \*jdcnsetspoo1\lDDEALlddeal Ver 8\lddeal_Server\lddeal ANO*Documents\ANO BOP 2014\MICQ2HCC Star.jpg
                                                                                                      /
7
                                                                                                /7'
                                                                                              /
                                                                                    './   I i.3 1
(ci; '\
                                      .. Z3
                                                                                                                ~.' fIvSi vIe~.T              -
7.1'
                                                          ;*~s~7 7    ./Jj
                                                      .3g4 7
                                                *~'~8 7'
                                                                    ~
7'
                                                                    .1'71 lv' O''
Aj?
oli.ZI Supplemental Report
 
  *Entergy                                        Supplemental Report Report No.: 2-BOP-UT-14-040 Page:     3   of   4 Summary No.: FW-1 2HCC-2003-1 Examiner: Taylor, Michael W.                   Level:     II        Reviewer: NWA                            Date:
Examiner:   NIA                                Level:   NIA     Site Review: Panther, Ken                    Date: 10/22/2014 Other: Jackson. Rickey        .            Level:   A       ANII Review:                                 Date:
V Comments: UT readings taken 360* around pipe at the plane of the leak for circuferential thicknesses. 01 reading was taken at TDC. Also scanneq 100% circumferentially around pipe looking for other low readings and none werefound. OX r(Asit,'9 ,5 ivc                         oF   oF r,f,;dJ   y.       1 V/L/z/
                    "A"- taken on CS Sweep-O.Let, "B". taken on weld, "C"- taken on SS Elbow Sketch or Photo: \jdcnsetsp001\lDDEAL~lddeal Ver 8\lddealServer~lddealANODocuments\ANO BOP 2014\MIC\2HCC Grid.jpg Supplemental Report
 
*Entey                                                            Supplemental Report Report No.: 2-B0P-UT-14.04 Page:     4     of     4 Summary No.: FWA- 2HCC-2003-1 Examiner: Taylor, Michael W.                                   Level:   It          Reviewer; N/A                                              Date:
Examiner: N/A                                                  Level:  NIA      Site Review. Panther, Ken       -F i   .$%                   Date: 10/22/2014 Other. Jackson, Rickey        j                            Level:            ANII Review: NIA                                              Date:
Comments: Pictures before and after grinding weld flat. Picture on left shows weld still painted with stain appearing on SS elbow. Picture on the right is after grinding weld flat showing the leak to be at the toe of the weld on the Sweep-o-*et side. L&#xa3;j A       $ iS i       /low S 3;               u'v ll'[AA)l
                      ~ gw..4 Sketch or Photo: %*:Iwses9O0IlDDEALVddea1Ver N~ddeaIServerliddsak_ANO1DocuensANO                %"=cnetspWotlDOEAL~ddeal Ver 8aideal Servesiiddeal ANOMDocumnentsaLANO BOP 2014%PhotosXWO396448 U2 SW feakDSCF2747.JPG                              SJOP 2O14*Photos~WO39W48 U2 SW ieakx7DscF2897.J;G-wZ
                        - 73 Supplemental Report
 
Attachment 4 to 2CAN111401 List of Regulatory Commitments to 2CAN 111401 Page 1 of 1 LIST OF REGULATORY COMMITMENTS The following table identifies those actions committed to by Entergy in this document. Any other statements in this submittal are provided for information purposes and are not considered to be regulatory commitments.
TYPE (Check one)               SCHEDULED COMMITMENT                                                  -COMPLETION ONE-TIME ACTION      CONTINUING COMPLIANCE              DATE Prior to startup from the next refueling outage (fall of 2015) or prior to exceeding the structural A Section XI compliant repair / replacement                                   limits identified by must be completed for the subject flaw.                                       the evaluation as approved by this relief request, or prior to a leak rate greater than 5 gpm, whichever comes first.}}

Latest revision as of 20:46, 31 October 2019

Structural Integrity Associates, Inc. Calculation 1401289.301, ANO Leaking Flaw Evaluation, Revision 0
ML14309A187
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 10/31/2014
From: Roukema A
Entergy Operations
To:
Office of Nuclear Reactor Regulation
References
2CAN111401 1401289.301, Rev . 0
Download: ML14309A187 (20)


Text

ATTACHMENT 2 TO 2CAN111401 STRUCTURAL INTEGRITY ASSOCIATES CALCULATION 1401289.301

V l StructuralIntegrity Associates, Inc. File No.: 1401289.301 Project No.: 1401289 CALCULATION PACKAGE Quality Program: Z Nuclear E] Commercial PROJECT NAME:

ANO Leaking Flaw Evaluation CONTRACT NO.:

10423246, Change Request No. 00109841 CLIENT: PLANT:

Entergy Arkansas, Inc. Arkansas Nuclear One, Unit 2 CALCULATION TITLE:

Evaluation of a Through-Wall Leak in a Service Water Tee (Dwg 2HCC-2003-1)

Document Affected Project Manager Preparer(s) &

Revision Pages Revision Description Approval Checker(s)

Signature & Date Signatures & Date 0 1 - 12 Initial Issue Preparer:

Eric J. Houston Adam C. Roukema 10/31/2014 10/31/2014 Checker:

Brad P. Dawson 10/31/2014 Page 1 of 12 F0306-OI RI

CStructuralIntegrity Associates, Inc.

Table of Contents

1.0 INTRODUCTION

..................................................................................................... 3 2.0 TECHNICAL APPROACH ...................................................................................... 3 3.0 DESIGN INPUTS AND ASSUMPTIONS .............................................................. 3 4.0 CALCULATIONS ................................................................................................... 4 4.1 Minimum Required Wall Thickness ........................... 5 4.2 A pplied Loads .............................................................................................. 5 4.2.1 Hoop Stress........................................................................................................ 5 4.2.2 A xial Stresses..................................................................................................... 5 4.3 Stress Intensity Factor Calculations ............................................................... 6 4.4 Critical Fracture Toughness Determination .................................................. 7 5.0 R E SU LT S ............................................................................................................. 8

6.0 CONCLUSION

S ....................................................................................................... 8

7.0 REFERENCES

......................................................................................................... 9 List of Tables Table 1: Applied Moment Loading for Bounding Moments ............................................. 10 Table 2: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [9].. 11 Table 3: Axial and Circumferential Structural Factors [2] ............................................... 12 Table 4: Load Combinations for Circumferential Flaw Analyses ...................................... 12 Table 5: Pressure Blowout Check ....................................................................................... 12 File No.: 1401289.301 Page 2 of 12 Revision: 0 F0306-OIRI

CStructuralIntegrity Associates, Inc!

1.0 INTRODUCTION

Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in the service water system. The system is safety related, and therefore requires an evaluation to demonstrate operability. The objective of this calculation is to determine the allowable through-wall flaw lengths in accordance with ASME Code Case N-513-4 [1].

2.0 TECHNICAL APPROACH The flaw evaluation herein is based on the criteria prescribed in ASME Code Case N-513-4, allowing for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-4 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), through-wall flaws in the axial and circumferential directions.

In addition to straight pipe, N-513-4 evaluation criteria includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences.

Details are provided in N-513-4 for determining these adjusted stresses. The leaking flaw is in the carbon steel sweep-o-let, near the dissimilar metal weld at the adjoining stainless steel elbow. Therefore, the evaluation approach for branch connections in N-513-4 is appropriate. Although the attached elbow material has significantly higher toughness than the carbon steel (which if used would result in a much larger allowable through-wall flaw) the influence of the higher toughness on the allowable through-wall flaw is ignored and the system is evaluated as only carbon steel.

N-513-4 has been approved and published by ASME. It is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for alternative methods to calculate the stresses used in the analysis to reduce conservatism. N-513-4 has not been generically reviewed by the NRC.

Code Case N-513-4 evaluation criteria rely on the methods given in ASME Section XI, Appendix C [2].

Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Equations for through-wall stress intensity factor parameters Fm, Fb and F are given in the Code Case, Appendix I. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.

3.0 DESIGN INPUTS AND ASSUMPTIONS The piping design Code of Construction is ASME Section III - 1971 with Addenda through Summer 1971

[3] except for the items listed below:

A) Use ASME Section III - 1971 Winter 1972 Addenda, NC-3611.1 (b)(4)(c) and NC-3650 with Code Case 1606-1, for the following:

a. Moments b. Design Loading Combinations File No.: 1401289.301 Page 3 of 12 Revision: 0 F0306-01R I

CStructuralIntegrity Associates, Inc

c. Section Modulus d. Stress Limits B) Use ASME Section III - 1974 [4], NC-3673.2 for the following:
a. Flexibility Factors b. Stress Intensification Factors The sweep-o-let material is ASME A105 Gr II carbon steel and the run piping is A106 Gr. B [5] carbon steel. For the analysis, A 106 Gr. B carbon properties are conservatively used. In addition, the fracture toughness of the two materials are assumed to be comparable.

The following design inputs are used in this calculation:

1. Outside diameter = 6.625 inches [5, Line Item 14]
2. Nominal wall thickness = 0.280 inch (based on standard pipe size) [5, Line Item 14]
3. Design temperature = 130'F [6, Page 114]
4. Design pressure = 150 psig [6, Page 114]
5. Material stress allowable = 15 ksi [7, PDF Page 19]
6. Young's modulus = 27,900 ksi [7, PDF Page 19]
7. NDE inspection results [8]

The moment loadings applied to the piping are obtained from the piping stress report [7] for the element located between nodes 25 and 225. The bounding moments are shown in Table 1.

Determination of the fracture toughness, Jic, used in the evaluation is based on Section XI, Appendix C, C-8320 [2], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, Kl,. The NRC's Pipe Fracture Encyclopedia [9] contains numerous CVN test results for A 106 Gr. B carbon steel at low temperature, which are reproduced in Table 2. The minimum reported value of 293 in-lb/in 2 is used in the analysis.

The following assumptions are used in this calculation:

1. Poisson's ratio is assumed to be 0.3.
2. The impact of weld residual stress on the structural stability of the observed flaw is assumed negligible. Weld residual stresses are secondary (i.e., self-limiting) and do not contribute significantly to gross structural failure in ductile materials in the presence of a through-wall flaw. In addition, the contribution, if any, to flaw growth due to secondary weld residual stresses is not required as the Code Case specifies a frequent re-inspection interval.
3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-4 address the possibility of flaw growth during the temporary acceptance period).

4.0 CALCULATIONS The applied stresses and resulting stress intensity factors are conservatively calculated using an evaluated wall thickness, teval, 0.175 inches.

File No.: 1401289.301 Page 4 of 12 Revision: 0 F0306-OIRI

CStructuralIntegrity Associates, Inc!

4.1 Minimum Required Wall Thickness An evaluation of ASME Section 111, NC-3650 equations 3, 8, 9B, 9D, and 10 has been conducted using inputs discussed in Section 3.0. Based on these equations the minimum required wall thickness is 0.115 inch.

4.2 Applied Loads Axial and circumferential (i.e., hoop) stresses are calculated from the moment loads in Table 1 and the design pressure. The evaluated wall thickness, teval, is used to determine the section properties. The nominal wall thickness, tnom, is used to calculate the flexibility characteristic 'h' in accordance with the guidance of N-513-4.

4.2.1 Hoop Stress For the allowable axial flaw length on a branch tee, the hoop stress, ch, may be determined from Equation 13 of N-513-4:

h = PDo(1) 2t where:

p = internal design pressure, psig Do = outside diameter, in t = evaluated wall thickness = teval, in 4.2.2 Axial Stresses For the allowable circumferential flaw length, the axial stress due to pressure, deadweight and seismic loading is presented below. For axial membrane stress due to pressure, am, Equation 14 of N-513-4 is used.

Note that there is a typo in the published version of this equation; the correct form is:

PD0 am = B, "pD" (2) 2(2 B1 is the primary stress index for pressure loading. As allowed by the Code Case, the primary stress indices B, and B2 are taken from a more recent edition of the ASME Code [10, Table NB-3681(a)-I]. For branch connections, BI is 0.5.

For axial bending stress, Ob, due to deadweight and seismic moments, Equation 15 ofN-513-4 may be used:

DoMb Ob = B2 -'M (3) 21 File No.: 1401289.301 Page 5 of 12 Revision: 0 F0306-O1RI

V StructuralIntegrity Associates, Inc.

where:

Mb = resultant primary bending moment, in-lbs.

I = moment of inertia based on evaluated wall thickness, in4 The coefficient B2 for branch connections is 0.5"C 2 (but not < 1.0) and [10, NB-3683.8]:

C2 1('m5 n1 2 / 3 (rIm\1/2 (Tlib= (4) kTr- kRm- k Tr )\ rp) where:

Rm = mean nominal radius of run pipe, in Tr = nominal wall thickness of run pipe, in r'm = mean nominal radius of branch pipe, in T'b = nominal wall of branch pipe, in rp = outside nominal radius of branch pipe, in For axial bending stress, oe, due to thermal expansion, Equation 16 of N-513-4 may be used:

DoMe e=L21 (5) where:

i = stress intensification factor Me = resultant thermal expansion moment, in-lbs.

The stress intensification factor is calculated based on a welding tee as [4, Figure NC-3673.2(b)-1]:

= 0.9and h - (6,7) h2/- .r where:

h = flexibility characteristic t, = nominal wall thickness of run piping, in r = mean radius of run piping, in 4.3 Stress Intensity Factor Calculations For LEFM analysis, the stress intensity factor, KI, for an axial flaw is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:

K= KIK + Kir where:

Kim = (SFm)Fah(na/Q)°0 5 SFm = structural factor for membrane stress (see Table 3)

F = through-wall stress intensity factor parameter for an axial flaw under hoop stress (given in Appendix I of N-513-4)

File No.: 1401289.301 Page 6 of 12 Revision: 0 F0306-OIRI

StructuralIntegrity Associates, lnc.

Gh = hoop stress, ksi a = flaw depth (taken as half flaw length for through-wall flaw per Appendix I of N-513-4), in Q = flaw shape parameter (unity per Appendix I of N-513-4)

Ki1 = Kl from residual stresses at flaw location (assumed negligible)

Only the hoop stress influences the allowable axial flaw length, which is a function of pressure.

For LEFM analysis, the stress intensity factor, K1, for a circumferential flaw is taken from Article C-7000

[2] as prescribed by N-513-4 and is given below:

KI= K, + Klb + Kir where: 05 Kim = (SFm)Fma5m(ia) "

Fm = through-wall stress intensity factor parameter for a circumferential flaw under membrane stress (given in Appendix I of N-513-4) am = membrane stress, ksi 5 K1 b = [(SFb)mb + oe]Fb(lta)°'

SFb - structural factor for bending stress (see Table 3)

Ob = bending stress, ksi Ge = thermal stress, ksi Fb = through-wall stress intensity factor parameter for a circumferential flaw under bending stress (given in Appendix I ofN-513-4)

Kir = K1 from residual stresses at flaw location (assumed negligible)

Note that the through-wall flaw stress intensity factor parameters are a function of flaw length.

Table 4 shows the specific load combinations considered herein for the allowable circumferential flaw calculations.

4.4 Critical Fracture Toughness Determination For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, Kic, is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:

Kl= IE' 1000 where:

2 Jc = material toughness, in-lb/in E'= E/( I-V2)

E = Young's modulus, ksi v = Poisson's ratio File No.: 1401289.301 Page 7 of 12 Revision: 0 F0306-OIRI

StructuralIntegrity Associates, Inc.

Based on the design input listed above, K1, = 94.7 ksi-in° 5 . The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.

5.0 RESULTS Based on inputs in Section 3.0, moments in Table I and using equations from Section 4.0, the allowable through-wall flaw in the circumferential direction is 2.7 inches and the allowable through-wall flaw in the axial direction is 5.8 inches. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175 inch. Based on the inspection data given in Reference [8], the analyzed thickness and flaw lengths easily bound the observed thinning. Thus, the acceptance criteria of Code Case N-513-4 are met.

Code Case N-513-4, Paragraph 3.2(c) requires that the remaining ligament average thickness over the degraded area be sufficient to resist pressure blowout [ 1, Equation 8]. Table 5 shows the required average thickness, tc,avg, as a function of the equivalent diameter of the circular region, dadj, for which the wall thickness is less than tadj. Based on the inspection data given in Reference [8], the values in Table 5 easily bound the observed thinning. Thus, the Code Case requirement is met.

6.0 CONCLUSION

S Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in the service water system. Allowable through-wall flaw lengths have been calculated in accordance with ASME Code Case N-513-4. Because N-513-4 has not been generically reviewed by the NRC, justification for continued operation without repair or replacement until the next scheduled outage requires NRC review and approval.

The allowable through-wall flaw in the circumferential and axial directions is 2.7 inches and 5.8 inches, respectively. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175 inch. Table 5 shows the requirements to meet the Code Case pressure blowout limits.

The observed pinhole leak is easily bounded by the results of the analysis; thus, the acceptance criteria of Code Case N-513-4 are met. The system should be considered operable but degraded.

File No.: 1401289.301 Page 8 of 12 Revision: 0 F0306-OIRI

V StructuralIntegrity Associates, Inc!

7.0 REFERENCES

1. ASME Code Case N-513-4, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, May 7, 2014.
2. ASME Boiler and Pressure Vessel Code,Section XI, Appendix C, 2001 Edition with 2003 Addenda.
3. ASME Boiler and Pressure Vessel Code,Section III, 1971 Edition with Addenda through Summer 1971.
4. ASME Boiler and Pressure Vessel Code,Section III, 1974 Edition.
5. Entergy Drawing No. 2HBC-33-2, Sheet 1, Revision 16, "Large Pipe Isometric Service Water Supply Header #1," SI File No. 1401289.201.
6. Entergy Calculation No. 88-E-0200-15, Revision 3, "P-T Calculation for Unit 2 Service Water System," SI File No. 1401289.201.
7. Entergy Calculation No. 90-D-2003-08, Revision 3, "Supply Piping Analysis for Piping in DCP 90-2003," SI File No 1401289.201.
8. Entergy UT Thickness Examination Report No. 2-BOP-UT-14-040, SI File No. 1401289.201.
9. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
10. ASME Boiler and Pressure Vessel Code,Section III, 2004 Edition.

File No.: 1401289.301 Page 9 of 12 Revision: 0 F0306-OIRI

CStructuralIntegrity Associates, Inc!

Table 1: Applied Moment Loading for Bounding Moments Deadweight OBE DBE Thermal (in-lbs) (in-lbs) (in-lbs) (in-lbs) 6902 21471 30657 5408 Notes:

1. Square Root Sum of the Squares (SRSS) is used to calculate moments from Reference [7].
2. Moments are from the bounding location, which is at node 225.

File No.: 1401289.301 Page 10 ofl12 Revision: 0 F0306-01R I

$StructuralIntegrity Associates, Inc.

Table 2: Jic Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [91 Database Reference Temperature (°C) Temperature (F) JIC (kJ/m') JIC (tbrin/in-) KIC(ks-iný')

2 24 75 97 552 133 2 24 75 336 1919 249 16 25 77 81 464 122 16 25 77 418 2386 277 16 25. 77 270 1542 223 16 25 77 193 1104 189 22 24 75 224 1278 203 22 20 68 112 641 144 22 20 68 117 668 147 22 23 73 214 1223 199 22 20 68 167 954 175 22 20 68 223 1271 202 22 20 68 108 617 141 23 52 126 116 663 146 23 23 73 103 590 138 23 23 73 105 600 139 23 23 73 93 528 131 24 23 73 76 431 118 24 23 73 821 469 123 24 57 135 511 293 97 4 25 23 73 771 439 119 25 23 73 70 400 114 25 57 135 62 356 107 90 20 68 235 1342 208 90 20 68 219 1251 201 90 20 68 255 1456 217 90 20 68 281 1605 228 90 20 68 281 1605 228 90 20 68 335 1913 248 90 20 68 421 2404 279 90 20 68 385 2198 266 90 20 68 175 999 180 90 20 68 172 982 178 90 20 68 178 1016 181 90 20 68 214 1222 199 90 20 68 275 1570 225 90 20 68 133 759 157 90 20 68 140 799 161 90 20 68, 174 994 179 90 20 68 111 634 143 90 20 68 190 1085 187 90 20 68 71 405 114 90 20 68 110 628 142 90 20 68 104 594 138 90 20 68 104 594 138 90 201 68 97 554 134 90 201 68 89 508 128 90 201 68 88 502 127 90 201 68 267 1525 222 File No.: 1401289.301 Page 11 of 12 Revision: 0 F0306-0IRI

VStructural Integrity Associates, Inc!

Table 3: Axial and Circumferential Structural Factors [21 Service Level Membrane Stress, SFm Bending Stress, SFb A 2.7 2.3 B 2.4 2.0 C 1.8 1.6 D 1.3 1.4 Table 4: Load Combinations for Circumferential Flaw Analyses Load Combination Service Level P+DW+TH A P+DW+TH+OBE B P+DW+TH+DBE D Table 5: Pressure Blowout Check dadj tc,avg 0.25 0.01 0.75 0.03 1.25 0.04 1.75 0.06 2.25 0.08 2.75 0.10 3.25 0.11 3.75 0.13 4.25 0.15 4.75 0.17 5.25 0.19 File No.: 1401289.301 Page 12 of 12 Revision: 0 F0306-OIRI

ATTACHMENT 3 TO 2CAN111401 UT THICKNESS EXAMINATION REPORT 2-BOP-UT-14-040

  • Enleigy UT Thickness Examination Site/Unit: ANO-2 / 2 Procedure: CEP-NDE-0505 :Outage No.: NIA Summary No.: FW-1 2HCC-2003-1 Procedure Rev.: 004 Report No.: 2-BOP-UT-14-040 Workscope: BOP\Non-Outage Work Order No.: 396448 Page: 1 of 4 Code: Info Only Cat./Item: NIA/N/A Location: U2 TB 335' Drawing No.: 2HCC-2003-1

Description:

SW Leak at SS to CS FW41 System ID: SW Component ID: 2HCC-2003-1 SW Leak Size/Length: 6" Thickness/Diameter: 0.280" Limitations: None Temp. Tool Mfg.: PTC Serial No..: 109537 Surface Temp.: 70 'F Couplant: ULTRAGEL II Batch No.: 12M020 Cal. Report No.: N/A Examination Surface: Inside [2 Outside V. Surface Condition: Ground Flush Lo Location: TDC (leak at 24") to, iq, Wo Location: Centerline of Weld Tmin scan .069" -o 24" o .3" Tmin grid .226" Tmax grid .577" Tavg grid .353" Comments:

  • See Supplemental Report for 3600 readings around pipe and Star pattern readings at leak location. Lowest scanned reading was 0.069" near leak. Equipment used: Panametrics 37DL Plus #51324510, Panametrics transducer D795 5 Mhz ,2" #10101, CS Step #93-6900, SS Stepl0-3009 CAL INIOUT acceptable. This flaw is considered Non-Planar Results: Accept [3 Reject .J Info j Ref. CR-ANO-2-2014-2970 Percent Of Coverage Obtained > 90%:. NIA Reviewed Previous Data: NIA Examiner Level II S."

j hSgat . Date Reviewer Signature Date Taylor, Michael W. (10121/2014 NIA Examiner Level NIA Signay t ' Date Site Review Signature Dale N/A Panther, Ken ý4-.4... 10/22/2014 Other Level ,gnatre Date ANII Review Signature Date Jackson, Rickey p/&tA/ 1012112014 NIA UT Thickness Examination

  • Entergy Supplemental Report Report No.: 2-BOP-UT-14-040 Page:' 2 of 4 Summary No.: FW-1 2HCC-2003-1 Examiner: Taylor, Michael W. lid Level: II Reviewer: N/A Date:

Examiner: N/A Level: N/A Site Review: Panther, Ken Date: 10/22/2014 Other: Jackson. Rickev 4'] Level: / ANII Review: Date:

Comments: The leak was located at the toe of weld on the Sweep-o-!et side of weld. UT readings taken In a Star pattern around leak location to establish a wear area. Each row is Incremented every 450 with each reading taken every .25" away from leak. This flaw is considered Non-Planar.

Sketch or Photo: \*jdcnsetspoo1\lDDEALlddeal Ver 8\lddeal_Server\lddeal ANO*Documents\ANO BOP 2014\MICQ2HCC Star.jpg

/

7

/7'

/

'./ I i.3 1

(ci; '\

.. Z3

~.' fIvSi vIe~.T -

7.1'

  • ~s~7 7 ./Jj

.3g4 7

  • ~'~8 7'

~

7'

.1'71 lv' O

Aj?

oli.ZI Supplemental Report

  • Entergy Supplemental Report Report No.: 2-BOP-UT-14-040 Page: 3 of 4 Summary No.: FW-1 2HCC-2003-1 Examiner: Taylor, Michael W. Level: II Reviewer: NWA Date:

Examiner: NIA Level: NIA Site Review: Panther, Ken Date: 10/22/2014 Other: Jackson. Rickey . Level: A ANII Review: Date:

V Comments: UT readings taken 360* around pipe at the plane of the leak for circuferential thicknesses. 01 reading was taken at TDC. Also scanneq 100% circumferentially around pipe looking for other low readings and none werefound. OX r(Asit,'9 ,5 ivc oF oF r,f,;dJ y. 1 V/L/z/

"A"- taken on CS Sweep-O.Let, "B". taken on weld, "C"- taken on SS Elbow Sketch or Photo: \jdcnsetsp001\lDDEAL~lddeal Ver 8\lddealServer~lddealANODocuments\ANO BOP 2014\MIC\2HCC Grid.jpg Supplemental Report

  • Entey Supplemental Report Report No.: 2-B0P-UT-14.04 Page: 4 of 4 Summary No.: FWA- 2HCC-2003-1 Examiner: Taylor, Michael W. Level: It Reviewer; N/A Date:

Examiner: N/A Level: NIA Site Review. Panther, Ken -F i .$% Date: 10/22/2014 Other. Jackson, Rickey j Level: ANII Review: NIA Date:

Comments: Pictures before and after grinding weld flat. Picture on left shows weld still painted with stain appearing on SS elbow. Picture on the right is after grinding weld flat showing the leak to be at the toe of the weld on the Sweep-o-*et side. L£j A $ iS i /low S 3; u'v ll'[AA)l

~ gw..4 Sketch or Photo: %*:Iwses9O0IlDDEALVddea1Ver N~ddeaIServerliddsak_ANO1DocuensANO  %"=cnetspWotlDOEAL~ddeal Ver 8aideal Servesiiddeal ANOMDocumnentsaLANO BOP 2014%PhotosXWO396448 U2 SW feakDSCF2747.JPG SJOP 2O14*Photos~WO39W48 U2 SW ieakx7DscF2897.J;G-wZ

- 73 Supplemental Report

Attachment 4 to 2CAN111401 List of Regulatory Commitments to 2CAN 111401 Page 1 of 1 LIST OF REGULATORY COMMITMENTS The following table identifies those actions committed to by Entergy in this document. Any other statements in this submittal are provided for information purposes and are not considered to be regulatory commitments.

TYPE (Check one) SCHEDULED COMMITMENT -COMPLETION ONE-TIME ACTION CONTINUING COMPLIANCE DATE Prior to startup from the next refueling outage (fall of 2015) or prior to exceeding the structural A Section XI compliant repair / replacement limits identified by must be completed for the subject flaw. the evaluation as approved by this relief request, or prior to a leak rate greater than 5 gpm, whichever comes first.