ML17263B165: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 16: Line 16:
=Text=
=Text=
{{#Wiki_filter:PSA R&D: Changing the Way We Do Business?*
{{#Wiki_filter:PSA R&D: Changing the Way We Do Business?*
N. SiuANS International Topical Meeting on Probabilistic Safety Assessment (PSA 2017)Pittsburgh, PASeptember 24
N. Siu ANS International Topical Meeting on Probabilistic Safety Assessment (PSA 2017)
-28, 2017*The views expressed in this presentation are not necessarily those of the U.S. Nuclear Regulatory Commission 2IntroductionThis talk-Provides some personal, pragmatic views on R&D intended to support Risk-Informed Decisionmaking (RIDM) in the nuclear industry-Addresses formulation, practice, and support of R&D;* not a
Pittsburgh, PA September 24-28, 2017
*The views expressed in this presentation are not necessarily those of the U.S. Nuclear Regulatory Commission


c atalog of topic areas
Introduction
-Presented in two partsGeneral R&D contextRemarks for different PRA communities (developers, analysts, users) And about that title-*In the remaining slides, the focus on RIDM support is understood R&D CONTEXT AND PERSPECTIVES 4R&D: A Broad Enterprise-Provides technical advice, tools, and information to meet organizational needsBroader than development of
* This talk
        - Provides some personal, pragmatic views on R&D intended to support Risk-Informed Decisionmaking (RIDM) in the nuclear industry
        - Addresses formulation, practice, and support of R&D;* not a catalog of topic areas
        - Presented in two parts
* General R&D context
* Remarks for different PRA communities (developers, analysts, users)
* And about that title
*In the remaining slides, the focus on RIDM support is understood 2


theory and methodsAt NRC, includes activities to suppor t-Decisions on specific issues
R&D CONTEXT AND PERSPECTIVES R&D: A Broad Enterprise Decision
-Infrastructure (standards, etc.)
* Provides technical advice, tools, and information to meet organizational needs                    Supporting Analyses
-Understanding (context for d ecisions)-Communication with stakeholdersMethods, Models, Tools, Databases, Standards,Guidance, -General KnowledgeSupportingAnalysesDecisionR&D 5-with Multiple StakeholdersDevelopersAnalysts/ReviewersUsers 5 6Personal Background => PerspectivesDeveloperAnalyst/ReviewerUser(Advice)6 7Dynamic R&D EnvironmentNeeds-"New" events/findings
* Broader than development of theory and methods                  Methods, Models, R&D Tools, Databases,
-"New" technologies/designs
* At NRC, includes activities to         Standards, support                                Guidance,
-Increasing demands on PRA technology
  - Decisions on specific issues
-Risk-informed applications (current plants)Resources-Computational infrastructure
  - Infrastructure (standards, etc.)
-Demographics
  - Understanding (context for       General Knowledge decisions)
-Budget 8Dynamic R&D Environment -Applications 9Dynamic R&D Environment -Demographics 9
  - Communication with stakeholders 4
10Dynamic R&D Environment
-RES Budget 11Assumptions"We hold these truths to be self-evident-"Risk-related Regulatory R&D (R4&D) has been and continues to be a necessary component of a healthy nuclear enterpriseR4&D products need to be implemented to affect safety There will continue to be challenges in R4&DNo one community has all of the answersRegulations andGuidanceOperationalExperienceLicensing andCertificationOversightDecision Support(e.g., research, PRA)
R4&D STAKEHOLDERS 13Discussion FrameworkSub-communities that are the focus of remarksDevelopers: academic c ommunityAnalysts/Reviewers:


PR A model buildersUsers: decision makersDevelopersAnalysts/ReviewersUsers 14DevelopersTypical challenges
with Multiple Stakeholders Analysts/
-Academic contribution
Users Reviewers Developers 5
-Nexus between personal and external interests
-Support (esp. with declining budgets!)R4&D solutions include
-Frameworks, methodologies, conceptual demonstrations
-N+1 projects
$$$
15Technology-Driven vs. Issue
-Driven R4&DIs it "Hammer Time"?A common (and valid) research strategy
{New Tech*} + {"Interesting" Problem} => {Research Topic
}(Of course) beware
-Force-fitting the problem to match the new tech
-Problems not truly requiring the new tech's special capabilities-Problems of tangential importance to major risk drivers*Technology = {methods, models, tools}
16Big Data: Prognostics and ReliabilityAn N+1 ExampleConcept: use field data and physics of failure models to anticipate failures and develop prevention strategies"Formula 1" races
-Heavily instrumented cars
-Engineering modelsReal-time support during raceEmpirically calibrated through testing~100 supporting staff at home office
-Miniscule performance => major effectsA. Gilbertson, 2016 1723 sec video: 2016 US Grand PrixBig Data: Prognostics and ReliabilityCOTA Turn 15Entry speed ~210 km/hSpeed at apex ~84 km/h Braking distance ~30m Braking power ~800 kW Load ~3gRace footage courtesy of A. Gilbertson 18Big Data: Prognostics and Reliability120+ sensors (car and driver)1000-2000 wireless channelsLow latency
-o(ms)2 GB/lap, 3 TB/raceThermal cameras during qualification 19Big Data: Prognostics and ReliabilityWill it work for R4&D?Engineering models
-Empirically calibrated through testing
-Predict performance and wear over time
-Used to develop/modify race strategies
-Models don't cover all factorsRoad debrisOther driversIn a NPP application, what risk
-significant failures would be caught by an analogous system?
20Big Data: Prognostics and ReliabilitySome Old But Interesting EventsYearPlantFeature1975Browns FerryCable fire affects multiple units1985HatchHVAC water falls into MCR panel; SRV cycles,sticks open1993CooperExternal flood, one evacuation routeblocked1997Fort CalhounSteam line rupture, intermittent electrical grounds1999BlayaisHigh wind and external flood affect multiple units, siteaccess2001MaanshanHighenergy arc fault, station blackout 21Big Data: Prognostics and Reliability Multi-Unit Precursor EventsDatePlantDescription6/22/82Quad CitiesLOOP, Maintenance8/11/83SalemLOOP, Cloggedscreens7/26/84SusquehannaSBO, Bkrmis-aligned5/17/85Turkey PointLOOP, Brush fires7/23/87Calvert CliffsLOOP, Offsite t ree3/20/90VogtleLOOP, Truck hitsupport8/24/92Turkey PointLOOP, Hurricane12/31/92SequoyahLOOP, Switchyard fault10/12/93Beaver ValleyLOOP, Offsite fault6/28/96LaSalleTrip, Foreign material in SW Tunnel6/29/96Prairie IslandLOOP, HighwindsDatePlantDescription8/14/036 SitesLOOP, NE Blackout6/14/04Palo VerdeLOOP, Offsite fault9/25/04St. LucieLOOP, Hurricane5/20/06CatawbaLOOP, Switchyard fault3/26/09SequoyahLOOP, Bus fault4/16/11SurryLOOP, Tornado4/27/11Browns FerryLOOP, Winds/tornadoes8/23/11North AnnaLOOP, Earthquake3/31/13ANOLOOP/Trip, Load drop4/17/13LaSalleLOOP, Lightning5/25/14MillstoneLOOP, Offsite fault 22Big Data: Prognostics and ReliabilityHow Do Things Fail? (Service Water)"the station declared all Core Standby Cooling Systems (CSCS), Emergency Core Cooling Systems (ECCS), and Diesel Generators (DG) inoperable due to foreign material identified on the floor of the service water tunnel-Although the systems were declared inoperable, they were available. The foreign material was an injectable sealant foam substance which had been used - in the Lake Screen House (LSH) to seal water seepage cracks." (LER 373/96-008)"-manual reactor shutdown - conservatively initiated ... due to concern for the safety and well being of a diver working in the - Unit 2 circulating water pump house discharge piping - communications with one diver was [sic] lost and the retrieval efforts by a second and third diver were initially unsuccessful in reestablishing contact.. The plant equipment and systems - worked as designed. The divers were unharmed." (LER 266/00-001) 23Big Data: Prognostics and ReliabilityAn Alternate/Complementary Line of R4&D?Searching is fundamental to PRA:
-First question of risk triplet: "What can go wrong?"
-PRA Procedures Guide and ASME/ANS PRA StandardSparse data, beyond design
-basis concerns => imagination neededOperational experience can fuel, temper, and support imagination
-Massive, unstructured databases
-How to better use?Investigation Committee on the Accident at Fukushima (7/23/2012): "TEPCO lacked a sense of urgency and imagination toward major tsunami, which could threaten to deal a fatal blow to its nuclear power plants.
"E. De Fraguier, "Lessons learned from 1999 Blayaisflood: overview of EDF flood risk management plan," U.S. NRC Regulatory Information Conference, March 11, 2010.
24Big Data: Prognostics and Reliability"Mr. Watson come here, I want you."Advanced knowledge engineering technologies can helpIT challenges include:
-Faulty data
-Embedded structure
-Machine learning
-SpeedPRA user challenges include:
-"Use case" identification, specification
-Working with IT: develop, test solutionsICA 2.2IntelligentPersonal AssistantsWatsonSearcher,ExplorerAide, OracleTool,ToyServant,Partner 25Analysts/ReviewersTypical challenges
-Need near-term solutions: heavy time/budget pressure
-Huge problem size and complexity
-Multiple technical communities/cultures
-State of technology: Too much/little


d iversity, "Holes"PRA solutions include
Personal Background => Perspectives Analyst/       User Reviewer      (Advice)
-"Tried and true"; reluctance to try new approaches
Developer 6
-Engineering judgment
-Completeness uncertaintyReverse ageism in the PRA community 26Dynamic PRA: What and WhyLiteral view: explicit treatment of timeMore broadly: explicit treatment of dynamic phenomena (simulation-based)Potential advantages include
-Direct ties to other science/engineering models (with usual V&V)
-Elimination of intermediate modeling


a pproximations
Dynamic R&D Environment
-Natural language for interdisciplinary
* Needs
  - New events/findings
  - New technologies/designs
  - Increasing demands on PRA technology
  - Risk-informed applications (current plants)
* Resources
  - Computational infrastructure
  - Demographics
  - Budget 7


en terprise-Consistent with external tech world
Dynamic R&D Environment - Applications 8
-Most direct approach to some tough problems
-Academically rewarding 27Dynamic PRA: Why NotDynamics not key issue for many problemsModels can be complex:
-Resource-intensive (construction, validation, computation, analysis/sensemaking)
-Inscrutable (at least to practitioners)
-Vulnerable to sub
-model applicability limits
-Massive output, but information?Long gestation, in early phase of maturity
-Starting to expand from academic centers
-Few real applications of full
-power tools
-Reward system has likely inhibited search for


sim ple but practical applicationsThe Aldemir Tank 28Dynamic PRA: An Opportunity Missed?Object-oriented simulation: long history, fully developed general technology
Dynamic R&D Environment - Demographics 9
-Operations Research and "System dynamics"-Military simulations and supporting tools
-Considered but rejected for general PRA


qua ntification (aleatory uncertainty)
Dynamic R&D Environment - RES Budget 10
-Highly limited, demonstration
-oriented NPP PRA applications (power recovery)Basis for advanced Vulnerability Assessment toolsWell-suited for FLEX?
29Fire PRA: From Research to ApplicationFollowing 1975 Browns Ferry fire
-NRC supported fire PRA R&D at UCLA and RPI
-Methodology and tools used in industry
-sponsored PRAs-Approach used in NUREG
-1150-Formed basis for guidance
-Currently continuing improvements on piece partsSuccess factors
-Real problem
-NRC and industry involvement
-Researchers directly involved in application 30UsersDecision maker challenges include
-Managing/leveraging resources
-Prioritizing needs and activities Short-vs. long-termOrganizationalMultiple stakeholders
-Difficult decisionsTechnical complexityHigh uncertainty, diverse viewsMulti-variateA key adviser challenge: communication"Aleatory"-
31Communication Challenges: Model Uncertainty 32Communication Challenges: Model UncertaintyModel uncertainty is important and realSome R4&D questions
-Ensemble "better" than best estimate + sensitivities? Under what conditions?-How important is it to understand the technical reasons for model
-to-model variability?
-Ensemble doesn't necessarily capture (revealed) reality: what to do


w hen all options have significant costs and potential consequences?"If anything on these products causes confusion, ignore the entire product."http://my.sfwmd.gov/sfwmd/common/images/weather/plots.html 33Communication Challenges: GatekeepingPre-Fukushima WGRISK report on external hazards PSA
Assumptions We hold these truths to be self-evident
-Varied country responsesSome treatment for internal events (CCF, LOOP, LOHS)Research on some hazards (seismic, ty phoon)Some with no special considerations
* Risk-related Regulatory R&D (R4&D) has been and continues to be a necessary component of a healthy nuclear enterprise
-Topic, findings, or recommendations not provided in ConclusionsOmission: lack of actionable messageR4&D question: When (under what circumstances) should we boost the signal? How? [see Blayais]
* R4&D products need to be implemented to affect safety
34Communication Challenges: Unintended MessagesHow not to start an R4&D program-IDFire PRA "Issue" IDFire PRA "Issue" I1Adequacy of fire events database P1Circuit interactions I2Scenario frequencies P2Availability of safe shutdown equipment I3Effect of plant operations, including comp measures P3Fire scenario cognitive impact I4Likelihood of severe fires P4Impact of fire induced environment on operators E1Source fire modeling P5Role of fire brigade in plant response E2Compartment fire modeling R1Main control room fires E3Multi-compartment fire modeling R2Turbine building fires E4Smoke generation and transport modeling R3Containment fires H1Circuit failure mode and likelihood R4Seismic/fire interactions H2Thermal fragilities R5Multiple unit interactions H3Smoke fragilities R6Non-power and degraded conditions H4Suppressant
* There will continue to be challenges in R4&D
-related fragilities R7Decommissioning and decontamination B1Adequacy of data for active and passive barriers R8Fire-induced non
* No one community has all of the answers Regulations and Guidance Operational Decision Support      Licensing and Experience  (e.g., research, PRA) Certification Oversight 11
-reactor radiological releases B2Barrier performance analysis tools R9Flammable gas lines B3Barrier qualificationR10Scenario dynamics B4Penetration sealsR11Precursor analysis methods S1Adequacy of detection time dataR12Uncertainty analysis S2Fire protection system reliability/availability O1Learning from experience S3Suppression effectiveness (automatic, manual)
O2Learning from others S4Effect of compensatory measures on suppression O3Comparison of methodologies S5Scenario-specific detection and suppression analysis O4Standardization of methods42 = 1 [year]From: N. Siu, J.T. Chen, and E. Chelliah, "Research Needs in Fire Risk Assessment," NUREG/CP
-0162, Vol. 2, 1997.
35Closing RemarksR4&D has helped change the way we do businessContinuous improvement + changing times => some suggestions-Developers: Dig a little deeper
-Analysts/reviewers: Give '
em a chance-Advisers: Be like SherlockThere's gold inthese hills-36Give 'Ema Chance [2]"Grizzled Vets""Young Pups" ADDITIONAL SLIDES 38Dynamic R&D Environment
-Industry Needs*Finding ClosureRisk-Informed SSC Categorization (50.69)Risk-Informed Completion Times (TSTF-505)Fire PRA Realism Methods VettingAggregationRealism in Reactor


O versight ProcessFLEX in Risk
R4&D STAKEHOLDERS Discussion Framework Sub-communities that are the focus of remarks
-Informed D ecision Making*From public meeting of NRC and Industry Risk
* Developers: academic    Analysts/
-Informed Steering Committees, April 13, 2017 (ML17104A315) 39 0500 1000 1500 2000 2500 3000 3500 4000 4500 0 200 400 600 8001000 1200 1400NRC Budget (FY 1976
Reviewers Users community
-FY 2017)Actual ($M)Fiscal YearBudget ($M)Data from NUREG
* Analysts/Reviewers:
-1350 (NRC Information Digest)Staff (FTE) 40Big Data: Prognostics and ReliabilityHow Do Things Fail? (Power)"-both units tripped automatically from 100% power following a Loss of Offsite Power (LOOP) event. The event began when a fault occurred internal to a current transformer associated with one of the switchyard power circuit breakers. A second current transformer failure, along with the actuation of differential relaying associated with both switchyard busses, cleared both busses and separated the units from the grid... The root cause analysis - determined that - certain switchyard relay tap setting changes were not implemented." (LER 413/06-001)"-Units 1 and 2 received an automatic reactor trip on reactor coolant pump (RCP) buses undervoltage. A loss of Common Station Service Transformer (CSST) C caused a loss of power to two unit boards on each unit that feed RCPs- The cause of the bus fault was determined to be degraded bus bar insulation and water intrusion into the CSST D secondary bus duct." (LER 327/09-003) 41Historical View on Searching"PRA Procedures Guide," NUREG/CR-2300 (1983)The search for dependent failures should be performed as described in Section 3.7 and incorporated as appropriate into the plant and  system models.A preliminary systems analysis can thus be a vital step in the search for
PRA model builders
* Users: decision makers Developers 13


i nitiators, helping to ensure completeness in the definition of accident sequences.Another approach is to more formally organize the search for initiating
Developers
* Typical challenges
                                  $$$
  - Academic contribution
  - Nexus between personal and external interests
  - Support (esp. with declining budgets!)
* R4&D solutions include
  - Frameworks, methodologies, conceptual demonstrations
  - N+1 projects 14


e vents by constructing a top level logic model and then deducing the appropriate set of initiating events.A systematic search of the reactor
Technology-Driven vs. Issue-Driven R4&D Is it Hammer Time?
-coolant pressure boundary should be performed to identify any active elements that could fail or be operated in such a manner as to result in an uncontrolled loss of coolant.a more formal search and documentation of all elements that depend on
* A common (and valid) research strategy
{New Tech*} + {Interesting Problem} => {Research Topic}
* (Of course) beware
  - Force-fitting the problem to match the new tech
  - Problems not truly requiring the new techs special capabilities
  - Problems of tangential importance to major risk drivers
                                  *Technology = {methods, models, tools}
15


i nput from another source beyond the identified system boundary may be appropriate.
Big Data: Prognostics and Reliability An N+1 Example
42External Flooding: A Really Big PictureSparse data and concerns with extrapolation => mechanistic analysisDaunting scale
* Concept: use field data and physics of failure models to anticipate failures and develop prevention strategies
-Regional analysis
* Formula 1 races
-Human actions
    - Heavily instrumented cars
-Besides flooding level: duration, deb ris, dynamic forces, warning time
    - Engineering models
-Multi-site impactsHow can R4&D help?
* Real-time support during race
-Multiple, heterogeneous evidence sets =>
* Empirically calibrated through testing A. Gilbertson, 2016
uncertainty-Demonstration of validity of more restricted
      * ~100 supporting staff at home office
    - Miniscule performance  => major effects 16


r epresentation}}
Big Data: Prognostics and Reliability 23 sec video: 2016 US Grand Prix COTA Turn 15 Entry speed ~210 km/h Speed at apex ~84 km/h Braking distance ~30m Race footage courtesy of A. Gilbertson    Braking power ~800 kW Load ~3g 17
 
Big Data: Prognostics and Reliability
* 120+ sensors (car and driver)
* 1000-2000 wireless channels
* Low latency - o(ms)
* 2 GB/lap, 3 TB/race
* Thermal cameras during qualification 18
 
Big Data: Prognostics and Reliability Will it work for R4&D?
* Engineering models
  - Empirically calibrated through testing
  - Predict performance and wear over time
  - Used to develop/modify race strategies
  - Models dont cover all factors
* Road debris
* Other drivers
* In a NPP application, what risk-significant failures would be caught by an analogous system?
19
 
Big Data: Prognostics and Reliability Some Old But Interesting Events Year Plant        Feature 1975 Browns Ferry Cable fire affects multiple units HVAC water falls into MCR panel; SRV cycles, 1985 Hatch sticks open 1993 Cooper      External flood, one evacuation route blocked Steam line rupture, intermittent electrical 1997 Fort Calhoun grounds High wind and external flood affect multiple 1999 Blayais units, site access 2001 Maanshan    High energy arc fault, station blackout 20
 
Big Data: Prognostics and Reliability Multi-Unit Precursor Events Date  Plant          Description                Date  Plant        Description 6/22/82  Quad Cities    LOOP, Maintenance        8/14/03 6 Sites      LOOP, NE Blackout 8/11/83  Salem          LOOP, Clogged screens    6/14/04 Palo Verde  LOOP, Offsite fault 7/26/84  Susquehanna SBO, Bkr mis-aligned        9/25/04 St. Lucie    LOOP, Hurricane 5/17/85  Turkey Point  LOOP, Brush fires        5/20/06 Catawba      LOOP, Switchyard fault 7/23/87  Calvert Cliffs LOOP, Offsite tree 3/26/09 Sequoyah    LOOP, Bus fault 3/20/90  Vogtle        LOOP, Truck hit support 4/16/11 Surry        LOOP, Tornado 8/24/92  Turkey Point  LOOP, Hurricane 4/27/11 Browns Ferry LOOP, Winds/tornadoes 12/31/92 Sequoyah      LOOP, Switchyard fault 8/23/11 North Anna  LOOP, Earthquake 10/12/93 Beaver Valley LOOP, Offsite fault 3/31/13 ANO          LOOP/Trip, Load drop Trip, Foreign material in 6/28/96  LaSalle SW Tunnel                4/17/13 LaSalle      LOOP, Lightning 6/29/96  Prairie Island LOOP, High winds          5/25/14 Millstone    LOOP, Offsite fault 21
 
Big Data: Prognostics and Reliability How Do Things Fail? (Service Water) the station declared all Core Standby Cooling Systems (CSCS), Emergency Core Cooling Systems (ECCS),
and Diesel Generators (DG) inoperable due to foreign material identified on the floor of the service water tunnelAlthough the systems were declared inoperable, they were available. The foreign material was an injectable sealant foam substance which had been used  in the Lake Screen House (LSH) to seal water seepage cracks. (LER 373/96-008) manual reactor shutdown  conservatively initiated ... due to concern for the safety and well being of a diver working in the  Unit 2 circulating water pump house discharge piping  communications with one diver was [sic] lost and the retrieval efforts by a second and third diver were initially unsuccessful in reestablishing contact.. The plant equipment and systems  worked as designed. The divers were unharmed. (LER 266/00-001) 22
 
Big Data: Prognostics and Reliability An Alternate/Complementary Line of R4&D?
Investigation Committee on the Accident at Fukushima (7/23/2012): TEPCO lacked a sense of urgency and imagination toward major tsunami, which could threaten to deal a fatal blow to its nuclear power plants.
* Searching is fundamental to PRA:
    - First question of risk triplet: What can go wrong?
    - PRA Procedures Guide and ASME/ANS PRA Standard
* Sparse data, beyond design-basis concerns
  => imagination needed
* Operational experience can fuel, temper, and support imagination                                      E. De Fraguier, Lessons learned from 1999 Blayais flood: overview of EDF flood risk
    - Massive, unstructured databases                          management plan, U.S. NRC Regulatory Information Conference, March 11, 2010.
    - How to better use?
23
 
Big Data: Prognostics and Reliability Mr. Watson come here, I want you."
* Advanced knowledge engineering                    Tool, technologies can help                            Toy
* IT challenges include:
ICA 2.2          Watson
    - Faulty data
    - Embedded structure        Searcher,                            Aide, Explorer                            Oracle
    - Machine learning
    - Speed                                                Intelligent
* PRA user challenges include:                              Personal Assistants
    - Use case identification, specification    Servant, Partner
    - Working with IT: develop, test solutions 24
 
Analysts/Reviewers
* Typical challenges
  - Need near-term solutions: heavy time/budget pressure
  - Huge problem size and complexity
  - Multiple technical communities/cultures
  - State of technology: Too much/little diversity, Holes
* PRA solutions include
  - Tried and true; reluctance to try new approaches
  - Engineering judgment
  - Completeness uncertainty 25              Reverse ageism in the PRA community
 
Dynamic PRA: What and Why
* Literal view: explicit treatment of time
* More broadly: explicit treatment of dynamic phenomena (simulation-based)
* Potential advantages include
    - Direct ties to other science/engineering models (with usual V&V)
    - Elimination of intermediate modeling approximations
    - Natural language for interdisciplinary enterprise
    - Consistent with external tech world
    - Most direct approach to some tough problems
    - Academically rewarding 26
 
Dynamic PRA: Why Not
* Dynamics not key issue for many problems
* Models can be complex:
  - Resource-intensive (construction, validation, computation, analysis/sensemaking)
  - Inscrutable (at least to practitioners)
  - Vulnerable to sub-model applicability limits
  - Massive output, but information?
* Long gestation, in early phase of maturity
  - Starting to expand from academic centers
  - Few real applications of full-power tools
  - Reward system has likely inhibited search for The Aldemir Tank simple but practical applications 27
 
Dynamic PRA: An Opportunity Missed?
* Object-oriented simulation: long history, fully developed general technology
    - Operations Research and System dynamics
    - Military simulations and supporting tools
    - Considered but rejected for general PRA quantification (aleatory uncertainty)
    - Highly limited, demonstration-oriented NPP PRA applications (power recovery)
* Basis for advanced Vulnerability Assessment tools
* Well-suited for FLEX?
28
 
Fire PRA: From Research to Application
* Following 1975 Browns Ferry fire
  - NRC supported fire PRA R&D at UCLA and RPI
  - Methodology and tools used in industry-sponsored PRAs
  - Approach used in NUREG-1150
  - Formed basis for guidance
  - Currently continuing improvements on piece parts
* Success factors
  - Real problem
  - NRC and industry involvement
  - Researchers directly involved in application 29
 
Users
* Decision maker challenges include
  - Managing/leveraging resources
  - Prioritizing needs and activities
* Short- vs. long-term
* Organizational                  Aleatory
* Multiple stakeholders
  - Difficult decisions
* Technical complexity
* High uncertainty, diverse views
* Multi-variate
* A key adviser challenge: communication 30
 
Communication Challenges: Model Uncertainty 31
 
Communication Challenges: Model Uncertainty
* Model uncertainty is important and real
* Some R4&D questions
  - Ensemble better than best estimate + sensitivities? Under what conditions?
  - How important is it to understand the technical reasons for model-to-model variability?
  - Ensemble doesnt necessarily capture (revealed) reality: what to do when all options have significant costs and potential consequences?
If anything on these products causes confusion, ignore the entire product.
http://my.sfwmd.gov/sfwmd/common/images/weather/plots.html 32
 
Communication Challenges: Gatekeeping
* Pre-Fukushima WGRISK report on external hazards PSA
    - Varied country responses
* Some treatment for internal events (CCF, LOOP, LOHS)
* Research on some hazards (seismic, typhoon)
* Some with no special considerations
    - Topic, findings, or recommendations not provided in Conclusions
* Omission: lack of actionable message
* R4&D question: When (under what circumstances) should we boost the signal? How? [see Blayais]
33
 
Communication Challenges: Unintended Messages How not to start an R4&D program ID    Fire PRA Issue                                                ID    Fire PRA Issue I1  Adequacy of fire events database                                P1  Circuit interactions I2  Scenario frequencies                                            P2  Availability of safe shutdown equipment I3  Effect of plant operations, including comp measures              P3  Fire scenario cognitive impact I4  Likelihood of severe fires                                      P4  Impact of fire induced environment on operators E1  Source fire modeling                                            P5  Role of fire brigade in plant response 42 = 1 [year]
E2  Compartment fire modeling                                        R1  Main control room fires E3  Multi-compartment fire modeling                                  R2  Turbine building fires E4  Smoke generation and transport modeling                          R3  Containment fires H1  Circuit failure mode and likelihood                              R4  Seismic/fire interactions H2  Thermal fragilities                                              R5  Multiple unit interactions H3  Smoke fragilities                                                R6  Non-power and degraded conditions H4  Suppressant-related fragilities                                  R7  Decommissioning and decontamination B1  Adequacy of data for active and passive barriers                R8  Fire-induced non-reactor radiological releases B2  Barrier performance analysis tools                              R9  Flammable gas lines B3  Barrier qualification                                          R10  Scenario dynamics B4  Penetration seals                                              R11  Precursor analysis methods S1  Adequacy of detection time data                                R12  Uncertainty analysis S2  Fire protection system reliability/availability                O1    Learning from experience S3  Suppression effectiveness (automatic, manual)                  O2    Learning from others S4  Effect of compensatory measures on suppression                  O3    Comparison of methodologies S5  Scenario-specific detection and suppression analysis            O4    Standardization of methods From: N. Siu, J.T. Chen, and E. Chelliah, Research Needs in Fire Risk Assessment, NUREG/CP-0162, Vol. 2, 1997.
34
 
Closing Remarks
* R4&D has helped change the way we do business
* Continuous improvement + changing times => some suggestions
    - Developers: Dig a little deeper
    - Analysts/reviewers: Give em a chance Theres gold in these hills
    - Advisers: Be like Sherlock 35
 
Give Em a Chance [2]
Young Pups    Grizzled Vets 36
 
ADDITIONAL SLIDES Dynamic R&D Environment - Industry Needs*
* Finding Closure
* Aggregation
* Risk-Informed SSC
* Realism in Reactor Categorization (50.69)                                  Oversight Process
* Risk-Informed
* FLEX in Risk-Informed Completion Times                                        Decision Making (TSTF-505)
* Fire PRA Realism
* Methods Vetting
*From public meeting of NRC and Industry Risk-Informed Steering Committees, April 13, 2017 (ML17104A315) 38
 
1400    NRC Budget (FY 1976 - FY 2017)          4500 Actual ($M)        4000 1200 3500 1000 3000 Budget ($M)                                                          Staff (FTE) 800                                            2500 600                                            2000 1500 400 1000 200 500 0                                            0 Fiscal Year Data from NUREG-1350 (NRC Information Digest) 39
 
Big Data: Prognostics and Reliability How Do Things Fail? (Power) both units tripped automatically from 100% power following a Loss of Offsite Power (LOOP) event.
The event began when a fault occurred internal to a current transformer associated with one of the switchyard power circuit breakers. A second current transformer failure, along with the actuation of differential relaying associated with both switchyard busses, cleared both busses and separated the units from the grid... The root cause analysis  determined that  certain switchyard relay tap setting changes were not implemented. (LER 413/06-001)
Units 1 and 2 received an automatic reactor trip on reactor coolant pump (RCP) buses undervoltage. A loss of Common Station Service Transformer (CSST) C caused a loss of power to two unit boards on each unit that feed RCPs The cause of the bus fault was determined to be degraded bus bar insulation and water intrusion into the CSST D secondary bus duct. (LER 327/09-003) 40
 
Historical View on Searching PRA Procedures Guide, NUREG/CR-2300 (1983)
* The search for dependent failures should be performed as described in Section 3.7 and incorporated as appropriate into the plant and system models.
* A preliminary systems analysis can thus be a vital step in the search for initiators, helping to ensure completeness in the definition of accident sequences.
* Another approach is to more formally organize the search for initiating events by constructing a top level logic model and then deducing the appropriate set of initiating events.
* A systematic search of the reactor-coolant pressure boundary should be performed to identify any active elements that could fail or be operated in such a manner as to result in an uncontrolled loss of coolant.
* a more formal search and documentation of all elements that depend on input from another source beyond the identified system boundary may be appropriate.
41
 
External Flooding: A Really Big Picture
* Sparse data and concerns with extrapolation => mechanistic analysis
* Daunting scale
    - Regional analysis
    - Human actions
    - Besides flooding level: duration, debris, dynamic forces, warning time
    - Multi-site impacts
* How can R4&D help?
    - Multiple, heterogeneous evidence sets =>
uncertainty
    - Demonstration of validity of more restricted representation 42}}

Revision as of 17:15, 29 October 2019

PSA R&D: Changing the Way We Do Business
ML17263B165
Person / Time
Issue date: 09/20/2017
From: Nathan Siu
NRC/RES/DRA
To:
References
Download: ML17263B165 (42)


Text

PSA R&D: Changing the Way We Do Business?*

N. Siu ANS International Topical Meeting on Probabilistic Safety Assessment (PSA 2017)

Pittsburgh, PA September 24-28, 2017

  • The views expressed in this presentation are not necessarily those of the U.S. Nuclear Regulatory Commission

Introduction

  • This talk

- Provides some personal, pragmatic views on R&D intended to support Risk-Informed Decisionmaking (RIDM) in the nuclear industry

- Addresses formulation, practice, and support of R&D;* not a catalog of topic areas

- Presented in two parts

  • General R&D context
  • Remarks for different PRA communities (developers, analysts, users)
  • And about that title
  • In the remaining slides, the focus on RIDM support is understood 2

R&D CONTEXT AND PERSPECTIVES R&D: A Broad Enterprise Decision

  • Provides technical advice, tools, and information to meet organizational needs Supporting Analyses
  • Broader than development of theory and methods Methods, Models, R&D Tools, Databases,
  • At NRC, includes activities to Standards, support Guidance,

- Decisions on specific issues

- Infrastructure (standards, etc.)

- Understanding (context for General Knowledge decisions)

- Communication with stakeholders 4

with Multiple Stakeholders Analysts/

Users Reviewers Developers 5

Personal Background => Perspectives Analyst/ User Reviewer (Advice)

Developer 6

Dynamic R&D Environment

  • Needs

- New events/findings

- New technologies/designs

- Increasing demands on PRA technology

- Risk-informed applications (current plants)

  • Resources

- Computational infrastructure

- Demographics

- Budget 7

Dynamic R&D Environment - Applications 8

Dynamic R&D Environment - Demographics 9

Dynamic R&D Environment - RES Budget 10

Assumptions We hold these truths to be self-evident

  • Risk-related Regulatory R&D (R4&D) has been and continues to be a necessary component of a healthy nuclear enterprise
  • R4&D products need to be implemented to affect safety
  • There will continue to be challenges in R4&D
  • No one community has all of the answers Regulations and Guidance Operational Decision Support Licensing and Experience (e.g., research, PRA) Certification Oversight 11

R4&D STAKEHOLDERS Discussion Framework Sub-communities that are the focus of remarks

  • Developers: academic Analysts/

Reviewers Users community

  • Analysts/Reviewers:

PRA model builders

  • Users: decision makers Developers 13

Developers

  • Typical challenges

$$$

- Academic contribution

- Nexus between personal and external interests

- Support (esp. with declining budgets!)

  • R4&D solutions include

- Frameworks, methodologies, conceptual demonstrations

- N+1 projects 14

Technology-Driven vs. Issue-Driven R4&D Is it Hammer Time?

  • A common (and valid) research strategy

{New Tech*} + {Interesting Problem} => {Research Topic}

  • (Of course) beware

- Force-fitting the problem to match the new tech

- Problems not truly requiring the new techs special capabilities

- Problems of tangential importance to major risk drivers

  • Technology = {methods, models, tools}

15

Big Data: Prognostics and Reliability An N+1 Example

  • Concept: use field data and physics of failure models to anticipate failures and develop prevention strategies
  • Formula 1 races

- Heavily instrumented cars

- Engineering models

  • Real-time support during race
  • Empirically calibrated through testing A. Gilbertson, 2016
  • ~100 supporting staff at home office

- Miniscule performance => major effects 16

Big Data: Prognostics and Reliability 23 sec video: 2016 US Grand Prix COTA Turn 15 Entry speed ~210 km/h Speed at apex ~84 km/h Braking distance ~30m Race footage courtesy of A. Gilbertson Braking power ~800 kW Load ~3g 17

Big Data: Prognostics and Reliability

  • 120+ sensors (car and driver)
  • 1000-2000 wireless channels
  • Low latency - o(ms)
  • 2 GB/lap, 3 TB/race
  • Thermal cameras during qualification 18

Big Data: Prognostics and Reliability Will it work for R4&D?

  • Engineering models

- Empirically calibrated through testing

- Predict performance and wear over time

- Used to develop/modify race strategies

- Models dont cover all factors

  • Road debris
  • Other drivers
  • In a NPP application, what risk-significant failures would be caught by an analogous system?

19

Big Data: Prognostics and Reliability Some Old But Interesting Events Year Plant Feature 1975 Browns Ferry Cable fire affects multiple units HVAC water falls into MCR panel; SRV cycles, 1985 Hatch sticks open 1993 Cooper External flood, one evacuation route blocked Steam line rupture, intermittent electrical 1997 Fort Calhoun grounds High wind and external flood affect multiple 1999 Blayais units, site access 2001 Maanshan High energy arc fault, station blackout 20

Big Data: Prognostics and Reliability Multi-Unit Precursor Events Date Plant Description Date Plant Description 6/22/82 Quad Cities LOOP, Maintenance 8/14/03 6 Sites LOOP, NE Blackout 8/11/83 Salem LOOP, Clogged screens 6/14/04 Palo Verde LOOP, Offsite fault 7/26/84 Susquehanna SBO, Bkr mis-aligned 9/25/04 St. Lucie LOOP, Hurricane 5/17/85 Turkey Point LOOP, Brush fires 5/20/06 Catawba LOOP, Switchyard fault 7/23/87 Calvert Cliffs LOOP, Offsite tree 3/26/09 Sequoyah LOOP, Bus fault 3/20/90 Vogtle LOOP, Truck hit support 4/16/11 Surry LOOP, Tornado 8/24/92 Turkey Point LOOP, Hurricane 4/27/11 Browns Ferry LOOP, Winds/tornadoes 12/31/92 Sequoyah LOOP, Switchyard fault 8/23/11 North Anna LOOP, Earthquake 10/12/93 Beaver Valley LOOP, Offsite fault 3/31/13 ANO LOOP/Trip, Load drop Trip, Foreign material in 6/28/96 LaSalle SW Tunnel 4/17/13 LaSalle LOOP, Lightning 6/29/96 Prairie Island LOOP, High winds 5/25/14 Millstone LOOP, Offsite fault 21

Big Data: Prognostics and Reliability How Do Things Fail? (Service Water) the station declared all Core Standby Cooling Systems (CSCS), Emergency Core Cooling Systems (ECCS),

and Diesel Generators (DG) inoperable due to foreign material identified on the floor of the service water tunnelAlthough the systems were declared inoperable, they were available. The foreign material was an injectable sealant foam substance which had been used in the Lake Screen House (LSH) to seal water seepage cracks. (LER 373/96-008) manual reactor shutdown conservatively initiated ... due to concern for the safety and well being of a diver working in the Unit 2 circulating water pump house discharge piping communications with one diver was [sic] lost and the retrieval efforts by a second and third diver were initially unsuccessful in reestablishing contact.. The plant equipment and systems worked as designed. The divers were unharmed. (LER 266/00-001) 22

Big Data: Prognostics and Reliability An Alternate/Complementary Line of R4&D?

Investigation Committee on the Accident at Fukushima (7/23/2012): TEPCO lacked a sense of urgency and imagination toward major tsunami, which could threaten to deal a fatal blow to its nuclear power plants.

  • Searching is fundamental to PRA:

- First question of risk triplet: What can go wrong?

- PRA Procedures Guide and ASME/ANS PRA Standard

  • Sparse data, beyond design-basis concerns

=> imagination needed

  • Operational experience can fuel, temper, and support imagination E. De Fraguier, Lessons learned from 1999 Blayais flood: overview of EDF flood risk

- Massive, unstructured databases management plan, U.S. NRC Regulatory Information Conference, March 11, 2010.

- How to better use?

23

Big Data: Prognostics and Reliability Mr. Watson come here, I want you."

  • Advanced knowledge engineering Tool, technologies can help Toy
  • IT challenges include:

ICA 2.2 Watson

- Faulty data

- Embedded structure Searcher, Aide, Explorer Oracle

- Machine learning

- Speed Intelligent

  • PRA user challenges include: Personal Assistants

- Use case identification, specification Servant, Partner

- Working with IT: develop, test solutions 24

Analysts/Reviewers

  • Typical challenges

- Need near-term solutions: heavy time/budget pressure

- Huge problem size and complexity

- Multiple technical communities/cultures

- State of technology: Too much/little diversity, Holes

  • PRA solutions include

- Tried and true; reluctance to try new approaches

- Engineering judgment

- Completeness uncertainty 25 Reverse ageism in the PRA community

Dynamic PRA: What and Why

  • Literal view: explicit treatment of time
  • More broadly: explicit treatment of dynamic phenomena (simulation-based)
  • Potential advantages include

- Direct ties to other science/engineering models (with usual V&V)

- Elimination of intermediate modeling approximations

- Natural language for interdisciplinary enterprise

- Consistent with external tech world

- Most direct approach to some tough problems

- Academically rewarding 26

Dynamic PRA: Why Not

  • Dynamics not key issue for many problems
  • Models can be complex:

- Resource-intensive (construction, validation, computation, analysis/sensemaking)

- Inscrutable (at least to practitioners)

- Vulnerable to sub-model applicability limits

- Massive output, but information?

  • Long gestation, in early phase of maturity

- Starting to expand from academic centers

- Few real applications of full-power tools

- Reward system has likely inhibited search for The Aldemir Tank simple but practical applications 27

Dynamic PRA: An Opportunity Missed?

  • Object-oriented simulation: long history, fully developed general technology

- Operations Research and System dynamics

- Military simulations and supporting tools

- Considered but rejected for general PRA quantification (aleatory uncertainty)

- Highly limited, demonstration-oriented NPP PRA applications (power recovery)

  • Basis for advanced Vulnerability Assessment tools
  • Well-suited for FLEX?

28

Fire PRA: From Research to Application

  • Following 1975 Browns Ferry fire

- NRC supported fire PRA R&D at UCLA and RPI

- Methodology and tools used in industry-sponsored PRAs

- Approach used in NUREG-1150

- Formed basis for guidance

- Currently continuing improvements on piece parts

  • Success factors

- Real problem

- NRC and industry involvement

- Researchers directly involved in application 29

Users

  • Decision maker challenges include

- Managing/leveraging resources

- Prioritizing needs and activities

  • Short- vs. long-term
  • Organizational Aleatory
  • Multiple stakeholders

- Difficult decisions

  • Technical complexity
  • High uncertainty, diverse views
  • Multi-variate
  • A key adviser challenge: communication 30

Communication Challenges: Model Uncertainty 31

Communication Challenges: Model Uncertainty

  • Model uncertainty is important and real
  • Some R4&D questions

- Ensemble better than best estimate + sensitivities? Under what conditions?

- How important is it to understand the technical reasons for model-to-model variability?

- Ensemble doesnt necessarily capture (revealed) reality: what to do when all options have significant costs and potential consequences?

If anything on these products causes confusion, ignore the entire product.

http://my.sfwmd.gov/sfwmd/common/images/weather/plots.html 32

Communication Challenges: Gatekeeping

  • Pre-Fukushima WGRISK report on external hazards PSA

- Varied country responses

  • Some treatment for internal events (CCF, LOOP, LOHS)
  • Research on some hazards (seismic, typhoon)
  • Some with no special considerations

- Topic, findings, or recommendations not provided in Conclusions

  • Omission: lack of actionable message
  • R4&D question: When (under what circumstances) should we boost the signal? How? [see Blayais]

33

Communication Challenges: Unintended Messages How not to start an R4&D program ID Fire PRA Issue ID Fire PRA Issue I1 Adequacy of fire events database P1 Circuit interactions I2 Scenario frequencies P2 Availability of safe shutdown equipment I3 Effect of plant operations, including comp measures P3 Fire scenario cognitive impact I4 Likelihood of severe fires P4 Impact of fire induced environment on operators E1 Source fire modeling P5 Role of fire brigade in plant response 42 = 1 [year]

E2 Compartment fire modeling R1 Main control room fires E3 Multi-compartment fire modeling R2 Turbine building fires E4 Smoke generation and transport modeling R3 Containment fires H1 Circuit failure mode and likelihood R4 Seismic/fire interactions H2 Thermal fragilities R5 Multiple unit interactions H3 Smoke fragilities R6 Non-power and degraded conditions H4 Suppressant-related fragilities R7 Decommissioning and decontamination B1 Adequacy of data for active and passive barriers R8 Fire-induced non-reactor radiological releases B2 Barrier performance analysis tools R9 Flammable gas lines B3 Barrier qualification R10 Scenario dynamics B4 Penetration seals R11 Precursor analysis methods S1 Adequacy of detection time data R12 Uncertainty analysis S2 Fire protection system reliability/availability O1 Learning from experience S3 Suppression effectiveness (automatic, manual) O2 Learning from others S4 Effect of compensatory measures on suppression O3 Comparison of methodologies S5 Scenario-specific detection and suppression analysis O4 Standardization of methods From: N. Siu, J.T. Chen, and E. Chelliah, Research Needs in Fire Risk Assessment, NUREG/CP-0162, Vol. 2, 1997.

34

Closing Remarks

  • R4&D has helped change the way we do business
  • Continuous improvement + changing times => some suggestions

- Developers: Dig a little deeper

- Analysts/reviewers: Give em a chance Theres gold in these hills

- Advisers: Be like Sherlock 35

Give Em a Chance [2]

Young Pups Grizzled Vets 36

ADDITIONAL SLIDES Dynamic R&D Environment - Industry Needs*

  • Finding Closure
  • Aggregation
  • Risk-Informed SSC
  • Realism in Reactor Categorization (50.69) Oversight Process
  • Risk-Informed
  • FLEX in Risk-Informed Completion Times Decision Making (TSTF-505)
  • Fire PRA Realism
  • Methods Vetting

1400 NRC Budget (FY 1976 - FY 2017) 4500 Actual ($M) 4000 1200 3500 1000 3000 Budget ($M) Staff (FTE) 800 2500 600 2000 1500 400 1000 200 500 0 0 Fiscal Year Data from NUREG-1350 (NRC Information Digest) 39

Big Data: Prognostics and Reliability How Do Things Fail? (Power) both units tripped automatically from 100% power following a Loss of Offsite Power (LOOP) event.

The event began when a fault occurred internal to a current transformer associated with one of the switchyard power circuit breakers. A second current transformer failure, along with the actuation of differential relaying associated with both switchyard busses, cleared both busses and separated the units from the grid... The root cause analysis determined that certain switchyard relay tap setting changes were not implemented. (LER 413/06-001)

Units 1 and 2 received an automatic reactor trip on reactor coolant pump (RCP) buses undervoltage. A loss of Common Station Service Transformer (CSST) C caused a loss of power to two unit boards on each unit that feed RCPs The cause of the bus fault was determined to be degraded bus bar insulation and water intrusion into the CSST D secondary bus duct. (LER 327/09-003) 40

Historical View on Searching PRA Procedures Guide, NUREG/CR-2300 (1983)

  • The search for dependent failures should be performed as described in Section 3.7 and incorporated as appropriate into the plant and system models.
  • A preliminary systems analysis can thus be a vital step in the search for initiators, helping to ensure completeness in the definition of accident sequences.
  • Another approach is to more formally organize the search for initiating events by constructing a top level logic model and then deducing the appropriate set of initiating events.
  • A systematic search of the reactor-coolant pressure boundary should be performed to identify any active elements that could fail or be operated in such a manner as to result in an uncontrolled loss of coolant.
  • a more formal search and documentation of all elements that depend on input from another source beyond the identified system boundary may be appropriate.

41

External Flooding: A Really Big Picture

  • Sparse data and concerns with extrapolation => mechanistic analysis
  • Daunting scale

- Regional analysis

- Human actions

- Besides flooding level: duration, debris, dynamic forces, warning time

- Multi-site impacts

  • How can R4&D help?

- Multiple, heterogeneous evidence sets =>

uncertainty

- Demonstration of validity of more restricted representation 42