ML25174A241
| ML25174A241 | |
| Person / Time | |
|---|---|
| Site: | 07109288 |
| Issue date: | 07/17/2007 |
| From: | Olson D Columbiana Hi Tech |
| To: | Nelson R Office of Nuclear Material Safety and Safeguards |
| Shared Package | |
| ML25174A240 | List: |
| References | |
| USA/9288/B(U)F-96 | |
| Download: ML25174A241 (1) | |
Text
COLUMBIANA HI TECH LLC TNuclear Manufacturing Excellence July 17, 2007 Robert A. Nelson Chief, Spent Fuel Licensing Section Spent Fuel Project Office United States Nuclear Regulatory Commission Mail stop: O-13D13 Washington, DC 20555-0001 Cc:
Bill Brach, Director-SFPO Re:
License Amendment request for Certificate of Compliance USA/9288/B (U) F-96, revision 7, for the model no. CHT-OP-TU Package.
Dear Mr. Nelson,
Columbiana Hi Tech, LLC submits the proposed amendment request in the form of revised Safety Analysis Report (SAR) pages to allow the use of a sleeve or insert within the nominal 8" oxide vessel for transport of heterogeneous material. With the use of a sleeve or insert within the 8" vessel, the performance requirements for use of the package as prescribed in the SAR are satisfied.
This submittal supersedes the prior CHT submittals of March 9, 2007 and April 4, 2007 in their entirety.
Included are proposed revisions to section 1.2.3 and new appendices 6.8.2 and 6.8.3 which provide KENO V.a Calculations for support in the approval process for the sleeve or insert. Attachment A provides instructions for inserting the revised pages into revision 7 as supplemented, February 2006 of the SAR. Attachment B provides a listing of the changes made along with an explanation for the modification. Attachment C provides the changed and added pages.
If you have any questions concerning this request or this submittal, please feel free to contact CHT at your convenience.
Sincerey FOX PW DLMtJN Donald W. Olson President Columbiana Hi Tech 1802 Fairfax Road - Greensboro, North Carolina 27407 Phone 336/852-5679
Enclosures:
Attachment A: Instructions for updating revision 7 to revision 8.
Attachment B: Explanation of changes to CHT-OP-TU SAR revision 7.
Attachment C: Revision 8 changed pages.
ATTACHMENT A Instructions for Updatine Revision 7 to Revision 8:
Title page and Table of Contents:
Remove (Revision 7):
Add (Revision 8):
Title page Title page Table of Contents page iv, v, vi and vii Table of Contents pages iv, v, vi and vii Section 1:
Remove (Revision 7):
Add (Revision 8):
1-3 1-3 1-4 1-4 1-6 1-6 NONE ADD DWG. 9046816 TO APPENDIX 1.3.1 Section 2:
Remove (Revision 7):
- Add (Revision 8):
No changes Section 3:
Remove (Revision 7):
Add (Revision 8):
No changes Section 4:
Remove (Revision 7):
Add (Revision 8):
No changes Section 5:
Remove (Revision 7):
Add (Revision 8)
No changes Section 6:
Remove (Revision 7):
Add (Revision 8):
6-i 6-i 6-ii 6-ii None 6-iii 6-35 6-35 None 6-57 (Appendix 6.8.2 cover page)
None Appendix pages 6.8.2-1 thru 6.8.2-23 (inclusive)
None 6-58 (Appendix 6.8.3 cover page)
None Appendix pages 6.8.3-1 thru 6.8.3-8 (inclusive)
Section 7:
Remove (Revision 7):
Add (Revision 8):
No changes Section 8:
Remove (Revision 7):
Add (Revision 8):
No changes
ATTACHMENT B - Explanation of Changes Changed page Explanation of changes made Title page Updated revision status from "Revision 7 as supplemented, February 2006" to read: "Revision 8, June 2007" Table of Contents Modified page iv to add Appendices 6.8.2 and 6.8.3. Moved sections 7.3 and 7.4 of the Table of Contents page iv, v, vi, and from page iv to page v. Added tables 6.8.2-1, 6.8.2-2, 6.8.2-3, 6.8.2-4 and 6.8.2-5 to page vi. Moved figures vii 2.7-5, 2.7-6, 2.7-7, 2.7-8, 6-1 and 6-2 of the Table of Contents from page vi to page vii. Added figure 6.8.2-1 to page vii (Revision 8 change) 1-3 Inserted new paragraph (c) allowing for use of sleeve or insert. The existing paragraphs (c), (d), and (e) have now become paragraphs (d), (e), and (f). Foot note 1 has been removed from this page and moved to page 1-
- 4. (Revision 8 change) 1-4 Paragraphs (f), (g), (h), (i), and (j) are changed to (g), (h), (i), (j), and (k) due to the new paragraph inserted on page 1-3. Foot note 1 removed from page 1-3 has been added to page 1-4. (Revision 8 change) 1-6 Revised Page to add list of Drawings contained in Appendix 1.3.1 (Revision 8 change)
NONE Added Drawing 9046816 for optional Sleeve or Insert for use within Nominal 8" Oxide Vessel to Appendix 1.3.1 6-i Revised section 6 Table of Contents to add Appendices 6.8.2 and 6.8.3 (Revision 8 change) 6-ii Added Tables 6.8.2-1, 6.8.2-2, 6.8.2-3, 6.8.2-4 and 6.8.2-5 to List of Tables and Figures (Revision 8 change) 6iii (new page)
Moved Figures 6-8, 6-9, 6-10 and 6-11 from page 6ii to page 6iii. Added Figure 6.8.2-1 to List of Tables and Figures (Revision 8 change) 6-35 Revised page to add 6.8.2 and 6.8.3 to List of Appendices (Revision 8 change) 6-57 (new page)
Added to SAR (Revision 8 change) Appendix 6.8.2 (cover page) 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials.
Appendix 6.8.2 Added to SAR (Revision 8 change) Appendix pages 6.8.2-1 thru 6.8.2-23 (inclusive)
(new pages) 6-58 (new page)
Added to SAR (Revision 8 change) Appendix 6.8.3 (cover page) Selected Input Cases for 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials.
Appendix 6.8.3 Added to SAR (Revision 8 change) Appendix pages 6.8.3-1 thru 6.8.3-8 (inclusive)
(new pages)
ATTACHMENT C Revision 8 Changed Pages
SAFETY ANALYSIS REPORT FOR THE MODEL CHT-OP-TU (Revision 8, June 2007)
Submitted by:
Columbiana Hi Tech, LLC 1802 Fairfax Road Greensboro, NC 27407
(TABLE OF CONTENTS, CONTINUED)
- 6. 1.1 Normal Conditions of Transport (NCT)............................
6-2 6.1.2 Off-Normal Condition (ONC).......................................
6-3 6.1.3 Hypothetical Accident Condition (HAG)...........................
6-3 6.1.4 Discussion and Results Summary...................................
6-4 6.2 PACKAGE FUEL LOADING...............................................
6-4 6.3 MODEL SPECIFICATION..................................................
6-4 6.3.1 Description of Calculational Model.................................
6-4 6.4 CRITICALITY CALCULATION............................................
6-7 6.4.1 Calculation Method...................................................
6-7 6.4.2 Loading Optimization................................................
6-7 6.4.3 Criticality Results..............................
I....................... 6-8 6.5 CRITICAL BENCHMARK EXPERýIMENTS.............................
6-8 6.5.1 Benchmark Experiments and Applicability.........................
6-8 6.5.2 Details of the Benchmark Calculations.............................
6-9 6.5.3 Benchmark Results...................................................
6-9 6.6 SCALE43 INPUT DECKS - BOUJNDING CASES........................
6-9 6.6.1 Homogeneous Cases..................................................
6-9 6.6.2 Heterogeneous Cases................................................
6-19 6.6.3 Tilt Sensitivity Cases...............................................
6-28
6.7 REFERENCES
6-35 6.8 LIST OF APPEN7DICES.....................................................
6-35 6.8.1 Equivalent Water Density Calculation for Rigid Foam Insulation.............................................................
6-56 6.8.2 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials....................................................
6-57 6.8.3 Selected Input Cases for 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials.................................
6-58 SECTION SEVEN OPERATING PROCEDURES 7
OPERATING PROCEDURES.....................................................
7-1 7.1 LOADING PROCEDURES FOR A TYPE A SHIPMENT............... 7-1
- 7. 1.1 Oxide 'Vessel Inspection.............................................
7-1 7.1.2 Transport Unit Inspection............................................
7-1 7.1.3 Package Loading......................................................
7-2 7.2 LOADING PROCEDURES FOR A TYPE B SHIPMENT...............
7-3 7.2.1 Oxide Vessel Inspection............................................
7-3 7.2.2 Transport Unit Inspection............................................
7-31 7.2.3 Package Loading......................................................
7-4 CHT-OP-TU SAR Rev. 8 June 2007 iv
(TABLE OF CONTENTS, CONTINUED) 7.3 SECURING THE PACAKAGE TO THE CONVEYANCE.................. 7-5 7.3.1 ISO C ontainers.............................................................................
7-5 7.3.2 Tie Down Using Hold-down Bars...........................
75 7.3.3 Tie Down Using Strapping (Straps, Chain or Cable).................. 7-6 7.3.4 Tie Down Using Other Methods..................................................
7-7 7.4 UNLOADING PROCEDURES..............................................................
7-7 7.5 PREPARATION OF EMPTY TRANSPORT UNIT FOR TRANSPORT.................................................................... 7-7 7.6 LIST OF APPEND ICES..........................................................................
7-8 7.6.1 Leak Testing Specifications.......................................................
7-11 7.6.1-A Leak Test Specification CHT-LT-001................. I...... 7.6.1-2 7.6.1-B Leak Test Specification CHT-LT-003............................
7.6.1-3 SECTION EIGHT ACCEPTANCE TESTS AND MAINTENANCE PROGRAMS 8
ACCEPTANCE TESTS AND MAINTENANCE PROGRAMS..................... 8-1 8.1 A CCEPTAN CE TESTS...........................................................................
8-1 8.1.1 Visual Inspections of the Transport Unit.................
8-1 8.1.2 Visual Inspections of the Oxide Vessels......................................
8-1 8.1.3 L eakage T ests................................................................................
8-2 8.1.4 Com ponent Tests.......................................................................
8-2 8.2 MAINTENANCE PROGRAMS.........................................................
8-3 8.2.1 Maintenance Programs for the Transport Unit............................
8-3 8.2.2 Maintenance Programs for the Oxide Vessel..............................
8-4 8.3 LIST OF APPENDICES..................................................... 8-5 8.3.1 Leak Testing Specifications.....................................,.................. 8-6 8.3.1-A Leak Test Specification CHT-LT-002............................ 8.3.1-2 8.3.1-B Leak Test Specification CHT-LT-003 8.3.1-3 8.3.1-C Leak Test Specification CHT-LT-001.............
8.3.1-4 CHT-OP-TU SAP. Rev. 8 June 2007 v
LIST OF TABLES AND FIGURES Table 1-1 Allowable Content For Shipment Of Reprocessed Uranium Oxides............ 1-5 Table 1-2 Packaging And Payload Weights...................................................................
1-5 Table 2-1 Structural Evaluation Results.......................................................................
2-17 Table 2-2 Mechanical Properties Of Materials.......................
2-20 Table 3-1 Therm al Evaluation Results...........................................................................
3-9 Table 3-2 Thermal Properties Of Materials.......................
3-10 Table 3-3 Package D im ensions..................................................................................
3-11 Table 3-4 Applied Heat Loads And Initial Conditions..........................
3-11 Table 4-1 Package Total Maximum Radioactivity for Type B Level I Payload Specified in Table 1-1.......
- ............................... 4-7 Table 4-2 Mixture A2 Calculation for Type B Level I Payload Specified in T ab le 1-1....................................................................
........................... 4-8 Table 4-3 Package Total Maximum Radioactivity for Type B Level II Payload Specified in Table 1-1...................................................................................
4-9 Table 4-4 Mixture A2 Calculation for Type B Level II Payload Specified in T ab le 1-1 4-10 4-10 Table 6-1 Quantity Of Fissile Isotopes Evaluated......................
6-36 Table 6-2 Sum m ary O f R esults...................................................................................
6-37 Table 6-3 CHT-OP-TU Evaluated Fuel Loading.....................
. 6-39 Table 6-4 CHT-OP-TU Dimensions and Materials for NCT and ONC.........................
6-40 Table 6-4a CH-T-OP-TU Dimensions and Materials for HAC..................
6-41 Table 6-5 Package Regional D ensities...........................................................................
6-42 Table 6.8.2-1 Summary of Results for Sleeved 8" Oxide Vessels.......................................
6.8.2-7 Table 6.8.2-2 Sensitivity (Pellet Diameter, Lattice Pitch, and External Moderation) Studies for Sleeved 8" O xide V essels..............................................................................................
6.8.2-9 Table 6.8.2-3 Paramter Summary for Sensitivity (Pellet Diameter and Lattice Pitch) Studies for Sleeved 8" O xide V essels............................................................................................
6.8.2-13 Table 6.8.2-4 Tilt Model Methodology Bias Verification using SCALE 4.4a.................. 6.8.2-14 Table 6.8.2-5 Benchmark Cased used in the Validation of SCALE 4.3 and SCALE 4.4..6.8.2--4 Figure 2.7-1 Free Drop On Bottom.......................................
2-21 Figure 2.7-2 Free Drop On Corner...........................................................
I......
... 2-21 Figure 2.7-3 Free Drop On Edge................................................................................
2-22 Figute 217-4 Punctire Drop On Side...........................................................................
2-22 CHT-OP-TU SAR Rev. 8 June 2007 vi
(LIST OF TABLES AND FIGURES, CONTINUED)
Figure 2.7-5 Thermal Test Elevation View.............................
................2-23 Figure 2.7-6 Therm al Test Plan View............................
4.......................................... 2-23 Figure 2.7-7 Performance Test Measurements..........................................................
2-24 Figure 2.7-8 Oxide Vessel/Sleeve Shift.....................................................................
2-25 Figure 6-1 NCT Homogeneous: keff + 2a versus Mixture Density for Dry Powder 5.0 wt%/o Enriched Reprocessed Uranium Oxide in a n 8" diameter Oxide V essel.......................................................................................................
.6-43 Figure 6-2 NCT Heterogeneous: kff + 2a versus Lattice Pitch for Dry Spherical Pellets 5.0 wt% Enriched Reprocessed Uranium Oxide in a 7.5" diameter O xide V essel................................................................................................
6-4 4 Figure 6-3 Sensitivity of the Multiplication Factor to Variations in Foam Insulation D ensity...................... :.................................................................................. 6-45 Figure 6-4 ONC Homogeneous: Water-and Water/Poly-Moderated Homogeneous 5wt% Enriched Reprocessed Uranium Oxide Powder in an 8" Diameter O xide V essel................................................................................................
6-46 Figure 6-5 ONC Heterogeneous: Water-and Water/Poly-Moderated Heterogeneous 5wt% Enriched Spherical Pellets of Reprocessed Uranium Oxide in a 7.5" D iam eter Oxide V essel.........................................................................
6-47 Figure 6-6 Illustration of KENO Model of a single CHT-OP-TU for the Normal Condition (front corner rem oved)................................................................
6-48 Figure 6-7 Front and Side View of SCALE Model of a single CHT-OP-TU with Tilted Oxide Vessels for Hypothetical Accident Condition Sensitivity Study...... 6-49 Figure 6.7a Section View of SCALE Model of CHT-OP-TU for HAC (untilted M odel).....................................................................................................
6-50 Figure 6-7b Sensitivity of the HAC System to Oxide Vessel Tilt, up to the Maximum T ilt M easured...........................................................................................
6-51 Figure 6-8 Arrangement of Packages Analyzed for Hypothetical Accident Conditions (Shown at the bottom plane of the Oxide Vessels).......................................
6-52 Figure 6-9 Illustration of the Relative Multiplication Factors for Graphite-moderation versus Water-moderation (7.5" vessel, U0 2 Powder enriched to 5wt%)...........................................
6-53 Figure 6-10Kff as a Function of Interspersed Moderator (water) Density.................... 6-54 Figure 6-11 Illustration of the Relative Multiplication Factors for Various A rray s sizes...................................................................................................
6-55 Figure 6.8.2-1 SCALE 4.3 and SCALE 4.4a Comparions Results for 230 Benchmarks. 6.8.2-23 Figure 7-1 Minimum Tie Down Requirement Using Hold-down Bars........................... 7-9 Figure 7-2 Minimum Tie Down Requirement Using Strapping....................................
7-10 CHT-OP-TTJ SAR Rev. 8 June 2007 7i1
1.2.3 Contents of Packaging 1.2.3.1 Type and Form of Materials The CHT-OP-TU is used for the safe transport of fissile uranium compounds. The material must be a in a chemically stable solid form up to 400'F. The CHT-OP-TU can accommodate:
(a)
Homogeneous forms (powder or crystalline) may be shipped in any of the Oxide Vessels to a maximum allowable load per Oxide Vessel of 4021b (182.3kg);
(b)
Heterogeneous forms (pellets, mixtures of powder and pellets, solidified materials, or dewatered materials) may be shipped in the 7.5-and 6-inch Oxide Vessels to a maximum allowable load per Oxide Vessel of 4021b (182.3kg);
(c)
Heterogeneous forms (pellets only) may be shipped in the 8-inch Oxide Vessels to a maximum allowable load per Oxide Vessel of 4021b (182.3kg) provided that the vessel is sleeved or provided with an insert that reduces the cross sectional area to less than that of a 7.5-inch vessel; (d)
All material shall meet the following criteria:
(i)
The ratio of the non-fissile atoms to uranium atoms of the compound is not less than 2.0, (ii)
The theoretical density of the compound is less than that of uranium dioxide (10.96 g/cc),
(iii)
U-metal, U-metal alloys, or uranium hydrites (e.g., UH) may not be shipped in the CHT-OP-TU.
(e)
Type B Level II materials must be packaged in an Oxide Vessel that is engraved "Type B Level II." Type B Level I materials may be packaged in an Oxide Vessel that is engraved "Type B Level I" or "Type B Level II." Type A materials may be packaged in any of the Oxide Vessels. Type and Level are designated per Table 1-1.
(f)
The material may be packaged in plastic containers within the oxide vessel, provided that the total plastic per Oxide Vessel (four Oxide Vessels per package) does not exceed 1307g water-hydrogen equivalent (or 1000g. of Polyethylene)
CHT-OP-TU SAR Rev. 8 1-3
[
June 2007 I
provided the decay heat of the payload is essentially zero (less than 0.068 W/m3)1.
Payloads having a decay heat greater than zero may use non-hydrogen-bearing plastics such as TeflonTM (polytetrafluoroethylene or PTFE) or metallic containers.
(g)
The material may contain other plastic materials (mixed with the material either homogenously or heterogeneously), provided that the total plastic per Oxide Vessel, including any plastic containers used for packaging, does not exceed 1307g water-hydrogen equivalent (or 1000 g. of Polyethylene).
(h)
Excepting the allowance for plastic materials as limited by paragraphs f and g of this section, materials with a hydrogen density greater than water must be excluded.
(i)
The material may be mixed with other non-fissile materials with the exception of deuterium, tritium, and beryllium.
(j)
An unlimited quantity of graphite may be present within the Oxide Vessels.
(k)
The heat generation rate due to radiological decay of the material is less than 10.3 W/m'.
1.3 List of Appendices 1.3.1 CHT-OP-TU Engineering Drawings 1.3.2 Material Specifications for the CHT-OP-TU Packaging 1.3.2-A Closed-Cell Impact-Absorbing Foam Specification CHT-FOAM-001 1.3.2-B Paint Specifications 1 This value is based upon the A2 limit for 234U (the bounding heat-producing isotope when combined with the A2 limit). (0.16Ci) (2.83E-2 W/Ci) (10.96 g/cc) / (729 kg) = 0.068 W/m3).
CHT-OP-TU SAR Rev. 8 1-4 June 2007
Appendix 1.3.1 CHT-OP-TU Engineering Drawings (8 pages)
OXIDE PACKAGE TRANSPORT UNIT (CHT-OP-TU)
DWG. OP-TU-SAR, REV. 12 SHT. 1 OF 2 DWG. OP-TU-SAR, REV, 12 SHT. 2 OF 2 OXIDE PACKAGE TRANSPORT UNIT (CHT-OP-TU) OUTER LID ASSEMBLY DWG. OP-TU-A2, REV. 12 SHT. 1 OF 1 OXIDE PACKAGE TRANSPORT UNIT (CHT-OP-TU) BASE ASSEMBLY DWG. OP-TU-A3, REV. 12 SHT. 1 OF 1 OXIDE PACKAGE TRANSPORT UNIT (CHT-OP-TU) SLEEVE ASSEMBLY DWG. OP-TU-A4, REV. 12, SHT. 1 OF I OXIDE VESSELS, VARIOUS DIAMETERS (CHT-OP-TU)
DWG. OPTU-V-ABl, REV. 8 SHT. 1 OF 2 DWG. OPTU-V-AB1, REV. 8 SHT. 2 OF 2 OPTIONAL SLEEVE OR INSERT FOR USE WITHIN NOMINAL 8" OXIDE VESSEL DWG. 9046816, REV 001 SHT. 1 OF 1 CHT-OP-TU SAR Rev 8 1-6 June 2007
OFFICIAL USE ONLY - SECURITY-RELATED INFORMATION Figure Withheld per 10 CFR 2.390
SECTION 6 CRITICALITY EVALUATION TABLE OF CONTENTS 6
CRITICALITY EVALUATION.............................................................
6-1 6.1 DiscussioN AND RESULTS...........................................................................
6-1 6.1.1 Normal Conditions of Transport (NCT)......................................................
6-2 6.1.2 Off-Normal Condition (ONC)......................................................................
6-3 6.1.3 I-AC Discussion and Results...................................
6-3 6.1.4 Discussion and Results Summary................................................................
6-4 6.2 PACKAGE FUEL LOADING...........................................................................
6-4 6.3 MODEL SPECIFICATION................................................................................
6-4 6.3.1 Description of Calculational Model............................................................
6-4 6.4 CRIICAUTY CALCULATION........................................................................
6-7 6.4.1 Calculational Method........................................
6-7 6.4.2 Loading Optim ization..................................................................................
6-7 6.4.3 C riticality R esults.........................................................................................
6-8 6.5 CRITICAL BENCHmARK ExPERMEN rs.............................
6-0 6.5.1 Benchmark Experiments and Applicability.................................................
6-8 6.5.2 Details of the Benchmark Calculations.......................................................
6-9 6.5.3 B enchm ark R esults.......................................................................................
6-9 6.6 SCALE43 INPUT DECKS - BOUNDING CASES..............................................
6-9 6.6.1 Homogeneous Cases.........................................
6-9 6.6.2 H eterogeneous Cases.................................................................................
6-19 6.6.3 Tilt Sensitivity Cases.,*........................................
6-28
6.7 REFERENCES
6-35 6.8 List of A PPENDicEs...................................................................................
6-35 6.8.1 Water Equivalent Density Calculation...................................................
6-56 6.8.2 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials....6-57 6.8.3 Selected Input Cases for 8" Diameter Oxide Vessel Calculations with H eterogeneous M aterials............................................................................
6-58 CHT-OP-TU SAR Rev. 8 6-i June 2007
LIST OF TABLES AN-D FIGURES Table 6-1 Quantity of Fissile isotopes Evaluated.....................................................................
6-36 T able 6-2 Sum m ary of R esults...........................................................................................
....... G--) I Table 6-3 CHT-O P-TU Fuel Loading....................................................................................
6-39 Table 6-4 CHT-OP-TU Dimensions and Materials for NCT and ONC..............................
6-40 Table 6-4a CHT-OP-TU Dimensions and Materials for HAC................................................
6-41 Table 6-5 Package Regional Densities 6--4 Table 6.8.2-1 Summary of Results for Sleeved 8" Oxide Vessels.......................................
6.8.2-7 Table 6.8.2-2 Sensitivity (Pellet Diameter, Lattice Pitch, and External Moderation) Studies for Sleeved 8" O xide V essels..............................................................................................
6.8.2-9 Table 6.8.2-3 Paramter Summary for Sensitivity (Pellet Diameter and Lattice Pitch) Studies for Sleeved 8" O xide V essels............................................................................................
6.8.2-13 Table 6.8.2-4 Tilt Model Methodology Bias Verification using SCALE 4.4a................... 6.8.2-14 Table 6.8.2-5 Benchmark Cased used in the Validation of SCALE 4.3 and SCALE 4.4..6.8.2-14 Figure 6-1 NCT Homogeneous: k,- + 2G versus Mbxture Density for Dry Powder 5.0 wt%
Enriched Reprocessed Uranium Oxide in a 8" diameter Oxide Vessel...............
6-43 Figure 6-2 NCT Heterogeneous: kff + 2a versus Lattice Pitch for Dry Spherical Pellets 5.0 wtý%
Enriched Reprocessed Uranium Oxide in a 7-5" diameter Oxide Vessel.................... 6--4 Figure 6-3 Sensitivity of the Multiplication Factor to Variations in Foam Insulation Density 6-45 Figure 6-4 ONC Homogeneous: Water-and WaterfPoly-Moderated Homogeneous 5wt%
Enriched Reprocessed Uranium Oxide Powder in a 8" Diameter Oxide Vessel.............. 6-46 Figure 6-5 ONC Heterogeneous: Water-and Water/Poly-Moderated Heterogeneous_ 5ýY-1, Enriched Spherical Pellets of Reprocessed Uranium Oxide in a 7.5"Diameter Oxide Vessel
............................. I......
- ...................................................... 6-4 7 Figure 6-6 Iliustration of KENO Model of a single CHT-OP-TU for the Normal Condition (front corner removed)...........
...... 6-48 Figure 6-7 Front and Side View of SCALE Model of a single CHT-OP-TU with Tilted Oxide Vessels for Hypothetical Accident Conditions S ens itivity Study...........................
6-49 Figure 6-7a Section View of SCALE Model of CT{T-OP-TU for IHAC (umtilted model)....... 6-50 Figure 6-T7 Sensitivity of the HAC System to Oxide Vesýel Tilt, up to the Maximum Tilt M easu red.............................................................................................................
6......
1 CHT-OP-TU SAR Rev 8 6-f June 2007
(LIST OF TABLES AND FIGURES, CONTINUED)
Figure 6-8 Arrangement of Packages Analyzed for Hypothetical Accident Conditions (Shown at the bocttom plane of the Ozide Vessels)......................................
6-52 Figure 6-9 NCT, Graphite-moderation with Both Powder and Pellets (2" and 7.5" vessel, resp ectiv ely ).......................................................................................................................
6-53 Figze 6-10 i.
as a Function of Interspersed Moderator (water) Density.............................
6-54 Fig*.re 6-11 Illustration of the Relative Multiplication Factors for Various A-rrays Sizes....... 6-55 Figure 6.8.2-1 SCALE 4.3 and SCALE 4.4a Comparions Results for 230 Benchmarks.. 6.8.2-22 I
CHT-OP-TU SAR Rev. 8 June 2007 6-iii
UNIT 70 ARRAY 6
3"0.0 REPLICATE 3 1 5R0.3048 0.635 1
REPLICATE 0 1 5R0 10.16 1
UNIT 80 ARRAY 7
3*0.0 REPLICATE 3 1 5R0.3048 0.635 1
REPLICATE 0 1 5R0 10.16 1
UNIT 90 ARRAY 8
3*0.0 REPLICATE 3 1 5R0.3048 0.635 1
REPLICATE 0 1 5R0 10.16 1
UNIT 95 ARRAY 9
3*0.0 REPLICATE 3 1 5R0.3048 0.635 1
REPLICATE 0 1 5R0 10.16 1
GLOBAL UNIT 110 ARRAY 10 3*0.0 REPLICATE 5 1 6R30.48 1
END GEOM READ ARRAY ARA=1 NUX=1 NUY=1 NUZ=6 FILL 15 14 13 12 11 10 END FILL APA=2 NUX=1 NUY=1 END FILL ARA=3 NUX=1 N-Y=1 END FILL ARA=4 NUX=1 NUY=I END FILL ARA=5 NUX=2 NUY=2 ARA=6 NUX=2 NUY=2 ARA=7 NUX=2 NUY=2 ARA=8 NUX=2 NUY=2 ARA=9 NUX=2 NUY-2
'ARA=10 NUX=1 NUY=1 ARA=10 NUX=4 NUY=4 60 70 60 70 90 60 70 2Q16 95 95 95 95 95 60 95 FILL END ARRAY READ BOUNDS ALL=VOID END BOUNDS END DATA END NUZ=6 FILL 25 24 23 22 21 20 NUZ=6 FILL 35 34 33 32 31 30 NUZ=6 FILL 45 44 43 42 41 40 NTJZ=l FILL F6 END FILL NTJZ=1 FILL F7 END FILL NUZ=1 FILL F8 END FILL NUZ=1 FILL F9 END FILL NUZ=1 FILL F5 END FILL NUZ=1 FILL 60 END FILL NUZ=4 FILL 80 60 90 80 70 90 80 90 80 95 95 95 80 95 95 95 95 95 END 6.7 References
[6-1]
Montgomery, Rosemary A. Validation of SCALE-PC for Uranium Systems with Enrichments between 0. 72 and 10.0 wt% U-235, MTS985, Rev. 2, 7/30/0 1.
6.8 List of Appendices 6.8.1 Water Equivalent Density Calculation 6.8.2 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials 6.8.3 Selected Input Cases for Sleeved 8" Diameter Oxide Vessel Calculations For Heterogeneous Materials CHT-OP-TU SAR Rev 8 June 2007 6-35
Appendix 6.8.2 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials CHT-OP-TU SAR Rev. 8 June 2007 6-57
8" Diameter Oxide Vessel Calculations with Heterogeneous Materials Table 6-2 documents calculations for a nominal 7.5" diameter (allowed vessel diameters ranging from 7.3" to 7.7") oxide vessel which provides an acceptable means for the transport of heterogeneous materials. As documented in this Appendix, the use of a metallic sleeve or insert within an 8" diameter oxide vessel, to reduce the cross sectional area of the vessel to that of a 7.5" vessel, also provides an acceptable arrangement for packaging and transport of heterogeneous materials. As further presented in this Appendix, the use of a pellet carrier as described in AREVA drawing 02-9046816-001 effectively reduces the cross sectional area of an 8" diameter vessel to that of a 7.5" vessel and further permits the transport of pellets.
Pellets are placed on trays and positioned in the lower assembly of the pellet carrier..
Spacer Plates are used to separate multiple stacks of trays and further limit the pellet stack length. The pellet stack length is limited to minimize the potential for pellet crushing. Spacer Blocks are used in partially loaded carriers to prevent movement during transit. Once the lower assembly of the carrier is loaded, the upper assembly is positioned and secured with steel latches.
The steel latches clamp the carrier together to permit vertical lifting and loading into the oxide vessel. A Neoprene pad is positioned in the bottom of the oxide vessel to cushion the carrier.
An additional Neoprene pad is placed on top of the carrier prior to placement of the lid. This additional pad is sized to occupy the gap between the carrier and the oxide lid to prevent movement during transit.
The currently accepted pellet oxide vessel (7.5" nominal diameter) has an allowable cross sectional area of 270.02 to 300.43 cm2. The maximum cross sectional area of the 8" nominal vessel is 340.71 in2. The metal of the pellet carrier has nominal and minimum cross sectional areas of 42.79-cm2 and 40.98-cm2, respectively. Thus, the equivalent cross sectional area of the 8" diameter vessel with the pellet carrier is therefore 340.71 cm2 - 40.98 cm2 = 299.73 cm2 maximum. Therefore, the 8" vessel with the pellet carrier has an acceptable cross sectional area.
Thus, the previously established USL of 0.9473 remains valid and applicable.
The metal of the pellet carrier when reduced to a right circular cylinder has a minimum radius of 3.61-cm. The difference in the cross sectional areas for the 8" and 7.5" oxide vessels is 40.28-cm 2 which equates to a right circular cylinder of 3.58-cm. The importance of modeling the carrier as a right circular cylinder is discussed in the next paragraph.
The pellet carrier was not specifically modeled, instead it was represented as a right circular cylinder in an 8" oxide vessel and further as a sleeve contiguous to the 8" oxide vessel.
For conservatism, a 3.58-cm radius right circular cylinder was modeled at central and edge locations within the 8" vessel. The cylinders were further modeled with 1" gaps in the top and bottom of the vessel. These gaps were filled with pellets to demonstrate that configurations with pellets both within and exterior to the carrier are acceptable provided that sufficient cross sectional area is provided by the carrier.
The 8" sleeved model reduced the inner diameter to a nominal 7.5" oxide vessel (maximum diameter of 7.7"). The sleeve was also modeled with gaps at the top and bottom of the vessel. These gaps were also filled with pellets. Based on sensitivity calculations presented in Table 6.8.2-1, the sleeved vessel produced the highest k~f. As a further sensitivity study, a CHT-OP-TU SAR Rev. 8 6.8.2-1 June 2007
gap was added to the middle of the sleeve. With gaps in the top, middle, and bottom of the sleeve, the simulated pellet carrier metal volume is 239.8-im which is significantly lower than the minimum volume for the carrier to be verified as required in AREVA drawing 02-9046816-001 of 257-in3. The sleeved modeled with gaps demonstrates that a carrier with pellets modeled both within and exterior to the carrier with not exceed the USL.
Sensitivity studies were performed to demonstrate that the modeled pellet configuration (pellet diameter and lattice pitch which further defines the water-to-fuel volume ratio) and external moderation were optimized.
The calculations performed demonstrated that the optimized configuration with a sleeved 8" oxide vessel was identical to previous calculations performed using a 7.5" oxide vessel.
Additional sensitivity studies were performed for the oxide vessel tilt (associated with the HAC test results of the original design), the impact of Neoprene on system reactivity, and the applicability of the code bias and uncertainty. These studies demonstrated that the models and results were conservatively applied for the application and intended use of a pellet carrier in an 8" diameter oxide vessel.
Based on this discussion as further support by the sensitivity calculations provided in the following sections, the pellet carrier as defined in AREVA drawing 02-9046816-001 provides sufficient cross sectional area for use within an 8" diameter oxide vessel such that the USL of 0.9473 is not exceeded.
Based on this study, the pellet carrier orientation within the oxide vessel is not essential to the safety of the package. The carrier can become separated and pellets can migrate to surround the carrier and not exceed the USL. The only safety function of the pellet carrier is to take up space within the 8" diameter oxide vessel which is assured by maintaining the minimum wall thickness, length, and volume of the Aluminum structure as specified on the drawing.
The following sections summarize the calculations performed for the Hypothetical Accident Condition (HAC), Normal Condition of Transport (NCT) and Off Normal Conditions (ONC) for single and arrays of packages. Additional sections are provided for pellet diameter, lattice, and moderation sensitivity studies, effect of Neoprene, HAC tilt modeling bias, and applicability of the benchmarks to the application of the carrier use in an 8" diameter oxide vessel.
Hypothetical Accident Condition Model An initial calculation was performed with heterogeneous material in a nominal 8" diameter vessel for the HAC condition model as previously modeled. The results confirm that an 8" diameter vessel can not be used to accommodate heterogeneous materials as the calculated result, with bias and uncertainty, of 0.9824 exceeds the USL of 0.9473. Therefore, additional calculations were performed to justify the use of a sleeve or insert for an 8" vessel. Preliminary calculations further suggest that the sleeve must be metallic. For weight consideration, further calculations presented will involve the use of an Aluminum structure.
Calculations with a full length Aluminum sleeve that reduces an 8.2" maximum sleeve (with a minimum wall thickness of 0.22") diameter to a maximum 7.7" sleeve diameter were CHT-OP-TU SAR Rev. 8 6.8.2-2 June 2007
initially performed.
The calculated results assuming optimum moderated heterogeneous materials in a 4 x 4 x 3 + 2 damaged package array, with each vessel containing 1.0 kg of plastic with an additional modeling bias of 0.005'3 as prescribed in Section 6 is 0.9435 (keff + 2a + bias and uncertainty). If the sleeve is provided with a 1" gap at both the top and bottom of the vessel with heterogeneous material filling the gaps then the calculated result increases to 0.9458. A similar result was obtained for a sleeve with 1" gaps in the top, middle, and bottom of the vessel.
All results are within the USL of 0.9473.
Additional calculations were performed to indicate that the sleeve geometry can vary significantly. The cross sectional area of the nominal 8" vessel (assuming a maximum diameter of 8.2") is 340-cm2 while the nominal 7.5" vessel (assuming a maximum diameter of 7.7") is 300-cm2. Therefore, a metallic insert with a cross sectional area of at least 40-cm would allow transport of heterogeneous materials in the 8" vessel and remain within the USL. Assuming the sleeve is a right circular cylinder would equate to a. 3.58-cm radius rod.
Two additional calculations were performed with a central and edge located rod of 3.58-cm radius. Both were modeled with 1" gaps at the top and bottom of the vessel. The calculated results were 0.9036 for the centrally located rod and 0.9281 for the edge located rod. Both results are within the USL of 0.9473.
Based on the above results, a sleeve or insert that is placed contiguous to the vessel wall would lead to the a higher calculated result with placement centrally within the vessel leading to lower calculated results. Therefore, the use of a sleeve will bound calculations for the proposed pellet carrier. The results of the above calculations are summarized in Table 6.8.2-1.
Single Package Models The single package calculations for heterogeneous materials presented in Table 6-2 for the 7.5" vessels had results well below the established USL. To demonstrate the margin in the single package calculations, the most reactive single package HAC model for the 7.5" vessel was duplicated with an 8" vessel. The calculated result for the single package model using an un-sleeved 8" vessel is 0.8264, including bias and uncertainty.
A further calculation was performed for the ONC model also with an 8" vessel. The calculated results for this case is 0.8332.
Based on the above results, the single package models for ONC and HAC conditions are within the USL. The results of the above calculations are summarized in Table 6.8.21.
Normal Condition Models The normal condition package calculations for heterogeneous materials presented in Table 6-2 for the 7.5" vessels also had results well below the established USL. To demonstrate the margin in the normal condition calculations, the most reactive NCT model for the 7.5" vessel was duplicated with an 8" vessel. The calculated result for the NCT model using an un-sleeved 8" vessel is 0.655 1, including bias and uncertainty.
Based on the above results, the package model for NCT conditions is within the USL.
The calculation result is summarized in Table 6.8.2-1.
CHT-OP-TU SAR Rev. 8 6.8.2-3 June 2007
Pellet Diameter and Lattice Pitch Sensitivity A sensitivity study was originally performed in Section 6.1.3 over the full range of pellet diameters (modeled as spheres) and interstitial pellet moderation (sphere lattice pitch). The HAC model was optimized as indicated in Table 6-2 at a Water-to-Fuel Volume (WTFR) ratio of 3.0.
A review of the input case in Section 6.6.2 indicated that the optimum condition occurred for a spherical diameter of 1.0-cm in a triangular lattice pitch of 1.44525-cm corresponding to a WITFR of 3.0.
The sensitivity study was reproduced for an 8" vessel with an annular aluminum insert with 1" gaps in the insert at the top, middle, and bottom sections. Spherical diameters modeled consisted of 0.90-cm, 1.0-cm, and 1.1-cm with the triangular lattice pitch adjusted to achieve WTFR values of 2.0, 3.0, and 4.0. The results are summarized in Table 6.8.2-2. The optimum condition occurred at a spherical diameter of 1.0-cm with a triangular lattice pitch of 1.44525-cm which further corresponds to a WTFR value of 3.0. The results of this study involving an 8" vessel with insert is consistent with the results of the previous study for a 7.5" vessel. Table 6.8.2-3 further summarizes the parameters used in this study.
External Moderation Sensitivity A sensitivity study was performed in Section 6.4.2.2 over the full range of external moderation. Specific values for external moderation modeled ranged from void (water volume fraction vf=0.0) to full density water (vf=1.0) with the optimum condition occurring at a vf of 0.0001. The prior study used the HAC model with an optimized pellet lattice.
The sensitivity calculations were repeated with the external water density ranging from void to 0.1.
Since the reactivity dropped significantly after a water density of 0.1 the calculations were not continued to full water density.
Based on this study, a vf of 0.0001 produced the highest kef result. This result is consistent with the prior study presented in Section
- 6. Table 6.8.2-2 summarizes the results of this further sensitivity study.
Tilt Model Methodology Verification Section 6.3.1.2 evaluated the tilting or shifting of the oxide vessels as a result of HAC testing and correlated the maximum 4.6-degree tilt of the bottom sections of the oxide vessels to a reactivity increase of 0.0053. A redesigned package was further tested which resulted in a tilt of 0.65-degrees.
Based on the revised package design and test results the corresponding reactivity increase with an oxide vessel tilt of 0.65-degree was indicated to be negligible.
However, for conservatism, the reactivity bias of 0.0053 as determined in the original analysis was maintained for conservatism.
The input cases used to determine the tilt method bias were executed using the SCALE 4.4a code and 44 group cross section library. The results using the SCALE 4.4a code suggest that the bias is less than 0.0035 but in comparison to the original study is not statistically different from the original result. Table 6.8.2-4 summarizes the results of the tilt methodology bias determination using the SCALE 4.4a code.
Impact of Neoprene on the Calculated Results CHT-OP-TU SAR Rev. 8 6.8.2-4 June 2007
Neoprene (Neoprene Polychloroprene) is used to seat the insert containing pellets in the oxide vessel to ensure a snug fit. Neoprene was selected since it remains useful over a side range of temperatures and further resists burning. Neoprene has a chemical formula for the monomer unit of C4,-I 5C1 and a density of approximately 1.28 g/cm3. The presence of Chlorine indicates that Neoprene will act as a. slight neutron absorber rather than a moderator. A single calculation is used to further demonstrate the neutron absorption characteristic of Neoprene. For this case, the 1" gaps in the HAC model were replaced with Neoprene. The calculated result for the HAC model is 0.9037, including bias and uncertainty.
A further calculation replacing the water/polyethylene interstitial moderation within the pellet lattice with Neoprene for the HAC model reduced the calculated result to 0.4454.
Table 6.8.2-2 summarizes the result of this further sensitivity study.
Benchmark Applicability The criticality analysis documented in Section 6.0 used the SCALE 4.3 code with the 44 group cross section library. The code was installed and a series of verification cases were executed to determine that the code was executing correctly.
With successful installation a validation was performed using 230 selected benchmark experiments involving low enriched heterogeneous configurations. The code bias and uncertainty for heterogeneous oxides using the 44-group cross section library was determined to be -0.0001 and 0.0026, respectively, per Reference 6-1. These results were factored into the determination of the USL value of 0.9473.
The KENO calculated results plus 2a were then required to be less than or equal to the USL for application calculations involving heterogeneous materials.
The criticality analysis supplement documented in this appendix used the SCALE 4.4a code also with the 44 group cross section library. The code was installed on an AREVA platform and a series of verification cases were executed to determine that the code was executing correctly. This was necessary since the previous code and computer platform were not available.
With successful installation the validation was performed using the previously selected 230 benchmark experiments involving low enriched heterogeneous configurations. It should be noted that the validations for both code versions were performed by the same analyst.
The bias and uncertainty determined in this analysis appeared to be consistent and similar to the prior validation based on execution and analysis of the benchmark experiments on a qualified AREVA platform. Figure 6.8.2-1 shows a comparison of the results of the two codes in which the general over-prediction with SCALE 4.4a is observed for ktfr results greater than 1.0. A line with a slope of 1 was plotted with the data to show the general trend. The code bias and uncertainty for heterogeneous oxides using the 44-group cross section library using the method described in Reference 6-1 was determined to be 0.0006 and 0.0024, respectively, which results in a USL of 0.9476. In this case, the positive bias was neglected in the determination of the USL. For conservatism, the previously determined USL was applied to the demonstration of the insert acceptability for the 8" vessel. All KENO calculated results plus 2a were less than the USL.
Several cases used in the benchmark validation have Aluminum mixed with fissile material and further surrounding the fissile material. Several experiments have Aluminum in the CHT-OP-TU SAR Rev. 8 6.8.2-5 June 2007
form of.cruciform boxes or separator plates between fissile components with additional Aluminum present in reflecting materials.
37 experiments were modeled that contained Aluminum in the form of a cruciform box or plate. 38 experiments further had Aluminum in reflecting materials. Therefore, sufficient benchmark experiments exist to validated the use of Aluminum for application as an insert. It should be noted that the thermal neutron absorption cross section for Aluminum is very low (0.23 b) such that its purpose in this application is to limit the introduction and cross section of fissile and moderating materials to the oxide vessel.
A summary of the benchmark cases used in the criticality analysis in Section 6.0 using the SCALE 4.3 code are provided in Table 6.8.2-5 with a comparison to the SCALE 4.4a results used in the benchmark validation performed for the Appendix 6.8.2 calculations for the Aluminum inserts.
The benchmark experiments are characterized by fissile material, moderators, geometry and reflectors.
CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-6
Table 6.8.2 Summary of Results for Sleeved 8" Oxide Vessels HAC 50 4x4x3 + 2 8"
(8.2" max) no insert or sleeve Heterogeneous Yes 0.0001 Water/poly 3.0 0.9731
+
0.0053 0.0020 0.9824 0.9473
. 8" (8.2" max) 0.9334 HAC 50 4x4x3 + 2 Aluminum Heterogeneous Yes 0.0001 Water/poly 3.0
+
0.0024 0.9435 0.9473 Sleeved 0.0053 (7.7" max) 8" (8.2" max)
Aluminum 0.9365 HAC 50 4x4x3 + 2 Sleeved Heterogeneous Yes 0.0001 Water/poly 3.0
+
0.0020 0.9458 0.9473 (7.7" max),
0.0053 i-in gaps top/bottom 8"
(8.2" max)
Aluminum 0.9371 Sleeved 097 HAC 50 4x4x3 + 2 Sle v),
Heterogeneous Yes 0.0001 Water/poly 3.0
+
0.0017 0.9458 0.9473 0.0053 1-in gaps top/middle/
bottom CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-7
ps 0
3.58-cm 0.8937 HAC 50 4x4x3 + 2 centrally Heterogeneous Yes 0.0001 Water/poly 3.0
+
0.0023 0.9036 0.9473 located rod, 0.0053 1" gaps 0.9184 3.58-cm HAC 50 4x4x3 + 2 edge located Heterogeneous Yes 0.0001 Water/poly 3.0
+
0.0022 0.9281 0.9473 edge lcated0.0053 rod, I" gaps 0
8" ONC I
N/A No Insert Heterogeneous Yes 0.0001 Water/poly 3.0 0.8290 0.0021 0.8332 0.9473 8"
0.8175 HAC 1
N/A No Insert Heterogeneous Yes 0.0001 Water/poly 3.0
+
0.0018 0.8264 0.9473 0.0053 8"
Heterogeneous Max. Poly 0.651 NCT 125 5x5x5 No Insert (modeled as Yes 0.0001 Allowed2.3 0.6517 0.0017 0.6551 0.9470 hNo Insert lomogeneous)
Allowed CHT-OP-TU SAR Rev. 8 6.8.2-8 June 2007
Table 6.8.2 Sensitivity (Pellet Diameter, Lattice Pitch, and External Moderation) Studies for Sleeved 8" Oxide Vessels CHT-OP-TU SAR Rev. 8 6.8.2-9 June 2007
1,01p u ra om
-Oie o 1 1 _ý,
ý 0ul Fe S..
i
°,CN od.
Ior Ia HAC 50 4x4x3 + 2 Sleeved (7.7"),
Htrgnos Yes 0.000D Water/poly diamneter
+
0.00 17 0.94548 0.9473 1-in gaps spheres 0.0053 top/middle/bottom 1.44525-cm lattice) 3.0 8" Aluminum (1.0-cn 0,9371 HAC 50 4x4x3 + 2 Sleeved (7.7"),
Heterogeneous Yes 0.0001 Water/poly diameter
+
0.0017 0.9458 0.9473 1-in gaps spheres 0.0053 top/middle/bottom 1.44525-cm lattice) 4.0 8" Aluminum (1.0-cm 0.9237 HAC 50 4x4x3 + 2 Sleeved (7.7"),
Heterogeneous Yes 0.0001 Water/poly
+
0.0018 0.9326 0.9473 1 -in gaps spheres 0.0053 top/middle/bottom 1.556856-cm lattice) 2.0 8" Aluminum (1.1-cm 0.9229 HAC 50 4x4x3 + 2 Sleeved (7.7"),
Heterogeneous Yes 0.0001 Water/poly diameter
+
0.0019 0.9320 0.9473 l-in gaps spheres 0.0053 top/middle/bottom 1.44925-cm lattice) 3.0 8" Aluirninum (l.l-0c1 0.9333 FIAC 50 4x4x3 + 2 Sleeved (7.7"),
Heterogeneous Yes 0.0001 Water/poly diameter
+
0.0020 0.9426 0.9473 1-in gaps spheres 0.0053 top/iniddle/bottoin 1.589775-cm lattice)
CHT-OP-TU SAR Rev. 8 6.8.2-10 June 2007
CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-11
4x4x3 + 2 HAC 50 8" Aluminum Sleeved (7.7")4 1-in gaps top/middle/bottom Heterogeneous Yes 0.1 Water/poly 3.0 (1.0-cm diameter spheres 1.44525-cm lattice) 0.9235
+/-
0.0053 0.0019 1 0.9326 1 0.9473 3.0 8" Aluminumn Water/poly (1.0-cm 0.8944 1-in diameter HAC 50 4x4x3 + 2 Sleeved (7.7"),
Heterogeneous Yes 0.0001
+
0.0020 0.9037 0.9473 i-in gap middle Neoprene spheres 0.0053 top/bottom 1.44525-cm lattice) 3.0 8" Aluminum (1.0-cm 0.4383 HAC 50 4x4x3 + 2 Sleeved (7.7"),
Heterogeneous Yes 0.0001 Neoprene diameter
+
0.0009 0.9037 0.4454 I-in gaps spheres 0.0053 tophniddle/bottom 1.44525-cm I__
I Ilattice)
CHT-OP-TU SAR Rev. 8 6.8.2-12 June 2007
Table 6.8.2 Parainter Summary for Sensitivity (Pellet Diameter and Lattice Pitch) Studies for Sleeved 8" Oxide Vessels 0.90 1.18575 2.0 0.90 1.300725 3.0 0.90 1.401171 4.0 1.0 1.31750 2.0 1.0 1.44525 3.0 1.0 1.556856 4.0 1.1 1.44925 2.0 1.1 1.589775 3.0 1.1 1.712542 4.0 CHT-OP-TU SAR Rev. 8 6.8.2-13 June 2007
Table 6.8.2 Tilt Model Methodology Bias Verification using SCALE 4.4a 4.6 0.9448 0.0009 0.9466 0.0035 2.7 0.9436 0.0009 0.9454 0.0023 1.1 0.9414 0.0009 0.9432 0.0001 0.0 0.9413 0.0009 0.9431 0.0 Table 6.8.2 Benchmark Cases used in the Validation of SCALE 4.3 and SCALE 4.4a
%-.. AVU I U.0Yi40 U.UUI0 U.ý:U 1U.UU0V Metal Rods in H20 Sq. Pitch Array H20,Plexiglas CAA02 0.9928 0.0015 0.9892 0.0018 Metal Rods in H20 Sq. Pitch Array H20 CAA03 0.9924 0.0016 0.9926 0.0018 Metal Rods in H20 Sq. Pitch Array H20 CAA04 0.9933 0.0016 0.9910 0.0018 Metal Rods in H20 Sq. Pitch Array H20 CAA05 0.9899 0.0015 0.9898 0.0018 Metal Rods in H20 Sq. Pitch Array H20 CAA06 0.9982 0.0015 1.0000 0.0020 Metal Rods in H20 Sq. Pitch Array H20,Plexiglas,Pb CAA07 0.9933 0.0017 0.9911 0.0018 Metal Rods in H20 + SS Plate Sq. Pitch Array H20,Plexiglas,Pb CAA08 0.9991 0.0015 0.9984 0.0018 Metal Rods in H20 Sq. Pitch Array H20,Plexiglas,Pb CAA09 1.0019 0.0016 1.0007 0.0018 Metal Rods in H20 + SS Plate Sq. Pitch Array H20,Plexiglas,Pb CAA1O 1.0042 0.0017 1.0047 0.0019 Metal Rods in H20+1Boral Plate Sq. Pitch Array H20,Plexiglas,Pb CAA1l 0.9982 0.0016 0.9989 0.0019 Metal Rods in H20 + Cd Plate Sq. Pitch Array H20,Plexiglas,Pb CAAI2 0.9908 0.0014 0.9896 0.0017 Metal Rods in U02F2 Sq. Pitch Array Plexiglas/U02F2 CAA13 0.9940 0.0011 0.9962 0.0024 Metal Rods in U02F2 Sq. Pitch Array Plexiglas/U02F2 CAAI4 0.9913 0.0013 0.9929 0.0015 Metal Rods in U02F2 Sq. Pitch Array Plexiglas/U02F2 CAAI5 0.9925 0.0011 1 0.9960 0.0019 Metal Rods in U02F2 Sq. Pitch Array Plexiglas/U02F2 CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-14
CAA17 L 0 CAA17 U.00IL 0.0013 0.9936 0.9973 0.0018 Metal Rods in U02F2 Sq. Pitch Array rPexiglas/UUL2F Plexig~las/UO2F2 CAA18 0.9888 0.0011 0.9916
.0.0019 Metal Rods in U02F2 Sq. Pitch Array Plexiglas/U02F2 CABO1 1.0238 0.0013 1.0289 0.0017 Metal Annuli/Inserts in H20 Sq. Pitch Array H20-Wood CAB02 1.0155 0.0014 1.0220 0.0017 Metal Annuli/Inserts in H20 Sq. Pitch Array H20-Wood CAB03 1.0109 0.0013 1.0171 0.0015 Metal Annuli/Inserts inH20 Sq. Pitch Array H20-Wood CAB07 1.0158 0.0013 1.0287 0.0017 Metal Annuli/Inserts in H20 Tri. Pitch Array H20-Wood CABO8 1.0083 0.0015 1.0132 0.0016 Metal Annuli/Inserts in H20 Tri. Pitch Array H20-Wood CAB09 1.0076 0.0013 1.0174 0.0014 Metal Annuli/Inserts in H20 Tri. Pitch Array H20-Wood CAB1O 1.0106 0.0014 1.0194 0.0017 Metal Annuli in H20 Sq. Pitch Array H20-Wood CABI1 1.0125 0.0014 1.0172 0.0018 Metal Annuli in H20 Sq. Pitch Array H20-Wood CABI2 1.0088 0.0014 1.0163 0.0015 Metal Annuli in H20 Sq. Pitch Array H20-Wood CABI3 1.0189 0.0013 1.0234 0.0017 Metal Annuli in H20 Sq. Pitch Array H20-Wood CABI4 1.0033 0.0015 1.0290 0.0017 Metal Rods in H20 Sq. Pitch Array H20-Wood CAB15 0.9975 0.0015 1.0128 0.0018 Metal Rods in H20 Sq. Pitch Array H20-Wood CAB 16 0.9911 0.0014 1.0019 0.0016 Metal Rods in H20 Sq. Pitch Array H20-Wood CAE07 1.0064 0.0013 1.0054 0.0015 U02 Rods in H20 Sq. Pitch Array.
Boron-H20 CAE08 0.9991 0.0015 0.9984 0.0018 U02 Rods in H20 Sq. Pitch Array Boron-H20 CAE09 1.0086 0.0012 1.0065 0.0014 U02 Rods in H20 Tri. Pitch Array Boron-H20 CAE1O 1.0002 0.0014 1.0008 0.0018 U02 Rods in H20 Sq. Pitch Array H20,Pb CAEI 1 0.9993 0.0014 1.0012 0.0018 U02 Rods in H20 Sq. Pitch Array H20 CAE12 0.9999 0.0013 1.0010 0.0016 U02 Rods in H20 Tri. Pitch Array H20,Pb CAEI3 0.9967 0.0015 0.9960 0.0016 U02 Rods in H20 Sq. Pitch Array H20 CRITOI 1.0033 0.0007 1.0016 0.0010 Uranium Metal Cylinder None CRIT02 0.9957 0.0008 0.9966 0.0011 Uranium Metal Cylinder None SAXU52 0.9993 0.0030 0.9972 0.0017 U02 Rods in H20 Cylinder Water,(Zr)
SAXU56 0.9965 0.0011 0.9962 0.0011 U02 Rods in H20 Cylinder Water,(SS)
SAXU792 1.0002 0.0011 0.9981 0.0014 U02 Rods in H20 Cylinder Water,(SS)
W3269A 0.9985 0.0011 0.9956 0.0013 U02 Rods inH20 Cylinder Water,(SS)
W3269SL2 1.0050 0.0011 1.0026 0.0012 U02 Rods in H20 Cylinder Water,(Zr)
W3269W2 1.0005 0.0011 0.9994 0.0012 U02 Rods in H20 Cylinder Water,(Zr)
CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-15
0 ULLVI U.y)/
U.UU I-1 U.Yy UIv u-vp-t ANS33ALI 1.0039 0.0019 1.0100 0.0018 H20 filled Al cruciform boxes Sq. Pitch Array Water, (Al)
ANS33AL2 1.0111 0.0019 1.0124 0.0018 H20 filled Al cruciform boxes Sq. Pitch Array Water, (Al)
ANS33AL3 1.0019 0.0018 1.0057 0.0019 H20 filled Al cruciform boxes Sq. Pitch Array Water, (Al)
ANS33EB1 0.9941 0.0018 0.9921 0.0018 Polyethylene balls in Al cruciform boxes Sq. Pitch Array Water, (AI)
ANS33EB2 1.0102 0.0019 1.0061 0.0018 Polyethylene balls in Al cruciform boxes Sq. Pitch Array Water, (AI)
ANS33EPI 0.9970 0.0017 0.9992 0.0016 Polyethylene powder in Al cruciform boxes Sq. Pitch Array Water, (Al)
ANS33EP2 0.9973 0.0016 0.9992 0.0020 Polyethylene powder in Al cruciform boxes Sq. Pitch Array Water, (Al)
ANS33SLG 0.9993 0.0016 0.9977 0.0017 H20 filled Al cruciform boxes Sq. Pitch Array Water ANS33STY 0.9892 0.0017 0.9898 0.0017 Expanded polystyrene in Al cruciform box Sq. Pitch Array Water, (Al)
B1645SO1 0.9968 0.0012 0.9979 0.0015 Al separator plates, borated H20 Sq. Pitch Array H20, Boron, Carbonsteel, Al B1645SO2 1.0019 0.0012 1.0016 0.0014 Al separator plates, borated H20 Sq. Pitch Array H20, Boron, Carbonsteel, Al BWI231BI 0.9929 0.0014 0.9949 0.0014 Borated H20 Sq. Pitch Array Water, Al, Boron BW1231B2 0.9982 0.0010 0.9954 0.0012 Borated H20 Sq. Pitch Array Water, Al, Boron BW1273M 0.9978 0.0014 0.9942 0.0013 Borated H20 Sq. Pitch Array Water, Al, Boron BW1484A1 0.9954 0.0021 0.9965 0.0018 Borated Al absorber plates, borated H20 Sq. Pitch Array Water, Al, Boron BW1484A2 0.9951 0.0018 0.9953 0.0016 Borated Al absorber plates, borated H20 Sq. Pitch Array Water, Al, Boron BW1484BI 1.0006 0.0012 0.9964 0.0015 Borated H20 Sq. Pitch Array Water, Al, Boron BW1484B2 0.9944 0.0013 0.9943 0.0015 Borated H20 Sq. Pitch Array Water, Al, Boron BW1484B3 0.9943 0.0017 0.9937 0.0014 B4C rods Sq. Pitch Array Water BW1484C1 0.9949 0.0014 0.9911 0.0015 B4C rods Sq. Pitch Array Water BW1484C2 0.9918 0.0014 0.9953 0.0018 Stainless steel absorber plates, borated H20 Sq. Pitch Array Water, Al, Boron BW1484S2 0.9988 0.0015 0.9938 0.0016 Stainless steel absorber plates, borated H20 Sq. Pitch Array Water, Al, Boron BW1484SL 0.9927 0.0017 0.9998 0.0016 H20 filled Al cruciform boxes Sq. Pitch Array Water, (Al)
Water, Al, Boron, BW1645S1 0.9972 0.0013 0.9958 0.0015 Al separator plates, borated H20 Sq. Pitch Array Carbonsteel Water, Al, Boron, BW1645S2 1.0026 0.0012 0.9925 0.0016 Al separator plates, borated H20 Sq. Pitch Array WarBorone Carbonsteel BW1645TI 1.0023
.0.0023 0.9985 0.0015 Hexagonal lattice, Al separator plates, borated H20 Tri. Pitch Array Water, At, Boron, Carbonsteel BW1645T2 1.0089 0.0021 1.0017 0.0013 Hexagonal lattice, Al separator plates, borated H20 Tri. Pitch Array Water,Al, Boron, Crbontee CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-16
BW1645T3 1.0018 0.0027 1.0027 10.0016 Hexagonal lattice, Al separator plates, borated H20 Tri. Pitch Array ater, Al, Boron, Carbonsteel Water, Al, Boron, BW1645T4 0.9963 0.0020 1.0056 0.0016 Hexagonal lattice, Al separator plates, borated H20 Tri. Pitch Array Carbonsteel BW1810A 0.9972 0.0019 0.9970 0.0017 U02-Gd2O3 rods, water holes, borated H20 Sq. Pitch Array None BW1810B 0.9990 0.0019 0.9980 0.0012 U02-Gd2O3 rods, water holes, borated H20 Sq. Pitch Array None BW1810C 0.9969 0.0012 0.9987 0.0011 U02-Gd2O3 rods, water holes, borated H20 Sq. Pitch Array None BWI810D 0.9982 0.0011 1.0003 0.0014 U02-Gd2O3 rods, water holes, borated H20 Sq. Pitch Array None BW1810E 1.0022 0.0011 1.0001 0.0015 U02-Gd2O3 rods, water holes, borated H20 Sq. Pitch Array None BW1810F 1.0029 0.0010 0.9987 0.0014 Water holes, borated H20 Sq. Pitch Array None BW1810G 0.9979 0.0010 0.9992 0.0014 Water holes, borated H20 Sq. Pitch Array None BWI810H 0.9976 0.0011 1.0026 0.0013 Water holes, borated H20 Sq. Pitch Array None BW1810I 1.0040 0.0010 0.9958 0.0018 Water holes, Ag-In-Cd rods, borated H20 Sq. Pitch Array None BWI810J 0.9948 0.0018 0.9983 0.0014 Water holes, B4C rods, borated H20 Sq. Pitch Array None DSN399-1 1.0180 0.0016 1.0051 0.0021 Hafnium separator plates Sq. Pitch Array Water DSN399-2 1.0138 0.0018 1.0011 0.0016 Hafnium separator plates Sq. Pitch Array Water DSN399-3 1.0183 0.0016 1.0011 0.0019 Hafnium separator plates Sq. Pitch Array Water, HF DSN399-4 1.0034 0.0016 1.0012 0.0022 Hafnium separator plates Sq. Pitch Array Water, HF EPRU65 1.0002 0.0017 0.9976 0.0021 Core of 708 fuel rods Sq. Pitch Array Water EPRU65B 0.9995 0.0017 0.9972 0.0012 Borated H20 Sq. Pitch Array Water, Boron EPRU75 0.9974 0.0016 0.9954 0.0016 Core of 383 fuel rods Sq. Pitch Array Water EPRU87 0.9957 0.0014 0.9962 0.0015 Core of 342 fuel rods Sq. Pitch Array Water EPRU87B 0.9992 0.0014 0.9990 0.0015 Borated H20 Sq. Pitch Array Water, Boron NSE71H1 0.9962 0.0014 0.9967 0.0019 Fuel rods in Hexagonal lattice Tri. Pitch Array Water, Al NSE71H2 1.0000 0.0011 0.9960 0.0019 Fuel rods in Hexagonal lattice Tri. Pitch Array Water, Al NSE71H3 0.9985 0.0013 1.0000 0.0017 Fuel rods in Hexagonal lattice Tri. Pitch Array Water, Al NSE71SQ 0.9993 0.0013 0.9964 0.0018 Fuel rods in Square lattice Sq. Pitch Array Water NSE71WI 0.9960 0.0016 0.9992 0.0021 Water holes Sq. Pitch Array Water NSE71W2 1.0024 0.0016 0.9992 0.0019 Water holes Sq. Pitch Array Water P2438AL 1.0030 0.0015 0.9957 0.0014 Aluminum separator plates Sq. Pitch Array Water, Plexiglass P2438BA 1.0002 0.0016 0.9978 0.0016 Boral-A separator plates Sq. Pitch Array Water, Plexiglass P2438CU 0.9991 0.0016 0.9962 0.0016 Copper separator plates Sq. Pitch Array Water, Plexiglass CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-17
0 0
P2438SLG 1.0000 0.0015 0.9976 0.0015 Simple square lattice Sq. Pitch Array Water, Plexiglass P2438ZR 0.9987 0.0014 0.9994 0.0014 Zircaloy-4 separator plates Sq. Pitch Array Water, Plexiglass P2615AL 0.9964 0.0014 0.9991 0.0015 Aluminum separator plates Sq. Pitch Array Water, Plexiglass P2615BA 0.9977 0.0015 0.9988 0.0017 Boral-A separator plates Sq. Pitch Array Water, Plexiglass P2615CDI 0.9981 0.0014 0.9983 0.0017 Cadmium separator plates Sq. Pitch Array Water, Plexiglass P2615CD2 0.9955 0.0015 0.9984 0.0020 Cadmium separator plates Sq. Pitch Array Water, Plexiglass P2615CU 1.0002 0.0015 1.0024 0.0016 Copper separator plates Sq. Pitch Array Water, Plexiglass P2615SS 0.9999 0.0015 0.9966 0.0016 Stainless steel separator plates Sq. Pitch Array Water; Plexiglass P2615ZR 0.9973 0.0016 0.9956 0.0019 Zircaloy-4 separator plates Sq. Pitch Array Water, Plexiglass P2827LI 0.9986 0.0014 1.0034 0.0016 U02 rods Sq. Pitch Array Plexiglass, Water, Lead P2827L2 0.9960 0.0016 1.0017 0.0016 U02 rods Sq. Pitch Array Plexiglass, Water, Lead P2827L3 0.9967 0.0015 1.0101 0.0020 U02 rods Sq. Pitch Array Plexiglass, Water, Lead P2827L4 0.9980 0.0016 1.0086 0.0017 U02 rods Sq. Pitch Array Plexiglass, Water, Lead P2827SLG 0.9987 0.0016 0.9934 0.0014 Simple square lattice Sq. Pitch Array Plexiglass, Water P2827U1 1.0033 0.0013 0.9985 0.0021 U02 rods Sq. Pitch Array Uranium, Water, Plexiglass P2827U2 0.9984 0.0014 1.0005 0.0018 U02 rods Sq. Pitch Array Uranium, Water, Plexiglass P2827U3 1.0091 0.0015 0.9997 0.0018 U02 rods Sq. Pitch Array Uranium, Water, Plexiglass P2827U4 1.0066 0.0015 0.9993 0.0018 U02 rods Sq. Pitch Array Uranium, Water, Plexiglass P3314AL 0.9955 0.0014 0.9969 0.0018 Aluminum separator plates Sq. Pitch Array Water, Plexiglass P3314BA 1.0001 0.0013 0.9989 0.0019 Boral-A separator plates Sq. Pitch Array Water, Plexiglass P3314BC 1.0016 0.0013 1.0005 0.0018 Boral-C separator plates Sq. Pitch Array Water, Plexiglass P3314BFI 1.0038 0.0014 1.0001 0.0020 Boroflex separator plates Sq. Pitch Array Water, Plexiglass P3314BF2 1.0023 0.0014 0.9999 0.0024 Boroflex separator plates Sq. Pitch Array Water, Plexiglass P3314BS1 0.9981 0.0015 0.9939 0.0016 Borated Steel Separator plates Sq. Pitch Array Water, Plexiglass P3314BS2 0.9959 0.0015 0.9926 0.0016 Borated Steel Separator plates Sq. Pitch Array Water, Plexiglass P3314BS3 1.0032 0.0016 0.9954 0.0018 Borated Steel Separator plates Sq. Pitch Array Water, Plexiglass P3314BS4 1.0015 0.0015 1.0002 0.0017 Borated Steel Separator plates Sq. Pitch Array Water, Plexiglass P3314CD1 1.0037 0.0016 0.9991 0.0016 Cadmium separator plates Sq. Pitch Array Water, Plexiglass P3314CD2 1.0008 0.0015 0.9932 0.0017 Cadmium separator plates Sq. Pitch Array Water, Plexiglass P3314CUI 0.9971 0.0015 0.9959 0.0016 Copper separator plates Sq. Pitch Array Water, Plexiglass P3314CU2 0.9928 0.0014 0.9979 0.0017 Copper separator plates Sq. Pitch Array Water, Plexiglass CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-18
P3314CU3 0.9962 0.0015 0.9976 0.0020 Copper separator plates Sq. Pitch Array Water, Plexiglass P3314CU4 1.0013 0.0016 1.0013 0.0015 Copper-CadnIium separator plates Sq. Pitch Array Water, Plexiglass P3314CU5 0.9980 0.0015 0.9945 0.0014 Copper separator plates Sq. Pitch Array Water, Plexiglass P3314CU6 0.9929 0.0017 0.9958 0.0017 Coppper-Cadmium separator plates Sq. Pitch Array Water, Plexiglass P3314SLG 0.9964 0.0016 0.9976 0.0018 Simple square lattice Sq. Pitch Array Water, Plexiglass P3314SS1 0.9988 0.0015 1.0003 0.0017 Steel separator plates Sq. Pitch Array Water, Plexiglass P3314SS2 1.0005 0.0015 1.0004 0.0019 Steel separator plates Sq. Pitch Array Water, Plexiglass P3314SS3 1.0006 0.0015 0.9986 0.0019 Steel separator plates Sq. Pitch Array Water, Plexiglass P3314SS4 0.9914 0.0015 0.9966 0.0018 Steel separator plates S. Pitch Array Water, Plexiglass P3314SS5 0.9959 0.0013 0.9957 0.0018 Steel separator plates Sq. Pitch Array Water, Plexiglass P3314SS6 0.9974 0.0016 0.9975 0.0017 Steel separator plates Sq. Pitch Array Water, Plexiglass P3314WI 1.0025 0.0016 1.0024 0.0018 Water holes Sq. Pitch Array Water, Plexiglass P3314W2 1.0043 0.0015 0.9978 0.0018 Water holes Sq. Pitch Array Water, Plexiglass P3314ZR 0.9974 0.0033 0.9970 0.0021 Zircaloy-4 separator plates Sq. Pitch Array Water, Plexiglass P3602BB 1.0012 0.0023 1.0012 0.0020 Boral-B separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602BS1 0.9967 0.0017 0.9995 0.0017 Borated Steel Separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602BS2 1.0026 0.0017 1.0044 0.0021 Borated Steel Separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602CD1 1.0017 0.0017 1.0015 0.0017 Cadmium separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602CD2 1.0001 0.0016 1.0034 0.0016 Cadmium separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602CU1 0.9973 0.0015 1.0034 0.0018 Copper separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602CU2 0.9975 0.0015 1.0016 0.0017 Copper-Cadmium separator plates, steel reflecting Sq. Pitch Array WaterPlexiglass, Steel walls P3602CU3 0.9937 0.0014 1.0031 0.0020 Copper separator plates, steel reflecting walls Sq. Pitch Array WaterPlexiglass, Steel P3602CU4 0.9999 0.0016 1.0031 0.0019 Copper-Cadmium separator plates, steel reflecting Sq. Pitch Array WaterPlexiglass, Steel Swalls Sq. Pitch Array Water,Plexiglass, Steel P3602NlI 0.9991 0.0013 1.0034 0.0018 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N12 0.9950 0.0014 1.0020 0.0017 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N13 0.9985 0.0016 0.9985 0.0018 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N14 0.9989 0.0015 0.9949 0.0018 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N21 0.9955 0.0013 1.0019 0.0016 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N22 0.9956 0.0014 1.0012 0.0014 Steel.reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N31 0.9971 0.0014 1.0068 0.0017 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-19
0 P3602N33 0.9951 0.0013 1.0101 0.0015 Steel reflectin2 walls Sq. Pitch Array WaterPlexiglass, Steel P3602N34 0.9977 0.0012 1.0067 0.0016 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N35 1.0055 0.0016 1.0034 0.0017 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N36 1.0025 0.0016 1.0016 0.0021 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N41 1.0026 0.0015 1.0139 0.0018 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N42 1.0030 0.0015 1.0101 0.0017 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602N43 1.0020 0.0015 1.0044 0.0021 Steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602SS1 1.0020 0.0015 1.0022 0.0018 Steel separator plates, steel reflecting walls Sq. Pitch Array Water,Plexiglass, Steel P3602SS2 1.0022 0.0015 1.0070 0.0016 Steel separator plates, steel reflecting walls Sq. Pitch Array Water, Plexiglass, Steel P3926L1 1.0004 0.0015 1.0018 0.0016 Lead reflecting walls Sq. Pitch Array Water, Plexiglass, Lead P3926L2 1.0049 0.0016 1.0009 0.0016 Lead reflecting walls Sq. Pitch Array Water, Plexiglass, Lead P3926L3 0.9990 0.0014 0.9939 0.0017 Lead reflecting walls Sq. Pitch Array Water, Plexiglass, Lead P3926L4 1.0018 0.0016 1.0058 0.0018 Lead reflecting walls Sq. Pitch Array Water, Plexiglass, Lead P3926L5 1.0008 0.0014 1.0029 0.0018 Lead reflecting walls Sq. Pitch Array Water, Plexiglass, Lead P3926L6 1.0003 0.0014 1.0030 0.0015 Lead reflecting walls Sq. Pitch Array Water, Plexiglass, Lead P3926SLI 0.9950 0.0030 0.9915 0.0019 Simple lattice Sq. Pitch Array Water, Plexiglass P3926UI 1.0026 0.00 16 0.9956 0.0019 Uranium reflecting walls Sq. Pitch Array Water, Plexiglass, Uranium P3926U2 1.0070 0.0018 0.9995 0.0016 Uranium reflecting walls Sq. Pitch Array Water, Plexiglass, Uranium P3926U3 1.0016 0.0016 0.9982 0.0016 Uranium reflecting walls Sq. Pitch Array Water, Plexiglass, Uranium P3926U4 0.9941 0.0014 0.9980 0.0016 Uranium reflecting walls Sq. Pitch Array Water, Plexiglass, Uraniu, m P3926U5 0.9995 0.0016 1.0006 0.0020 Uranium reflecting walls Sq. Pitch Array Water, Plexiglass, Uranium P3926U6 0.9974 0.0014 1.0014 0.0018 Uranium reflecting walls Sq. Pitch Array Water P4267BI 0.9988 0.0013 0.9960 0.0014 Borated H20 Sq. Pitch Array Water P4267B2 0.9972 0.0014 1.0007 0.0016 Borated H20 Sq. Pitch Array Water P4267B3 1.0069 0.0015 1.0047 0.0015 Borated H20 Sq. Pitch Array Water P4267B4 0.9996 0.0015 1.0008 0.0015 Borated H-20 Sq. Pitch Array Water P4267B5 1.0027 0.0015 1.0005 0.0014 Borated H20 Sq. Pitch Array Water P4267SLI 0.9955 0.0012 0.9980 0.0022 Borated H20 Sq. Pitch Array Water P4267SL2 1.0009 0.0012 0.9990 0.0018 Borated H20 Sq. Pitch Array Water P49-194 1.0051 0.0013 1.0067 0.0016 Simple hexagonal lattice Sq. Pitch Array Hydrogen, Carbon, Oxygen CHT-OP-TU SAR Rev. 8 June 2007 6.8.2-20
0 0
P 0.0014 0.0013 P7 F 14F3 0.9999 1.0009 0.0018 Boral flux traps, void material fuel rods Sq. Pitch Array Water, Plexiglass P71F14V5 0.9978 0.0015 0.9976 0.0018 Boral flux traps, void material Al rods Sq. Pitch Array Water, Plexiglass P71F214R 1.0013 0.0016 0.9968 0.0018 Boral flux traps,no void material Sq. Pitch Array Water, Plexiglass PAT80LI 1.0085 0.0024 0.9996 0.0018 Boral separator plates, lead reflecting walls Sq. Pitch Array Water, Lead, Al PAT80L2 1.0036 0.0016 0.9982 0.0017 Boral separator plates, lead reflecting walls Sq. Pitch Array Water, Lead, Al PAT80SSI 1.0003 0.0016 1.0008 0.0018 Boral separator plates, lead reflecting walls Sq. Pitch Array Water, Lead, Al PAT80SS2 1.0003 0.0015 0.9944 0.0018 Boral separator plates, lead reflecting walls Sq. Pitch Array Water, Lead, Al W3269B1 0.9968 0.0013 0.9970 0.0014 Ag-In-Cd rods Sq. Pitch Array Water, Al W3269B2 0.9968 0.0015 0.9951 0.0016 Ag-In-Cd rods Sq. Pitch Array Water, Al W3269B3 0.9970 0.0019 0.9957 0.0017 Ag-In-Cd rods Sq. Pitch Array Water, Al W3269C 0.9979 0.0015 0.9978 0.0017 Ag-ln-Cd rods Sq. Pitch Array Water, Al W3269SLI 0.9983 0.0031 0.9963 0.0016 Simple square lattice Sq. Pitch Array Water, Al W3269Wt 0.9996 0.0019 0.9942 0.0020 Water holes Sq. Pitch Array Water, Al LEUST022-1.0006 0.0012 1.0002 0.0015 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS 01 LEUSTO22-1.0070 0.0013 1.0046 0.0013 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS 02 LEUSTO22-1.005 1 0.012 1.0046 0.00 13 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS 03 LEUST022-1.0084 0.0012 1.0085 0.0014 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS 04_
LEUST022-1.0050 0,0013 1.0046 0.0014 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS 05 LEUST022-06 1.0014 0.0011 1.0032 0.0012 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS LEJSTO22-1.0031 0.0011 1.0012 0.0013 10% U02 in stainless steel clad fuel rods hex pitch array Water, SS 07 LEUSTO23-0.9946 0.0013 0.9930 0.0016 Partially flooded U02 fuel rods (stainless steel clad) hex pitch array Water, SS, Air 016 LEUSTO23-0.9989 0.0012 0.9956 0.0014 Partially flooded U02 fuel rods (stainless steel clad) hex pitch array Water, SS, Air 02 1
CHT-OP-TU June 2007 SAR Rev. 8 6.8.2-21
0 LtU6 I UZJ-03 1.0006 0.0012 1.0022 0.0014 1 Partially flooded U02 fuel rods (stainless steel clad) hex pitch array Water, SS, Air LEUST023-1.0035 0.0012 1.0028 0.0015 Partially flooded U02 fuel rods (stainless steel clad) hex pitch array Water, SS, Air 04 LEUST023-1.0025 0.0014 1.0022 0.0013 Partially flooded U02 fuel rods (stainless steel clad) hex pitch array Water, SS, Air 05 LEUSTO23-1.0045 0.0013 1.0019 0.0015 Partially flooded U02 fuel rods (stainless steel clad) hex pitch array Water, SS, Air 06 LEUST024-0.9963 0.0012 0.9978 0.0013 10% U02 in stainless steel clad fuel rods Sq. Pitch Array Water, SS.
01 LEUST024-1.0051 0.0012 1.0047 0.0014 10% U02 in stainless steel clad fuel rods Sq. Pitch Array Water, SS 02 LEUSTO25-0.9868 0.0011 0.9869 0.0013 7.5% U02 in stainless steel clad fuel rods hex pitch array Water, SS 01 LEUSTO25-0.9926 0.0012 0.9943 0.0014 7.5% U02 in stainless steel clad fuel rods hex pitch array Water, SS 02 LEUST025-03 0.9998 0.0012 1.0012 0.0014 7.5% U02 in stainless steel clad fuel rods hex pitch array Water, SS LEUST025-1.0023 0.0012 1.0025 0.0015 7.5% U02 in stainless steel clad fuel rods hex pitch array Water, SS 04 LEUST003-0.9972 0.0007 0.9991 0.0010 UN Solution, B4C Control Rods Cylinder Water 09 LEUSTOO5-1.0007 0.0009 0.9978 0.0009 UN Solution, B4C Control Rods Cylinder Water 02 LEUST0OS-1.0031 0.0009 0.9977 0.0009 UN Solution, B4C Control Rods Cylinder Water 03 LEUST006-03 1.0024 0.0008 0.9983 0.0010 UN Solution, B4C Control Rods Cylinder Water 03 LEUST006-1.0026 0.0008 1.0004 0.0015 UN Solution, B4C Control Rods Cylinder Water 04 LEUSTOO6-1.0017 0.0008 1.0042 0.0013 UN Solution, B4C Control Rods Cylinder Water 05 CUT-OP-TU SAR Rev. 8 June 2007 6.8.2-22
0 1.03 1.02 1.0/
/
1.02-9 9
/"
0.98
'6*
1.01 0
9 90 1.01 1.02 1.03
- %*.7 "
SRev.86.8.2-23 Ju
. 007_
79 9
/7 9
o.98 9
0.98 0.99 1,00 1.01 1.02 1.03 SCALE 4.4a keff Figure 6.8.2 SCALE 4.3 and SCALE 4.4a Comparions Results for 230 Benchmarks CHT-OP-TU SAR Rev. 8 6.8.2-23 June 2007
Appendix 6.8.3 Selected Input Cases for 8" Diameter Oxide Vessel Calculations with Heterogeneous Materials CHT-OP-TU SAR Rev. 8 6-58 June 2007
Input Cases 6.8.3 - Selected Input Cases for Sleeved 8" Diameter Oxide Vessel Calculations For Heterogeneous Materials 8" Vessel with Aluminum Sleeve 1" gaps top/bottom
=CSAS2x parm=size=800000 HAC polyethylene OPTIMUM MODERATED REPROCESSED 002 AT 3.25G/CC AND 5WT%
'Burnt Foam Model 44GR LATT
'Reprocessed U02 002 1 0.9999 294.0 92232 0.000002 92233 0.005 92235. 5.0 92238 94.994998 END PU I 2.2437e-6 294.0 94239 100 END H20 2 0.9655 294.0 END POLYETHYLENE 2 0.0345 294.0 END
'Interspersed moderator H20 8 0.0001 294.0 END
'Package steel CARBONSTEEL 3 1.0 294.0 END SS304 4 1.0 294.0 END
'Reflector H20 5 1.0 294.0 END
'6.45pcf foam insulation with min H 120 6 0.06011 294.0 END
'18 pcf foam insulation with min H H20 7 0.16776 294.0 END Al 9 1.0 294.0 END END COMP SPHTRIANGP 1.44525 1.0 1 2 END MORE DATA IIM=500 ICM-500 END MORE HAC NO POLY WITH PELLETS READ PARM NUB=YES GEN=305 NPG=600 NSK=5 TME=60 TBA=60 RND=012187 END PARM READ GEOM UNIT 1
'fuel region based on max OD of 8.2" CYLINDER 500 1 9.779 102.641 2.54 CYLINDER 9 1 10.414 102.641 2.54 CYLINDER 500 1 10.414 105.181 0.0
'oxide vessel walls and bottom, minimum thickness REPLICATE 4
1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4
1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4
1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 19.8600 -
28.4960 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section CHT-OP-TU SAR Rev. 8 June 2007 replicate 0 1 5R0.0 4.318 1 UNIT 2
'fuel region based on max OD of 8.2" CYLINDER 500 1 9.779 102.641 2.54 CYLINDER 9
1 10.414 102.641 2.54 CYLINDER 500 1 10.414 105.181 0.0
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 19.8600 -
28.4960 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 3
'fuel region based on max OD of 8.2" CYLINDER 500 1 9.779 102.641 2.54 CYLINDER 9 1 10.414 102.641 2.54 CYLINDER 500 1 10.414 105.181 0.0
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
' gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6
1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4
1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 -
19.8600 108.104 -1.270 replicate 7
1 5RO.0 6.477 1 CUBOID 0
1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 4
'fuel region based on max OD of 8.2" CYLINDER 500 1 9.779 102.641 2.54 CYLINDER 9 1 10.414 102.641 2.54 CYLINDER 500 1 10.414 105.181 0.0
'oxide vessel walls, lid and bottom, mi thickness REPLICATE 4 1 0.5588 0.00 0.635 1
p gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 nimum 1
6.8.3-1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6
1 28.4960 -19.8600 28.4960 -
19.8600 108.104 -1.270 replicate 7
1 5R0.0 6.477 1 CUBOID 0
1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0
1 5R0.0 4.318 1 UNIT 11
'GASKETS CYLINDER 8
1 16.8275 1.74625 0.0
'Outer lid bottom REPLICATE 4
1 0.000 0.3048 0.00 1
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 0.00 1
REPLICATE 4
1 0.608 0.00 0.00 1
CUBOID 6 1 28.4960 -19.8600 19.8600 -
28.4960 9.60705 0.00 CUBOID 0 1 4P28.4960 9.60705 0.00 unit 111
'Burnt section of outer lid CYLINDER 0 1 16.8275 8.636 0.0
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'Outer lid minus thickness of 11 gauge REPLICATE 4 1 0.00 0.965 0.00 1
'foam insulation CUBOID 0 1 4P28.49600 9.601 0.00
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 28.4960 -
19.8600 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60705 0.00 UNIT 95
'BLANK CUBOID REPLICATE
'PREPLICATE 0
1 4P56.992 127.31205 -12.065 0
1 5RO.3048 0.635 1
0 1 5RO 2.54 1
UNIT 30 ARRAY 1
3*0.0 UNIT 40 ARRAY 2
3*0.0
'Transport unit outer walls REPLICATE 3
1 5R0.3048 0.635
'Transport unit feet
'REPLICATE 8 1 5R0 2.54 1
UNIT 12
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 9.60705 0.00 0.0 0.00.I 0.00 1
0.00 1
19.8600 -
CUBOID 0 1 4P28.49600 9.60705 0.00 GLOBAL UNIT 50 ARRAY 3
3*0.0
'full reflection REPLICATE 5 1 6R30.48 1
END GEOM READ ARRAY ARA=1 NUX=2 NUY=2 NUZ=3 FILL 4 3 1 2 14 13 11 12 111 111 11 111 END FILL ARA=2 NUX=I NUY=1 NUZ=l FILL 30 END FILL ARA=3 NUX=4 NUY=4 NUZ=4 FILL 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 2Q16 95 95 95 95 95 40 95 95 95 40 95 95 95 95 95 95 END FILL END ARRAY READ BOUNDS ALL=VOID END BOUNDS END DATA END 8" Vessel with 3.58 cm Diameter Aluminum Insert
=CSAS2x parm=size=800000 HAC polyethylene OPTIMUM MODERATED REPROCESSED U02 AT 3.25G/CC AND 5WT%
'Burnt Foam Model 44GR LATT
'Reprocessed U02 U02 1 0.9999 294.0 92232 0.000002 92233 0.005 92235 5.0 92238 94.994998 END PU 1 2.2437e-6 294.0 94239 100 END H20 2 0.9655 294.0 END POLYETHYLENE 2 0.0345 294.0 END
'Interspersed moderator H20 8 0.0001 294.0 END
'Package steel CARBONSTEEL 3 1.0 294.0 END UNIT 13
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4
1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation CUBOID 6 1 19.8600 -28.4960 19.8600 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60 0.0 0.00 1
0.00 0.00 1
1 UNIT 14
'GASKETS CYLINDER
'Outer lid REPLICATE
'Outer lid REPLICATE 28.4960 -
705 0.00 0.0 0.00 1
0.00 1
8 1
16.8275 1.74625 bottom 4 1 0.000 0.3048 foam plug 6 1 0.000 7.556 CHT-OP-TU SAR Rev. 8 June 2007 6.8.3-2
SS304 4 1.0 294.0 END
'Reflector H20 5 1.0 294.0 END
'6.45pcf foam insulation with rain H H20 6 0.06011 294.0 END
'18 pcf foam insulation with min H H20 7 0.16776 294.0 END A!
9 1.0 294.0 END END COMP SPHTRIANGP 1.44525 1.0 1 2 END MORE DATA IIM=500 ICM=500 END MORE HAC NO POLY WITH PELLETS READ PARM NUB=YES GEN=305 NPG=600 NSK=5 TME=60 TBA=60 RND=012187 END PARM READ GEOM UNIT 1
'fuel region based on max OD of,8.2" CYLINDER 500 1 10.414 105.181 0.0 hole.
100 6.8 0.0 0.0
'hole 100 0.0 0.0 0.0
'oxide vessel walls and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4
1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 19.8600 -
28.4960 108.104 -1.270 replicate 7
1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5R0.0 4.318 1 UNIT 2
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 hole 100 6.8 0.0 0.0
'hole 100 0.0 0.0 0.0
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6
1 19.8600 -28.4960 19.8600 -
28.4960 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0
1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0
1 5RO.0 4.318 1 UNIT 3
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105,181 0.0 hole 100 6.8 0.0 0.0
'hole 100 0.0 0.0 0.0
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
I gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 -
19.8600 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 4
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 hole 100 6.8 0.0 0.0
'hole 100 0.0 0.0 0.0
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 28.4960 -
19.8600 108.104 -1.270 replicate 7 1 5RO.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 11
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 REPLICATE 4 1 0.608 0.00 CUBOID 6 1 28.4960 -19.8600 28.4960 9.60705 0.00 0.0 0.00 1
0.00 1
0.00 1
19.8600 -
CUBOID 0 1 4P28.4960 9.60705 0.00 unit 111
'Burnt section of outer lid CYLINDER 0 1 16.8275 8.636 0.0
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'Outer lid minus thickness of 11 gauge REPLICATE 4 1 0.00 0.965 0.00 1
'foam insulation CUBOID 0 1 4P28.49600 9.601 0.00 CHT-OP-TU SAR Rev. 8 June 2007 6.8. 3-3)
UNIT 12
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60 UNIT 13
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4
1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4
1 0.608 0.00
'foam insulation CUBOID 6 1 19.8600 -28.4960 19.8600 9.60705 0.00 0.0 0.00 1
0.00 0.00 1
1 19.8600 -
705 0.00 0.0 0.00 1
0.00 1
0.00 1
28.4960 -
CUBOID 0 1 4P28.49600 9.60705 0.00 UNIT 14
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation CUBOID 6 1 28.4960 -19.8600 19.8600 9.60705 0.00 0.0 0.00 1
0.00 1
0.00 1
28.4960 -
REPLICATE 5 1 6R30.48 1
END GEOM READ ARRAY ARA=1 NUX=2 NUY=2 NUZ=3 FILL 4 3 1 2 14 13 11 12 111 111 Il1 111 END FILL ARA=2 NUX=1 NUY=1 NUZ=1 FILL 30 END FILL ARA=3 NUX=4 NUY=4 NUZ=4 FILL 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 2Q16 95 95 95 95 95 40 95 95 95 40 95 95 95 95 95 95 END FILL END ARRAY READ BOUNDS ALL=VOID END BOUNDS END DATA END 8" Vessel with Aluminum Sleeve 1" gaps top/middle/bottom
=CSAS2x parm=size=800000 HAC polyethylene OPTIMUM MODEPATED REPROCESSED U02 AT 3.25G/CC AND 5WT%
'Burnt Foam Model 44GR LATT
'Reprocessed U02 U02 1 0.9999 294.0 92232 0.000002 92233 0.005 92235 5.0 92238 94.994998 END PU 1 2.2437e-6 294.0 94239 100 END H20 2 0.9655 294.0 END POLYETHYLENE 2 0.0345 294.0 END
'Interspersed moderator H20 8 0.0001 294.0 END
'Package steel CARBONSTEEL 3 1.0 294.0 END SS304 4 1.0 294.0 END
'Reflector H20 5 1.0 294.0 END
'6.45pcf foam insulation with min H H20 6 0.06011 294.0 END
'18 pcf foam insulation with min H H20 7 0.16776 294.0 END Al 9 1.0 294.0 END END COMP SPHTRIANGP 1.44525 1.0 1 2 END MORE DATA IIM=500 ICM=500 END MORE HAC NO POLY WITH PELLETS READ PARM NUB=YES GEN=305 NPG-600 NSK=5 TME=60 TBA=60 RND=012187 END PARM READ GEOM UNIT 1
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64 6.8.3-4 CUBOID 0 1 4P28.49600 9.60705 0.00 UNIT 95
'BLANK CUBOID 0
1 4P56.992 127.31205 -12.065 REPLICATE 0
1 5RO.3048 0.635 1
'REPLICATE 0 1 5RO 2.54 1
UNIT 30 ARPRAY 1
3*0.0 UNIT 40 ARRAY 2
3*0.0
'Transport unit outer walls REPLICATE 3 1 5RO.3048 0.635 1
'Transport unit feet
'REPLICATE 8 1 5R0 2.54 1
Unit 100
'bottom pellet box with aluminum bottom and sides with top gap CYLINDER 9 1 3.58 102.641 2.54 GLOBAL UNIT 50 ARPAY 3
3+0.0
'full reflection CHT-OP-TU SAR Rev. 8 June 2007
'oxide vessel walls and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
' gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 19.8600 -
28.4960 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5R0.0 4.318 1 UNIT 2
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4
1 0.5588 0.00 0.635 1
' gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4
1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 19.8600 -
28.4960 108.104 -1.270 replicate 7
1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5R0.0 4.318 1 UNIT 3
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4
1 0.5588 0.00 0.635 1
' gap between oxide vessel and sleeve REPLICATE 8
1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4
1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4
1 0.00 2.923 0.00 1
'foam insulation CHT-OP-TU SAR Rev. 8 June 2007 CUBOID 6 1 19.8600 -28.4960 28.4960 -
19.8600 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 4
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635.1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 28.4960 -
19.8600 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 11
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 REPLICATE 4 1 0.608 0.00 CUBOID 6 1 28.4960 -19.8600 28.4960 9.60705 0.00 0.0 0.00 1
0.00 1
0.00 1
19.8600 -
CUBOID 0 1 4P28.4960 9.60705 0.00 unit 111
'Burnt section of outer lid CYLINDER 0 1 16.8275 8.636
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'Outer lid minus thickness of 11 REPLICATE 4 1 0.00 0.965
'foam insulation CUBOID 0 1 4P28.49600 9.60:
UNIT 12
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation 0.0 0.00 gauge 0.00 1
1 0.00 1
0.0 0.00 1
0.00 0.00 1
1 6.8.3-5
CUBOID 6 1 19.8600 -28.4960 19.8600 -
28.4960 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60705 0.00 UNIT 13
'GASKETS CYLINDER 8 1 16.8275 1.74625 0.0
'Outer lid bottom REPLICATE 4 1 0.000 0.3048 0.00 1
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 0.00 1
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 -
19.8600 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60705 0.00 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 2Q16 95 95 95 95 95 END FILL END AKRAY READ BOUNDS ALL=VOID END BOUNDS END DATA END 95 40 95 95 95 40 95 95 95 95 95 UNIT 14
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4
1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation CUBOID 6 1 28.4960 -19.8600 19.8600 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60 0.0 0.00 1
0.00 1
0.00 1
28.4960 -
705 0.00 UNIT 95
'BLANK CUBOID REPLICATE
'REPLICATE 0 1 4P56.992 127.31205 -12.065 0 1 5R0.3048 0.635 1
0 1 5R0 2.54 1
UNIT 30 APRRAY 1
3*0.0 UNIT 40 ARRAY 2
3*0.0
'Transport unit outer walls REPLICATE 3 1 5RO.3048 0.635
'Transport unit feet
'REPLICATE 8 1 5R0 2. 54 1
Unit 100 CYLINDER 500 1 10.413 2.539 8" Vessel with Aluminum Sleeve 1" gap middle with 1" Neoprene top/bottom
=CSAS2x parm=size=800000 HAC polyethylene OPTIMUM MODERATED REPROCESSED U02 AT 3.25G/CC AND 5WT%
'Burnt Foam Model 44GR LATT
'Reprocessed U02 002 1 0.9999 294.0 92232 0.000002 92233 0.005 92235 5.0 92238 94.994998 END PU 1 2.2437e-6 294.0 94239 100 END H20 2 0.9655 294.0 END POLYETHYLENE 2 0.0345 294.0 END
'Interspersed moderator H20 8 0.0001 294.0 END
'Package steel CPRBONSTEEL 3 1.0 294.0 END SS304 4 1.0 294.0 END
'Reflector H20 5 1.0 294.0 END
'6.45pcf foam insulation with min H H20 6 0.06011 294.0 END
'18 pcf foam insulation with min H H20 7 0.16776 294.0 END Al 9 1.0 294.0 END
'rubber for neoprene -
change comment out matl 2 and change matl 10 to 2 for model with interstitial neoprene moderation arbmrub 1.28 3 0 0 0 6012 54.26 17000 40.05 1001 5.69 10 1.0 293 end END COMP SPHTRIANGP 1.44525 1.0 1 2 END MORE DATA IIM=500 ICM=500 END MORE MAC NO POLY WITH PELLETS READ PARM NUB=YES GEN=305 NPG=600 NSK=5 TME=60 TBA=60 RND=012187 END PARM READ GEOM UNIT 1
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve I
0.001 0.0 0.0 Unit 101 CYLINDER CYLINDER 500 1 9.779 48.78 9 1 10.413 48.78 GLOBAL UNIT 50 ARRAY 3
3*0.0
'full reflection REPLICATE 5 1 6R30.48 1
END GEOM READ ARRAY ARA=l NUX=2 NUY=2 NUZ=3 FILL 4 3 1 2 14 13 11 12 111 i1 i1 i1 END FILL ARA=2 NUX=l NUY=l NUZ=l FILL 30 END FILL ARA=3 NUX=4 NUY=4 NUZ=4 FILL CHT-OP-TU SAR Rev. 8 June 2007 6.8.3-6
REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 19.8600 -
28.4960 108.104 -1.270 replicate 7 1 5RO.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5RO.0 4.318 1 UNIT 2
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 19.8600 -
28.4960 108.104 -1.270 replicate 7
1 5R0.0 6.477 1 CUBOID 0
1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0
1 5R0.0 4.318 1 UNIT 3
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4 1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 -
19.8600 108.104 -1.270 replicate 7 1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section CHT-OP-TU SAR Rev. 8 June 2007 replicate 0 1 5R0.0 4.318 1 UNIT 4
'fuel region based on max OD of 8.2" CYLINDER 500 1 10.414 105.181 0.0 HOLE 100 0.0 0.0 0.0 HOLE 101 0.0 0.0 2.54 HOLE 100 0.0 0.0 51.32 HOLE 101 0.0 0.0 53.86 HOLE 100 0.0 0.0 102.64
'oxide vessel walls, lid and bottom, minimum thickness REPLICATE 4 1 0.5588 0.00 0.635 1
1 gap between oxide vessel and sleeve REPLICATE 8 1 2.949 0.0 0.0 1
'transport unit sleeve thickness REPLICATE 4
1 0.366 0.0 0.635 1
'Foam next to tube below lid diameter REPLICATE 6 1 3.17476 0.00 0.00 1
'combined Oxide vessel flange and lid REPLICATE 4 1 0.00 2.923 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 28.4960 -
19.8600 108.104.-1.270 replicate 7
1 5R0.0 6.477 1 CUBOID 0 1 4P28.49600 108.104 -7.747
'Burnt away section replicate 0 1 5R0.0 4.318 1 UNIT 11
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 REPLICATE 4 1 0.608 0.00 CUBOID 6 1 28.4960 -19.8600 28.4960 9.60705 0.00 0.0 0.00 1
0.00 1
0.00 1
19.8600 -
CUBOID 0 1 4P28.4960 9.60705 0.00 unit 111
'Burnt section of outer lid CYLINDER 0 1 16.8275 8.636 0.0
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'Outer lid minus thickness of 11 gauge REPLICATE 4 1 0.00 0.965 0.00 1
'foam insulation CUBOID 0 1 4P28.49600 9.601 0.00 UNIT 12
'GASKETS CYLINDER 8 1 16.8275 1.74625
'Outer lid bottom REPLICATE 4 1 0.000 0.3048
'Outer lid foam plug REPLICATE 6 1 0.000 7.556
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 9.60705 0.00 CUBOID 0 1 4P28.49600 9.607 UNIT 13
'GASKETS 0.0 0.00 1
0.00 1
0.00 1
19.8600 -
705 0.00 6.8.3-7
CYLINDER B 1 16.8275 1.74625 0.0
'Outer lid bottom REPLICATE 4 1 0.000 0.3048 0.00 1
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 0.00 1
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'foam insulation CUBOID 6 1 19.8600 -28.4960 28.4960 -
19.8600 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60705 0.00 UNIT 14
'GASKETS CYLINDER 8 1 16.8275 1.74625 0.0
'Outer lid bottom REPLICATE 4 1 0.000 0.3048 0.00 1
'Outer lid foam plug REPLICATE 6 1 0.000 7.556 0.00 1
'Outer lid sides and sleeve sides REPLICATE 4 1 0.608 0.00 0.00 1
'foam insulation CUBOID 6 1 28.4960 -19.8600 28.4960 19.8600 9.60705 0.00 CUBOID 0 1 4P28.49600 9.60705 0.00 UNIT 95
'BLANK CUBOID 0 1 4P56.992 127.31205 -12.065 REPLICATE 0 1 5R0.3048 0.635 1
'REPLICATE 0 1 5R0 2.54 1
UNIT 30 ARRAY 1
3*0.0 UNIT 40 ARRAY 2
3*0.0
'Transport unit outer walls REPLICATE 3
1 SRO.3048 0.635 1
'Transport unit feet
'PREPLICATE 8 1 5RG 2.54 1
Unit 100 CYLINDER 10 1 10.413 2.539 0.001 Unit 101 CYLINDER 500 1 9.779 48.78 0.0 CYLINDER 9 1 10.413 48.78 0.0 GLOBAL UNIT 50 ARRAY 3
3*0.0
'full reflection REPLICATE 5 1 6R30.48 1
END GEOM READ ARRAY ARA=1 NUX=2 NUY=2 NUZ=3 FILL 4 3 1 2 1 13 11 12 111 111 111 111 END FILL A.A=2 NUX=l NUY=1 NUZ=l FILL 30 END FILL APA=3 NUX=4 NUY=4 NUZ=4 FILL 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 40 2Q16 95 95 95 95 95 40 95 95 95 40 95 95 95 95 9 95 END FILL END ARRAY READ BOUNDS CHT-OP-TU SAR Rev. 8 June 2007 ALL=VOID END BOUNDS END DATA END 4
0 5
6.8.3-8