ML17228B237: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 3: Line 3:
| issue date = 07/14/1995
| issue date = 07/14/1995
| title = Stresses for St Lucie Unit 2,PZR Lefm.
| title = Stresses for St Lucie Unit 2,PZR Lefm.
| author name = MILLER A M, WIGER T M
| author name = Miller A, Wiger T
| author affiliation = BABCOCK & WILCOX CO.
| author affiliation = BABCOCK & WILCOX CO.
| addressee name =  
| addressee name =  

Revision as of 06:12, 19 June 2019

Stresses for St Lucie Unit 2,PZR Lefm.
ML17228B237
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 07/14/1995
From: Miller A, Wiger T
BABCOCK & WILCOX CO.
To:
Shared Package
ML17228B236 List:
References
32-1235127-02, 32-1235127-2, NUDOCS 9508100184
Download: ML17228B237 (77)


Text

I jIPBBMf NllClSAR%M TECHNOLOGIES BNT-20697-2 (11/B9)(BNNP.20697.1)

CALCULATION

SUMMARY

SHEET (CSS)DOCUMENT IDENTIFIER 32-1235127" 02 TI TLF Stresses f or St.Lucie Unit 2, Pzr LEFM 4100533 PREPARED BY: T.M.Wi er REVIENEO BY: A.M.Miller SIGNATURE TITLE En r.I I I COST CENTER REF.PAGE(S)SIGNATURE TIT E En r.IV ,7//9s-TM STATEMENT:

REVIEllER INDEPENDENCE PURPOSE AND

SUMMARY

OF RESULTS: The purpose of this document is to determine enveloping Normal, Upset and Emergency Condition stresses for the six 1" instrumentation nozzles in the upper and lower spherical regions in the pressurizer at St.Lucie Unit 2.Results from this document were used as input to the fracture mechanics evaluation, Reference[7].The stress results are summarized in Tables 6.1 through 6.15 in Section 6.0.No conclusions are drawn by, these calculations.

    • BWNT Non-Proprietary
    • This document consists of pages 1 through 51 including 20a, 33a and 33b.THE FOLLONING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT: CODE/VERSION/REV CODE/VERSION/REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED ISRK'75081'00'l84

'950802'.PDR ADOCk 0500038'P Q PDR YES ()NO (X)PAGE 1 oF 51 tie'at)

I BRA NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127<<02 RECORD OF REVISIONS Revision Number 0 Pages Added/Chanched All All Descri tion Original issue Issue of Non-Proprietary Version Removed assumption 5.Corrected Young's modulus of base material.Modulus used in the analysis of previous revisions was correct, but reported incorrectly in this table.8-40 Corrected equation for K,.Performed the analysis for only the spherical region with corrected hillside stress concentration factor and actual thickness.

New model covers all nozzles in the upper and lower spherical regions.Replaced with pages 8 through 50.Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 2 BaW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 1.0 Introduction 2.0 Assumptions 3.0 Design Input 3.1 Design Characteristics 3.2 Material Properties 3.3 Model Geometry 4.0 Finite Element Model 5.0 Thermal Analysis 6.0 Stress Analysis 7.0 ANSYS 5.0A Verification 8.0 References 9.0 Microfiche 4 5 5 6 8 10 11 20 48 49 50 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 3

B&W'UCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle"C" of Florida Power&Light Company's St.Lucie Unit 2.Subsequent NDE identified indications on the J-welds for all four steam space instrument nozzles.Modifications were made and justifications performed to determine the potential for crack growth during plant operation.

The evaluation performed at the time was conservatively limited to one cycle based on the design information available.

The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all six instrument/temperature 1" nozzles in the spherical regions of the pressurizer.

I Results from this document are used as input to the fracture mechanics evaluation, Reference[7].The results are presented in the coordinate system shown in figure 6.2, which is orthogonal to the postulated flaw, as required by Reference[7].The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS'5.0A finite element software.2.0 Assumptions 1)Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell.2)The effects of the nozzle were neglected in determining the shell/head stresses (i.e.the nozzle was omitted from the finite element model).3)The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be 15'F for calculating the natural convection heat transfer coefficient.

4)Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head.

5)'Removed) 6)Hydrotest was assumed to be shop hydrotest only.Therefore, no future hydrotests are assumed to occur.Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 4 BEcT4 NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 3.0 Design Input 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference[8].Heatup'Cooldown Operating Pressure Operating Temperature Minimum Pressure (Reactor Trip transient)

Maximum Pressure (Abnormal Loss of Load transient) 100 F/hr 200 F/hr 2250 psia 653 F 1740 psia (653-616'F hT)2400 psia (664-614'F hT)Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 5 B&k NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis.The material types come from References

[8-10]and assumption 1.References for the material properties are given in the tables below.The material property designation and units are: KXX-thermal conductivity, btu/(hr-in-'F)

DENS-density, lb/in'-specific heat, btu/(lb-'F)

C is a calculated value based on C=KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX-Young's Modulus, psi x 10'LPX-coefficient of thermal expansion, in/in/'F x 10'm-design stress intensity, ksi Sy-yield strength, ksi Su-ultimate strength, ksi v-Poisson's ratio=.3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.5Ni)

TEMP DENS EX ALPX Sy Su 100 200 300 400 500 600 700 REF.2839 1.8833.1079~2831 1.9500.1139.2823 1.9833.1196.2817 1.9833.1257.2809 1.9583.1323.2802 1.9167.1389.2794 1.8583.1448.3 29.0 28.5 28.0 27.4 27.0 26.4 25.3 7.06 26.7 50'7.25 26.7 47.5 7.43 26.7 46.1 7.58 26.7 45.1 7.70 26.7 44.S 7.83 26.7 43.8 7.94 26.7 43.1 80.0 80.0 80.0 80.0 80.0 80.0 80.0 Prepared By:-T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 6 I 0 I 4'8 1 1 BED NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni)

TEMP 100 200 300 400 500 DENS.2862.2853.2844.2836.2827.7250.7750.8167~8667~9083 EX.1157 28.1.1209 27.6.1246 27.0.1286 26.5.1313 25.8 ALPX 8.55 8.79 9.00 9.19 9.37 Sy 20'30.0 20'25.0 20.0 22.5 18.7 20.7 17.5 19.4 Su 75.0 71.0 66.0 64.4 63.5 600 700 REF.2818.2810.9417.9833.1334 25.3.1358 24.8 9.53 9.69 16.4 18.2 63.5 16.0 17.7 63.5 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 7

BOW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRXETARY
    • 32-1235127-02 3.3 Model Geometry The model is axisymmetric with the axis of rotation at the center of the penetration, as if the penetration was located radially.Both the base metal and the cladding are represented thermally and mechanically (see Figure 3.1).R Clo,clcllng (L p D RNaz Figure 3.1 Model Geometry The cladding and base metal thicknesses, T~~and T,~, respectively, and the penetration radius, RNoz come from References

[10]and[12].The radius R, is not the actual radius to the base metal but is modified as discussed later to account for hillside effects.Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 8

B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 The dimensions in Figure 3.1 above as used in the analysis are: R,=1.52(48 7/16)=73.63 in.(1.52=hillside stress factor)R=11/16=0.6875 in.T~~=7/32=0.219 in.T,~,=3 7/8=3.875 in.The model was built such that the hoop stress was increased by an appropriate value to account for the hillside (non-radial) penetrations which are not inherent in an axisymmetric model.This increase was accomplished by increasing the radius to the base metal (R,)by an appropriate factor K, calculated later.A sufficient portion of the head was modeled to attenuate the stress concentration effects at nozzle penetration (discussed in Section 4.0).Hillside Effect Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration.

From Ref.[4, p.'337], the following stress concentration factor was calculated for the hillside effect.The maximum stress concentration was present at the instrument nozzles in the lower head where P (the angle between the penetration centerline and the normal to the head)was a maximum.sin'(24.5625/48.21875)

=30.62~K,=K,(1+2sin'$)Refs.[9&10]Ref.[4, p.337]K r=Kr (1+2sin'0.62o)1, 52 K, Where:, K,=radial nozzle stress concentration factor K,=non-radial nozzle stress concentration factor P=angle the axis of the nozzle makes with the normal to the vessel wall Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 9 I B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • '2-1235127-02 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference[6], was used to perform the axisymmetric thermal and stress analyses of the nozzle penetration in the spherical regions.The model extends away from the penetration far enough that the increase in stress due to the penetration is not present at the boundary." This will insure that any inaccuracies at the location of boundary condition application will not affect the results at the penetration.

J The head and cladding were modeled using axisymmetric elements PLANE42 for the structural and PLANE55 for the thermal.Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 10 BEcl NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRXETARY
    • 32-1235127-02 5.0 Thermal Analysis The transients in Ref.[8]were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference[7]).Based on the review, the following transients were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure=1740 psia)and a 53 F Step-up (pressure=2400 psia), and Loss of Secondary Pressure.The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche SPHTHERM.OUT) with"Heatup from 70'F to 653'F (ramped over 5.83 hours9.606481e-4 days <br />0.0231 hours <br />1.372354e-4 weeks <br />3.15815e-5 months <br />, then held constant until t=7.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />), 53'F Step-down (instantaneously dropped at t=7.0 hrs, then held for 1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br />), 53'F Step-up (instantaneously raised at t=8.0, then held for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />)and Cooldown from 653'F to 70'F (ramped over 2.915 hours0.0106 days <br />0.254 hours <br />0.00151 weeks <br />3.481575e-4 months <br /> starting at t=9.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, then held constant until t=13.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />)~The Loss of Secondary Pressure transient consists of a step decrease to 504F which is then ramped to 348F over the next 90 seconds at which time 4 it is held constant out to t=0.50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br />.The thermal results are contained in microfiche SPHTHLP.OUT.

Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures.

Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1.All other surfaces, including the penetration surface, were assumed to be insulated.

A constant heat transfer coefficient was used to simplify the analysis in a conservative manner.Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference[7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer.

Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 11 B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32"1235127-02 During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer.

Therefore, use of a low heat transfer coefficient results in conservative (tensile)stresses.Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile)stresses.Therefore, nozzles in the steam space were conservatively represented using heat transfer coefficients in the water space (i.e.for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space).Zn the case of the Step Down and Loss of Secondary Pressure transients, however, boiling may occur, raising the heat transfer coefficient significantly.

The-heat transfer correlations in Ref.[2]were reviewed for horizontal

'and vertical plates.The correlation for a horizontal heating plate, face up (T>Tco)was selected as a representative heat transfer coefficient for the nozzles in the water space.HORIZONTAL PLATE, NATURAL CO1VVECTION, TURBULENT REGIME ST~yg 650 FI ASSUME 15 F IT 1 1 H=(hT)K4~Kt;=(15)(.17)(1100)=461 HR-FT2-oF H=3 HR IN2 oF For the Step Down transient, where boiling can occur, the heat transfer coefficient comes from Table 2.2 of Ref.[11].The maximum coefficient is conservatively used.H=10, 000 (BTU/f t'r.P)=70 (BTU/in.'r.

'F)The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred.The Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 12 BOW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 temperatures as function of time at the base metal-to-cladding interface and at the outer radius of the pressurizer shell are plotted in Figure 5.2.The radial dT is shown in figure 5.3.The temperature distribution at times of extreme hT's were used to load the structure since the extreme hT's resulted in extreme thermal stresses.For Cooldown, other time points were also considered since the pressure at the time of maximum hT is significantly lower than at earlier times where the tT is almost as large.Steady state temperature cases were also runat 653'F/2250 psig without material discontinuity effects (T,=T<<=653'F)and at-653'F/2400 psig with material discontinuity effects (T,=70'F).Table 5.1 summarize the critical transient times and identifies the associated pressures for each model.The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.1 and the POST26 results are contained at the end of the thermal runs in the microfiche in Section 9.0.Note that although the node pair used for evaluating the radial hT was at a 45'ngle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface isothermal).

Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 13 fl BAH NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 TABLE 5.1 CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR)PRESSURE (PSIG)Heatup 5.83 2,250 Step-down 7.0667 1,740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown'.2915 1,472 9.4081 1I 232 9.8162 607 11.915 Steady State'/A 2,250 Loss of Secondary Pressure 0.010 0.015 310 210 0.020 185 0.063 116'The pressure was assumed to equal the saturation pressure of the steam at the current fluid temperature.

'Includes material discontinuity temperature effects (T,=70'F).'Excludes material discontinuity temperature effects (Tf T 653 F).Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 14 I I I l l I e e I lHQISk NOQNHOO+++

l88llSQ51115580+++

gg'g lll8lRHISR550%88++++

gg ulngaaaiaaaaaaaI1ay lll8085REOOSN'I++++gy Illllll!IISQOESH%8++++

Illlllllll1%5%%%%%~~~~~

IIIIIIIIII)

IN5558~+++++Illlllllllll5%88%%%~~~~~

lllllllll55%%5555%8++++~

IllllllHSIISN5555'8+++g IlllllllllllNERNSI'

'+++I I, g I 0'I~

W W"C ANSYS 5.0 A JUN 20 1995 18: 44.:10 PLOT NO.I POST26 ZV=I DIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROID HIDDEN n TEMP TEMP 0 g I 0 H W0 lg 6~~0 0 10 TIME 12'6 ST.LUCIE PRESSURIZER SPHERICAL REGION IFMPERATURE NOZZLE Id M I hl Cd UI I hl I CO M

H a A 8 O A tid 8 I~0 Q.Q C4 0 TOIF F ANSYS 5.0 A JUN 20 1995 18: 0 4: 10 PI.OT NO.2 POST26 ZV=I DIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIODEN R n n g 0 I 0 H 8~~10 TIME 12 ST.I.UCIE PRESSURIZER SPHERICAL REGION TEMPERATURE NOZZLE 4J I hl VJ Ul hl I C)h)

ANSYS 5.0 A JUN 20 I995 I7:04:01 PI.OT NO.I POST26 2V=I OIST=0.~5 XF=0.5 YF=0.5 ZF=0.5 CENTROID HIOOEN<<C TEMP g O I 0 H t4 TEMP (s IOtt-1)0.5 2.5 TIME 3,5 ST.lUCIE PRESSURllER SPHERICAl REGION TEMPERATURE NOlllE 4J I M 4l Vl M I C)M

~g CD CD CO~~CD RB CD 0 CD C~8 O Cl 8 Ba Ql Q Q FL CL B<<C TOIFF[a 1044-0 ANSZS 5.0 A JVN 20 I995 Ij:04:07 PLOT NO.2 POST26 LV=I 0 I S T=0.15 XF=0.5 YF=0.5 ZF=0.5 CENTROIO IIIOOEN 5 n g 0 g I 0 H W K 0.6 1.6 2+6 TIME ST.I.VCIE PRESSVRILER SPHERICAL REGION TEMPERATURE N022LE GJ I kO bJ Ul h)I C)hl B6cW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell.The pressure boundary conditions are shown in Figure 6.1.Since the fracture mechanics evaluation in Reference[7]requires stresses along the flaw line that is approximately 45 from the axis of the nozzle penetration, the ANSYS POST1 post processor was used to transform the stresses into the flaw line coordinate system as shown in Figure 6.1.Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction.

A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load=mr'(pressure)

=m(.6875)'(pressure) 1.4849(pressure)).

The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest.Stress results for the given model are contained in the microfiche of Section 9.0.The stresses along the 45 degree flaw line are summarized for each transient analyzed in the Tables 6.1 through 6.13 and the figures on pages 35 to 47.The results reported by the finite element model have accounted for the stress concentration for a hillside penetration subject to pressure by the increase of the radius by a factor of 1.52, however, the increase in thermal stresses due to the hillside positioning is not included.From p.200 of Reference[13]the stress concentration due to an elliptical hole in a biaxially stressed plate where e,=e, and b/a=1.16, the stress concentration should be 2.32 (say 2.4).The model is picking up a stress concentration of 2~0 from the radially positioned circular hole (b/a=1.0)in the model.The increase in hoop stress due to the hillside positioning when subject to pressure has been included by the increase in radius, but the model is only picking up the inherent SCF of 2.0 for thermal stress since the thermal stresses are essentially unaffected by radius'he thermal stresses, therefore, must be increased by a factor of 1.2 to account for the hillside positioning.

This increase has been performed by separating the thermal and pressure stress components, multiplying the thermal component by 1.2, and adding the pressure component and the increased thermal component to arrive at the total stress.Since hoop stress (Sz)is dominant, the increase will only be performed for that stress component.

A sample calculation appears below.Page 20a has been inserted between 20 and 21.Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 20 B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 For Cooldown-1 (Table 6.5), at position S=0.3360 inches: Sz=25288.0 Pressure component is taken from the pressure only case in table 6.9.This pressure must be multiplied by the ratio of pressures Sz-press=(P/Ppo)Sz-po (1472/2250)'32353 21166 psi Hence, the thermal component is 25288-21166=4122 psi This is multiplied by 1.2 and the pressure stress is added to arrive at the corrected total stress.I Sz=4122 (1.2)+21166

=26112.4 psi which is exactly what the table reports.h Two additional transients, fluctuations from steady state, are calculated using the results from the 53'F Step Up and Step Down.They use the method above to isolate the thermal stresses and approximate a 20'F Step change by multiplying the thermal component by the ratio 20/53.'he transient also includes a pressure change as described in the relevant tables, 6.14 and 6.15.Note that the stresses (in psi)are in the local coordinate system of the 45 degree flaw line as shown in Figure 6.1 and"S" is the distance from the inside surface,to the outside surface along the flaw line.Note also that the figures on pages 37 through 47 show the stresses not including the'actor of 1.2 on thermal stress and are for information only.Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 20a P 0 B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY

    • 32-1235127-02 Table 6.1 END OF HEATUP, P=2250 PSIG THOUT STRESSES WI THERMAL S CF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1'799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-2539.5-62.5 1818.2 2846.5 3962.3 4368.8 5035.5 5502.6 5928.8 6268.7 6662.0 6889.8 7167.5 7420.0 7609.0 7819.5 7990.3 8150.1 8307.7 8439.3 8571.5 8699.6 8803.1 8912.0 9020.4 9106.7 9194.0 9281.5 9358.4 9428.8 9497.7 9564.2 9619.0 9673.2 9725.5 9771.3 9810.2 9848.6 9886.5 9917.6 9941.3 9964.7 9987.5 10010.0 10243.0 10468.0 10683.0 10890.0 11089.0 SY-721.5 229.6 554.0 770.8 2596.5 3683.5 4580.2 5303.1 5957.6 6449.9 6937.1 7336.4 7706.5 8045.6 8346.2 8638.4 8886.6 9125.0 9358.4 9550.6 9739.5 9923.2 10083.0 10230.0 10376.0 10508.0 10629.0 10742.0 10850.0 10953.0 11048.0 11135.0 11216.0 11298.0 11376.0 11442.0 11505.0 11569.0 11633.0 11686.0 11733.0 11781.0 11830.0 11878.0 11671.0 11472.0 11281.0 11100.0 10927.0 SZ 23098.0 25811.0 26602.0 26553.0 26346.0 26134.0 25733.0 25458.0 25138.0 24927.0 24672.0 24532.0 24373.0 24238.0 24157.0 24057.0 24001.0 23954'23906.0 23885.0 23861.0 23840.0 23844.0 23834.0 23823.0 23838.0 23842.0 23837.0 23843.0 23857'23860.0 23853.0 23861.0 23867.0 23868.0 23856.0 23852.0 23847.0 23842'23822.0 23804.0 23785'23766.0 23746.0 23704.0 23664.0 23623'23582.0 23540.0 SZ 19234'23322.0 25004.4 25393.0 25538.0 25564.6 25332.8 25185.6 24974.2 24844.6 24661.4 24584.2 24479.0 24392.0 24356.0 24297.0 24277.4 24265.8 24251.8 24260.2 24265.0 24272.0 24302.6 24316.0 24328.2 24366.2 24391.0 24404.8 24429.4 24462.2 24481.6 24488.8 24511.4 24531.6 24545.8 24544.0 24550.0 24555.0 24559.8 24546.6 24534.2 24520.8 24507.2 24492.6 24451.4 24412.2 24372.0 24331.6 24290.2 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 21 0

~BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY

    • 32-1235127-02 Table 6.2 53F STEP DOWN, P=1740 PSIG THOUT STRESSES WI THERMAL S CF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-3039.0 350.3 3114 F 1 4598.9 5658.2 5966.2 6461.3 6718.8 6909.5 7003.0 7130.5 7091'7102.1 7089.2 7011.9 6957.8 6885.6 6798.5 6703.7 6620.4 6535.1 6443.1 6342.5 6267.6 6189.8 6095.0 6017.0 5954.0 5883.0 5806.9 5744.0 5694.7 5638.0 5580.4 5527.8 5492.6 5453'5414.1 5374.2 5349.5 5327.8 5305.8 5283.7 5261'5374.0 5481.8 5585.2 5684.0 5778.2 SY 2198.3 2565.5 2497.1 2587.3 4413.0 5425.9 6193.7 6719.7 7143.2 7373.5 7576.9 7673.8 7738.3 7767.7 7752.5 7730.6 7682.3 7620.5 7549.2 7475.0 7396.6 7311.8 7220.2 7142'7062.3 6972.0 6892.9 6825'6753.7 6679'6616.3 6566.5 6513.3 6459.5 6411.2 6381.7 6349.9 6318.0 6285.9 6270.9 6260.2 6249.4 6238.4 6227.3 6112.2 6000.5 5893.2 5790.2 5691.4 SZ 37940.0 37707.0 36148.0 34456.0 32768.0 31306.0 29778.0 28489.0 27210.0 26132.0 25054.0 24121.0 23233.0 22410'21650.0 20917.0 20280.0 19659.0 19044.0 18538.0 18038.0 17544.0 17102.0 16707.0 16314.0 15942.0 15607.0 15304.0 15011.0 14724.0 14466.0 14241.0 14026.0 13812.0 13610.0 13451.0 13298.0 13146.0 12994.0 12878.0 12780.0 12682.0 12584.0 12486.0 12433.0 12382.0 12330.0 12279.0 12228.0 r SZ 38967.8 39331.5 38027.7 36343.3 34621.9 33084.8 31444.1 30038.6 28637.3 27439.3 26240.7 25191.3 24191.9 23262.3 22397.6 21565.2 20837.6 20127.0 19422.8 18841.5 18267.5 17699.6 17189.2 16734.8 16282.9 15851.9 15465.4 15117.1 14779.0 14446.9 14149.6 13891.6 13643.7 13396.9 13164.6 12983.5 12808.3 12634.4 12460.3 12329.5 12219.0 12108'11998.2 11887.9 11831.4 11777.0 11721.5 11667.1 11612'Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 22

BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY

    • 32-1235127-02 Table 6.3 53F STEP UP, P=2400 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S'0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-2467.-260.1372.2283.3417.3872.4601.5143.5655.6080.6562.6882.7247.7584.7860.8153.8398.8632.8867.9059.9252.9442.9601.9757.9914.10047.10174.10297.10407.10511.10609.10699.10776.10853.10926..10986.11039.11091.11143.11183.11214'1244.11273.11303.11567.11820.12065.12299.12524.SY-1533.7-449.6-23.8 227.7 2023.0 3125.1 4062.3 4851.0 5585.5 6168.4 6753.1 7256.2 7729.0 8170.5 8575.2 8969.0 9309.9 9642.0 9970.2 10240.0 10507.0 10768.0 10998.0 11206.0 11412'11602.0 11775.0 11931.0 12080'12226.0 12356.0 12472.0 12582.0 12691.0 12795.0 12878'12959'13040.0 13121.0 13186.0 13242.0 13300.0 13358.0 13416.0 13182'12956.0 12741.0 12536.0 12341.0 SZ 18740.0 22212.0 23644.0 24080.0 24327.0 24510.0 24475.0 24534.0 24533.0 24609.0 24625.0 24749.0 24826.0 24911.0 25047.0 25146.0 25266.0 25393.0 25516.0 25632.0 25742.0 25853.0 25980.0 26067.0 26153.0 26266.0 26353.0 26414'26487.0 26568.0 26626.0 26660.0 26710.0 26759.0 26798.0 26808.0 26828.0 26847.0 26864.0 26857.0 26849.0 26840.0 26829.0 26818.0 26775.0 26734.0 26692.0 26648.0 26604.0 V SZ 13439.5 18493.1 20993.6 21994.0 22710.1 23229.4 23453'23719.2 23902.1 24125.1 24275.3 24521.0 24704.7 24886.7 25115'25299.0 25493.8 25694.0 25888.1 26063.1 26231.0 26398.5 26578.5 26709.9 26840.2 26997.2 27122.9 27217.2 27323.4 27437.7 27524.1 27581.5 27655.4 27728.1 27788.7 27814.2 27849.7 27884.2 27916.2 27919.3 27919.5 27918.7 27915.3 27912.2 27870.4 27830.6 27789.8 27746.3 27703.1 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 23 BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY
    • 32-123S127-02 Table 6.4 STEADY STATE, Tref 70F, Tunif=653F, P=2400 PSZG STRESSES WZ THERMAL S THOUT CF WITH 1.2 SCF~ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599'3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-3281.3-156.3 2331.3 3706.3 4926.7 5382.5 6081.6 6551.0 6969.9 7285.6 7651.4 7839.6 8076.6 8285.5 8425.7 8587.6 8709.8 8819.1 8924.6 9008.3 9092.0 9170.7 9225.9 9290.6 9354.1 93.95.0 9440.3 9489.0 9526.9 9558.0 9591.2 9625.8 9648.7 9671.0 9693.2 9715.3 9730.7 9745'9759.9 9774.1 9783.5 9792.6 9801.3 9809.7 10034.0 10250.0 10457.0 10655.0 10846.0 SY 478.1 1203.2 1373.3 1568.8 3540.3 4706.3 5658.2 6399.5 7059.4 7534.5 7999.4 8361.1 8690.7 8984.4 9233.4 9473.2 9667.6 9849.9 10025.0 10163.0 10297.0 10424.0 10528.0 10625.0 10720.0 10799.0 10873.0 10942.0 11005.0 11064.0 11119.0 11170.0 11217.0 11263'11308.0 11349.0 11387.0 11425.0 11463.0 11499.0 11532.0 11565.0 11598.0 11632.0 11427.0 11229.0 11039.0 10858.0 10686.0 SZ 32074.0 33605.0 33377.0 32639.0 31826.0 31127.0 30290.0 29651.0 28985.0 28484.0 27950.0 27560.0 27167.0 26816.0 26529.0 26233.0 26000.0 25779.0 25560.0 25391.0 25221.0 25055.0 24923.0 24791.0 24658.0 24553.0 24448.0 24343.0 24250.0 24166.0 24081.0 23996.0 23926.0 23855.0 23784.0 23715.0 23656.0 23595.0 23535.0 23475.0 23423.0 23370.0 23317.0 23264.0 23211.0 23160.0 23108.0 23056.0 23003.0 SZ 29440.3 32164.7 32673.2 32264.8 31708.9 31169.8 30431.4 29859.6 29244.5 28775.1 28265.3 27894.2 27513.9 27172.7 26893.6 26603.4 26374.6 26157.2 25940.9 25773.9 25605.8 25440.9 25310.1 25178.7 25046.2 24941.6 24836.9 24732.0 24639.0 24555.3 24470.1 24384.7 24314.6 24243.3 24171.9 24102.6 24043.3 23981.8 23921.4 23860.9 23808.3 23754.7 23700.9 23647'23593.6 23541.8 23489.0 23435.9 23381.9 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 24, pl BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY
    • 32-1235127-02 Table 6.5 COOLDOWN-1, Psat=1472 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0'240 0'360 0.4480 0.5600 0'720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2~4639 2'759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3'599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-1570.8 702.6 2447.1 3354.6 4226.8 4436.0 4868.4 5119.2 5317.2 5449.6 5622.6 5649.7 5725.6 5782.7 5783.9 5805.3 5804'5792.6 5775.2 5754.8 5733.2 5706.4 5666.7 5641.5 5614.4 5571.2 5537'5510.8 5476.8 5438.1 5406.7 5382.4 5350'5318.3 5288.7 5268.9 5245.0 5220.7 5196.0 5181.1 5166.9 5152.3 5137.5 5122.4 5233.3 5339.6 5441.3 5538.6 5631.5 SY 738.8 1302.8 1350.6 1419.9 3004.3 3871.3 4536.8 5025.9 5432.4 5688.6 5928.9 6087.5 6218.6 6322.2 6391.2 6452.3 6485.4 6508.3 6524.4 6523.7 6519.5 6510.2 6489.4 6470.5 6449.2 6418.9 6390.6 6365.2 6335.9 6303.9 6275.8 6252.6 6226.1 6199.1 6174.5 6158.8 6141.2 6123.4 6105.5 6097.5 6091.6 6085.8 6080.0 6074.2 5960.4 5850.3 5744.7 5643.3 5546.4 SZ 24997'26308.0 26075.0 25288.0 24449.0 23660.0 22761.0 22012.0 21247.0 20613.0 19967.0 19425.0 18900.0 18415.0 17977.0 17545.0 17173.0 16810.0 16451.0 16150.0 15850.0 15555.0 15292.0 15046.0 14801.0 14574.0 14362.0 14164.0 13973'13788.0 13617.0 13461.0 13313.0 13166.0 13026.0 12910.0 12798.0 12687.0 12576.0 12488.0 12412.0 12335.0 12259.0 12183.0 12138.0 12094.0 12050.0 12005.0 11961.0 SZ 24446.6 26564.0 26764'26112.4 25363.0 24600.0 23684.4 22905.2 22100.1 21420.1 20725.3 20134.3 19560.3 19027'18541.8 18063.3 17648.0 17241.7 16839.5 16500.2 16162.2 15829.3 15530.6 15252.0 14974.6 14715.3 14474.0 14249.3 14031'13820.0 13625.1 13448.1 13279.0 13111.1 12951.6 12820.7 12693.3 12567.3 12441.2 12342.7 12257.5 12171.2 12086.1 12001.0 11953.0 11906.0 11859'11810.8 11763.9 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 25 BOW NUCLEAR TECHNOLOGIES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.6 COOLDOWN-2, Psat=1232 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1 F 0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-1131.7 875.9 2390.7 3159.7 3934.4 4084.5 4449.9 4649.1 4796.9 4889.0 5018.9 5013.3 5055.3 5081.0 5055.0 5048.3 5024.1 4988.4 4947.6 4907.2 4865.6 4818.8 4761.5 4719.2 4674.7 4616.0 4566..9 4526.3 4478.8 4427.1 4383.4 4347.8 4305.7 4263.0 4223.5 4195.6 4164.2 4132.5 4100.3 4079'4060.8 4041.7 4022.3 4002.7 4086.8 4167.2 4244.1 4317.5 4387.4 SY 694.8 1231'1265.8 1310.0 2771.6 3553.5 4141.8 4566.6 4911.0 5116.4 5305.2 5419.3 5507.5 5570.7 5602.5 5626.8 5627.4 5618.4 5602.8 5574.9 5543.6 5507.5 5462'5421.2 5377.4 5326.0 5278.1 5234.1 5187.0 5137.4 5093.2.5055.1 5014.3 4973.0 4934.7 4907.4 4878.6 4849.6 4820.3 4803.1 4789'4775.1 4761.1 4747'4655.3 4566.4 4480.9 4398.8 4320.1 SZ 22395 23714 23554 22821 22035 21278 20413 19680 18932 18302 17662 17114 16585 16093 15643 15201 14815 14439 14066 13749 13435 13124 12844 12584 12325 12081 11854 11643 11439 11240 11056 10890 10732 10573 10423 10300 10181 10062 9943 9851 9772 9693 9614 9535 9493 9451 9410 9369 9327.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.8.7.6.5.3.2.9.6.2.7 SZ 22229 F 1 24267.3 24476.8 23842.2 23114.4 22359.9 21458.4 20678.9 19875.8 19187.5 18486.7 17878.9 17290.9 16741.6 16235.1 15738.1 15301.0 14874.3 14450.6 14088.6 13730.2 13374'13052.7 12754.6 12457.7 12175.9 11914.4 11672.1 11436.8 11206.8 10994.6 10804.0 10621.5 10437.8 10264.9 10124.2 9987.3 9850.6 9714.6 9610.1 9520.3 9430.5 9340.6 9250.7 9205.2 9160.5 9115.9 9071.0 9026.1 Prepared By: T.M.Wi er Reviewed By.: A.M.Miller Date: Date: Page: 26 BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY
    • 32-1235127-02 Table 6.7 COOLDOWN-3, Psat=607 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1'080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 57.3 1224'2018.2 2366.1 2858.6 2859.8 3050.5 3126.0 3158.0 3162.9 3198'3131.7 3107.0 3072.6 2999.8 2943'2878.4 2804.7 2726.3 2655.4 2582.9 2506.1 2424.4 2356.7 2287.1 2207.9 2138.3 2077.2 2011.6 1943.2 1883;2 1831.9 1776.8 1721.2 1669.2 1630.5 1589.8 1548.8 1507.5 1479.4 1454.9 1430.2 1405.1 1379.8 1402.8 1424.5 1444.8 1463.8 1481.5 SY 340.1 817.4 840.3 825.9 1898.7 2429.0 2801.8 3058.0 3246.6 3334.5 3406.4 3426.8 3426.2 3408.3 3369.2 3323.6 3265.0 3199.3 3128.3 3054.4 2978.0 2898.2 2815.5 2738.3 2659.4 2576.4 2499.0 2427.1 2353.5 2278.4 2210.3 2149.9 2088.1 2025.8 1967.1 1922.0 1876.0 1829.7 1783.1 1750.9 1723.4 1695.7 1668.0 1640.1 1601.2 1563.3 1526.6 1490.9 1456.4 SZ 13615.0 15087.0 15283.0 14838.0 14332.0 13780.0 13130.0 12552.0 11958.0 11433.0 10905.0 10432.0 9975.5 9545.6 9140.7 8746.9 8392.8 8045.0 7700.2 7401'7104'6811.3 6539.7 6290.4 6042.4 5802.1 5580.8 5376.7 5176.2 4978.0 4798.0 4637.4 4480.0 4323.0 4175.0 4057.4 3941.5 3825.9 3710.5 3625.0 3551.6 3478.2 3404.9 3331.8 3300'3270.2 3239.7 3209.3 3178.8 SZ 14049'16040.3 16473.3 16060.0 15558.9 14972.3 14259.6 13615.3 12949.1 12352.4 11751.9 11208.8 10684.1 10188.5 9719.1 9263.0 8850.9 8445.7 8043.7 7693'7347.2 7003.8 6684.8 6392.5 6101.8 5818.8 5558.7 5319.1 5083.2 4849.7 4637.9 4449.4 4264.0 4079.1 3905.0 3767.3 3631.2 3495.4 3359.8 3260.2 3174.6 3089.0 3003'2918.3 2883'2849'2815'2781'2746'Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 27 BEc'PJ NUCLEAR TECHNOLOGZES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.8 END OF COOLDOWN, P=0 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1'679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX-408.5 141.8 671.7 968.2 1026'1033.0 1020.8 981.6 930.7 867.3 799'721.0 642.6 562.3 477.9 393.6 312.3 228.8 143.3 66 F 1-12.1-91.5-167.6-237.8-308.9-379.6-445.3-506.3-567.0-627.7-683.1-732.8-781.7-830.7-877.0-913.6-949.7-985.6-1021.5-1047.5-1069.4-1091.2-1112.9-1134.5-1167.0-1198.4-1228.9-1258.4-1286.9 SY 1474.9 1166.1 945.8 890.6 1004.8 1048.0 1063.3 1041.5 1003.0 943.2 876.2 794.6 710.0 621.0 526.1 430.5 335.9 238.8 139.6 48.1-44.3-137.8-227.7-310.8-394.5-478.0-555.1-626.1-697.2-768.3-832.4-889.2-946'-1002.9-1056.4-1097.6-1139.1-1180.8-1222.8-1252'-1277.6-1303'-1329.1-1355.2-1335.9 1317~7-1300.7-1284.9-1270.3 SZ 9157.4 7776.0 6596.7 5783.7 5081.0 4499.2 3979.7 3533.7 3110.8 2744 F 9 2396.6 2072.2 1772.0 1490.2 1218.1 960.1 722.8 489.4 259.4 56.3-143.6-341.4-529.0-697.9-865.3-1032.6-1184.6-1322.6-1460'-1597.9-1720.8-1828.5-1936.8-2044.5-2144.9-2222'-2299.8-2377'-2453.8-2507.4-2553.4-2599.1-2644.4-2689'-2701.7-2714.0-2726.0-2737.7-2749.0 SZ 10988.9 9331.2 7916.0 6940.4 6097.2 5399.0 4775.6 4240.4 3733'3293.9 2875.9 2486.6 2126.4 1788.2 1461.7 1152.1 867.4 587.3 311.3 67.6-172.3-409.7-634.8-837.5-1038.4-1239.1-1421.5-1587.1-1752.5-1917.5-2065.0-2194.2-2324.2-2453.4-2573.9-2666.5-2759.8-2852.4-2944.6-3008.9-3064.1-3118.9 3 173~3-3227.3-3242.0-3256.8-3271.2-3285.2-3298.8 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 28

B&rf NUCLEAR TECHNOLOGIES NON-PROPRIETARY

    • 32-1235127-02 Table 6.9 PRESSURE ONLY AT STEADY STATE, P=2250 PSIG S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2'639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678'4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES WI THERMAL S SY 3634.1 3040.1 2733.2 2906.6 3907.9 4642.9 5310.3 5811.8 6288.1 6643.5 6997.3 7268.2 7526'7756'7949.9 8140'8295.2 8440.1 8580.3 8691.6 8800.0 8903.5 8988.1 9069.0 9147.8 9214.1 9277.1 9337.5 9393.0 9445.2 9495.8 9544.9 9589.4 9634.0 9678.4 9721.5 9761.6 9801.9 9842.4 9882.6 9919.7 9956.9 9994'SX-6135.0-2413.7 1029.4 3102.0 4040.0 4710.5 5309.2 5736.4 6146.0 6428.9 6710.7 6914.1 7103.6 7266.9 7397.1 7526.9 7623.5 7714.0 7803.0 7867.5 7932.5 7995.6 8043.1 8091.3 8139.6 8175.3 8210.9 8246.6 8276.2 8301.8 8327.1 8351.8 8369.3 8386.6 8403.5 8418.4 8429.3 8440.3 8451.2 8460.9 8467.4 8474.0 8480.8 8487.8 8682.2 8869.3 9049.3 9222.3 9388.3 10031.0 9862.2 9698.9 9542.7 9393.5 9251.3 WITH 1.2 SCF ON THERMAL SZ XXX THOUT CF SZ 42415.0 38256.0 34590.0 32353.0 30386.0 28981.0 27734.0 26820.0 25957.0 25339.0 24725.0 24271.0 23843.0 23468.0 23162.0 22857.0 22619.0 22395.0 22177.0 22009.0 21841.0 21680.0 21551.0 21424.0 21297.0 21197.0 21097'20998.0 20911.0 20831.0 20752.0 20674.0 20609.0 20544.0'0479.0 20416.0 20362.0 20307.0 20253'20199.0 20153.0 20106.0 20060.0 20013.0 19967.0 19923.0 19878.0 19834.0 19789.0 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 29 BRW NUCLEAR TECHNOLOGIES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.10 LOSS OF SECONDARY PRESSURE-1, T=0.010, P=310 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1'919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4'318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 2295.1 2366.7 2150.7 1851.8 2023.4 1710.0 1674.6 1601.3 1471.5 1401.6 1379.5 1271.0 1236.7 1216.6 1165.7 1139.0 1129.9 1113.0 1091.4 1092.3 1092.1 1088.5 1083.2 1089.9 1095.1 1094.3 1097.9 1105.2 1109.8 1112.5 1117.0 1123.1 1126.8 1130'1133.6 1137.9 1140'1143.7 1146.2 1149.0 1151'1153.0 1154'1156.2 1183.1 1208.8 1233.5 1257'1279.8 SY 639.7 877.6 600.6 366.1 1256.9 1544.1 1679.3 1749.7 1742.7 1704.8 1669.7 1607.2 1558.6 1521.0 1475.2 1437.6 1416.2 1392.7 1367.5 1359'1350.8 1341.9 1334.9 1334.5 1334.0 1332.5 1333.0 1335.7 1338.0 1340.0 1342.5 1345.8 1348.8 1351.8 1354.8 1357.7 1360.5 1363.3 1366.2 1368.7 1371.0 1373.5 1376.0 1378.6 1353.1 1328.5 1305.0 1282.6 1261.2 SZ 8290.4 9822.5 9932.2 9277.8 8725.2 8014.0 7321.9 6732.4 6116.7 5652.5 5234.5 4839.3 4530.5 4278.6 4037.8 3831.4 3690.2 3551.5 3413.8 3335.2 3258.9 3183.7 3123.5 3082.1 3040.9 3003.9 2974.1 2950.9 2929.6 2909.4 2892.0 2877.7 2865.4 2853.1 2841.3 2831.5 2822.9 2814.2 2805.5 2797.4 2790.6 2783.7 2776.6 2769.6 2762.9 2756.4 2749.8 2743.1 2736'8779.7 10732.8 10965.5 10241.9 9632'8818.2 8022.1 7339.8 6624.8 6084.8 5600.1 5138.4 4779.6 4487.6 4207.1 3967.8 3805.0 3644.7 3485.5 3395.8 3308.8 3223.0 3154.4 3108.2 3062.2 3020.6 2987.6 2962.5 2939.3 2917.3 2898.6 2883.6 2870.6 2857.6 2845.2 2835.2 2826.4 2817.5 2808.5 2800.3 2793.4 2786.4 2779.2 2772.1 2765.3 2758.7 2752.0 2745.2 2738.3 Prepared By: Reviewed By: T.M.Wi er A.M.Miller Date: Date: Page: 30 B&W NUCLEAR TECHNOLOGIES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.11 LOSS OF SECONDARY PRESSURE-2, T=0.015, P=210 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 2043.4 2493.2 2665.6 2562.6 2669.3 2285.7 2149.8 1972.1 1724.1 1547.7 1413.3 1196.9 1062.7 950.8 809.5 697.1 621.1 536.2 444.2 399.0 352.3 301.1 256.8 234.1 209.2 181.1 162.3 151.9 140.1 127'118.8 114'110.3 105.4 101.'2 100.1 99.0 97.7 96.3 96.1 96.4 96.7 97.0 97.3 100.6 103.8 106.9 109'112.7 SY 2272.8 2111.6 1564.2 1241'2101.1 2320.2 2366.1 2320.9 2181.8 2013'1844.7 1643.3 1468.1 1311.0 1145.5 996.8 883.2 767.5 649.5 575.3 502.5 429.5 367.4 325.8 284.4 244.0 213.5 192.7 172.5 152.8 138.6 130.4 122.6 115.0 109.0 107.7 106.4 105.2 104.1 105.2 106.8 108.4 109.9 111.4 111.7 112.0 112.2 112.4 112.6 SZ 16343.0 16086.0 14776.0 13160.0 11786.0 10380.0 9102.2 8008.8 6916.9 6062.0 5288.9 4552.8 3961.4 3460.9 2976.3 2558.3 2249.4 1945.5 1645.2 1458.8 1278.6 1100.9 952.0 851.3 751.9 655.4 581.8 529.4 478.4 428.5 390.3 364.5 339.7 315.4 294.0 281.8 270.1 258'247.7 240.7 235.3 230.1 225.2 220.6 218.2 216.0 214.0 212.2 210.5 SZ 18819.9 18589.1 17085.5 15188.1 13576.0 11915.0 10404.9 9109.9 7815.7 6801.4 5885.1 5010.3 4308.6 3715.0 3139.2 2643'2277.1 1916.6 1560.3 1339.7 1126.6 916.4 740.1 621.6 504.7 390.8 304.4 243.3 183.8 125'81.0 51.5 23.0-5.0-29.5-43.0-56.0-68'-80.8-88.3-93.9-99.2-104.2-108.9-110.9-112.7-114.3-115.7-116.8 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 31 B&Q NUCLEAR TECHNOLOGIES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.12 LOSS OF SECONDARY PRESSURE-3, T=0.0201 P=185 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S.0.0000 0'120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4'558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 1500 2511 3241 3441 3540 3129 2930 2674 2334 2065 1830 1513 1282 1077 842 639 486 323 151 46-59-171-269-334-402-471-525-564-603-642-673-695-715-736-756-766-776-786-796-802-806-809-812-815-833-850-866-881-895~4.6.7~3~4.7.9.7.8~4.8.7~4.3~4~4.9.7.2.9.8.7.2.3~4.7.2.0.2.8.9~4.9.9.0.8.6.6.5~4.0~4.6.7.3.0.0.3.8 SY 3990.9 3432.7 2625.1 2234.2 3117.2 3315.1 3316.5 3191.9 2956.4 2681.6 2399.9 2075.1 1782.9 1511.1 1227.6 966.7 754.3 538.5 319.3 167.3 17'-133'-264.6-361.1-457.2-551.1-625.5-681.4-735.9-789'-830.6-858.3-885.2-911.7-934.2-944.4-954.5-964.6-974.5-977.5-978.6-979.9-981.5-983.3-960'-938.9-918.3-898.6-880.0 SZ 26048.0 23922.0 21115.0 18499.0 16257.0 14133.0 12237.0 10616.0 9025.2 7753.3 6593.2 5491.7 4583.3 3796.4 3033.3 2365.0 1845.6 1334.5 830.2 492.8 165.6-157.3-435.5-634.4-830.6-1024.3-1175'-1287.7-1398.5-1508.0-1592.8-1651.5-1709.7-1766.9-1816.9-1844.7-1872.4-1899.2-1925.4-1939.9-1950.7-1960.9-1970.5-1979.5-1980.3-1980.8-1980.9-1980.5-1979.6 SZ 30560 28077 24769 21666 19008 16483 14228 12298 10403 8887 7505 6190 5107 4169 3259 2462 1842 1233 631 229-160-545-877-1113-1346-1577-1757-1890-2022-2152-2252-2321-2390-2458-2517-2549-2581-2613-2643-2660-2672-2683-2694-2704-2704-2704-2704-2702-2700.1.3.2.8.7.0.3.2~4.3.3.9.9.8.1.1.8.1.6 ,4.5~3.0.5.9.7.6.5.1.2.6.8.5.1.0 4.7.0.5.0.2.7.5.5.7.6~0.8.9 I Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 32 14'I 4 BOW NUCLEAR TECHNOLOGIES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.13 LOSS OF SECONDARY PRESSURE-4, T=0.063, P=116 PSIG S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2'759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES WI THERMAL S SY 12867.0 10563.0 8736.5 8235.7 9692.4 10260.0 10509.0 10380.0 10068.0 9522.3 8900.6 8128.1 7312.8 6447.7 5522.5 4,587.0 3659.4 2707.7 1733.5 844.6-52.4-960.4-1826.9-2613.7-3405.7-4195'-4908.5-5549.2-6188.9-6828.9-7390.7-7869.0-8346.4-8825.3-9269.7-9594.4-9920.7-10249.0-10579.0-10803.0-10991.0-11181.0-11374.0-11569.0-11392.0-11225.0-11069.0-10922.0-10786.0 SX-3873.7 1715.5 6852.0 9623.1 10312.0 10289.0 10200.0 9828.8 9326.0 8711.3 8066.5 7290.8 6529.6 5746.8 4911.5 4085.8 3289.3 2469.6 1628.5 881.9 125.4-644.2 1 3 77~2-2037.6-2706.6-3375.1.-3980.3-4526.6-5072.1-5617.5-6100.7-6516.6-6926.3-7337.0-7720.7-8008.2-8290.3-8572.2-8854.0-9050.7-9212'-9372.7-9532.7-9692.2-9957.5-10214.0-10463.0-10703.0-10935.0 WITH 1.2 SCF ON THERMAL THOUT CF SZ 86107.0 74667.0 64405.0 56957.0 50389.0 44855.0 39860.0 35555.0 31453.0 27886.0 24484.0 21310.0 18359.0 15582.0 12897.0 10351.0 8015.0 5714.8 3445.9 1468.2-478.9-2406.3-4219.1-5822.0-7411.4-8997.9-10409.0-11656.0-12901.0-14144.0-15224.0-16132.0-17046.0-17954.0-18791.0-19399.0-20012.0-20620.0-21225.0.-21631.0-21973.0-22312.0-22647.0-22979.0-23063'-23147.0-23228.0-23306.0-23382.0 V SZ 102891.1 89205.9 76929.3 68014'60153.5 53527.2 47546.0 42389.5 37476.0 33201.9 29125.9 25321.7 21785.0 18456.4 15237.6 12185.5 9384.8 6626.8 3906.4 1534.9-799.9-3111.1-5285.1-7207'-9113.3-11016.0-12708.3-14203.7-15696.8-17187.6-18482.8-19571.6-20667.7-21756.6-22760.4-23489'-24224.4-24953.4-25678.8-26165.5-26575.4-26981.7-27383'-27781.2-27881.5-27981.8-28078'ges 33a and 33b ve been inserted tween 33 and 34.Pa-28171.7 ha-28262.4 be Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 33 II)4, B&W NUCLEAR TECHNOLOGIES
    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.14 FLUCTUATION DN-20F STRESSES WITHOUT THERMAL SCF STEP DN, 100 PSI DECREASE TO 2150 PSIG WITH 1.2 SCF ON THERMAL S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1'559 1'679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SZ 42469.2 39620'36599.2 34476.0 32533'31049.2 29644.9 28551.8 27496.4 26679'25865.1 25211'24592.5 24033.1 23543.2 23064.1 22665.8 22282.8 21906.0 21603.5 21303.4 21010.1 20757.7 20524.3 20291.7 20085.0 19892'.2 19712.1 19543.8 19382.4 19232.6 19096.0 18971.7 18847.8 18728.4 18626.6 18533.0 18439.2 18346.0 18266.3 18198.8 18130.6 18063.1 17995.0 17944.4 17896.0 17846.5 17798.0 17748.9 SZmod 42857.0 40233.8 37308.5 35188.2 33233.0 31720.4 30273.6 29136.6 28035.0 27172.7 26312.9 25615.6 24954.4 24354.7 23825.3 23308.7 22876.2 22459.4 22048.9 21718.1 21390.0 21068.8 20790.6 20534.8 20280.0 20051.0 19838.7 19641.6 19456.3 19277.9 19113.2 18964.1 18827.4 18691.1 18560.3 18450.2 18348.2 18246.1 18144.6 18059.4 17987.1 17914.3 17842.1 17769.2 17717.4 17667.7 17616.9 17567.1 17516.8 Prepared By: Reviewed By: T.M.Wi er A.M.Miller Date: Date: Page: 33'.

BSW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Table 6.15 FLUCTUATION UP-20F STEP UP, 100 PSI INCREASE TO 2350 PSIG S 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4'438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES THERMAL SZ 34299.1 32939.5 31126.6 29855.1 28685.6 27852.8 27039.1 26474.6 25920.3 25552.2 25164.1 24919.5 24673.8 24465.2 24320.1 24161'24054.1 23958'23864.7 23800.7 23734.3 23672.9 23638'23589.3 23540.2 23518.7 23487.3 23446.8 23418.5 23397.7 23368.9 23331.6 23308.8 23285.5 23258.5 23221.8 23194.7 23166.6 23138.3 23101.0 23068.5 23034.9 23001.2 22966.9 22921.2 22877.4 22832.7 22787.9 22742.4 WITHOUT SCF WITH 1'SCF ON THERMAL SZmod 32298.9 31536.2 30126.4 29068.0 28075.5 27369.5 26653.6 26167.2 25682.2 25369.7 25032.2 24833.5 24628.0 24456.0 24345.8 24219.4 24140.1 24071.8 24005.2 23963.4 23918.9 23878.7 23863.8 23831.9 23799.5 23794.6 23777.8 23749.9 23734.1 23725.8 23707.8 23679.4 23665'23651'23632.4 23601.5 23580.3 23558.0 23535.4 23501.9 23472.4 23442.0 23411'23379.8 23334.5 23291.2 23247'23202.3 23157.1 Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 33b L)t I I I~~I I r e~I~ssaseeaaamww&w~~~~~

zssg~~~~~1>"iiiaRhaYaFaa5%58'8+++

pygmy>~lli58(ESS)

SHOS+5 1 I+g~y IBBlREISISSSSHgg I gg+IBRBE1SQ1OSOSOO++++ggg IIIQI8158%E1%00++++

ggg 8885501115OSN+'+++

IIIIIIRIL~0%550%%%%~~~

llllllll18(IIIE55SS+

g=lilllilaNh%aaaaaaaeeaaa lllllll8llh1i5%558++++

llllllggllaaraaaaaaaaa IlllllllllllS%585NI+'+++g=

IlllllllllSISOEN'1+++

'I I Il~~,~I

(~104!O 211 S2 ANSTS 5.0 A JUN 21 1995 10: 43: 39 PI.OT NO.POSTI STEP=I SUB=I TIME=I PATH PI.OT NOD I=2 N002=10&2V=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIOOEN 156 747e g O g I 0 H 474+3 201.0-72o15 0o537 1 o075 1.613 ENO OF HEATUP, P=2250 PSIG 2o 15 2odm DIST 3.763 4m 301 4J I I 4J Ul h)I C)

(a10ffo ANSTS 5.0 A JUN 21 1995 10:43:44 PI.OT NO.2 POSTI STEP=2 SUB=I TIME=2 PATH PI.OT N001=2 N002=108 2'V=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIOOEN 577.2 S2 ST g 0 g I 0 H K'5 8~~219+533 0 0o 537 1+075 1e613 53F STEP OOWN, P=1740 PSIG 2o 15 2eam DIST~225 i.301 5+376 3o763 4e535 44 M I M 4J Vl h)I ED (a 100'211 SE ANSYS 5.0 A JUN 21 1995 10:43:48 PLOT NO.3 POSTI STEP=3 SUB=I T IME=3 PATH PLOT N001=2 N002=108 2V=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIDDEN SY g O g I 0 H 130.6-153+371 0 0+537 1 a075 1.613 53F STEP-UP, P=2400 PSIG 2m 15 2+666 DIST 3.763 4o301 4l h)I 4J Ul hl I o h) 0

(~10'1)SZ ANSYS 5.0 A JUN 21 1995 10:43:53 PI.OT NO.POSTI STEP=4 SUB TIME=%PATH PI,OT N001=2 N002=108 ZV=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIOOEN R.20 710m SY 0 g I 0 14 370.0 47+805 1.075 2.15 0+537 1+d13 2 Idm 3 0 225 3.7d3 4.301 5o37d EQ rtr~~DIST STEAOY STATE, TreI=10F, Tunif=653F, P=2400 PSIG

S Sc r-4 S Q S S Q W'C'C (~109 fl)211 ANSYS 5.0 A JUN 21 1095 IO:43:57 PI.OT NO.5 P0 5'T I STEP=5 SUB TIME=5 PATH PI.OT N001=2 NOOZ=I08 ZV=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROID HIDDEN R n n e e S S SZ g 0 g 0 M SY 329.57 73.baal 0 Oe d37 1.07d 1+613 COOlOOWN-I, Psa1=1<72 PS IG 2old 2I665 DEST 3o763 io301 o376 4)h)I M Vl Vl hl I CI hl (a109 91)214 191 ANSYS 5.0 A JUN 21 1995 10:44:02 PLOT NO.6 POSTI STEP=6 SUB=I TIME=6 PATH PI.OT N001=2 N002=108 ZV=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIDDEN 760.06 SZ 0 g I 0 H SY 299.d7 0 8~~69.475 0 Oslo 1 s075 1 e 615 COOI.OOWN.2, Psal=1232 PSIG 2.15 2e dbb DIST.225 4o301 5+576 5o765 4.515 bb I hD 4J Vl I C)h)

(a 104'ANSYS 5.0 A JUN 21 IS95 IO:44:06 PI.OT NO.7 POSTI STEP=7 SUB=I TIME=7 PATH PI.OT N001=2 N002=108 2V=I OIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROID HIOOEN 7Il.i 631~Sl g 0 g 0ÃH 0a 183.SY 3io007 0 0.537 1 a075 1+613 COOI.OOWN-3, PsaI=607 PSIG 2o 15 2+6M DIST 3.763 is 301 5.376 M hP I hP VJ Ul hP I CI hP 91 ANSYS 5 JUN 21 IO: (4: I PLOT NO POST I 5 I'P=8 SUB TIME=8 PATH PI.NOD1=2 NOD2=10 ZV=I DIST=0.XF=0.YF=0.ZF=0.CENTROI.0 A 1995 I 8 OT 75 5 5 5 D HIDDEN-3d7o7 sv SZ 0 g I 0 t(f H 14 M749 0 0.537 lo075 lod13 END OF COOLDOWN, P=0 PSIG 2s15 DIST 3 0 225 4.301 5o376 2odb5 3.763 4s63$4J h)I M 4l Vl h)I M 8 S r-'d 0 8 8 P A W W z r.8 (a 1040O 424 ANSYS 5.4 A JUN 21 Icq5 10: 44:15 PI OT NO.9 POSTI STEP=9 SUB=I I'ME=9 PATH PLOT N001=2 NOO2=100 2V=I 17ISTc0.75 XF=0.5 YF=0,5 ZF=0.5 CENTROIO HIOOEN n 52 0 g I 0 H W SY 670.1 8~~273.3 la 0 1.075 2o15 OI537 1+613 3.225 ho301 0.376 2odbb 3e763 heKR DIST PRESSURE ONLY AT STEAOY STATE, P=2250 PSIG 4J h)I h)GJ Ul I h)I o M

ANSYS 5.0 A JUN 21 1995 10:44:20 PLOT NO.10 POSTI STEP=IO SUB TIME=10 PAI'H PLOT N001=2 N002=108 ZV=I DIST=0.15 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIOOEN 61 514 41 SZ 0 g I 0 H W SY 366al3 0 OICP 1+075 le613 2m 15 2+6M o225 4+301 5+376 3.7IL$4 e Md DlST LOSS OF SECONOARY PRESSURE-I, 1=0.010, P=310 PSIG 4l M I M 4J Vl hl I ED bJ

(~1040O 14 114 ANSYS 5.0 A JUN 21 1055 10: 41:24 PLOT HO.11 POS I'STEP=I I SUB=I TIME=II PAT'N PlOT H001=2 H002=108 LV=I DIST=0.15 XF=0.5 YF=0.5 2F=0.5 CENTROIO HIDDEN Rn n 9M.71 497.335,1 172.S2 SY g O g I 0 H K lg 8~~10.406 0 I 537 1 a075 1+613 2,15 3e 225 4.301 5.376 2odbb 3e763 4m 535 DIST lOSS OF SECOHOARY PRESSURE-2, T=0.015, P=210 PSIG La)I M 4J Ul h)I M

'$41 (s 109$O 17 ANSYS 5.0 A JUN 21 1995 IO:41:29 PLOT NO.12 POS I'ST EP=12 SUB=I TIME=12 PATH PLOT NOD1=2 NOO2=100 2V=I OIST=O.)5 XF=0.5 YF=0.5 ZF=0.5 CENTROIO HIOOEN n n O Q H 642 o7 3d2o4 II2.1 52 ST g 0 g I 0 H K 8~~-19bo09 0 0.537 1.075 l.dl3 2olm 2odbb 3e7d3 4.301 4eES DIST LOSS OF SECONOARZ PRESSURE.3, T=0.020, P=185 PSIG Oo37d 4J M I I hl 4J Ul I I ED h)

[I 10661)661 ANSYS 5.0 A JUN 21 1995 I 0: 11: 3 3 PLOT NO.13 POST I STEP=13 SUB=I'T IME=13 PATH PI.OI'001=2 N002=108 2Y=I OI SI=0.15 XF=0.5 YF=0.5 2F=0.5 CENTROIO HIOOEN 946o4-146+39-12 SY SL g O g I 0 H Pl 0.537 1+075 1 o613 2o 16 2.666~226 4o361 3+763 4.636, DIST lOSS Of SECONOARY PRESSURE~1, T=0.063, P=116 PSIG o376 4J M I M Vl Ul M I M 4 BOW NUCLEAR TECHNOLOGZES

    • BWNT NON-PROPRZETARY
    • 32-1235127-02 7.0 ANSYS 5.0A Verification The ANSYS analysis code, version S.OA, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors.The following comparison of finite element (FE)stress results and closed form solut'ns indicated that the software provided accu.ate results.Therefore, ANSYS 5.0A was verified for this application.

Finite Element Results from Table Distance Hoo Stress 0.0(clad/base) 42,415 2.6879 (mid base)21, 297 5.3758 (external) 19, 789 Hoop Stress (using thin shell theory)6.9, Pressure=2250 psia Sz psi psi psi e=pr/2t Ref.[5, Table 28 case 3a.]e=2250 (73.63)/[2 (4.094)]=20, 233 psi Compared to: 21g297 psi (FE), b%')21297/20233

-1)(100%)=5.26%'nd 19,789 psi (FE), b%')19789/20233

-1~(100%')=2.19%'hese percent differences are attributable to the differences b'etween thin and thick pressure vessel theory and the fact that at the mid point of the line there may still be some stress concentration effect due to the penetration.

Stress Concentration at Hole SCF=a,,/e,=42415/19789

=2.143 (FE)k Compared to 2.0 (from Sect.3.3), h%=]2.14/2.0-1](100%)=7.2%Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 48

'J B&W'UCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 8.0 References 1)ASME Boiler and Pressure Vessel Code, Section ZZI, Division 1, Appendices, 1986 Edition with no Addenda.2)BWNS Document No.51-1155656-00,"Standard Correlations for Natural Convection".

3)BWNS Document No.NPGD-TM-500,"NPGD Material Properties Program User's Manual", Rev.D, March, 1985.4)Harvey, J.F.,"Theory and Design of Modern Pressure Vessels", Van Nostrand Reinhold Co., New York, 1974.5)Young, W.C.,"Roark's Formulas for Stress&Strain", 6th Edition McGraw-Hill, New York, 1989.6)DeSalvo, G.J.and Gorman, R.W.,"ANSYS User's Manual for Revision 5.0", 1992, Swanson Analysis Systems, Houston, Pennsylvania.

7)BWNT Document 32-1235128-02,"FM Analysis of St.Lucie Pressurizer Instrument Nozzles".8)BWNT Document 38-1210588-00,"Pressurizer Instrument Nozzles, FM Design Input," for St.Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14).

9)Florida Power&Light Drawing No.2998-19321, Rev.0,"Top Head Instrument Nozzles Repair".10)Florida Power&Light Drawing No.2998-18709, Rev.1,"Pressurizer General Arrangement".

11)Arpaci, V.S., Conduction Heat Transfer, Adelson-Wesley Publishing, 1966.12)*Florida Power and Light Drawing No.2998-18594 Rev.0,"Pressurizer Top Head Details and Assembly." 13)Peterson, R.E.,"Stress Concentration Factors", Wiley&Sons, 1974.*References marked with an"asterisk" are retrievable from the Utilities Record System.A horize Project ger's Signature Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 49 BSc't~'UCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 9.0 Microfiche The following table contains a list of microfiche of the ANSYS S.OA computer output.The nodes and elements were identical among all the models.FILE NAME FILE DATE DESCRIPTION S PHTHERM.OUT 6/20/95 Composite transient thermal runs including 100'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200'F/hr Cooldown SPHTHLP.OUT SPHSTRES.OUT MATPROP.MAC 6/20/95 6/21/95 6/14/95 Loss of pressure thermal run Stress runs for all cases Macro file containing all material property date used in the analysis.PRESS.MAC 6/15/95 Macro for applying pressure during the stress runs FILMCOEF.MAC 6/14/95 Macro for applying thermal loads during thermal runs Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 50

'4\>

B&Vl NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY
    • 32-1235127-02 Computer Output Mi.crofiche Prepared By: T.M.Wi er Reviewed By: A.M.Miller Date: Date: Page: 51 r tl