ULNRC-06652, Annual Radioactive Effluent Release Report

From kanterella
Jump to navigation Jump to search
Annual Radioactive Effluent Release Report
ML21118B043
Person / Time
Site: Callaway  Ameren icon.png
Issue date: 04/28/2021
From:
Ameren Missouri, Union Electric Co
To:
Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation
Shared Package
ML21118B041 List:
References
ULNRC-06652
Download: ML21118B043 (184)


Text

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Renewed Facility Operating License N PF-30 Docket Numbers 50-483 and 72-1045 WAmeren Callaway MISSOURI Energy Center

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Callaway Energy Center 2020 Annual Abstract Radioactive The Annual Radioactive Effluent Release Report covers the operation of Effluent Release the Callaway Energy Center during the year Report 2020. The report includes a summary of the quantities of Renewed Facility Operating License NPF-30 radioactive liquid and Docket Numbers 50-483 and 72-1045 gaseous efflUents and solid waste released

1. Introduction from the unit. The This Annual Radioactive Effluent Release Report (ARERR) is submitted by Union Electric Co., dba Ameren Missouri, in report also includes an accordance with the requirements of 10 CER 50.36a and 10 annual summary of CFR 72.44(d)(3), Callaway Energy Center Technical hourly meteorological Specification 5.6.3, and HI-STORM UMAX Certificate of data collected during the Compliance Appendix A, Section 5.1.c. This report is for the year and an assessment period January 1, 2020 to December 31, 2020.

of radiation dose to the The doses to the Member of the Public from all liquid and Member of the Public gaseous effluents discharged during the reporting period

[ ]

from liquid and gaseous were small fractions ofthe NRC and EPA regulatory limits and the Radioactive Effluent Control limits in the Offsite Dose effluents.

Calculation Manual.

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Radionuclide concentrations in liquid and gaseous effluents were obtained by effluent sampling and radiological analysis in accordance with the requirements of FSARSP/ODCM Radiological Effluent Control (REC) Table 16.111 and Table 16.114.

Gamma spectroscopy was the primary analysis technique used to determine the radionuclide composition and concentration of liquid and gaseous effluents.

Composite samples were analyzed for the hard to detect nuclides by an independent laboratory. Tritium and gross alpha were measured for both liquid and gaseous effluents using liquid scintillation counting and gas flow proportional counting techniques, respectively. The total radioactivity in effluent releases was determined from the measured concentrations of each radionuclide present and the total volume of effluents discharged.

. Gaseous Effluents The quantity of radioactive material released in gaseous effluents during the reporting period is summarized in Table A1. The quarterly and annual sums of all radionuclides discharged in gaseous effluents are reported in Tables A1A and A1B.

All gaseous effluent releases are considered to be ground level.

The quantity of 14C released in gaseous effluents was calculated as described in EPRI Technical Report 10211061.

There were no radioactive effluents from the Independent Spent Fuel Storage Installation (ISFSI). The HISTORM UMAX Canister Storage System does not create any radioactive materials or have any radioactive waste treatment systems.

Specification 3.1.1, "MultiPurpose Canister (MPC)", provides assurance that there are no radioactive effluents from the ISFSI.2

. Liquid Effluents The quantity of radioactive material released in liquid effluents during the reporting period is summarized in Table A2. The quarterly and annual sums of all radionuclides discharged in liquid effluents are reported in Table A2A. All liquid effluents were discharged in batch mode; there were no continuous liquid 1

Estimation of Carbon 14 in Nuclear Power Plant Gaseous Effluents, Technical Report 1021106, 2 Electric Power Research Institute, December, 2010.

2 Certificate of Compliance No. 1040, Appendix A, Technical Specifications for the HI_STORM UMAX Canister Storage System, Specification 5.1.

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report discharges for the reporting period. Dilution by the Missouri River, in the form of the near field dilution factor, is utilized in the ODCM dose calculation methodology.

. Solid Waste Storage and Shipments The volume and activity of solid waste shipped for disposal is provided in Table A3.

. Dose Assessments The annual evaluation of dose to the Member of the Public is calculated in accordance with the methodology and parameters in the ODCM and is reported in Tables A4 and A5.

5.1 Table A-4, Dose Assessments, 10 CFR 50, Appendix I The dose assessments reported in Table A4 were calculated using the methodology and parameters in the ODCM and demonstrate compliance with 10 CFR 50, Appendix I. The gamma air dose and beta air dose were calculated at the nearest Site Boundary location with the highest value of X/Q, as described in the ODCM. The maximum organ dose from gaseous effluents was calculated for the ingestion, inhalation, and ground plane pathways at the location of the nearest resident with the highest value of D/Q, as described in the ODCM. The organ dose does not include the dose from 14C, which is listed separately.

5.2 Table A-5, EPA 40 CFR 190 Individual in the Unrestricted Area The dose assessments reported in Table A5 are the doses to the Member of the Public from activities within the Site Boundary plus the doses at the location of the Nearest Residence. A large portion of the residual land of the Callaway Site is managed by the State of Missouri Department of Conservation as the Reform Wildlife Management Area. Pursuant to the guidance provided in Regulatory Guide 1.21, rev.2, the dose reported in Table A5 is the sum of the dose from gaseous effluents (at the Nearest Resident location and within the Site Boundary), plus the dose contribution due to activities within the Site Boundary and the organ dose from inhalation of 14C (at the Nearest Resident location and within the Site Boundary).

The dose assessments in Table A5 demonstrate compliance with 10 CFR 20.1301(e) and 40 CFR 190.

3

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report

. Supplemental Information 6.1 Abnormal Releases or Abnormal Discharges There were no abnormal releases during the reporting period.

6.2 Non- routine Planned Discharges There were no non routine planned discharges during the reporting period.

6.3 Radioactive Waste Treatment System Changes There were no major changes to the liquid or gaseous radwaste treatment system during the reporting period.

6.4 Annual Land Use Census Changes There were no changes identified in the locations for dose calculation. The dispersion parameters used for calculating dose to the Member of the Public for activities within the SITE BOUNDARY, as presented in APAZZ01003, Offsite Dose Calculation Manual, rev. 25, Table 10 were recalculated due to rotation of the farming plots by the Missouri Department of Conservation. Changes in sample locations identified in the Land Use Census are described in the Annual Radioactive Environmental Operating Report.

6.5 Effluent Monitoring System Non- functionality BMRE52, Steam Generator Blowdown Discharge Monitor, has been non functional since 2010 when the surveillances were changed to on demand. The procedures for performing discharges via this pathway were voided in 2007. The last discharge via this pathway was Q2 19863. The associated action statement has not been met since BMRE52 became non functional even though there were no discharges via this pathway. FSARSP Chapter 16.11 (ODCM/RECS) was revised in December, 2020 to reflect retirement of BMRE52. This change specifically affected Tables 16.111, 16.112, & 16.113 and was implemented as part of FSAR interim revision OL24c in December 2020. APAZZ01003, ODCM, Section 2.1.1 was revised to delete discussion of BMRE52. With the retirement of BMRE52 the Callaway Energy Center came into full compliance.

GTRE33, Containment Purge Exhaust Monitor, was non functional from 12/7/2019 to 2/19/2020 for extensive troubleshooting and repair. During this time, the 4 opposite train monitor and sampler, GTRE22 was functional and all requirements 3

Callaway Plant Semiannual Radioactive Effluent Release Report, January June 1986, Table 2B.

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report of the associated action statement were met. Refer to Condition Report 201907727 and EOSL entry 22771.

6.6 Offsite Dose Calculation Manual Changes The Offsite Dose Calculation Manual consists of two documents: APAZZ01003, Offsite Dose Calculation Manual (contains Methodology and Parameters) and FSARSP Chapter 16.11, Offsite Dose Calculation Manual Radiological Effluent Controls (RECs).

APAZZ01003 was revised in 2020. A complete copy of APAZZ01003, rev. 25 is attached to this report in Appendix D. A description of the changes is provided in Appendix B to APAZZ01003.

FSARSP Chapter 16.11 (RECs) was also revised in 2020. A complete copy of FSARSP Chapter 16.11 is attached to this report in Appendix D. FSARSP Chapter 16.11 (ODCM/RECS) was revised in December, 2020 to reflect retirement of steam generator blowdown liquid discharge monitor BMRE52. This change specifically affected Tables 16.111, 16.112, & 16.113. This change was prepared as Licensing Document Change Notice (LDCN) 180006, approved on 10/16/2020, and implemented as part of FSAR interim revision OL21c in December 2020. Changes to the REMP sampling locations were made per Licensing Document Change Notice (LDCN) 200008 to eliminate nonfood crop samples, certain surface water samples, and selected Groundwater samples from FSARSP Table 16.117. These changes were approved on 12/02/2020 and incorporated in FSAR interim revision OL24c, dated December 2020. Justification for these changes is provided by UOTH202000009.

The following changes to FSARSP Table 16.117 were included in LDCN 200008:

1. Item 3.b. "Waterborne Surface (onsite ponds)" was eliminated.
2. Item 3.c. "Waterborne Groundwater (nondrinking water)" was revised to change the number of shallow wells or groundwater sumps to be sampled in locations suitable to monitor for subsurface leakage from power block structures and components from seven to six. Clarification was also provided by striking the clause "from the alluvial plain" from the description of the five shallow wells located along the discharge pipeline corridor.

5

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report

3. Item 3.c., continued. Samples from the following categories were eliminated:

Samples from three shallow wells in locations suitable to monitor for migration of contaminated groundwater from the power block to areas outside the Owner Controlled Area fence (one well upgradient of the plant power block and two wells in areas likely to be affected.)

Samples from one shallow well located immediately downgradient of the sludge ponds.

Samples from one deep well near the property boundary located to monitor for migration of contaminated groundwater from the discharge pipeline to the nearest potable water well.

4. Item 6. "Farm crops" and its associated footnote (13) were eliminated.

6.7 Process Control Program Changes APAZZ01011, Process Control Program was revised during the reporting period to clarify program ownership, roles, and responsibilities of the Shipping Health Physicist, Radwaste group Supervision, and the Supplier Quality organization.

Guidance was added regarding the filing of records.

6.8 Corrections to Previous Reports Errors were discovered in calculation HPCI 1502 rev.0, Atmospheric Dispersion Parameters Inside the Site Boundary which resulted in minor errors in Table A5 for 2015 2019. In addition, during report preparation it was discovered that the occupancy of 1100 hours0.0127 days <br />0.306 hours <br />0.00182 weeks <br />4.1855e-4 months <br /> per year inside the Site Boundary as described in the Offsite Dose Calculation Manual was also not accounted for in the preparation of Table A5 for 2014 2019. The cumulative effect was overreporting of dose within the Site Boundary by about an order of magnitude. Revised Table A5s have been provided in Appendix C. (CR 202005158 and CR 202102268) 6.9 Other Information Related to Radioactive Effluents Meteorological dispersion parameters, data recovery rate, and Joint Frequency Tables for the monitoring period are attached as Appendix B.

6

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Appendix A Tables of Quantities Released in Liquid and Gaseous Radioactive Effluents and in Solid Radioactive Waste Shipments Tables of Doses from the Discharge of Liquid and Gaseous Radioactive Effluents 7

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-1: Gaseous Effluents- Summation of All Releases Summation Estimated Quarter Quarter Quarter Quarter of All Unit Total Uncertainty 1 2 3 4 Releases (%)4 Fission &

Activation Ci 6.15E02 1.19E01 7.11E02 1.01E03 2.52E01 20 Gases Average Release µCi/s 7.80E03 1.50E02 9.02E03 1.28E04 7.99E03 Rate

% of Limit  % N/A N/A N/A N/A N/A 131 Iodine Ci ND* ND* ND* ND* ND* N/A Average Release µCi/s N/A N/A N/A N/A N/A Rate

% of Limit  % N/A N/A N/A N/A N/A Particulates Ci ND* ND* ND* ND* ND* N/A Average Release µCi/s N/A N/A N/A N/A N/A Rate

% of Limit  % N/A N/A N/A N/A N/A Gross Ci 1.09E07 2.44E07 1.40E07 1.53E07 6.45E07 Alpha 3

H Ci 6.19E+00 8.36E+00 8.70E+00 1.36E+01 3.69E+01 14 Average Release µCi/s 7.85E01 1.06E+00 1.10E+00 1.73E+00 1.17E+00 Rate

% of Limit  % N/A N/A N/A N/A N/A 14 5 2.40E+00 2.40E+00 2.40E+00 2.40E+00 9.61E+00 C Ci

  • ND means measurements were performed but no activity was detected.

8 4

Safety Analysis calculation 8706300, January 6, 1988 5 14 C activity is estimated based on EPRI report TR1021106, Estimation of 14C in Nuclear Power Plant Effluents, December, 2010.

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-1A: Gaseous Effluents- Ground Level Release- Batch Mode Fission &

Quarter Quarter Quarter Quarter Total for Activation Units 1 2 3 4 the year Gases 41Ar Ci 5.76E02 6.79E02 7.11E02 1.01E03 1.98E01 85Kr Ci 2.42E03 0.00E+00 0.00E+00 0.00E+00 2.42E03 Iodines & Quarter Quarter Quarter Quarter Total for Units Halogens 1 2 3 4 the year Ci ND* ND* ND* ND* ND*

Quarter Quarter Quarter Quarter Total for Particulates Units 1 2 3 4 the year Ci ND* ND* ND* ND* ND*

3 Ci 2.53E01 3.08E01 3.37E01 5.90E03 9.04E01 H

Gross Ci ND* ND* ND* ND* ND*

14 Ci 1.70E02 1.70E02 1.70E02 1.70E02 6.80E02 C

  • ND means measurements were performed but no activity was detected.

9

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-1B: Gaseous Effluents- Ground Level Release- Continuous Mode Fission &

Quarter Quarter Quarter Quarter Total for Activation Units 1 2 3 4 the year Gases 41Ar Ci 1.43E03 5.06E02 0.00E+00 0.00E+00 5.21E02 Iodines & Quarter Quarter Quarter Quarter Total for Units Halogens 1 2 3 4 the year Ci ND* ND* ND* ND* ND*

Quarter Quarter Quarter Quarter Total for Particulates Units 1 2 3 4 the year Ci ND* ND* ND* ND* ND*

3 Ci 5.94E+00 8.06E+00 8.36E+00 1.36E+01 3.60E+01 H

Gross Ci 1.09E07 2.44E07 1.40E07 1.53E07 6.45E07 14 Ci 2.38E+00 2.38E+00 2.38E+00 2.38E+00 9.54E+00 C

  • ND means measurements were performed but no activity was detected.

10

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-2: Liquid Effluents- Summation of All Releases Summation Quarter Quarter Quarter Quarter Estimated of All Liquid Unit Total 1 2 3 4 Uncertainty (%)6 Releases Fission and Activation Ci 2.16E03 2.47E03 8.19E03 2.82E02 4.10E02 20 Products7 Avg Diluted µCi/

1.92E08 1.28E08 3.33E08 1.17E07 5.17E08 Conc ml

% of Limit  % N/A N/A N/A N/A N/A 3 Ci 14 H 1.68E+02 5.73E+02 4.91E+02 2.24E+02 1.45E+03 Avg Diluted µCi/

1.50E03 2.96E03 1.99E03 9.26E04 1.83E03 Conc ml

% of Limit  % N/A N/A N/A N/A N/A Dissolved &

Entrained Ci 0.00E+00 0.00E+00 0.00E+00 6.14E05 6.14E05 27 Gases Avg Diluted µCi/

0.00E+00 0.00E+00 0.00E+00 2.54E10 7.73E11 Conc ml

% of Limit  % N/A N/A N/A N/A N/A Gross Ci 6.49E05 0.00E+00 0.00E+00 0.00E+00 6.49E05 29 Avg Diluted µCi/

5.78E10 0.00E+00 0.00E+00 0.00E+00 8.17E11 Conc ml Vol Liquid Liters 3.35E+06 3.69E+06 5.58E+06 7.08E+06 1.97E+07 Effluent8 Dilution Liters 1.09E+08 1.90E+08 2.41E+08 2.35E+08 7.74E+08 Volume9 Avg river m3/s 4.26E+03 4.57E+03 2.38E+03 1.37E+03 3.14E+03 flow10 Time period hrs 7.27E+01 1.31E+02 1.62E+02 1.58E+02 5.24E+02 for releases

  • ND means measurements were performed but no activity was detected.

6 Safety Analysis calculation 8706300, January 6, 1988 7

Excludes 3H, noble gases, and gross alpha.

8 Primary system liquid effluent plus secondary liquid effluent, prior to dilution. 11 9

Does not include Missouri River dilution.

10 Average Missouri River flow for the year at the Hermann, MO monitoring station as reported by the USGS.

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-2A: Liquid Effluents- Batch Mode Fission &

Quarter Quarter Quarter Quarter Total for the Activation Units 1 2 3 4 year Products 51 Cr Ci 0.00E+00 0.00E+00 0.00E+00 6.50E04 6.50E04 54Mn Ci 0.00E+00 0.00E+00 1.01E04 2.88E05 1.29E04 58 Co Ci 1.43E04 7.13E05 1.36E05 1.05E03 1.28E03 60 Co Ci 9.41E04 1.59E03 6.06E03 5.02E03 1.36E02 63 Ni Ci 3.01E04 3.82E04 7.02E04 1.09E03 2.48E03 95Nb Ci 0.00E+00 0.00E+00 0.00E+00 2.15E05 2.15E05 117m Sn Ci 0.00E+00 0.00E+00 0.00E+00 5.09E06 5.09E06 122 Sb Ci 0.00E+00 0.00E+00 0.00E+00 5.23E06 5.23E06 124 Sb Ci 0.00E+00 0.00E+00 0.00E+00 3.40E03 3.40E03 125 Sb Ci 7.49E04 4.19E04 1.21E03 1.66E02 1.90E02 126 Sb Ci 0.00E+00 0.00E+00 0.00E+00 7.80E05 7.80E05 137 Cs Ci 2.20E05 1.06E05 1.04E04 2.62E04 3.99E04 138 Cs Ci 0.00E+00 0.00E+00 0.00E+00 5.34E06 5.34E06 Total Ci 2.16E03 2.47E03 8.19E03 2.82E02 4.10E02 Dissolved & Quarter Quarter Quarter Quarter Total for the Units Entrained Gases 1 2 3 4 year 133 Xe Ci 0.00E+00 0.00E+00 0.00E+00 6.14E05 6.14E05 Total Ci 0.00E+00 0.00E+00 0.00E+00 6.14E05 6.14E05 3

H Ci 1.68E+02 5.73E+02 4.91E+02 2.24E+02 1.45E+03 Gross Ci 6.49E05 0.00E+00 0.00E+00 0.00E+00 6.49E05

  • ND means measurements were performed but no activity was detected.

12

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-3: Low-Level Waste Shipped for 2020 Resins, Filters, And Evaporator Bottoms Volume Waste Class Curies Shipped ft³ m³ A 1.81E+02 5.13E+00 7.84E+00 B 7.75E+00 2.19E01 2.59E+00 C 0.00E+00 0.00E+00 0.00E+00 Unclassified 0.00E+00 0.00E+00 0.00E+00 All 1.89E+02 5.35E+00 1.04E+01 Major Nuclides for the Above Table:

H3, C14, Mn54, Fe55, Co60, Ni63, Sr90, Tc99, Sb125, I129, Cs137, Pu238, Pu241 Dry Active Waste (DAW)

Volume Waste Class Curies Shipped ft³ m³ A 9.90E+03 2.80E+02 7.31E02 B 0.00E+00 0.00E+00 0.00E+00 C 0.00E+00 0.00E+00 0.00E+00 Unclassified 0.00E+00 0.00E+00 0.00E+00 All 9.90E+03 2.80E+02 7.31E02 Major Nuclides for the Above Table:

H3, C14, Mn54, Fe55, Co58, Co60, Ni63, Sr90, Nb95, Tc99, Sb125, I129, Cs137, Ce144, Pu 238, Pu239, Pu241, Am241, Cm243, Cm244 Irradiated Components Volume Waste Class Curies Shipped ft³ m³ A 0.00E+00 0.00E+00 0.00E+00 B 0.00E+00 0.00E+00 0.00E+00 C 0.00E+00 0.00E+00 0.00E+00 Unclassified 0.00E+00 0.00E+00 0.00E+00 All 0.00E+00 0.00E+00 0.00E+00 Major Nuclides for the Above Table: N/A 13

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-3: Low-Level Waste for 2020 (continued)

Other Waste Volume Curies Shipped Waste Class ft³ m³ A 0.00E+00 0.00E+00 0.00E+00 B 0.00E+00 0.00E+00 0.00E+00 C 0.00E+00 0.00E+00 0.00E+00 Unclassified 0.00E+00 0.00E+00 0.00E+00 All 0.00E+00 0.00E+00 0.00E+00 Major Nuclides for the Above Table: N/A Sum Of All Low-Level Waste Shipped From Site Volume Waste Class Curies Shipped ft³ m³ A 1.01E+04 2.85E+02 7.91E+00 B 7.75E+00 2.19E01 2.59E+00 C 0.00E+00 0.00E+00 0.00E+00 Unclassified 0.00E+00 0.00E+00 0.00E+00 All 1.01E+04 2.86E+02 1.05E+01 Major Nuclides for the Above Table:

H3, C14, Mn54, Fe55, Co58, Co60, Ni63, Sr90, Nb95, Tc99, Sb125, I129, Cs137, Ce144, Pu

238, SOLIDIFICATION AGENT None used.

IRRADIATED FUEL SHIPMENTS (Disposition)

There were no shipments of irradiated fuel during the reporting period.

14

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-4: Dose Assessments, 10 CFR 50, Appendix I Quarter Quarter Quarter Quarter Yearly 1 2 3 4 total Liquid Effluent Dose Limit, 1.5 1.5 1.5 1.5 3 Total Body (mrem)

Total Body Dose (mrem) 3.34E04 1.01E03 1.11E03 1.05E03 3.50E03

% Limit 0.02% 0.07% 0.07% 0.07% 0.12%

Liquid Effluent Dose Limit, 5 5 5 5 10 Maximum Organ (mrem)

Maximum Organ Dose (mrem) 3.63E04 1.03E03 1.24E03 1.39E03 4.02E03

% Limit 0.01% 0.02% 0.02% 0.03% 0.04%

Gaseous Effluent Dose Limit, 5 5 5 5 10 Gamma Air (mrad)

Gamma Air Dose (mrad) 2.81E05 5.63E05 3.38E05 4.80E07 1.19E04

% Limit 0.00% 0.00% 0.00% 0.00% 0.00%

Gaseous Effluent Dose Limit, 10 10 10 10 20 Beta Air (mrad)

Beta Air Dose (mrad) 1.01E05 1.99E05 1.19E05 1.69E07 4.21E05

% Limit 0.00% 0.00% 0.00% 0.00% 0.00%

Gaseous Effluent Dose Limit, 7.5 7.5 7.5 7.5 15 Maximum Organ (mrem)

Maximum organ dose11 1.64E03 2.22E03 2.31E03 3.61E03 9.78E03 (mrem)

% Limit 0.02% 0.03% 0.03% 0.05% 0.07%

14 C Maximum organ dose 3.01E03 3.01E03 3.01E03 3.01E03 1.20E02 (mrem)12 15 11 Iodine, 3H, and particulates with greater than an 8 day half life.

12 Not included in above totals

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.26E02 1.26E02 2.33E02

% Limit 0.05% 0.02% 0.09%

16

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Appendix B Meteorological Dispersion Parameters and Joint Frequency Tables; Totals of Hours at Each Wind Speed & Direction for the period January 1, 2020 December 31, 2020 17

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Meteorological Dispersion Parameters for the Reporting Period Nearest Resident Dispersion Parameters Direction: NNW Distance: 2913 meters X/Q, Undecayed and Undepleted: 9.946E07 X/Q Decayed and Undepleted: 9.736E07 X/Q Decayed and Depleted: 8.260E07 D/Q Deposition rate: 2.966E09 Site Boundary Dispersion Parameters Direction: S Distance: 1300 meters X/Q, Undecayed and Undepleted: 1.641E06 X/Q Decayed and Undepleted: 1.611E06 X/Q Decayed and Depleted: 1.448E06 D/Q Deposition rate: 5.577E09 Meteorological Data Recovery Rate 10 meters elevation Hours of valid data: 8784 Total hours in period: 8784 Recovery rate: 100%

60 meters elevation Hours of valid data: 8784 Total hours in period: 8784 Recovery rate: 100%

18

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 All Stabilities Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 2 39 54 53 152 153 109 41 20 0 1 624 NNE 0 35 48 64 153 85 63 8 0 0 0 456 NE 2 43 69 60 115 86 42 5 2 0 0 424 ENE 3 29 40 50 97 65 23 1 2 0 0 310 E 5 42 53 64 114 58 22 6 1 0 0 365 ESE 1 46 74 83 166 72 23 5 0 0 0 470 SE 5 66 169 203 359 117 25 4 0 0 0 948 SSE 3 26 71 188 410 189 89 42 13 0 0 1031 S 6 33 47 63 226 203 101 82 64 1 0 826 SSW 3 24 43 65 163 125 57 17 24 2 0 523 SW 5 27 38 64 128 88 43 6 4 0 0 403 WSW 2 27 43 52 71 42 16 11 5 2 0 271 W 4 40 50 52 101 80 36 17 32 2 0 414 WNW 7 42 88 51 97 101 58 33 23 0 0 500 NW 2 37 70 94 138 98 79 50 20 0 0 588 NNW 2 38 52 62 154 102 96 43 23 0 0 572 Tot 52 594 1009 1268 2644 1664 882 371 233 7 1 8725 Hours of Calm 59 Hours of Variable Direction .. 0 Hours of Valid Data 8784 Hours of Missing Data .. 0 Hours in Period .. 8784 19

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class A Extremely Unstable based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 0 0 0 1 2 1 3 0 0 7 NNE 0 0 0 0 0 0 1 0 0 0 0 1 NE 0 0 0 0 0 2 0 0 0 0 0 2 ENE 0 0 0 0 0 2 0 0 0 0 0 2 E 0 0 0 0 0 4 1 0 0 0 0 5 ESE 0 0 0 0 1 1 1 0 0 0 0 3 SE 0 0 0 0 4 4 5 0 0 0 0 13 SSE 0 0 0 0 4 3 8 1 0 0 0 16 S 0 0 0 0 5 10 8 9 5 1 0 38 SSW 0 0 0 0 0 9 11 3 1 0 0 24 SW 0 0 0 0 6 9 13 2 0 0 0 30 WSW 0 0 0 0 2 1 0 0 0 0 0 3 W 0 0 0 0 3 7 3 4 4 1 0 22 WNW 0 0 0 0 2 10 19 8 6 0 0 45 NW 0 0 0 0 2 11 8 11 5 0 0 37 NNW 0 0 0 0 0 4 8 1 1 0 0 14 Tot 0 0 0 0 29 78 88 40 25 2 0 262 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 262 Hours of Missing Data .. 0 Hours in Period .. 8784 20

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class B Moderately Unstable based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 0 0 4 4 4 1 1 0 0 14 NNE 0 0 0 0 1 1 3 0 0 0 0 5 NE 0 0 0 0 2 0 1 1 1 0 0 5 ENE 0 0 0 0 1 4 2 0 0 0 0 7 E 0 0 0 0 3 3 0 1 0 0 0 7 ESE 0 0 0 0 4 10 2 0 0 0 0 16 SE 0 0 0 1 16 18 5 0 0 0 0 40 SSE 0 0 0 4 14 13 9 3 0 0 0 43 S 0 0 0 2 9 14 11 8 7 0 0 51 SSW 0 0 0 2 9 12 8 2 3 1 0 37 SW 0 0 0 1 11 12 4 2 0 0 0 30 WSW 0 0 0 0 6 5 3 0 0 0 0 14 W 0 0 0 0 6 6 2 0 1 0 0 15 WNW 0 0 0 0 4 9 6 4 1 0 0 24 NW 0 0 0 0 11 10 11 8 0 0 0 40 NNW 0 0 0 0 2 8 6 2 1 0 0 19 Tot 0 0 0 10 103 129 77 32 15 1 0 367 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 367 Hours of Missing Data .. 0 Hours in Period .. 8784 21

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class C Slightly Unstable based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 0 0 8 12 11 4 1 0 0 36 NNE 0 0 0 2 4 4 1 1 0 0 0 12 NE 0 0 0 3 6 5 1 0 0 0 0 15 ENE 0 0 0 1 8 8 2 0 0 0 0 19 E 0 0 0 1 3 4 3 1 0 0 0 12 ESE 0 0 0 0 17 8 1 1 0 0 0 27 SE 0 0 1 1 36 14 0 0 0 0 0 52 SSE 0 0 1 5 26 8 5 1 0 0 0 46 S 0 0 1 4 12 15 7 5 4 0 0 48 SSW 0 0 5 5 20 14 3 2 6 0 0 55 SW 0 0 0 4 11 12 2 1 0 0 0 30 WSW 0 0 0 4 14 6 3 3 0 0 0 30 W 0 0 0 1 10 4 1 2 6 0 0 24 WNW 0 0 0 1 12 9 7 3 2 0 0 34 NW 0 0 0 2 14 11 8 5 0 0 0 40 NNW 0 0 0 3 3 2 6 3 1 0 0 18 Tot 0 0 8 37 204 136 61 32 20 0 0 498 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 498 Hours of Missing Data .. 0 Hours in Period .. 8784 22

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class D Neutral based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 3 21 17 93 118 80 34 15 0 1 382 NNE 0 5 12 34 102 61 54 7 0 0 0 275 NE 0 3 17 11 68 66 39 4 1 0 0 209 ENE 0 3 5 22 62 47 18 1 2 0 0 160 E 0 6 10 23 71 40 14 3 1 0 0 168 ESE 0 6 13 27 80 45 16 3 0 0 0 190 SE 2 8 31 67 138 44 9 4 0 0 0 303 SSE 0 5 15 34 84 47 30 24 8 0 0 247 S 0 6 9 11 45 35 35 34 41 0 0 216 SSW 0 2 8 14 44 27 22 4 14 1 0 136 SW 0 4 13 19 33 31 15 0 3 0 0 118 WSW 0 1 12 16 28 15 8 7 1 2 0 90 W 0 3 15 14 35 39 22 8 19 1 0 156 WNW 0 3 9 29 54 56 24 16 14 0 0 205 NW 1 5 15 30 61 44 41 18 13 0 0 228 NNW 0 5 18 27 80 71 68 34 20 0 0 323 Tot 3 68 223 395 1078 786 495 201 152 4 1 3406 Hours of Calm 11 Hours of Variable Direction .. 0 Hours of Valid Data 3417 Hours of Missing Data .. 0 Hours in Period .. 8784 23

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class E Slightly Stable based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 1 5 13 15 39 17 12 1 0 0 0 103 NNE 0 4 11 18 41 19 4 0 0 0 0 97 NE 0 6 18 31 34 13 1 0 0 0 0 103 ENE 1 5 13 19 25 4 1 0 0 0 0 68 E 1 13 25 28 34 7 3 1 0 0 0 112 ESE 0 11 28 47 57 8 3 1 0 0 0 155 SE 0 12 64 98 146 37 6 0 0 0 0 363 SSE 0 5 15 56 126 79 35 13 5 0 0 334 S 2 3 11 22 87 109 36 26 7 0 0 303 SSW 0 6 10 22 54 53 13 6 0 0 0 164 SW 2 9 14 13 45 19 9 1 1 0 0 113 WSW 0 4 17 21 17 15 2 1 4 0 0 81 W 1 18 16 21 41 18 8 3 2 0 0 128 WNW 3 12 18 13 24 16 2 2 0 0 0 90 NW 0 12 26 30 42 21 11 8 2 0 0 152 NNW 0 9 9 21 49 17 8 3 0 0 0 116 Tot 11 134 308 475 861 452 154 66 21 0 0 2482 Hours of Calm 17 Hours of Variable Direction .. 0 Hours of Valid Data 2499 Hours of Missing Data .. 0 Hours in Period .. 8784 24

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class F Moderately Stable based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 13 8 20 8 1 0 0 0 0 0 50 NNE 0 13 11 4 5 0 0 0 0 0 0 33 NE 1 17 19 11 5 0 0 0 0 0 0 53 ENE 1 10 16 8 1 0 0 0 0 0 0 36 E 2 14 13 10 3 0 1 0 0 0 0 43 ESE 0 15 28 8 7 0 0 0 0 0 0 58 SE 2 27 62 29 17 0 0 0 0 0 0 137 SSE 1 5 26 59 119 22 2 0 0 0 0 234 S 2 14 7 17 59 19 4 0 0 0 0 122 SSW 1 10 12 18 32 9 0 0 0 0 0 82 SW 1 4 8 23 21 5 0 0 0 0 0 62 WSW 2 13 11 11 4 0 0 0 0 0 0 41 W 1 9 15 16 6 6 0 0 0 0 0 53 WNW 3 18 39 7 1 1 0 0 0 0 0 69 NW 0 13 22 20 6 1 0 0 0 0 0 62 NNW 0 7 12 7 17 0 0 0 0 0 0 43 Tot 17 202 309 268 311 64 7 0 0 0 0 1178 Hours of Calm 10 Hours of Variable Direction .. 0 Hours of Valid Data 1188 Hours of Missing Data .. 0 Hours in Period .. 8784 25

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class G Extremely Stable based on lapse rate Elevations: Winds 10m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 1 18 12 1 0 0 0 0 0 0 0 32 NNE 0 13 14 6 0 0 0 0 0 0 0 33 NE 1 17 15 4 0 0 0 0 0 0 0 37 ENE 1 11 6 0 0 0 0 0 0 0 0 18 E 2 9 5 2 0 0 0 0 0 0 0 18 ESE 1 14 5 1 0 0 0 0 0 0 0 21 SE 1 19 11 7 2 0 0 0 0 0 0 40 SSE 2 11 14 30 37 17 0 0 0 0 0 111 S 2 10 19 7 9 1 0 0 0 0 0 48 SSW 2 6 8 4 4 1 0 0 0 0 0 25 SW 2 10 3 4 1 0 0 0 0 0 0 20 WSW 0 9 3 0 0 0 0 0 0 0 0 12 W 2 10 4 0 0 0 0 0 0 0 0 16 WNW 1 9 22 1 0 0 0 0 0 0 0 33 NW 1 7 7 12 2 0 0 0 0 0 0 29 NNW 2 17 13 4 3 0 0 0 0 0 0 39 Tot 21 190 161 83 58 19 0 0 0 0 0 532 Hours of Calm 21 Hours of Variable Direction .. 0 Hours of Valid Data 553 Hours of Missing Data .. 0 Hours in Period .. 8784 26

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 All Stabilities Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 6 8 26 60 91 119 111 92 16 3 532 NNE 0 9 10 18 76 116 91 106 42 0 0 468 NE 0 2 9 18 54 106 92 72 32 2 0 387 ENE 0 3 10 14 71 100 104 46 17 1 1 367 E 0 4 10 15 62 110 120 50 19 1 0 391 ESE 0 6 11 12 79 133 114 77 21 2 0 455 SE 0 9 32 85 342 278 128 32 10 0 0 916 SSE 1 3 14 44 163 205 173 140 117 13 0 873 S 0 1 15 17 71 105 141 205 267 87 17 926 SSW 1 7 14 18 54 100 109 139 184 37 10 673 SW 0 1 14 18 50 75 87 78 120 27 4 474 WSW 0 1 6 17 40 56 63 40 54 19 7 303 W 0 1 11 17 42 48 76 68 89 21 35 408 WNW 0 2 8 9 49 65 73 105 142 48 30 531 NW 0 4 7 18 55 96 83 111 142 53 22 591 NNW 1 3 11 17 43 82 90 111 93 30 3 484 Tot 3 62 190 363 1311 1766 1663 1491 1441 357 132 8779 Hours of Calm 5 Hours of Variable Direction .. 0 Hours of Valid Data 8784 Hours of Missing Data .. 0 Hours in Period .. 8784 27

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class A Extremely Unstable based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction 1.1 Sector <0.50 0.5 1 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total 1.5 N 0 0 0 0 0 0 1 2 2 2 0 7 NNE 0 0 0 0 0 0 0 0 0 0 0 0 NE 0 0 0 0 0 1 1 0 0 0 0 2 ENE 0 0 0 0 0 1 1 0 0 0 0 2 E 0 0 0 0 0 0 4 1 0 0 0 5 ESE 0 0 0 0 0 1 1 1 0 0 0 3 SE 0 0 0 0 1 4 3 3 0 0 0 11 SSE 0 0 0 0 0 3 3 8 1 0 0 15 S 0 0 0 0 2 9 4 8 11 4 1 39 SSW 0 0 0 0 0 1 6 9 10 2 0 28 SW 0 0 0 0 0 6 3 5 12 2 0 28 WSW 0 0 0 0 0 2 0 0 1 0 0 3 W 0 0 0 0 0 0 3 6 6 3 5 23 WNW 0 0 0 0 0 2 4 8 20 11 8 53 NW 0 0 0 0 0 1 6 2 14 9 3 35 NNW 0 0 0 0 0 0 2 5 1 0 0 8 Tot 0 0 0 0 3 31 42 58 78 33 17 262 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 262 Hours of Missing Data .. 0 Hours in Period .. 8784 28

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class B Moderately Unstable based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 0 0 2 2 2 4 1 1 0 12 NNE 0 0 0 0 2 0 1 3 0 0 0 6 NE 0 0 0 0 0 2 0 1 1 1 0 5 ENE 0 0 0 0 0 3 2 1 0 0 0 6 E 0 0 0 0 3 1 3 0 1 0 0 8 ESE 0 0 0 0 3 4 5 2 0 0 0 14 SE 0 0 0 0 4 24 7 1 0 0 0 36 SSE 0 0 0 0 9 12 12 5 5 0 0 43 S 0 0 0 0 6 9 9 11 12 5 1 53 SSW 0 0 0 1 7 7 2 9 7 5 1 39 SW 0 0 0 0 2 7 11 7 4 1 0 32 WSW 0 0 0 0 0 1 6 3 2 1 0 13 W 0 0 0 0 2 4 6 3 2 0 1 18 WNW 0 0 0 0 2 4 0 7 9 4 2 28 NW 0 0 0 0 2 8 3 8 16 5 0 42 NNW 0 0 0 0 0 1 6 3 2 0 0 12 Tot 0 0 0 1 44 89 75 68 62 23 5 367 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 367 Hours of Missing Data .. 0 Hours in Period .. 8784 29

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class C Slightly Unstable based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 0 0 3 8 9 10 3 1 0 34 NNE 0 0 0 1 2 3 2 2 1 0 0 11 NE 0 0 0 2 7 3 3 0 0 0 0 15 ENE 0 0 0 1 5 6 7 1 0 0 0 20 E 0 0 0 1 1 4 1 2 1 0 0 10 ESE 0 0 0 0 4 16 5 0 2 0 0 27 SE 0 0 1 0 15 25 4 0 0 0 0 45 SSE 0 0 0 2 16 19 7 2 2 0 0 48 S 0 0 1 1 11 9 7 7 8 3 1 48 SSW 0 0 1 3 7 19 8 5 5 5 2 55 SW 0 0 0 4 8 8 12 4 2 1 0 39 WSW 0 0 0 1 4 6 7 3 3 3 0 27 W 0 0 0 1 6 7 3 1 3 3 7 31 WNW 0 0 0 0 4 9 4 3 13 5 0 38 NW 0 0 0 0 5 9 2 4 12 3 1 36 NNW 0 0 0 0 2 2 3 3 4 0 0 14 Tot 0 0 3 17 100 153 84 47 59 24 11 498 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 498 Hours of Missing Data .. 0 Hours in Period .. 8784 30

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class D Neutral based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 5 20 40 58 80 71 60 12 3 349 NNE 0 4 7 12 52 80 32 53 35 0 0 275 NE 0 1 5 9 29 55 44 47 27 1 0 218 ENE 0 0 5 6 29 44 48 18 7 1 1 159 E 0 2 7 13 30 50 31 15 10 1 0 159 ESE 0 4 4 9 47 47 31 27 10 1 0 180 SE 0 0 15 34 126 80 25 8 8 0 0 296 SSE 0 1 8 22 62 49 42 33 33 4 0 254 S 0 0 8 7 28 28 25 27 57 38 14 232 SSW 1 1 12 5 21 26 27 15 22 14 7 151 SW 0 1 8 9 21 22 19 20 24 4 2 130 WSW 0 1 4 10 14 24 10 12 16 8 4 103 W 0 0 5 8 16 9 25 22 33 7 20 145 WNW 0 2 5 6 27 30 26 44 53 21 20 234 NW 0 3 0 11 32 41 32 46 55 28 13 261 NNW 0 2 7 11 25 50 31 52 64 26 3 271 Tot 1 22 105 192 599 693 528 510 514 166 87 3417 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 3417 Hours of Missing Data .. 0 Hours in Period .. 8784 31

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class E Slightly Stable based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 3 3 4 12 13 18 17 13 0 0 83 NNE 0 1 1 2 10 20 44 28 3 0 0 109 NE 0 0 2 3 16 33 28 13 2 0 0 97 ENE 0 1 0 2 26 26 22 5 2 0 0 84 E 0 1 1 1 20 24 37 17 6 0 0 107 ESE 0 0 3 1 19 38 47 22 7 0 0 137 SE 0 7 9 21 128 113 66 13 2 0 0 359 SSE 0 1 2 8 39 73 62 56 56 8 0 305 S 0 0 4 4 13 25 34 83 122 34 0 319 SSW 0 0 0 4 9 22 31 60 79 9 0 214 SW 0 0 3 4 12 14 18 25 35 12 2 125 WSW 0 0 1 4 16 16 20 12 21 6 3 99 W 0 0 4 5 9 13 22 23 32 8 2 118 WNW 0 0 1 1 13 11 26 10 29 6 0 97 NW 0 1 3 3 9 25 21 23 40 8 5 138 NNW 0 0 2 4 8 19 26 30 15 4 0 108 Tot 0 15 39 71 359 485 522 437 464 95 12 2499 Hours of Calm 0 Hours of Variable Direction .. 0 Hours of Valid Data 2499 Hours of Missing Data .. 0 Hours in Period .. 8784 32

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class F Moderately Stable based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 3 0 1 2 6 7 6 8 0 0 33 NNE 0 3 0 3 5 10 9 16 3 0 0 49 NE 0 1 2 3 1 5 9 4 0 0 0 25 ENE 0 1 0 4 6 13 12 11 3 0 0 50 E 0 0 2 0 5 17 26 7 0 0 0 57 ESE 0 1 2 1 4 16 18 18 2 1 0 63 SE 0 1 2 19 52 26 21 5 0 0 0 126 SSE 1 1 4 5 23 33 38 26 16 1 0 148 S 0 1 1 0 6 16 50 52 35 3 0 164 SSW 0 5 1 2 7 15 17 26 51 2 0 126 SW 0 0 0 1 5 17 14 15 37 6 0 95 WSW 0 0 1 1 4 2 16 9 11 1 0 45 W 0 0 1 1 5 12 14 11 12 0 0 56 WNW 0 0 1 1 1 4 7 21 12 0 0 47 NW 0 0 2 3 5 5 14 20 4 0 0 53 NNW 1 1 1 1 7 5 15 14 5 0 0 50 Tot 2 18 20 46 138 202 287 261 199 14 0 1187 Hours of Calm 1 Hours of Variable Direction .. 0 Hours of Valid Data 1188 Hours of Missing Data .. 0 Hours in Period .. 8784 33

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Joint Frequency Distribution: Hours at Wind Speed and Direction January December, 2020 Class G Extremely Stable based on lapse rate Elevations: Winds 60m Stability 60m Wind Speed Range (m/s)

Wind Direction Sector <0.50 0.5 1 1.1 1.5 1.6 2 2.1 3 3.1 4 4.1 5 5.1 6 6.1 8 8.1 10 >10.00 Total N 0 0 0 1 1 4 2 1 5 0 0 14 NNE 0 1 2 0 5 3 3 4 0 0 0 18 NE 0 0 0 1 1 7 7 7 2 0 0 25 ENE 0 1 5 1 5 7 12 10 5 0 0 46 E 0 1 0 0 3 14 18 8 1 0 0 45 ESE 0 1 2 1 2 11 7 7 0 0 0 31 SE 0 1 5 11 16 6 2 2 0 0 0 43 SSE 0 0 0 7 14 16 9 10 4 0 0 60 S 0 0 1 5 5 9 12 17 22 0 0 71 SSW 0 1 0 3 3 10 18 15 10 0 0 60 SW 0 0 3 0 2 1 10 2 6 1 0 25 WSW 0 0 0 1 2 5 4 1 0 0 0 13 W 0 1 1 2 4 3 3 2 1 0 0 17 WNW 0 0 1 1 2 5 6 12 6 1 0 34 NW 0 0 2 1 2 7 5 8 1 0 0 26 NNW 0 0 1 1 1 5 7 4 2 0 0 21 Tot 0 7 23 36 68 113 125 110 65 2 0 549 Hours of Calm 4 Hours of Variable Direction .. 0 Hours of Valid Data 553 Hours of Missing Data .. 0 Hours in Period .. 8784 34

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Appendix C Revised Tables A5, EPA 40 CFR 190 Individual in the Unrestricted Area for the years 2014 2019.

2014 Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.81E02 1.81E02 4.73E02

% Limit 0.07% 0.02% 0.19%

2015 Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.95E02 1.95E02 3.50E02

% Limit 0.08% 0.03% 0.14%

2016 Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.75E02 1.78E02 3.08E02

% Limit 0.07% 0.02% 0.12%

35

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report 2017 Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.45E02 1.46E02 2.62E02

% Limit 0.06% 0.02% 0.10%

2018 Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.13E02 1.13E02 2.60E02

% Limit 0.05% 0.02% 0.10%

2019 Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area Whole Body Thyroid Max Other Organ Dose Limit 25 mrem 75 mrem 25 mrem Dose 1.44E02 1.44E02 3.29E02

% Limit 0.06% 0.02% 0.13%

36

Callaway Energy Center 2020 Annual Radioactive Effluent Release Report Appendix D Changes to the Callaway Energy Center Offsite Dose Calculation Manual for the year 2020 APAZZ01003, "OffSite Dose Calculation Manual," and FSARSP Ch. 16.11, Offsite Dose Calculation Manual Radiological Effluent Controls were revised in 2020. A complete copy of each is attached to this report.

37

WAmeren Callaway MISSOURI Energy Center APA-ZZ-O1 003 OFF-SITE DOSE CALCULATION MANUAL MINOR Revision 025 Page 1 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Contents

1. PURPOSE AND SCOPE .................................................................................... 5
2. LIQUID EFFLUENTS ........................................................................................... 5 2.1. Liquid Effluent Monitors ....................................................................................... 5 2.1.1. Continuous Liquid Effluent Monitors.................................................................. 7 2.1.2. Radioactive Liquid Batch Release Effluent Monitors ...................................... 7 2.2. Calculation of Liquid Effluent Monitor Setpoints .............................................. 7 2.2.1. CALCULATION OF THE ECV SUM.................................................................. 7 2.2.2. CALCULATION OF THE MAXIMUM PERMISSIBLE LIQUID EFFLUENT DISCHARGE FLOW RATE ........................................................... 8 2.2.3. CALCULATION OF LIQUID EFFLUENT MONITOR SETPOINT ................. 9 2.3. Liquid Effluent Concentration Measurements ................................................ 10 2.4. Dose due to Liquid Effluents............................................................................. 10 2.4.1. THE MAXIMUM EXPOSED INDIVIDUAL ...................................................... 10 2.4.2. CALCULATION OF DOSE FROM LIQUID EFFLUENTS ............................ 11 2.4.3.

SUMMARY

, CALCULATION OF DOSE DUE TO LIQUID EFFLUENTS ....................................................................................................... 13 2.5. Liquid Radwaste Treatment System ............................................................... 13 2.6. Liquid Effluents Dose Factors .......................................................................... 13

3. GASEOUS EFFLUENTS .................................................................................. 13 3.1. Gaseous Effluent Monitors ............................................................................... 13 3.1.1. CONTINUOUS RELEASE GASEOUS EFFLUENT MONITORS ............... 14 3.1.2. BATCH RELEASE GASEOUS EFFLUENT MONITORS ............................ 16 3.2. Gaseous Effluent Monitor Setpoints ................................................................ 16 3.2.1. TOTAL BODY DOSE RATE SETPOINT CALCULATIONS ........................ 16 3.2.2. SKIN DOSE RATE SETPOINT CALCULATION ........................................... 17 3.3. Calculation of Dose and Dose Rate from Gaseous Effluents ..................... 18 3.3.1. DOSE RATE FROM GASEOUS EFFLUENTS ............................................. 18 3.3.2. DOSE DUE TO GASEOUS EFFLUENTS ...................................................... 20 3.4. Gaseous Radwaste Treatment System .......................................................... 22 3.5. Gaseous Effluents Dose Factors ..................................................................... 23
4. DOSE AND DOSE COMMITMENT FROM URANIUM FUEL CYCLE SOURCES ............................................................................................ 23 Page 2 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 4.1. Calculation of Dose and Dose Commitment from Uranium Fuel Cycle Sources ..................................................................................................... 23 4.1.1. IDENTIFICATION OF THE MEMBER OF THE PUBLIC ............................. 24 4.1.2. TOTAL DOSE TO THE NEAREST RESIDENT ............................................ 24 4.1.3. TOTAL DOSE TO THE CRITICAL RECEPTOR WITHIN THE SITE BOUNDARY .............................................................................................. 25

5. RADIOLOGICAL ENVIRONMENTAL MONITORING .................................. 28 5.1. Description Of The Radiological Environmental Monitoring Program ............................................................................................................... 28 5.2. Performance Testing Of Environmental Thermoluminescence Dosimeters .......................................................................................................... 28
6. ANNUAL AVERAGE ATMOSPHERIC DISPERSION PARAMETERS ................................................................................................... 28 6.1. Annual Atmospheric Dispersion Parameters ................................................. 28 6.1.1. Determination of Dispersion Estimates for Special Receptor Locations ............................................................................................................. 28 6.1.2. Atmospheric Dispersion Parameters for Farming Areas within the Site Boundary ..................................................................................................... 29 6.2. Annual Meteorological Data Processing......................................................... 29
7. REPORTING REQUIREMENTS...................................................................... 30 7.1. Annual Radiological Environmental Operating Report ................................. 30 7.2. Annual Radioactive Effluent Release Report ................................................. 30
8. RADIOACTIVE EFFLUENT CONTROLS (REC) .......................................... 30
9. ADMINISTRATIVE CONTROLS ...................................................................... 30 9.1. Major Changes to Liquid and Gaseous Radwaste Treatment Systems ............................................................................................................... 30 9.2. Changes to the Offsite Dose Calculation Manual (ODCM) ......................... 31
10. BIBLIOGRAPHY ................................................................................................. 31 Table 1: Ingestion Dose Commitment Values (Ai) for Adult Age Group .................................. 36 Table 2: Bioaccumulation Factor (Bfi) ..................................................................................... 39 Table 3: Dose Factor for Exposure to a Semi Infinite Cloud of Noble Gases........................... 40 Table 4: Ground Plane Pathway Dose Factors (Ri) ................................................................... 41 Table 5: Child Inhalation Pathway Dose Factors (Ri) ................................................................ 42 Table 6: Child Grass Cow - Milk Pathway Dose Factors (Ri).................................................... 44 Table 7: Child Grass Goat - Milk Pathway Dose Factors (Ri) ................................................... 46 Page 3 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 8: Child Grass Cow Meat Pathway Dose Factors (Ri) .................................................... 48 Table 9: Child Vegetation Pathway Dose Factors (Ri) ............................................................... 50 Table 10: Highest Annual Average Atmospheric Dispersion Parameters ................................ 52 Table 11: Application of Atmospheric Dispersion Parameters for Release Permits ................ 53 Table 12: Application of Atmospheric Dispersion Parameters Annual Radioactive Effluent Release Report ........................................................................................ 54 Table 13: Meteorological Data Selection Hierarchy ................................................................. 55 Table 14: Adult Inhalation Pathway Dose Factors (Ri).............................................................. 56 Table 15: Adult Grass Cow - Milk Pathway Dose Factors (Ri) ................................................. 58 Table 16: Adult Grass Goat - Milk Pathway Dose Factors (Ri) ................................................ 60 Table 17: Adult Grass Cow Meat Pathway Dose Factors (Ri) ................................................. 62 Table 18: Adult Vegetation Pathway Dose Factors (Ri) ............................................................ 64 Appendix A: Methodology for Calculating Dose from 14C in Gaseous Effluents ............................................................................................................... 66 Appendix B: Record of Revisions ........................................................................................ 79 Page 4 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 OFF-SITE DOSE CALCULATION MANUAL

1. Purpose and Scope The Offsite Dose Calculation Manual (ODCM) describes the methodology and parameters used in the calculation of off-site doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program. The ODCM also contains the Radioactive Effluent Controls and Radiological Environmental Monitoring Program required by T/S 5.5.4 and FSAR-SP Chapter 16.11.4, and descriptions of the information that should be included in the Annual Radiological Environmental Operating and Annual Effluent Release Reports required by T/S 5.6.2 and T/S 5.6.3 Compliance with the Radiological Effluent Controls limits demonstrates compliance with the limits of 10 CFR 20.1301.1,2,3 The ODCM consists of two parts: FSAR-SP Chapter 16.11 which contains the Radiological Effluent Controls (RECs), and APA-ZZ-01003, which contains the methodology and parameters used to implement the RECs.
2. Liquid Effluents 2.1. Liquid Effluent Monitors Gross radioactivity monitors which provide for automatic termination of liquid effluent releases are present on the liquid effluent lines. Flow rate measurement devices are present on the liquid effluent lines and the discharge line (cooling tower blowdown). Setpoints, precautions, and limitations applicable to the operation of the Callaway Plant liquid effluent monitors are provided in the appropriate Plant Procedures. Setpoint values are calculated to assure that alarm and trip actions occur prior to exceeding ten times the Effluent Concentration Values (ECV) limits in 10 CFR Part 20 at the release point to the Unrestricted Area. The calculated alarm and trip action setpoints for the liquid effluent line monitors and flow measuring devices must satisfy the following equation:

cf C

F+ f Eq. 1 Where:

1 Statements of Consideration, Federal Register, Vol. 56, No. 98, Tuesday, May 21, 1991, Subpart D, page 23374 2 10 CFR 50.36 a (b) 3 Letter, F. J. Congel to J. F. Schmidt, dated April 23, 1991 Page 5 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 C is the liquid effluent concentration value (ECV) implementing REC 16.11.1.1 for the site in

µCi/ml; c is the setpoint, in (µCi/ml), of the radioactivity monitor measuring the radioactivity concentration in the effluent line prior to dilution and subsequent release. The setpoint, which is inversely related to the volumetric flow of the effluent line and directly related to the volumetric flow of the dilution stream plus the effluent steam, represents a value, which, if exceeded, would result in concentrations exceeding ten times the values of 10 CFR Part 20 Appendix B, Table 2, Column 2, in the Unrestricted Area; f is the undiluted waste flow rate as measured at the radiation monitor location, in volume per unit time, but in the same units as F, below; and F is the dilution water flow rate setpoint as measured prior to the release point, in volume per unit time. If F is large compared to f, then F + f F.4 The radioactive liquid waste stream is diluted by the plant discharge line prior to entry into the Missouri River. The dilution flow is obtained from the cooling tower blowdown, but should this become unavailable, the plant water treatment facility supplies the necessary dilution flow via a bypass line. No direct discharge of wastewater from the liquid radioactive waste treatment system without the use of dilution flow from the cooling tower blowdown or cooling tower bypass is permitted. A minimum of 3000 gpm dilution flow from the cooling tower blowdown or cooling tower bypass needs to be used to discharge from the liquid radioactive waste treatment system.5 The limiting concentration which corresponds to the liquid radwaste effluent monitor setpoint is to be calculated using methodology from the expression above. Thus, the expression for determining the setpoint of the liquid radwaste effluent line monitor becomes:

C(F + f) c (Ci / ml) f Eq. 2 The alarm/trip setpoint calculations are based on the minimum dilution flow rate (corresponding to the dilution flow rate setpoint), the maximum effluent stream flow rate, and the actual isotopic analysis. Due to the possibility of a simultaneous release from more than one release pathway, a portion of the total site release limit is allocated to each pathway. The determination and usage of the allocation factor is discussed in Section 2.2. In the event the alarm/trip setpoint is reached, an evaluation will be performed using actual dilution and effluent flow values and actual isotopic analysis to ensure that REC 16.11.1.1 limits were not exceeded.

4 NUREG-0133, pages AA-1 thru AA-3 5 Ameren Missouri Callaway Energy Center State of Missouri National Pollutant Discharge Elimination System (NPDES) Permit, MO-0098001 Page 6 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 2.1.1. Continuous Liquid Effluent Monitors There are no continuous liquid release pathways. Steam Generator Blowdown is discharged to the discharge monitoring tanks for batch release.6,7 2.1.2. Radioactive Liquid Batch Release Effluent Monitors The radiation monitor associated with the liquid effluent batch release system is:8 Monitor I.D. Description HB-RE-18 Liquid Radwaste Discharge Monitor This effluent stream is normally considered to be radioactive. The sampling frequency, minimum analysis frequency, and the type of analysis performed are per FSAR-SP Table 16.11-1.

2.2. Calculation of Liquid Effluent Monitor Setpoints The dependence of the setpoint, c, on the radionuclide distribution, yields, calibration, and monitor parameters, requires that several variables be considered in setpoint calculations.9 2.2.1. Calculation of the ECV Sum The isotopic concentration of the release(s) being considered must be determined. This is obtained from the analyses required per FSAR-SP Table 16.11-1, and is used to calculate an ECV sum (ECVSUM):

ECVSU M = C / E C V i i i = g , a , s , t, f Eq. 3 Where:

Cg is the concentration of each measured gamma emitting nuclide observed by gamma-ray spectroscopy of the waste sample; Ca is the concentration of 237Np, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, & 243/244Cm, in the quarterly composite sample based on previous composite sample analyses; Cs is the measured concentrations of 89Sr and 90Sr as determined by analysis of the quarterly composite sample based on previous composite sample analyses; Ct is the measured concentration of 3H in the waste sample; and 6 MP 19-0114 7 UOTH 20200008 8 FSAR-SP, Section 11.5.2.2.3.2 9 NUREG-0133, pages AA-1 thru AA-3 Page 7 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Cf is the measured concentration of 55Fe & 63Ni as determined by analysis of the quarterly composite sample based on previous composite sample analyses.

ECVg, ECVs, ECVa, ECVf, and ECVt are ten times the limiting concentrations of the appropriate radionuclides from 10 CFR 20, Appendix B, Table 2, Column 2. For dissolved or entrained noble gases, the concentration shall be limited to 2x10-4 µCi/ml total activity.

For the case ECVSUM 1, the monitor tank effluent concentration meets the limits of REC 16.11.1.1 without dilution and the effluent may be released at any desired flow rate. If ECVSUM > 1 then dilution is required to ensure compliance with the concentration limits of REC 16.11.1.1. If simultaneous releases are occurring or are anticipated, an allocation fraction, N, must be applied so that available dilution flow may be apportioned among simultaneous discharge pathways. The value of N may be any value between 0 and 1 for a particular discharge point, provided that the sum of the allocation fractions for all discharge points must be 1.

2.2.2. Calculation of the Maximum Permissible Liquid Effluent Discharge Flow Rate The maximum permissible liquid effluent discharge flow rate is calculated by:

fmax (F fp ) SF N (ECVSUM)

Eq. 4 Where:

fmax is the maximum permissible liquid effluent discharge flow rate, (in gallons/minute);

fp is the expected undiluted liquid effluent flow rate, in gpm; N is the allocation fraction which apportions dilution flow among simultaneous discharge pathways (see discussion above); and SF is the safety factor; an administrative factor used to compensate for statistical fluctuations and errors of measurements. This factor also provides a margin of safety in the calculation of the maximum liquid effluent discharge flow rate (fmax). The value of SF should be < 1.

F and ECVSUM are previously defined.

The dilution water supply is furnished with a flow monitor which isolates the liquid effluent discharge if the dilution flow rate falls below its setpoint value.

In the event that fmax is less than fp, then the value of fmax is substituted into the equation for fp, and a new fmax value is calculated. This substitution is performed for three iterations in order to calculate the correct value of fmax.

Page 8 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 2.2.3. Calculation of Liquid Effluent Monitor Setpoint The liquid effluent monitors are NaI(Tl) based systems and respond primarily to gamma radiation. Accordingly, their setpoint is based on the total concentration of gamma emitting nuclides in the effluent:

c 0.95 bkg ( Cg ) SF Eq. 5 Where:

c is the monitor setpoint as previously defined, in µCi/ml; bkg is the monitor background prior to discharge, in µCi/ml, adjusted for monitor response; and 0.95 is a factor for conservatism to ensure the monitor trips prior to exceeding the limits of REC 16.11.1.1 C g and SF are as previously defined.

The monitor's background is controlled at an appropriate limit to ensure adequate sensitivity.

Utilizing the methodology of ANSI N13.10-1974, the background must be maintained at a value of less than or equal to 9x10-6 µCi/ml (relative to 137Cs) in order to detect a change of 4x10-7 µCi/ml of 137Cs.10 In the event that there is no detectable gamma activity in the effluent or if the value of

( C g )÷SF is less than the background of the monitor, then the monitor setpoint will be set at twice the current background of the monitor.

As previously stated, the monitor's response is dependent on the gamma emitting radionuclide distribution of the effluent. Accordingly, a database conversion factor is calculated for each release based upon the results of the gamma spectrometric analysis of the effluent sample and the measured response of the monitor to National Institute of Standards and Technology (NIST) traceable calibration sources:

DBCFC = C ÷ CMR x ECF g

Eq. 6 DBCFc is the monitor data base conversion factor which converts count rate into concentration

(µCi/ml);

10 HPCI 9605, Calculation of Maximum Background Value for HB-RE-18 Page 9 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 CMR is the calculated response of the radiation monitor to the liquid effluent; ECF is the conversion factor for 137Cs, which converts count rate into concentration (µCi/ml).

Cg is as previously defined.

The new value of the DBCFc is calculated and entered into the monitor data base prior to each discharge. A more complete discussion of the derivation and calculation of the CMR is given in HPCI 8710.

2.3. Liquid Effluent Concentration Measurements Liquid batch releases are discharged as a discrete volume and each release is authorized based upon the sample analysis and the dilution flow rate existing in the discharge line at the time of release. To assure representative sampling, each liquid monitor tank is isolated and thoroughly mixed by recirculation of tank contents prior to sample collection. The methods for mixing, sampling, and analyzing each batch are outlined in applicable plant procedures. The allowable release rate limit is calculated for each batch based upon the pre-release analysis, dilution flow-rate, and other procedural conditions, prior to authorization for release. The liquid effluent discharge is monitored prior to entering the dilution discharge line and will automatically be terminated if the pre-selected alarm/trip setpoint is exceeded. Concentrations are determined primarily from the gamma isotopic and 3H analyses of the liquid batch sample.

For 89Sr, 90Sr, 55Fe, 63Ni, 237Np, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, & 243/244Cm, the measured concentrations from the previous quarterly composite analyses are used until laboratory results become available. Composite samples are collected for each batch release and analyzed in accordance with FSAR-SP Table 16.11-1.The dose from liquids discharged as continuous releases is calculated by utilizing the last measured values of samples in accordance with FSAR-SP Table 16.11-1.

2.4. Dose due to Liquid Effluents 2.4.1. The Maximum Exposed Individual The cumulative dose determination considers the dose contributions from the maximum exposed individual's consumption of fish and potable water, as appropriate. Normally, the adult is considered to be the maximum exposed individual.11 The Callaway Plant's liquid effluents are discharged to the Missouri River. As there are no potable water intakes within 10 miles of the discharge point,12,13 this pathway does not require routine evaluation. Therefore, the dose contribution from fish consumption is expected to account for more than 95% of the total man-rem dose from discharges to the Missouri River.

11 NUREG-0133, Section 4.3 12 Environmental Report, OLS, Table 2.1-19 13 FSAR-SA Section 11.2.3.3.4 Page 10 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Dose from recreational activities is expected to contribute the additional 5%, which is considered to be negligible.14 2.4.2. Calculation of Dose from Liquid Effluents m

The dose contributions for the total time period t l=1 l are calculated at least once each 31 days and a cumulative summation of the total body and individual organ doses is maintained for each calendar quarter. Dose is calculated for all radionuclides identified in liquid effluents released to Unrestricted Areas using the following expression:15 m

D = Ai t l C il Fl i l=1 Eq. 7 Where:

D is the cumulative dose commitment to the total body or any organ, , from the liquid m

effluents for the total period t in mrem.

l=1 l

tl is the length of the lth time period over which Ci,l and Fl are averaged for all liquid releases, in hours. tl corresponds to the actual duration of the release(s).

Ci,l is the average measured concentration of radionuclide, i, in undiluted liquid effluent during the time period tl from any liquid release, in (µCi/ml).

Ai is the site- related ingestion dose commitment factor to the total body or any organ for each identified principal alpha, gamma and beta emitter listed in FSAR-SP Table 16.11-1,in (mrem/hr) per (µCi/ml).

Fl is the near field average dilution factor for Cil during any liquid effluent release:

fmax Fl =

F + fmax 89.77 Eq. 8 Where:

Fmax is the maximum undiluted effluent flow rate during the release; F is the average dilution flow; and 14 FSAR-SA, Section 11.2.3.4.3 15 NUREG-0133, Section 4.3 Page 11 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 89.77 is site specific applicable factor for the mixing effect of the discharge structure.16,17,18 The term Ci,l is the undiluted concentration of radioactive material in liquid waste at the common release point determined in accordance with REC 16.11.1.1, Table 16.11-1, "Radioactive Liquid Waste Sampling and Analysis Program". All dilution factors beyond the sample point(s) are included in the Fl term.

As there are currently no potable water intakes within 10 river miles of the discharge point, the drinking water pathway is not included in dose estimates to the maximally exposed individual.

Should future potable water intakes be constructed within 10 river miles downstream of the discharge point, then this manual will be revised to include this pathway in dose estimates.19 The Ai values given in Table 1 were calculated according to:20 Ai = k0 (Uw/Dw + UFBFi + UIBIi)DFi Eq. 9 Since there are no drinking water pathways, and CEC is a freshwater site, the terms for drinking water consumption (Uw/Dw ) and invertebrate consumption (UIBIi) go to zero and the equation simplifies to:

Ai = k0 UFBFi DFi Eq. 10 Where:

k0 is a constant of units conversion, 1.14x105 = (106 pCi/Ci 103 ml/kg / 8760 hr/yr)

UF is the adult fish consumption, 21 kg/yr 21 BFi is the bioaccumulation factor for nuclide, i, in fresh water fish, pCi/kg per pCi/L.22,23 DFi is the dose conversion factor for nuclide, i, for adults for organ, , in mrem/pCi.

16 NEO-54 17 UOTH 83-58 18 CAR 200700053- Attachments: Phase 1 final draft 19 FSAR-SP, Section 11.2.3.3.4 20 NUREG-0133, Section 4.3.1 21 NUREG-0133, Section 4.3.1, pp. 16 22 UCRL- 50564, Table 6 23 NUREG/CR-4013, pp. 3.17 Page 12 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 2.4.3. Summary, Calculation of Dose Due to Liquid Effluents m

The dose contribution for the total time period t l=1 l is determined by calculation at least once per 31 days and a cumulative summation of the total body and organ doses is maintained for each calendar quarter. The projected dose contribution from liquid effluents for which radionuclide concentrations are determined by periodic composite and grab sample analysis may be approximated by using the last measured value. Dose contributions are determined for all radionuclides identified in liquid effluents released to Unrestricted Areas.

Nuclides which are not detected in the analyses are reported as "less than" the Minimum Detectable Activity (MDA) and are not reported as being present at the Lower Limit of Detection (LLD) for that nuclide. The "less than" values are not used in the dose calculations.

2.5. Liquid Radwaste Treatment System The Liquid Radwaste Treatment System is described in FSAR-SP Chapter 11.2.

The Operability of the Liquid Radwaste Treatment System ensures this system will be available for use when liquids require treatment prior to their release to the environment.

Operability is demonstrated through compliance with REC 16.11.1.1. and 16.11.1.2.

Projected doses due to liquid releases to Unrestricted Areas are determined each 31 days.

The prior 31 day period is used to calculate compliance. This may be modified as appropriate to account for changes in radwaste treatment which may have a significant effect on the projected doses.

2.6. Liquid Effluents Dose Factors The dose conversion factors provided in Table 1 were derived from the appropriate dose conversion factors of Regulatory Guide 1.109, Table 2.2 and other sources as necessary.24,25

3. Gaseous Effluents 3.1. Gaseous Effluent Monitors Noble gas activity monitors are present on the containment building ventilation system, plant unit ventilation system, and radwaste building ventilation system.

The alarm/trip (alarm & trip) setpoint for any gaseous effluent radiation monitor is determined based on the instantaneous noble gas total body and skin dose rate limits of REC 16.11.2.1, at the Site Boundary location with the highest annual average X/Q value.

24 HPCI 0406 25 HPCI 1604 Page 13 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Each gaseous monitor channel is provided with a two level system which provides sequential alarms on increasing radioactivity levels. These setpoints are designated as alert setpoints and alarm/trip setpoints.26 The radiation monitor alarm/trip setpoints for each release point are based on the radioactive noble gases in gaseous effluents. It is not considered practicable to apply instantaneous alarm/trip setpoints to integrating radiation monitors sensitive to radioiodines, radioactive materials in particulate form and radionuclides other than noble gases. The exception is GL-RE-202. The only effluent released from the Laundry Decon Facility Dryer Exhaust is in the particulate form. Conservative assumptions may be necessary in establishing setpoints to account for system variables, such as the measurement system efficiency and detection capabilities during normal, anticipated, and unusual operating conditions, variability in release flow and principal radionuclides, and the time lag between alarm/trip action and the final isolation of the radioactive effluent.27 FSAR-SP Table 16.11-6 provides the instrument surveillance requirements, such as calibration, source checks, functional tests, and channel checks.

3.1.1. Continuous Release Gaseous Effluent Monitors The radiation detection monitors associated with continuous gaseous effluent releases are:28,29 Monitor I.D. Description GT-RE-21 Unit Vent GH-RE-10 Radwaste Building Vent GL-RE-202 Laundry Decon Facility Dryer Exhaust Monitor Each of the above continuously monitors gaseous radioactivity concentrations downstream of the last point of potential influent, and therefore measures effluents and not inplant concentrations.

The unit vent monitor continuously monitors the effluent from the unit vent for gaseous radioactivity. The unit vent, via ventilation exhaust systems, continuously purges various tanks and sumps normally containing low-level radioactive aerated liquids that can potentially generate airborne activity. The exhaust systems which supply air to the unit vent are from the fuel building, auxiliary building, the access control area, the containment purge, and the condenser air discharge.

26 FSAR-SP Section 11.5.2.1.2 27 NUREG- 0133, section 5.1.1 28 FSAR-SP Section 11.5.2.3.3.1 29 FSAR-SP Section 11.5.2.3.3.2 Page 14 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 The unit vent monitor provides alarm functions only, and does not terminate releases from the unit vent.

The Radwaste Building ventilation effluent monitor continuously monitors for gaseous radioactivity in the effluent duct downstream of the exhaust filter and fans. The flow path provides ventilation exhaust for all parts of the building structure and components within the building and provides a discharge path for the waste gas decay tank release line. These components represent potential sources for the release of gaseous and air particulate and iodine activities in addition to the drainage sumps, tanks, and equipment purged by the waste processing system.

This monitor will isolate the waste gas decay tank discharge line upon a high gaseous radioactivity alarm.

The Laundry Decon Facility Dryer Exhaust Monitor continuously monitors the effluent of the dryer exhaust for particulate radioactivity during operation of the dryers. This effluent point is designed to release an insignificant quantity of radioactivity. The items to be placed in the dryers are typically washed before drying removing most of the radioactive material. The dryer effluent then passes through a HEPA filter before being sampled and released.

The Laundry Decon Facility Dryer Exhaust Monitor will secure the dryers and exhaust fans and isolate the dryer effluent upon a high radioactivity alarm or for a monitor failure.

The continuous Unit Vent and Radwaste Building Vent gaseous effluent monitor setpoints are established using the methodology described in Section 3.2. Since there are two continuous gaseous effluent release points, a fraction of the total dose rate limit (DRL) will be allocated to each release point. Neglecting the batch releases, the plant Unit Vent monitor has been allocated 0.7 DRL and the Radwaste Building Vent monitor has been allocated 0.3 DRL.

These allocation factors may be changed as required to support plant operational needs, but shall not be allowed to exceed unity (i.e., 1.0). Therefore, a particular monitor reaching the setpoint would not necessarily mean the dose rate limit at the Site Boundary is being exceeded; the alarm only indicates that the specific release point is contributing a greater fraction of the dose rate limit than was allocated to the associated monitor, and will necessitate an evaluation of both systems.

For a loss of all isokinetic sampling and/or all heat tracing for the Unit Vent or Radwaste Building Vent grab samplers, one hour is allowed to restore a sampler to service. If sampling cannot be restored within one hour, all batch releases and ventilation not required for the operation of the plant should be secured. The best available sampling should be maintained during this period and normal sampling returned to service as soon as possible.

Page 15 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 3.1.2. Batch Release Gaseous Effluent Monitors The radiation monitors associated with batch release gaseous effluents are:30,31,32 Monitor I.D. Description GT-RE-22, GT-RE-33 Containment Purge System GH-RE-10 Radwaste Building Vent The Containment Purge System continuously monitors the containment purge exhaust duct during purge operations for gaseous radioactivity. The primary purpose of these monitors is to isolate the containment purge system on high gaseous activity via the ESFAS.

The sample points are located outside the containment between the containment isolation dampers and the containment purge filter adsorber unit.

The Radwaste Building Vent monitor was previously described.

A pre-release isotopic analysis is performed for each batch release to determine the identity and quantity of the principal radionuclides. The alarm/trip setpoint(s) is adjusted accordingly to ensure that the limits of REC 16.11.2.1 are not exceeded.

3.2. Gaseous Effluent Monitor Setpoints The alarm/trip setpoint for the Unit Vent and Radwaste Building Vent gaseous effluent monitors is determined based on the more restrictive of the total body dose rate (Eq. 11) and skin dose rate (Eq. 13) as calculated for the Site Boundary. In the event there is no noble gas activity in the sample, then the high alarm setpoint is set to the default value of 2.2E-02 Ci/cc.

This corresponds to 50% of the 500 mrem/yr limit of REC 16.11.2.1.33 Each monitor is allocated only 50% of the limit such that the sum total of the two monitors cannot exceed the limit.

The alarm/ trip setpoint for the Laundry Decon Facility Exhaust Monitor is set to less than or equal to 2,000 cpm above equilibrium background. The maximum allowed background is 2,000 cpm as discussed in HPCI 99-05.

3.2.1. Total Body Dose Rate Setpoint Calculations To ensure that the limits of REC 16.11.2.1 are met, the alarm/trip setpoint based on the total body dose rate is calculated according to:

Stb DtbRtbFsFa 30 FSAR-SP Section 11.5.2.3.3.2 31 FSAR-SP Section 11.5.2.3.2.3 32 FSAR-SP Section 11.5.2.3.2.2 33 HPCI 8403, page 9 Page 16 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Eq. 11 Where:

Stb is the alarm/trip setpoint based on the total body dose rate (Ci/cc);

Dtb is the REC 16.11.2.1 dose rate limit of 500 mrem/yr, conservatively interpreted as a continuous release over a one year period; Fs is the safety factor; a conservative factor used to compensate for statistical fluctuations and errors of measurement. (For example, Fs = 0.5 corresponds to a 100% variation.) Default value is Fs = 0.1.

Fa is the allocation factor which will modify the required dilution factor such that simultaneous gaseous releases may be made without exceeding the limits of REC 16.11.2.1.

Rtb is a factor used to convert dose rate to the effluent concentration as measured by the effluent monitor, in (Ci/cc) per (mrem/yr) to the total body, determined according to:

Rtb = C X/Q (K Q )

i i i Eq. 12 Where:

C is the reading of a noble gas monitor corresponding to the sample radionuclide concentrations for the release. Concentrations are determined in accordance with FSAR-SP Table 16.11-4.The mixture of radionuclides determined via grab sampling of the effluent stream or source is correlated to a calibration factor to determine monitor response. The monitor response is based on concentration, not release rate, and is in units of (Ci/cc);

X/Q is the highest calculated annual average relative concentration for any area at or beyond the Site Boundary in (sec/m3) (Table 10, Table 11, and Table 12);

Ki is the total body dose factor due to gamma emissions for each identified noble gas radionuclide, in (mrem/yr) per (Ci/m3) (Table 3); and Qi is the rate of release of noble gas radionuclide, i, in (Ci/sec).

Qi is calculated as the product of the ventilation path flow rate and the measured activity of the effluent stream as determined by sampling.

3.2.2. Skin Dose Rate Setpoint Calculation To ensure that the limits of REC 16.11.2.1 are met, the alarm/trip setpoint based on the skin dose rate is calculated according to:

Page 17 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Ss DsRsFsFa Eq. 13 Where:

Fs and Fa are as previously defined; Ss is the alarm/trip setpoint based on the skin dose rate; Ds is the REC 16.11.2.1 dose rate limit of 3000 mrem/yr, conservatively interpreted as a continuous release over a one year period; and Rs is the factor used to convert dose rate to the effluent concentration as measured by the effluent monitor, in (Ci/cc) per (mrem/yr) to the skin, determined according to:

Rs C X/Q L + 1.1M Q i

i i i Eq. 14 Where:

Li is the skin dose factor due to beta emissions for each identified noble gas radionuclide, in (mrem/yr) per (Ci/m3);

1.1 is a factor of units conversion; 1 mrad air dose = 1.1 mrem skin dose; and Mi is the air dose factor due to gamma emissions for each identified noble gas radionuclide, in (mrad/yr) per (Ci/m3).

C, X/Q , and Qi are previously defined.

3.3. Calculation of Dose and Dose Rate from Gaseous Effluents 3.3.1. Dose Rate from Gaseous Effluents The following methodology is applicable to the location (Site Boundary or beyond) characterized by the values of the parameter X/Q which results in the maximum total body or skin dose rate. In the event that the analysis indicates a different location for the total body and skin dose limitations, the location selected for consideration is that which minimizes the allowable release values.34 The factors Ki, Li, and Mi relate the radionuclide airborne concentrations to various dose rates, assuming a semi-infinite cloud model.

3.3.1.1. Dose Rate from Noble Gases 34 NUREG-0133, Section 5.1.2 Page 18 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 The release rate limit for noble gases is determined according to the following general relationships:35 Dtb K i Qi i

X/Q 500 mrem/yr Eq. 15 i

Ds Li 1.1 Mi X/Q Qi 3000 mrem/yr Eq. 16 Where:

Qi is the release rate of noble gas radionuclides, i, in gaseous effluents, from all vent releases in (Ci/sec); and 1.1 is a factor of units conversion factor; 1 mrad air dose = 1.1 mrem skin dose.

Li, Mi, Ki, X/Q , Dtb and Ds are as previously identified.

3.3.1.2. Dose Rate from Radionuclides Other than Noble Gases The release rate limit for 131I and 133I, for 3H, and for all radioactive materials in particulate form with half-lives greater than 8 days is determined according to:36 Do Ri X/Q Qi 1500 mrem/yr i

Eq. 17 Where:

Do is the dose rate to any critical organ, in (mrem/yr);

Ri is the dose parameter for radionuclides other than noble gases for the inhalation pathway for the child, based on the critical organ, in (mrem/yr) per (Ci/m3); and Qi is the release rate of radionuclides other than noble gases, i, in gaseous effluents, from all vent releases in (Ci/sec).

X/Q is as previously defined.

The dose parameter (Ri) includes the internal dosimetry of radionuclide, i, and the receptor's breathing rate, which are functions of the receptor's age. The child age group has been 35 NUREG-0133, Section 5.1.2 36 NUREG-0133, Section 5.2.1 Page 19 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 selected as the limiting age group. All radiodines are assumed to be released in elemental form.37 Ri values were calculated according to:38 Ri K ' (BR) DFAi Eq. 18 Where:

K is a factor of units conversion factor: 1x106 pCi/Ci; BR is the breathing rate from Regulatory Guide 1.109, Table E-5 (m3/yr);

DFAi is the maximum organ inhalation dose factor for the ith radionuclide, in (mrem/pCi). The total body is considered as an organ in the selection of DFAi.39,40 The results of periodic tritium, iodine and particulate samples of the Unit Vent and Radwaste Vent are used to verify the dose rate limit was not exceeded for the period during which the samples or composite samples were obtained.

3.3.2. Dose Due to Gaseous Effluents 3.3.2.1. Air Dose Due to Noble Gases The air dose at the Site Boundary due to noble gases is calculated according to the following methodology:41 During any calendar quarter, for gamma radiation:

i Dg = 3.17E08 Mi X/Q Qi 5 mrad Eq. 19 During any calendar quarter, for beta radiation:

i Db = 3.17E08 Ni X/Q Qi 10 mrad Eq. 20 During any calendar year, for gamma radiation:

37 NUREG-0133, Section 5.2.1 38 NUREG-0133, Section 5.2.1.1 39 Regulatory Guide 1.109, Appendix E, Table E-9 40 ZZ-48 41 NUREG-0133, Section 5.3.1 Page 20 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 i

Dg = 3.17E08 Mi X/Q Qi 10 mrad Eq. 21 During any calendar year, for beta radiation:

i Db = 3.17E08 Ni X/Q Qi 20 mrad Eq. 22 Where:

Dg is the air dose in mrad, from gamma radiation due to noble gases released in gaseous effluent; Db is the air dose in mrad, from beta radiation due to noble gases released in gaseous effluents; Ni is the air dose factor due to beta emissions for each identified noble gas radionuclide, i, in (mrad/yr) per (Ci/m3);

Qi is the releases of noble gas radionuclides, i, in gaseous effluents, for all gaseous releases in (Ci). Releases are cumulative over the calendar quarter or year as appropriate. Qi is calculated as the product of the ventilation flow rate and the measured activity of the effluent stream as determined by sampling; and 3.17x10-8 is the inverse of the number of seconds per year.

X/Q & Mi are as previously defined.

3.3.2.2. Dose Due to Radionuclides Other than Noble Gases The dose to a Member of the Public from 131I and 133I, for 3H, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at and beyond the Site Boundary, is calculated according to the following expressions:

During any calendar quarter:

D j l ,j 7.5 mrem Eq. 23 During any calendar year:

D j l,j 15 mrem Eq. 24 For each pathway, j, (i.e., for inhalation, ground plane, meat, cow- milk, goat- milk, and vegetation) DI,j is calculated according to the expression:

Page 21 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Dl , j 3.17E 8 i Rl ,i , j Wj Qi Eq. 25 Where:

DI,j is the dose in mrem, to a Member of the Public from radionuclides other than noble gases, from pathway j, received by organ l (including total body);

R I, i,j is the dose factor for each identified radionuclide, i, in m2 (mrem/yr) per (Ci/sec) or (mrem/yr) per (Ci/m3) as appropriate, for the pathway j, and exposed organ I, appropriate to the age group of the critical Member of the Public receptor; Wj is the X/Q for the inhalation and tritium pathways, in sec/m3 and is the D/Q for the food and ground plane pathways, in meters-2.

D/Q is the average relative deposition of the effluent at or beyond the Site Boundary, considering depletion of the plume during transport; Qi is the release of radioiodines, radioactive materials in particulate form, and radionuclides other than noble gases, i, in gaseous effluents, for all gaseous releases in Ci. Releases are cumulative over the calendar quarter or year as appropriate. Qi is calculated as the product of ventilation flow rate and the measured activity of the effluent stream as determined by sampling; and 3.17x10-8 is the inverse of the number of seconds per year.

X/Q is as previously defined. Refer to Table 10, Table 11, and Table 12 for applicability; Although the annual average relative concentration X/Q and the average relative deposition rate D/Q are generally considered to be at the approximate receptor location in lieu of the Site Boundary for these calculations, it is acceptable to consider the ingestion, inhalation, and ground plane pathways to coexist at the location of the nearest residence with the highest value of X/Q .42 The Total Body dose from ground plane deposition is added to the dose for each individual organ.43 3.4. Gaseous Radwaste Treatment System The gaseous radwaste treatment system and the ventilation exhaust system are available for use whenever gaseous effluents require treatment prior to being released to the environment.

The gaseous radwaste treatment system is designed to allow for the retention of all gaseous fission products to be discharged from the reactor coolant system. The retention system 42 NUREG-0133, Section 5.3.1 43 Regulatory Guide 1.109, Appendix C, Section 1 Page 22 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 consists of eight (8) waste gas decay tanks. Normally, waste gases will be retained for at least 60 days prior to discharge. When practicable, waste gas decay tanks are discharged outside the growing season or at night such that 14C released from the waste gas system will not be incorporated into the ingestion pathways and will result in a lower dose to the Member of the Public. For this purpose, the growing season is defined as April 1 through November 1.44 These systems will provide reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept ALARA.

The Operability of the gaseous radwaste treatment system ensures this system will be available for use when gases require treatment prior to their release to the environment.

Operability is demonstrated through compliance with REC 16.11.2.1, 16.11.2.2, and 16.11.2.3.

Projected doses (gamma air, beta air, and organ dose) due to gaseous effluents at or beyond the Site Boundary are determined each 31 days. The prior 31 day period is used to calculate compliance. This may be modified as appropriate to account for changes in radwaste treatment which may have a significant effect on the projected doses.

3.5. Gaseous Effluents Dose Factors The dose conversion factors were derived from the appropriate dose conversion factors in Regulatory Guide 1.109 and other sources as necessary.45,46 Particulate nuclides with a half-life of less than 8 days are not considered.47 90Y, 140La, and 144Pr are included because the parent half-life is greater than 8 days, and equilibrium is assumed.

4. Dose and Dose Commitment from Uranium Fuel Cycle Sources 4.1. Calculation of Dose and Dose Commitment from Uranium Fuel Cycle Sources The annual dose or dose commitment to a Member of the Public for Uranium Fuel Cycle Sources is determined as:

Dose to the total body and internal organs due to gamma ray exposure from submersion in a cloud of radioactive noble gases, ground plane exposure, and direct radiation from the Unit, onsite storage of low-level radioactive waste, and outside storage tanks; Dose to skin due to beta radiation from submersion in a cloud of radioactive noble gases, and ground plane exposure; Thyroid dose due to inhalation and ingestion of radioiodines; and Organ dose due to inhalation and ingestion of radioactive material.

44 Hammer, Gregory, R., Climate of Missouri, monograph available from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA), January, 2006.

45 ZZ-78 46 ZZ-250 47 Inspection Report 50-483/92002 (DRSS)

Page 23 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 It is assumed that total body dose from sources of gamma radiation irradiates internal body organs at the same numerical rate.48 The dose from gaseous effluents is considered to be the summation of the dose at the individual's residence and the dose to the individual from activities within the Site Boundary.

Since the doses via liquid releases are very conservatively evaluated, there is reasonable assurance that no real individual will receive a significant dose from radioactive liquid release pathways. Therefore, only doses to individuals via airborne pathways and doses resulting from direct radiation are considered in determining compliance to 40 CFR 190.49 There are no other Uranium Fuel Cycle Sources within 8 km of the Callaway Plant.

4.1.1. Identification of the Member of the Public The Member of the Public is considered to be a real individual, including all persons not occupationally associated with the Callaway Plant, but who may use portions of the plant site for recreational or other purposes not associated with the plant.50 Accordingly, it is necessary to characterize this individual with respect to his utilization of areas both within and at or beyond the Site Boundary and identify, as far as possible, major assumptions which could be reevaluated if necessary to demonstrate continued compliance with 40 CFR 190 through the use of more realistic assumptions.51,52 The evaluation of Total Dose from the Uranium Fuel Cycle should consider the dose to two Critical Receptors: (a) The Nearest Resident, and (b) The Critical Receptor within the Site Boundary.

4.1.2. Total Dose to the Nearest Resident The dose to the Nearest Resident is due to plume exposure from noble gases, ground plane exposure, and inhalation and ingestion pathways. It is conservatively assumed that each ingestion pathway (meat, milk, and vegetation) exists at the location of the Nearest Resident.

It is assumed that direct radiation dose from operation of the Unit and storage of radioactive material, and dose from gaseous effluents due to activities within the Site Boundary is negligible for the Nearest Resident. The total Dose from the Uranium Fuel Cycle to the Nearest Resident is calculated using the methodology discussed in Section 3, using concurrent meteorological data for the location of the Nearest Resident with the highest value of X/Q.

48 NUREG-0543,Section III, page 8 49 NUREG-0543,Section IV, page 9 50 NUREG-0133, Section 3.8 51 NUREG-0543,Section IV, page 9 52 NUREG-0543, section III, page 6 Page 24 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 The location of the Nearest Resident in each meteorological sector is determined from the Annual Land Use Census conducted in accordance with the Requirements of REC 16.11.4.2.

4.1.3. Total Dose to the Critical Receptor within the Site Boundary The Union Electric Company has entered into an agreement with the State of Missouri Department of Conservation for management of the residual lands surrounding the Callaway Plant, including some areas within the Site Boundary. Under the terms of this agreement, certain areas have been opened to the public for low intensity recreational uses (hunting, hiking, sightseeing, etc.) but recreational use is excluded in an area immediately surrounding the plant site (refer to Figure 4.1). Much of the residual lands within the Site Boundary are leased to area farmers by the Department of Conservation to provide income to support management and development costs. Activities conducted under these leases are primarily comprised of farming (animal feed), grazing, and forestry. Crops for human consumption are specifically prohibited by the lease.53,54,55 Based on the utilization of areas within the Site Boundary, it is reasonable to assume that the critical receptor within the Site Boundary is a farmer, and that his dose from activities within the Site Boundary is due to exposure incurred while conducting his farming activities. The previous tenant estimated that he spent approximately 1100 hours0.0127 days <br />0.306 hours <br />0.00182 weeks <br />4.1855e-4 months <br /> per year working the farm plots of the Reform Conservation Area.56 Any reevaluation of assumptions should consider only real receptors and real pathways using realistic assumptions, and should include a reevaluation of the occupancy period at the locations of real exposure (e.g. a real individual would not simultaneously exist at each point of maximum exposure).

4.1.3.1. Total Dose to the Farmer from Gaseous Effluents The Total Dose to the farmer from gaseous effluents is calculated for the adult age group using the methodology discussed in Section 3, utilizing historical meteorological data from Table 10 for activities within the Site Boundary. The Reform Conservation Area farm plots are leased to several different farmers therefore there is no dose calculation for the farmer's residence.

It is assumed that food ingestion pathways do not exist within the Site Boundary, therefore the gaseous effluents dose within the Site Boundary is due to plume exposure from Noble Gases and the ground plane and inhalation pathways.

4.1.3.1.1. Direct Radiation Dose 53 Environmental Report, OLS, Section 2.1.2.3 54 Environmental Report, OLS, Section 2.1.3.3.4 55 Management Agreement for the Public Use of Lands, Exhibit A.

56 Private communication, H.C. Lindeman & B.F.Holderness, August 6, 1986 Page 25 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 The direct radiation dose to the Member of Public due to activities within the Site Boundary is insignificant.57,58 57 HPCI 1206 58 HPCI 1505 Page 26 of 86 INFORMATION USE December, 2020

APA-22-01003 Rev. 025 ME'IEOROLOOICAL TOWER~

SITE BOUNDARY r'Z2J CLOSED TO PUBLIC USE I llN IOIID SCALE IN 3111 fll'T N

UNION ELECTRIC CO.

CALLAWAY PLANT SITE AREA CLOSED JOO I 300 HO TO PUBLIC USE SCALE IN FEET FIGURE 4.1 REV. 6 Page 27 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025

5. Radiological Environmental Monitoring 5.1. Description Of The Radiological Environmental Monitoring Program The Radiological Environmental Monitoring Program is intended to provide background data for pre- operation and to supplement the radiological effluent release monitoring program during plant operation. Radiation exposure to the public from the various specific pathways and direct radiation is evaluated by this program.

Some deviations from the sampling frequency may be necessary due to seasonal unavailability, hazardous conditions, or other legitimate reasons. Efforts are made to obtain all required samples within the required time frame. Any deviation(s) in sampling frequency or location is documented in the Annual Radiological Environmental Operating Report.

Sampling, reporting, and analytical requirements are given in FSAR-SP Tables 16.11-7, 16.11-8, and 16.11-9.

Airborne, waterborne, direct radiation, and ingestion samples collected under the monitoring program are analyzed by an independent, third-party laboratory. With the exception of direct radiation, the laboratory is required to participate in an Interlaboratory Analyses Program per Reg. Guide 4.15.59 The laboratory participates in an Interlaboratory crosscheck program administered by Environmental Resources Associates (ERA), Mixed Analyte Performance Evaluation Program (MAPEP), or equivalent program. This participation includes all of the determinations (sample medium - radionuclide combination) that are both offered by ERA and/or MAPEP and are also included in the environmental monitoring program.

5.2. Performance Testing Of Environmental Thermoluminescence Dosimeters Dosimeters used for monitoring of direct radiation dose in the Radiological Environmental Monitoring Program are tested for accuracy and precision to demonstrate compliance with the applicable portions of Regulatory Guide 4.13.

6. Annual Average Atmospheric Dispersion Parameters 6.1. Annual Atmospheric Dispersion Parameters The dispersion values presented in Table 10 were determined through the analysis of five years of on-site meteorological data.60 The straight-line Gaussian dispersion model XOQDOQ61 was used for determination of the long-term atmospheric dispersion parameters.

A more detailed discussion of the methodology and input data utilized to calculate these parameters can be found in HPCI 1503.

6.1.1. Determination of Dispersion Estimates for Special Receptor Locations 59 Regulatory Guide 4.15, rev. 1, section 6.3.2 60 HPCI 1503 61 NUREG/CR2919 Page 28 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 XOQDOQ is utilized to obtain dispersion paramters for 22 standard distances. Dispersion parameters at the Site Boundary and at special receptor locations are estimated by logarithmic interpolation according to:62 X = X 1 d/d1 B

Eq. 26 Where:

ln X 2 /X 1 B

ln d2 /d1 Eq. 27 1, 2 are the atmospheric dispersion parameters at distance d1and d2, respectively, from the source. The distances d1 and d2 are selected such that they satisfy the relationship d1<d<d2.

6.1.2. Atmospheric Dispersion Parameters for Farming Areas within the Site Boundary The dispersion parameters for farming areas within the Site Boundary are intended for a narrow scope application; that of calculating the dose to the current farmer63 from gaseous effluents while he conducts farming activities within the Site Boundary.

For the purpose of these calculations, it was assumed that all of the farmer's time, approximately 1100 hours0.0127 days <br />0.306 hours <br />0.00182 weeks <br />4.1855e-4 months <br /> per year, is spent on croplands of the Reform Conservation Area, including plots within the Site Boundary, and that his time is divided among the plots proportional to the acreage of each plot. Fractional acreage/time- weighted dispersion parameters were calculated for each plot as described in HPCI 1502. The weighted dispersion parameters for each plot were summed (according to type) in order to produce a composite value of the dispersion parameters which are presented in Table 10. These dispersion parameters therefore represent the distributed activities of the farmer within the Site Boundary and his estimated occupancy period.

6.2. Annual Meteorological Data Processing The annual atmospheric dispersion parameters utilized in the calculation of doses for demonstration of compliance with the numerical dose objectives of 10 CFR 50, Appendix I, are determined using XOQDOQ.64 Multiple sensors are utilized to ensure 90% valid data recovery for the wind speed, wind direction, and ambient air temperature parameters as required by Regulatory Guide 1.23. The selection hierarchy is presented in Table 13.

The input parameters to XOQDOQ are documented in HPCI 1503.

62 FSAR-SA 2.3.5.2.1.2 63 The farming plots are leased by the Missouri Department of Conservation to multiple farmers through a bidding process. This represents a composite of those persons farming the plots within the Site Boundary.

64 NUREG/CR-2919 Page 29 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 A quality check of the meteorological data is performed prior to processing to ensure the validity of the calculated dispersion parameters.

7. Reporting Requirements 7.1. Annual Radiological Environmental Operating Report The reporting requirements for the Annual Radiological Environmental Operating Report (AREOR) have been relocated to FSAR-SP 16.11.5.1.

7.2. Annual Radioactive Effluent Release Report The reporting requirements for the Annual Radioactive Effluent Release Report (ARERR) have been relocated to FSAR-SP 16.11.5.2. The application of atmospheric dispersion parameters in the ARERR is presented in Table 12.

8. Radioactive Effluent Controls (REC)

The Radioactive Effluent Controls were relocated to FSAR-SP Chapter 16.11,"Offsite Dose Calculation Manual Radioactive Effluent Controls". The former ODCM REC numbers appear on each of the RECs in FSAR-SP Chapter 16.11, and may be used as a cross-reference between the previous and the current numbering system if necessary.

9. Administrative Controls 9.1. Major Changes to Liquid and Gaseous Radwaste Treatment Systems A summary of Licensee-initiated major changes to the Radwaste Treatment Systems (liquid and gaseous) must be reported to the Commission in the Annual Radioactive Effluent Release Report (ARERR) for the period in which the evaluation was reviewed by the On-Site Review Committee (ORC). On site documentation must contain:

A summary of the evaluation that led to the determination that the change could be made in accordance with 10 CFR 50.59; Sufficient detailed information to totally support the reason for the change without benefit of additional or supplemental information; A detailed description of the equipment, components and process involved and the interfaces with other plant systems; An evaluation of the change, which shows the predicted releases of radioactive materials in liquid and gaseous effluents that differ from those previously predicted in the License application and amendments thereto; An evaluation of the change, which shows the expected maximum exposures to a Member of the Public in the Unrestricted Area and to the general population that differ from those previously estimated in the License application and amendments thereto; Page 30 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents, to the actual releases for the period prior to when the changes are to be made; An estimate of the exposure to plant operating personnel as a result of the change; and Documentation of the fact that the change was reviewed and found acceptable by the ORC.

Changes to the Radwaste Treatment Systems shall become effective upon review and approval by the ORC.

9.2. Changes to the Offsite Dose Calculation Manual (ODCM)

All changes to the ODCM shall be performed pursuant to T/S AC 5.5.1 Review for each revision of the ODCM must include the Radiation Protection Department.

10. Bibliography ANSI N42.18-2004, "Specification & Performance of On-Site Instrumentation for Continuously Monitoring Radioactivity in Effluents". (2004)

CAR 200700053 - " Missouri River Low Flow Trend for 2006", Attachments: Phase 1 Final Draft CDP-ZZ-00200, Appendix B, Primary Plant Systems Tables, rev. 41. April, 2018.

Certificate of Compliance No. 1040, Appendix A, Technical Specifications for the HI-STORM UMAX Canister Storage System. April, 2015.

EGG-PHY-9703, Technical Evaluation Report for the evaluation of ODCM Revision 0 (May, 1990) Callaway Plant, Unit 1, transmitted via letter, Samuel J. Collins (USNRC) to D. F.

Schnell (UE), dated July 12, 1996.

EPRI TR-1021106, Estimation of 14C in Nuclear Power Plant Effluents, December, 2010 Generic Letter 89-01, "Guidance for the Implementation of Programmatic Controls for RETS in the Administrative Controls Section of Technical Specifications and the Relocation of Procedural Details of Current RETS to the Offsite Dose Calculation Manual or Process Control Program", US Nuclear Regulatory Commission. (1989)

Hammer, Gregory, R., Climate of Missouri, monograph available from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA),

January, 2006 HPCI 8403, "Setpoints and Associated Bases for Process and Effluent Radioactivity Monitors (SP System)". June, 1984.

Page 31 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 HPCI 8710, "Methodology for Calculating the Response of Gross NaI(Tl) Monitors to Liquid Effluent Streams", rev. 1, April, 2005.

HPCI 8902, "Calculation of ODCM Dose Commitment Factors", rev. 0. September, 1989.

HPCI 9605, Calculation of Maximum Background Value for HB-RE-18, rev.0. September, 1996 HPCI 9905, Calculation of Setpoint for GL-RE-202, rev.0. April, 1999.

HPCI 0406 Calculation of Liquid Effluent Dose Commitment Factors (Ait) for the Adult Age Group, rev. 1. November, 2004.

HPCI 0509, Radiological Environmental Monitoring Program (REMP) Calculation of Direct Dose from RAM Storage at Stores II, rev. 0. April, 2005.

HPCI 0510, Radiological Environmental Monitoring Program (REMP) Calculation of Direct Dose from RAM Storage in the Radwaste Yard, rev. 0. April, 2005.

HPCI 0601, Equipment Hatch Platform and Missile Shield Modification Direct Dose Calculation to the Member of the Public, rev. 0. January, 2006.

HPCI 1003, Evaluation of the 2010 Land Use Census", rev. 0. December, 2010.

HPCI 1102, Dose to the Member of the Public from the Release of 14C in Gaseous Effluents for 2010, rev.0. July, 2011.

HPCI 1206, "Evaluation of Direct Radiation Dose to the Member of the Public Due to Activities within the site Boundary", rev. 0. August, 2012.

HPCI 1502, "Atmospheric Dispersion Parameters for Activities Inside the Site Boundary", rev.

1. October, 2020.

HPCI 1503, "Calculation of Long- Term Meteorological Dispersion Parameters", rev. 1. April, 2015 HPCI 1504, "Evaluation of the 2014 Annual Land Use Census", rev. 1. March, 2015 HPCI 1505, "Evaluation of Direct Radiation Dose to the Member of the Public from the Independent Spent Fuel Storage Facility", rev. 1. July, 2015.

HPCI 1508, Evaluation of the 2015 Land Use Census, rev.0. March, 2016.

HPCI 1604, " Calculation of 126Sb Ingestion Dose Commitment Factors (Ai)", rev. 1. January, 2018.

HPCI 1802, "Calculation of 117mSn Dose Commitment Factors (Ai) and Effluents Management Software (EMS) Nuclide Data for Liquid Effluents", rev. 0. May, 2018.

Page 32 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 IAEA Technical Reports Series no. 421, Management of Waste Containing Tritium and Carbon- 14, 2004 Internal USNRC memo, F. J. Congel to V. L. Miller, et al, dated April 17, 1992.

Kunz, C., Carbon-14 Discharge at Three Light- Water Reactors, Health Physics, vol. 49, pages 25- 35, 1985 LDCN 18-0006, "Remove BMRE52 from FSAR-SP Tables 16.11-2 and 16.11-3", BT 201805280 Letter, F. J. Congel to J. F. Schmidt, dated April 23, 1992.

Letter, F. J. Congel to J. F. Schmidt, dated December 9, 1991.

Letter, F. J. Congel to J. F. Schmidt, dated June 8, 1993.

Letter, F. J. Congel to J. F. Schmidt, dated September 14, 1992.

Management Agreement for the Public Use of Lands, Union Electric Company and the State of Missouri Department of Conservation, January 15, 2009.

Memo, F. J. Congel, "Eigth Set of Questions and Answers on 10 CFR Part 20", May 26, 1994.

Modification MP 19-0114, "Retire BMRE0052". October 7, 2019.

NCRP Report 81, Carbon-14 in the Environment, January 1985 Neeb, Karl- Heinz, The Radiochemistry of Nuclear Power Plants with Light Water Reactors, Walter de Gruyter, Berlin, 1997 NEO-54, memo, D. W. Capone to S. E. Miltenberger, dated January 5, 1983; Union Electric Company correspondence.

NUREG-0017, Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors PWR-GALE Code, April, 1985 NUREG-0133, Preparation of Radiological Effluent Technical Specification for Nuclear Power Plants", U.S. Nuclear Regulatory Commission. (1978)

NUREG-0543, "Methods for Demonstrating LWR Compliance with the EPA Uranium Fuel Cycle Standard (40 CFR Part 190)", U. S. Nuclear Regulatory Commission. (1980)

NUREG-1301, Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors, Generic Letter 89-01, Supplement No. 1, April, 1991 NUREG/CR-2919, "XOQDOQ, Computer Program For the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations", U.S. Nuclear Regulatory Commission. (1982)

Page 33 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 NUREG/CR-6204, "Questions and Answers Based on Revised 10 CFR 20", May, 1994 Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, U. S. Nuclear Regulatory Commission. (1977)

Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors", Revision 1, U. S.

Nuclear Regulatory Commission. (1977)

Regulatory Guide 1.21, Measuring, Evaluating, and Reporting Radioactive Material in Liquid and Gaseous Effluents and Solid Waste, (Revision 2), U. S. Nuclear Regulatory Commission.

(2009)

Regulatory Guide 4.13, "Performance, Testing, and procedural specifications for Thermoluminescence Dosimetry: Environmental Applications "(Revision 1), U. S. Nuclear Regulatory Commission. (1977)

Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment (Revision 1), U. S. Nuclear Regulatory Commission. (1979)

State of Missouri National Pollutant Discharge Elimination System (NPDES) Permit MO-0098001, Ameren Missouri Callaway Energy Center, July 1, 2020.

Statements of Consideration, Federal Register, Vol. 56, No. 98, Tuesday, May 21, 1991, Subpart D, page 23374.

Title 10, "Energy", Chapter 1, Code of Federal Regulations, Part 20; U.S. Government Printing Office, Washington, D.C. 20402.

Title 10, "Energy", Chapter 1, Code of Federal Regulations, Part 72, Subpart F; U.S.

Government Printing Office, Washington, D.C. 20402.

Title 10, "Energy", Chapter 1, Code of Federal Regulations, Part 50, Appendix I; U.S.

Government Printing Office, Washington, D.C. 20402.

Title 40, "Protection of Environment", Chapter 1, Code of Federal Regulations, Part 190; U.S.

Government Print Office, Washington, D.C. 20402.

Union Electric Company Callaway Plant Environmental Report, Operating License Stage Union Electric Company Callaway Plant, Unit 1, Final Safety Analysis Report- Standard Plant UOTH 83-58, Documentation of ODCM Dose Factors and Parameters. (1983)

UOTH 20200008, "Justification to support removal of Radiation Monitor BM-RE-052 from FSAR-SP Chapter 16.11". (2020)

Page 34 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 USNRC Inspection Report 50-483/92002(DRSS), Section 5, page 5.

Westinghouse Calculation Note CN-TA-02-135, Callaway (SCP) RSG IGOR/RETRAN Base Deck, May 16, 2003 ZZ-250, Rev. 1, "ODCM Gaseous Pathway Dose Factors for Child Age Group and Ground Plane Dose Factors". (1998)

ZZ-48, "Calculation of Inhalation and Ingestion Dose Commitment Factors for the Adult and Child". (1988)

ZZ-57, "Dose Factors for Eu-154". (1989)

ZZ-78, Rev. 2, "ODCM Gaseous Pathway Dose Factors for Adult Age Group". (1992)

Page 35 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 1: Ingestion Dose Commitment Values (Ai) for Adult Age Group65 (mrem/hr) per (µCi/ml)

Total Nuclide Bone Liver Thyroid Kidney Lung GILLI Body 3

H 0.00E+00 2.26E01 2.26E01 2.26E01 2.26E01 2.26E01 2.26E01 7

Be 1.31E02 2.98E02 1.45E02 0.00E+00 3.15E02 0.00E+00 5.17E+00 24 Na 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.07E+02 4.07E+02 51 Cr 0.00E+00 0.00E+00 1.27E+00 7.61E01 2.81E01 1.69E+00 3.20E+02 54 Mn 0.00E+00 4.38E+03 8.35E+02 0.00E+00 1.30E+03 0.00E+00 1.34E+04 56 Mn 0.00E+00 1.10E+02 1.95E+01 0.00E+00 1.40E+02 0.00E+00 3.51E+03 55 Fe 6.58E+02 4.55E+02 1.06E+02 0.00E+00 0.00E+00 2.54E+02 2.61E+02 59 Fe 1.04E+03 2.44E+03 9.36E+02 0.00E+00 0.00E+00 6.82E+02 8.14E+03 57 Co 0.00E+00 2.09E+01 3.48E+01 0.00E+00 0.00E+00 0.00E+00 5.31E+02 58 Co 0.00E+00 8.92E+01 2.00E+02 0.00E+00 0.00E+00 0.00E+00 1.81E+03 60 Co 0.00E+00 2.56E+02 5.65E+02 0.00E+00 0.00E+00 0.00E+00 4.81E+03 63 Ni 3.11E+04 2.16E+03 1.04E+03 0.00E+00 0.00E+00 0.00E+00 4.50E+02 65 Ni 1.26E+02 1.64E+01 7.49E+00 0.00E+00 0.00E+00 0.00E+00 4.17E+02 64 Cu 0.00E+00 9.97E+00 4.68E+00 0.00E+00 2.51E+01 0.00E+00 8.50E+02 65 Zn 2.32E+04 7.37E+04 3.33E+04 0.00E+00 4.93E+04 0.00E+00 4.64E+04 69 Zn 4.93E+01 9.43E+01 6.56E+00 0.00E+00 6.13E+01 0.00E+00 1.42E+01 82 Br 0.00E+00 0.00E+00 2.27E+03 0.00E+00 0.00E+00 0.00E+00 2.60E+03 83 Br 0.00E+00 0.00E+00 4.04E+01 0.00E+00 0.00E+00 0.00E+00 5.82E+01 84 Br 0.00E+00 0.00E+00 5.24E+01 0.00E+00 0.00E+00 0.00E+00 4.11E04 85 Br 0.00E+00 0.00E+00 2.15E+00 0.00E+00 0.00E+00 0.00E+00 1.01E15 86 Rb 0.00E+00 1.01E+05 4.71E+04 0.00E+00 0.00E+00 0.00E+00 1.99E+04 88 Rb 0.00E+00 2.90E+02 1.54E+02 0.00E+00 0.00E+00 0.00E+00 4.00E09 89 Rb 0.00E+00 1.92E+02 1.35E+02 0.00E+00 0.00E+00 0.00E+00 1.12E11 89 Sr 2.21E+04 0.00E+00 6.35E+02 0.00E+00 0.00E+00 0.00E+00 3.55E+03 90 Sr 5.44E+05 0.00E+00 1.34E+05 0.00E+00 0.00E+00 0.00E+00 1.57E+04 91 Sr 4.07E+02 0.00E+00 1.64E+01 0.00E+00 0.00E+00 0.00E+00 1.94E+03 92 Sr 1.54E+02 0.00E+00 6.68E+00 0.00E+00 0.00E+00 0.00E+00 3.06E+03 90 Y 5.76E01 0.00E+00 1.54E02 0.00E+00 0.00E+00 0.00E+00 6.10E+03 91m Y 5.44E03 0.00E+00 2.11E04 0.00E+00 0.00E+00 0.00E+00 1.60E02 91 Y 8.44E+00 0.00E+00 2.26E01 0.00E+00 0.00E+00 0.00E+00 4.64E+03 92 Y 5.06E02 0.00E+00 1.48E03 0.00E+00 0.00E+00 0.00E+00 8.86E+02 93 Y 1.60E01 0.00E+00 4.43E03 0.00E+00 0.00E+00 0.00E+00 5.09E+03 95 Zr 2.40E01 7.70E02 5.21E02 0.00E+00 1.21E01 0.00E+00 2.44E+02 Page 36 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 1: Ingestion Dose Commitment Values (Ai) for Adult Age Group (mrem/hr) per (µCi/ml)

Total Nuclide Bone Liver Thyroid Kidney Lung GILLI Body 97 Zr 1.33E02 2.68E03 1.22E03 0.00E+00 4.04E03 0.00E+00 8.30E+02 95 Nb 4.47E+02 2.48E+02 1.34E+02 0.00E+00 2.46E+02 0.00E+00 1.51E+06 99 Mo 0.00E+00 1.03E+02 1.96E+01 0.00E+00 2.34E+02 0.00E+00 2.39E+02 99m Tc 8.87E03 2.51E02 3.19E01 0.00E+00 3.81E01 1.23E02 1.48E+01 101 Tc 9.12E03 1.31E02 1.29E01 0.00E+00 2.37E01 6.72E03 3.95E14 103 Ru 4.43E+00 0.00E+00 1.91E+00 0.00E+00 1.69E+01 0.00E+00 5.17E+02 105 Ru 3.69E01 0.00E+00 1.46E01 0.00E+00 4.76E+00 0.00E+00 2.26E+02 106 Ru 6.58E+01 0.00E+00 8.33E+00 0.00E+00 1.27E+02 0.00E+00 4.26E+03 109 Cd 0.00E+00 5.55E+02 1.94E+01 0.00E+00 5.31E+02 0.00E+00 5.60E+03 110m Ag 8.85E01 8.18E01 4.86E01 0.00E+00 1.61E+00 0.00E+00 3.34E+02 113 Sn 5.67E+04 1.61E+03 3.26E+03 9.19E+02 0.00E+00 0.00E+00 1.69E+05 117m Sn 2.79E+03 1.62E+02 6.99E+02 5.21E+01 0.00E+00 0.00E+00 0.00E+00 122 Sb 5.48E01 1.12E02 1.66E01 7.73E03 0.00E+00 2.94E01 0.00E+00 124 Sb 6.70E+00 1.27E01 2.66E+00 1.63E02 0.00E+00 5.22E+00 1.90E+02 125 Sb 4.29E+00 4.79E02 1.02E+00 4.36E03 0.00E+00 3.30E+00 4.72E+01 126 Sb 2.75E+00 5.59E02 9.92E01 1.68E02 0.00E+00 1.68E+00 2.25E+02 127m Te 6.48E+03 2.32E+03 7.90E+02 1.66E+03 2.63E+04 0.00E+00 2.17E+04 127 Te 1.05E+02 3.78E+01 2.28E+01 7.80E+01 4.29E+02 0.00E+00 8.31E+03 129m Te 1.10E+04 4.11E+03 1.74E+03 3.78E+03 4.60E+04 0.00E+00 5.54E+04 129 Te 3.01E+01 1.13E+01 7.33E+00 2.31E+01 1.26E+02 0.00E+00 2.27E+01 131m Te 1.66E+03 8.10E+02 6.75E+02 1.28E+03 8.21E+03 0.00E+00 8.04E+04 131 Te 1.89E+01 7.88E+00 5.96E+00 1.55E+01 8.26E+01 0.00E+00 2.67E+00 132 Te 2.41E+03 1.56E+03 1.47E+03 1.72E+03 1.50E+04 0.00E+00 7.38E+04 130 I 2.71E+01 8.01E+01 3.16E+01 6.79E+03 1.25E+02 0.00E+00 6.89E+01 131 I 1.49E+02 2.14E+02 1.22E+02 7.00E+04 3.66E+02 0.00E+00 5.64E+01 132 I 7.29E+00 1.95E+01 6.82E+00 6.82E+02 3.11E+01 0.00E+00 3.66E+00 133 I 5.14E+01 8.87E+01 2.70E+01 1.30E+04 1.55E+02 0.00E+00 7.97E+01 134 I 3.81E+00 1.03E+01 3.70E+00 1.79E+02 1.64E+01 0.00E+00 9.01E03 135 I 1.59E+01 4.17E+01 1.54E+01 2.75E+03 6.68E+01 0.00E+00 4.70E+01 134 Cs 2.98E+05 7.09E+05 5.79E+05 0.00E+00 2.29E+05 7.61E+04 1.24E+04 136 Cs 3.12E+04 1.23E+05 8.86E+04 0.00E+00 6.85E+04 9.38E+03 1.40E+04 137 Cs 3.82E+05 5.22E+05 3.42E+05 0.00E+00 1.77E+05 5.89E+04 1.01E+04 138 Cs 2.64E+02 5.22E+02 2.59E+02 0.00E+00 3.84E+02 3.79E+01 2.23E03 139 Ba 9.29E01 6.62E04 2.72E02 0.00E+00 6.19E04 3.75E04 1.65E+00 65 UOTH 8358, Calculation 8800200F, ZZ48, ZZ57, ZZ78, HPCI 8902, HPCI 0406, HPCI 1604, HPCI 1802.

Page 37 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 1: Ingestion Dose Commitment Values (Ai) for Adult Age Group (mrem/hr) per (µCi/ml)

Total Nuclide Bone Liver Thyroid Kidney Lung GILLI Body 140 Ba 1.94E+02 2.44E01 1.27E+01 0.00E+00 8.30E02 1.40E01 4.00E+02 141 Ba 4.51E01 3.41E04 1.52E02 0.00E+00 3.17E04 1.93E04 2.13E10 142 Ba 2.04E01 2.10E04 1.28E02 0.00E+00 1.77E04 1.19E04 2.87E19 140 La 1.50E01 7.54E02 1.99E02 0.00E+00 0.00E+00 0.00E+00 5.54E+03 142 La 7.66E03 3.48E03 8.68E04 0.00E+00 0.00E+00 0.00E+00 2.54E+01 141 Ce 2.24E02 1.52E02 1.72E03 0.00E+00 7.04E03 0.00E+00 5.79E+01 143 Ce 3.95E03 2.92E+00 3.23E04 0.00E+00 1.29E03 0.00E+00 1.09E+02 144 Ce 1.17E+00 4.88E01 6.27E02 0.00E+00 2.90E01 0.00E+00 3.95E+02 143 Pr 5.51E01 2.21E01 2.73E02 0.00E+00 1.27E01 0.00E+00 2.41E+03 144 Pr 1.80E03 7.48E04 9.16E05 0.00E+00 4.22E04 0.00E+00 2.59E10 147 Nd 3.76E01 4.35E01 2.60E02 0.00E+00 2.54E01 0.00E+00 2.09E+03 154 Eu 3.68E+01 4.52E+00 3.22E+00 0.00E+00 2.17E+01 0.00E+00 3.28E+03 181 Hf 4.00E02 1.94E01 1.80E02 0.00E+00 4.18E02 0.00E+00 2.21E+02 187 W 2.96E+02 2.47E+02 8.65E+01 0.00E+00 0.00E+00 0.00E+00 8.10E+04 237 Np 3.28E+04 2.85E+03 1.33E+03 0.00E+00 9.86E+03 0.00E+00 1.90E+03 239 Np 2.85E02 2.80E03 1.54E03 0.00E+00 8.74E03 0.00E+00 5.75E+02 238 Pu 5.70E+03 8.03E+02 1.43E+02 0.00E+00 6.13E+02 0.00E+00 6.12E+02 239 Pu* 6.59E+03 8.88E+02 1.60E+02 0.00E+00 6.80E+02 0.00E+00 5.68E+02 241 Pu 1.38E+02 7.07E+00 2.78E+00 0.00E+00 1.28E+01 0.00E+00 1.17E+01 241 Am 4.90E+04 1.72E+04 3.24E+03 0.00E+00 2.44E+04 0.00E+00 4.44E+03 242 Cm 1.23E+03 1.26E+03 8.20E+01 0.00E+00 3.72E+02 0.00E+00 4.74E+03 243 Cm** 3.82E+04 1.44E+04 2.24E+03 0.00E+00 1.05E+04 0.00E+00 4.67E+03

  • Includes 240Pu contribution
    • Includes 244Cm contribution Page 38 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 2: Bioaccumulation Factor (Bfi) 66 (pCi/kg) per (pCi/liter)

Element Bfi Fish (Freshwater) Element Bfi Fish (Freshwater)

H 9.0 E 01 Rh 1.0 E + 01 Be 2.0 E + 00 Ag 2.3 E + 00 Na 1.0 E + 02 Cd 2.0 E + 02 Cr 2.0 E + 02 Sn 3.0 E + 03 Mn 4.0 E + 02 Sb 1.0 E + 00 Fe 1.0 E + 02 Te 4.0 E + 02 Co 5.0 E + 01 I 1.5 E + 01 Ni 1.0 E + 02 Cs 2.0 E + 03 Cu 5.0 E + 01 Ba 4.0 E + 00 Zn 2.0 E + 03 La 2.5 E + 01 Br 4.2 E + 02 Ce 1.0 E + 00 Rb 2.0 E + 03 Pr 2.5 E + 01 Sr 3.0 E + 01 Nd 2.5 E + 01 Y 2.5 E + 01 Eu 2.5 E + 01 Zr 3.3 E + 00 Hf 3.3 E + 00 Nb 3.0 E + 04 W 1.2 E + 03 Mo 1.0 E + 01 Np 1.0 E + 01 Tc 1.5 E + 01 Pu 3.5 E + 00 Ru 1.0 E + 01 Am 2.5 E + 01 Cm 2.5 E + 01 66 Values from Regulatory Guide 1.109, Rev. 1, Table A-1 and HPCI 0406.

Page 39 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 3: Dose Factor for Exposure to a Semi Infinite Cloud of Noble Gases67 Total Body Dose Factor Skin Dose Factor Gamma Air Dose Factor Beta Air Dose Factor Radionuclide Ki Li Mi Ni (mrem/yr) per (Ci/m3) (mrem/yr) per (Ci/m3) (mrad/yr) per (Ci/m3) (mrad/yr) per (Ci/m3) 83m Kr 7.56 E02 1.93 E+01 2.88 E+02 85m Kr 1.17E+03 1.46E+03 1.23 E+03 1.97 E+03 85 Kr 1.61 E+01 1.34 E+03 1.72 E+01 1.95 E+03 87 Kr 5.92 E+03 9.73 E+03 6.17 E+03 1.03 E+04 88 Kr 1.47 E+04 2.37 E+03 1.52 E+04 2.93 E+03 89 Kr 1.66 E+04 1.01 E+04 1.73 E+04 1.06 E+04 90 Kr 1.56 E+04 7.29 E+03 1.63 E+04 7.83 E+03 131m Xe 9.15 E+01 4.76 E+02 1.56 E+02 1.11 E+03 133m Xe 2.51 E+02 9.94 E+02 3.27 E+02 1.48 E+03 133 Xe 2.94 E+02 3.06 E+02 3.53 E+02 1.05 E+03 135m Xe 3.12 E+03 7.11 E+02 3.36 E+03 7.39 E+02 135 Xe 1.81 E+03 1.86 E+03 1.92 E+03 2.46 E+03 137 Xe 1.42 E+03 1.22 E+04 1.51 E+03 1.27 E+04 138 Xe 8.83 E+03 4.13 E+03 9.21 E+03 4.75 E+03 41 Ar 8.84 E+03 2.69 E+03 9.30 E+03 3.28 E+03 67 Values from Reg. Guide 1.109, Table B1 multiplied by a units conversion factor of 1E6 to convert from pCi to µCi.

Page 40 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 4: Ground Plane Pathway Dose Factors (Ri)68 (m2mrem/yr) per (µCi/sec)

Nuclide Total Body Skin Nuclide Total Body Skin 3 113 H 0.00E+00 0.00E+00 Sn 1.43E+07 4.09E+07 7 124 Be 2.24E+07 3.21E+07 Sb 8.74E+08 1.23E+09 51 125 Cr 4.66E+06 5.51E+06 Sb 3.57E+09 5.19E+09 54 127m Mn 1.39E+09 1.63E+09 Te 9.17E+04 1.08E+05 55 129m Fe 0.00E+00 0.00E+00 Te 1.98E+07 2.31E+07 59 130 Fe 2.73E+08 3.21E+08 I 5.51E+06 6.69E+06 57 131 Co 2.98E+08 4.37E+08 I 1.72E+07 2.09E+07 58 132 Co 3.79E+08 4.44E+08 I 1.25E+06 1.47E+06 60 133 Co 2.15E+10 2.53E+10 I 2.45E+06 2.98E+06 63 134 Ni 0.00E+00 0.00E+00 I 4.47E+05 5.31E+05 65 135 Zn 7.47E+08 8.59E+08 I 2.53E+06 2.95E+06 86 134 Rb 8.99E+06 1.03E+07 Cs 6.85E+09 8.00E+09 89 136 Sr 2.16E+04 2.51E+04 Cs 1.51E+08 1.71E+08 90 137 Sr 0.00E+00 0.00E+00 Cs 1.03E+10 1.20E+10 90 140 Y 5.36E+06 6.32E+06 Ba 2.05E+07 2.35E+07 91 140 Y 1.07E+06 1.21E+06 La 1.47E+08 1.66E+08 95 141 Zr 2.45E+08 2.84E+08 Ce 1.37E+07 1.54E+07 95 144 Nb 2.50E+08 2.94E+08 Ce 6.96E+07 8.04E+07 103 143 Ru 1.08E+08 1.26E+08 Pr 0.00E+00 0.00E+00 106 144 Ru 4.22E+08 5.07E+08 Pr 4.35E+07 5.00E+07 110m 147 Ag 3.44E+09 4.01E+09 Nd 8.39E+06 1.01E+07 109 154 Cd 3.76E+07 1.54E+08 Eu 2.21E+10 3.15E+10 181 Hf 1.97E+08 2.82E+08 68 ZZ250, rev. 1 Page 41 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 5: Child Inhalation Pathway Dose Factors (Ri)69 (mrem/yr) per (µCi/m3)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H 0.00E+00 1.12E+03 1.12E+03 1.12E+03 1.12E+03 1.12E+03 1.12E+03 7

Be 8.47E+02 1.44E+03 9.25E+02 0.00E+00 0.00E+00 6.47E+04 2.55E+03 51 Cr 0.00E+00 0.00E+00 1.54E+02 8.55E+01 2.43E+01 1.70E+04 1.08E+03 54 Mn 0.00E+00 4.29E+04 9.51E+03 0.00E+00 1.00E+04 1.58E+06 2.29E+04 55 Fe 4.74E+04 2.52E+04 7.77E+03 0.00E+00 0.00E+00 1.11E+05 2.87E+03 59 Fe 2.07E+04 3.34E+04 1.67E+04 0.00E+00 0.00E+00 1.27E+06 7.07E+04 57 Co 0.00E+00 9.03E+02 1.07E+03 0.00E+00 0.00E+00 5.07E+05 1.32E+04 58 Co 0.00E+00 1.77E+03 3.16E+03 0.00E+00 0.00E+00 1.11E+06 3.44E+04 60 Co 0.00E+00 1.31E+04 2.26E+04 0.00E+00 0.00E+00 7.07E+06 9.62E+04 63 Ni 8.21E+05 4.63E+04 2.80E+04 0.00E+00 0.00E+00 2.75E+05 6.33E+03 65 Zn 4.25E+04 1.13E+05 7.03E+04 0.00E+00 7.14E+04 9.95E+05 1.63E+04 86 Rb 0.00E+00 1.98E+05 1.14E+05 0.00E+00 0.00E+00 0.00E+00 7.99E+03 89 Sr 5.99E+05 0.00E+00 1.72E+04 0.00E+00 0.00E+00 2.16E+06 1.67E+05 90 Sr 1.01E+08 0.00E+00 6.44E+06 0.00E+00 0.00E+00 1.48E+07 3.43E+05 90 Y 4.11E+03 0.00E+00 1.11E+02 0.00E+00 0.00E+00 2.62E+05 2.68E+05 91 Y 9.14E+05 0.00E+00 2.44E+04 0.00E+00 0.00E+00 2.63E+06 1.84E+05 95 Zr 1.90E+05 4.18E+04 3.70E+04 0.00E+00 5.96E+04 2.23E+06 6.11E+04 95 Nb 2.35E+04 9.18E+03 6.55E+03 0.00E+00 8.62E+03 6.14E+05 3.70E+04 103 Ru 2.79E+03 0.00E+00 1.07E+03 0.00E+00 7.03E+03 6.62E+05 4.48E+04 106 Ru 1.36E+05 0.00E+00 1.69E+04 0.00E+00 1.84E+05 1.43E+07 4.29E+05 110m Ag 1.69E+04 1.14E+04 9.14E+03 0.00E+00 2.12E+04 5.48E+06 1.00E+05 109 Cd 0.00E+00 5.48E+05 2.59E+04 0.00E+00 4.96E+05 1.05E+06 2.78E+04 113 Sn 1.13E+05 3.12E+03 8.62E+03 2.33E+03 0.00E+00 1.46E+06 2.26E+05 124 Sb 5.74E+04 7.40E+02 2.00E+04 1.26E+02 0.00E+00 3.24E+06 1.64E+05 125 Sb 9.84E+04 7.59E+02 2.07E+04 9.10E+01 0.00E+00 2.32E+06 4.03E+04 127m Te 2.49E+04 8.55E+03 3.02E+03 6.07E+03 6.36E+04 1.48E+06 7.14E+04 129m Te 1.92E+04 6.85E+03 3.04E+03 6.33E+03 5.03E+04 1.76E+06 1.82E+05 69 ZZ250, rev. 1 Page 42 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 5: Child Inhalation Pathway Dose Factors (Ri)

(mrem/yr) per (µCi/m3)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 8.18E+03 1.64E+04 8.44E+03 1.85E+06 2.45E+04 0.00E+00 5.11E+03 131 I 4.81E+04 4.81E+04 2.73E+04 1.62E+07 7.88E+04 0.00E+00 2.84E+03 132 I 2.12E+03 4.07E+03 1.88E+03 1.94E+05 6.25E+03 0.00E+00 3.20E+03 133 I 1.66E+04 2.03E+04 7.70E+03 3.85E+06 3.38E+04 0.00E+00 5.48E+03 134 I 1.17E+03 2.16E+03 9.95E+02 5.07E+04 3.30E+03 0.00E+00 9.55E+02 135 I 4.92E+03 8.73E+03 4.14E+03 7.92E+05 1.34E+04 0.00E+00 4.44E+03 134 Cs 6.51E+05 1.01E+06 2.25E+05 0.00E+00 3.30E+05 1.21E+05 3.85E+03 136 Cs 6.51E+04 1.71E+05 1.16E+05 0.00E+00 9.55E+04 1.45E+04 4.18E+03 137 Cs 9.07E+05 8.25E+05 1.28E+05 0.00E+00 2.82E+05 1.04E+05 3.62E+03 140 Ba 7.40E+04 6.48E+01 4.33E+03 0.00E+00 2.11E+01 1.74E+06 1.02E+05 140 La 6.44E+02 2.25E+02 7.55E+01 0.00E+00 0.00E+00 1.83E+05 2.26E+05 141 Ce 3.92E+04 1.95E+04 2.90E+03 0.00E+00 8.55E+03 5.44E+05 5.66E+04 144 Ce 6.77E+06 2.12E+06 3.61E+05 0.00E+00 1.17E+06 1.20E+07 3.89E+05 143 Pr 1.85E+04 5.55E+03 9.14E+02 0.00E+00 3.00E+03 4.33E+05 9.73E+04 144 Pr 5.96E02 1.85E02 3.00E03 0.00E+00 9.77E03 1.57E+03 1.97E+02 147 Nd 1.08E+04 8.73E+03 6.81E+02 0.00E+00 4.81E+03 3.28E+05 8.21E+04 154 Eu 1.01E+07 9.21E+05 8.40E+05 0.00E+00 4.03E+06 6.14E+06 1.10E+05 181 Hf 2.78E+04 1.01E+05 1.25E+04 0.00E+00 2.05E+04 1.06E+06 6.62E+04 Page 43 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 6: Child Grass Cow - Milk Pathway Dose Factors (Ri)70 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H 0.00E+00 1.57E+03 1.57E+03 1.57E+03 1.57E+03 1.57E+03 1.57E+03 7

Be 7.50E+03 1.28E+04 8.20E+03 0.00E+00 1.25E+04 0.00E+00 7.12E+05 51 Cr 0.00E+00 0.00E+00 1.02E+05 5.66E+04 1.55E+04 1.03E+05 5.40E+06 54 Mn 0.00E+00 2.10E+07 5.59E+06 0.00E+00 5.89E+06 0.00E+00 1.76E+07 55 Fe 1.12E+08 5.94E+07 1.84E+07 0.00E+00 0.00E+00 3.36E+07 1.10E+07 59 Fe 1.20E+08 1.95E+08 9.70E+07 0.00E+00 0.00E+00 5.64E+07 2.03E+08 57 Co 0.00E+00 3.84E+06 7.78E+06 0.00E+00 0.00E+00 0.00E+00 3.15E+07 58 Co 0.00E+00 1.21E+07 3.72E+07 0.00E+00 0.00E+00 0.00E+00 7.08E+07 60 Co 0.00E+00 4.32E+07 1.27E+08 0.00E+00 0.00E+00 0.00E+00 2.39E+08 63 Ni 2.97E+10 1.59E+09 1.01E+09 0.00E+00 0.00E+00 0.00E+00 1.07E+08 65 Zn 4.14E+09 1.10E+10 6.86E+09 0.00E+00 6.95E+09 0.00E+00 1.94E+09 86 Rb 0.00E+00 8.78E+09 5.40E+09 0.00E+00 0.00E+00 0.00E+00 5.65E+08 89 Sr 6.63E+09 0.00E+00 1.89E+08 0.00E+00 0.00E+00 0.00E+00 2.57E+08 90 Sr 1.12E+11 0.00E+00 2.84E+10 0.00E+00 0.00E+00 0.00E+00 1.51E+09 90 Y 3.38E+03 0.00E+00 9.05E+01 0.00E+00 0.00E+00 0.00E+00 9.62E+06 91 Y 3.91E+04 0.00E+00 1.04E+03 0.00E+00 0.00E+00 0.00E+00 5.20E+06 95 Zr 3.84E+03 8.43E+02 7.51E+02 0.00E+00 1.21E+03 0.00E+00 8.80E+05 95 Nb 3.72E+05 1.45E+05 1.03E+05 0.00E+00 1.36E+05 0.00E+00 2.68E+08 103 Ru 4.29E+03 0.00E+00 1.65E+03 0.00E+00 1.08E+04 0.00E+00 1.11E+05 106 Ru 9.25E+04 0.00E+00 1.15E+04 0.00E+00 1.25E+05 0.00E+00 1.44E+06 110m Ag 2.09E+08 1.41E+08 1.13E+08 0.00E+00 2.63E+08 0.00E+00 1.68E+10 109 Cd 0.00E+00 3.86E+06 1.79E+05 0.00E+00 3.45E+06 0.00E+00 1.25E+07 113 Sn 6.11E+08 1.26E+07 3.48E+07 9.29E+08 0.00E+00 0.00E+00 4.32E+08 124 Sb 1.09E+08 1.41E+06 3.81E+07 2.40E+05 0.00E+00 6.03E+07 6.80E+08 125 Sb 8.71E+07 6.72E+05 1.83E+07 8.07E+04 0.00E+00 4.86E+07 2.08E+08 127m Te 2.08E+08 5.61E+07 2.47E+07 4.98E+07 5.94E+08 0.00E+00 1.69E+08 129m Te 2.72E+08 7.59E+07 4.22E+07 8.76E+07 7.98E+08 0.00E+00 3.31E+08 70 ZZ250, rev. 1 Page 44 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 6: Child Grass Cow - Milk Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 1.73E+06 3.50E+06 1.80E+06 3.85E+08 5.23E+06 0.00E+00 1.64E+06 131 I 1.30E+09 1.31E+09 7.46E+08 4.34E+11 2.15E+09 0.00E+00 1.17E+08 132 I 6.92E01 1.27E+00 5.85E01 5.90E+01 1.95E+00 0.00E+00 1.50E+00 133 I 1.72E+07 2.13E+07 8.05E+06 3.95E+09 3.54E+07 0.00E+00 8.57E+06 134 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 135 I 5.41E+04 9.74E+04 4.61E+04 8.63E+06 1.49E+05 0.00E+00 7.42E+04 134 Cs 2.27E+10 3.72E+10 7.84E+09 0.00E+00 1.15E+10 4.14E+09 2.00E+08 136 Cs 1.01E+09 2.78E+09 1.80E+09 0.00E+00 1.48E+09 2.21E+08 9.78E+07 137 Cs 3.23E+10 3.09E+10 4.56E+09 0.00E+00 1.01E+10 3.62E+09 1.93E+08 140 Ba 1.17E+08 1.03E+05 6.84E+06 0.00E+00 3.34E+04 6.12E+04 5.94E+07 140 La 1.78E+02 6.23E+01 2.10E+01 0.00E+00 0.00E+00 0.00E+00 1.74E+06 141 Ce 2.19E+04 1.09E+04 1.62E+03 0.00E+00 4.79E+03 0.00E+00 1.36E+07 144 Ce 1.62E+06 5.09E+05 8.67E+04 0.00E+00 2.82E+05 0.00E+00 1.33E+08 143 Pr 7.19E+02 2.16E+02 3.57E+01 0.00E+00 1.17E+02 0.00E+00 7.76E+05 144 Pr 5.04E+00 1.56E+00 2.53E01 0.00E+00 8.24E01 0.00E+00 3.35E+03 147 Nd 4.45E+02 3.61E+02 2.79E+01 0.00E+00 1.98E+02 0.00E+00 5.71E+05 154 Eu 9.43E+04 8.48E+03 7.75E+03 0.00E+00 3.73E+04 0.00E+00 1.97E+06 181 Hf 6.44E+02 2.35E+03 2.91E+02 0.00E+00 4.76E+02 0.00E+00 8.66E+05 Page 45 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 7: Child Grass Goat - Milk Pathway Dose Factors (Ri)71 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H 0.00E+00 3.20E+03 3.20E+03 3.20E+03 3.20E+03 3.20E+03 3.20E+03 7

Be 9.00E+02 1.53E+03 9.84E+02 0.00E+00 1.50E+03 0.00E+00 8.55E+04 51 Cr 0.00E+00 0.00E+00 1.22E+04 6.79E+03 1.85E+03 1.24E+04 6.48E+05 54 Mn 0.00E+00 2.52E+06 6.71E+05 0.00E+00 7.06E+05 0.00E+00 2.11E+06 55 Fe 1.45E+06 7.72E+05 2.39E+05 0.00E+00 0.00E+00 4.36E+05 1.43E+05 59 Fe 1.56E+06 2.53E+06 1.26E+06 0.00E+00 0.00E+00 7.34E+05 2.64E+06 57 Co 0.00E+00 4.61E+05 9.33E+05 0.00E+00 0.00E+00 0.00E+00 3.78E+06 58 Co 0.00E+00 1.46E+06 4.46E+06 0.00E+00 0.00E+00 0.00E+00 8.50E+06 60 Co 0.00E+00 5.19E+06 1.53E+07 0.00E+00 0.00E+00 0.00E+00 2.87E+07 63 Ni 3.56E+09 1.91E+08 1.21E+08 0.00E+00 0.00E+00 0.00E+00 1.28E+07 65 Zn 4.97E+08 1.32E+09 8.23E+08 0.00E+00 8.34E+08 0.00E+00 2.32E+08 86 Rb 0.00E+00 1.05E+09 6.48E+08 0.00E+00 0.00E+00 0.00E+00 6.78E+07 89 Sr 1.39E+10 0.00E+00 3.97E+08 0.00E+00 0.00E+00 0.00E+00 5.39E+08 90 Sr 2.35E+11 0.00E+00 5.95E+10 0.00E+00 0.00E+00 0.00E+00 3.16E+09 90 Y 4.06E+02 0.00E+00 1.09E+01 0.00E+00 0.00E+00 0.00E+00 1.15E+06 91 Y 4.69E+03 0.00E+00 1.25E+02 0.00E+00 0.00E+00 0.00E+00 6.25E+05 95 Zr 4.60E+02 1.01E+02 9.01E+01 0.00E+00 1.45E+02 0.00E+00 1.06E+05 95 Nb 4.46E+04 1.74E+04 1.24E+04 0.00E+00 1.63E+04 0.00E+00 3.21E+07 103 Ru 5.14E+02 0.00E+00 1.98E+02 0.00E+00 1.29E+03 0.00E+00 1.33E+04 106 Ru 1.11E+04 0.00E+00 1.38E+03 0.00E+00 1.50E+04 0.00E+00 1.73E+05 110m Ag 2.51E+07 1.69E+07 1.35E+07 0.00E+00 3.15E+07 0.00E+00 2.01E+09 109 Cd 0.00E+00 4.64E+05 2.15E+04 0.00E+00 4.14E+05 0.00E+00 1.50E+06 113 Sn 7.33E+07 1.51E+06 4.18E+06 1.11E+08 0.00E+00 0.00E+00 5.18E+07 124 Sb 1.30E+07 1.69E+05 4.57E+06 2.88E+04 0.00E+00 7.24E+06 8.16E+07 125 Sb 1.05E+07 8.06E+04 2.19E+06 9.68E+03 0.00E+00 5.83E+06 2.50E+07 127m Te 2.50E+07 6.73E+06 2.97E+06 5.98E+06 7.13E+07 0.00E+00 2.02E+07 129m Te 3.26E+07 9.10E+06 5.06E+06 1.05E+07 9.57E+07 0.00E+00 3.98E+07 71 ZZ250, rev. 1 Page 46 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 7: Child Grass Goat - Milk Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 2.08E+06 4.20E+06 2.16E+06 4.62E+08 6.27E+06 0.00E+00 1.96E+06 131 I 1.57E+09 1.57E+09 8.95E+08 5.21E+11 2.58E+09 0.00E+00 1.40E+08 132 I 8.30E01 1.53E+00 7.02E01 7.08E+01 2.34E+00 0.00E+00 1.80E+00 133 I 2.06E+07 2.55E+07 9.66E+06 4.74E+09 4.25E+07 0.00E+00 1.03E+07 134 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 135 I 6.49E+04 1.17E+05 5.53E+04 1.04E+07 1.79E+05 0.00E+00 8.90E+04 134 Cs 6.80E+10 1.12E+11 2.35E+10 0.00E+00 3.46E+10 1.24E+10 6.01E+08 136 Cs 3.04E+09 8.35E+09 5.40E+09 0.00E+00 4.45E+09 6.63E+08 2.93E+08 137 Cs 9.68E+10 9.27E+10 1.37E+10 0.00E+00 3.02E+10 1.09E+10 5.80E+08 140 Ba 1.41E+07 1.23E+04 8.21E+05 0.00E+00 4.01E+03 7.35E+03 7.13E+06 140 La 2.14E+01 7.47E+00 2.52E+00 0.00E+00 0.00E+00 0.00E+00 2.08E+05 141 Ce 2.63E+03 1.31E+03 1.95E+02 0.00E+00 5.75E+02 0.00E+00 1.63E+06 144 Ce 1.95E+05 6.11E+04 1.04E+04 0.00E+00 3.38E+04 0.00E+00 1.59E+07 143 Pr 8.63E+01 2.59E+01 4.28E+00 0.00E+00 1.40E+01 0.00E+00 9.31E+04 144 Pr 6.05E01 1.87E01 3.04E02 0.00E+00 9.89E02 0.00E+00 4.03E+02 147 Nd 5.34E+01 4.33E+01 3.35E+00 0.00E+00 2.37E+01 0.00E+00 6.85E+04 154 Eu 1.13E+04 1.02E+03 9.29E+02 0.00E+00 4.47E+03 0.00E+00 2.37E+05 181 Hf 7.73E+01 2.81E+02 3.49E+01 0.00E+00 5.72E+01 0.00E+00 1.04E+05 Page 47 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 8: Child Grass Cow Meat Pathway Dose Factors (Ri)72 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H 0.00E+00 2.34E+02 2.34E+02 2.34E+02 2.34E+02 2.34E+02 2.34E+02 7

Be 7.38E+03 1.26E+04 8.07E+03 0.00E+00 1.23E+04 0.00E+00 7.00E+05 51 Cr 0.00E+00 0.00E+00 8.80E+03 4.88E+03 1.33E+03 8.92E+03 4.67E+05 54 Mn 0.00E+00 8.02E+06 2.14E+06 0.00E+00 2.25E+06 0.00E+00 6.73E+06 55 Fe 4.58E+08 2.43E+08 7.52E+07 0.00E+00 0.00E+00 1.37E+08 4.50E+07 59 Fe 3.77E+08 6.10E+08 3.04E+08 0.00E+00 0.00E+00 1.77E+08 6.35E+08 57 Co 0.00E+00 5.92E+06 1.20E+07 0.00E+00 0.00E+00 0.00E+00 4.85E+07 58 Co 0.00E+00 1.64E+07 5.03E+07 0.00E+00 0.00E+00 0.00E+00 9.59E+07 60 Co 0.00E+00 6.94E+07 2.05E+08 0.00E+00 0.00E+00 0.00E+00 3.84E+08 63 Ni 2.92E+10 1.56E+09 9.92E+08 0.00E+00 0.00E+00 0.00E+00 1.05E+08 65 Zn 3.76E+08 1.00E+09 6.23E+08 0.00E+00 6.31E+08 0.00E+00 1.76E+08 86 Rb 0.00E+00 5.77E+08 3.55E+08 0.00E+00 0.00E+00 0.00E+00 3.71E+07 89 Sr 4.82E+08 0.00E+00 1.38E+07 0.00E+00 0.00E+00 0.00E+00 1.87E+07 90 Sr 1.04E+10 0.00E+00 2.64E+09 0.00E+00 0.00E+00 0.00E+00 1.40E+08 90 Y 1.93E+05 0.00E+00 5.16E+03 0.00E+00 0.00E+00 0.00E+00 5.49E+08 91 Y 1.80E+06 0.00E+00 4.82E+04 0.00E+00 0.00E+00 0.00E+00 2.40E+08 95 Zr 2.67E+06 5.86E+05 5.22E+05 0.00E+00 8.39E+05 0.00E+00 6.11E+08 95 Nb 4.26E+06 1.66E+06 1.18E+06 0.00E+00 1.56E+06 0.00E+00 3.07E+09 103 Ru 1.55E+08 0.00E+00 5.96E+07 0.00E+00 3.90E+08 0.00E+00 4.01E+09 106 Ru 4.44E+09 0.00E+00 5.54E+08 0.00E+00 6.00E+09 0.00E+00 6.91E+10 110m Ag 8.40E+06 5.67E+06 4.53E+06 0.00E+00 1.06E+07 0.00E+00 6.75E+08 109 Cd 0.00E+00 1.91E+06 8.84E+04 0.00E+00 1.70E+06 0.00E+00 6.18E+06 113 Sn 2.18E+09 4.48E+07 1.24E+08 3.31E+09 0.00E+00 0.00E+00 1.54E+09 124 Sb 2.93E+07 3.80E+05 1.03E+07 6.46E+04 0.00E+00 1.62E+07 1.83E+08 125 Sb 2.85E+07 2.20E+05 5.97E+06 2.64E+04 0.00E+00 1.59E+07 6.81E+07 127m Te 1.78E+09 4.78E+08 2.11E+08 4.25E+08 5.07E+09 0.00E+00 1.44E+09 129m Te 1.79E+09 5.00E+08 2.78E+08 5.78E+08 5.26E+09 0.00E+00 2.19E+09 72 ZZ250, rev. 1 Page 48 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 8: Child Grass Cow Meat Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 3.06E06 6.18E06 3.18E06 6.80E04 9.23E06 0.00E+00 2.89E06 131 I 1.66E+07 1.67E+07 9.47E+06 5.51E+09 2.74E+07 0.00E+00 1.48E+06 132 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 133 I 5.70E01 7.05E01 2.67E01 1.31E+02 1.17E+00 0.00E+00 2.84E01 134 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 135 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 134 Cs 9.23E+08 1.51E+09 3.20E+08 0.00E+00 4.69E+08 1.68E+08 8.17E+06 136 Cs 1.62E+07 4.46E+07 2.89E+07 0.00E+00 2.38E+07 3.54E+06 1.57E+06 137 Cs 1.33E+09 1.28E+09 1.89E+08 0.00E+00 4.16E+08 1.50E+08 8.00E+06 140 Ba 4.39E+07 3.85E+04 2.56E+06 0.00E+00 1.25E+04 2.29E+04 2.22E+07 140 La 3.33E+02 1.17E+02 3.93E+01 0.00E+00 0.00E+00 0.00E+00 3.25E+06 141 Ce 2.22E+04 1.11E+04 1.65E+03 0.00E+00 4.86E+03 0.00E+00 1.38E+07 144 Ce 2.32E+06 7.27E+05 1.24E+05 0.00E+00 4.02E+05 0.00E+00 1.89E+08 143 Pr 3.34E+04 1.00E+04 1.66E+03 0.00E+00 5.43E+03 0.00E+00 3.61E+07 144 Pr 5.63E+02 1.74E+02 2.83E+01 0.00E+00 9.21E+01 0.00E+00 3.75E+05 147 Nd 1.17E+04 9.48E+03 7.34E+02 0.00E+00 5.20E+03 0.00E+00 1.50E+07 154 Eu 1.12E+07 1.01E+06 9.20E+05 0.00E+00 4.43E+06 0.00E+00 2.34E+08 181 Hf 4.77E+06 1.74E+07 2.15E+06 0.00E+00 3.53E+06 0.00E+00 6.41E+09 Page 49 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 9: Child Vegetation Pathway Dose Factors (Ri)73 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H 0.00E+00 4.01E+03 4.01E+03 4.01E+03 4.01E+03 4.01E+03 4.01E+03 7

Be 3.38E+05 5.76E+05 3.70E+05 0.00E+00 5.65E+05 0.00E+00 3.21E+07 51 Cr 0.00E+00 0.00E+00 1.17E+05 6.50E+04 1.78E+04 1.19E+05 6.21E+06 54 Mn 0.00E+00 6.65E+08 1.77E+08 0.00E+00 1.86E+08 0.00E+00 5.58E+08 55 Fe 8.01E+08 4.25E+08 1.32E+08 0.00E+00 0.00E+00 2.40E+08 7.87E+07 59 Fe 3.98E+08 6.43E+08 3.20E+08 0.00E+00 0.00E+00 1.87E+08 6.70E+08 57 Co 0.00E+00 2.99E+07 6.04E+07 0.00E+00 0.00E+00 0.00E+00 2.45E+08 58 Co 0.00E+00 6.44E+07 1.97E+08 0.00E+00 0.00E+00 0.00E+00 3.76E+08 60 Co 0.00E+00 3.78E+08 1.12E+09 0.00E+00 0.00E+00 0.00E+00 2.10E+09 63 Ni 3.95E+10 2.11E+09 1.34E+09 0.00E+00 0.00E+00 0.00E+00 1.42E+08 65 Zn 8.13E+08 2.17E+09 1.35E+09 0.00E+00 1.36E+09 0.00E+00 3.80E+08 86 Rb 0.00E+00 4.52E+08 2.78E+08 0.00E+00 0.00E+00 0.00E+00 2.91E+07 89 Sr 3.60E+10 0.00E+00 1.03E+09 0.00E+00 0.00E+00 0.00E+00 1.39E+09 90 Sr 1.24E+12 0.00E+00 3.15E+11 0.00E+00 0.00E+00 0.00E+00 1.67E+10 90 Y 3.01E+06 0.00E+00 8.04E+04 0.00E+00 0.00E+00 0.00E+00 8.56E+09 91 Y 1.86E+07 0.00E+00 4.99E+05 0.00E+00 0.00E+00 0.00E+00 2.48E+09 95 Zr 3.86E+06 8.48E+05 7.55E+05 0.00E+00 1.21E+06 0.00E+00 8.85E+08 95 Nb 7.48E+05 2.91E+05 2.08E+05 0.00E+00 2.74E+05 0.00E+00 5.39E+08 103 Ru 1.53E+07 0.00E+00 5.90E+06 0.00E+00 3.86E+07 0.00E+00 3.97E+08 106 Ru 7.45E+08 0.00E+00 9.30E+07 0.00E+00 1.01E+09 0.00E+00 1.16E+10 110m Ag 3.21E+07 2.17E+07 1.73E+07 0.00E+00 4.04E+07 0.00E+00 2.58E+09 109 Cd 0.00E+00 2.45E+08 1.14E+07 0.00E+00 2.18E+08 0.00E+00 7.94E+08 113 Sn 1.58E+09 3.25E+07 9.00E+07 2.40E+09 0.00E+00 0.00E+00 1.12E+09 124 Sb 3.52E+08 4.57E+06 1.23E+08 7.77E+05 0.00E+00 1.95E+08 2.20E+09 125 Sb 4.99E+08 3.85E+06 1.05E+08 4.63E+05 0.00E+00 2.78E+08 1.19E+09 127m Te 1.32E+09 3.56E+08 1.57E+08 3.16E+08 3.77E+09 0.00E+00 1.07E+09 129m Te 8.41E+08 2.35E+08 1.31E+08 2.71E+08 2.47E+09 0.00E+00 1.03E+09 73 ZZ250, rev. 1 Page 50 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 9: Child Vegetation Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 6.16E+05 1.24E+06 6.41E+05 1.37E+08 1.86E+06 0.00E+00 5.82E+05 131 I 1.43E+08 1.44E+08 8.17E+07 4.76E+10 2.36E+08 0.00E+00 1.28E+07 132 I 9.23E+01 1.70E+02 7.80E+01 7.87E+03 2.60E+02 0.00E+00 2.00E+02 133 I 3.53E+06 4.37E+06 1.65E+06 8.12E+08 7.28E+06 0.00E+00 1.76E+06 134 I 1.56E04 2.89E04 1.33E04 6.65E03 4.42E04 0.00E+00 1.92E04 135 I 6.26E+04 1.13E+05 5.33E+04 9.98E+06 1.73E+05 0.00E+00 8.59E+04 134 Cs 1.60E+10 2.63E+10 5.55E+09 0.00E+00 8.15E+09 2.93E+09 1.42E+08 136 Cs 8.24E+07 2.27E+08 1.47E+08 0.00E+00 1.21E+08 1.80E+07 7.96E+06 137 Cs 2.39E+10 2.29E+10 3.38E+09 0.00E+00 7.46E+09 2.68E+09 1.43E+08 140 Ba 2.77E+08 2.43E+05 1.62E+07 0.00E+00 7.90E+04 1.45E+05 1.40E+08 140 La 3.36E+04 1.18E+04 3.96E+03 0.00E+00 0.00E+00 0.00E+00 3.28E+08 141 Ce 6.56E+05 3.27E+05 4.86E+04 0.00E+00 1.43E+05 0.00E+00 4.08E+08 144 Ce 1.27E+08 3.98E+07 6.78E+06 0.00E+00 2.21E+07 0.00E+00 1.04E+10 143 Pr 1.46E+05 4.37E+04 7.23E+03 0.00E+00 2.37E+04 0.00E+00 1.57E+08 144 Pr 7.88E+03 2.44E+03 3.97E+02 0.00E+00 1.29E+03 0.00E+00 5.25E+06 147 Nd 7.15E+04 5.79E+04 4.48E+03 0.00E+00 3.18E+04 0.00E+00 9.17E+07 154 Eu 1.66E+08 1.50E+07 1.37E+07 0.00E+00 6.57E+07 0.00E+00 3.48E+09 181 Hf 4.90E+05 1.79E+06 2.21E+05 0.00E+00 3.63E+05 0.00E+00 6.59E+08 Page 51 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 10: Highest Annual Average Atmospheric Dispersion Parameters

/Q

/Q Undecayed/ /Q Decayed/

Meteorological Distance Decayed/ D/Q Location (b) undepleted Depleted Sector (meters) Undepleted (m2)

(sec/m3) (sec/m3)

(sec/m3)

Site Boundary74 SSW 1400 1.8E6 1.7E6 1.6E6 4.5E9 Nearest Residence75,76 NNW 2900 1.1E6 1.0E6 9.0E7 3.0E9 Farming Areas within the N/A N/A 1.6E6 1.6E6 1.4E6 5.3E9 Site Boundary77,78 74 Dispersion parameters from HPCI 1503 75 Dispersion parameters from HPCI 1504 76 All ingestion dose pathways are assumed to exist at the location of the nearest resident 77 Dispersion parameters from HPCI 1502 78 These values were derived for a narrow scope application. Extreme caution should be exercised when determining their suitability for use in other applications Page 52 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 11: Application of Atmospheric Dispersion Parameters for Release Permits Dose Pathway Dispersion Parameter Controlling Age Group REC Controlling Location Noble Gas, X/Q, decayed/undepleted Site Boundary N/A 16.11.2.2 Beta Air & Gamma Air (2.26 day halflife)

Noble Gas, X/Q, decayed/undepleted N/A 16.11.2.1 Site Boundary Total Body & Skin (2.26 day halflife)

X/Q, decayed/depleted 16.11.2.1 Nearest Resident Inhalation Child (8 day halflife) 16.11.2.3 Site Boundary Ground Plane Deposition D/Q N/A 16.11.2.3 Nearest Resident Ingestion pathways D/Q* Child 16.11.2.3 Nearest Resident

  • For 3H, X/Q decayed/depleted is used instead of D/Q.79 79 Regulatory Guide 1.109, Appendix C, Section 3.a Page 53 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 12: Application of Atmospheric Dispersion Parameters Annual Radioactive Effluent Release Report Controlling Dose Pathway Dispersion Parameter Dispersion Values80 Controlling Location Age Group Noble Gas, X/Q, decayed/undepleted Site Boundary N/A Concurrent Beta Air & Gamma Air Dose (2.26 day halflife) Nearest Resident Site Boundary Noble Gas, X/Q, decayed/undepleted Concurrent N/A Nearest Resident Total Body & Skin Dose (2.26 day halflife)

Historical Inside Site Boundary Site Boundary Concurrent Ground Plane Deposition Dose D/Q N/A Nearest Resident Historical Inside Site Boundary Site Boundary Child Concurrent X/Q, decayed/depleted Nearest Resident Inhalation Dose (8 day halflife) Concurrent Nearest Residence Adult Historical Inside Site Boundary D/Q Site Boundary Ingestion Dose Pathways 3 (For H , X/Q, decayed/depleted Child Concurrent Nearest Resident is used instead of D/Q.)81 Child Concurrent Nearest Resident 14 C All Dose Pathways82 X/Q, undecayed/undepleted Adult Historical Inside Site Boundary 80 Historical, i.e., 5 year average, dispersion parameters for activities inside the Site Boundary are provided in Table 10.

81 Regulatory Guide 1.109, Appendix C, Section 3.a 82 See Appendix A Page 54 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 13: Meteorological Data Selection Hierarchy First Second Third Parameter Primary Alternate Alternate Alternate Wind Speed 10m A 10m B 60m A 60m B Wind Direction 10m A 10m B 60m A 60m B Air Temperature 10m A 10m B Wind Variability 10m A 10m B 60m A 60m B Temp Difference 6010m A 6010m B Dew point/Relative Humidity 10m A 60m B Precipitation 1m (a) A indicates Alpha train meteorological instrumentation.

(b) B indicates Bravo train meteorological instrumentation.

Page 55 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 14: Adult Inhalation Pathway Dose Factors (Ri)83 (mrem/yr) per (µCi/m3)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H ND 1.26E+03 1.26E+03 1.26E+03 1.26E+03 1.26E+03 1.26E+03 7

Be 4.27E+02 9.68E+02 4.70E+02 ND ND 4.21E+04 5.35E+03 51 Cr ND ND 1.00E+02 5.95E+01 2.28E+01 1.44E+04 3.32E+03 54 Mn ND 3.96E+04 6.30E+03 ND 9.84E+03 1.40E+06 7.74E+04 55 Fe 2.46E+04 1.70E+04 3.94E+03 ND ND 7.21E+04 6.03E+03 59 Fe 1.18E+04 2.78E+04 1.06E+04 ND ND 1.02E+06 1.88E+05 57 Co ND 6.92E+02 6.71E+02 ND ND 3.70E+05 3.14E+04 58 Co ND 1.58E+03 2.07E+03 ND ND 9.28E+05 1.06E+05 60 Co ND 1.15E+04 1.48E+04 ND ND 5.97E+06 2.85E+05 63 Ni 4.32E+05 3.14E+04 1.45E+04 ND ND 1.78E+05 1.34E+04 65 Zn 3.24E+04 1.03E+05 4.66E+04 ND 6.90E+04 8.64E+05 5.34E+04 86 Rb ND 1.35E+05 5.90E+04 ND ND ND 1.66E+04 89 Sr 3.04E+05 ND 8.72E+03 ND ND 1.40E+06 3.50E+05 90 Sr 9.92E+07 ND 6.10E+06 ND ND 9.60E+06 7.22E+05 90 Y 2.09E+03 ND 5.61E+0 1 ND ND 1.70E+05 5.06E+05 91 Y 4.62E+05 ND 1.24E+04 ND ND 1.70E+06 3.85E+05 95 Zr 1.07E+05 3.44E+04 2.33E+04 ND 5.42E+04 1.77E+06 1.50E+05 95 Nb 1.41E+04 7.82E+03 4.21E+03 ND 7.74E+03 5.05E+05 1.04E+05 103 Ru 1.53E+03 ND 6.58E+02 ND 5.83E+03 5.05E+05 1.10E+05 106 Ru 6.91E+04 ND 8.72E+03 ND 1.34E+05 9.36E+06 9.12E+05 110m Ag 1.08E+04 1.00E+04 5.94E+03 ND 1.97E+04 4.63E+06 3.02E+05 109 Cd ND 3.67E+05 1.31E+04 ND 3.57E+05 6.83E+05 5.82E+04 113 Sn 5.72E+04 2.18E+03 4.39E+03 1.24E+03 ND 9.44E+05 1.18E+05 124 Sb 3.12E+04 5.89E+02 1.24E+04 7.55E+01 ND 2.48E+06 4.06E+05 125 Sb 5.34E+04 5.95E+02 1.26E+04 5.40E+0 1 ND 1.74E+06 1.01E+05 127m Te 1.26E+04 5.77E+03 1.57E+03 3.29E+03 4.58E+04 9.60E+05 1.50E+05 129m Te 9.76E+03 4.67E+03 1.58E+03 3.44E+03 3.66E+04 1.16E+06 3.83E+05 83 ZZ78, rev. 2 Page 56 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 14: Adult Inhalation Pathway Dose Factors (Ri)

(mrem/yr) per (µCi/m3)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 4.58E+03 1.34E+04 5.28E+03 1.14E+06 2.09E+04 ND 7.69E+03 131 I 2.52E+04 3.58E+04 2.05E+04 1.19E+07 6.13E+04 ND 6.28E+03 132 I 1.16E+03 3.26E+03 1.16E+03 1.14E+05 5.18E+03 ND 4.06E+02 133 I 8.64E+03 1.48E+04 4.52E+03 2.15E+06 2.58E+04 ND 8.88E+03 134 I 6.44E+02 1.73E+03 6.15E+02 2.98E+04 2.75E+03 ND 1.01E+00 135 I 2.68E+03 6.98E+03 2.57E+03 4.48E+05 1.11E+04 ND 5.25E+03 134 Cs 3.73E+05 8.48E+05 7.28E+05 ND 2.87E+05 9.76E+04 1.04E+04 136 Cs 3.90E+04 1.46E+05 1.10E+05 ND 8.56E+04 1.20E+04 1.17E+04 137 Cs 4.78E+05 6.21E+05 4.28E+05 ND 2.22E+05 7.52E+04 8.40E+03 140 Ba 3.90E+04 4.90E+01 2.57E+03 ND 1.67E+01 1.27E+06 2.18E+05 140 La 3.44E+02 1.74E+02 4.58E+01 ND ND 1.36E+05 4.58E+05 141 Ce 1.99E+04 1.35E+04 1.53E+03 ND 6.26E+03 3.62E+05 1.20E+05 144 Ce 3.43E+06 1.43E+06 1.84E+05 ND 8.48E+05 7.78E+06 8.16E+05 143 Pr 9.36E+03 3.75E+03 4.64E+02 ND 2.16E+03 2.81E+05 2.00E+05 144 Pr 3.01E02 1.25E02 1.53E03 ND 7.05E03 1.02E+03 2.15E08 147 Nd 5.27E+03 6.10E+03 3.65E+02 ND 3.56E+03 2.21E+05 1.73E+05 154 Eu 5.92E+06 7.28E+05 5.18E+05 ND 3.49E+06 4.67E+06 2.72E+05 181 Hf 1.41E+04 6.82E+04 6.32E+03 ND 1.48E+04 6.85E+05 1.39E+05 Page 57 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 15: Adult Grass Cow - Milk Pathway Dose Factors (Ri)84 (m2mrem/yr) per (µCi/sec)

Total Nuclide Bone Liver Thyroid Kidney Lung GILLI Body 3

H ND 7.63E+02 7.63E+02 7.63E+02 7.63E+02 7.63E+02 7.63E+02 7

Be 1.63E+03 3.72E+03 1.81E+03 ND 3.93E+03 ND 6.45E+05 51 Cr ND ND 2.86E+04 1.71E+04 6.30E+03 3.79E+04 7.19E+06 54 Mn ND 8.42E+06 1.61E+06 ND 2.50E+06 ND 2.58E+07 55 Fe 2.51E+07 1.74E+07 4.05E+06 ND ND 9.68E+06 9.96E+06 59 Fe 2.97E+07 6.98E+07 2.68E+07 ND ND 1.95E+07 2.33E+08 57 Co ND 1.28E+06 2.13E+06 ND ND ND 3.25E+07 58 Co ND 4.72E+06 1.06E+07 ND ND ND 9.56E+07 60 Co ND 1.64E+07 3.62E+07 ND ND ND 3.08E+08 63 Ni 6.73E+09 4.67E+08 2.26E+08 ND ND ND 9.73E+07 65 Zn 1.37E+09 4.37E+09 1.97E+09 ND 2.92E+09 ND 2.75E+09 86 Rb ND 2.60E+09 1.21E+09 ND ND ND 5.12E+08 89 Sr 1.45E+09 ND 4.17E+07 ND ND ND 2.33E+08 90 Sr 4.68E+10 ND 1.15E+10 ND ND ND 1.35E+09 90 Y 7.43E+02 ND 1.99E+01 ND ND ND 7.87E+06 91 Y 8.59E+03 ND 2.30E+02 ND ND ND 4.73E+06 95 Zr 9.44E+02 3.03E+02 2.05E+02 ND 4.75E+02 ND 9.59E+05 95 Nb 9.65E+04 5.37E+04 2.89E+04 ND 5.31E+04 ND 3.26E+08 103 Ru 1.02E+03 ND 4.39E+02 ND 3.89E+03 ND 1.19E+05 106 Ru 2.04E+04 ND 2.58E+03 ND 3.94E+04 ND 1.32E+06 110m Ag 5.82E+07 5.39E+07 3.20E+07 ND 1.06E+08 ND 2.20E+10 109 Cd ND 1.13E+06 3.95E+04 ND 1.08E+06 ND 1.14E+07 113 Sn 1.34E+08 3.81E+06 7.73E+06 2.18E+06 ND ND 4.02E+08 124 Sb 2.57E+07 4.86E+05 1.02E+07 6.24E+04 ND 2.00E+07 7.31E+08 125 Sb 2.04E+07 2.28E+05 4.87E+06 2.08E+04 ND 1.58E+07 2.25E+08 127m Te 4.58E+07 1.64E+07 5.58E+06 1.17E+07 1.86E+08 ND 1.54E+08 129m Te 6.02E+07 2.25E+07 9.53E+06 2.07E+07 2.51E+08 ND 3.03E+08 84 ZZ78, rev. 2 Page 58 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 15: Adult Grass Cow - Milk Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 4.21E+05 1.24E+06 4.91E+05 1.05E+08 1.94E+06 ND 1.07E+06 131 I 2.97E+08 4.25E+08 2.43E+08 1.39E+ 11 7.28E+08 ND 1.12E+08 132 I 1.65E01 4.42E01 1.55E01 1.55E+01 7.04E01 ND 8.30E02 133 I 3.88E+06 6.75E+06 2.06E+06 9.92E+08 1.18E+07 ND 6.07E+06 134 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ND 0.00E+00 135 I 1.29E+04 3.37E+04 1.25E+04 2.23E+06 5.41E+04 ND 3.81E+04 134 Cs 5.65E+09 1.35E+10 1.10E+10 ND 4.35E+09 1.45E+09 2.35E+08 136 Cs 2.63E+08 1.04E+09 7.48E+08 ND 5.79E+08 7.93E+07 1.18E+08 137 Cs 7.38E+09 1.01E+ 10 6.61E+09 ND 3.43E+09 1.14E+09 1.95E+08 140 Ba 2.69E+07 3.38E+04 1.76E+06 ND 1.15E+04 1.93E+04 5.54E+07 140 La 4.14E+0 1 2.09E+01 5.51E+00 ND ND ND 1.53E+06 141 Ce 4.85E+03 3.28E+03 3.72E+02 ND 1.52E+03 ND 1.25E+07 144 Ce 3.58E+05 1.50E+05 1.92E+04 ND 8.87E+04 ND 1.21E+08 143 Pr 1.58E+02 6.34E+01 7.83E+00 ND 3.66E+01 ND 6.92E+05 144 Pr 1.10E+00 4.58E01 5.61E02 ND 2.58E01 ND 1.59E07 147 Nd 9.42E+0 1 1.09E+02 6.51E+00 ND 6.36E+01 ND 5.23E+05 154 Eu 2.37E+04 2.91E+03 2.07E+03 ND 1.39E+04 ND 2.11E+06 181 Hf 1.42E+02 6.92E+02 6.41E+ 1 ND 1.49E+02 ND 7.87E+05 Page 59 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 16: Adult Grass Goat - Milk Pathway Dose Factors (Ri)85 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H ND 1.56E+03 1.56E+03 1.56E+03 1.56E+03 1.56E+03 1.56E+03 7

Be 1.96E+02 4.47E+02 2.17E+02 ND 4.72E+02 ND 7.74E+04 51 Cr ND ND 3.43E+03 2.05E+03 7.56E+02 4.56E+03 8.63E+05 54 Mn ND 1.01E+06 1.93E+05 ND 3.01E+05 ND 3.10E+06 55 Fe 3.27E+05 2.26E+05 5.26E+04 ND ND 1.26E+05 1.30E+05 59 Fe 3.87E+05 9.08E+05 3.48E+05 ND ND 2.54E+05 3.03E+06 57 Co ND 1.54E+05 2.56E+05 ND ND ND 3.90E+06 58 Co ND 5.66E+05 1.27E+06 ND ND ND 1.15E+07 60 Co ND 1.97E+06 4.35E+06 ND ND ND 3.70E+07 63 Ni 8.08E+08 5.60E+07 2.71E+07 ND ND ND 1.17E+07 65 Zn 1.65E+08 5.24E+08 2.37E+08 ND 3.51E+08 ND 3.30E+08 86 Rb ND 3.12E+08 1.45E+08 ND ND ND 6.15E+07 89 Sr 3.05E+09 ND 8.75E+07 ND ND ND 4.89E+08 90 Sr 9.84E+10 ND 2.41E+10 ND ND ND 2.84E+09 90 Y 8.92E+0 1 ND 2.39E+00 ND ND ND 9.46E+05 91 Y 1.03E+03 ND 2.76E+01 ND ND ND 5.68E+05 95 Zr 1.13E+02 3.63E+01 2.46E+01 ND 5.70E+01 ND 1.15E+05 95 Nb 1.16E+04 6.45E+03 3.47E+03 ND 6.37E+03 ND 3.91E+07 103 Ru 1.22E+02 ND 5.27E+01 ND 4.67E+02 ND 1.43E+04 106 Ru 2.45E+03 ND 3.10E+02 ND 4.73E+03 ND 1.59E+05 110m Ag 6.99E+06 6.47E+06 3.84E+06 ND 1.27E+07 ND 2.64E+09 109 Cd ND 1.36E+05 4.74E+03 ND 1.30E+05 ND 1.37E+06 113 Sn 1.61E+07 4.58E+05 9.28E+05 2.62E+05 ND ND 4.83E+07 124 Sb 3.09E+06 5.84E+04 1.23E+06 7.50E+03 ND 2.41E+06 8.78E+07 125 Sb 2.46E+06 2.74E+04 5.84E+05 2.50E+03 ND 1.89E+06 2.70E+07 127m Te 5.50E+06 1.97E+06 6.70E+05 1.41E+06 2.23E+07 ND 1.84E+07 129m Te 7.23E+06 2.70E+06 1.14E+06 2.48E+06 3.02E+07 ND 3.64E+07 85 ZZ78, rev. 2 Page 60 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 16: Adult Grass Goat - Milk Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 5.05E+05 1.49E+06 5.88E+05 1.26E+08 2.32E+06 ND 1.28E+06 131 I 3.56E+08 5.09E+08 2.92E+08 1.67E+11 8.72E+08 ND 1.34E+08 132 I 1.98E01 5.29E01 1.85E01 1.85E+01 8.43E01 ND 9.95E02 133 I 4.65E+06 8.09E+06 2.47E+06 1.19E+09 1.41E+07 ND 7.27E+06 134 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ND 0.00E+00 135 I 1.54E+04 4.04E+04 1.49E+04 2.67E+06 6.48E+04 ND 4.57E+04 134 Cs 1.70E+10 4.04E+10 3.30E+10 ND 1.31E+10 4.34E+09 7.07E+08 136 Cs 7.91E+08 3.12E+09 2.25E+09 ND 1.74E+09 2.38E+08 3.55E+08 137 Cs 2.22E+10 3.03E+10 1.99E+10 ND 1.03E+10 3.42E+09 5.87E+08 140 Ba 3.23E+06 4.06E+03 2.12E+05 ND 1.38E+03 2.32E+03 6.65E+06 140 La 4.97E+00 2.51E+00 6.62E01 ND ND ND 1.84E+05 141 Ce 5.82E+02 3.94E+02 4.46E+01 ND 1.83E+02 ND 1.50E+06 144 Ce 4.30E+04 1.80E+04 2.31E+03 ND 1.07E+04 ND 1.45E+07 143 Pr 1.90E+01 7.61E+00 9.40E01 ND 4.39E+00 ND 8.31E+04 144 Pr 1.33E01 5.50E02 6.74E03 ND 3.10E02 ND 1.91E08 147 Nd 1.13E+01 1.31E+01 7.82E01 ND 7.64E+00 ND 6.28E+04 154 Eu 2.84E+03 3.49E+02 2.49E+02 ND 1.67E+03 ND 2.53E+05 181 Hf 1.71E+01 8.31E+01 7.70E+00 ND 1.79E+01 ND 9.46E+04 Page 61 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 17: Adult Grass Cow Meat Pathway Dose Factors (Ri)86 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H ND 3.25E+02 3.25E+02 3.25E+02 3.25E+02 3.25E+02 3.25E+02 7

Be 4.57E+03 1.04E+04 5.07E+03 ND 1.10E+04 ND 1.81E+06 51 Cr ND ND 7.04E+03 4.21E+03 1.55E+03 9.34E+03 1.77E+06 54 Mn ND 9.17E+06 1.75E+06 ND 2.73E+06 ND 2.81E+07 55 Fe 2.93E+08 2.02E+08 4.72E+07 ND ND 1.13E+08 1.16E+08 59 Fe 2.65E+08 6.24E+08 2.39E+08 ND ND 1.74E+08 2.08E+09 57 Co ND 5.63E+06 9.36E+06 ND ND ND 1.43E+08 58 Co ND 1.82E+07 4.08E+07 ND ND ND 3.69E+08 60 Co ND 7.51E+07 1.66E+08 ND ND ND 1.41E+09 63 Ni 1.89E+10 1.31E+09 6.33E+08 ND ND ND 2.73E+08 65 Zn 3.56E+08 1.13E+09 5.11E+08 ND 7.57E+08 ND 7.13E+08 86 Rb ND 4.87E+08 2.27E+08 ND ND ND 9.60E+07 89 Sr 3.01E+08 ND 8.65E+06 ND ND ND 4.83E+07 90 Sr 1.24E+10 ND 3.05E+09 ND ND ND 3.59E+08 90 Y 1.21E+05 ND 3.24E+03 ND ND ND 1.28E+09 91 Y 1.13E+06 ND 3.02E+04 ND ND ND 6.23E+08 95 Zr 1.87E+06 6.00E+05 4.06E+05 ND 9.42E+05 ND 1.90E+09 95 Nb 3.15E+06 1.75E+06 9.43E+05 ND 1.73E+06 ND 1.06E+10 103 Ru 1.05E+08 ND 4.53E+07 ND 4.01E+08 ND 1.23E+10 106 Ru 2.80E+09 ND 3.54E+08 ND 5.40E+09 ND 1.81E+11 110m Ag 6.68E+06 6.18E+06 3.67E+06 ND 1.21E+07 ND 2.52E+09 109 Cd ND 1.59E+06 5.55E+04 ND 1.52E+06 ND 1.60E+07 113 Sn 1.37E+09 3.88E+07 7.86E+07 2.22E+07 ND ND 4.09E+09 124 Sb 1.98E+07 3.74E+05 7.84E+06 4.79E+04 ND 1.54E+07 5.61E+08 125 Sb 1.91E+07 2.13E+05 4.54E+06 1.94E+04 ND 1.47E+07 2.10E+08 127m Te 1.11E+09 3.98E+08 1.36E+08 2.85E+08 4.53E+09 ND 3.74E+09 129m Te 1.13E+09 4.23E+08 1.79E+08 3.89E+08 4.73E+09 ND 5.71E+09 86 ZZ78, rev. 2 Page 62 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 17: Adult Grass Cow Meat Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 2.12E06 6.27E06 2.47E06 5.31E04 9.78E06 ND 5.40E06 131 I 1.08E+07 1.54E+07 8.82E+06 5.04E+09 2.64E+07 ND 4.06E+06 132 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ND 0.00E+00 133 I 3.67E01 6.39E01 1.95E01 9.38E+01 1.11E+00 ND 5.74E01 134 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ND 0.00E+00 135 I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ND 0.00E+00 134 Cs 6.57E+08 1.56E+09 1.28E+09 ND 5.06E+08 1.68E+08 2.74E+07 136 Cs 1.20E+07 4.76E+07 3.42E+07 ND 2.65E+07 3.63E+06 5.40E+06 137 Cs 8.71E+08 1.19E+09 7.81E+08 ND 4.04E+08 1.34E+08 2.31E+07 140 Ba 2.87E+07 3.61E+04 1.88E+06 ND 1.23E+04 2.07E+04 5.91E+07 140 La 2.21E+02 1.11E+02 2.94E+01 ND ND ND 8.18E+06 141 Ce 1.40E+04 9.49E+03 1.08E+03 ND 4.41E+03 ND 3.63E+07 144 Ce 1.46E+06 6.09E+05 7.82E+04 ND 3.61E+05 ND 4.92E+08 143 Pr 2.10E+04 8.40E+03 1.04E+03 ND 4.85E+03 ND 9.18E+07 144 Pr 3.52E+02 1.46E+02 1.79E+01 ND 8.24E+01 ND 5.06E05 147 Nd 7.07E+03 8.17E+03 4.89E+02 ND 4.77E+03 ND 3.92E+07 154 Eu 8.02E+06 9.86E+05 7.01E+05 ND 4.72E+06 ND 7.14E+08 181 Hf 3.01E+06 1.46E+07 1.35E+06 ND 3.14E+06 ND 1.66E+10 Page 63 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 18: Adult Vegetation Pathway Dose Factors (Ri)87 (m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 3

H ND 2.26E+03 2.26E+03 2.26E+03 2.26E+03 2.26E+03 2.26E+03 7

Be 9.24E+04 2.11E+05 1.03E+05 ND 2.23E+05 ND 3.66E+07 51 Cr ND ND 4.64E+04 2.78E+04 1.02E+04 6.16E+04 1.17E+07 54 Mn ND 3.13E+08 5.97E+07 ND 9.31E+07 ND 9.59E+08 55 Fe 2.10E+08 1.45E+08 3.38E+07 ND ND 8.08E+07 8.31E+07 59 Fe 1.26E+08 2.96E+08 1.14E+08 ND ND 8.28E+07 9.88E+08 57 Co ND 1.17E+07 1.95E+07 ND ND ND 2.97E+08 58 Co ND 3.07E+07 6.89E+07 ND ND ND 6.23E+08 60 Co ND 1.67E+08 3.69E+08 ND ND ND 3.14E+09 63 Ni 1.04E+10 7.21E+08 3.49E+08 ND ND ND 1.50E+08 65 Zn 3.17E+08 1.01E+09 4.56E+08 ND 6.75E+08 ND 6.36E+08 86 Rb ND 2.19E+08 1.02E+08 ND ND ND 4.33E+07 89 Sr 9.97E+09 ND 2.86E+08 ND ND ND 1.60E+09 90 Sr 6.05E+11 ND 1.48E+11 ND ND ND 1.75E+10 90 Y 7.67E+05 ND 2.06E+04 ND ND ND 8.14E+09 91 Y 5.11E+06 ND 1.37E+05 ND ND ND 2.81E+09 95 Zr 1.17E+06 3.77E+05 2.55E+05 ND 5.91E+05 ND 1.19E+09 95 Nb 2.40E+05 1.34E+05 7.19E+04 ND 1.32E+05 ND 8.11E+08 103 Ru 4.77E+06 ND 2.06E+06 ND 1.82E+07 ND 5.57E+08 106 Ru 1.93E+08 ND 2.44E+07 ND 3.72E+08 ND 1.25E+10 110m Ag 1.05E+07 9.75E+06 5.79E+06 ND 1.92E+07 ND 3.98E+09 109 Cd 0.00E+00 8.36E+07 2.92E+06 ND 8.00E+07 ND 8.43E+08 113 Sn 4.16E+08 1.18E+07 2.40E+07 6.75E+06 ND ND 1.25E+09 124 Sb 1.04E+08 1.96E+06 4.11E+07 2.51E+05 ND 8.07E+07 2.94E+09 125 Sb 1.37E+08 1.53E+06 3.25E+07 1.39E+05 ND 1.05E+08 1.50E+09 127m Te 3.49E+08 1.25E+08 4.26E+07 8.92E+07 1.42E+09 ND 1.17E+09 129m Te 2.51E+08 9.38E+07 3.98E+07 8.64E+07 1.05E+09 ND 1.27E+09 87 ZZ78, rev. 2 Page 64 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Table 18: Adult Vegetation Pathway Dose Factors (Ri)

(m2mrem/yr) per (µCi/sec)

Nuclide Bone Liver Total Body Thyroid Kidney Lung GILLI 130 I 3.93E+05 1.16E+06 4.57E+05 9.81E+07 1.81E+06 ND 9.97E+05 131 I 8.08E+07 1.16E+08 6.62E+07 3.79E+10 1.98E+08 ND 3.05E+07 132 I 5.77E+01 1.54E+02 5.40E+01 5.40E+03 2.46E+02 ND 2.90E+01 133 I 2.09E+06 3.63E+06 1.11E+06 5.33E+08 6.33E+06 ND 3.26E+06 134 I 9.69E05 2.63E04 9.42E05 4.56E03 4.19E04 ND 2.30E07 135 I 3.90E+04 1.02E+05 3.77E+04 6.74E+06 1.64E+05 ND 1.15E+05 134 Cs 4.67E+09 1.11E+10 9.08E+09 ND 3.59E+09 1.19E+09 1.94E+08 136 Cs 4.27E+07 1.69E+08 1.21E+08 ND 9.38E+07 1.29E+07 1.91E+07 137 Cs 6.36E+09 8.70E+09 5.70E+09 ND 2.95E+09 9.81E+08 1.68E+08 140 Ba 1.29E+08 1.61E+05 8.42E+06 ND 5.49E+04 9.24E+04 2.65E+08 140 La 1.58E+04 7.98E+03 2.11E+03 ND ND ND 5.86E+08 141 Ce 1.97E+05 1.33E+05 1.51E+04 ND 6.19E+04 ND 5.10E+08 144 Ce 3.29E+07 1.38E+07 1.77E+06 ND 8.16E+06 ND 1.11E+10 143 Pr 6.26E+04 2.51E+04 3.10E+03 ND 1.45E+04 ND 2.74E+08 144 Pr 2.03E+03 8.43E+02 1.03E+02 ND 4.75E+02 ND 2.92E04 147 Nd 3.33E+04 3.85E+04 2.31E+03 ND 2.25E+04 ND 1.85E+08 154 Eu 4.85E+07 5.97E+06 4.25E+06 ND 2.86E+07 ND 4.32E+09 181 Hf 1.40E+05 6.82E+05 6.32E+04 ND 1.47E+05 ND 7.76E+08 Page 65 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Appendix A: Methodology for Calculating Dose from 14C in Gaseous Effluents

1) Introduction The purpose of this Appendix is to provide methodology and parameters for calculating (1) the quantity of 14C released in gaseous effluents, (2) the dose to the Member of the Public at the nearest receptor location due to 14C released in gaseous effluents, and (3) the dose from 14C released in gaseous effluents to the Member of the Public due to activities within the Site Boundary.

The quantity of 14C discharged can be estimated88 by sample measurements, or by use of a normalized 14C source term and scaling factors based on power generation,89 or by use of the GALE code,90 or by use of the EPRI site specific or proxy methodologies.91 Any of these methodologies is acceptable for estimating the 14C discharged in gaseous effluents.

2) Assumptions
a. The total quantity of 14C produced during the year is assumed to be released during the year in which it was produced.
b. The quantity of 14C produced is determined using the methodology in EPRI TR-1021106.
c. For conservatism, it is assumed that all 14C produced is released in gaseous effluents.
d. The dose contribution of 14C from liquid effluents is much less than that contributed by gaseous effluents, therefore evaluation of 14C in liquid effluents is not required.92
e. The dose to the Member of the Public is determined in accordance with the methodology and parameters in Regulatory Guide 1.109.
f. 14C has a long half- life with respect to the plume transit time. 14C is discharged as CH4 or CO2 gas and does not deplete or undergo chemical change before it reaches the receptor location. Therefore the appropriate dispersion parameter is /Q (undecayed and undepleted).

88 Regulatory Guide 1.21, rev. 2, Section 1.9 89 NCRP Report 81 90 NUREG- 0017 91 EPRI TR-1021106, Section 4.

92 Regulatory Guide 1.21, rev. 2, Section 1.9 Page 66 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025

g. The inhalation pathway is assumed to exist at the Nearest Residence location with the highest value of /Q, undecayed/ undepleted as determined by the annual Land Use Census.
h. The ingestion pathways are assumed to exist at the nearest receptor location with the highest value of /Q, undecayed/ undepleted as determined by the annual Land Use Census. For conservatism, the Nearest Residence location may be considered the highest nearest receptor location for the ingestion pathways.
i. The appropriate dispersion parameters for activities within the Site Boundary is provided in Table 10.
j. 14C is not a gamma- emitting nuclide; therefore the ground plane pathway is negligible.
k. As a first approximation, it is assumed that the child age group exists at the Nearest Residence and ingestion pathway locations.
l. Only 14CO2 discharged during periods of photosynthesis is considered for the ingestion pathways.
m. All of the 14C produced is assumed to contribute to the inhalation dose pathway, regardless of chemical form.
3) Applicable Dose Limits 10 CFR 50, Appendix I, states, The calculated annual total quantity of all radioactive iodine and radioactive material in particulate form above background to be released from each light-water-cooled nuclear power reactor in effluents to the atmosphere will not result in an estimated annual dose or dose commitment from such radioactive iodine and radioactive material in particulate form for any individual in an unrestricted area from all pathways of exposure in excess of 15 millirems to any organ.93 Radiological Effluent Control (REC) 16.11.2.3 limits the annual dose to the Member of the Public from 131I, 133I, 3H, and particulates with half-lives greater than 8 days released in gaseous effluents to 15 mrem to any organ.94 14C is released as a gas in the form of CH4 or CO2 and is not a radioiodine, tritium, or particulate, therefore the design objectives in 10 CFR 50, Appendix I and the limits of REC 16.11.2.3 do not apply to 14C.

10 CFR 20.1301(a)(1) limits the annual TEDE dose to the Member of the Public to 100 mrem.

93 10 CFR 50, Appendix I, section II, paragraph C 94 NUREG-1301, REC 3.11.2.3 Page 67 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 40 CFR 190.10(a) limits the total annual dose from the uranium fuel cycle to the Member of the Public to 25 mrem to the whole body or any organ. 40 CFR 190 is implemented by REC 16.11.3.1. This limit includes dose from the release of gaseous effluents to areas at or beyond the Site Boundary, the dose from gaseous effluents due to activities within the Site Boundary, and the dose from direct radiation. The methodology for calculating the total annual dose from the uranium fuel cycle is provided in Section 4.

10 CFR 72.104 requires that the annual dose equivalent to any real individual who is located beyond the controlled area must not exceed 25 mrem to the whole body, 75 mrem to the thyroid and 25 mrem to any other critical organ as a result of exposure to planned discharges of radioactive materials and direct radiation from Independent Spent Fuel Storage Installation (ISFSI) operations. There are no radioactive effluents from the ISFSI. The HI-STORM UMAX Canister Storage System does not create any radioactive materials or have any radioactive waste treatment systems. COC Specification 3.1.1, "Multi-Purpose Canister (MPC)", provides assurance that there are no radioactive effluents from the ISFSI.95 14C is a weak beta emitter and does not contribute to direct radiation dose.

4) Estimation of 14C in Gaseous Effluents 14C exists in all PWR systems, and any location or system that contains tritium most likely also will contain 14C in some chemical form. Measurements of 14C concentrations in various liquid systems have been performed, and some of the reported data are included in EPRI TR-1021106.96 As a general rule, 14C in the primary coolant is essentially all organic with a significant fraction as a gaseous species. If the RCS liquid or gas is exposed to an oxidizing environment, such as during the forced oxidation during the shutdown evolution and during refueling outages, a slow transformation from an organic to an inorganic chemical form can occur.

Dissolved nitrogen gas and ammonia in the RCS could contribute to the 14C source term.

The dissolved nitrogen could become significant in the latter stages of the fuel cycle due to the introduction of increased quantities of non-borated water for boron dilution.

Callaway maintains a hydrogen gas overpressure on the RCS which effectively eliminates dissolved nitrogen gas and ammonia in the RCS, therefore the RCS ammonia concentration is assumed to be 0.97 In general, 14C is produced in light water moderated nuclear power reactors by 14N(n,p)14C reactions with nitrogen impurities in the coolant and by 17O(n,)14C reactions in the coolant. 14C produced in a nuclear power reactor can be released directly to the environment from the coolant in a gaseous form or in much smaller quantities as liquid 95 Certificate of Compliance No. 1040, Appendix A, Specification 5.1.

96 EPRI TR-1021106, Section 4.1 97 CDP-ZZ-00200, Appendix B, Table 1.1, " Reactor Coolant System-MODES 1, 2, 3, and 4", page 6 of 23 Page 68 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 effluents.98 Kunz estimated the fraction of 14C in liquid and solid wastes at <5% of that in gaseous discharges99. Regulatory Guide 1.21 states that the dose contribution from 14C in liquid discharges is insignificant and evaluation of 14C released in liquid effluents is not required.100 The release and removal pathways from the primary coolant include VCT venting, boron dilution, inventory buildup on the letdown demineralizers and filters, and reactor coolant leakage. Letdown system removal is approximately 1 Ci/yr.101 The 14C production balance is shown in Figure 1.

14 Figure 1: C Production Balance

5) Chemical Form of 14C in Gaseous Effluents Since the PWR operates with a reducing chemical environment, most, if not all, of the 14C species initially produced are in the reduced, i.e., organic, form and contain only a single carbon atom. Possible species include methane (14CH4), methanol (14CH3OH),

formaldehyde (H214C=O or the gem-diol H214C(OH)2 ), and formic acid (H14COOH). In theory, the only ionic species produced will be formic acid (H14CO2H) , and some or all of the formic acid will be removed by the letdown demineralizers. Formaldehyde is soluble in water and may partially be chemisorbed on the ion exchange resin. A quasi-equilibrium is established in the coolant between the initially produced species and other possible species in the reactor coolant. The most chemically reduced species and probably the most prevalent species is 14CH4 which partitions between the liquid and gas phases in the VCT and pressurizer.102 The airborne 14C released from PWRs is predominantly hydrocarbons (75-95%), mainly methane (CH4), with only a small fraction 98 IAEA Report 421, Section 3.1.3 99 Kunz, 1985 100 Regulatory Guide 1.21, rev. 2, section 1.09 101 EPRI TR-1021106, Section 4.1 102 EPRI TR-1021106, Section 4.1 Page 69 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 in the form of CO2.103,104 Regulatory Guide 1.21 states that 14C releases in PWRs occur primarily as a mix of organic carbon and CO2 in gaseous waste from the waste gas system.105 NUREG-0017106 concludes that 16.4% of the 14C produced in a PWR will be released via the waste gas processing system, and the remainder, 83.6%, from the Reactor Building and the Auxiliary Building.

Due to the presence of high temperature hydrogen recombiners in the Callaway waste gas system, 100% of the 14C released through the waste gas system is assumed to be released from the waste gas decay tanks in the oxidized, i.e., inorganic form as CO2.

The 14C released from the unit vent is assumed to be in the reduced (organic) form as CH4, therefore 16.4% of the 14C produced is released through the Waste Gas Decay tanks (WGDT) as CO2, and 83.6% is released via the Unit Vent as CH4.

14 C in Gaseous Discharges 16.4% 83.6%

Plant Vents Waste Gas System Containment Vent Waste Gas Decay Tanks Containment Purge CO2 Aux. Bldg. Ventilation Fuel Bldg. Ventilation CH4 Figure 2: 14C Gaseous Discharge Balance 14

6) C Source Term Estimation The neutron absorption cross section for the 17O(n,)14C reaction is shown in Figure 3.

The 17O(n,)14C reaction has a 1/v region and a significant high energy neutron cross section. Given a constant neutron flux and target concentration, the rate of production of a species, Na, in atoms per second is given by:

Na = NT * {(t

  • t) + (e
  • e) + (f
  • f)}

Where:

Na is the rate of production, atoms/sec 103 IAEA Report 421, Section 3.1.3 104 Neeb, section 4.2.4 105 Regulatory Guide 1.21, rev. 2, section 1.09 106 NUREG-0017, Section 2.2.25.2 Page 70 of 86 INFORMATION USE December, 2020

APA-ZZ-O1 003 Rev. 025 NT is the number of 7Q or 14N target atoms per kg of coolant Ut15 the effective neutron cross section for thermal neutron absorption, cm2 (Pt 5 the thermal neutron flux, n/cm2-sec Oe IS the effective neutron cross section for epithermal energy neutron absorption, cm2

,Oe S the epithermal neutron flux, n/cm2-sec Uf 5 the effective neutron cross section for fast neutron absorption, cm2 Pf5 the fast neutron flux, n/cm2-sec ENDF/E-VIi 0-IT Princt cross section 1o 4?

WD I

0 11)

C-,

1o3 Ener (MeV)

Figure 3: ENDFIB VII Cross Sections for 170 Table 19: Effective Cross Section for the 170(n,a)14C Reaction in the PWR as a Function of Neutron Energy107 Neutron Group Group Energy Effective Cross Section Thermal O.625 eV 0.121 barns Epithermal (E) >0.625 eV <1 MeV 0.0291 barns Fast (F) 1 MeV 0.1124 barns The source term of each species A, is given by:

107 EPRI TR-1021 106, Section 4.32.2 Page 71 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Aa (dps) = Na a Na a Aa (Ci) =

3.7E4 Where Aa is the activity of species a, Na is the number of atoms of species a, a is the decay constant of species a, in seconds. The 14C production rate from the 17O(n,)14C reaction is calculated for the three group flux distribution according to:108 14 (1E24 N {( tt ) ( ee ) ( f f )}

C production rate =

3.7E4 Where:

14 C Production rate is 14C rate of production, µCi/sec- kg N is the number of target atoms per unit mass of coolant (1.27E22 atoms 17O/ kg H2O);

t is the effective neutron cross section for thermal neutron absorption, in barns; t is the thermal neutron flux, n/cm2-sec; e is the effective neutron cross section for epithermal energy neutron absorption, in barns; e is the epithermal neutron flux, n/cm2-sec; f is the effective neutron cross section for fast neutron absorption, in barns; f is the fast neutron flux, n/cm2-sec; 1.0E-24 is a units conversion factor, 1.0E-24 cm2/barn; is the 14C decay constant, 3.833E-12/sec; and 3.7E4 is a units conversion factor, 3.7E4 d/(sec- µCi).

The activity of 14C produced is thus the product of the production rate, the coolant mass in the active core region, and time:

AC = Production rate coolant mass time Where:

AC is the activity of 14C produced, in µCi; The coolant mass is the mass of water in the active core region, in kg, corrected for core average temperature and pressure; The time is the time period of reactor operation, in sec; The Callaway reactor is a Westinghouse Model F, four loop Pressurized Water Reactor (PWR) rated at 3565 MWth. The fuel is Westinghouse Vantage+ OFA with 193 fuel 108 EPRI TR-1021106, Section 4.3.2.1 Page 72 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 assemblies. The mass of coolant in the active core region is 12,925 kg.109 The hydrogen gas overpressure in the Volume Control Tank (VCT) effectively eliminates N2 and NH3 in the RCS, therefore 14C production from the 14N(n,p)14C reaction is insignificant.

The core average neutron flux, the Effective Full Power Years (EFPY), and the fuel burnup are specific to the reactor operation for the period.

7) Inhalation Dose at the Nearest Residence Location from 14C The child age group is the critical age group for an airborne release of 14C due to higher inhalation dose factors and higher ingestion dose factors.110 The inhalation dose for the child age group, D, is calculated according to the expression111:

D j = 3.17E4 Ra DFAj Qi X/Q Where:

D is the dose in mrem, to a member of the public from 14C, from the inhalation pathway, received by organ j; 3.17 E4 is the number of pCi/Ci divided by the number of sec/yr; Ra is the breathing rate for the child age group (3700 m3/yr);112 DFAj is the 14C inhalation pathway dose factor for organ j, appropriate to the child age group (mrem/pCi). For 14C, the limiting organ is the bone. The DFAbone for the child age group is 9.70E-6 mrem/pCi, and the DFAtotal body for the child age group is 1.82E-6;113 Qi is the quantity of 14C produced during the year (Ci/yr); and

/Q is the highest calculated annual average concentration at the nearest receptor location (sec/m3).

The inhalation dose to the bone for the child age group at the Nearest Residence location is:

Dbone = 1138 Qi X/Q The inhalation dose to the total body for the child age group at the Nearest Residence location is:

Dtotal body = 213 Qi X/Q 109 Westinghouse Calculation Note CN-TA-02-135, "Callaway (SCP) RSG IGOR/RETRAN Base Deck", May 16, 2003 110 Regulatory Guide 1.109, Table E-9, and Table E-13 111 Regulatory Guide 1.109, equations C-3 and C-4.

112 Regulatory Guide 1.109, Table E-5 113 Regulatory Guide 1.109, Table E-9.

Page 73 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025

8) Dose from 14C in Fresh Leafy Vegetation The concentration of 14C in leafy vegetation is calculated by assuming that the 14C ratio to the natural carbon in the vegetation is the same as the ratio of 14C to natural carbon in the atmosphere surrounding the vegetation.114 Only 14C released in the oxide form (CO or CO2) is incorporated into the plant material.115 All 14C releasedfrom the waste gas decay tanks is assumed to be CO2. CH4 is not incorporated into plant material, therefore, only CO2 contributes to the ingestion dose pathway. 14CO2 released outside the growing season or at night is not incorporated into plant material and does not contribute to the dose from the ingestion pathway. 14CO2 released during the growing season in the daytime is assumed to be incorporated into the plant material and contributes to the ingestion dose pathway. The growing season in mid- Missouri is approximately April 1- November 1.116 The concentration of 14C in leafy vegetation is given by:117 3.17E7 Qi X/Q 0.11 Concv =

0.16 Where:

ConcV is the concentration of 14C in leafy vegetation grown at the nearest receptor location (pCi/kg);

3.17E7 is equal to (1E12pCi/C)(1E3g/kg)/(3.15E7 sec/yr);

Qi is the quantity of 14C released as CO2 during periods of photosynthesis (Ci/yr);

/Q is the highest calculated annual average concentration at the nearest receptor location (sec/m3);

0.11 is the fraction of total plant mass that is natural carbon, dimensionless; and 0.16 is the concentration of natural carbon in the atmosphere (g/m3).

Substitution of constants yields:

Concv = 2.2E7 Qi X/Q The leafy vegetation ingestion dose for the Child age group at the nearest receptor location is given by:118 D = DFI fl Ua Concv Where:

114 Regulatory Guide 1.109, Appendix C 115 Regulatory Guide 1.109, Appendix C 116 Hammer, G. R.

117 Regulatory Guide 1.109, equation C-8 118 Regulatory Guide 1.109, equation C-13 Page 74 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 D is the annual dose to the bone or total body for the child age group from ingestion of fresh leafy vegetation, (mrem/yr);

DFI is the ingestion dose conversion factor for the maximum exposed organ. For the child age group, the bone is the maximum exposed organ. The DFIbone is 1.21E-5 mrem/pCi ingested and the DFItotal body is 2.42E-6 mrem/pCi ingested;119 fl is the fraction of leafy vegetation grown in the garden at the nearest receptor location. fl = 1.0;120 and Ua is the ingestion rate of leafy vegetation. For the child age group, Ua = 26 kg/yr.121

9) Dose from 14C in Milk The concentration of 14C in milk is determined as122:

Concmilk = Fm Concv QF e t f Where:

Concmilk is the concentration of 14C in milk, in pCi/L; Fm is the average fraction of the animals daily intake of 14C which appears in each liter of milk, in days/L. For cow milk, Fm is 1.2E-2 days/L.123 For goat milk, Fm is 0.10 days/L;124 ConcV is the concentration of 14C in leafy vegetation grown at the receptor location (pCi/kg), as described above; QF is the amount of feed consumed by the animal per day, in kg/day. For cows, QF is equal to 50 kg/day and for goats QF is equal to 6 kg/day;125 tf is the average transport time of the 14C from the feed into the milk and to the receptor (a value of 2 days is assumed): and is the radiological decay constant for 14C, 3.32E-7 days-1.

The dose from 14C in milk is determined as:

D = DFI Ua Concmilk Where:

D is the annual dose to the bone or total body for the child age group from milk ingestion, (mrem/yr);

119 Regulatory Guide 1.109, Table E-13 120 Regulatory Guide 1.109, Table E-15 121 Regulatory Guide 1.109, Table E-5 122 Regulatory Guide 1.109, equation C-10 123 Regulatory Guide 1.109, Table E-1 124 Regulatory Guide 1.109, Table E-2 125 Regulatory Guide 1.109, Table E-3 Page 75 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 DFI is the ingestion dose conversion factor for the maximum exposed organ. For the child age group, the bone is the maximum exposed organ. The DFIbone is 1.21E-5 mrem/pCi ingested and the DFItotal body is 2.42E-6 mrem/pCi ingested;126 and Ua is the ingestion rate for milk. For the child age group, Ua =330 L/yr (for both cow and goat milk).127

10) Dose from 14C in Meat The concentration of 14C in meat is determined as128:

Concmeat = 3.1E2 Concv 50 e (20 g3.32E 7 )

Where:

Concmeat is the concentration of 14C in meat, in pCi/kg; 3.1E-02 is the stable element transfer factor, in days/kg, for beef129 ConcV is the concentration of 14C in leafy vegetation grown at the receptor location (pCi/kg), as described above; 50 kg/day is the amount of feed consumed by the beef animal per day;130 20 days is the average time from slaughter to consumption131: and 3.32E-7 days-1 is the radiological decay constant for 14C.

The dose from 14C in meat is determined as:

D = DFI Ua Concmeat Where:

D is the annual dose to the bone or total body for the child age group from milk ingestion, (mrem/yr);

DFI is the ingestion dose conversion factor for the maximum exposed organ. For the child age group, the bone is the maximum exposed organ. The DFIbone is 1.21E-5 mrem/pCi ingested and the DFItotal body is 2.42E-6 mrem/pCi ingested;132 and Ua is the ingestion rate for meat. For the child age group, Ua =41 kg/yr.133

11) Dose to the Member of the Public from Activities within the Site Boundary 126 Regulatory Guide 1.109, Table E-13 127 Regulatory Guide 1.109, Table E-5 128 Regulatory Guide 1.109, equation C-12 129 Regulatory Guide 1.109, Table E-1 130 Regulatory Guide 1.109, Table E-3 131 Regulatory Guide 1.109, Table E-15 132 Regulatory Guide 1.109, Table E-13 133 Regulatory Guide 1.109, Table E-5 Page 76 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 The Member of the Public performing activities within the Site Boundary is described in Section 4. The ingestion dose pathways do not exist within the Site Boundary. 14C is not a gamma- emitting nuclide; therefore the ground plane pathway is negligible.

The inhalation dose, D, is calculated according to the expression134:

D j = 3.17E4 Ra DFAj Qi X/Q 1.26E1 Where:

D is the dose in mrem, to a member of the public from 14C, from the inhalation pathway, received by organ j; 3.17 E4 is the number of pCi/Ci divided by the number of sec/yr; Ra is the breathing rate for the adult age group (8000 m3/yr);135 DFAj is the 14C inhalation pathway dose factor for organ j, appropriate to the adult age group (mrem/pCi). For 14C, the limiting organ is the bone. The DFAbone for the adult age group is 2.27E-6 mrem/pCi, and the DFAtotal body and DFAthyroid is 4.26E-7 mrem/pCi.136 Qi is the quantity of 14C produced during the year (Ci/yr)

/Q is the highest calculated annual average concentration for activities within the Site Boundary, as shown in Table 10.

1.26E-1 is the fraction of the year the farmer performs activities within the Site Boundary (1100 hrs/8760 hrs), dimensionless.

134 Regulatory Guide 1.109, equations C-3 and C-4 135 Regulatory Guide 1.109, Table E-5 136 Regulatory Guide 1.109, Table E-7 Page 77 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025

12) Alternate Methodologies Regulatory Guide 1.21 states that the following methods are acceptable for estimating the production of 14C:137 Sampling and analysis of effluent streams Use of normalized 14C source term and scaling factors based on power generation, e.g., NCRP Report 81138 Use of the PWR GALE code139 Callaway Plant effluents have not been sampled for 14C. NCRP Report 81, Table 3.3 states that the total 14C production rate for a PWR without reactor coolant nitrogen is 6 Ci/GWe-yr. Assuming a conversion of 0.34 GWe/GWth, the expected 14C production rate is 2 Ci/GWth-yr or 7.2 Ci/EFPY for Callaway, which is significantly lower than the quantity of 14C calculated using the EPRI methodology. The PWR GALE code does not calculate the quantity of 14C produced, but instead assigns a value of 7.3 Ci/yr for every PWR without regard for power level, reactor coolant nitrogen concentration, or waste gas system design and operation. Again, this is significantly lower than the quantity of 14C calculated using the EPRI methodology. For example, using the EPRI methodology and the neutron flux distribution for Cycle 18, the 14C production for Callaway is 13.2 Ci/EFPY.140 The 14C production calculated using the EPRI methodology is therefore conservative with respect to the methodologies mentioned in Regulatory Guide 1.21, rev. 2.

The EPRI methodology also provides for a PWR proxy calculation. The average 14C production rate for Westinghouse PWRs is 3.4 Ci/ GWth- yr141. Callaway is rated at 3.565 GWth (3565 MWth), therefore, the 14C production rate based on the proxy PWR is 12.1 Ci/ EFPY. The 14C production calculated using the EPRI proxy methodology is therefore conservative with respect to the acceptable methodologies described in Regulatory Guide 1.21, rev. 2.

137 Regulatory Guide 1.21, Section 1.9 138 NCRP Report 81 139 NUREG-0017 140 HPCI 1102 141 EPRI TR-1021106, Section 4.8 and Appendix D Page 78 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Appendix B: Record of Revisions142 Rev. No. 0 Date: March 1983 Rev. No. 1 Date: November, 1983 Revised to support the current RETS submittal and to incorporate NRC Staff comments.

Rev. No. 2 Date: March, 1984 Revised to incorporate NRC Staff comments Rev. No. 3 Date: June, 1985 Revised to incorporate errata identified by ULNRC00803 and changes to the Environmental Monitoring Program. Incorporate results of 1984 Land Use Census.

Rev. No. 4 Date: February, 1987 Minor clarifications, incorporated 31-day projected dose methodology. Change in the utilization of areas within the Site Boundary.

Rev. No. 5 Date: January, 1988 Minor clarifications, revised descriptions of liquid and gaseous rad monitors, revised liquid setpoint methodology to incorporate monitor background, revised dose calculations for 40CFR190 requirements, Revised Table 6 and Figures 5.1A and 5.1B to refine descriptions of environmental TLD stations, incorporated description of environmental TLD testing required by Reg. Guide 4.13, revised Tables 1, 2, 4 and 5 to add additional nuclides, deleted redundant material from Chapter 6.

Rev. No. 6 Date: May, 1989 Revised methodology for calculating maximum permissible liquid effluent discharge rates and liquid effluent discharge rates and liquid effluent monitor setpoints, provided methodology for calculating liquid effluent monitors response correction factors, provided an enhanced description of controls on liquid monitor background limits, provided additional liquid and gaseous dose conversion factors and bioaccumulation factors (Tables 1, 2, 4 & 5), provided description of the use of the setpoint required by Technical Specification 4.9.4.2 during Core Alterations, added discussion of gaseous and liquid monitor setpoint selection in the event that the sample contains no detectable activity, added minimum holdup requirements for Waste Gas Decay tanks, revised dispersion parameters and accompanying description per FSAR Change Notice 88-42.

APA-ZZ-01003 Rev. No. 0 Date: August, 1989 Radiological Effluent Technical Specifications were moved from the Callaway Plant Technical Specifications to Section 9.0, Radioactive Effluent Controls, of the ODCM per NRC Generic Letter 89-01. At the same time, in order to formalize control of the entire ODCM, it was converted to APA-ZZ-01003, Offsite Dose Calculation Manual.

142 Section numbers, table numbers, etc. refer to the numbering schema used in the particular revision.

Page 79 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Rev. No. 1 Date: October, 1990 Revise Action 41 of Table 9.2-A to allow continued purging for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> per Amendment 20 to operating license, issued 4/10/87.

Rev. No. 2 Date: May, 1991 Section 2.4.2: Changed gross alpha analysis frequency from "each batch" to a monthly composite per Table 9.3-A, and the Callaway Plant NPDES permit (reissued March 15, 1991).

Rev. No. 3 Date: June, 1993 Deleted HF-RE-45 and LE-RE-59 as effluent monitors. Revised table numbering for consistency with those in Section 9.0, deleted redundant material, incorporated 1992 Land Use Census results, moved LLD description to Attachment 1, moved REC Bases to Attachment 2. Deleted reporting requirements for solid radwaste, which are described in APA-ZZ-01011, Process Control Program. Addressed compliance with 10 CFR 20.1301. Revised the dilution flow rate to allow values other than 5000 gpm, based on dilution flow monitor setpoint. Revised "MPC" terminology to "ECV". Added Action 46 to REC 9.2 to clarify actions for inoperable mid and high range WRGM Channels. Revised references to be consistent with the revised 10 CFR 20.

Added Appendix A. Revised Action 41 of Rec 9.2 and the operability requirements of GT-RE-22/33. Incorporated the revised Ri values in Tables 3.2 and 3.3. Added Section 6.2 and Table 6.5.

Rev. No. 4 Date: September, 1994 Increased the minimum channels OPERABLE requirement of REC 9.2 for GT-RE-22 & 33 from 1 channel to 2 channels. Revised Action 41 and the Bases for REC 9.2 accordingly. Incorporated the operability requirements from Tech Spec 3.9.9 into the Action statement for clarity. (Refer to CARS 199401176).

Rev. No. 5 Date: February, 1995 Removed the REMP station locations. Removed particulate nuclides with a half-life of less than 8 days from Tables 3.2-3.4 and removed 14C, 32P, 63Ni, and 125mTe from Tables 2.1, 2.2, 3.2, 3.3, and 3.4. Changed the reporting frequency of the Effluent Release Report from semiannual to annual. Removed the meat, milk and vegetable pathway dispersion parameters from Tables 6.1, 6.2, and 6.3, and clarified the applicability of the dispersion parameters and dose locations in Table 6.4. Relocated REC 9.1 and 9.2 to the FSAR. Revised footnotes 3 and 7 of Table 16.11-4 to require additional sampling of the Unit Vent in the event of a reactor power transient, only if the Unit Vent noble gas activity increases by a factor of 3 or greater. Added Section 4.1.3.1.3 for determination of dose due to the on-site storage of low level radioactive waste.

Rev. No. 6 Date September, 1996 Section 2: Added dose factors (Ai)for 110m Ag, 237Np, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 234/244 Cm to Table 2.1, and Bioaccumulation Factors (Bfi) for Ag, Pu, Am, and Cm to Table 2.2 due to a change in the liquid radwaste treatment process. Revised the description of the methodology for performing the 31 day dose projection in Section 2.5. Revised the maximum allowable background for HB-RE-18. Section 3: Eliminated 91mY and 99mTc from Table 3.4 (Meat Pathway) due to a half-life of < 8 days. Substituted the phrase more restrictive in lieu of lesser in Section 3.2. Revised the definition of Fa in equation 3.1. Added description of use of samples to verify dose rates in Section 3.3.1.2. Augmented the definition of qi in Section 3.3.2.1. Edited Page 80 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 equations 3.13 and 3.14 and added equation 3.15 to clarify dose calculations. Revised the methodology for performing the 31 day dose projection in Section 3.4. Section 4: Strengthened the discussion of the reevaluation of assumptions in Section 4.1.3. Section 6: Added new Table 6.6 to describe the selection and use of dispersion parameters during the preparation of the Effluent Release Report. Updated Tables 6.1 and 6.2 to reference the 1995 Land Use Census.

There were no changes in the receptor locations. Section 8: Replaced the reference to HDP-ZZ-04500 to a more generic reference to the plant operating procedures, due to change in organizational structure and responsibilities. Section 9: (1) Eliminated 9.0.1 and 9.0.2 due to redundancy with Technical Specifications 3.0.1 and 3.0.2; (2) Revised Table 9.3-A to incorporate sampling and analysis requirements for TRU nuclides in liquid effluents; (3) Eliminated sampling of Fuel Building Exhaust from Table 16.11-4 and the associated footnotes due to redundancy with Unit Vent sampling; revised the continuous sampling requirements for the gaseous batch release points consistent with plant design; revised the 3H analysis frequency for Purges from weekly to prior to each purge; and, (4) Revised the air sampling station location criteria on Table 9.11-A and footnote # 1, and eliminated footnote #3 in order to be less generic and more descriptive of the parameters used in determining the station locations (See CARS 199502280).Revised the location requirements for milk and vegetables.

Revised description of use of baseline samples to trigger gamma isotopic analysis in footnote #4, revised requirement for location of downstream sample station in footnote #6. Revised Surveillance Requirement 9.10.2.1 to eliminate liquid effluents from the surveillance. (5)

Revised REC 9.5 and REC 9.9 to eliminate exceptions for partially tested effluents being released in excess of the respective limit. Section 11: Added reference 11.14.13.Attachment 2: Revised the Bases for REC 9.10 to support the elimination of liquid effluents from Surveillance 9.10.2.1.The remaining changes are editorial in nature and have no technical impact.(This revision implements CARS 199502055, CARS 199600167, CARS 199600961, CARS 199502280, and CARS 199600986).

Rev. No. 7 Date February, 1997 Section 9: (1) REC 9.5, Liquid Radwaste Treatment System, Action statement: Eliminated reference to COMN 1161. (2) Table 9.11-A, items 4a (milk) and 4c (vegetation): revised to required control stations in the least prevalent wind direction. (See CARS 199700166) Appendix A: revised the discussion relative to the appropriate gross alpha Effluent Concentration Value.

Rev. No. 8 Date May, 1997 Section 1: The Purpose and Scope was revised to describe the split of the ODCM into two sections Per FSAR Change Notice 95-058. Section 2: Sections 2.2 and 2.3 were revised to clarify the use of nuclide- specific alpha activity vice gross alpha activity for setpoint determination. Section 2.5 was revised to delete the description of the Liquid Radwaste Treatment System. Section 6: Tables 6.1, 6.2, and 6.3 were revised to reflect the results of the 1996 Annual Land Use Census. Section 7: The reporting requirements for the Annual Radiological Environmental Operating Report and the Effluent Release Report were relocated to the FSAR Per FSAR Change Notice 95-058. Section 9: REC's and the supporting Attachments 1 and 2 were relocated to the FSAR Per FSAR Change Notice 95-058. Appendix A: Appendix A was deleted. Editorial changes were made throughout the ODCM reflecting the relocation of the REC's to the FSAR.

Rev. No. 9 Date March, 1998 Page 81 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Section 2.5: Revised projected liquid dose calculation to use previous 31 day cumulative doses.

Section 3.1.1: Added GL-RE-202, Laundry Decon Facility Dryer Exhaust Monitor. Added action to be taken when the particulate and/or iodine grab sampler is not operable. Section 3.2: Added setpoint calculation for GL-RE-202. Section 3.2.1 and 3.3.2.2: Changes were made to correct typographical errors and have no technical impact. Section 3.4: Revised projected gas dose calculation to use previous 31 day cumulative doses. Section 3.5: Removed the word secular from secular equilibrium since the equilibrium mode could be secular or transient depending on the isotope. Table 6.2: Added Laundry Decon Facility Dryer Exhaust to title of table since these will be the dispersion factors used for this release point.

Rev. No. 10 Date December 20, 1999 Section 3.1: Added explanation that GL-RE-202 only monitors particulate. Section 3.2:

Changed Laundry Decon Facility Exhaust Monitor setpoint to less than or equal to 2000 cpm above equilibrium background with a maximum allowed background of 2000 cpm as calculated in HPCI 9905. Tables 6.1, 6.2, 6.3: Updated values as calculated in HPCI 9902. Section 5.1:

Defined how REMP sample locations were determined. Removed reference to Plant Operating manual since it no longer exists.

Rev. No. 11 Date December 22, 1999 Changes required to go from old Technical Specifications to Improved Technical Specifications (ITS). Technical Specification 4.9.4.2 changed to FSAR 16.11.2.4.1. Technical Specification 6.8.4.F changed to FSAR 16.11.4. Technical Specification 6.8.1.F changed to Improved Technical Specification 5.4.1. Technical Specification 6.14 changed to Improved Technical Specification 5.5.1. Technical Specification 6.8.4.E changed to Improved Technical Specification 5.5.4. Technical Specification 6.9.1.6 changed to Improved Technical Specification 5.6.2.

Technical Specification 6.9.1.7 changed to Improved Technical Specification 5.6.3. Changed name of Annual Radiological Effluent Release Report to Effluent Release Report as stated in ITS.

Added liquid releases are limited to 10 times the Appendix B, Table 2, Column 2 limits Per FSAR CN 98-041 supporting implementation of ITS.

Rev. No. 12 Date December 01, 2000 Section 2.1 and 2.2.1: Updated 10CFR20, Appendix B, Table II, Column 2 reference to the new 10CFR20 format. Corrected typo for "f", flow setpoint should be undiluted waste flow rate.

Section 3.2.1: Corrected typo, default value for safety factor should be 0.1. Section 5.1: Updated crosscheck program used to EML since EPA program is no longer available. Section 6.2: Added vertical height of highest adjacent building used to perform concurrent year annual average atmospheric dispersion (X/Q) calculations and reference for this value. This information should be documented in the ODCM. Added responsibility for validation of meteorological data, since responsibility has changed from engineering to HPTS. Section 10.1.1: Revised to require a summary of Major Radwaste System changes to be included in the annual report. This was done to be consistent with FSAR 16.11.5.2.Several changes were made throughout the procedure to correct typographical errors and have no technical impact.

Rev. No. 13 Date September 19, 2002 Section 3.2: Revised to implement the approved OL 1218, Rev. 1; License Amendment no. 152 allowing equipment hatch and emergency air lock to remain open during refueling activities (FSAR CN-01-030 and CN-02-049). The amendment eliminated FSAR 16.11.2.4.1B and subsequently deleted the core alteration setpoint value 5.0 E-3 Ci/cc for Containment Purge Page 82 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 Monitors GT-RE-22 and GT-RE-33. The alarm setpoints for the Containment Purge Monitors will be based on the methodology described in Section 3 of the ODCM.

Rev. No. 14 Date June 17, 2003 Revised Table 2.1 (Ingestion Dose Commitment Factor for Adult Age Group) to include dose factors for Pr-144. (CARS 200303251).Revised Section 4.1.3.1 to adjust the Farmer's residence (critical receptor) from 3830 meters in the SE sector to 2897 meters in the NNW sector. The Farmer's residence (critical receptor) was changed in 2002 to a location directly across the street from the Nearest residence. For conservatism and ease in calculation, Table 6.1 and 6.2 were revised making the distances and dispersion parameters for the Farmer's residence (critical receptor) and the Nearest residence the same. Revised section 7.2 to reference Table 6.6.

Revised section 10.2.2 to remove the requirement for QA department review of the ODCM for reach revision (CARS 200304509). Added a reference to 11.14.14, Calculation HPCI 0304 (Rev.

0), Calculation of Liquid Effluent Dose Commitment factor for Pr-144 (Ai) for the Adult Age Group", June, 2003.

Rev. No. 15 Date December 9, 2004 Reformatted references to FSAR-SP Chapter 16.11 in section 1, 2.1.1, 2.1.2, 2.2.1, 2.3, 2.4.2, 2.5, 2.6, 3.1, 3.2.1, 3.5, 5.1, 7.1, 7.2, and 9. References to 63Ni were added to section 2.2.1 for the calculation of ECVSUM, section 2.3, and described in section 2.6 since it is an exception to non- gamma emitters not listed in FSAR-SP Table 16.11-1. 63Ni was added to the ODCM based on previous 10 CFR 61 sample results and 2nd quarter liquid composite analyses. Consolidated references listed in section 2.4.2 and 2.6 for the site related ingestion dose commitment factors (Ai of Table 2.1 into HPCI 0406, Revision 1. References to HPCI 9504 (Ref: 11.14.13) and HPCI 0304 (Ref: 11.14.14) were deleted and replaced with HPCI 0406, Revision 1 which is now listed as Ref: 11.14.13. Added 63Ni and 122Sb to Table 2.1- INGESTION DOSE COMMITMENT FACTOR (Ai) FOR ADULT AGE GROUP. Revised the reference for Table 2.1 to 11.14.13.

Corrected a typo in section 3.1.2 referring to the Radwaste Building Vent system designator as GT vs. GH (CAR 200406851). References 11.19 and 11.20 were deleted in section 4.1.3.1.1.

Reference 11.18 was changed to MicroShield (Grove Engineering, Inc.) vs. ISOSHLD.

Reference 11.24 in section 4.1.3.1.3 was corrected to 11.18. Section 5.1 and 5.2 were revised to indicate that the Radiological Environmental Monitoring Program TLDs will be processed and provided by a vendor laboratory beginning in the first quarter of 2005. Section 5.2 was revised to delete reference 11.14.10 which refers to HPCI 8808, Performance Testing of the Environment TLD System at Callaway Plant, August 1989. Reference 11.14.7 was corrected with HPCI 8710 vice HPCI 8810. Revised Table 6.1, Note (c) to reference FSAR Table 2.3-83 vs. Table 2.3-82.

Revised Table 6.1 and 6.2 Note (b) to reference data is from the 2002 Land Use Census.

Changed and/or corrected the Skin dose factor (Li) units in Table 3.1 (Dose Factor for exposure to a Semi-Infinite Cloud of Noble Gases) to mrem/yr per uCi/m3. Revised section 3.3.1.2: Added units for the term BR in m3/yr. Removed paragraph in section 3.3.2.2 that describes actions for implementing the use of appropriate RI,i,j values. This paragraph was taken directly from section 5.3.1 of NUREG 0133, U.S. Nuclear Regulatory Commission, Preparation of Radiological Effluent Technical Specification for Nuclear Power Plants, USNRC NUREG-0133, Washington, D.C. 20555, October, 1978. This paragraph does not apply since the use of pathways is already considered as described in sections 4.1.2 and 4.1.3.1. Revised note (c) of Table 6.1 to reference FSAR-SA Table 2.3-83. Revised note (a) from Table 6.1 to reference FSAR-SA Table 2.3-82. In addition, revised Note (b) from Table 6.1 to reference data taken from the 2002 Land Use Census. Revised Notes (a) and (c) from Table 6.2 to reference FSAR-SA Table 2.3-84 and 2.3-Page 83 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 81 respectively. Added a 0.95 conservatism factor to section 2.2.3 Calculation of Liquid Effluent Monitor Setpoint. This will conservatively reduce the liquid monitor setpoint to further ensure the section 4.4.1 of NUREG 0133, U.S. Nuclear Regulatory Commission, Preparation of Radiological Effluent Technical Specification for Nuclear Power Plants, USNRC NUREG-0133, Washington, D.C. 20555, October, 1978 which states the alarm and trip setpoints for each instrument channel listed in Table 3.3-11 should be provided and should correspond to a value(s) which represents a safe margin of assurance that the instantaneous liquid release limit of 10 CFR Part 20 is not exceeded. A determination was made IAW T/S 5.5.1 that the associated changes with Revision 15 maintain the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50 Appendix I, and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.

Rev. No. 16 Date December 1, 2005 Section 5.1 was revised to remove an invalid requirement that a third-party laboratory performing analysis specifically state the Interlaboratory Comparison (crosscheck) requirements for the Radiological Environmental Monitoring Program (REMP) contract lab. Reference 11.14.14 to Reg. Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations)- Effluent Streams and the Environment, was added to provide supporting documentation for contract lab Interlaboratory Comparison requirements. Additional information on REMP contract lab participation in Interlaboratory Comparisons was also added in section 5.1.

(CAR 200500891) Revised reference 11.14.7 by adding normalization and standardization factors for radionuclides listed in Table 2.1 of the ODCM that were not included in the original calculation.

Added section 4.1.3.1.4 to describe direct dose to a Member of the Public from the Old Steam Generator Storage Facility (OSGSF). Reworded step 4.1.2 to describe the sources of direct radiation from outside storage tanks to storage of radioactive material. Revised section 4.1.3.1.2 to include and describe direct dose calculations in support of Modification 03-1008, Equipment Hatch Platform and Missile Shield Modification. Reference 11.14.10 was added to reference direct dose calculation to the Member of the Public from Modification 03-1008. Revised section 4.1.3.1.3 to include and describe direct dose calculations from the Radwaste Yard RAM storage and Stores II. Reference 11.19 and 11.20 were added to reference direct dose calculations to the Member of the Public from RAM storage at Stores II and the Radwaste Yard. A determination was made IAW T/S 5.5.1 that the associated changes with Revision 16 maintain the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50 Appendix I, and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.

Rev. No. 17 Date March 14, 2007 Section 2.4.1 was revised Per CAR 200701309 to state that no potable water intakes exist within 10 miles of the plant discharge point. This is due to the fact that the Annual Land Use Census ensures no newly developed potable water intakes within 10 miles of the plant discharge Per FSAR-SP Chapter 16.11.4.2c. Section 2.4.2 was revised to add reference 11.6.18 to CAR 200700053 which provides documentation of an evaluation of the site specific mixing factor for liquid effluents. Modification 06-0061 reconfigured the plant discharge terminus at the Missouri River. The modification was completed in January 2007.

Rev. No. 18 Date October 11, 2007 Revised Table 6.5 was revised to reflect upgrade/replacement of the primary meteorological tower instrumentation as per Modification Package 04-1020. Section 2.4.2 was Page 84 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 revised to remove the discussion of the nearest municipal potable water intake downstream from the liquid effluent discharge point as being located near the city of St. Louis, Missouri, approximately 78 miles downstream. Since the Land Use Census annually verifies no potable water intakes within 10 miles - this discussion was deemed inappropriate in describing methodology for calculating dose to the public from liquid effluents. In addition, the distance referenced as not having potable water intakes downstream of the plant discharge was changed for consistency with section 2.4.1 and the Land Use Census.

Rev. No. 19 Date August, 2012 Converted to Word 2010, including appropriate formatting changes and cross-referencing for the conversion. Deleted all references to the obsolete Commitment Tracking System (COMN) and all hidden text for the obsolete hidden text referencing system. Added level of use. (CAR 201104163, Action 1) Section 3.4- Added dose reduction controls for discharge of 14 C from the waste gas system and defined the growing season. Section 3.5- Deleted statement that non- gamma emitting nuclides not listed in the FSAR-SP Table 16.11.4 are not considered in dose calculations. Eliminated Sections 4.1.3.1.1, 4.1.3.1.2, 4.1.3.1.3, and 4.1.3.1.4- direct radiation dose is negligible; refer to HPCI 1206. Section 5.2- changed to allow use of dosimeters other than TLDs. Section 6.1- Deleted discussion of short- term X/Q processing and the slope factor and deleted the associated table of 'S' factors. Section 6.2- Deleted designation of responsibilities for met data review. (CAR 201104163, Action 1) Section 10.2- changed to align with T/S 5.5.1. CAR 201104163, Action 2) Corrected the department title to align with organizational structure. (CAR 201104163, Action 1). Table 10 and Table 11- The dispersion parameters for the Farmers residence were removed. As a first approximation, the dispersion parameters for the Nearest Residence will be used for the Farmers residence. Appendix A-Appendix A was added to describe the calculation of the production of 14C and the calculation of dose from 14C in gaseous effluents. (CAR 201104163) 63Ni was added to the gaseous effluent inhalation pathway and ingestion pathways dose factor tables. Values for 63Ni are from APA-ZZ-01003, rev. 4. (CAR 201104197). Adult ingestion dose factors removed. Ingestion dose pathway removed from Table 13 for activities inside the Site Boundary.

Rev. No. 20 Date April, 2015 Revised Table 10 to implement the recalculated dispersion parameters using 2009- 2013 meteorology. Deleted Table 11 as described in HPCI1503. Added HPCI1502, HPCI1503, HPCI1504, & HPCI1505 as references. Deleted reference to ZZ-67. Added ISFSI to Appendix A, Figure 1. Revised Section 6 to describe the recalculation of the long- term dispersion parameters.

Deleted Section 8; following sections were renumbered accordingly.

Rev. No. 21 Date May, 2015 Revised Table 10 to correct the dispersion parameters for the Site Boundary and Nearest Resident locations and edited to two significant digits for consistency with the remainder of Table

10. (CAR 201502908)

Rev. No. 22 Date March, 2017 The following changes implement CR's 201604927, 201602733, 201603668, and 201602733:

The methodology used to calculate the Ai values was added to section 2.4.2. Default setpoint values for GTRE21B and GHRE10B were added to section 3.2. Deleted the specific years of the meteorological data in section 6.1 and instead stated the dispersion parameters represent five years of on- site data to eliminate a potential error trap. The HPCI referenced in section 6.1 Page 85 of 86 INFORMATION USE December, 2020

APA-ZZ-01003 Rev. 025 provides the necessary level of detail, including the years represented by the data. A footnote was added to section 6.1.2 to clarify that the farmer is a composite and not an actual person.

Section 6.2 was revised to clarify the quality check of the meteorological data prior to processing.

Section 10, "Bibliography" was revised to add new references and to update the revision level of CDP-ZZ-00200. 126Sb was added to Table 1. Table 12 was revised to change the "Farmer's Residence" to the "Nearest Resident" because the farming plots are now leased to multiple farmers and it is not feasible to calculate dose to multiple farmers' residences. The footnote in Table 12 regarding 3H dispersion parameters was moved into the table. 14C was added to Table

12. Appendix A was reformatted for better readability. Appendix A, Section 2, "Assumptions" was revised to clarify the assumptions, principally dispersion parameter use and the dose pathways and locations. Appendix A, Section 3, "Applicable Dose Limits", was revised to add 10 CFR 72.104. Appendix A, Section 11, "Dose to the Member of the Public from Activities Within the Site Boundary", was revised to eliminate the value of the X/Q for activities within the Site Boundary and to instead refer to Table 10 as the source for the X/Q. The three condensed form equations were likewise eliminated. This eliminated an error trap in that the X/Q could be revised and it may not be recognized that the specific value was stated in the text of Appendix A, Section 11.

Appendix A, Section 12 was edited for readability.

Rev. No. 23 Date June, 2018 Section 5.1 was revised to delete the phrase referring to HPCI 9901 because HPCI 9901 is obsolete. HPCI 1506, rev. 1, superseded portions of of HPCI 9901, the remainder is superseded by HTP-ZZ-DTI-REMP-SMPL-SCHED, REMP Sample Locations and Analysis Schedule". (CR 201705399) Section 10, "Bibliography", was revised to update the revision level of CDP-ZZ-00200, Appendix B, ANSI N42.18-2004 (redesignation of ANSI N13.10-1974), and HPCI 1604.

Table 1 was revised to add the Dose Commitment Factors for 117mSn. (CR 201706108) Format changes are not marked with revision bars.

Rev. No. 24 Date September, 2019 Added pathway dose factors (Ri) for adult inhalation and ingestion dose pathways for gaseous effluents (Tables 14- 18) from ZZ-78, rev.2. (CR 201903925)

Added references for all the dose tables.

Added "Grass- Cow" to titles of Tables 8 and 17.

Appendix A, Section 8: Removed the terms "inorganic" and "organic" when referring to CO2 and CH4.

Format changes are not marked with revision bars.

Rev. No. 25 Date December, 2020 Section 2.1 was revised to include new requirements for dilution flow in the current NPDES permit (effective 7/1/2020). Special condition #3 of the 7/1/2020 NPDES permit requires a minimum of 3000 gpm dilution flow from outfalls #002, Cooling Tower Blowdown and #016, Cooling Tower Bypass (CR 202003290-001). Table 10, 'Farming Areas within the Site Boundary' was revised with HPCI 1502, rev 1 dispersion parameters. The only affected parameter was D/Q (CR 202005158-002). Section 2.1.1. was revised to remove BM-RE-52 as the continuous liquid discharge pathway no longer exists due to MP 19-0114 (BT 202002245-002).

Page 86 of 86 INFORMATION USE December, 2020

&$//$:$<63

 2))6,7('26(&$/&8/$7,210$18$/

2'&0 5$',2$&7,9(())/8(17&21752/6

 /,48,'())/8(17

 /,48,'())/8(176&21&(175$7,21/,0,7,1*&21',7,21)25

23(5$7,21 2'&0

7KHFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOUHOHDVHGLQOLTXLGHIIOXHQWVWR815(675,&7('

$5($6 VHH)LJXUH VKDOOEHOLPLWHGWRWLPHVWKHFRQFHQWUDWLRQYDOXHVLQ

$SSHQGL[%7DEOH &ROXPQWR&)5IRUUDGLRQXFOLGHVRWKHUWKDQ

GLVVROYHGRUHQWUDLQHGQREOHJDVHV)RUGLVVROYHGRUHQWUDLQHGQREOHJDVHVWKH

FRQFHQWUDWLRQVKDOOEHOLPLWHGWR[PLFUR&XULHPOWRWDODFWLYLW\

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOUHOHDVHGLQOLTXLGHIIOXHQWVWR

815(675,&7('$5($6H[FHHGLQJWKHDERYHOLPLWVLPPHGLDWHO\UHVWRUHWKH

FRQFHQWUDWLRQWRZLWKLQWKHDERYHOLPLWV

 6859(,//$1&(5(48,5(0(176 2'&0

D 5DGLRDFWLYHOLTXLGZDVWHVVKDOOEHVDPSOHGDQGDQDO\]HGDFFRUGLQJWRWKHVDPSOLQJDQG

DQDO\VLVSURJUDPRI7DEOH

E 7KHUHVXOWVRIWKHUDGLRDFWLYLW\DQDO\VLVVKDOOEHXVHGLQDFFRUGDQFHZLWKWKH

PHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0WRDVVXUHWKDWWKHFRQFHQWUDWLRQVDWWKHSRLQW

RIUHOHDVHDUHPDLQWDLQHGZLWKLQWKHOLPLWVRI6HFWLRQ

  %$6(6 7KLVVHFWLRQLVSURYLGHGWRHQVXUHWKDWWKHFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOV

UHOHDVHGLQOLTXLGZDVWHHIIOXHQWVWR815(675,&7('$5($6ZLOOEHOHVVWKDQWLPHV

WKHFRQFHQWUDWLRQLQ$SSHQGL[%7DEOH&ROXPQWR &)5 7KLV

OLPLWDWLRQSURYLGHVDGGLWLRQDODVVXUDQFHWKDWWKHOHYHOVRIUDGLRDFWLYHPDWHULDOVLQERGLHV

RIZDWHULQ815(675,&7('$5($6ZLOOUHVXOWLQH[SRVXUHVZLWKLQ  WKH6HFWLRQ,,$

GHVLJQREMHFWLYHVRI$SSHQGL[,&)53DUWWRD0(0%(52)7+(38%/,&DQG

 5HY2/



&$//$:$<63

 WKHOLPLWVRI&)53DUWWRWKHSRSXODWLRQ7KHFRQFHQWUDWLRQOLPLWIRU

GLVVROYHGRUHQWUDLQHGQREOHJDVHVLVEDVHGXSRQWKHDVVXPSWLRQWKDW;HLVWKH

FRQWUROOLQJUDGLRLVRWRSHDQGLWV03&LQDLU VXEPHUVLRQ ZDVFRQYHUWHGWRDQHTXLYDOHQW

FRQFHQWUDWLRQLQZDWHUXVLQJWKHPHWKRGVGHVFULEHGLQ,QWHUQDWLRQDO&RPPLVVLRQRQ

5DGLRORJLFDO3URWHFWLRQ ,&53 3XEOLFDWLRQ

7KHUHTXLUHGGHWHFWLRQFDSDELOLWLHVIRUUDGLRDFWLYHPDWHULDOVLQOLTXLGZDVWHVDPSOHVDUH

WDEXODWHGLQWHUPVRIWKHORZHUOLPLWVRIGHWHFWLRQ //' V 

 5HY2/



&$//$:$<63

 '26()520/,48,'())/8(176/,0,7,1*&21',7,21)25

23(5$7,21 2'&0

7KHGRVHRUGRVHFRPPLWPHQWWRD0(0%(52)7+(38%/,&IURPUDGLRDFWLYH

PDWHULDOVLQOLTXLGHIIOXHQWVUHOHDVHGIURPHDFKXQLWWR815(675,&7('$5($6 VHH

)LJXUH VKDOOEHOLPLWHG

D 'XULQJDQ\FDOHQGDUTXDUWHUWROHVVWKDQRUHTXDOWRPUHPVWRWKHZKROHERG\

DQGWROHVVWKDQRUHTXDOWRPUHPVWRDQ\RUJDQDQG E 'XULQJDQ\FDOHQGDU\HDUWROHVVWKDQRUHTXDOWRPUHPVWRWKHZKROHERG\DQG

WROHVVWKDQRUHTXDOWRPUHPVWRDQ\RUJDQ

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHFDOFXODWHGGRVHIURPWKHUHOHDVHRIUDGLRDFWLYHPDWHULDOVLQOLTXLGHIIOXHQWV

H[FHHGLQJDQ\RIWKHDERYHOLPLWVSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQZLWKLQGD\V

D6SHFLDO5HSRUWWKDWLGHQWLILHVWKHFDXVH V IRUH[FHHGLQJWKHOLPLW V DQGGHILQHVWKH

FRUUHFWLYHDFWLRQVWKDWKDYHEHHQWDNHQWRUHGXFHWKHUHOHDVHVDQGWKHSURSRVHG

FRUUHFWLYHDFWLRQVWREHWDNHQWRDVVXUHWKDWVXEVHTXHQWUHOHDVHVZLOOEHLQFRPSOLDQFH

ZLWKWKHDERYHOLPLWV7KLV6SHFLDO5HSRUWVKDOODOVRLQFOXGH  WKHUHVXOWVRI

UDGLRORJLFDODQDO\VHVRIWKHGULQNLQJZDWHUVRXUFHDQG  WKHUDGLRORJLFDOLPSDFWRQ

ILQLVKHGGULQNLQJZDWHUVXSSOLHVZLWKUHJDUGWRWKHUHTXLUHPHQWVRI &)5 3DUW 

&OHDQ'ULQNLQJ:DWHU$FW 

 6859(,//$1&(5(48,5(0(176 2'&0

&XPXODWLYHGRVHFRQWULEXWLRQVIURPOLTXLGHIIOXHQWVIRUWKHFXUUHQWFDOHQGDUTXDUWHUDQG

WKHFXUUHQWFDOHQGDU\HDUVKDOOEHGHWHUPLQHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0DWOHDVWRQFHSHUGD\V

  %$6(6 7KLVVHFWLRQLVSURYLGHGWRLPSOHPHQWWKHUHTXLUHPHQWVRI6HFWLRQV,,$DQG,9$RI

$SSHQGL[,&)53DUW7KH/LPLWLQJ&RQGLWLRQIRU2SHUDWLRQLPSOHPHQWVWKHJXLGHV

VHWIRUWKLQ6HFWLRQ,,$RI$SSHQGL[,7KH$&7,21VWDWHPHQWVSURYLGHWKHUHTXLUHG

7KHUHTXLUHPHQWVRI$&7,21D  DQG  DUHDSSOLFDEOHRQO\LIGULQNLQJZDWHUVXSSO\LVWDNHQIURPWKH

UHFHLYLQJZDWHUERG\ZLWKLQPLOHVRIWKHSODQWGLVFKDUJH,QWKHFDVHRIULYHUVLWHGSODQWVWKLVLV

PLOHVGRZQVWUHDPRQO\

 5HY2/



&$//$:$<63 RSHUDWLQJIOH[LELOLW\DQGDWWKHVDPHWLPHLPSOHPHQWWKHJXLGHVVHWIRUWKLQ6HFWLRQ,9$RI

$SSHQGL[,WRDVVXUHWKDWWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOLQOLTXLGHIIOXHQWVWR

815(675,&7('$5($6ZLOOEHNHSWDVORZDVLVUHDVRQDEO\DFKLHYDEOH

$OVRIRUIUHVKZDWHUVLWHVZLWKGULQNLQJZDWHUVXSSOLHVWKDWFDQEHSRWHQWLDOO\DIIHFWHGE\

SODQWRSHUDWLRQVWKHUHLVUHDVRQDEOHDVVXUDQFHWKDWWKHRSHUDWLRQRIWKHIDFLOLW\ZLOOQRW

UHVXOWLQUDGLRQXFOLGHFRQFHQWUDWLRQVLQWKHILQLVKHGGULQNLQJZDWHUWKDWDUHLQH[FHVVRI

WKHUHTXLUHPHQWVRI&)53DUW7KHGRVHFDOFXODWLRQPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0LPSOHPHQWWKHUHTXLUHPHQWVLQ6HFWLRQ,,,$RI$SSHQGL[,

ZKLFKVSHFLI\WKDWFRQIRUPDQFHZLWKWKHJXLGHVRI$SSHQGL[,EHVKRZQE\FDOFXODWLRQDO

SURFHGXUHVEDVHGRQPRGHOVDQGGDWDVXFKWKDWWKHDFWXDOH[SRVXUHRID0(0%(52)

7+(38%/,&WKURXJKDSSURSULDWHSDWKZD\VLVXQOLNHO\WREHVXEVWDQWLDOO\

XQGHUHVWLPDWHG7KHHTXDWLRQVVSHFLILHGLQWKH2'&0IRUFDOFXODWLQJWKHGRVHVGXHWR

WKHDFWXDOUHOHDVHUDWHVRIUDGLRDFWLYHPDWHULDOVLQOLTXLGHIIOXHQWVDUHFRQVLVWHQWZLWKWKH

PHWKRGRORJ\SURYLGHGLQ5HJXODWRU\*XLGH&DOFXODWLRQVRI$QQXDO'RVHVWR0DQ

IURP5RXWLQH5HOHDVHVRI5HDFWRU(IIOXHQWVZLWK&)53DUW$SSHQGL[,5HYLVLRQ

2FWREHUDQG5HJXODWRU\*XLGH(VWLPDWLQJ$TXDWLFDQG'LVSHUVLRQRI

(IIOXHQWVIURPDFFLGHQWDODQG5RXWLQH5HDFWRU5HOHDVHVIRUWKH3XUSRVHRI,PSOHPHQWLQJ

$SSHQGL[,$SULO

7KHUHSRUWLQJUHTXLUHPHQWVRI$FWLRQ D LPSOHPHQWWKHUHTXLUHPHQWVRI&)5

 5HY2/



&$//$:$<63

 5$',2$&7,9(/,48,'())/8(17021,725,1*,167580(17$7,21

/,0,7,1*&21',7,21)2523(5$7,21 2'&0

7KHUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVVKRZQLQ7DEOH

VKDOOEH)81&7,21$/ZLWKWKHLU$ODUP7ULS6HWSRLQWVVHWWRHQVXUHWKDWWKH

OLPLWVRI6HFWLRQDUHQRWH[FHHGHG7KH$ODUP7ULS6HWSRLQWVRIWKHVHFKDQQHOV

VKDOOEHGHWHUPLQHGDQGDGMXVWHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQ

WKH2'&0

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

D :LWKDUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHO$ODUP7ULS

6HWSRLQWOHVVFRQVHUYDWLYHWKDQUHTXLUHGE\WKHDERYHLPPHGLDWHO\VXVSHQGWKH

UHOHDVHRIUDGLRDFWLYHOLTXLGHIIOXHQWVPRQLWRUHGE\WKHDIIHFWHGFKDQQHORU

GHFODUHWKHFKDQQHOQRQIXQFWLRQDO

E :LWKOHVVWKDQWKHPLQLPXPQXPEHURIUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJ

LQVWUXPHQWDWLRQFKDQQHOV)81&7,21$/WDNHWKH$&7,21VKRZQLQ7DEOH

5HVWRUHWKHQRQIXQFWLRQDOLQVWUXPHQWDWLRQWR)81&7,21$/VWDWXVZLWKLQ

GD\VDQGLIXQVXFFHVVIXOH[SODLQLQWKHQH[W5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQZK\WKLVQRQIXQFWLRQDOLW\ZDV

QRWFRUUHFWHGZLWKLQWKHWLPHVSHFLILHG

 6859(,//$1&(5(48,5(0(176 2'&0

(DFKUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVKDOOEH

GHPRQVWUDWHG)81&7,21$/E\SHUIRUPDQFHRIWKH&+$11(/&+(&.6285&(

&+(&.&+$11(/&$/,%5$7,21DQG&+$11(/23(5$7,21$/7(67DWWKH

IUHTXHQFLHVVKRZQLQ7DEOH

  %$6(6 7KHUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQLVSURYLGHGWRPRQLWRUDQG

FRQWURODVDSSOLFDEOHWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQOLTXLGHIIOXHQWVGXULQJ

DFWXDORUSRWHQWLDOUHOHDVHVRIOLTXLGHIIOXHQWV7KH$ODUP7ULS6HWSRLQWVIRUWKHVH

LQVWUXPHQWVVKDOOEHFDOFXODWHGDQGDGMXVWHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0WRHQVXUHWKDWWKHDODUPWULSZLOORFFXUSULRUWRH[FHHGLQJWKH

OLPLWVRI&)53DUW7KH)81&7,21$/,7<DQGXVHRIWKLVLQVWUXPHQWDWLRQLV

FRQVLVWHQWZLWKWKHUHTXLUHPHQWVRI*HQHUDO'HVLJQ&ULWHULDDQGRI$SSHQGL[$

WR&)53DUW

 5HY2/



&$//$:$<63

 /,48,'5$':$67(75($70(176<67(0/,0,7,1*&21',7,21)25 23(5$7,21 2'&0

7KH/LTXLG5DGZDVWH7UHDWPHQW6\VWHPVKDOOEH)81&7,21$/DQGDSSURSULDWH

SRUWLRQVRIWKHV\VWHPVKDOOEHXVHGWRUHGXFHUHOHDVHVRIUDGLRDFWLYLW\ZKHQWKH

SURMHFWHGGRVHVGXHWRWKHOLTXLGHIIOXHQWIURPHDFKXQLWWR815(675,&7('$5($6

VHH)LJXUH ZRXOGH[FHHGPUHPWRWKHZKROHERG\RU PUHPWRDQ\

RUJDQLQDGD\SHULRG

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKUDGLRDFWLYHOLTXLGZDVWHEHLQJGLVFKDUJHGLQH[FHVVRIWKHDERYHOLPLWVDQGWKH

/LTXLG5DGZDVWH7UHDWPHQW6\VWHPVDUHQRWEHLQJIXOO\XWLOL]HGSUHSDUHDQGVXEPLWWR

WKH&RPPLVVLRQZLWKLQGD\VD6SHFLDO5HSRUWWKDWLQFOXGHVWKHIROORZLQJLQIRUPDWLRQ

 ([SODQDWLRQRIZK\OLTXLGUDGZDVWHZDVEHLQJGLVFKDUJHGZLWKRXW

WUHDWPHQWLGHQWLILFDWLRQRIDQ\LQRSHUDEOHHTXLSPHQWRUVXEV\VWHPVDQG

WKHUHDVRQIRUWKHLQRSHUDELOLW\

 $FWLRQ V WDNHQWRUHVWRUHWKHLQRSHUDEOHHTXLSPHQWWR23(5$%/(VWDWXV

DQG

 6XPPDU\GHVFULSWLRQRIDFWLRQ V WDNHQWRSUHYHQWDUHFXUUHQFH

 6859(,//$1&(5(48,5(0(176

2'&0

D

'RVHVGXHWROLTXLGUHOHDVHVIURPHDFKXQLWWR815(675,&7('$5($6VKDOOEH

SURMHFWHGDWOHDVWRQFHSHUGD\VLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUV

LQWKH2'&0

E 7KHLQVWDOOHG/LTXLG5DGZDVWH7UHDWPHQW6\VWHPVKDOOEHFRQVLGHUHG)81&7,21$/E\

PHHWLQJ6HFWLRQVDQG

  %$6(6 7KH)81&7,21$/,7<RIWKH/LTXLG5DGZDVWH7UHDWPHQW6\VWHPHQVXUHVWKDWWKLV

V\VWHPZLOOEHDYDLODEOHIRUXVHZKHQHYHUOLTXLGHIIOXHQWVUHTXLUHWUHDWPHQWSULRUWR

 5HY2/



&$//$:$<63 UHOHDVHWRWKHHQYLURQPHQW7KHUHTXLUHPHQWWKDWWKHDSSURSULDWHSRUWLRQVRIWKLVV\VWHP

EHXVHGZKHQVSHFLILHGSURYLGHVDVVXUDQFHWKDWWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQ

OLTXLGHIIOXHQWVZLOOEHNHSWDVORZDVLVUHDVRQDEO\DFKLHYDEOH7KLVVHFWLRQ

LPSOHPHQWVWKHUHTXLUHPHQWVRI&)53DUWD*HQHUDO'HVLJQ&ULWHULRQRI

$SSHQGL[$WR&)53DUWDQGWKHGHVLJQREMHFWLYHJLYHQLQ6HFWLRQ,,'RI$SSHQGL[

,WR&)53DUW7KHVSHFLILHGOLPLWVJRYHUQLQJWKHXVHRIDSSURSULDWHSRUWLRQVRIWKH

/LTXLG5DGZDVWH7UHDWPHQW6\VWHPZHUHVSHFLILHGDVDVXLWDEOHIUDFWLRQRIWKHGRVH

GHVLJQREMHFWLYHVVHWIRUWKLQ6HFWLRQ,,$RI$SSHQGL[,&)53DUWIRUOLTXLG

HIIOXHQWV

 5HY2/



&$//$:$<63

 /,48,'+2/'837$1.6

 /,0,7,1*&21',7,21)2523(5$7,21 7KHTXDQWLW\RIUDGLRDFWLYHPDWHULDOFRQWDLQHGLQHDFKRIWKHIROORZLQJXQSURWHFWHG

RXWGRRUWDQNVVKDOOEHOLPLWHGWROHVVWKDQRUHTXDOWR&XULHVH[FOXGLQJWULWLXPDQG

GLVVROYHGRUHQWUDLQHGQREOHJDVHV

D 5HDFWRU0DNHXS:DWHU6WRUDJH7DQN

E 5HIXHOLQJ:DWHU6WRUDJH7DQN

F &RQGHQVDWH6WRUDJH7DQNDQG G 2XWVLGHWHPSRUDU\WDQNVH[FOXGLQJGHPLQHUDOL]HUYHVVHOVDQGWKHOLQHUEHLQJ

XVHGWRVROLGLI\UDGLRDFWLYHZDVWH

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHTXDQWLW\RIUDGLRDFWLYHPDWHULDOLQDQ\RIWKHDERYHOLVWHGWDQNVH[FHHGLQJWKH

DERYHOLPLWLPPHGLDWHO\VXVSHQGDOODGGLWLRQVRIUDGLRDFWLYHPDWHULDOWRWKHWDQNZLWKLQ

KRXUVUHGXFHWKHWDQNFRQWHQWVWRZLWKLQWKHOLPLWDQGGHVFULEHWKHHYHQWVOHDGLQJWR

WKLVFRQGLWLRQLQWKHQH[W5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWSXUVXDQWWR7HFKQLFDO

6SHFLILFDWLRQ

H 

 6859(,//$1&(5(48,5(0(176



7KHTXDQWLW\RIUDGLRDFWLYHPDWHULDOFRQWDLQHGLQHDFKRIWKHDERYHOLVWHGWDQNVVKDOOEH

GHWHUPLQHGWREHZLWKLQWKHDERYHOLPLWE\DQDO\]LQJDUHSUHVHQWDWLYHVDPSOHRIWKH

WDQN VFRQWHQWVDWOHDVWRQFHSHUGD\VZKHQUDGLRDFWLYHPDWHULDOVDUHEHLQJDGGHGDQG

ZLWKLQGD\VIROORZLQJDQ\DGGLWLRQRIUDGLRDFWLYHPDWHULDOWRWKHWDQN7KHSURYLVLRQVRI

6HFWLRQVDQGDUHDSSOLFDEOHKRZHYHUWKHDOORZHGVXUYHLOODQFHLQWHUYDO

H[WHQVLRQEH\RQGVKDOOQRWEHH[FHHGHG7KHVHWDQNVDUHDOVRFRYHUHGE\

$GPLQLVWUDWLYH&RQWUROV6HFWLRQRIWKHSODQW7HFKQLFDO6SHFLILFDWLRQV

  %$6(6 7KHWDQNVOLVWHGDERYHLQFOXGHDOOWKRVHRXWGRRUUDGZDVWHWDQNVWKDWDUHQRWVXUURXQGHG

E\OLQHUVGLNHVRUZDOOVFDSDEOHRIKROGLQJWKHWDQNFRQWHQWVDQGWKDWGRQRWKDYHWDQN

RYHUIORZVDQGVXUURXQGLQJDUHDGUDLQVFRQQHFWHGWRWKH/LTXLG5DGZDVWH7UHDWPHQW

6\VWHP

 5HY2/



&$//$:$<63 5HVWULFWLQJWKHTXDQWLW\RIUDGLRDFWLYHPDWHULDOFRQWDLQHGLQWKHVSHFLILHGWDQNVSURYLGHV

DVVXUDQFHWKDWLQWKHHYHQWRIDQXQFRQWUROOHGUHOHDVHRIWKHWDQNV FRQWHQWVWKH

UHVXOWLQJFRQFHQWUDWLRQVZRXOGEHOHVVWKDQWKHOLPLWVRI&)53DUW

$SSHQGL[%7DEOH,,&ROXPQ UHGHVLJQDWHGDW)50D\ DWWKH

QHDUHVWSRWDEOHZDWHUVXSSO\DQGWKHQHDUHVWVXUIDFHZDWHUVXSSO\LQDQ

815(675,&7('$5($

 5HY2/



&$//$:$<63

 *$6(286())/8(176

 *$6(286())/8(176'26(5$7(/,0,7,1*&21',7,212) 23(5$7,21 2'&0

7KHGRVHUDWHGXHWRUDGLRDFWLYHPDWHULDOVUHOHDVHGLQJDVHRXVHIIOXHQWVIURPWKHVLWHWR

DUHDVDWDQGEH\RQGWKH6,7(%281'$5< VHH)LJXUH VKDOOEHOLPLWHGWRWKH

IROORZLQJ

D )RUQREOHJDVHV/HVVWKDQRUHTXDOWRPUHPV\UWRWKHZKROHERG\DQGOHVV

WKDQRUHTXDOWRPUHPV\UWRWKHVNLQDQG E )RU,RGLQHDQGIRUWULWLXPDQGIRUDOOUDGLRQXFOLGHVLQSDUWLFXODWHIRUP

ZLWKKDOIOLYHVJUHDWHUWKDQGD\V/HVVWKDQRUHTXDOWRPUHPV\UWRDQ\

RUJDQ

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHGRVHUDWH V H[FHHGLQJWKHDERYHOLPLWVLPPHGLDWHO\UHVWRUHWKHUHOHDVHUDWHWR

ZLWKLQWKHDERYHOLPLW V 

 6859(,//$1&(5(48,5(0(176 2'&0

D 7KHGRVHUDWHGXHWRQREOHJDVHVLQJDVHRXVHIIOXHQWVVKDOOEHGHWHUPLQHGWREHZLWKLQ

WKHDERYHOLPLWVLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0

E 7KHGRVHUDWHGXHWR,RGLQHDQGWULWLXPDQGDOOUDGLRQXFOLGHVLQSDUWLFXODWHIRUP

ZLWKKDOIOLYHVJUHDWHUWKDQGD\VLQJDVHRXVHIIOXHQWVVKDOOEHGHWHUPLQHGWREHZLWKLQ

WKHDERYHOLPLWVLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0E\

REWDLQLQJUHSUHVHQWDWLYHVDPSOHVDQGSHUIRUPLQJDQDO\VHVLQDFFRUGDQFHZLWKWKH

VDPSOLQJDQGDQDO\VLVSURJUDPVSHFLILHGLQ7DEOH

  %$6(6 7KLVVHFWLRQLVSURYLGHGWRHQVXUHWKDWWKHGRVHDWDQ\WLPHDWDQGEH\RQGWKH6,7(

%281'$5<IURPJDVHRXVHIIOXHQWVIURPDOOXQLWVRQWKHVLWHZLOOEHZLWKLQWKHDQQXDO

GRVHOLPLWVRI&)53DUWWR815(675,&7('$5($67KHGRVHUDWHOLPLWVDUHWKH

 5HY2/



&$//$:$<63 GRVHVDVVRFLDWHGZLWKWKHFRQFHQWUDWLRQVRI&)53DUW $SSHQGL[%

7DEOH,,&ROXPQ7KHVHOLPLWVSURYLGHUHDVRQDEOHDVVXUDQFHWKDWUDGLRDFWLYHPDWHULDO

GLVFKDUJHGLQJDVHRXVHIIOXHQWVZLOOQRWUHVXOWLQWKHH[SRVXUHRID0(0%(52)7+(

38%/,&LQDQ815(675,&7('$5($HLWKHUZLWKLQRURXWVLGHWKH6,7(%281'$5<WR

DQQXDODYHUDJHFRQFHQWUDWLRQVH[FHHGLQJWKHGRVHOLPLWVVSHFLILHGLQ &)53DUW 

 &)5 )RU0(0%(562)7+(38%/,&ZKRPD\DWWLPHVEHZLWKLQWKH6,7(

%281'$5<WKHRFFXSDQF\RIWKDW0(0%(52)7+(38%/,&ZLOOXVXDOO\EH

VXIILFLHQWO\ORZWRFRPSHQVDWHIRUDQ\LQFUHDVHLQWKHDWPRVSKHULFGLIIXVLRQIDFWRUDERYH

WKDWIRUWKH6,7(%281'$5<([DPSOHVRIFDOFXODWLRQVIRUVXFK0(0%(562)7+(

38%/,&ZLWKWKHDSSURSULDWHRFFXSDQF\IDFWRUVVKDOOEHJLYHQLQWKH2'&07KH

VSHFLILHGUHOHDVHUDWHOLPLWVUHVWULFWDWDOOWLPHVWKHFRUUHVSRQGLQJJDPPDDQGEHWD

GRVHUDWHVDERYHEDFNJURXQGWRD0(0%(52)7+(38%/,&DWRUEH\RQGWKH6,7(

%281'$5<WROHVVWKDQRUHTXDOWRPUHP\HDUWRWKHZKROHERG\RUWROHVVWKDQRU

HTXDOWRPUHPV\HDUWRWKHVNLQ7KHVHUHOHDVHUDWHOLPLWVDOVRUHVWULFWDWDOOWLPHV

WKHFRUUHVSRQGLQJWK\URLGGRVHUDWHDERYHEDFNJURXQGWRDFKLOGYLDWKHLQKDODWLRQ

SDWKZD\WROHVVWKDQRUHTXDOWRPUHPV\HDU

7KHUHTXLUHGGHWHFWLRQFDSDELOLWLHVIRUUDGLRDFWLYHPDWHULDOVLQJDVHRXVZDVWHVDPSOHV

DUHWDEXODWHGLQWHUPVRIWKHORZHUOLPLWVRIGHWHFWLRQ //' V 

7KHUHTXLUHPHQWIRUDGGLWLRQDOVDPSOLQJRIWKH8QLW9HQWIROORZLQJDUHDFWRUSRZHU

WUDQVLHQWLVSURYLGHGWRHQVXUHWKDWWKHOLFHQVHHLVDZDUHRIDQGSURSHUO\DFFRXQWVIRU

DQ\LQFUHDVHVLQWKHUHOHDVHRIJDVHRXVHIIOXHQWVGXHWRVSLNLQJZKLFKPD\RFFXUDVD

UHVXOWRIWKHSRZHUWUDQVLHQW0RQLWRULQJWKH8QLW9HQWIRULQFUHDVHGQREOHJDVDFWLYLW\LV

DSSURSULDWHEHFDXVHLWLVWKHUHOHDVHSRLQWIRUDQ\LQFUHDVHGDFWLYLW\ZKLFKPD\UHVXOW

IURPWKHSRZHUWUDQVLHQW

6LQFHWKHHVFDSHUDWHFRHIILFLHQWVIRUWKHQREOHJDVQXFOLGHVLVHTXDOWRRUJUHDWHUWKDQ

WKHHVFDSHUDWHFRHIILFLHQWIRULRGLQHDQGWKHSDUWLFXODWHQXFOLGHV  LWLVUHDVRQDEOHWR

DVVXPHWKDWWKH5&6VSLNLQJEHKDYLRURIWKHQREOHJDVQXFOLGHVLVVLPLODUWRWKDWRIWKH

SDUWLFXODWHDQGLRGLQHQXFOLGHV&RQVLGHULQJWKHHIIHFWVRILRGLQHDQGSDUWLFXODWH

SDUWLWLRQLQJSODWHRXWRQSODQWDQGYHQWLODWLRQV\VWHPVXUIDFHVDQGWKHHIILFLHQF\RI

WKH8QLW9HQW+(3$ILOWHUVDQGFKDUFRDODEVRUEHUVLWLVUHDVRQDEOHWRDVVXPHWKDWWKH

UHODWLYHFRQFHQWUDWLRQVRIWKHQREOHJDVQXFOLGHVZLOOEHPXFKJUHDWHUWKDQWKRVHRIWKH

LRGLQHDQGSDUWLFXODWHQXFOLGHV7KHUHIRUHDQLQFUHDVHLQWKHLRGLQHDQGSDUWLFXODWH5&6

DFWLYLW\LVQRWDQDSSURSULDWHLQGLFDWRURIDQLQFUHDVHLQWKH8QLW9HQWDFWLYLW\DQGLWLV

DSSURSULDWHWRPRQLWRUWKH8QLW9HQWHIIOXHQWDFWLYLW\DVRSSRVHGWRWKH5&6DFWLYLW\DVDQ

LQGLFDWRURIWKHQHHGWRSHUIRUPSRVWWUDQVLHQWVDPSOLQJ,QDGGLWLRQLWLVDSSURSULDWHWR

PRQLWRUWKHQREOHJDVDFWLYLW\GXHWRLWVUHODWLYHO\JUHDWHUFRQFHQWUDWLRQLQWKH8QLW9HQW

&RKHQ3DXO:DWHU&RRODQW7HFKQRORJ\RI3RZHU5HDFWRUV7DEOHSDJH$PHULFDQ1XFOHDU

6RFLHW\

185(*³7HFKQLFDO%DVHVIRU(VWLPDWLQJ)LVVLRQ3URGXFW%HKDYLRU'XULQJ/:5$FFLGHQWV'

6LOEHUEHUJ0HGLWRU8615&)LJXUHSDJH-XQH

 5HY2/



&$//$:$<63

 '26(12%/(*$6(6/,0,7,1*&21',7,212)23(5$7,21 2'&0

7KHDLUGRVHGXHWRQREOHJDVHVUHOHDVHGLQJDVHRXVHIIOXHQWVIURPHDFKXQLWWRDUHDV

DWDQGEH\RQGWKH6,7(%281'$5< VHH)LJXUH VKDOOEHOLPLWHGWRWKH

IROORZLQJ

'XULQJDQ\FDOHQGDUTXDUWHU/HVVWKDQRUHTXDOWRPUDGVIRUJDPPDUDGLDWLRQDQG

OHVVWKDQRUHTXDOWRPUDGVIRUEHWDUDGLDWLRQDQG

'XULQJDQ\FDOHQGDU\HDU/HVVWKDQRUHTXDOWRPUDGVIRUJDPPDUDGLDWLRQDQGOHVV

WKDQRUHTXDOWRPUDGVIRUEHWDUDGLDWLRQ

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHFDOFXODWHGDLUGRVHIURPUDGLRDFWLYHQREOHJDVHVLQJDVHRXVHIIOXHQWVH[FHHGLQJ

DQ\RIWKHDERYHOLPLWVSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQZLWKLQGD\VD6SHFLDO

5HSRUWWKDWLGHQWLILHVWKHFDXVH V IRUH[FHHGLQJWKHOLPLW V DQGGHILQHVWKHFRUUHFWLYH

DFWLRQVWKDWKDYHEHHQWDNHQWRUHGXFHWKHUHOHDVHVDQGWKHSURSRVHGFRUUHFWLYHDFWLRQV

WREHWDNHQWRDVVXUHWKDWVXEVHTXHQWUHOHDVHVZLOOEHLQFRPSOLDQFHZLWKWKHDERYH

OLPLWV

 6859(,//$1&(5(48,5(0(176 2'&0

&XPXODWLYHGRVHFRQWULEXWLRQVIRUWKHFXUUHQWFDOHQGDUTXDUWHUDQGFXUUHQWFDOHQGDU\HDU

IRUQREOHJDVHVVKDOOEHGHWHUPLQHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUV

LQWKH2'&0DWOHDVWRQFHSHUGD\V

  %$6(6 7KLVVHFWLRQLVSURYLGHGWRLPSOHPHQWWKHUHTXLUHPHQWVRI6HFWLRQV,,%,,,$DQG,9$RI

$SSHQGL[,&)53DUW7KH/LPLWLQJ&RQGLWLRQIRU2SHUDWLRQLPSOHPHQWVWKHJXLGHV

VHWIRUWKLQ6HFWLRQ,,%RI$SSHQGL[,7KH$&7,21VWDWHPHQWSURYLGHVWKHUHTXLUHG

RSHUDWLQJIOH[LELOLW\DQGDWWKHVDPHWLPHLPSOHPHQWWKHJXLGHVVHWIRUWKLQ6HFWLRQ,9$RI

$SSHQGL[,WRDVVXUHWKDWWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOLQJDVHRXVHIIOXHQWVWR

815(675,&7('$5($6ZLOOEHNHSWDVORZDVLVUHDVRQDEO\DFKLHYDEOH

7KH6XUYHLOODQFH5HTXLUHPHQWVLPSOHPHQWWKHUHTXLUHPHQWVLQ6HFWLRQ,,,$RI$SSHQGL[

,WKDWFRQIRUPDQFHZLWKWKHJXLGHVRI$SSHQGL[,EHVKRZQE\FDOFXODWLRQDOSURFHGXUHV

EDVHGRQPRGHOVDQGGDWDVXFKWKDWWKHDFWXDOH[SRVXUHRID0(0%(52)7+(

38%/,&WKURXJKDSSURSULDWHSDWKZD\VLVXQOLNHO\WREHVXEVWDQWLDOO\XQGHUHVWLPDWHG

7KHGRVHFDOFXODWLRQPHWKRGRORJ\DQGSDUDPHWHUVHVWDEOLVKHGLQWKH2'&0IRU

 5HY2/



&$//$:$<63 FDOFXODWLQJWKHGRVHVGXHWRWKHDFWXDOUHOHDVHUDWHVRIUDGLRDFWLYHQREOHJDVHVLQ

JDVHRXVHIIOXHQWVDUHFRQVLVWHQWZLWKWKHPHWKRGRORJ\SURYLGHGLQ5HJXODWRU\*XLGH

&DOFXODWLRQRI$QQXDO'RVHVWR0DQIURP5RXWLQH5HOHDVHVRQ5HDFWRU(IIOXHQWV

IRUWKH3XUSRVHRI(YDOXDWLQJ&RPSOLDQFHZLWK&)53DUW$SSHQGL[,5HYLVLRQ

2FWREHUDQG5HJXODWRU\*XLGH0HWKRGVIRU(VWLPDWLQJ$WPRVSKHULF

7UDQVSRUWDQG'LVSHUVLRQRI*DVHRXV(IIOXHQWVLQ5RXWLQH5HOHDVHVIURP/LJKW:DWHU

&RROHG5HDFWRUV5HYLVLRQ-XO\7KH2'&0HTXDWLRQVSURYLGHGIRU

GHWHUPLQLQJWKHDLUGRVHVDWDQGEH\RQGWKH6,7(%281'$5<DUHEDVHGXSRQWKH

KLVWRULFDODYHUDJHDWPRVSKHULFFRQGLWLRQV

7KHUHSRUWLQJUHTXLUHPHQWVRI$FWLRQ D LPSOHPHQWWKHUHTXLUHPHQWVRI&)5

 5HY2/



&$//$:$<63

 '26(,2',1($1'75,7,80$1'5$',2$&7,9(0$7(5,$/

,13$57,&8/$7()250/,0,7,1*&21',7,212)23(5$7,21 2'&0

7KHGRVHWRD0(0%(52)7+(38%/,&IURP,RGLQHDQGWULWLXPDQGDOO

UDGLRQXFOLGHVLQSDUWLFXODWHIRUPZLWKKDOIOLYHVJUHDWHUWKDQGD\VLQJDVHRXVHIIOXHQWV

UHOHDVHGIURPHDFKXQLWWRDUHDVDWDQGEH\RQGWKH6,7(%281'$5< VHH)LJXUH

 VKDOOEHOLPLWHGWRWKHIROORZLQJ

D 'XULQJDQ\FDOHQGDUTXDUWHU/HVVWKDQRUHTXDOWRPUHPVWRDQ\RUJDQDQG E 'XULQJDQ\FDOHQGDU\HDU/HVVWKDQRUHTXDOWRPUHPVWRDQ\RUJDQ

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

D :LWKWKHFDOFXODWHGGRVHIURPWKHUHOHDVHRI,RGLQHDQGWULWLXPDQG

UDGLRQXFOLGHVLQSDUWLFXODWHIRUPZLWKKDOIOLYHVJUHDWHUWKDQGD\VLQJDVHRXV

HIIOXHQWVH[FHHGLQJDQ\RIWKHDERYHOLPLWVSUHSDUHDQGVXEPLWWRWKH

&RPPLVVLRQZLWKLQGD\VD6SHFLDO5HSRUWWKDWLGHQWLILHVWKHFDXVH V IRU

H[FHHGLQJWKHOLPLWVDQGGHILQHVWKHFRUUHFWLYHDFWLRQVWKDWKDYHEHHQWDNHQWR

UHGXFHWKHUHOHDVHVDQGWKHSURSRVHGFRUUHFWLYHDFWLRQVWREHWDNHQWRDVVXUH

WKDWVXEVHTXHQWUHOHDVHVZLOOEHLQFRPSOLDQFHZLWKWKHDERYHOLPLWV

E 7KHSURYLVLRQVRI6HFWLRQVDQGDUHQRWDSSOLFDEOH

 6859(,//$1&(5(48,5(0(176 2'&0

&XPXODWLYHGRVHFRQWULEXWLRQVIRUWKHFXUUHQWFDOHQGDUTXDUWHUDQGFXUUHQWFDOHQGDU\HDU

IRU,RGLQHDQGWULWLXPDQGUDGLRQXFOLGHVLQSDUWLFXODWHIRUPZLWKKDOIOLYHV

JUHDWHUWKDQGD\VVKDOOEHGHWHUPLQHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0DWOHDVWRQFHSHUGD\V

  %$6(6 7KLVVHFWLRQLVSURYLGHGWRLPSOHPHQWWKHUHTXLUHPHQWVRI6HFWLRQV,,&,,,$DQG,9$RI

$SSHQGL[,&)53DUW7KH/LPLWLQJ&RQGLWLRQVIRU2SHUDWLRQDUHWKHJXLGHVVHW

IRUWKLQ6HFWLRQ,,&RI$SSHQGL[,7KH$&7,21VWDWHPHQWVSURYLGHWKHUHTXLUHG

RSHUDWLQJIOH[LELOLW\DQGDWWKHVDPHWLPHLPSOHPHQWWKHJXLGHVVHWIRUWKLQ6HFWLRQ,9$RI

$SSHQGL[,WRDVVXUHWKDWWKHUHOHDVHRIUDGLRDFWLYHPDWHULDOLQJDVHRXVHIIOXHQWVWR

815(675,&7('$5($6ZLOOEHNHSWDVORZDVUHDVRQDEO\DFKLHYDEOH7KH2'&0

FDOFXODWLRQDOPHWKRGVVSHFLILHGLQWKH6XUYHLOODQFH5HTXLUHPHQWVLPSOHPHQWWKH

UHTXLUHPHQWVLQ6HFWLRQ,,,$RI$SSHQGL[,WKDWFRQIRUPDQFHZLWKWKHJXLGHVRI$SSHQGL[

 5HY2/



&$//$:$<63

,EHVKRZQE\FDOFXODWLRQDOSURFHGXUHVEDVHGRQPRGHOVDQGGDWDVXFKWKDWWKHDFWXDO

H[SRVXUHRID0(0%(52)7+(38%/,&WKURXJKDSSURSULDWHSDWKZD\VLVXQOLNHO\WREH

VXEVWDQWLDOO\XQGHUHVWLPDWHG7KH2'&0FDOFXODWLRQDOPHWKRGRORJ\DQGSDUDPHWHUVIRU

FDOFXODWLQJWKHGRVHVGXHWRWKHDFWXDOUHOHDVHUDWHVRIWKHVXEMHFWPDWHULDOVDUH

FRQVLVWHQWZLWKWKHPHWKRGRORJ\SURYLGHGLQ5HJXODWRU\*XLGH&DOFXODWLRQRI

$QQXDO'RVHVWR0DQIURP5RXWLQH5HOHDVHVRI5HDFWRU(IIOXHQWVIRUWKH3XUSRVHRI

(YDOXDWLQJ&RPSOLDQFHZLWK&)53DUW$SSHQGL[,5HYLVLRQ2FWREHUDQG

5HJXODWRU\*XLGH0HWKRGVIRU(VWLPDWLQJ$WPRVSKHULF7UDQVSRUWDQG'LVSHUVLRQ

RI*DVHRXV(IIOXHQWVLQ5RXWLQH5HOHDVHVIURP/LJKW:DWHU&RROHG5HDFWRUV5HYLVLRQ

-XO\7KHVHHTXDWLRQVDOVRSURYLGHIRUGHWHUPLQLQJWKHDFWXDOGRVHVEDVHGXSRQ

WKHKLVWRULFDODYHUDJHDWPRVSKHULFFRQGLWLRQV7KHUHOHDVHUDWHFRQWUROVIRU,RGLQH

DQGWULWLXPDQGUDGLRQXFOLGHVLQSDUWLFXODWHIRUPZLWKKDOIOLYHVJUHDWHUWKDQGD\V

DUHGHSHQGHQWXSRQWKHH[LVWLQJUDGLRQXFOLGHSDWKZD\VWRPDQLQWKHDUHDVDWDQG

EH\RQGWKH6,7(%281'$5<7KHSDWKZD\VWKDWZHUHH[DPLQHGLQWKHGHYHORSPHQWRI

WKHVHFDOFXODWLRQVZHUH  LQGLYLGXDOLQKDODWLRQRIDLUERUQHUDGLRQXFOLGHV  GHSRVLWLRQ

RIUDGLRQXFOLGHVRQWRJUHHQOHDI\YHJHWDWLRQZLWKVXEVHTXHQWFRQVXPSWLRQE\PDQ  

GHSRVLWLRQRIUDGLRQXFOLGHVRQWRJUDVV\DUHDVZKHUHPLONDQLPDOVDQGPHDWSURGXFLQJ

DQLPDOVJUD]HZLWKFRQVXPSWLRQRIWKHPLONDQGPHDWE\PDQDQG  GHSRVLWLRQRQWKH

JURXQGZLWKVXEVHTXHQWH[SRVXUHRIPDQ

7KHUHSRUWLQJUHTXLUHPHQWVRI$FWLRQ D LPSOHPHQWWKHUHTXLUHPHQWVRI&)5

 5HY2/



&$//$:$<63

 5$',2$&7,9(*$6(286())/8(17021,725,1*

,167580(17$7,21/,0,7,1* &21',7,21 )2523(5$7,21 2'&0

7KHUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVVKRZQLQ7DEOH

VKDOOEH)81&7,21$/ZLWKWKHLU$ODUP7ULS6HWSRLQWVVHWWRHQVXUHWKDWWKH

OLPLWVRI6HFWLRQDUHQRWH[FHHGHG7KH$ODUP7ULS6HWSRLQWVRIWKHVHFKDQQHOV

PHHWLQJ6HFWLRQVKDOOEHGHWHUPLQHGDQGDGMXVWHGLQDFFRUGDQFHZLWKWKH

PHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0

$33/,&$%,/,7<$VVKRZQLQ7DEOH

$&7,21

D :LWKDUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHO$ODUP7ULS

6HWSRLQWOHVVFRQVHUYDWLYHWKDQUHTXLUHGE\WKHDERYHLPPHGLDWHO\GHFODUHWKH

FKDQQHOQRQIXQFWLRQDO

E :LWKOHVVWKDQWKHPLQLPXPQXPEHURIUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJ

LQVWUXPHQWDWLRQFKDQQHOV)81&7,21$/WDNHWKH$&7,21VKRZQLQ7DEOH

5HVWRUHWKHQRQIXQFWLRQDOLQVWUXPHQWDWLRQWR)81&7,21$/VWDWXVZLWKLQWKH

WLPHVSHFLILHGLQWKH$&7,21RUH[SODLQLQWKHQH[W5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQZK\WKLVQRQIXQFWLRQDOLW\ZDV

QRWFRUUHFWHGZLWKLQWKHWLPHVSHFLILHG

 6859(,//$1&(5(48,5(0(176 2'&0

(DFKUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVKDOOEH

GHPRQVWUDWHG)81&7,21$/E\SHUIRUPDQFHRIWKH&+$11(/&+(&.6285&(

&+(&.&+$11(/&$/,%5$7,21DQG&+$11(/23(5$7,21$/7(67DWWKH

IUHTXHQFLHVVKRZQLQ7DEOH

  %$6(6 7KHUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQLVSURYLGHGWRPRQLWRUDQG

FRQWURODVDSSOLFDEOHWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQJDVHRXVHIIOXHQWVGXULQJ

DFWXDORUSRWHQWLDOUHOHDVHVRIJDVHRXVHIIOXHQWV7KH$ODUP7ULS6HWSRLQWVIRUWKHVH

LQVWUXPHQWVVKDOOEHFDOFXODWHGDQGDGMXVWHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0WRHQVXUHWKDWWKHDODUPWULSZLOORFFXUSULRUWRH[FHHGLQJWKH

OLPLWVRI&)53DUW7KH)81&7,21$/,7<DQGXVHRIWKLVLQVWUXPHQWDWLRQLV

FRQVLVWHQWZLWKWKHUHTXLUHPHQWVRI*HQHUDO'HVLJQ&ULWHULDDQGRI$SSHQGL[$

WR&)53DUW7KHVHQVLWLYLW\RIDQ\QREOHJDVDFWLYLW\PRQLWRUXVHGWRVKRZ

FRPSOLDQFHZLWKWKHJDVHRXVHIIOXHQWUHOHDVHUHTXLUHPHQWVRI6HFWLRQVKDOOEH

VXFKWKDWFRQFHQWUDWLRQVDVORZDV[&LFFDUHPHDVXUDEOH

 5HY2/



&$//$:$<63 7KHPRQLWRUV*75(DQG*75(DUHRQO\UHTXLUHGIRUDXWRPDWLFFRQWDLQPHQW

SXUJHLVRODWLRQLQ02'(6WKURXJK)RUSODQWFRQGLWLRQVGXULQJ&25(

$/7(5$7,216DQGGXULQJPRYHPHQWRILUUDGLDWHGIXHOZLWKLQFRQWDLQPHQWWKHIXQFWLRQ

RIWKHPRQLWRUVLVWRDODUPRQO\DQGWKHWULSVLJQDOVIRUDXWRPDWLFDFWXDWLRQRI&3,6PD\

EHE\SDVVHG%DVHGRQWKHJXLGDQFHSURYLGHGLQ5HJXODWRU\*XLGHFRQFHUQLQJ

PRQLWRULQJUHTXLUHPHQWVIRUFRQWDLQPHQWRUSXUJHHIIOXHQWWKHPRQLWRUV*75(DQG

  • 75(GRQRWQHHGWRPHHWWKHVLQJOHIDLOXUHFULWHULRQIRUDQ$ODUPIXQFWLRQRQO\

GXULQJ&25($/7(5$7,216RUGXULQJPRYHPHQWRILUUDGLDWHGIXHOLQFRQWDLQPHQW2QH

LQVWUXPHQWDWLRQFKDQQHODWDPLQLPXPLVUHTXLUHGIRUWKHDODUPRQO\IXQFWLRQGXULQJ

UHIXHOLQJDFWLYLWLHV

,QWKHHYHQWWKDWWKHFRQWDLQPHQWPLQLSXJHVXSSO\DQGH[KDXVWYDOYHVKDYHEHHQFORVHG

WRVDWLVI\$FWLRQRI7DEOHGXHWRQRQIXQFWLRQDOLW\RI*75(DQGRU

  • 75(DQDOORZDQFHLVSURYLGHGLQ$FWLRQWRRSHQWKHFRQWDLQPHQWPLQLSXUJH

VXSSO\DQGH[KDXVWYDOYHVXQGHUDGPLQLVWUDWLYHFRQWUROVIRUWKHSXUSRVHRIHTXDOL]LQJ

FRQWDLQPHQWSUHVVXUH7KHDGPLQLVWUDWLYHFRQWUROVFRQVLVWRIGHVLJQDWLQJDFRQWUROURRP

RSHUDWRUWRUDSLGO\FORVHWKHYDOYHVZKHQDQHHGIRUV\VWHPLVRODWLRQLVLQGLFDWHG

 5HY2/



&$//$:$<63

 *$6(2865$':$67(75($70(176<67(0/,0,7,1*&21',7,21 2)23(5$7,21 2'&0

7KH9(17,/$7,21(;+$86775($70(176<67(0DQGWKH:$67(*$6+2/'83

6<67(0VKDOOEH)81&7,21$/DQGDSSURSULDWHSRUWLRQVRIWKHVHV\VWHPVVKDOOEH

XVHGWRUHGXFHUHOHDVHVRIUDGLRDFWLYLW\ZKHQWKHSURMHFWHGGRVHVLQGD\VGXHWR

JDVHRXVHIIOXHQWUHOHDVHVIURPHDFKXQLWWRDUHDVDWDQGEH\RQGWKH6,7(%281'$5<

VHH)LJXUH  ZRXOGH[FHHG

D PUDGWRDLUIURPJDPPDUDGLDWLRQRU

E PUDGWRDLUIURPEHWDUDGLDWLRQRU F PUHPWRDQ\RUJDQRID0(0%(52)7+(38%/,&

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKUDGLRDFWLYHJDVHRXVZDVWHEHLQJGLVFKDUJHGZLWKRXWWUHDWPHQWDQGLQH[FHVVRIWKH

DERYHOLPLWVSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQZLWKLQGD\VD6SHFLDO5HSRUWWKDW

LQFOXGHVWKHIROORZLQJLQIRUPDWLRQ

 ,GHQWLILFDWLRQRIDQ\QRQIXQFWLRQDOHTXLSPHQWRUVXEV\VWHPVDQGWKH

UHDVRQIRUWKHQRQIXQFWLRQDOLW\

 $FWLRQ V WDNHQWRUHVWRUHWKHQRQIXQFWLRQDOHTXLSPHQWWR)81&7,21$/

VWDWXVDQG

 6XPPDU\GHVFULSWLRQRIDFWLRQ V WDNHQWRSUHYHQWDUHFXUUHQFH

 6859(,//$1&(5(48,5(0(176 2'&0

D

'RVHVGXHWRJDVHRXVUHOHDVHVWRDUHDVDWDQGEH\RQGWKH6,7(%281'$5<VKDOOEH

SURMHFWHGDWOHDVWRQFHSHUGD\VLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUV

LQWKH2'&0

E

 5HY2/



&$//$:$<63 7KHLQVWDOOHG9(17,/$7,21(;+$86775($70(176<67(0DQGWKH:$67(*$6

+2/'836<67(06VKDOOEHFRQVLGHUHG)81&7,21$/E\PHHWLQJ6HFWLRQV

DQGRU

  %$6(6 7KH)81&7,21$/,7<RIWKH:$67(*$6+2/'836<67(0DQGWKH9(17,/$7,21

(;+$86775($70(176<67(0HQVXUHVWKDWWKHV\VWHPZLOOEHDYDLODEOHIRUXVH

ZKHQHYHUJDVHRXVHIIOXHQWVUHTXLUHWUHDWPHQWSULRUWRUHOHDVHWRWKHHQYLURQPHQW7KH

UHTXLUHPHQWWKDWWKHDSSURSULDWHSRUWLRQVRIWKHVHV\VWHPVEHXVHGZKHQVSHFLILHG

SURYLGHVUHDVRQDEOHDVVXUDQFHWKDWWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQJDVHRXV

HIIOXHQWVZLOOEHNHSWDVORZDVLVUHDVRQDEO\DFKLHYDEOH7KLVFRQWUROLPSOHPHQWVWKH

UHTXLUHPHQWVRI&)53DUWD*HQHUDO'HVLJQ&ULWHULRQRI$SSHQGL[$WR

&)53DUWDQGWKHGHVLJQREMHFWLYHVJLYHQLQ6HFWLRQ,,'RI$SSHQGL[,WR&)5

3DUW7KHVSHFLILHGOLPLWVJRYHUQLQJWKHXVHRIDSSURSULDWHSRUWLRQVRIWKHV\VWHPV

ZHUHVSHFLILHGDVDVXLWDEOHIUDFWLRQRIWKHGRVHGHVLJQREMHFWLYHVVHWIRUWKLQ6HFWLRQV

,,%DQG,,&RI$SSHQGL[,&)53DUWIRUJDVHRXVHIIOXHQWV

 5HY2/



&$//$:$<63

 (;3/26,9(*$60,;785(/,0,7,1*&21',7,21)2523(5$7,21 7KHFRQFHQWUDWLRQRIR[\JHQLQWKH:$67(*$6+2/'836<67(0VKDOOEHOLPLWHGWR

OHVVWKDQRUHTXDOWRE\YROXPHZKHQHYHUWKHK\GURJHQFRQFHQWUDWLRQH[FHHGV

E\YROXPH

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

D :LWKWKHFRQFHQWUDWLRQRIR[\JHQLQWKH:$67(*$6+2/'836<67(0JUHDWHU

WKDQE\YROXPHEXWOHVVWKDQRUHTXDOWRE\YROXPHUHGXFHWKHR[\JHQ

FRQFHQWUDWLRQWRWKHDERYHOLPLWZLWKLQKRXUV

E :LWKWKHFRQFHQWUDWLRQRIR[\JHQLQWKH:$67(*$6+2/'836<67(0JUHDWHU

WKDQE\YROXPHDQGWKHK\GURJHQFRQFHQWUDWLRQJUHDWHUWKDQE\YROXPH

LPPHGLDWHO\VXVSHQGDOODGGLWLRQVRIZDVWHJDVHVWRWKHV\VWHPDQGUHGXFHWKH

FRQFHQWUDWLRQRQR[\JHQWROHVVWKDQRUHTXDOWRE\YROXPHWKHQWDNH

$&7,21DDERYH

 6859(,//$1&(5(48,5(0(176 7KHFRQFHQWUDWLRQVRIK\GURJHQDQGR[\JHQLQWKH:$67(*$6+2/'836<67(0

VKDOOEHGHWHUPLQHGWREHZLWKLQWKHDERYHOLPLWVE\FRQWLQXRXVO\PRQLWRULQJWKHZDVWH

JDVHVLQWKH:$67(*$6+2/'836<67(0ZLWKWKHK\GURJHQDQGR[\JHQPRQLWRUV

UHTXLUHG)81&7,21$/E\6HFWLRQ7KLVV\VWHPLVFRYHUHGE\7HFKQLFDO

6SHFLILFDWLRQZKLFKJRYHUQVVXUYHLOODQFHWHVWIUHTXHQFLHVDQGPLVVHG

VXUYHLOODQFHV

  %$6(6 7KLV5HTXLUHPHQWLVSURYLGHGWRHQVXUHWKDWWKHFRQFHQWUDWLRQRISRWHQWLDOO\H[SORVLYH

JDVPL[WXUHVFRQWDLQHGLQWKH:$67(*$6+2/'836<67(0LVPDLQWDLQHGEHORZWKH

IODPPDELOLW\OLPLWVRIK\GURJHQDQGR[\JHQ$XWRPDWLFFRQWUROIHDWXUHVDUHLQFOXGHGLQ

WKHV\VWHPWRSUHYHQWWKHK\GURJHQDQGR[\JHQFRQFHQWUDWLRQVIURPUHDFKLQJWKHVH

IODPPDELOLW\OLPLWV7KHVHDXWRPDWLFFRQWUROIHDWXUHVLQFOXGHLVRODWLRQRIWKHVRXUFHRI

K\GURJHQDQGRUR[\JHQ0DLQWDLQLQJWKHFRQFHQWUDWLRQRIK\GURJHQDQGR[\JHQEHORZ

WKHLUIODPPDELOLW\OLPLWVSURYLGHVDVVXUDQFHWKDWWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVZLOO

EHFRQWUROOHGLQFRQIRUPDQFHZLWKWKHUHTXLUHPHQWVRI*HQHUDO'HVLJQ&ULWHULRQRI

$SSHQGL[$WR&)53DUW

 5HY2/



&$//$:$<63

  :$67(*$6+2/'836<67(05(&20%,1(5(;3/26,9(

  • $6 021,725,1* ,167580(17$7,21/,0,7,1*&21',7,21)25 23(5$7,21

$WOHDVWRQHK\GURJHQDQGERWKWKHLQOHWDQGRXWOHWR[\JHQH[SORVLYHJDVPRQLWRULQJ

LQVWUXPHQWFKDQQHOVIRUHDFK:$67(*$6+2/'836<67(0UHFRPELQHUVKDOOEH

)81&7,21$/ZLWKWKHLU$ODUP7ULS6HWSRLQWV ZLWKWKHH[FHSWLRQRIWKH)(('+

)(('2DQG)(('+)(('2DODUPV VHWWRHQVXUHWKDWWKHOLPLWVRI

6HFWLRQDUHQRWH[FHHGHG

$33/,&$%,/,7<'XULQJ:$67(*$6+2/'836<67(0RSHUDWLRQ

$&7,21

D :LWKDQRXWOHWR[\JHQPRQLWRUFKDQQHOQRQIXQFWLRQDORSHUDWLRQRIWKHV\VWHP

PD\FRQWLQXHSURYLGHGJUDEVDPSOHVDUHWDNHQDQGDQDO\]HGDWOHDVWRQFHSHU

KRXUV

E :LWKERWKR[\JHQRUERWKK\GURJHQFKDQQHOVRUERWKWKHLQOHWR[\JHQDQGLQOHW

K\GURJHQPRQLWRUFKDQQHOVIRURQHUHFRPELQHUQRQIXQFWLRQDOVXVSHQGR[\JHQ

VXSSO\WRWKHUHFRPELQHU$GGLWLRQRIZDVWHJDVWRWKHV\VWHPPD\FRQWLQXH

SURYLGHGJUDEVDPSOHVDUHWDNHQDQGDQDO\]HGDWOHDVW RQFHSHUKRXUV

GXULQJPHFKDQLFDORUFKHPLFDOGHJDVVLQJLQSUHSDUDWLRQIRUSODQWVKXWGRZQDQG

 RQFHSHUKRXUVGXULQJRWKHURSHUDWLRQV

F :LWKWKHLQOHWR[\JHQDQDO\]HUQRQIXQFWLRQDORSHUDWLRQRIWKHV\VWHPPD\

FRQWLQXHSURYLGHGWKHLQOHWK\GURJHQLVPDLQWDLQHGOHVVWKDQ,ILQOHWK\GURJHQ

LVJUHDWHUWKDQVXVSHQGR[\JHQWRWKHUHFRPELQHU$GGLWLRQRIZDVWHJDVWR

WKHV\VWHPPD\FRQWLQXHSURYLGHGJUDEVDPSOHVDUHWDNHQDQGDQDO\]HGDWOHDVW

 RQFHSHUKRXUVGXULQJPHFKDQLFDORUFKHPLFDOGHJDVVLQJRSHUDWLRQVLQ

SUHSDUDWLRQIRUSODQWVKXWGRZQDQG RQFHSHUKRXUVGXULQJRWKHURSHUDWLRQV

 6859(,//$1&(5(48,5(0(176 7KLVV\VWHPLVFRYHUHGE\7HFKQLFDO6SHFLILFDWLRQZKLFKJRYHUQVVXUYHLOODQFHWHVW

IUHTXHQFLHVDQGPLVVHGVXUYHLOODQFHV

(DFKZDVWHJDVKROGXSV\VWHPUHFRPELQHUH[SORVLYHJDVPRQLWRULQJLQVWUXPHQWDWLRQ

FKDQQHOVKDOOEHGHPRQVWUDWHG)81&7,21$/E\SHUIRUPDQFHRI

D $&+$11(/&+(&.DWOHDVWRQFHSHUKRXUV

E 1RWXVHG

 5HY2/



&$//$:$<63 F $&+$11(/&$/,%5$7,21DWOHDVWRQFHSHUGD\VZLWKWKHXVHRIVWDQGDUG

JDVVDPSOHVFRQWDLQLQJDQRPLQDO

 2QHYROXPHSHUFHQWK\GURJHQEDODQFHQLWURJHQDQGIRXUYROXPHSHUFHQW

K\GURJHQEDODQFHQLWURJHQIRUWKHK\GURJHQPRQLWRUDQG

 2QHYROXPHSHUFHQWR[\JHQEDODQFHQLWURJHQDQGIRXUYROXPHSHUFHQW

R[\JHQEDODQFHQLWURJHQIRUWKHLQOHWR[\JHQPRQLWRUDQG

 SSPE\YROXPHR[\JHQEDODQFHQLWURJHQDQGSSPE\YROXPH

R[\JHQEDODQFHQLWURJHQIRUWKHRXWOHWR[\JHQPRQLWRU

  %$6(6 0HFKDQLFDO GHJDVVLQJRSHUDWLRQ LVGHILQHGDVWKHWUDQVIHURIJDVIURPWKH9ROXPH

&RQWURO7DQN 9&7 WRWKH:DVWH*DV+ROGXS6\VWHPZKHQHVWDEOLVKLQJDQLWURJHQ

EODQNHWRQWKH9&7LQSUHSDUDWLRQIRUDSODQWVKXWGRZQ&KHPLFDO GHJDVVLQJRSHUDWLRQ 

LVWKHSURFHVVRIDGGLQJK\GURJHQSHUR[LGHWRWKH5&6DIWHUWKH9&7K\GURJHQEODQNHW

KDVEHHQUHSODFHGZLWKQLWURJHQSHUWKHPHFKDQLFDOGHJDVVLILFDWLRQSURFHVVDQGWKH

5&6KDVEHHQUHGXFHGWROHVVWKDQ)%RWKPHFKDQLFDODQGFKHPLFDO

GHJDVVLILFDWLRQPD\OHDGWRDQH[SORVLYHJDVPL[WXUHLQWKH:DVWH*DV+ROGXS6\VWHP

WKXVUHTXLULQJWKHPRUHUHVWULFWLYHKRXUVDPSOLQJ2WKHURSHUDWLRQVUHTXLUHKRXU

VDPSOLQJ

7KH)(('+)(('2$1')(('+)(('2DODUPVDUHQRW

UHTXLUHGWREH)81&7,21$/7KHVHDODUPVUHVXOWIURPWKHFRPELQDWLRQRILQOHW

K\GURJHQDQGLQOHWR[\JHQDQDO\]HURXWSXWVZKLOHWKH)6$5RQO\DGGUHVVHV

)81&7,21$/,7<RIHDFKVHSDUDWHDQDO\]HU2QO\WKHLQGLYLGXDODODUPVDQGFRQWURO

IXQFWLRQVDVVRFLDWHGZLWKHDFKDQDO\]HUDUHWREHXVHGWRGHWHUPLQHLWVIXQFWLRQDOLW\

7KHVHDODUPVDQGFRQWUROIXQFWLRQVDUHVXIILFLHQWWRHQVXUHWKDWWKHOLPLWVRI6HFWLRQ

DUHQRWH[FHHGHG

7KH&+$11(/&$/,%5$7,21LQFOXGHVWULJJHULQJWKHIROORZLQJDODUPVDWWKHDQDO\]HU

DQGYHULI\LQJWKDWWKHUHTXLUHGFRQWUROERDUGDQQXQFLDWRUVDQGFRQWUROIXQFWLRQVDFWXDWH

 )HHG*DV+LJK+

 +$5&2$,&+L+L+226KXWGRZQ

 +5HDFWRU+LJK2[\JHQ2/LPLW

 3URGXFW*DV+LJK+

 3URGXFW*DV+LJK2[\JHQ

 5HY2/



&$//$:$<63

 3URGXFW*DV+L+L26KXWGRZQ 7KLVVXUYHLOODQFHYHULILHVWKH)81&7,21$/,7<RIWKHDQDO\]HUV¶RXWSXWUHOD\VDOO

LQWHUSRVLQJUHOD\VDQGWKHDQQXQFLDWRUV6HWSRLQWYHULILFDWLRQFRQVLVWVRIYHULI\LQJWKDW

WKHFRUUHFWVHWSRLQWYDOXHVDUHHQWHUHGLQWKHDQDO\]HUV¶GDWDEDVH

 5HY2/



&$//$:$<63

 *$66725$*(7$1.6/,0,7,1*&21',7,21)2523(5$7,21 7KHTXDQWLW\RIUDGLRDFWLYLW\FRQWDLQHGLQHDFKJDVVWRUDJHWDQNVKDOOEHOLPLWHGWROHVV

WKDQRUHTXDOWR[&XULHVRIQREOHJDVHV FRQVLGHUHGDV;HHTXLYDOHQW 

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHTXDQWLW\RIUDGLRDFWLYHPDWHULDOLQDQ\JDVVWRUDJHWDQNH[FHHGLQJWKHDERYH

OLPLWLPPHGLDWHO\VXVSHQGDOODGGLWLRQVRIUDGLRDFWLYHPDWHULDOWRWKHWDQNDQGZLWKLQ

KRXUVUHGXFHWKHWDQNFRQWHQWVWRZLWKLQWKHOLPLWDQGGHVFULEHWKHHYHQWVOHDGLQJWRWKLV

FRQGLWLRQLQWKHQH[W5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWSXUVXDQWWR7HFKQLFDO

6SHFLILFDWLRQ

 6859(,//$1&(5(48,5(0(176 7KHSURYLVLRQVRI6HFWLRQVDQGDUHDSSOLFDEOHKRZHYHUWKHDOORZHG

VXUYHLOODQFHLQWHUYDOH[WHQVLRQEH\RQGVKDOOQRWEHH[FHHGHG7KLVV\VWHPLVDOVR

FRYHUHGE\$GPLQLVWUDWLYH&RQWUROV6HFWLRQRIWKHSODQW7HFKQLFDO6SHFLILFDWLRQV

7KHTXDQWLW\RIUDGLRDFWLYHPDWHULDOFRQWDLQHGLQHDFKJDVVWRUDJHWDQNVKDOOEH

GHWHUPLQHGWREHZLWKLQWKHDERYHOLPLWDWOHDVWRQFHSHUPRQWKV

  %$6(6 7KHWDQNVLQFOXGHGLQWKLV5HTXLUHPHQWDUHWKRVHWDQNVIRUZKLFKWKHTXDQWLW\RI

UDGLRDFWLYLW\FRQWDLQHGLVQRWOLPLWHGGLUHFWO\RULQGLUHFWO\E\DQRWKHU5HTXLUHPHQW

5HVWULFWLQJWKHTXDQWLW\RIUDGLRDFWLYLW\FRQWDLQHGLQHDFKJDVVWRUDJHWDQNSURYLGHV

DVVXUDQFHWKDWLQWKHHYHQWRIDQXQFRQWUROOHGUHOHDVHRIWKHWDQN VFRQWHQWVWKH

UHVXOWLQJZKROHERG\H[SRVXUHWRD0(0%(52)7+(38%/,&DWWKHQHDUHVW6,7(

%281'$5<ZLOOQRWH[FHHGUHP7KLVLVFRQVLVWHQWZLWK6WDQGDUG5HYLHZ3ODQ

%UDQFK7HFKQLFDO3RVLWLRQ(76%3RVWXODWHG5DGLRDFWLYH5HOHDVHV'XHWRD:DVWH

  • DV6\VWHP/HDNRU)DLOXUHLQ185(*-XO\7KHGHWHUPLQDWLRQRI;H

HTXLYDOHQWXVHVWKHHIIHFWLYHGRVHFRQYHUVLRQIDFWRUVIRUDLUVXEPHUVLRQOLVWHGLQ7DEOH

,,,RI(3$)HGHUDO*XLGDQFH5HSRUW1R(3$5³([WHUQDO([SRVXUHWR

5DGLRQXFOLGHVLQ$LU:DWHUDQG6RLO'

 5HY2/



&$//$:$<63

 727$/'26(

 727$/'26(/,0,7,1*&21',7,21)2523(5$7,21 2'&0

7KHDQQXDO FDOHQGDU\HDU GRVHRUGRVHFRPPLWPHQWWRDQ\0(0%(52)7+(38%/,&

GXHWRUHOHDVHVRIUDGLRDFWLYLW\DQGWRUDGLDWLRQIURPXUDQLXPIXHOF\FOHVRXUFHVVKDOOEH

OLPLWHGWROHVVWKDQRUHTXDOWRPUHPVWRWKHZKROHERG\RUDQ\RUJDQH[FHSWWKH

WK\URLGZKLFKVKDOOEHOLPLWHGWROHVVWKDQRUHTXDOWR PUHP

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKWKHFDOFXODWHGGRVHVIURPWKHUHOHDVHRIUDGLRDFWLYHPDWHULDOVLQJDVHRXVHIIOXHQWV

H[FHHGLQJWZLFHWKHOLPLWVRI6HFWLRQDEDRUE

FDOFXODWLRQVVKRXOGEHPDGHLQFOXGLQJGLUHFWUDGLDWLRQFRQWULEXWLRQVIURPWKHXQLWVDQG

IURPRXWVLGHVWRUDJHWDQNVWRGHWHUPLQHZKHWKHUWKHDERYHOLPLWVRI6HFWLRQ

KDYHEHHQH[FHHGHG,IVXFKLVWKHFDVHSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQZLWKLQ

GD\VD6SHFLDO5HSRUWWKDWGHILQHVWKHFRUUHFWLYHDFWLRQWREHWDNHQWRUHGXFH

VXEVHTXHQWUHOHDVHWRSUHYHQWUHFXUUHQFHRIH[FHHGLQJWKHDERYHOLPLWVDQGLQFOXGHVWKH

VFKHGXOHIRUDFKLHYLQJFRQIRUPDQFHZLWKWKHDERYHOLPLWV7KLV6SHFLDO5HSRUWDV

GHILQHGLQ&)5VKDOOLQFOXGHDQDQDO\VLVWKDWHVWLPDWHVWKHUDGLDWLRQ

H[SRVXUH GRVH WRD0(0%(52)7+(38%/,&IURPXUDQLXPIXHOF\FOHVRXUFHV

LQFOXGLQJDOOHIIOXHQWSDWKZD\VDQGGLUHFWUDGLDWLRQIRUWKHFDOHQGDU\HDUWKDWLQFOXGHVWKH

UHOHDVH V FRYHUHGE\WKLVUHSRUW,WVKDOODOVRGHVFULEHOHYHOVRIUDGLDWLRQDQG

FRQFHQWUDWLRQVRIUDGLRDFWLYHPDWHULDOLQYROYHGDQGWKHFDXVHRIWKHH[SRVXUHOHYHOVRU

FRQFHQWUDWLRQV,IWKHHVWLPDWHGGRVH V H[FHHGVWKHDERYHOLPLWVDQGLIWKHUHOHDVH

FRQGLWLRQUHVXOWLQJLQYLRODWLRQRI&)53DUWKDVQRWDOUHDG\EHHQFRUUHFWHGWKH

6SHFLDO5HSRUWVKDOOLQFOXGHDUHTXHVWIRUDYDULDQFHLQDFFRUGDQFHZLWKWKHSURYLVLRQVRI

&)53DUW6XEPLWWDORIWKHUHSRUWLVFRQVLGHUHGDWLPHO\UHTXHVWDQGDYDULDQFH

LVJUDQWHGXQWLOVWDIIDFWLRQRQWKHUHTXHVWLVFRPSOHWH

 6859(,//$1&(5(48,5(0(176 2'&0

D

&XPXODWLYHGRVHFRQWULEXWLRQVIURPJDVHRXVHIIOXHQWVVKDOOEHGHWHUPLQHGLQDFFRUGDQFH

ZLWK6HFWLRQVDQGDQGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0

E

 5HY2/



&$//$:$<63

&XPXODWLYHGRVHFRQWULEXWLRQVIURPGLUHFWUDGLDWLRQIURPWKHXQLWVDQGIURPUDGZDVWH

VWRUDJHWDQNVVKDOOEHGHWHUPLQHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUV

LQWKH2'&07KLVUHTXLUHPHQWVLVDSSOLFDEOHRQO\XQGHUFRQGLWLRQVVHWIRUWKLQ$&7,21

DRI6HFWLRQ

  %$6(6 7KLV5HTXLUHPHQWLVSURYLGHGWRPHHWWKHGRVHOLPLWDWLRQVRI&)53DUWWKDWKDYH

EHHQLQFRUSRUDWHGLQWR&)53DUW 7KHFRQWUROUHTXLUHVWKHSUHSDUDWLRQDQG

VXEPLWWDORID6SHFLDO5HSRUWZKHQHYHUWKHFDOFXODWHGGRVHVGXHWRUHOHDVHVRI

UDGLRDFWLYLW\DQGWKHUDGLDWLRQIURPXUDQLXPIXHOF\FOHVRXUFHVH[FHHGPUHPVWRWKH

ZKROHERG\RUDQ\RUJDQH[FHSWWKHWK\URLGZKLFKVKDOOEHOLPLWHGWROHVVWKDQRUHTXDO

WRPUHPV)RUVLWHVFRQWDLQLQJXSWRIRXUUHDFWRUVLWLVKLJKO\XQOLNHO\WKDWWKH

UHVXOWDQWGRVHWRD0(0%(52)7+(38%/,&ZLOOH[FHHGWKHGRVHOLPLWVRI&)5

3DUWLIWKHLQGLYLGXDOUHDFWRUVUHPDLQZLWKLQWZLFHWKHGRVHGHVLJQREMHFWLYHVRI

$SSHQGL[,DQGLIGLUHFWUDGLDWLRQGRVHVIURPWKHUHDFWRUXQLWVDQGIURPRXWVLGHVWRUDJH

WDQNVDUHNHSWVPDOO7KH6SHFLDO5HSRUWZLOOGHVFULEHDFRXUVHRIDFWLRQWKDWVKRXOG

UHVXOWLQWKHOLPLWDWLRQRIWKHDQQXDOGRVHWRD0(0%(52)7+(38%/,&WRZLWKLQWKH

&)53DUWOLPLWV

)RUWKHSXUSRVHVRIWKH6SHFLDO5HSRUWLWPD\EHDVVXPHGWKDWWKHGRVHFRPPLWPHQWWR

WKH0(0%(52)7+(38%/,&IURPRWKHUXUDQLXPIXHOF\FOHVRXUFHVLVQHJOLJLEOHZLWK

WKHH[FHSWLRQWKDWGRVHFRQWULEXWLRQVIURPRWKHUQXFOHDUIXHOF\FOHIDFLOLWLHVDWWKHVDPH

VLWHRUZLWKLQDUDGLXVRINPPXVWEHFRQVLGHUHG,IWKHGRVHWRDQ\0(0%(52)7+(

38%/,&LVHVWLPDWHGWRH[FHHGWKHUHTXLUHPHQWVRI&)53DUWWKH6SHFLDO5HSRUW

ZLWKDUHTXHVWIRUDYDULDQFH SURYLGHGWKHUHOHDVHFRQGLWLRQVUHVXOWLQJLQYLRODWLRQRI

&)53DUWKDYHQRWDOUHDG\EHHQFRUUHFWHG LQDFFRUGDQFHZLWKWKHSURYLVLRQVRI

&)53DUWDQG&)5 LVFRQVLGHUHGWREHDWLPHO\UHTXHVWDQGIXOILOOV

WKHUHTXLUHPHQWVRI&)53DUWXQWLO15&VWDIIDFWLRQLVFRPSOHWHG7KHYDULDQFH

RQO\UHODWHVWR&)53DUWDQGGRHVQRWDSSO\LQDQ\ZD\WRWKHRWKHUUHTXLUHPHQWV

IRUGRVHOLPLWDWLRQRI&)53DUWDVDGGUHVVHGLQ6HFWLRQVDQG

$QLQGLYLGXDOLVQRWFRQVLGHUHGD0(0%(52)7+(38%/,&GXULQJDQ\SHULRGLQZKLFK

KHVKHLVHQJDJHGLQFDUU\LQJRXWDQ\RSHUDWLRQWKDWLVSDUWRIWKHQXFOHDUIXHOF\FOH

7KHUHDUHWKUHHGHILQHGHIIOXHQWUHOHDVHFDWHJRULHV 5HOHDVHVGLUHFWO\WRWKH

K\GURVSKHUH QREOHJDVUHOHDVHVWRWKHDWPRVSKHUH UDGLRLRGLQHDQGSDUWLFXODWH

UHOHDVHVWRWKHDWPRVSKHUH)RUHDFKHIIOXHQWUHOHDVHFDWHJRU\LWLVDVVXPHGLQWKH

GRVHFDOFXODWLRQVWKDWDQLQGLYLGXDOZLWKWKHKLJKHVWGRVHSRWHQWLDOLVWKHUHFHSWRU,Q

JHQHUDOWKHDGXOWLVFRQVLGHUHGWREHWKHFULWLFDODJHJURXSIRUOLTXLGHIIOXHQWVDQGWKH

FKLOGDJHJURXSLVWKHPRVWOLPLWLQJIRUUDGLRLRGLQHDQGSDUWLFXODWHVLQJDVHRXVHIIOXHQWV

7KXVLWLVKLJKO\XQOLNHO\RULPSRVVLEOHIRUWKHVDPHLQGLYLGXDOWRVLPXOWDQHRXVO\UHFHLYH

WKHKLJKHVWGRVHYLDDOOWKUHHHIIOXHQWFDWHJRULHV)RUPRVWUHDFWRUVLWHVLWLVDOVRXQOLNHO\

WKDWDOOGLIIHUHQWSRWHQWLDOGRVHSDWKZD\VZRXOGFRQWULEXWHWRWKHGRVHWRDVLQJOHUHDO

LQGLYLGXDO6LQFHLWLVGLIILFXOWRULPSRVVLEOHWRFRQWLQXDOO\GHWHUPLQHDFWXDOIRRGXVH

SDWWHUQVDQGFULWLFDODJHJURXSIRUFDOFXODWLRQDOSXUSRVHVDVVXPSWLRQVDUHPDGHZKLFK

WHQGWRPD[LPL]HGRVHV$Q\UHILQHPHQWLQWKHDVVXPSWLRQVZRXOGKDYHWKHHIIHFWRI

 5HY2/



&$//$:$<63 UHGXFLQJWKHHVWLPDWHGGRVH)RUUDGLRQXFOLGHVUHOHDVHGWRWKHK\GURVSKHUHWKHGHJUHH

RIRYHUHVWLPDWLRQLQPRVWVLWXDWLRQVLVVXFKWKDWQRLQGLYLGXDOZLOOUHFHLYHDVLJQLILFDQW

GRVH7KHVHFRQVHUYDWLYHDVVXPSWLRQVJHQHUDOO\UHVXOWLQDQRYHUHVWLPDWLRQRIGRVHE\

RQHRUWZRRUGHUVRIPDJQLWXGH6LQFHWKHVHDVVXPSWLRQVDUHUHIOHFWHGLQWKH

5DGLRORJLFDO(IIOXHQW&RQWUROVOLPLWLQJUDGLRQXFOLGHUHOHDVHVWRGHVLJQREMHFWLYHLQGLYLGXDO

GRVHVQRRIIVLWHLQGLYLGXDOLVOLNHO\WRDFWXDOO\UHFHLYHDVLJQLILFDQWGRVH6LQFHWKH

GRVHVIURPOLTXLGUHOHDVHVDUHYHU\FRQVHUYDWLYHO\HYDOXDWHGWKHUHLVUHDVRQDEOH

DVVXUDQFHWKDWQRUHDOLQGLYLGXDOZLOOUHFHLYHDVLJQLILFDQWGRVHIURPUDGLRDFWLYHOLTXLG

UHOHDVHSDWKZD\7KHUHIRUHRQO\GRVHVWRLQGLYLGXDOVYLDDLUERUQHSDWKZD\VDQGGRVH

UHVXOWLQJIURPGLUHFWUDGLDWLRQQHHGWREHFRQVLGHUHGLQGHWHUPLQLQJSRWHQWLDOFRPSOLDQFH

WR&)5 

7KHUHSRUWLQJUHTXLUHPHQWVRI$FWLRQ D LPSOHPHQWWKHUHTXLUHPHQWVRI&)5

185(*³0HWKRGVIRU'HPRQVWUDWLQJ/:5FRPSOLDQFHZLWKWKH(3$8UDQLXP)XHO&\FOH

6WDQGDUG &)5 '&RQJHO)-2IILFHRI1XFOHDU5HDFWRU5HJXODWLRQ8615&-DQXDU\

SS

 5HY2/



&$//$:$<63

 5$',2/2*,&$/(19,5210(17$/021,725,1*

 021,725,1*352*5$0/,0,7,1*&21',7,212)23(5$7,21 2'&0

7KH5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDPVKDOOEHFRQGXFWHGDVVSHFLILHGLQ

7DEOH

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

D :LWKWKH5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDPQRWEHLQJFRQGXFWHGDV

VSHFLILHGLQ7DEOHSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQLQWKH$QQXDO

5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWUHTXLUHGE\7HFKQLFDO6SHFLILFDWLRQ

DGHVFULSWLRQRIWKHUHDVRQVIRUQRWFRQGXFWLQJWKHSURJUDPDVUHTXLUHGDQG

WKHSODQVIRUSUHYHQWLQJDUHFXUUHQFH

E :LWKWKHOHYHORIUDGLRDFWLYLW\DVWKHUHVXOWRISODQWHIIOXHQWVLQDQHQYLURQPHQWDO

VDPSOLQJPHGLXPDWDVSHFLILHGORFDWLRQH[FHHGLQJWKHUHSRUWLQJOHYHOVRI7DEOH

ZKHQDYHUDJHGRYHUDQ\FDOHQGDUTXDUWHUSUHSDUHDQGVXEPLWWRWKH

&RPPLVVLRQZLWKLQGD\VD6SHFLDO5HSRUWWKDWLGHQWLILHVWKHFDXVH V IRU

H[FHHGLQJWKHOLPLW V DQGGHILQHVWKHFRUUHFWLYHDFWLRQVWREHWDNHQWRUHGXFH

UDGLRDFWLYHHIIOXHQWVVRWKDWWKHSRWHQWLDODQQXDOGRVH WRD0(0%(52)7+(

38%/,&LVOHVVWKDQWKHFDOHQGDU\HDUOLPLWVRI6HFWLRQVRU

:KHQPRUHWKDQRQHRIWKHUDGLRQXFOLGHVLQ7DEOHDUHGHWHFWHG

LQWKHVDPSOLQJPHGLXPWKLVUHSRUWVKDOOEHVXEPLWWHGLI

FRQFHQWUDWLRQ    FRQFHQWUDWLRQ   

 

UHSRUWLQJOHYHO  UHSRUWLQJ 

KHQUDGLRQXFOLGHVRWKHUWKDQWKRVHLQ7DEOHDUHGHWHFWHGDQGDUHWKH

UHVXOWRISODQWHIIOXHQWVWKLVUHSRUWVKDOOEHVXEPLWWHGLIWKHSRWHQWLDODQQXDOGRVH 

WR$0(0%(52)7+(38%/,&IURPDOOUDGLRQXFOLGHVLVHTXDOWRRUJUHDWHUWKDQ

WKHFDOHQGDU\HDUOLPLWVRI6HFWLRQVRU7KLVUHSRUW

LVQRWUHTXLUHGLIWKHPHDVXUHGOHYHORIUDGLRDFWLYLW\ZDVQRWWKHUHVXOWRISODQW

HIIOXHQWVKRZHYHULQVXFKDQHYHQWWKHFRQGLWLRQVKDOOEHUHSRUWHGDQG

GHVFULEHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWUHTXLUHG

E\7HFKQLFDO6SHFLILFDWLRQ

F :LWKPLONRUIUHVKOHDI\YHJHWDEOHVDPSOHVXQDYDLODEOHIURPRQHRUPRUHRIWKH

VDPSOHORFDWLRQVUHTXLUHGE\7DEOHLGHQWLI\VSHFLILFORFDWLRQVIRU

7KHPHWKRGRORJ\DQGSDUDPHWHUVXVHGWRHVWLPDWHWKHSRWHQWLDODQQXDOGRVHWRD0(0%(52)7+(

38%/,&VKDOOEHLQGLFDWHGLQWKLVUHSRUW

 5HY2/



&$//$:$<63 REWDLQLQJUHSODFHPHQWVDPSOHVDQGDGGWKHPZLWKLQGD\VWRWKH5DGLRORJLFDO

(QYLURQPHQWDO0RQLWRULQJ3URJUDP 7KHVSHFLILFORFDWLRQVIURPZKLFKVDPSOHV

ZHUHXQDYDLODEOHPD\WKHQEHGHOHWHGIURPWKHPRQLWRULQJSURJUDP,QWKHQH[W

$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWLQFOXGHWKHUHYLVHGILJXUH V 

DQGWDEOHVUHIOHFWLQJWKHQHZVDPSOHORFDWLRQ V ZLWKVXSSRUWLQJLQIRUPDWLRQ

LGHQWLI\LQJWKHFDXVHRIWKHXQDYDLODELOLW\RIVDPSOHVDQGMXVWLI\LQJWKHVHOHFWLRQRI

QHZORFDWLRQ V IRUREWDLQLQJVDPSOHV

G :KHQ//'VVSHFLILHGLQ7DEOH DUHXQDFKLHYDEOHGXHWRXQFRQWUROODEOH

FLUFXPVWDQFHVVXFKDVEDFNJURXQGIOXFWXDWLRQVXQDYDLODEOHVPDOOVDPSOHVL]HV

WKHSUHVHQFHRILQWHUIHULQJQXFOLGHVHWFWKHFRQWULEXWLQJIDFWRUVVKDOOEH

LGHQWLILHGDQGGHVFULEHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ

5HSRUW

 6859(,//$1&(5(48,5(0(176 2'&0

7KHUDGLRORJLFDOHQYLURQPHQWDOPRQLWRULQJVDPSOHVVKDOOEHFROOHFWHGSXUVXDQWWR7DEOH

DQGVKDOOEHDQDO\]HGSXUVXDQWWRWKHUHTXLUHPHQWVRI7DEOHDQGWKH

GHWHFWLRQFDSDELOLWLHVUHTXLUHGE\7DEOH 

  %$6(6 7KH5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDPSURYLGHVUHSUHVHQWDWLYH

PHDVXUHPHQWVRIUDGLDWLRQDQGRIUDGLRDFWLYHPDWHULDOVLQWKRVHH[SRVXUHSDWKZD\VDQG

IRUWKRVHUDGLRQXFOLGHVWKDWOHDGWRWKHKLJKHVWSRWHQWLDOUDGLDWLRQH[SRVXUHVRI

0(0%(562)7+(38%/,&UHVXOWLQJIURPWKHVWDWLRQRSHUDWLRQ7KLVPRQLWRULQJ

SURJUDPLPSOHPHQWV6HFWLRQ,9%RI$SSHQGL[,WR&)53DUWDQGWKHUHE\

VXSSOHPHQWVWKH5DGLRORJLFDO(IIOXHQW0RQLWRULQJ3URJUDPE\YHULI\LQJWKDWWKH

PHDVXUDEOHFRQFHQWUDWLRQVRIUDGLRDFWLYHPDWHULDOVDQGOHYHOVRIUDGLDWLRQDUHQRWKLJKHU

WKDQH[SHFWHGRQWKHEDVLVRIWKHHIIOXHQWPHDVXUHPHQWVDQGWKHPRGHOLQJRIWKH

HQYLURQPHQWDOH[SRVXUHSDWKZD\V*XLGDQFHIRUWKHLQLWLDOPRQLWRULQJSURJUDPZDV

SURYLGHGE\WKH5DGLRORJLFDO$VVHVVPHQW%UDQFK7HFKQLFDO3RVLWLRQRQ(QYLURQPHQWDO

0RQLWRULQJ5HYLVLRQ1RYHPEHU

7KHUHTXLUHGGHWHFWLRQFDSDELOLWLHVIRUHQYLURQPHQWDOVDPSOHDQDO\VHVDUHWDEXODWHGLQ

WHUPVRIWKHORZHUOLPLWVRIGHWHFWLRQ //' V 7KH//' VUHTXLUHGE\7DEOH DUH

FRQVLGHUHGRSWLPXPIRUURXWLQHHQYLURQPHQWDOPHDVXUHPHQWVLQLQGXVWULDOODERUDWRULHV

([FOXGLQJVKRUWWHUPRUWHPSRUDU\XQDYDLODELOLW\

 5HY2/



&$//$:$<63

 /$1'86(&(1686/,0,7,1*&21',7,212)23(5$7,21 2'&0

$/DQG8VH&HQVXVVKDOOEHFRQGXFWHGDQGVKDOOLGHQWLI\ZLWKLQDGLVWDQFHRINP 

PLOHV WKHORFDWLRQLQHDFKRIWKHPHWHRURORJLFDOVHFWRUVRIWKHQHDUHVWPLONDQLPDO

WKHQHDUHVWUHVLGHQFHDQGWKHQHDUHVWJDUGHQ RIJUHDWHUWKDQP IW SURGXFLQJ

EURDGOHDIYHJHWDWLRQ7KH/DQG8VH&HQVXVVKDOOLGHQWLI\ZDWHULQWDNHVFRQVWUXFWHG

ZLWKLQULYHUPLOHVGRZQVWUHDPRIWKHSODQWGLVFKDUJHSRLQW

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

D :LWKD/DQG8VH&HQVXVLGHQWLI\LQJDORFDWLRQ V WKDW\LHOGVDFDOFXODWHGGRVHRU

GRVHFRPPLWPHQWJUHDWHUWKDQWKHYDOXHVFXUUHQWO\EHLQJFDOFXODWHGE\6HFWLRQ

LGHQWLI\WKHQHZORFDWLRQ V LQWKHQH[W5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQ

E :LWKD/DQG8VH&HQVXVLGHQWLI\LQJDORFDWLRQ V WKDW\LHOGVDFDOFXODWHGGRVHRU

GRVHFRPPLWPHQW YLDWKHVDPHH[SRVXUHSDWKZD\ JUHDWHUWKDQDWD

ORFDWLRQIURPZKLFKVDPSOHVDUHFXUUHQWO\EHLQJREWDLQHGLQDFFRUGDQFHZLWK

6HFWLRQDGGWKHQHZORFDWLRQ V ZLWKLQGD\VWRWKH5DGLRORJLFDO

(QYLURQPHQWDO0RQLWRULQJ3URJUDPH[FHSWIRUYHJHWDWLRQVDPSOHVZKLFKVKDOOEH

DGGHGWRWKHSURJUDPEHIRUHWKHQH[WJURZLQJVHDVRQ7KHVDPSOLQJORFDWLRQ V 

H[FOXGLQJWKHFRQWUROVWDWLRQORFDWLRQKDYLQJWKHORZHVWFDOFXODWHGGRVHRUGRVH

FRPPLWPHQW V YLDWKHVDPHH[SRVXUHSDWKZD\PD\EHGHOHWHGIURPWKLV

PRQLWRULQJSURJUDPDIWHU2FWREHURIWKH\HDULQZKLFKWKLV/DQG8VH&HQVXV

ZDVFRQGXFWHG,QWKHQH[W$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW

LQFOXGHWKHUHYLVHGILJXUH V DQGWDEOHVUHIOHFWLQJWKHQHZVDPSOHORFDWLRQ V ZLWK

LQIRUPDWLRQVXSSRUWLQJWKHFKDQJHLQVDPSOHORFDWLRQ

F :LWKD/DQG8VH&HQVXVLGHQWLI\LQJDZDWHULQWDNHZLWKLQULYHUPLOHV

GRZQVWUHDPRIWKHSODQWGLVFKDUJHSRLQWLPSOHPHQWWKHDSSURSULDWHZDWHUERUQH

RULQJHVWLRQVDPSOLQJUHTXLUHGE\7DEOH

%URDGOHDIYHJHWDWLRQVDPSOLQJRIDWOHDVWWKUHHGLIIHUHQWNLQGVRIYHJHWDWLRQPD\EHSHUIRUPHGDWWKH

6,7(%281'$5<LQHDFKWRWZRGLIIHUHQWGLUHFWLRQVHFWRUVZLWKWKHKLJKHVWSUHGLFWHG'4 VLQOLHXRI

WKHJDUGHQFHQVXV5HTXLUHPHQWVIRUEURDGOHDIYHJHWDWLRQVDPSOLQJLQ7DEOH3DUWFVKDOO

EHIROORZHGLQFOXGLQJDQDO\VLVRIFRQWUROVDPSOHV

 5HY2/



&$//$:$<63

 6859(,//$1&(5(48,5(0(176 2'&0

7KH/DQG8VH&HQVXVVKDOOEHFRQGXFWHGGXULQJWKHJURZLQJVHDVRQDWOHDVWRQFHSHU

PRQWKVXVLQJWKDWLQIRUPDWLRQZKLFKZLOOSURYLGHWKHEHVWUHVXOWVVXFKDVEXWQRW

OLPLWHGWRGRRUWRGRRUVXUYH\DHULDOVXUYH\RUE\FRQVXOWLQJORFDODJULFXOWXUHDXWKRULWLHV

DQGRUUHVLGHQWV7KHUHVXOWVRIWKH/DQG8VH&HQVXVVKDOOEHLQFOXGHGLQWKH$QQXDO

5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQ

  %$6(6 7KLV5HTXLUHPHQWLVSURYLGHGWRHQVXUHWKDWFKDQJHVLQWKHXVHRIDUHDVDWDQGEH\RQG

WKH6,7(%281'$5<DUHLGHQWLILHGDQGWKDWPRGLILFDWLRQVWRWKH5DGLRORJLFDO

(QYLURQPHQWDO0RQLWRULQJ3URJUDPJLYHQLQWKH2'&0DUHPDGHLIUHTXLUHGE\WKH

UHVXOWVRIWKLVFHQVXV,QIRUPDWLRQWKDWZLOOSURYLGHWKHEHVWUHVXOWVVXFKDVGRRUWRGRRU

VXUYH\DHULDOVXUYH\RUFRQVXOWLQJZLWKORFDODJULFXOWXUDODXWKRULWLHVVKDOOEHXVHG7KLV

FHQVXVVDWLVILHVWKHUHTXLUHPHQWVRI6HFWLRQ,9%RI$SSHQGL[,WR&)53DUW

5HVWULFWLQJWKHFHQVXVWRJDUGHQVRIJUHDWHUWKDQPSURYLGHVDVVXUDQFHWKDW

VLJQLILFDQWH[SRVXUHSDWKZD\VYLDOHDI\YHJHWDEOHVZLOOEHLGHQWLILHGDQGPRQLWRUHGVLQFH

DJDUGHQRIWKLVVL]HLVWKHPLQLPXPUHTXLUHGWRSURGXFHWKHTXDQWLW\ NJ\HDU RIOHDI\

YHJHWDEOHVDVVXPHGLQ5HJXODWRU\*XLGHIRUFRQVXPSWLRQE\DFKLOG7R

GHWHUPLQHWKLVPLQLPXPJDUGHQVL]HWKHIROORZLQJDVVXPSWLRQVZHUHPDGH  RI

WKHJDUGHQZDVXVHGIRUJURZLQJEURDGOHDIYHJHWDWLRQ LHVLPLODUWROHWWXFHDQG

FDEEDJH DQG  DYHJHWDWLRQ\LHOGRINJP

 5HY2/



&$//$:$<63

 ,17(5/$%25$725<&203$5,621352*5$0/,0,7,1*&21',7,21 2)23(5$7,21 2'&0

$QDO\VHVVKDOOEHSHUIRUPHGRQUDGLRDFWLYHPDWHULDOVVXSSOLHGDVSDUWRIDQ

,QWHUODERUDWRU\&RPSDULVRQ3URJUDPWKDWKDVEHHQDSSURYHGE\WKH8615&

$33/,&$%,/,7<$WDOOWLPHV

$&7,21

LWKDQDO\VHVQRWEHLQJSHUIRUPHGDVUHTXLUHGDERYHUHSRUWWKHFRUUHFWLYHDFWLRQVWDNHQ

WRSUHYHQWDUHFXUUHQFHWRWKH&RPPLVVLRQLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO

2SHUDWLQJ5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQ

 6859(,//$1&(5(48,5(0(176 2'&0

7KH,QWHUODERUDWRU\&RPSDULVRQ3URJUDPVKDOOEHGHVFULEHGLQWKHSODQWSURFHGXUHV$

VXPPDU\RIWKHUHVXOWVREWDLQHGDVSDUWRIWKHDERYHUHTXLUHG,QWHUODERUDWRU\

&RPSDULVRQ3URJUDPVKDOOEHLQFOXGHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO

2SHUDWLQJ5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQ

  %$6(6 7KHUHTXLUHPHQWIRUSDUWLFLSDWLRQLQDQDSSURYHG,QWHUODERUDWRU\&RPSDULVRQ3URJUDPLV

SURYLGHGWRHQVXUHWKDWLQGHSHQGHQWFKHFNVRQWKHSUHFLVLRQDQGDFFXUDF\RIWKH

PHDVXUHPHQWVRIUDGLRDFWLYHPDWHULDOLQHQYLURQPHQWDOVDPSOHPDWULFHVDUHSHUIRUPHG

DVSDUWRIWKHTXDOLW\DVVXUDQFHSURJUDPIRUHQYLURQPHQWDOPRQLWRULQJLQRUGHUWR

GHPRQVWUDWHWKDWWKHUHVXOWVDUHYDOLGIRUWKHSXUSRVHRI6HFWLRQ ,9%RI$SSHQGL[ ,WR

&)5 3DUW 

 5HY2/



&$//$:$<63

 $'0,1,675$7,9(&21752/6

 $118$/5$',2/2*,&$/(19,5210(17$/23(5$7,1*5(3257 2'&0

5RXWLQH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWFRYHULQJWKHRSHUDWLRQRI

WKHXQLWGXULQJWKHSUHYLRXVFDOHQGDU\HDUVKDOOEHVXEPLWWHGSULRUWR0D\RIHDFK\HDU

7KH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWVKDOOLQFOXGHVXPPDULHV

LQWHUSUHWDWLRQVDQGDQDQDO\VLVRIWUHQGVRIWKHUHVXOWVRIWKHUDGLRORJLFDOHQYLURQPHQWDO

VXUYHLOODQFHDFWLYLWLHVIRUWKHUHSRUWSHULRGLQFOXGLQJDFRPSDULVRQZLWKSUHRSHUDWLRQDO

VWXGLHVZLWKRSHUDWLRQDOFRQWUROVDQGZLWKSUHYLRXVHQYLURQPHQWDOVXUYHLOODQFHUHSRUWV

DQGDQDVVHVVPHQWRIWKHREVHUYHGLPSDFWVRIWKHSODQWRSHUDWLRQRQWKHHQYLURQPHQW

7KHUHSRUWVVKDOOLQFOXGHWKHUHVXOWVRI/DQG8VH&HQVXVUHTXLUHGE\6HFWLRQ

,WVKDOODOVRLQFOXGHDOLVWLQJRIQHZORFDWLRQVIRUHQYLURQPHQWDOPRQLWRULQJLGHQWLILHGE\

WKH/DQG8VH&HQVXVSXUVXDQWWR6HFWLRQ

7KH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWVKDOOLQFOXGHWKHUHVXOWVRI

DQDO\VLVRIDOOUDGLRORJLFDOHQYLURQPHQWDOVDPSOHVDQGRIDOOHQYLURQPHQWDOUDGLDWLRQ

PHDVXUHPHQWVWDNHQGXULQJWKHSHULRGSXUVXDQWWR6HFWLRQDVZHOODV

VXPPDUL]HGWDEXODWHGUHVXOWVRIWKHVHDQDO\VHVDQGPHDVXUHPHQWVLQWKHIRUPDWRIWKH

WDEOHLQWKH5DGLRORJLFDO$VVHVVPHQW%UDQFK7HFKQLFDO3RVLWLRQ5HYLVLRQ1RYHPEHU

,QWKHHYHQWWKDWVRPHLQGLYLGXDOUHVXOWVDUHQRWDYDLODEOHIRULQFOXVLRQZLWKWKH

UHSRUWWKHUHSRUWVKDOOEHVXEPLWWHGQRWLQJDQGH[SODLQLQJWKHUHDVRQVIRUWKHPLVVLQJ

UHVXOWV7KHPLVVLQJGDWDVKDOOEHVXEPLWWHGDVVRRQDVSRVVLEOHLQDVXSSOHPHQWDU\

UHSRUW7KHUHSRUWVVKDOODOVRLQFOXGHWKHIROORZLQJDVXPPDU\GHVFULSWLRQRIWKH

UDGLRORJLFDOHQYLURQPHQWDOPRQLWRULQJSURJUDPDWOHDVWWZROHJLEOHPDSV FRYHULQJDOO

VDPSOLQJORFDWLRQVNH\HGWRDWDEOHJLYLQJGLVWDQFHVDQGGLUHFWLRQVIURPWKHPLGSRLQW

EHWZHHQWKHWZRUHDFWRUVWKHUHVXOWVRIOLFHQVHHSDUWLFLSDWLRQLQWKH,QWHUODERUDWRU\

&RPSDULVRQ3URJUDPDQGWKHFRUUHFWLYHDFWLRQEHLQJWDNHQLIWKHVSHFLILHGSURJUDPLV

QRWEHLQJSHUIRUPHGDVUHTXLUHGE\6HFWLRQUHDVRQVIRUQRWFRQGXFWLQJWKH

5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDPDVUHTXLUHGE\6HFWLRQDQG

GLVFXVVLRQRIDOOGHYLDWLRQVIURPWKHVDPSOLQJVFKHGXOHRI7DEOHGLVFXVVLRQRI

HQYLURQPHQWDOVDPSOHPHDVXUHPHQWVWKDWH[FHHGWKHUHSRUWLQJOHYHOVRI7DEOH

EXWDUHQRWWKHUHVXOWRIWKHSODQWHIIOXHQWVSXUVXDQWWR6HFWLRQDQGGLVFXVVLRQ

RIDOODQDO\VHVLQZKLFKWKH//'UHTXLUHGE\7DEOH ZDVQRWDFKLHYDEOH

  %$6(6 7KHUHSRUWLQJUHTXLUHPHQWIRUWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW

LVSURYLGHGWRHQVXUHFRPSOLDQFHZLWK7HFKQLFDO6SHFLILFDWLRQ7KLVUHTXLUHPHQW

ZDVUHORFDWHGIURPWKH2IIVLWH'RVH&DOFXODWLRQ0DQXDOWR)6$5&KDSWHU 

2QHPDSVKDOOFRYHUVWDWLRQVQHDUWKH6,7(%281'$5<DVHFRQGVKDOOLQFOXGHWKHPRUHGLVWDQW

VWDWLRQV

 5HY2/



&$//$:$<63

 5$',2$&7,9(())/8(175(/($6(5(3257 2'&0

5RXWLQH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVFRYHULQJWKHRSHUDWLRQRIWKHXQLWGXULQJ

WKHSUHYLRXVFDOHQGDU\HDUVKDOOEHVXEPLWWHGSULRUWR0D\RIHDFK\HDU

7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDVXPPDU\RIWKHTXDQWLWLHVRI

UDGLRDFWLYHOLTXLGDQGJDVHRXVHIIOXHQWVUHOHDVHGIURPWKHXQLWDVRXWOLQHGLQ5HJXODWRU\

  • XLGH0HDVXULQJ(YDOXDWLQJDQG5HSRUWLQJ5DGLRDFWLYLW\LQ6ROLG:DVWHVDQG

5HOHDVHV*DVHRXV(IIOXHQWVIURP/LJKW:DWHU&RROHG1XFOHDU3RZHU3ODQWV5HYLVLRQ

-XQHZLWKGDWDVXPPDUL]HGRQDTXDUWHUO\EDVLVLQDIRUPDWDFFHSWDEOHWRWKH

15&

7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDQDQQXDOVXPPDU\RIKRXUO\

PHWHRURORJLFDOGDWDFROOHFWHGRYHUWKHSUHYLRXVFDOHQGHU\HDU7KLVDQQXDOVXPPDU\

PD\EHHLWKHULQWKHIRUPRIDQKRXUE\KRXUOLVWLQJRQPDJQHWLFWDSHRIZLQGVSHHGZLQG

GLUHFWLRQDWPRVSKHULFVWDELOLW\DQGSUHFLSLWDWLRQ LIPHDVXUHG RULQWKHIRUPRIMRLQW

IUHTXHQF\GLVWULEXWLRQRIZLQGVSHHGZLQGGLUHFWLRQDQGDWPRVSKHULFVWDELOLW\ 

7KLVUHSRUWVKDOODOVRLQFOXGHDQDVVHVVPHQWRIWKHUDGLDWLRQGRVHVGXHWRWKHUDGLRDFWLYH

OLTXLGDQGJDVHRXVHIIOXHQWVUHOHDVHGIURPWKHXQLWGXULQJWKHSUHYLRXVFDOHQGDU\HDU

7KLVUHSRUWVKDOODOVRLQFOXGHDQDVVHVVPHQWRIWKHUDGLDWLRQGRVHVIURPUDGLRDFWLYH

OLTXLGDQGJDVHRXVHIIOXHQWVWR0(0%(562)7+(38%/,&GXHWRWKHLUDFWLYLWLHVLQVLGH

WKH6,7(%281'$5< )LJXUHVDQG GXULQJWKHUHSRUWSHULRGXVLQJ

KLVWRULFDODYHUDJHDWPRVSKHULFFRQGLWLRQV$OODVVXPSWLRQVXVHGLQPDNLQJWKHVH

DVVHVVPHQWVLHVSHFLILFDFWLYLW\H[SRVXUHWLPHDQGORFDWLRQVKDOOEHLQFOXGHGLQWKHVH

UHSRUWV7KHPHWHRURORJLFDOFRQGLWLRQVFRQFXUUHQWZLWKWKHWLPHRIUHOHDVHRIUDGLRDFWLYH

PDWHULDOVLQJDVHRXVHIIOXHQWVDVGHWHUPLQHGE\VDPSOLQJIUHTXHQF\DQGPHDVXUHPHQW

VKDOOEHXVHGIRUGHWHUPLQLQJWKHJDVHRXVSDWKZD\GRVHV$VVHVVPHQWRIUDGLDWLRQ

GRVHVVKDOOEHSHUIRUPHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH

2))6,7('26(&$/&8/$7,210$18$/ 2'&0 

7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDQDVVHVVPHQWRIUDGLDWLRQGRVHV

WRWKHPRVWOLNHO\H[SRVHG0(0%(52)7+(38%/,&IURPUHDFWRUUHOHDVHVDQGRWKHU

QHDUE\XUDQLXPIXHOF\FOHVRXUFHVLQFOXGLQJGRVHVIURPSULPDU\HIIOXHQWSDWKZD\VDQG

GLUHFWUDGLDWLRQIRUWKHSUHYLRXVFDOHQGDU\HDUWRVKRZFRQIRUPDQFHZLWK&)53DUW

(QYLURQPHQWDO5DGLDWLRQ3URWHFWLRQ6WDQGDUGVIRU1XFOHDU3RZHU2SHUDWLRQ

'RVHVWRWKH0(0%(52)7+(38%/,&VKDOOEHFDOFXODWHGXVLQJWKHPHWKRGRORJ\DQG

SDUDPHWHUVRIWKH2'&0

,QOLHXRIVXEPLVVLRQZLWKWKH$QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUW8QLRQ(OHFWULFKDVWKH

RSWLRQRIUHWDLQLQJWKLVVXPPDU\RIUHTXLUHGPHWHRURORJLFDOGDWDRQVLWHLQDILOHWKDWVKDOOEHSURYLGHG

WRWKH15&XSRQUHTXHVW

 5HY2/



&$//$:$<63

$VUHTXLUHGE\&)5 G  DQDQQXDOUHSRUWVKDOOEHVXEPLWWHGWRWKH

&RPPLVVLRQLQDFFRUGDQFHZLWK&)5VSHFLI\LQJWKHTXDQWLW\RIHDFKRIWKH

SULQFLSDOUDGLRQXFOLGHVUHOHDVHGWRWKHHQYLURQPHQWLQOLTXLGDQGLQJDVHRXVHIIOXHQWV

GXULQJWKHSUHYLRXVPRQWKVRIRSHUDWLRQ7KHUHSRUWPXVWEHVXEPLWWHGZLWKLQ

GD\VDIWHUWKHHQGRIWKHPRQWKPRQLWRULQJSHULRG

7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDOLVWDQGGHVFULSWLRQRIXQSODQQHG

UHOHDVHVIURPWKHVLWHWR815(675,&7('$5($6RIUDGLRDFWLYHPDWHULDOVLQJDVHRXV

DQGOLTXLGHIIOXHQWVPDGHGXULQJWKHUHSRUWLQJSHULRG

7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDVXPPDU\GHVFULSWLRQRIDQ\

PDMRUFKDQJHVPDGHGXULQJWKH\HDUWRDQ\/LTXLGRU*DVHRXV7UHDWPHQW6\VWHPV

SXUVXDQWWR2IIVLWH'RVH&DOFXODWLRQ0DQXDO,WVKDOODOVRLQFOXGHDOLVWLQJRIQHZ

ORFDWLRQVIRUGRVHFDOFXODWLRQVLGHQWLILHGE\WKH/DQG8VH&HQVXVSXUVXDQWWR6HFWLRQ



5HSRUWLQJUHTXLUHPHQWVIRUFKDQJHVWR6ROLG:DVWH7UHDWPHQW6\VWHPVDUHDGGUHVVHGLQ

$3$==352&(66&21752/352*5$0 3&3 

7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOODOVRLQFOXGHWKHIROORZLQJLQIRUPDWLRQ$Q

H[SODQDWLRQDVWRZK\WKHOLTXLGRUJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQZDVQRW

UHVWRUHGWRVHUYLFHZLWKLQWKHWLPHVSHFLILHGDQGDGHVFULSWLRQRIWKHHYHQWVOHDGLQJWKH

OLTXLGKROGXSWDQNVRUJDVVWRUDJHWDQNVH[FHHGLQJWKHOLPLWVRI6HFWLRQRU



7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDVSDUWRIRUVXEPLWWHGFRQFXUUHQW

ZLWKDFRPSOHWHDQGOHJLEOHFRS\RIDOOUHYLVLRQVRIWKH2'&0WKDWRFFXUUHGGXULQJWKH

\HDUSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQ

6ROLG:DVWHUHSRUWLQJLVDGGUHVVHGLQ$3$==352&(66&21752/

352*5$0 3&3 

  %$6(6 7KHUHSRUWLQJUHTXLUHPHQWIRUWKH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWLVSURYLGHGWR

HQVXUHFRPSOLDQFHZLWK7HFKQLFDO6SHFLILFDWLRQ7KLVUHTXLUHPHQWZDVUHORFDWHG

IURPWKH2IIVLWH'RVH&DOFXODWLRQ0DQXDOLPSOHPHQWLQJSURFHGXUHWR)6$5&KDSWHU

,QDGGLWLRQWRWKHDERYHUHSRUWLQJUHTXLUHPHQWDQDQQXDOUHSRUWVKDOODOVREHVXEPLWWHG

LQFRPSOLDQFHZLWKWKH+,6725080$;&HUWLILFDWHRI&RPSOLDQFH &R& $SSHQGL[$

6HFWLRQ

 5HY2/



&$//$:$<63 7$%/(5$',2$&7,9(/,48,':$67(6$03/,1*$1'

$1$/<6,6352*5$0

'LVFKDUJH0RQLWRU7DQNV

%DWFK5HOHDVH  

6$03/,1*)5(48(1&<  7<3(2) //' 

0,1,080$1$/<6,6 $&7,9,7< &LPO

)5(48(1&< $1$/<6,6 3ULRUWR(DFK%DWFK 3ULRUWR(DFK%DWFK 3ULQFLSDO*DPPD(PLWWHUV  (

, (

'LVVROYHGDQG(QWUDLQHG (

  • DVHV *DPPD(PLWWHUV 

+ (

0RQWKO\&RPSRVLWH  *URVV$OSKD (

4XDUWHUO\&RPSRVLWH  6U6U (

)H (

1L (

1S (

3X (

3X (

3X (

$P (

&P (

&P (



7$%/(127$7,216

 7KH//'LVGHILQHGIRUSXUSRVHVRIWKHVH5HTXLUHPHQWVDVWKHVPDOOHVWFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOLQDVDPSOHWKDW

ZLOO\LHOGDQHWFRXQWDERYHV\VWHPEDFNJURXQGWKDWZLOOEHGHWHFWHGZLWKSUREDELOLW\ZLWKRQO\SUREDELOLW\RIIDOVHO\

FRQFOXGLQJWKDWDEODQNREVHUYDWLRQUHSUHVHQWVDUHDOVLJQDO

)RUDSDUWLFXODUPHDVXUHPHQWV\VWHPZKLFKPD\LQFOXGHUDGLRFKHPLFDOVHSDUDWLRQ

6 E

//' 



([9[([<[H[S ( +/- W )

KHUH

//' WKHDSULRULORZHUOLPLWRIGHWHFWLRQ PLFUR&XULHVSHUXQLWPDVVRUYROXPH 

6E WKHVWDQGDUGGHYLDWLRQRIWKHEDFNJURXQGFRXQWLQJUDWHRURIWKHFRXQWLQJUDWHRIDEODQNVDPSOHDVDSSURSULDWH

FRXQWVSHUPLQXWH 

( WKHFRXQWLQJHIILFLHQF\ FRXQWVSHUGLVLQWHJUDWLRQ 

9 WKHVDPSOHVL]H XQLWVRIPDVVRUYROXPH 

( WKHQXPEHURIGLVLQWHJUDWLRQVSHUPLQXWHSHUPLFUR&XULH

< WKHIUDFWLRQDOUDGLRFKHPLFDO\LHOGZKHQDSSOLFDEOH

WKHUDGLRDFWLYHGHFD\FRQVWDQWIRUWKHSDUWLFXODUUDGLRQXFOLGH VHF DQG W WKHHODSVHGWLPHEHWZHHQWKHPLGSRLQWRIWKHVDPSOHFROOHFWLRQSHULRGDQGWKHWLPHRIFRXQWLQJ VHF )RUEDWFK

UHOHDVHVW 

7\SLFDOYDOXHVRI(9<DQGWVKRXOGEHXVHGLQWKHFDOFXODWLRQ

,WVKRXOGEHUHFRJQL]HGWKDWWKH//'LVGHILQHGDVDDSULRUL EHIRUHWKHIDFW OLPLWUHSUHVHQWLQJWKHFDSDELOLW\RIDPHDVXUHPHQW

V\VWHPDQGQRWDVDQDSRVWHULRUL DIWHUWKHIDFW OLPLWIRUDSDUWLFXODUPHDVXUHPHQW$QDO\VHVVKDOOEHSHUIRUPHGLQVXFKD

PDQQHUWKDWWKHVWDWHG//' VZLOOEHDFKLHYHGXQGHUURXWLQHFRQGLWLRQV

 $EDWFKUHOHDVHLVWKHGLVFKDUJHRIOLTXLGZDVWHVRIDGLVFUHWHYROXPH3ULRUWRVDPSOLQJIRUDQDO\VHVHDFKEDWFKVKDOOEH

LVRODWHGDQGWKHQWKRURXJKO\PL[HGE\DPHWKRGGHVFULEHGLQWKH2'&0WRDVVXUHUHSUHVHQWDWLYHVDPSOLQJ

 7KHSULQFLSDOJDPPDHPLWWHUVIRUZKLFKWKH//'FRQWURODSSOLHVLQFOXGHWKHIROORZLQJUDGLRQXFOLGHV0Q)H&R

&R=Q0R&V&V&HDQG&H7KLVOLVWGRHVQRWPHDQWKDWRQO\WKHVHQXFOLGHVDUHWREH

FRQVLGHUHG2WKHUJDPPDSHDNVWKDWDUHLGHQWLILDEOHWRJHWKHUZLWKWKRVHRIWKHDERYHQXFOLGHVVKDOODOVREHDQDO\]HGDQG

UHSRUWHGLQWKH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQLQWKHIRUPDWRXWOLQHGLQ

5HJXODWRU\*XLGH$SSHQGL[%5HYLVLRQ-XQH

5HY2/F



&$//$:$<63 7$%/( 6KHHW

 $FRPSRVLWHVDPSOHLVRQHLQZKLFKWKHTXDQWLW\RIOLTXLGVDPSOHGLVSURSRUWLRQDOWRWKHTXDQWLW\RIOLTXLGZDVWHGLVFKDUJHGDQG

LQZKLFKWKHPHWKRGRIVDPSOLQJHPSOR\HGUHVXOWVLQDVSHFLPHQWKDWLVUHSUHVHQWDWLYHRIWKHOLTXLGVUHOHDVHG3ULRUWRDQDO\VLV

DOOVDPSOHVWDNHQIRUWKHFRPSRVLWHVKDOOEHWKRURXJKO\PL[HGLQRUGHUIRUWKHFRPSRVLWHVDPSOHVWREHUHSUHVHQWDWLYHRIWKH

HIIOXHQWUHOHDVH

 'HOHWHG

 'HOHWHG

 6DPSOHVVKDOOEHUHSUHVHQWDWLYHRIWKHHIIOXHQWUHOHDVH

5HY2/F



&$//$:$<63 7$%/(5$',2$&7,9(/,48,'())/8(17021,725,1*

,167580(17$7,21 0,1,080&+$11(/6

,167580(17 )81&7,21$/ $&7,21

 5DGLRDFWLYLW\0RQLWRUV3URYLGLQJ$ODUPDQG

$XWRPDWLF7HUPLQDWLRQRI5HOHDVH D /LTXLG5DGZDVWH'LVFKDUJH0RQLWRU  

+%5(

E '(/(7('

 )ORZ5DWH0HDVXUHPHQW'HYLFHV D /LTXLG5DGZDVWH%ORZGRZQ  

'LVFKDUJH/LQH +%)(

E 6WHDP*HQHUDWRU%ORZGRZQ  

'LVFKDUJH/LQH %0)(

F &RROLQJ7RZHU%ORZGRZQDQG  

%\SDVV)ORZ7RWDOL]HU )<'%$ 

 'LVFKDUJH0RQLWRULQJ7DQNV '07 V /HYHO D '07$ +%/,  

E '07% +%/,  

$&7,2167$7(0(176

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHGE\WKH

0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKLV

SDWKZD\PD\FRQWLQXHSURYLGHGWKDWSULRUWRLQLWLDWLQJDUHOHDVH

D $WOHDVWWZRLQGHSHQGHQWVDPSOHVDUHDQDO\]HGLQDFFRUGDQFHZLWK

6HFWLRQDQG E $WOHDVWWZRWHFKQLFDOO\TXDOLILHGPHPEHUVRIWKHIDFLOLW\VWDII

LQGHSHQGHQWO\YHULI\WKHUHOHDVHUDWHFDOFXODWLRQVDQGGLVFKDUJHOLQH

YDOYLQJ

2WKHUZLVHVXVSHQGUHOHDVHRIUDGLRDFWLYHHIIOXHQWVYLDWKLVSDWKZD\

5HY2/F



&$//$:$<63 7$%/( 6KHHW

$&7,2167$7(0(176

$&7,21 '(/(7('

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHGE\WKH

0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKLV

SDWKZD\PD\FRQWLQXHSURYLGHGWKHYROXPHGLVFKDUJHGLVGHWHUPLQHGE\

DOWHUQDWHPHDQV

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHGE\WKH

0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKLV

SDWKZD\PD\FRQWLQXHSURYLGHGWKHIORZUDWHLVHVWLPDWHGDWOHDVWRQFHSHU

KRXUVGXULQJDFWXDOUHOHDVHV3XPSSHUIRUPDQFHFXUYHVJHQHUDWHGLQ

SODFHPD\EHXVHGWRHVWLPDWHIORZ

5HY2/F



&$//$:$<63 7$%/(5$',2$&7,9(/,48,'())/8(17021,725,1*

,167580(17$7,216859(,//$1&(5(48,5(0(176

&+$11(/

&+$11(/ 6285&( &+$11(/ 23(5$7,21$/

,167580(17 &+(&. &+(&. &$/,%5$7,21 7(67

 5DGLRDFWLYLW\0RQLWRUV

3URYLGLQJ$ODUPDQG

$XWRPDWLF7HUPLQDWLRQRI

5HOHDVH D /LTXLG5DGZDVWH ' 3 5 4

'LVFKDUJH0RQLWRU

+%5(

E '(/(7('

 )ORZ5DWH0HDVXUHPHQW

'HYLFHV D /LTXLG5DGZDVWH ' 1$ 5 1$

%ORZGRZQ'LVFKDUJH

/LQH +%)(

E '(/(7('

F &RROLQJ7RZHU ' 1$ 5 1$

%ORZGRZQDQG

%\SDVV)ORZ

7RWDOL]HU

)<'%$

 'LVFKDUJH0RQLWRULQJ

7DQNV '07 V /HYHO D '07$ +%/, 3ULRUWR 1$ 5 1$

UHOHDVH 

E '07% +%/, 3ULRUWR 1$ 5 1$

UHOHDVH 

5HY2/F



&$//$:$<63 7$%/( 6KHHW

7$%/(127$7,216

 7KH&+$11(/23(5$7,21$/7(67VKDOODOVRGHPRQVWUDWHWKDWDXWRPDWLFLVRODWLRQ

RIWKLVSDWKZD\DQGFRQWUROURRPDODUPDQQXQFLDWLRQRFFXUDVDSSURSULDWHLIDQ\RI

WKHIROORZLQJFRQGLWLRQVH[LVWV

D ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKH$ODUP7ULS6HWSRLQW LVRODWLRQDQG

DODUP RU E &LUFXLWIDLOXUH DODUPRQO\ RU F ,QVWUXPHQWLQGLFDWHVDGRZQVFDOHIDLOXUH DODUPRQO\ RU G ,QVWUXPHQWFRQWUROVQRWVHWLQRSHUDWHPRGH DODUPRQO\ 

 7KHLQLWLDO&+$11(/&$/,%5$7,21VKDOOEHSHUIRUPHGXVLQJRQHRUPRUHRIWKH

UHIHUHQFH JDVRUOLTXLGDQGVROLG VWDQGDUGVREWDLQHGIURPWKH1DWLRQDO,QVWLWXWHRI

6WDQGDUGVDQG7HFKQRORJ\ 1,67 RUXVLQJVWDQGDUGVWKDWKDYHEHHQREWDLQHGIURP

VXSSOLHUVWKDWSDUWLFLSDWHLQPHDVXUHPHQWDVVXUDQFHDFWLYLWLHVZLWK1,677KHVH

VWDQGDUGVVKDOOSHUPLWFDOLEUDWLQJWKHV\VWHPRYHULWVLQWHQGHGUDQJHRIHQHUJ\

PHDVXUHPHQWUDQJHDQGHVWDEOLVKPRQLWRUUHVSRQVHWRDVROLGFDOLEUDWLRQVRXUFH

)RUVXEVHTXHQW&+$11(/&$/,%5$7,211,67WUDFHDEOHVWDQGDUG JDVOLTXLGRU

VROLG PD\EHXVHGRUDJDVOLTXLGRUVROLGVRXUFHWKDWKDVEHHQFDOLEUDWHGE\

UHODWLQJLWWRHTXLSPHQWWKDWZDVSUHYLRXVO\ ZLWKLQGD\V FDOLEUDWHGE\WKHVDPH

JHRPHWU\DQGW\SHRIVRXUFHVWDQGDUGWUDFHDEOHWR1,67

 &+$11(/&+(&.VKDOOFRQVLVWRIYHULI\LQJLQGLFDWLRQRIIORZGXULQJSHULRGVRI

UHOHDVH&+$11(/&+(&.VKDOOEHPDGHDWOHDVWRQFHSHUKRXUVRQGD\VRQ

ZKLFKFRQWLQXRXVSHULRGLFRUEDWFKUHOHDVHVDUHPDGH

 &+$11(/&+(&.VKDOOFRQVLVWRIYHULI\LQJLQGLFDWLRQRIWDQNOHYHOGXULQJSHULRGVRI

UHOHDVH&+$11(/&+(&.VKDOOEHPDGHDWOHDVWRQFHSHUKRXUVRQGD\VRQ

ZKLFKFRQWLQXRXVSHULRGLFRUEDWFKUHOHDVHVDUHPDGHIURPWKH'07

5HY2/F



&$//$:$<63 7$%/(5$',2$&7,9(*$6(286())/8(1766$03/,1*

$1'$1$/<6,6352*5$0

:DVWH*DV'HFD\7DQN 6$03/,1*)5(48(1&<  0,1,080$1$/<6,6 7<3(2)$&7,9,7<$1$/<6,6 //' 

)5(48(1&< &LPO 3ULRUWRHDFKUHOHDVHJUDE 3ULRUWRHDFKWDQN 3ULQFLSDO*DPPD(PLWWHUV (

VDPSOH SDUWLFXODWHLRGLQHQREOHJDV 

&RQWLQXRXV 6HHIRRWQRWH

&RQWDLQPHQW3XUJHRU9HQW 6$03/,1*)5(48(1&<  0,1,080$1$/<6,6 7<3(2)$&7,9,7<$1$/<6,6 //' 

)5(48(1&< &LPO 3ULRUWRHDFKUHOHDVHJUDE 3ULRUWRHDFKUHOHDVH 3ULQFLSDO*DPPD(PLWWHUV (

VDPSOH SDUWLFXODWHLRGLQHQREOHJDV 

+ R[LGH (

&RQWLQXRXV 6HHIRRWQRWH

8QLW9HQW 

6$03/,1*)5(48(1&<  0,1,080$1$/<6,6 7<3(2)$&7,9,7<$1$/<6,6 //' 

)5(48(1&< &LPO 0RQWKO\JUDEVDPSOH   0RQWKO\   3ULQFLSDO*DPPD(PLWWHUV (

QREOHJDV  

+ R[LGH (

&RQWLQXRXV  :HHNO\  , (

, (

3ULQFLSDO*DPPD(PLWWHUV (

SDUWLFXODWHQXFOLGHVRQO\ 

0RQWKO\&RPSRVLWH *URVV$OSKD (

4XDUWHUO\&RPSRVLWH 6U6U1L)H (

5DGZDVWH%XLOGLQJ9HQW 6$03/,1*)5(48(1&<  0,1,080$1$/<6,6 7<3(2)$&7,9,7<$1$/<6,6 //' 

)5(48(1&< &LPO 0RQWKO\JUDEVDPSOH 0RQWKO\ 3ULQFLSDO*DPPD(PLWWHUV (

QREOHJDV  

&RQWLQXRXV  :HHNO\  , (

, (

3ULQFLSDO*DPPD(PLWWHUV (

SDUWLFXODWHQXFOLGHVRQO\ 

0RQWKO\&RPSRVLWH *URVV$OSKD (

4XDUWHUO\&RPSRVLWH 6U6U1L)H (

/DXQGU\'HFRQWDPLQDWLRQ)DFLOLW\'U\HU([KDXVW 6$03/,1*)5(48(1&<  0,1,080$1$/<6,6 7<3(2)$&7,9,7<$1$/<6,6 //' 

)5(48(1&< &LPO

&RQWLQXRXV  :HHNO\  3ULQFLSDO*DPPD(PLWWHUV (

SDUWLFXODWHQXFOLGHVRQO\ 

0RQWKO\  &RPSRVLWH *URVV$OSKD (

4XDUWHUO\  &RPSRVLWH 6U6U1L)H (

5HY2/



&$//$:$<63 7$%/( 6KHHW

&RQWDLQPHQW,/57'HSUHVVXUL]DWLRQ 3RVWWHVW9HQW 6$03/,1*)5(48(1&<  0,1,080$1$/<6,6 7<3(2)$&7,9,7<$1$/<6,6 //' 

)5(48(1&< &LPO 3ULRUWRHDFKUHOHDVHJUDE 3ULRUWRHDFKUHOHDVH 3ULQFLSDO*DPPD(PLWWHUV (

VDPSOH SDUWLFXODWHLRGLQHQREOHJDV 

+ R[LGH (

7$%/(127$7,216

 7KH//'LVGHILQHGIRUSXUSRVHVRIWKHVH5HTXLUHPHQWVDVWKHVPDOOHVWFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOLQDVDPSOHWKDW

ZLOO\LHOGDQHWFRXQWDERYHV\VWHPEDFNJURXQGWKDWZLOOEHGHWHFWHGZLWKSUREDELOLW\ZLWKRQO\SUREDELOLW\RIIDOVHO\

FRQFOXGLQJWKDWDEODQNREVHUYDWLRQUHSUHVHQWVDUHDOVLJQDO

)RUDSDUWLFXODUPHDVXUHPHQWV\VWHPZKLFKPD\LQFOXGHUDGLRFKHPLFDOVHSDUDWLRQ

6 E

//' 



([9[([<[H[S ( +/- W )

KHUH

//' WKHDSULRULORZHUOLPLWRIGHWHFWLRQ PLFUR&XULHVSHUXQLWPDVVRUYROXPH 

6E WKHVWDQGDUGGHYLDWLRQRIWKHEDFNJURXQGFRXQWLQJUDWHRURIWKHFRXQWLQJUDWHRIDEODQNVDPSOHDVDSSURSULDWH

FRXQWVSHUPLQXWH 

( WKHFRXQWLQJHIILFLHQF\ FRXQWVSHUGLVLQWHJUDWLRQ 

9 WKHVDPSOHVL]H XQLWVRIPDVVRUYROXPH 

( WKHQXPEHURIGLVLQWHJUDWLRQVSHUPLQXWHSHUPLFUR&XULH

< WKHIUDFWLRQDOUDGLRFKHPLFDO\LHOGZKHQDSSOLFDEOH

WKHUDGLRDFWLYHGHFD\FRQVWDQWIRUWKHSDUWLFXODUUDGLRQXFOLGH VHF DQG W WKHHODSVHGWLPHEHWZHHQWKHPLGSRLQWRIWKHVDPSOHFROOHFWLRQSHULRGDQGWKHWLPHRIFRXQWLQJ VHF 

7\SLFDOYDOXHVRI(9<DQGWVKRXOGEHXVHGLQWKHFDOFXODWLRQ

,WVKRXOGEHUHFRJQL]HGWKDWWKH//'LVGHILQHGDVDDSULRUL EHIRUHWKHIDFW OLPLWUHSUHVHQWLQJWKHFDSDELOLW\RID

PHDVXUHPHQWV\VWHPDQGQRWDVDQDSRVWHULRUL DIWHUWKHIDFW OLPLWIRUDSDUWLFXODUPHDVXUHPHQW$QDO\VHVVKDOOEH

SHUIRUPHGLQVXFKDPDQQHUWKDWWKHVWDWHG//' VZLOOEHDFKLHYHGXQGHUURXWLQHFRQGLWLRQV

 7KHSULQFLSDOJDPPDHPLWWHUVIRUZKLFKWKH//'5HTXLUHPHQWDSSOLHVLQFOXGHWKHIROORZLQJUDGLRQXFOLGHV.U.U;H

;HP;HDQG;HLQQREOHJDVUHOHDVHVDQG0Q)H&R&R=Q,&V&V&H

DQG&HLQLRGLQHDQGSDUWLFXODWHUHOHDVHV7KLVOLVWGRHVQRWPHDQWKDWRQO\WKHVHQXFOLGHVDUHWREHFRQVLGHUHG$Q\

QXFOLGHZKLFKLVLGHQWLILHGLQWKHVDPSOHDQGZKLFKLVDOVROLVWHGLQWKH2'&0JDVHRXVHIIOXHQWVGRVHIDFWRUWDEOHVVKDOOEH

DQDO\]HGDQGUHSRUWHGLQWKH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUW

 ,IWKH8QLW9HQWQREOHJDVPRQLWRU *75(% VKRZVWKDWWKHHIIOXHQWDFWLYLW\KDVLQFUHDVHG UHODWLYHWRWKHSUHWUDQVLHQW

DFWLYLW\ E\PRUHWKDQDIDFWRURIIROORZLQJDUHDFWRUVKXWGRZQVWDUWXSRUDWKHUPDOSRZHUFKDQJHZKLFKH[FHHGVRIWKH

UDWHGWKHUPDOSRZHUZLWKLQD KRXUSHULRGVDPSOHVVKDOOEHREWDLQHGDQGDQDO\]HGIRUQREOHJDVSDUWLFXODWHVDQGLRGLQHV

7KLVVDPSOLQJVKDOOFRQWLQXHWREHSHUIRUPHGDWOHDVWRQFHSHUKRXUVIRUDSHULRGRIGD\VRUXQWLOWKH8QLW9HQWQREOHJDV

PRQLWRUQRORQJHULQGLFDWHVDIDFWRURILQFUHDVHLQ8QLW9HQWQREOHJDVDFWLYLW\ZKLFKHYHUFRPHVILUVW

 7ULWLXPJUDEVDPSOHVVKDOOEHWDNHQDQGDQDO\]HGDWOHDVWRQFHSHUKRXUVZKHQWKHUHIXHOLQJFDQDOLVIORRGHG

 'HOHWHG

 7KHUDWLRRIWKHVDPSOHIORZUDWHWRWKHVDPSOHGVWUHDPIORZUDWHVKDOOEHNQRZQIRUWKHWLPHSHULRGFRYHUHGE\HDFKGRVHRU

GRVHUDWHFDOFXODWLRQPDGHLQDFFRUGDQFHZLWK6HFWLRQVDQG

 6DPSOHVVKDOOEHFKDQJHGDWOHDVWRQFHSHUGD\VDQGDQDO\VHVVKDOOEHFRPSOHWHGZLWKLQKRXUVDIWHUFKDQJLQJRU

UHPRYDOIURPWKHVDPSOHU:KHQVDPSOLQJLVSHUIRUPHGLQDFFRUGDQFHZLWKIRRWQRWH DERYH WKHQWKH//'PD\EH

LQFUHDVHGE\DIDFWRURI

 &RQWLQXRXVVDPSOLQJRIWKLVEDWFKUHOHDVHSDWKZD\LVLQFOXGHGLQWKHFRQWLQXRXVVDPSOLQJSHUIRUPHGIRUWKHFRUUHVSRQGLQJ

FRQWLQXRXVUHOHDVHSDWKZD\

 6DPSOHVVKDOOEHUHSUHVHQWDWLYHRIWKHHIIOXHQWUHOHDVH

 5HTXLUHGRQO\LI0Q)H&R&R=Q&V&V&HRU&HDUHGHWHFWHGLQSULQFLSOHJDPPD

HPLWWHUDQDO\VHV

5HY2/



&$//$:$<63 7$%/(5$',2$&7,9(*$6(286())/8(17021,725,1*

,167580(17$7,21 0,1,080

&+$11(/6

,167580(17 )81&7,21$/ $33/,&$%,/,7< $&7,21

 8QLW9HQW6\VWHP D 1REOH*DV$FWLYLW\  $WDOOWLPHV 

0RQLWRU3URYLGLQJ

$ODUP *75(

E ,RGLQH6DPSOHU  $WDOOWLPHV 

F 3DUWLFXODWH6DPSOHU  $WDOOWLPHV 

G 8QLW9HQW)ORZ5DWH  $WDOOWLPHV 

H 3DUWLFXODWHDQG  $WDOOWLPHV 

5DGLRLRGLQH6DPSOHU

)ORZ5DWH0RQLWRU

 &RQWDLQPHQW3XUJH6\VWHP D 1REOH*DV$FWLYLW\

0RQLWRU

 3URYLGLQJ$ODUPDQG  02'(6DQG 

$XWRPDWLF 

7HUPLQDWLRQRI

5HOHDVH *75(

  • 75(

 3URYLGLQJ$ODUP  'XULQJ&25( 

IXQFWLRQRQO\ $/7(5$7,216RU

PRYHPHQWRI

LUUDGLDWHGIXHOZLWKLQ

WKHFRQWDLQPHQW E ,RGLQH6DPSOHU  02'(6DQG 

GXULQJ&25(

$/7(5$7,216RU

PRYHPHQWRI

LUUDGLDWHGIXHOZLWKLQ

WKHFRQWDLQPHQW F 3DUWLFXODWH6DPSOHU  02'(6DQG 

GXULQJ&25(

$/7(5$7,216RU

PRYHPHQWRI

LUUDGLDWHGIXHOZLWKLQ

WKHFRQWDLQPHQW G &RQWDLQPHQW3XUJH 1$ 1$ 1$

9HQWLODWLRQ)ORZ5DWH 5HY2/



&$//$:$<63 7$%/( 6KHHW

H 3DUWLFXODWHDQG  02'(6DQG 

5DGLRLRGLQH6DPSOHU GXULQJ&25(

)ORZ5DWH0RQLWRU $/7(5$7,216RU

PRYHPHQWRI

LUUDGLDWHGIXHOZLWKLQ

WKHFRQWDLQPHQW

 5DGZDVWH%XLOGLQJ9HQW

6\VWHP D 1REOH*DV$FWLYLW\  $WDOOWLPHV 

0RQLWRU3URYLGLQJ$ODUP

DQG$XWRPDWLF

7HUPLQDWLRQRI5HOHDVH

  • +5(

E ,RGLQH6DPSOHU  $WDOOWLPHV 

F 3DUWLFXODWH6DPSOHU  $WDOOWLPHV 

G 5DGZDVWH%XLOGLQJ9HQW 1$ 1$ 1$

)ORZ5DWH H 3DUWLFXODWHDQG  $WDOOWLPHV 

5DGLRLRGLQH6DPSOHU

)ORZ5DWH0RQLWRU

 /DXQGU\'HFRQWDPLQDWLRQ

)DFLOL\'U\HU([KDXVW D 3DUWLFXODWH0RQLWRU  :KHQWKHGU\HUV 

DUHRSHUDWLQJ E 3DUWLFXODWH0RQLWRU)ORZ  :KHQWKHGU\HUV 

5DWH0HWHU DUHRSHUDWLQJ F 'U\HU([KDXVW 1$ 1$ 1$

9HQWLODWLRQ)ORZ5DWH

$&7,2167$7(0(176

$&7,21 :LWKWKHQXPEHURIORZUDQJHFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHG

E\WKH0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWWKHFRQWHQWVRI

WKHWDQN V PD\EHUHOHDVHGWRWKHHQYLURQPHQWIRUXSWRGD\V

SURYLGHGWKDWSULRUWRLQLWLDWLQJWKHUHOHDVH

D $WOHDVWWZRLQGHSHQGHQWVDPSOHVRIWKHWDQN VFRQWHQWVDUHDQDO\]HG

DQG E $WOHDVWWZRWHFKQLFDOO\TXDOLILHGPHPEHUVRIWKHIDFLOLW\VWDII

LQGHSHQGHQWO\YHULI\WKHUHOHDVHUDWHFDOFXODWLRQVDQGGLVFKDUJHYDOYH

OLQHXS

5HY2/



&$//$:$<63 7$%/( 6KHHW

2WKHUZLVHVXVSHQGUHOHDVHRIUDGLRDFWLYHHIIOXHQWVYLDWKLVSDWKZD\

$&7,21 'HOHWHG

$&7,21 :LWKWKHQXPEHURIORZUDQJHFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHG

E\WKH0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWHIIOXHQWUHOHDVHV

YLDWKLVSDWKZD\PD\FRQWLQXHIRUXSWRGD\VSURYLGHGJUDEVDPSOHV

DUHWDNHQDWOHDVWRQFHSHUKRXUVDQGWKHVHVDPSOHVDUHDQDO\]HGIRU

UDGLRDFWLYLW\ZLWKLQKRXUV

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/RQHOHVVWKDQUHTXLUHGE\

WKH0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWUHVWRUHWKHDIIHFWHG

FKDQQHOWR)81&7,21$/VWDWXVZLWKLQKRXUV,IWKHQRQIXQFWLRQDO

FKDQQHOLVQRWUHVWRUHGZLWKLQKRXUVRUZLWKQRFKDQQHOV)81&7,21$/

LPPHGLDWHO\VXVSHQGWKHUHOHDVHRIUDGLRDFWLYHHIIOXHQWVYLDWKLVSDWKZD\

&RQWDLQPHQWPLQLSXUJHVXSSO\DQGH[KDXVWYDOYHVWKDWKDYHEHHQ

FORVHGWRVDWLVI\WKLV$FWLRQPD\EHRSHQHGXQGHUDGPLQLVWUDWLYHFRQWUROV

SURYLGHGHLWKHU

D RQHFKDQQHOLV)81&7,21$/RU E WKHUHTXLUHPHQWVIRU7DEOH)XQFWLRQDDUHPHWDQGWKH

UHTXLUHPHQWVIRUPLQLPXPFKDQQHOV)81&7,21$/IRUWKH8QLW9HQW

1REOH*DV0RQLWRU *75( VSHFLILHGLQ7DEOH)XQFWLRQ

DUHPHW

7KHDGPLQLVWUDWLYHFRQWUROVFRQVLVWRIGHVLJQDWLQJDFRQWUROURRP

RSHUDWRUWRUDSLGO\FORVHWKHYDOYHVZKHQDQHHGIRUV\VWHPLVRODWLRQLV

LQGLFDWHG

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHGE\WKH

0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWDQGLIWKHFRQWDLQPHQW

HTXLSPHQWKDWFKLVRSHQWKHQLPPHGLDWHO\VXVSHQG&25(

$/7(5$7,216DQGPRYHPHQWRILUUDGLDWHGIXHODVVHPEOLHVZLWKLQ

FRQWDLQPHQW,IWKHFRQWDLQPHQWHTXLSPHQWKDWFKLVQRWRSHQWKHQ

VXVSHQGWKHUHOHDVHRIUDGLRDFWLYHHIIOXHQWVYLDWKLVSDWKZD\RU

LPPHGLDWHO\VXVSHQG&25($/7(5$7,216DQGPRYHPHQWRILUUDGLDWHG

IXHODVVHPEOLHVZLWKLQFRQWDLQPHQW

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHGE\WKH

0LQLPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKH

DIIHFWHGSDWKZD\PD\FRQWLQXHIRUXSWRGD\VSURYLGHGVDPSOHVDUH

FRQWLQXRXVO\FROOHFWHGZLWKDX[LOLDU\VDPSOLQJHTXLSPHQWDVUHTXLUHGLQ

7DEOH

5HY2/



&$//$:$<63 7$%/( 6KHHW

$&7,21 'HOHWHG

$&7,21 )ORZUDWHIRUWKLVV\VWHPVKDOOEHEDVHGRQIDQVWDWXVDQGRSHUDWLQJ

FXUYHVRUDFWXDOPHDVXUHPHQWV

$&7,21 )RUPLGUDQJHDQGKLJKUDQJHFKDQQHOVRQO\ZLWKWKHQXPEHURI

)81&7,21$/FKDQQHOVOHVVWKDQUHTXLUHGE\WKH0LQLPXP&KDQQHOV

)81&7,21$/UHTXLUHPHQWWDNHWKHDFWLRQVSHFLILHGLQ6HFWLRQ

$&7,21&

$&7,21 :LWKWKHQXPEHURIFKDQQHOV)81&7,21$/OHVVWKDQUHTXLUHGE\WKH

0LQXPXP&KDQQHOV)81&7,21$/UHTXLUHPHQWLPPHGLDWHO\VXVSHQG

WKHUHOHDVHRIUDGLRDFWLYLWHHIIOXHQWVYLDWKLVSDWKZD\

5HY2/



&$//$:$<63 7$%/(5$',2$&7,9(*$6(286())/8(17021,725,1*,167580(17$7,216859(,//$1&(

5(48,5(0(176 02'(6)25:+,&+

&+$11(/ 6285&( &+$11(/ &+$11(/23(5$7,21$/ 6859(,//$1&(

,167580(17 &+(&. &+(&. &$/,%5$7,21 7(67 ,65(48,5('

 8QLW9HQW6\VWHP D 1REOH*DV$FWLYLW\0RQLWRU ' 0 5 4 $WDOOWLPHV 3URYLGLQJ$ODUP *75(

E ,RGLQH6DPSOHU  : 1$ 1$ 1$ $WDOOWLPHV F 3DUWLFXODWH6DPSOHU  : 1$ 1$ 1$ $WDOOWLPHV G 8QLW9HQW)ORZ5DWH 1$ 1$ 5 4 $WDOOWLPHV H 3DUWLFXODWHDQG5DGLRLRGLQH ' 1$ 5 4 $WDOOWLPHV 6DPSOHU)ORZ5DWH0RQLWRU

 &RQWDLQPHQW3XUJH6\VWHP D 1REOH*DV$FWLYLW\0RQLWRU 1$ 3 1$ 1$ 02'(6DQGGXULQJ

3URYLGLQJ$ODUPDQG$XWRPDWLF &25($/7(5$7,216RU

7HUPLQDWLRQRI5HOHDVH *75( PRYHPHQWRILUUDGLDWHGIXHO

*75( ZLWKLQWKHFRQWDLQPHQW E ,RGLQH6DPSOHU  : 1$ 1$ 1$ 02'(6DQGGXULQJ

&25($/7(5$7,216RU

PRYHPHQWRILUUDGLDWHGIXHO

ZLWKLQWKHFRQWDLQPHQW F 3DUWLFXODWH6DPSOHU  : 1$ 1$ 1$ 02'(6DQGGXULQJ

&25($/7(5$7,216RU

PRYHPHQWRILUUDGLDWHGIXHO

ZLWKLQWKHFRQWDLQPHQW G &RQWDLQPHQW3XUJH9HQWLODWLRQ 1$ 1$ 5 1$ 02'(6DQGGXULQJ

)ORZ5DWH &25($/7(5$7,216RU

PRYHPHQWRILUUDGLDWHGIXHO

ZLWKLQWKHFRQWDLQPHQW 5HY2/



&$//$:$<63 7$%/( 6KHHW

02'(6)25:+,&+

&+$11(/ 6285&( &+$11(/ &+$11(/23(5$7,21$/ 6859(,//$1&(

,167580(17 &+(&. &+(&. &$/,%5$7,21 7(67 ,65(48,5('

H 3DUWLFXODWHDQG5DGLRLRGLQH ' 1$ 5 1$ 02'(6DQGGXULQJ

6DPSOHU)ORZ5DWH0RQLWRU &25($/7(5$7,216RU

PRYHPHQWRILUUDGLDWHGIXHO

ZLWKLQWKHFRQWDLQPHQW

 5DGZDVWH%XLOGLQJ9HQW6\VWHP D 1REOH*DV$FWLYLW\0RQLWRU '3 03 5 4 $WDOOWLPHV 3URYLGLQJ$ODUPDQG$XWRPDWLF

7HUPLQDWLRQRI5HOHDVH

  • +5(

E ,RGLQH6DPSOHU  : 1$ 1$ 1$ $WDOOWLPHV F 3DUWLFXODWH6DPSOHU  : 1$ 1$ 1$ $WDOOWLPHV G 5DGZDVWH%XLOGLQJ9HQW)ORZ 1$ 1$ 5 1$ $WDOOWLPHV 5DWH H 3DUWLFXODWHDQG5DGLRLRGLQH ' 1$ 5 1$ $WDOOWLPHV 6DPSOHU)ORZ5DWH0RQLWRU

 /DXQGU\'HFRQWDPLQDWLRQ)DFLOLW\

'U\HU([KDXVW D 3DUWLFXODWH0RQLWRU 1$ ' $ 4 :KHQWKHGU\HUVDUHRSHUDWLQJ E 3DUWLFXODWH0RQLWRU)ORZ5DWH ' 1$ $ 1$ :KHQWKHGU\HUVDUHRSHUDWLQJ 0HWHU F 'U\HU([KDXVW9HQWLODWLRQ)ORZ 1$ 1$ 5 1$ :KHQWKHGU\HUVDUHRSHUDWLQJ 5DWH 5HY2/



&$//$:$<63 7$%/( 6KHHW

 7KH&+$11(/23(5$7,21$/7(67VKDOODOVRGHPRQVWUDWHWKDW  7KHLQLWLDO&+$11(/&$/,%5$7,21VKDOOEHSHUIRUPHGXVLQJRQHRUPRUHRIWKHUHIHUHQFH JDV

DXWRPDWLFLVRODWLRQRIWKLVSDWKZD\DQGFRQWUROURRPDODUP RUOLTXLGDQGVROLG VWDQGDUGVFHUWLILHGE\WKH1DWLRQDO,QVWLWXWHRI6WDQGDUGV 7HFKQRORJ\ 1,67 

DQQXQFLDWLRQRFFXUDVDSSURSULDWHLIDQ\RIWKHIROORZLQJFRQGLWLRQV RUXVLQJVWDQGDUGVWKDWKDYHEHHQREWDLQHGIURPVXSSOLHUVWKDWSDUWLFLSDWHLQPHDVXUHPHQW

H[LVWV DVVXUDQFHDFWLYLWLHVZLWK1,677KHVHVWDQGDUGVVKDOOSHUPLWFDOLEUDWLQJWKHV\VWHPRYHULWV

LQWHQGHGUDQJHRIHQHUJ\PHDVXUHPHQWUDQJHDQGHVWDEOLVKPRQLWRUUHVSRQVHWRDVROLG

D ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKH$ODUP7ULS FDOLEUDWLRQVRXUFH)RUVXEVHTXHQW&+$11(/&$/,%5$7,211,67WUDFHDEOHVWDQGDUG JDV

6HWSRLQW LVRODWLRQDQGDODUP RU OLTXLGRUVROLG PD\EHXVHGRUDJDVOLTXLGRUVROLGVRXUFHWKDWKDVEHHQFDOLEUDWHGE\UHODWLQJLW

WRHTXLSPHQWWKDWZDVSUHYLRXVO\ ZLWKLQGD\V FDOLEUDWHGE\WKHVDPHJHRPHWU\DQGW\SHRI

E &LUFXLWIDLOXUH DODUPRQO\ RU VRXUFHVWDQGDUGWUDFHDEOHWR1,67

F ,QVWUXPHQWLQGLFDWHVDGRZQVFDOHIDLOXUH DODUPRQO\ RU  ,IIORZUDWHLVGHWHUPLQHGE\H[KDXVWIDQVWDWXVDQGIDQSHUIRUPDQFHFXUYHVWKHIROORZLQJ

VXUYHLOODQFHRSHUDWLRQVVKDOOEHSHUIRUPHGDWOHDVWRQFHSHUPRQWKV

G ,QVWUXPHQWFRQWUROVQRWVHWLQRSHUDWHPRGH DODUPRQO\ 

D 7KHVSHFLILFYHQWIORZVE\GLUHFWPHDVXUHPHQWRU

 7KH&+$11(/23(5$7,21$/7(67VKDOODOVRGHPRQVWUDWHWKDW

FRQWUROURRPDODUPDQQXQFLDWLRQRFFXUVLIDQ\RIWKHIROORZLQJ E 7KHGLIIHUHQWLDOSUHVVXUHDFURVVWKHH[KDXVWIDQDQGYHQWIORZHVWDEOLVKHGE\WKHIDQ V

FRQGLWLRQVH[LVWV IORZ3FXUYHRU D ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKH$ODUP6HWSRLQWRU F 7KHIDQPRWRUKRUVHSRZHUPHDVXUHGDQGYHQWIORZHVWDEOLVKHGE\WKHIDQ VIORZKRUVHSRZHU

FXUYH

E &LUFXLWIDLOXUHRU

 7KH&+$11(/23(5$7,21$/7(67VKDOODOVRGHPRQVWUDWHWKDWDXWRPDWLFLVRODWLRQRIWKLV

F ,QVWUXPHQWLQGLFDWHVDGRZQVFDOHIDLOXUHRU SDWKZD\DQGWKHVKXWGRZQRIWKHGU\HUVRFFXUDVDSSURSULDWHLIDQ\RIWKHIROORZLQJFRQGLWLRQV

H[LVWV

G ,QVWUXPHQWFRQWUROVQRWVHWLQRSHUDWHPRGH

D ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKH$ODUP7ULS6HWSRLQWRU

E 0RQLWRUIDLOXUH

5HY2/



&$//$:$<63 7$%/(5$',2/2*,&$/(19,5210(17$/021,725,1*352*5$0µ 180%(52)5(35(6(17$7,9(

(;32685(3$7+:$< 6$03/(6$1'6$03/( 6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( /2&$7,216  &2//(&7,21)5(48(1&< 2)$1$/<6,6

 )RUW\URXWLQHPRQLWRULQJVWDWLRQV 4XDUWHUO\ *DPPDGRVHIRUHDFKVDPSOH1HXWURQ

 'LUHFW5DGLDWLRQ HLWKHUZLWKWZRRUPRUHGRVLPHWHUVRU GRVHIRUWKHIRXUVDPSOHVPRQLWRULQJ

ZLWKRQHLQVWUXPHQWIRUPHDVXULQJDQG ,6)6,GLUHFWUDGLDWLRQ

UHFRUGLQJGRVHUDWHFRQWLQXRXVO\

SODFHGDVIROORZV

$QLQQHUULQJRIVL[WHHQVWDWLRQVRQH

LQHDFKPHWHRURORJLFDOVHFWRULQWKH

JHQHUDODUHDRIWKH6,7(%281'$5<

)RXURIWKHVWDWLRQVVKDOOEHSODFHGWR

PRQLWRUIRUJDPPDDQGQHXWURQGRVH

IURPWKH,6)6,

$QRXWHUULQJRIVWDWLRQVRQHLQHDFK

PHWHRURORJLFDOVHFWRULQWKHWRNP

WRPLOH UDQJHIURPWKHVLWHDQG (LJKWVWDWLRQVWREHSODFHGLQVSHFLDO

LQWHUHVWDUHDVVXFKDVSRSXODWLRQ

FHQWHUVQHDUE\UHVLGHQFHVVFKRROV

DQGLQRQHRUWZRDUHDVWRVHUYHDV

FRQWUROVWDWLRQV

 $LUERUQH5DGLRLRGLQHDQG3DUWLFXODWHV 6DPSOHVIURPILYHORFDWLRQV

7KUHHVDPSOHVIURPFORVHWRWKH6,7( &RQWLQXRXVVDPSOHURSHUDWLRQZLWK 5DGLRLRGLQH&DQLVWHU,DQDO\VLV

%281'$5<ORFDWLRQVLQGLIIHUHQW VDPSOHFROOHFWLRQZHHNO\RUPRUH IRUHDFKVDPSOH

VHFWRUVZLWKKLJKFDOFXODWHGDQQXDO IUHTXHQWO\LIUHTXLUHGE\GXVWORDGLQJ

DYHUDJHJURXQGOHYHO'4V *DPPDLVRWRSLFDQDO\VLV  IRUHDFK

VDPSOH

2QHVDPSOHIURPWKHYLFLQLW\RID

FRPPXQLW\ORFDWHGQHDUWKHSODQWZLWK

DKLJKFDOFXODWHGDQQXDODYHUDJH

JURXQGOHYHO'4

2QHVDPSOHIURPDORFDWLRQLQWKH

YLFLQLW\RI)XOWRQ02

5HY2/F



&$//$:$<63 7$%/( 6KHHW

180%(52)5(35(6(17$7,9(

(;32685(3$7+:$< 6$03/(6$1'6$03/( 6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( /2&$7,216  &2//(&7,21)5(48(1&< 2)$1$/<6,6

 :DWHUERUQH D 6XUIDFH   ULYHU 2QHVDPSOHXSVWUHDP &RPSRVLWHVDPSOHRYHUPRQWK *DPPD,VRWRSLF  DQGWULWLXP 2QHVDPSOHGRZQVWUHDP SHULRG   DQDO\VLVIRUHDFKVDPSOH

E '(/(7('

F *URXQGZDWHU QRQGULQNLQJZDWHU *URXQGZDWHUVDPSOHVIURPQRQ 4XDUWHUO\ *DPPDLVRWRSLF  DQGWULWLXP

GULQNLQJZDWHUVKDOORZDQGGHHS   DQDO\VHVIRUHDFKVDPSOH,I

PRQLWRULQJZHOOVORFDWHGDVIROORZV FRQWDPLQDWHGZLWKJDPPDHPLWWLQJ

QXFOLGHVRISODQWRULJLQDQDO\]HIRU

6DPSOHVIURPRQHGHHSZHOOORFDWHG +7'QXFOLGHV  

XSJUDGLHQWRIWKHSODQWSRZHUEORFN

DQGRQHGHHSZHOOORFDWHG

GRZQJUDGLHQWRIWKHVOXGJHODJRRQV

6DPSOHVIURPVL[VKDOORZZHOOVRU

JURXQGZDWHUVXPSVLQORFDWLRQV

VXLWDEOHWRPRQLWRUIRUVXEVXUIDFH

OHDNDJHIURPSRZHUEORFNVWUXFWXUHV

DQGFRPSRQHQWV

6DPSOHVIURPILYHVKDOORZZHOOV 

ORFDWHGDORQJWKHGLVFKDUJHSLSHOLQH

FRUULGRU

6DPSOHVIURPWKUHHVKDOORZZHOOV

QHDUWKHSURSHUW\ERXQGDU\ORFDWHGWR

PRQLWRUIRUPLJUDWLRQRIFRQWDPLQDWHG

JURXQGZDWHUIURPWKHGLVFKDUJH

SLSHOLQHWRWKHQHDUHVWSRWDEOHZDWHU

ZHOO



5HY2/F



&$//$:$<63 7$%/( 6KHHW

180%(52)5(35(6(17$7,9(

(;32685(3$7+:$< 6$03/(6$1'6$03/( 6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( /2&$7,216  &2//(&7,21)5(48(1&< 2)$1$/<6,6 G 'ULQNLQJ ULYHUZDWHU 2QHVDPSOHRIHDFKRIRQHWRWKUHHRI &RPSRVLWHVDPSOHRYHUZHHN ,DQDO\VLVRQHDFKFRPSRVLWH

WKHQHDUHVWZDWHUVXSSOLHVZLWKLQ SHULRG  ZKHQ,DQDO\VLVLV ZKHQWKHGRVHFDOFXODWHGIRUWKH

PLOHVGRZQVWUHDPWKDWFRXOGEH SHUIRUPHGPRQWKO\FRPSRVLWH FRQVXPSWLRQRIWKHZDWHULVJUHDWHU

DIIHFWHGE\LWVGLVFKDUJH RWKHUZLVH WKDQPUHPSHU\HDU  &RPSRVLWH

IRUJURVVEHWDDQGJDPPDLVRWRSLF

DQDO\VHV  PRQWKO\&RPSRVLWHIRU

WULWLXPDQDO\VLVTXDUWHUO\

2QHVDPSOHIURPDFRQWUROORFDWLRQ

$VWKHUHDUHQRGULQNLQJZDWHULQWDNHVZLWKLQPLOHVGRZQVWUHDPRIWKHGLVFKDUJHSRLQWWKHGULQNLQJZDWHUSDWKZD\LVFXUUHQWO\QRWLQFOXGHGDVSDUWRIWKH&DOODZD\3ODQW

5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP6KRXOGWKHDQQXDO/DQG8VH&HQVXVLGHQWLI\ZDWHULQWDNHVZLWKLQULYHUPLOHVGRZQVWUHDPRIWKHGLVFKDUJHSRLQWWKHSURJUDPZLOO

EHUHYLVHGWRLQFOXGHWKLVSDWKZD\

H 'ULQNLQJ SRWDEOHZHOOZDWHU 6DPSOHVRISRWDEOHZHOOZDWHU 4XDUWHUO\ *DPPDLVRWRSLF  DQGWULWLXP

DSSURSULDWHIRUPRQLWRULQJIRU DQDO\VHVIRUHDFKVDPSOH,I

UDGLRDFWLYLW\LQGULQNLQJZDWHUVXSSOLHV FRQWDPLQDWHGZLWKQXFOLGHVRISODQW

LQDUHDVPRVWOLNHO\WREHDIIHFWHGE\D

RULJLQDQDO\]HIRU+7'QXFOLGHV  

VSLOORUOHDN

7ZRVDPSOHVRISRWDEOHZHOOZDWHU

IURPWKHFRPPXQLW\RI3RUWODQG02

2QHVDPSOHRI&DOODZD\3ODQWSRWDEOH

ZDWHU

2QHVDPSOHRISRWDEOHZHOOZDWHUIURP

HDFKUHVLGHQWERUGHULQJSODQWSURSHUW\

DORQJ0XG&UHHNDQG/RJDQ&UHHN

I 6HGLPHQWIURPULYHUVKRUHOLQH 2QHVDPSOHIURPGRZQVWUHDPDUHD 6HPLDQQXDOO\ *DPPDLVRWRSLFDQDO\VLV  IRUHDFK

ZLWKH[LVWLQJRUSRWHQWLDOUHFUHDWLRQDO VDPSOH YDOXH 2QHVDPSOHIURPXSVWUHDPFRQWURO

ORFDWLRQ

5HY2/F



&$//$:$<63 7$%/( 6KHHW

180%(52)5(35(6(17$7,9(

(;32685(3$7+:$< 6$03/(6$1'6$03/( 6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( /2&$7,216  &2//(&7,21)5(48(1&< 2)$1$/<6,6 J 6KRUHOLQHVHGLPHQWIURPVOXGJH 6KRUHOLQHVHGLPHQWIURPHDFKRQVLWH $QQXDOO\ *DPPDLVRWRSLF  DQDO\VLVIRUHDFK

SRQGV VOXGJHSRQGPRVWOLNHO\WREHDIIHFWHG VDPSOH

2QHVDPSOHIURPHDFKLQVHUYLFH

VOXGJHSRQG

2QHVDPSOHIURPHDFKZHWODQGV

SRQG

 ,QJHVWLRQ D 0LON 6DPSOHVIURPPLONLQJDQLPDOVLQWKUHH 6HPLPRQWKO\ZKHQDQLPDOVDUHRQ *DPPDLVRWRSLF  DQG,DQDO\VHV

GLIIHUHQWPHWHRURORJLFDOVHFWRUVZLWKLQ SDVWXUHPRQWKO\DWRWKHUWLPHV IRUHDFKVDPSOH

 NP PLOH GLVWDQFHKDYLQJWKH

KLJKHVWGRVHSRWHQWLDO,IWKHUHDUH

QRQHWKHQRQHVDPSOHIURPPLONLQJ

DQLPDOVLQHDFKRIWKUHHGLIIHUHQW

PHWHRURORJLFDOVHFWRUVEHWZHHQWR

 NP WRPLOH GLVWDQFHZKHUH

GRVHVDUHFDOFXODWHGWREHJUHDWHU

WKDQPUHPSHU\U 

2QHVDPSOHIURPPLONLQJDQLPDOVDWD

FRQWUROORFDWLRQWRNP WR

PLOH GLVWDQFHDQGLQWKHOHDVW

SUHYDOHQWZLQGGLUHFWLRQ

'XHWRWKHODFNRIPLONLQJDQLPDOVZKLFKVDWLVI\WKHVHUHTXLUHPHQWVWKHPLONSDWKZD\LVFXUUHQWO\QRWLQFOXGHGDVSDUWRIWKH&DOODZD\3ODQW5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ

3URJUDP6KRXOGWKH$QQXDO/DQG8VH&HQVXVLGHQWLI\WKHH[LVWHQFHRIPLONLQJDQLPDOVLQORFDWLRQVZKLFKVDWLVI\WKHVHUHTXLUHPHQWVWKHQWKHSURJUDPZLOOEHUHYLVHGWRLQFOXGHWKLV

SDWKZD\

E )LVK 2QHVDPSOHRIHDFKFRPPHUFLDOO\DQG 6DPSOHLQVHDVRQRUVHPLDQQXDOO\LI *DPPDLVRWRSLFDQDO\VLV  RQHGLEOH

UHFUHDWLRQDOO\LPSRUWDQWVSHFLHVLQ WKH\DUHQRWVHDVRQDO SRUWLRQVIRUHDFKVDPSOH YLFLQLW\RISODQWGLVFKDUJHDUHD

2QHVDPSOHRIVDPHVSHFLHVLQDUHDV

QRWLQIOXHQFHGE\SODQWGLVFKDUJH

5HY2/F



&$//$:$<63 7$%/( 6KHHW

180%(52)5(35(6(17$7,9(

(;32685(3$7+:$< 6$03/(6$1'6$03/( 6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( /2&$7,216  &2//(&7,21)5(48(1&< 2)$1$/<6,6 F )RRG3URGXFWV 2QHVDPSOHRIHDFKSULQFLSDOFODVVRI $WWLPHRIKDUYHVW  *DPPDLVRWRSLFDQDO\VLV  RQHGLEOH

IRRGSURGXFWVIURPDQ\DUHDWKDWLV SRUWLRQIRUHDFKVDPSOH LUULJDWHGE\ZDWHULQZKLFKOLTXLGSODQW

ZDVWHVKDYHEHHQGLVFKDUJHG

$VWKHUHDUHQRDUHDVLUULJDWHGE\ZDWHULQZKLFKOLTXLGSODQWZDVWHVKDYHEHHQGLVFKDUJHGZLWKLQ PLOHVGRZQVWUHDPRIWKHGLVFKDUJHSRLQWWKLVVDPSOHW\SHLVQRWFXUUHQWO\

LQFOXGHGDVSDUWRIWKH&DOODZD\3ODQW5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP6KRXOGWKHDQQXDO/DQG8VH&HQVXVLGHQWLI\LUULJDWLRQZDWHULQWDNHVZLWKLQULYHUPLOHV

GRZQVWUHDPRIWKHGLVFKDUJHSRLQWWKHSURJUDPZLOOEHUHYLVHGWRLQFOXGHWKLVVDPSOHW\SH

6DPSOHVRIWKUHHGLIIHUHQWNLQGVRI 0RQWKO\ZKHQDYDLODEOH *DPPDLVRWRSLF  DQG,

EURDGOHDIYHJHWDWLRQLIDYDLODEOH DQDO\VHV JURZQQHDUHVWHDFKRIWZRGLIIHUHQW

RIIVLWHORFDWLRQVRIKLJKHVWSUHGLFWHG

DQQXDODYHUDJHJURXQGOHYHO'4LI

PLONVDPSOLQJLVQRWSHUIRUPHG 2QHVDPSOHRIHDFKRIWKHVLPLODU 0RQWKO\ZKHQDYDLODEOH *DPPDLVRWRSLF  DQG,

EURDGOHDIYHJHWDWLRQJURZQWR DQDO\VHV NP WRPLOH GLVWDQWLQWKHOHDVW

SUHYDOHQWZLQGGLUHFWLRQLIPLON

VDPSOLQJLVQRWSHUIRUPHG

 6RLO 6XUIDFHVRLOVDPSOHVVXLWDEOHIRU $QQXDOO\ *DPPDLVRWRSLF  DQDO\VLVIRUHDFK

PRQLWRULQJIRUJURXQGGHSRVLWLRQLI VDPSOH

UDGLRDFWLYLW\LQJDVHRXVHIIOXHQWVDV

IROORZV

)RXUHFRORJ\SORWVORFDWHGLQIRXU

TXDGUDQWVVXUURXQGLQJWKHSODQW

2QHFRQWUROORFDWLRQIURPDQDUHDQRW

OLNHO\WREHLQIOXHQFHGE\SODQW

JDVHRXVHIIOXHQWV

5HY2/F



&$//$:$<63 7$%/( 6KHHW

7$%/(127$7,216

 6SHFLILFSDUDPHWHUVRIGLVWDQFHDQGGLUHFWLRQVHFWRUIURPWKHFHQWHUOLQHRIRQHXQLWDQGDGGLWLRQDOGHVFULSWLRQZKHUHSHUWLQHQWVKDOOEHSURYLGHGIRUHDFKDQGHYHU\VDPSOHORFDWLRQ

LQ7DEOHLQDWDEOHDQGILJXUH V LQWKHDSSURSULDWHSODQWSURFHGXUHV'HYLDWLRQVDUHSHUPLWWHGIURPWKHUHTXLUHGVDPSOLQJVFKHGXOHLIVSHFLPHQVDUHXQREWDLQDEOHGXHWR

KD]DUGRXVFRQGLWLRQVVHDVRQDOXQDYDLODELOLW\PDOIXQFWLRQRIDXWRPDWLFVDPSOLQJHTXLSPHQWDQGRWKHUOHJLWLPDWHUHDVRQV,IVSHFLPHQVDUHXQREWDLQDEOHGXHWRVDPSOLQJ

HTXLSPHQWPDOIXQFWLRQHYHU\HIIRUWVKDOOEHPDGHWRFRPSOHWHFRUUHFWLYHDFWLRQSULRUWRWKHHQGRIWKHQH[WVDPSOLQJSHULRG$OOGHYLDWLRQVIURPWKHVDPSOLQJVFKHGXOHVKDOOEH

GRFXPHQWHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWSXUVXDQWWR7HFKQLFDO6SHFLILFDWLRQ

,WLVUHFRJQL]HGWKDWDWWLPHVLWPD\QRWEHSRVVLEOHRUSUDFWLFDEOHWRFRQWLQXHWRREWDLQVDPSOHVRIWKHPHGLDRIFKRLFHDWWKHPRVWGHVLUHGORFDWLRQRUWLPH,QWKHVHLQVWDQFHV

VXLWDEOHVSHFLILFDOWHUQDWLYHPHGLDDQGORFDWLRQVPD\EHFKRVHQIRUWKHSDUWLFXODUSDWKZD\LQTXHVWLRQDQGDSSURSULDWHVXEVWLWXWLRQVPDGHZLWKLQ GD\VLQWKH5DGLRORJLFDO

(QYLURQPHQWDO0RQLWRULQJ3URJUDP6XEPLWLQWKHQH[W$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWGRFXPHQWDWLRQIRUDFKDQJHLQFOXGLQJWKHUHYLVHGILJXUH V DQGWDEOH

UHIOHFWLQJWKHQHZORFDWLRQ V ZLWKVXSSRUWLQJLQIRUPDWLRQLGHQWLI\LQJWKHFDXVHRIWKHXQDYDLODELOLW\RIVDPSOHVIRUWKDWSDWKZD\DQGMXVWLI\LQJWKHVHOHFWLRQRIWKHQHZORFDWLRQ V IRU

REWDLQLQJVDPSOHV

7KHVHOHFWLRQRIVDPSOHORFDWLRQVVKRXOGFRQVLGHUDFFHVVLELOLW\RIVDPSOH VLWHDYDLODELOLW\RISRZHUZLQGGLUHFWLRQIUHTXHQF\VHFWRUSRSXODWLRQHTXLSPHQWVHFXULW\DQGWKH

SUHVHQFHRISRWHQWLDOO\DGYHUVHHQYLURQPHQWDOFRQGLWLRQV VXFKDVXQXVXDOO\GXVW\FRQGLWLRQVHWF 

 2QHRUPRUHLQVWUXPHQWVVXFKDVDSUHVVXUL]HGLRQFKDPEHUIRUPHDVXULQJDQGUHFRUGLQJGRVHUDWHFRQWLQXRXVO\PD\EHXVHGLQSODFHRIRULQDGGLWLRQWRLQWHJUDWLQJGRVLPHWHUV

)RUWKHSXUSRVHVRIWKLVWDEOHDWKHUPROXPLQHVFHQWGRVLPHWHU 7/' DQGRUDQRSWLFDOO\VWLPXODWHGOXPLQHVFHQWGRVLPHWHU 26/' DUHFRQVLGHUHGWREHRQHSKRVSKRUWZRRUPRUH

SKRVSKRUVLQDSDFNHWDUHFRQVLGHUHGDVWZRRUPRUHGRVLPHWHUV)LOPEDGJHVVKDOOQRWEHXVHGDVGRVLPHWHUVIRUPHDVXULQJGLUHFWUDGLDWLRQ7KHQXPEHURIGLUHFWUDGLDWLRQ

PRQLWRULQJVWDWLRQVPD\EHUHGXFHGDFFRUGLQJWRJHRJUDSKLFDOOLPLWDWLRQVHJDWDQRFHDQVLWHVRPHVHFWRUVZLOOEHRYHUZDWHUVRWKDWWKHQXPEHURIGRVLPHWHUVPD\EHUHGXFHG

DFFRUGLQJO\7KHIUHTXHQF\RIDQDO\VLVRUUHDGRXWIRU7/'V\VWHPVZLOOGHSHQGXSRQWKHFKDUDFWHULVWLFVRIWKHVSHFLILFV\VWHPXVHGDQGVKRXOGEHVHOHFWHGWRREWDLQRSWLPXPGRVH

LQIRUPDWLRQZLWKPLQLPDOIDGLQJ

 'HOHWHG

 'HOHWHG

 *DPPDLVRWRSLFDQDO\VLVPHDQVWKHLGHQWLILFDWLRQDQGTXDQWLILFDWLRQRIJDPPDHPLWWLQJUDGLRQXFOLGHVWKDWPD\EHDWWULEXWDEOHWRWKHHIIOXHQWVIURPWKHIDFLOLW\

 7KHXSVWUHDPVDPSOHVKDOOEHWDNHQDWDGLVWDQFHEH\RQGVLJQLILFDQWLQIOXHQFHRIWKHGLVFKDUJH7KHGRZQVWUHDPVDPSOHVKDOOEHWDNHQLQDQDUHDQHDUWKHGRZQVWUHDPHGJHRI

WKHPL[LQJ]RQH

 ,QWKLVSURJUDPFRPSRVLWHVDPSOHDOLTXRWVVKDOOEHFROOHFWHGDWWLPHLQWHUYDOVWKDWDUHYHU\VKRUW HJKRXUO\ UHODWLYHWRWKHFRPSRVLWLQJSHULRG HJPRQWKO\ LQRUGHUWRDVVXUH

REWDLQLQJDUHSUHVHQWDWLYHVDPSOH

 *URXQGZDWHUVDPSOHVVKDOOEHWDNHQZKHQWKLVVRXUFHLVWDSSHGIRUGULQNLQJRULUULJDWLRQSXUSRVHVLQDUHDVZKHUHWKHK\GUDXOLFJUDGLHQWRUUHFKDUJHSURSHUWLHVDUHVXLWDEOHIRU

FRQWDPLQDWLRQ

 7KHGRVHVKDOOEHFDOFXODWHGIRUWKHPD[LPXPRUJDQDQGDJHJURXSXVLQJWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0

 ,IKDUYHVWRFFXUVPRUHWKDQRQFHD\HDUVDPSOLQJVKDOOEHSHUIRUPHGGXULQJHDFKGLVFUHWHKDUYHVW,IKDUYHVWRFFXUVFRQWLQXRXVO\VDPSOLQJVKDOOEHPRQWKO\$WWHQWLRQVKDOOEH

SDLGWRLQFOXGLQJVDPSOHVRIWXEHURXVDQGURRWIRRGSURGXFWV

5HY2/F



&$//$:$<63 7$%/( 6KHHW

 ,QWKLVSURJUDP+7'QXFOLGHVDUHGHILQHGDV6U6U)H1L1S3X$P&PDQG&P

 ,QWKLVSURJUDPDVKDOORZZHOOLVGHILQHGDVDZHOOZKLFKH[WUDFWVJURXQGZDWHUIURPWKHYDGRVH]RQH$GHHSZHOOLVGHILQHGDVDZHOOZKLFKH[WUDFWVJURXQGZDWHUIURPWKHVDWXUDWHG

]RQH

5HY2/F



&$//$:$<63 7$%/(5(3257,1*/(9(/6)255$',2$&7,9,7<&21&(175$7,216,1(19,5210(17$/6$03/(6

5(3257,1*/(9(/6

),6+

$7(5 $,5%251(3$57,&8/$7( S&LNJ 0,/. )22'352'8&76 D

$1$/<6,6 S&LA 25*$6(6 S&LP ZHW E S&LA D S&LNJZHW E

+ 

0Q  

)H  

&R  

&R  

=Q  

=U1E 

,    

&V     

&V     

%D/D  

D 0XOWLSO\WKHYDOXHVLQWKLVWDEOHE\(WRFRQYHUWWRXQLWVRI&LPO

E 0XOWLSO\WKHYDOXHVLQWKLVWDEOHE\(WRFRQYHUWWRXQLWVRI&LJ

)RUGULQNLQJZDWHUVDPSOHV7KLVLV&)53DUWYDOXH)RUVXUIDFHZDWHUVDPSOHVDYDOXHRIS&LAPD\EHXVHG

7RWDODFWLYLW\SDUHQWSOXVGDXJKWHUDFWLYLW\

5HY2/



&$//$:$<63 7$%/('(7(&7,21&$3$%,/,7,7(6)25(19,5210(17$/6$03/($1$/<6,6

  

/2:(5/,0,72)'(7(&7,21 //'   

)22'

$,5%251( ),6+ 352'8&76 6(',0(17 685)$&( '5,1.,1* 3$57,&8/$7( S&LNJ 0,/. S&LNJ S&LNJ

$1$/<6,6  :$7(5 S&LA D  :$7(5 S&LA D 25*$6(6 S&LP ZHW E S&LA D ZHW E GU\ E

  • URVV%HWD   

+  

0Q   

)H   

&R   

=Q   

=U1E  

,    

&V       

&V       

%D/D   

D 0XOWLSO\WKHYDOXHVLQWKLVWDEOHE\(WRFRQYHUWWRXQLWVRI&LPO

E 0XOWLSO\WKHYDOXHVLQWKLVWDEOHE\(WRFRQYHUWWRXQLWVRI&LJ

7RWDODFWLYLW\SDUHQWSOXVGDXJKWHUDFWLYLW\

)RUVXUIDFHZDWHUVDPSOHVWKH//'RIJDPPDLVRWRSLFDQDO\VLVPD\EHXVHG

5HY2/



&$//$:$<63 7$%/( 6KHHW

7$%/(127$7,216

 7KLVOLVWGRHVQRWPHDQWKDWRQO\WKHVHQXFOLGHVDUHWREHFRQVLGHUHG2WKHUSHDNVWKDWDUHLGHQWLILDEOHWRJHWKHUZLWKWKRVHRIWKHOLVWHGQXFOLGHVVKDOODOVREHDQDO\]HGDQGUHSRUWHG

LQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW

 5HTXLUHGGHWHFWLRQFDSDELOLWLHVIRUWKHUPROXPLQHVFHQWGRVLPHWHUVXVHGIRUHQYLURQPHQWDOPHDVXUHPHQWVVKDOOEHLQDFFRUGDQFHZLWKWKHUHFRPPHQGDWLRQVRI5HJXODWRU\*XLGH

5HYLVLRQ-XO\

 7KH//'LVGHILQHGIRUSXUSRVHVRIWKHVH5HTXLUHPHQWVDVWKHVPDOOHVWFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOLQDVDPSOHWKDWZLOO\LHOGDQHWFRXQWDERYHV\VWHPEDFNJURXQGWKDW

ZLOOEHGHWHFWHGZLWKSUREDELOLW\ZLWKRQO\SUREDELOLW\RIIDOVHO\FRQFOXGLQJWKDWDEODQNREVHUYDWLRQUHSUHVHQWVDUHDOVLJQDO

)RUDSDUWLFXODUPHDVXUHPHQWV\VWHPZKLFKPD\LQFOXGHUDGLRFKHPLFDOVHSDUDWLRQ

6 E

//' 



([9[([<[H[S ( +/- W )

KHUH

//' WKHDSULRULORZHUOLPLWRIGHWHFWLRQ PLFUR&XULHVSHUXQLWPDVVRUYROXPH 

6E WKHVWDQGDUGGHYLDWLRQRIWKHEDFNJURXQGFRXQWLQJUDWHRURIWKHFRXQWLQJUDWHRIDEODQNVDPSOHDVDSSURSULDWH FRXQWVSHUPLQXWH 

( WKHFRXQWLQJHIILFLHQF\ FRXQWVSHUGLVLQWHJUDWLRQ 

9 WKHVDPSOHVL]H XQLWVRIPDVVRUYROXPH 

( WKHQXPEHURIGLVLQWHJUDWLRQVSHUPLQXWHSHUPLFUR&XULH

< WKHIUDFWLRQDOUDGLRFKHPLFDO\LHOGZKHQDSSOLFDEOH

WKHUDGLRDFWLYHGHFD\FRQVWDQWIRUWKHSDUWLFXODUUDGLRQXFOLGH VHF DQG W WKHHODSVHGWLPHEHWZHHQWKHHQGRIWKHVDPSOHFROOHFWLRQSHULRGDQGWKHWLPHRIFRXQWLQJ VHF 

7\SLFDOYDOXHVRI(9<DQGWVKRXOGEHXVHGLQWKHFDOFXODWLRQ

,WVKRXOGEHUHFRJQL]HGWKDWWKH//'LVGHILQHGDVDDSULRUL EHIRUHWKHIDFW OLPLWUHSUHVHQWLQJWKHFDSDELOLW\RIDPHDVXUHPHQWV\VWHPDQGQRWDVDQDSRVWHULRUL DIWHUWKHIDFW 

OLPLWIRUDSDUWLFXODUPHDVXUHPHQW$QDO\VHVVKDOOEHSHUIRUPHGLQVXFKDPDQQHUWKDWWKHVWDWHG//' VZLOOEHDFKLHYHGXQGHUURXWLQHFRQGLWLRQV

5HY2/