ML24365A256
| ML24365A256 | |
| Person / Time | |
|---|---|
| Site: | Triso-X |
| Issue date: | 12/30/2024 |
| From: | Triso-X |
| To: | Office of Nuclear Material Safety and Safeguards |
| Shared Package | |
| ML24365A254 | List: |
| References | |
| TX0-REG-LTR-0050 | |
| Download: ML24365A256 (1) | |
Text
TXFREGNRC0000 ZŽ
December 2024 Page i TRISO-X Fuel Fabrication Facility Special Nuclear Material License Application Cover Page, Chapter Index, Abbreviations, and Acronyms Revision Status NRC Docket No.
$SSURYHG
TRISO-X Document Control 2024.12.30 15:01:25 -05'00'
TXFREGNRC0000
ZŽ
December2024
Pageii
SPECIALNUCLEARMATERIALLICENSE
CHAPTERINDEX CHAPTER
TITLE
REVISION
REVISIONDATE
1
GeneralInformation
3
December2024
2
OrganizationandAdministration
2
December2024
3
IntegratedSafetyAnalysis
2
December2024
4
RadiationSafety
2
December2024
5
NuclearCriticalitySafety
2
December2024
6
ChemicalProcessSafety
2
December2024
7
FireSafety
2
December2024
8
EmergencyManagement
2
December2024
9
EnvironmentalSafety
2
December2024
10
Decommissioning
2
December2024
11
ManagementMeasures
2
December2024
12
MaterialControlandAccountingofSpecial
NuclearMaterial
2
December2024
13
ProtectionofSpecialNuclearMaterial
2
December2024
Addendum
SensitiveInformation
2
December2024
TXFREGNRC0000
ZŽ
December2024
Pageiii
REVISION
SUMMARY
Revision
Date
Section/Page DescriptionofChange
1
5Apr22
ALL
Initialissue.
2
4Nov22
Chapter
Index
UpdatedLicenseChapter1toRevision2.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0000toheader.
Chapter
Index
UpdatedLicenseChapter1toRevision3,andallotherChapterstoRevision
2.
Revision
Summary
DeletedrevisionsummaryentriesforRevision2onthispagebecauseall
wereaddedtotheLicenseChapter1revisionsummary.
TXFREGNRC0000
ZŽ
December2024
Pageiv
ABBREVIATIONSANDACRONYMS
Thislistcontainstheabbreviationsandacronymsusedinthisdocument.
Abbreviationor
Acronym
Definition
ALARA
AsLowAsReasonablyAchievable
ALI
AnnualLimitonIntake
AHJ
AuthorityHavingJurisdiction
ANS
AmericanNuclearSociety
ANSI
AmericanNationalStandardsInstitute
ASCE
AmericanSocietyofCivilEngineers
BDC
BaselineDesignCriteria
BS/BA
BachelorofScience/BachelorofArts
CAA
ControlledAccessArea
CAAS
CriticalityAccidentAlarmSystem
CEDE
CumulativeEffectiveDoseEquivalent
CFR
CodeofFederalRegulations
CM
ConfigurationManagement
DAC
DerivedAirConcentration
DFP
DecommissioningFundingPlan
DOE
U.S.DepartmentofEnergy
DOT
U.S.DepartmentofTransportation
EPA
U.S.EnvironmentalProtectionAgency
ETSZ
EastTennesseeSeismicZone
FFF
FuelFabricationFacility
FHA
FireHazardsAnalyses
FNMCP
FundamentalNuclearMaterialControlPlan
HALEU
HighAssayLowEnrichedUranium
HPGe
HighPurityGermanium
IAEA
InternationalAtomicEnergyAgency
IBC
InternationalBuildingCode
ICPMS
InductivelyCoupledPlasmaMassSpectrometry
ICRP
InternationalCommissiononRadiationProtectionPublication
ISA
IntegratedSafetyAnalysis
IROFS
ItemsReliedOnForSafety
KPA
KineticPhosphorescenceAnalyzer
LA
LicenseApplication
LEU
LowEnrichedUranium
MBA
MaterialBalanceArea
TXFREGNRC0000
ZŽ
December2024
Pagev
Abbreviationor
Acronym
Definition
MC&A
MaterialControlandAccountability
MMI
ModifiedMercalliIntensity
MOU
MemorandumofUnderstanding
NCRP
NationalCommissiononRadiationProtection
NCS
NuclearCriticalitySafety
NFPA
NationalFireProtectionAssociation
NIST
NationalInstituteofStandardsandTechnology
NMSS
NuclearMaterialsSafetyandSafeguards
NRC
U.S.NuclearRegulatoryCommission
OCA
OwnerControlledArea
OJT
OntheJobTraining
OSHA
OccupationalSafetyandHealthAdministration
PHA
ProcessHazardAnalyses
PM
Preventivemaintenance
PSP
PhysicalSecurityPlan
QA
QualityAssurance
RCA
RadiologicallyControlledArea
REM
RoentgenEquivalentMan
RPP
RadiationProtectionProgram
RSO
RadiationSafetyOfficer
RWP
RadiationWorkPermits
SEP
SiteEmergencyPlan
SME
SubjectMatterExpert
SNM
SpecialNuclearMaterial
SRC
SafetyReviewCommittee
TEDE
TotalEffectiveDoseEquivalent
TRISOXFFF
TRISOXFuelFabricationFacility
U
Uranium
U235
Uranium235
U238
Uranium238
UL
UnderwritersLaboratory
USGS
UnitedStatesGeologicalSurvey
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0001 SNMXXXX CHAPTER 1 ZŽ
December 2024 Page 11 GENERAL INFORMATION Table of Contents SECTION TITLE STARTS ON PAGE 1.1 1.1.1 1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.2 1.1.3 1.1.4 Facility and Process Information Site Description and Location Population, Nearby Land Uses, and Transportation Meteorology Hydrology Geology Facility Buildings and Structures General Process Description Raw Materials, Products, ByProducts and Wastes 12 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 Institutional Information Corporate Identity U.S. Nuclear Regulatory Commission License Information Financial Qualifications Type, Quantity, and Form of Licensed Material Authorized Uses and Activities Site Safeguards Terminology / Definitions 115 1.3 1.3.1 1.3.1.1 1.3.1.2 1.3.1.3 1.3.1.4 1.3.1.5 1.3.2 1.3.2.1 1.3.2.2 Special Exemptions and Special Authorizations Special Exemptions Criticality Monitoring Posting and Labeling ICRP68 DAC and ALI Values ICRP60 Organ Dose Weighting Factors Certain Unplanned Contamination Events Special Authorizations Changes to the License Application Release for Unrestricted Use 120 TRISO-X Document Control 2024.12.30 15:23:56 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page12
GENERALINFORMATION
1.1
FacilityandProcessInformation
TheprimarypurposeoftheTRISOXFuelFabricationFacility(FFF)inOakRidge,Tennessee,isto
manufacturecoatedparticlefuelforthenextgenerationofcommercialnuclearreactors.The
modulardesignoftheprocesscells/areasanticipatesadditionalmanufacturingcapabilitiesto
satisfytheneedsofavarietyoffueldesignsandreactors(e.g.,pebblebedhightemperaturegas cooled, prismatic gascooled, molten saltcooled, accident tolerant fuel, nuclear thermal
propulsion,andothers).Nuclearmaterialsenrichedtolessthan20weightpercentU235are
utilizedintheproductmanufacturingoperationsauthorizedbythislicense.
1.1.1 SiteDescriptionandLocation
TheTRISOXsiteislocatedintheHorizonCenterIndustrialParkonpropertyabuttingportionsof
RenovareBoulevard,withinthewesternlimitsoftheCityofOakRidgeandinthenortheastern
portionofRoaneCounty,Tennessee.Thesiteissituatedinanareadedicatedandzonedfor
industrialdevelopment,onanapproximately110acregreenfieldsite.Ofthetotalacreage,
approximately 60 acres are designated for manufacturing and administrative buildings,
equipmentyards,accessroads,parking,andstormwatermanagement.Thesiteissituatedat
approximatelylatitudeN35°5741andlongitudeW84°2213.
ThesitelocationinnortheasternRoaneCountyisintheValleyandRidgephysiographicprovince.
The regional topography near the site is typical of the Valley and Ridge province which is
characterized by northeast-southwest trending ridges and intervening valleys. The site and
otherdevelopedareasalongStateRoute95(TN95-OakRidgeTurnpike)tothenortheastand
southwestarelocatedonrelativelyflatorslightlyundulatingterrainassociatedwiththeEastFork
PoplarCreekValley,whilejustnorthwestofthesite,thereisasteepinclinetothetopofBlack
OakRidge.Severalotherridgesorientednortheasttosouthwestarepresentwithinthevicinity
ofthesite.ThePoplarCreekValleyisthenextvalleynorthandparallelsBlackOakRidge.East
ForkRidgeislocatedtothesouthandeastofthesiteandisinterruptedbythevalleyofBear
CreekandTN95.PineRidgeislocatedsouthandeastofEastForkRidge.
1.1.1.1
Population,NearbyLandUses,andTransportation
Asitelocationmap,includingthepopulationcenterslocatednearthesite,isshowninFigure1
- 1. KeyfeaturesnearthesiteareshowninFigure12.Theclosestmajorpopulationcenteristhe CityofOakRidgewhichhadapopulationof31,402asofApril1,2020,pertheUnitedStates CensusBureauwebsite.Theclosestresidentstothesitearelocatedinaresidentialdevelopment offPoplarCreekRoad,approximately0.6milesnorthwestofthesiteboundary,separatedfrom the site by Black Oak Ridge and areas of dense vegetation. There are also residential neighborhoodslocatedtotheeastoffTN95,approximately1.3milesormorefromthesite.The Environmental Report, Figures 3.10.11 through 3.10.14, provides more information about
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page13
populationnearthesite.TheNorthBoundaryGreenway,alowdensityrecreationaltrailusedfor
hikingandbiking,bordersthesiteboundarytothenorthwest.
Theimmediateareasurroundingthesiteconsistsofruralwoodedareaandlightcommercialand
industrialusebuildings.Theimmediatelyadjacentonestorywarehouse/officebuildinglocated
near the southern corner of the property is the corporate office of Philotechnics Inc., a
radiologicalserviceandmixedandradioactivewastebrokerageproviderlicensedbytheStateof
Tennessee,doesnotmanage,utilize,orstorechemicals(hazardousmaterials)inquantitiesthat
posehazardstotheTRISOXsite.RenovareBoulevard,whichbordersthesitetothesoutheast,
isatwolanedividedroadwaythatprovidesaccesstothesiteandtootherparcelswithinthe
HorizonCenterIndustrialPark.
Landsadjacenttotheindustrialparkarepredominantlyundevelopedandforested,consistingof
largetractsofU.SDepartmentofEnergyOakRidgeReservationlandwhichborderthesitetothe
northwestandsurroundtheindustrialparkinotherdirections,withtheexceptionoftheTN95
roadway corridor to the east. The existing land use within one mile of the site consists of
primarily industrial development and woodlands. Within a fivemile radius of the site,
approximately83percentofthelandisundeveloped(e.g.,forest,pasture,wetland)andthe
remainderisdeveloped.Otherlanduseswithin5milesofthesiteincludeheavyindustrial,light
industrial/manufacturing,commercial/officespace,agricultural,andresidential.TheMethodist
MedicalCenterofOakRidgeisthenearesthospital,locatedapproximately9milesfromthesite.
TheclosestschooltothesiteisDyllisSpringsElementarySchool,locatedapproximately3.2miles
northeastofthesite.
TransportationinfrastructurenearthesiteincludesRenovareBoulevard;TN95;twointerstate
highways-Interstate40andInterstate75-severalTennesseestatehighways;andlocalroads.
RegionalhighwaysandinterstatesnearthesiteareshowninFigure13.TheMcGheeTyson
Airport,whichservespublicandmilitaryneeds,islocated26milesfromOakRidgebyroad.Oliver
SpringsAirportisasmallprivateairportlocated6milesnortheastofthesite.Theclosestrailroad
trackisapproximately1milesouthwestofthesiteboundary,adjacenttoBlairRoad.Theclosest
majorwaterway,theClinchRiver,isapproximately3mileswestofthesiteboundary.Shipping
ofmaterialsandproductstoandfromthesitewillbeconductedbytruck;nouseofrailroador
riverbargeisplanned.TruckshipmentswouldlikelyuseInterstate40andStateRoute58westof
thesiteduetotheeaseofaccessvia4lanehighwayslocatedinlesspopulatedareaswithless
traffic.
1.1.1.2
Meteorology
OakRidgeislocatedinthebroadTennesseeRivervalleybetweentheCumberlandMountains,
whichlietothenorthwest,andtheGreatSmokyMountains,tothesoutheast.TheCumberland
Mountainsmoderatethelocalclimatebyretardingtheflowofcoldairfromthenorthduring
winter.Bothmountainrangesaregenerallyorientedinanortheastsouthwestdirection.The
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page14
valleybetweenthemiscorrugatedbybrokenridgesapproximately300to500feethighand
orientedparalleltothemainvalleyinanapproximatenortheastsouthwestdirection.
The climate of Oak Ridge is classified as humid subtropical. The subtropical designation
indicatesthattheregionexperiencesawiderangeofseasonaltemperatures.Suchareasare
typifiedbysignificanttemperaturedifferencesbetweensummerandwinter.Thenormalliquid
equivalentannualprecipitationintheOakRidgeareais50.91inches,andtheaverageannual
snowfall is 5.9 inches. The normal daily minimum temperature in January is 28.9 degrees
Fahrenheit(°F)andthenormaldailymaximumtemperatureinJulyis88.4°F.
Directdeflectionofthewindsbyterrainisadominantmechanismthatdrivesthewindsinthe
TennesseeRivervalley.Thismechanismactsapproximately50-60percentofthetime,resulting
inwindsthatblowindirectionsgenerallyalongtheapproximatenortheastsouthwestaxisofthe
valley.Thedistributionofprevailingmonthlywinddirectionsisbimodal,withwindsfromthe
northeast(50-60degrees),orfromthesouthwest(210-220degrees).Themeanannualwind
speedis2.8milesperhour.
SeverestormconditionsareinfrequentintheOakRidgearea,duetotheareabeingsouthof
mostblizzardconditions,andtoofarinlandtobeaffectedbyhurricaneactivity.Tornadoes
generallyoccurmorefrequentlyinthewesternandmiddleportionsofTennessee;however,
EasternTennesseeexperiencestornadooutbreaksofvaryingmagnitudesapproximatelyevery
threetosixyears.Inafourcountyareaaroundthesitefortheperiod1950to2020,thehighest
intensitytornadoeswereratedF3asaresultofstormsonFebruary21,1993.Duetothelow
frequency of tornadoes in this region, no specific design criteria relative to tornadoes are
requiredbytheInternationalBuildingCode.Lightningriskatthesitehasbeenaddressedthrough
lightningprotectionsystemsasspecifiedintheFireHazardsAnalysisasdescribedinChapter7.
1.1.1.3
Hydrology
Thesiteiscategorizedasupland;nowaterbodiesorwetlandswereidentifiedwithinthesite.
ThenearestwaterbodytothesiteisEastForkPoplarCreek,theclosestportionsofwhichrunin
asouthwestdirectionthroughtheindustrialparkbetweenTN95andRenovareBoulevardatan
approximateelevationoflessthan770feet.EastForkPoplarCreekemptiesintoPoplarCreek
approximately1.25milessouthwestofthesite,andPoplarCreekemptiesintotheClinchRiver
approximately3milessouthwestofthesiteboundary.
FederalEmergencyManagementAgencyFloodInsuranceRateMapNumber47145C0130F,Panel
0130F,RoaneCounty,Tennessee,andIncorporatedAreas,EffectiveDateSeptember28,2007,
showsthesitetobeinanareaofminimalfloodhazard(ZoneX).Thenearestsectionofdetailed
studyforEastForkPoplarCreekisapproximately1.5milesnortheastofthesite,witha100year
basefloodelevationof783feetatthedownstreamendofmapping.TheclosestClinchRiver
locationtothesitehasa100yearbasefloodelevationof747feetatthePoplarCreekoutlet.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page15
ThefloorsintheTRISOXFFFprocessbuildingsarelocatedatanelevationofapproximately811
feet, and the elevation of Renovare Boulevard near the primary entrance to the site is
approximately776feet.Therefore,thefacilityfloorelevationrangesfrom28to64feetabove
themapped100yearbasefloodelevationsofthenearestwaterbodiesasdescribedabove,and
thefloorelevationismorethan35feetaboveRenovareBoulevard.RenovareBoulevardis
situatedatahigherelevationthanthelowerlyingunmappedportionsofEastForkPoplarCreek
closesttothesite.
Fourgroundwaterobservationwellswereinstalledonthesiteinfallof2021withtotaldepths
andscreenedintervalsbasedonobservedfirstwateridentifiedintheuppermostbedrockduring
drilling.Nowaterwasidentifiedintheshallowunconsolidatedsurficialsedimentsabovethe
bedrock.Totalwelldepthsrangefromapproximately39feetto75feetbelowgroundsurface.
Theunderlyingbedrockinwhichtheobservationwellsarecompletedisprimarilycomprisedof
dolomiteandisthefirsttypeofbedrockencounteredatallsites.
Depth to groundwater measurements taken at the four observation wells vary from
approximately 10 to 57 feet below the top of the well casing. Groundwater elevation
measurementsandmodelingindicatethatgroundwatergenerallyflowsinasouthwestdirection
towardEastForkPoplarCreek.Basedonasearchofseveraldatabasesources,thereareno
knownhousehold,public,orindustrialusersofgroundwaterdowngradientofthesiteforthe3 miledistancethatEastForkPoplarCreektravelstoemptyintotheClinchRiver.Theclosestwell
tothesiteisaresidentialwelllocatedupgradient,1milenorthnorthwestofthesite,withinthe
PoplarCreekValleywhichisseparatedfromthesitebyBlackoakRidge.
StormwaterdischargesfromallonsitedetentionbasinsarepermittedbythestateofTennessee
undertheNPDESStormwaterMultiSectorpermittingprogramfordischargesfromindustrial
facilities.Aspartofthepermitprogram,thestateofTennesseedefinesminimumgeneralsite
maintenanceandhousekeepingpracticesandestablisheswaterqualitybasindischargeoutfall
requirementsfordischargesleavingthesite.
Stormwatercollectedduringnormaloperationswouldcontainpollutantstypicallyassociated
withrunoffcollectedfrompublicstreetsandparkingareas.Smallamountsofoilandgrease,
metals,andotherconstituentsassociatedwithvehicularactivityareexpectedtobecarriedin
runofffromtheroadsandparkingareaswithinthesite.Waterqualityofstormwaterrunoffis
maintainedthroughtheuseofdetentionponds.Stormwatergeneratediscollectedinperipheral
ditchesandtheinteriorstormwatersystembeforebeingdischargedtothestormwaterdetention
basin.Thedetentionbasinisdividedintotwoseparatesections,theforebaysectionandthemain
detentionbasinsection.Theforebaysectioncollectstherunofffromtheentirepermanentsite
areasandprovidesstorageforaportionoftherunoffforwaterqualitytreatmentthatallows
sedimentandsitegeneratedtotalsuspendedsolids(TSS)tosettleatthebottomoftheforebay.
Themaindetentionbasinsectionreceivesstormwateroverflowfromtheforebaysectionand
providesadditionalstoragefortheremainingstormwatervolumetoallowforTSStosettleatthe
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page16
bottomofthedetentionbasinsection.TreatedwatereffluentisdischargedviathevalvedNW
Outletpipeintoanexistingdrainageswalethattraversesatleast400feetthroughavegetated
pathtoanobservedsinkholefeatureintheadjacentparcel.Theintentofthedetentionbasin
designisnottooverwhelmthesinkholeareabylimitingthepostdevelopedvolumetolessthan
thepredevelopedvolumewithinthefirst24hoursofarainfallevent.Assuch,allconstituents
withinstormwaterrunoffareexpectedtobeatorbelowtheallowablelimitssetbythestateof
Tennessee.Anystormwaterrunofffromelectricaltransformers,mechanicalyardsandabove
groundtankcontainmentsiscollectedseparatelyanddisposedofafteradequatetreatment.
Groundwaterhydraulicgradientsarebasedonpotentiometriclevelcontoursofwaterlevels
collectedonSeptember16,2021,andJanuary12,2022,andareshownonFigures19and110,
respectively.Thesetwomonthswereselectedfortheirseasonalinfluence(summerandwinter)
onpotentiometriclevels,asitisapparentthatlowerevapotranspirationlevelsduringcolder
shorter days (i.e., decreases naturally as vegetation is dormant, and less need of infiltrating
water) influences groundwater availability. The interpreted flow paths, perpendicular to
contours,indicategroundwaterflowsfromnorthofthesiteinapredominantlysoutheastern
direction toward East Fork Poplar Creek and is consistent in summer and winter. The
groundwaterflowpathsdonotindicateflowtowardanypotentialgroundwaterusers.
1.1.1.4
Geology
TheTRISOXsiteislocatedwithintheValleyandRidgeProvince,along,narrowbelttrending
northeasttosouthwestthatisborderedonthewestbytheAppalachianPlateauandontheeast
bytheBlueRidgeProvince.TheprovinceisexpansiveandextendsfromVermonttoAlabama.
Thisphysiographicprovinceconsistsofaseriesofnortheast/southwesttrendingsynclinesand
anticlinescomposedofEarlyPaleozoicsedimentaryrocks.DrainagepatternsintheValleyand
Ridge Province generally follow the northeastsouthwest trend of topography. However,
segments of major rivers cut across the regional topographic alignment following deeply
entrenched,ancientstreamcourses.TheseincludethePowell,Clinch,Holston,andFrenchBroad
riversthatjointoformtheTennesseeRiverafterflowingmanymilesinnortheast/southwest trendingvalleys.
The Rome Formation and the Conasauga, Knox, and Chickamauga Groups and associated
formationscomprisethemajorityoftheunderlyingbedrockoftheValleyandRidgeProvince.
ThesiteisunderlainbylimestonesdolomitesoftheKnoxGroupandlimestoneswithinterbedded
shale, argillaceous limestone, mudstone, and wackestone associated with the Chickamauga
Group.
SiteTopography
TheterrainwithintheHorizonCenterSite(HCS)boundariesistypicaloftheOakRidgeregionand
generallycontainsmildrollinghillswithridgesandvalleys.Theexistingsitesurfaceelevations
varyfromapproximatelyElevation780feettoElevation825feetinmostpartsoftheHCS,except
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page17
atthenorthcornerwheretheexistingsurfaceelevationrisestoapproximately850feet.More
detailedtopographydescriptionsareincludedinSection3.3oftheEnvironmentalReport.
The site development for the project will include extensive site grading with cut and fill.
Engineeredfillwillbeusedforplacementandcompaction.Thefinalsitegradewillberelatively
levelacrossthesitewithmostboundariesmatchingtheexistingsurroundingtopography.The
onlysignificantslopeforthesiteisonthenorthsideofthefacility,separatedfromtheprimary
facilitystructuresandequipmentbyaperimeteraccessroad.Thisslopewillbedesignedwitha
gradeofapproximately3:1(Horizontal:Vertical)afterexcavation.Thedesignwillbeverifiedby
aslopestabilitycalculationanddesignedusingstandardgeotechnicalengineeringpractice.The
toeofthenorthslopeisexpectedtobeapproximately75feetfromtheedgeoftheeasternmost
processbuilding(PB).
SiteGeotechnicalInvestigations
SitespecificgeotechnicalinvestigationspresentedintheEnvironmentalReport,Section3.3.3.2,
indicatetheoverallsubsurfaceprofileconsistsofclaysoilsunderlainbyweatheredlimestone
anddolomitetomorecompetentbedrockatgreaterdepths.Theclayoverburdenisclassifiedas
CHorCLperUSCS(unifiedsoilclassificationsystem)andisconsideredtohavenegligiblepotential
ofliquefaction.Theinsitumediumstifftoverystifforhardclaysarenotsusceptibletostrength
degradationduringseismicevents.
Based on the drilling logs from the construction of groundwater monitoring wells (GW1 to
GW6),theoverburdensoilthicknessvariesfrom7feetto50feet.Thesoilthicknessof50feet
wasencounteredatGW1withthesurfaceelevationat841.55feet,whichwaslocatedonthe
hillatthenorthcornerofthepropertyboundary.However,thegroundwatermonitoringwells
arelocatedawayfromthemainfacilitiesnearthepropertyboundaries.Detailedinformation
about groundwater monitoring wells can be found in Section 3.4.1.2 of the Environmental
Report.
BasedonthesoilboringlogswithinthefootprintoftheHCS,theoverburdenconsistsofresidual
claysoilsencounteredatdepthsrangingfrom3.6feetto31.5feetbelowtheexistingground
surfaceatboringlocations.Thesoiloverburdenbecomesdeeperatlocationsclosertothenorth
andnorthwestboundariesonthehillside.
PotentialforDifferentialSettlement
Aftersitegradingcutandfilltoestablishthefinalgrade,theoverburdensoilthicknessbelowthe
finalgradeisexpectedtovarygenerallyfromlessthan5feettoapproximately25feetwithinthe
footprintofthetwoPBs.ThemajorityofthePBarea,alowlyingareainthemiddleofthesite,
willreceivefill.Potentialsettlementinthisareawillbemitigatedwiththefollowingmeasures.
The entire PBs are designed to rest on a large mat foundation to reduce the potential for
differentialsettlement.Furthermore,ageotechnicalgroundimprovementapproachusingan
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page18
intermediatefoundationsystemisdesignedtofurtherminimizethepotentialfordifferential
settlementfromtheunderlyingclaysoils.Thisintermediatefoundationtypeiscalledarigid
inclusion(RI)system,whichprimarilyconsistsofcementgroutcolumnsbeinginstalleddownto
thetopofbedrockacrosstheentirePBareainagridpattern.TheRIelementsaresimilartoa
pilefoundation,withoutsteelreinforcement.Typically,betweenthefoundationmatandthetop
oftheRIelementsthereisalayerofcompactedgranularsoilcalledtheloadtransferplatform
(LTP).TheLTP,RIelements,andtheinsitusoilsactasacompositematrixsystemwithoverall
improvedengineeringpropertiestomitigatedifferentialsettlements.Thelargematfoundation
supportedbytheRImatrixsystemwillminimizethepotentiallongtermdifferentialsettlement
ofthePBandensurethesafeoperationoftheproposedfacility.
SubsurfaceBearingCapacity
Thesubsurfacemediumstifftoverystiffclaysoilsdiscoveredbythesitespecificgeotechnical
investigationsexhibitadequatebearingcapacityforthePBwithstandardfactorofsafetyagainst
general soil failure based on the preliminary analysis. The primary design concern was the
potentialfordifferentialsettlementproducedbytheunderlyingclaysoils.Asdiscussedabove,
thelargematfoundationsupportedbytheRImatrixsystemwillminimizethepotentialforlong termdifferentialsettlementofthePBandensurethesafeoperationoftheproposedfacility.
WiththeuseoftheRImatrixsystem,theoverallfoundationbearingcapacitywillbeimprovedas
well. Detailed information about geology and soils can be found in Section 3.3 of the
EnvironmentalReport.
PotentialforKarstFeatures
AccordingtotheUnitedStatesGeologicalSurvey(USGS),theregioncontainingthesitemay
containcarbonaterocksthatcanbecomekarstified.Thesefoldedandfaultedcarbonaterocks
arePaleozoicinageandaresubjecttodissolutionthatmayproducearangeoffeaturesthat
includesolution,collapse,covercollapsesinkholesandcaves.Karstfeaturespreviouslyreported
onlandsadjacenttothesitehaveincludedspringsandsinkholesofvarioussizes.Whilesinkholes
areknowntooccuradjacenttothesite,nosinkholeswerereportedtooccurdirectlyonthesite.
Basedonthetopographyofthesite,severalshallowdrawsanddepressionsexistonthesite
whichmayrevealkarstfeaturesbeneaththesurface.Karstfeaturesarecausedbydissolutionof
carbonaterocksanddeepweatheringalongprevailingfracturesandstrikeorientedbedding,
creatingconduitsandvoids(openand/orclayfilled).Voidswithinthedolomiteandlimestone
bedrockwereencounteredonthesiteduringthegeotechnicaldrillingprogramtosupportfacility
design.Bedrockwasencounteredduringdrillingataminimumdepthof3.6feetandamaximum
depthof50.0feet.
Inearly2022,asubsurfaceinvestigationwasperformedtosupportthefacilitydesign,which
involved22geotechnicalsoilborings(B1toB22)andasurfacegeophysicalinvestigation.There
were6boringslocatedwithinthePBfootprintwithtotalboringdepthsrangingfrom30feetto
100feetbelowgroundsurface(b.g.s.)androckcoretotallengthsrangingfrom22feetto100
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page19
feet.VoidswereencounteredduringrockcoringinmostboringswithinthePBfootprintwiththe
verticaldimensionsfromasthinas0.2feettoapproximately2.6feet.The2.6feetopeningwas
at82feetdeepb.g.s.atonecornerofthePB,whilethemajorityofvoidswerefilledwithstiff
clayandencounteredwithintheupper25feetb.g.s.
The surface geophysical investigation performed shear wave seismic refraction tomography
(SWSRT)andelectricalresistivitytomography(ERT)tomapthesubsurfacebedrockconditions,
includingpossiblemajorvoid(emptyorsoilfilled)anomaliesassociatedwithkarstfeatures.The
tomographysurveylineswereover700feetlongeachandspacedat50feettocovertheentire
PBarea.Thegeophysicalfindingsindicatedthesamegeneralsubsurfaceprofilesasdiscovered
by soil borings, which contained shallow residual stiff overburden underlain by weathered
bedrockwithhigherweatheringatupperrockformationandveryhardcompetentrockatgreater
depths.ThegeophysicalreportalsoidentifiedsomeanomalieswheretheERTresultsshowed
highresistivityatdeepzonescomparedtothesurroundingrockdata,althoughtheshearwave
velocityatthosedeepzonesdidnotshowabnormalresults.
FurthersoilboringinvestigationswereperformedinJune2022tofocusontheanomalylocations
identifiedinthegeophysicalworkandincluded6borings(B23toB28)inthePBfootprint.Rock
coringof 60 feet to 80 feet were performed to reach those anomaly zones as identifiedby
geophysicalinvestigationand20feetto30feetbeyond(deeper)theanomalylocations.These
additionalrockcoringsamplesdidnotfindanysignificantvoidsatthoseanomalies.
Anadditionalgeotechnicalboringsubsurfaceexplorationincludedtheadvancementofeight
geotechnicaltestborings(B29toB36)atpredeterminedlocationsrepresentingtheareawhere
theTX1buildings(includingtheProcessBuilding)wouldbelocated.Similartotheprevious
subsurfaceexplorations,voidswithinthelimestonebedrockwereencounteredwithinsixofthe
eight borings. Voids ranged from as thin as 0.1 ft. (0.03 m) to as much as 4.7 ft. (1.4 m).
Occurrenceofvoidswerelimitedtotheupper45ft.(13.8m)belowgroundsurface.Thesevoids
werefoundwithinlimestoneandlimestoneinterbeddedwithshale.Detailedinformationabout
geologyandsoilscanbefoundinSection3.3,andkarstisdiscussedin3.3.2,oftheEnvironmental
Report.
SubsurfaceEngineeringCharacteristics
ThesoillayeroverbedrockgenerallyconsistsofmediumstifftoverystiffCHandCLclayatdepths
rangingfrom3.6feetto18feetbelowtheexistinggroundsurfacewithinthePBfootprint.Ata
boringlocationtothesouthofthePB,theclaywasencounteredtoadepthof27feetb.g.s.Based
onthe12geotechnicalboringsperformedinthePB/ABarea,thelimestoneanddolomitebedrock
exhibithigherweatheringatshallowerdepth(generallyupper10feetto20feet)andbecame
morecompetentatgreaterdepths.Therockcorerecoveryrangesfromapproximately24%to
100%whileRockQualityDesignation(RQD)rangesfrom0to100%.ThelowerrecoveryandRQD
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page110
weremostlywithintheupperrocklayers.Theunconfinedcompressivestrengthvaluesofintact
rockcoresrangefrom4,500psito19,500psi,whichindicateshardtoveryhardstrength.
Thecrosssectionsofsubsurfacesoil/rockprofilesareprovidedinFigures15through110.
Seismicity
TheEastTennesseeSeismicZone(ETSZ)isthesecondmostactivezoneintheeasternUnited
Statesintermsofsmallmagnitude(M<5)seismicity,secondinfrequencytotheNewMadrid
seismiczone.ActivityintheETSZhasremainedhighforseveraldecadeswithonlyafewevents
havingmagnitudesaslargeasM4.6.Generally,earthquakesintheETSZproduceminororno
damage: the largest observed earthquakes have produced only minor damage to buildings,
typicallychimneycollapse,cracksinplaster,andbrokenwindows,consistentwithintensityVIon
theModifiedMercalliIntensity(MMI)scale.
1.1.2 FacilityBuildingsandStructures
AsiteplanshowingthelocationandarrangementofbuildingsisincludedasFigure14.Security
fencingalongornearthepropertyboundariesdefinestheOwnerControlledArea.Fivebuildings
arelocatedontheTRISOXproperty:theSecurity/EmergencyOperationsCenterBuilding,the
AdministrationBuilding,twoProcessBuildings,andtheGraphite
MatrixPowder(GMP)Building.Additionalstructuresonsiteincludeexhauststacks,electrical
equipmentyards,mechanicalequipmentyards,coolingtowers,roads,parkingareas,loading
docks,storagetanks,andadetentionbasin.
TheSecurity/EmergencyOperationsCenterBuildingislocatednearthemainentrancetothe
property at Renovare Boulevard and serves as the main entry/exit security checkpoint for
vehiclesandpeopleaccessingtheproperty.TheSecurity/EmergencyOperationsCenterBuilding
alsoservesastheemergencyoperationscenterintheeventofasiteemergency.Noradiological
materialishousedinthisbuilding.
TheAdministrationBuildingisconnectedtothesouthwestcorneroftheProcessBuildingand
containsoffices,meetingrooms,lockerrooms,restrooms,andabreakareaforemployeesand
authorizedvisitors.TheAdministrationBuildingalsocontainstheentry/exitpointforworkers
accessingtheradiologicallycontrolledProcessBuilding.Noradiologicalmaterialishousedinthis
building.
ThetwoProcessBuildings,locatedatthecenteroftheproperty,receivespecialnuclearmaterial
(SNM)andshipoutfinalfuelforms(pebbles,compacts,etc.).TheProcessBuildingshouseSNM,
chemicals,andequipmenttosupportmanufactureofcoatedparticlefuelforthenextgeneration
ofcommercialnuclearreactors.TheProcessBuildingsalsoreceiveGMPfromtheGMPBuilding.
Allhandling,processing,andstorageofSNMoccursintheProcessBuildings.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page111
TheGMPBuildingislocatedsouthwestoftheProcessBuildingsandisusedtoprepareGMPfrom
rawmaterials.GMPistransportedfromtheGMPBuildingtotheProcessBuildingstobeusedin
themanufacturingprocess.NoradiologicalmaterialishousedinthisBuilding.
AdditionallayoutdescriptionsforthebuildingsandstructuresonsiteareavailableintheISA
SummarySection2.0,andtheEmergencyPlanSection1.2.
Thebuildingcodeofrecordforthebuildingsonthesiteisthe2018EditionoftheInternational
BuildingCode.ThedesignsatisfiesAmericanSocietyofCivilEngineers(ASCE)716,Minimum
DesignLoadsandAssociatedCriteriaforBuildingsandOtherStructures,structuralrequirements
for a RiskCategory IV facility.Thetypeof construction isclassified as noncombustible. All
handling,processing,andstorageoflicensedmaterialoccursinthetwoprocessbuildings.One
processbuildingissizedforoneprocessline,andtheotherprocessbuildingissizedfortwo
processlines,eachbuildingincludingsimilarprocessstepsasoutlinedinSection1.1.3.
SeismicLoad:Thedesignofthestructuresandfacilitiescomplieswithseismicloadingsbasedon
the 2018 Edition of the International Building Code and ASCE 716, as appropriate for the
geographiclocationofthesite.
TheASCE7designbasisearthquakeissetat2/3ofthesiteclassadjustedMaximumConsidered
Earthquake(MCER)accelerationsinaccordancewithSection11.4.5ofASCE716:
SDS(Design,5%damped,spectralresponseacceleration,shortperiods)=2/3*SMS=0.432
SD1(Design,5%damped,spectralresponseacceleration,1speriods)=2/3*SM1=0.122
TheSeismicDesignCategory(SDC)isdeterminedinaccordancewithSection11.6ofASCE716
asafunctionofthestructuresRiskCategoryandthemagnitudeofthedesignspectralresponse
accelerationparametersstatedabove.TheSDCfortheTRISOXFFFProcessBuildingisD.The
equivalentlateralforce(ELF)seismicanalysisprocedureisusedaspermittedbySection12.6of
ASCE716.TheELFproceduredetailedinSection12.8ofASCE716takesintoconsiderationthe
dynamic properties of the structure along with the seismic Importance Factor (1.5 for Risk
CategoryIV)structurestodeterminetheseismicresponsecoefficient(Cs)andultimatelythe
seismicforcesonthestructure.
WindLoad:Thebasic(general)windspeedof116MPHisbasedupona3,000yrreturnperiod
forRiskCategoryIVstructuresperASCE716Figure26.51DandCommentarySectionC26.5.1.
Fortornadowindloads,thedesignwindpressuresforanEF1(110MPH)tornadoutilizingthe
methoddetailedinASCE716CommentarySectionC26.14.4exceedthoseforthegeneralwind
speeds.Conservatively,thehigherpressuresdeterminedfortornadowindsareutilizedinthe
loadcombinationsintendedforgeneralwindloads.
SnowLoad:Thegroundsnowloadof10psfisdictatedbyASCE716Figure7.21andusedin
conjunctionwithequationsinCh.7ofASCE716todeterminetheloadsonthestructure.Per
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page112
ASCE716CommentarySectionC7.2,thegroundsnowloadmapsweredevelopedbytheCorp
ofEngineers,ColdRegionResearchandEngineeringLaboratory(CRREL)toestimatesnowloads
witha2%annualprobabilityofbeingexceeded(50yrMeanRecurrenceIntervalorMRI).Further
detail is provided in the aforementioned commentary section. Note also that the Snow
ImportanceFactorforaRiskCategoryIVstructureis1.20whichincreasestheflatroomsnow
loadby20%fromwhatwouldbecalculatedforacommonRiskCategoryIIstructure.
RainLoad:ThedesignrainloadfortheTRISOXFacilityis6.14in/hr(15mindurationand3.24
in/hr(60minduration).Theserainfallintensitieshaveacorrespondingannualprobabilityof
exceedanceofoncein100years.Chapter8.3ofASCE716requiresthateachportionofaroof
shallbedesignedtosustaintheloadofallrainwaterthatwillaccumulateonitiftheprimary
drainagesystemforthatportionisblockedplustheuniformloadcausebythewaterthatrises
abovetheinletofthesecondarydrainagesystematitsdesignflow.
NUREG/CR7046wasusedtoestimateadesignbasisfloodduetolocalintenseprecipitation(LIP)
andlocalstormrunoff.NUREG/CR7046definesLIPasameasureoftheextremeprecipitationat
agivenlocation.NationalOceanicandAtmosphericAdministration(NOAA)Hydrometeorological
ReportNo.56(HMR56)recommendedprobablemaximumprecipitation(PMP)valueswereused
todetermineLIPvalues.ThedesignbasisfloodfortheTRISOXfacilityisanLIPeventbasedona
1hourPMPof17.61inchesanda6hourPMPvalueof36.30inches.
IceLoad:TheProcessBuildingdoesnotmeetthedefinitionofanicesensitivestructureas
giveninSection10.2ofASCE716whichiswhyatmosphericicingloadsandwindoniceloads
arenotexplicitlyevaluatedasaloadcase.
Hydrologicaland/orGeologicalLoad:Therearenoadditionalhydrologicalloadsthatapplyto
thestructuredesignotherthansnow,ice,andrain.Therearenofloodingloadsonthestructure
andthefoundationsareabovethegroundwatertable.
1.1.3 GeneralProcessDescription
TRISOX FFF manufacturing operations consist of receiving high assay low enriched uranium
(HALEU)intheformofuraniumoxidepowderenrichedtolessthan20weightpercentU235;
convertingtheoxideintoauranylnitratesolution,intogelspheres,andthenintofuelkernels;
and processing the fuel kernels through coating, overcoating, fuel form pressing, and
carbonization.Coatedparticlesand/orfinalfuelformsareremovedfromtheprocessatthe
appropriatepointandloadedintolicensedshippingcontainersforshipmenttootherlicensed
facilities.Theseoperationsaresupportedbyshippingandreceiving,laboratory,qualitycontrol,
research and development, uranium and chemical recovery, and waste disposal processes.
DetailedfacilityandprocessdescriptionsareprovidedintheTRISOXFuelFabricationFacility
IntegratedSafetyAnalysisSummary.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page113
Alistofthemajormanufacturingstepsisprovidedbelowintheorderinwhichthematerialflows
throughtheprocessbuilding.Themaximumquantityofmaterialintheprocessiscontrolledby
thepossessionlimitsforthesiteaslistedinLicenseChapter1,Section1.2.4.MaterialControl
andAccountingproceduresusedtotrackandinventorySNMaredescribedintheTRISOXFuel
FabricationFacilityFundamentalNuclearMaterialControlPlan.
ReceiptofUraniumFeedstock-IncomingU3O8feedstockenrichedtolessthan20weightpercent
235UarrivesbytruckinapprovedcontainerslicensedbytheNRC.Shippingpackagesareunloaded
fromthedeliverytruckandmovedtoasecurestoragelocationinsidetheprocessbuildings.
ReceiptmeasurementsforMaterialControlandAccountingareperformed,andthefeedstockis
transferredintoportablecontainersandstoreduntilreadyforuseintheDissolutionprocess.
ReceiptofUranylNitrateSolution(TX1only)-Incomingliquiduranylnitratefeedstockenriched
tolessthan20weightpercentarrivesbytruckinapprovedcontainerslicensedbytheNRCor
DOE.Shippingpackagescontainingliquiduranylnitrateremainonthedeliverytrailerwhilethe
feedstocksolutionistransferredthroughahosetoastoragetanklocatedinsidetheTX1process
building.ReceiptmeasurementsforMaterialControlandAccountingareperformed,andthe
liquiduranylnitrateisconvertedtoU3O8powderbytheDiluteUranylNitrateEvaporation(DUNE)
processforuseintheDissolutionprocess.
Dissolution-U3O8powderismanuallytransferredfromaportablecontainerintoahopperina
glovebox.TheU3O8powderisthenmeteredintoanitricacidandwatersolutioninacolumn
whereitismixeduntiltherequiredamountofU3O8isdissolvedresultinginauranylnitrate
solution.Theuranylnitratesolutionisthentransferredtostoragecolumnsuntilitisreadytobe
usedintheGelationprocess.
Gelation-Theuranylnitratesolutionismixedwithorganicadditives,andliquiddropletsare
formedthatreactwithheatedsiliconeoiltoproducegelspheres.Thegelspheresareagedin
siliconeoil,washedandrinsedtoremovethesiliconeandadditives,anddried.Theresultingdried
microspheresarecombinedbymasstoformtheinputbatchestotheKernelConversionprocess.
KernelConversion-Thedriedmicrospheresareconvertedinahightemperaturefurnacetofuel
kernelsofuraniumcompounds,suchasuraniumdioxideanduraniumdicarbide,basedonthe
fuel design being fabricated. The fuel kernels undergo quality checks, and nonconforming
productsarerejectedandsenttotheUraniumRecoveryprocess.Thefuelkernelsthatpassthe
qualitychecksarecombinedbymasstoformtheinputbatchestotheCoatingprocess.
Coating-Thefuelkernelsarecoatedwithseveralcarbonouslayersusingafluidizedbedchemical
vapordepositionsystem,resultingincoatedparticlefuel.Whenfourcarbonouslayersareused,
theresultinguraniumbearingmicrospheresareknownasTRISOparticles.Thecoatedparticles
undergo quality checks and nonconforming products are rejected and sent to the Uranium
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page114
Recoveryprocess.Thecoatedparticlesthatpassthequalitychecksarecombinedbymassto
formtheinputbatchestotheOvercoatingprocess.
Overcoating-Thecoatedparticlesareovercoatedwithalayerofgraphitematrixpowder,based
onthefueldesignbeingfabricatedandthepackingfractionrequiredinthefuelelement.The
overcoatedparticles(OCPs)undergoqualitychecksandnonconformingproductsarerejected
andsenttoawashingstationtoremovetheovercoatinglayerbeforebeingreintroducedinto
theOvercoatingprocess.TheOCPsthatpassthequalitychecksarebatchedandsenttotheFuel
FormPreparationprocess.
FuelFormPreparation-OCPsarepouredintomoldsortoolingandcompressedorcompacted
intogreenfuelformsofthedesiredgeometry,suchascompactsorpebbles,basedonthefuel
designbeingfabricated.SomefueldesignsrequireencapsulatingOCPsinadditionalGMPand/or
shaping.Thegreenfuelformsundergodimensionalchecks,andnonconformingproductsare
rejectedandsenttotheUraniumRecoveryprocess.Thegreenfuelformsthatpassthequality
checksarebatchedandsenttotheHighTemperatureCarbonizationprocess.
High Temperature Carbonization - The green fuel forms are processed through a high
temperaturefurnacetoconvertthegreenbodyintoastrongcarbonizedfuelformcapableof
withstandinghandlingandreactorserviceconditions.Finalfuelformpebblesaremachinedto
thespecifiedfueldiameter.Thefinalfuelformsundergoqualitychecksandthosethatpassare
loadedintointerimstoragecontainersuntilanorderisreadyforloadingintoshippingcontainers.
NonconformingproductsarerejectedandsenttotheUraniumRecoveryprocess.
Uranium Recovery - Uranium is recovered from damaged, degraded, or otherwise non conformingproductmaterialsthroughavarietyofbatchoperations.Thebatchoperationssize
reduce,deconsolidate,oxidize,and/orconvertthenonconformingproductmaterialstoU3O8
powdersothatitcanbeusedasfeedstockfortheDissolutionprocess.
ShippingandTransportation-Allshipmentsofnuclearmaterialsandwastesareconductedin
conformance with NRC, U.S. Department of Transportation, and State of Tennessee
requirements.IncomingU3O8feedstockarrivesbytruckinapprovedcontainerslicensedbythe
NRC.Incomingliquiduranylnitratefeedstockarrivesbytruckinapprovedcontainerslicensedby
theNRCorDOE.Finalfuelformsareshippedouttocustomersbytruckinapprovedcontainers
licensedbytheNRC.Lowlevelwasteshipmentsareappropriatelypackagedandanalyzedfor
uraniumcontentpriortoshipmenttolicensedlowlevelwastedisposalsites.
1.1.4 RawMaterials,Products,ByProductsandWastes
- 1. ThefeedmaterialfortheTRISOXFFFisuraniumoxidepowder.Themanufacturing, recovery,support,andwastepackagingactivitiesaresupportedbyanumberofnon
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page115
radiologicalchemicalmaterialsstoredinbulkquantities,aslistedintheNRCrequired
EmergencyPlanandISASummary.
- 2. Finished products containing licensed material include coated particles and final fuel formsinvariousshapesandconfigurations.
- 3. There are no byproducts as defined by 10 Code of Federal Regulations (CFR) 30.4 extractedorconvertedafterextractionfromtheTRISOXFFFforuseinacommercial, medical,orresearchactivity.
- 4. Uraniumisrecoveredfromnonconformingproductmaterials,processsolutions,and scrapmaterialsbyprocessingitintoaformthatissuitableforuseasfeedstockinthe manufacturingprocess.
- 5. Process solutions contaminated with uranium that cannot be recovered/recycled are identified as liquid wastes. Liquid wastes are collected and sampled to determine appropriatehandling/treatmentsteps.TreatmenttypicallyinvolvesadjustmentofpH, filtering,ionexchange,and/orprecipitation.Precipitatesaredewatered,andthesolids are packaged for offsite disposal. If needed, liquid wastes that have been handled/treatedcanbesampledanddischargedthroughaninlinemonitortoshipping packages for offsite disposal. Used oils may also be sampled and containerized for shipmenttoalicenseddisposalfacility.
- 6. Airborneeffluentsaredischargedtotheatmosphereviaanumberofprocessstacks.
HEPA filtration and scrubber systems are used where needed to remove radioactive particulatesandchemicalsfromairborneeffluentstoassurecompliancewith10CFR20 andapplicableStateofTennesseeregulationspriortodischargetotheatmosphere.See Chapters4and9forprogrammaticinformationformanagingandmonitoringradioactive airborneeffluentdischarges.
- 7. Wastewater from systems and equipment in nonradiological mechanical equipment areasofthefacilityandsanitarywastesfrombathroomsandshowersaredischarged through piping which goes to the City of Oak Ridge publicly owned treatment works (POTW).TheCityofOakRidgeprocessforpermittingdischargestothePOTWwilldefine monitoringrequirementstoassesspotentialcontaminantsinsanitarywastestreams.No uraniumwillbepresentinthiswastewaterstream.
- 8. Solid waste materials include, but are not limited to, damaged and/or obsolete equipment,usedventilationfiltersandpersonalprotectiveequipment,processingand wastetreatmentresidues,andmiscellaneouscombustiblewastes.Materialscouldbe radiologically contaminated, noncontaminated, hazardous, or mixed (hazardous and radioactive). Solid waste materials are processed, recycled, and/or containerized for shipmenttoalicenseddisposalfacility.
1.2 InstitutionalInformation
1.2.1 CorporateIdentity
ThisapplicationisfiledbyTRISOX,LLC,aDelawarelimitedliabilitycompany,headquarteredat
530GaitherRoad,7thFloor,Rockville,Maryland.TRISOX,LLCisawhollyownedsubsidiaryofX
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page116
Energy,LLC,aMarylandlimitedliabilitycompany.TRISOX,LLCisaprivatelyheldcompanyand
is not owned or controlled by a foreign corporation or government. The principal place of
businessandlocationofthelicensedfacilityisasfollows:
TRISOXFuelFabricationFacility
170RenovareBoulevard
OakRidge,Tennessee37830
1.2.2 U.S.NuclearRegulatoryCommissionLicenseInformation
- 1. DocketNumber:707027
- 2. LicenseNumber:TBD
- 3. PeriodofLicense:40years 1.2.3 FinancialQualifications
AsummaryoffinancialqualificationsthatdemonstratesthefinancialcapabilityofTRISOX,LLC
toconstructandoperatetheTRISOXFFFhasbeensubmittedseparatelyforNRCreview.The
financialarrangementstoassurethatdecommissioningfundswillbeavailablearesetforthin
Chapter10.
1.2.4 Type,Quantity,andFormofLicensedMaterial
The following types, maximum quantities, and forms of special nuclear materials (SNM) are
authorizedunder10CFR70.
- 1. [
]SRIkilogramsofU235containedinuraniumenrichedtolessthan20%,inany chemical/physical form. Contaminants may include transuranic materials and fission products(SumofAlphas1,410Bq/gU,SumofBetas243Bq/gU,SumofGammas
2,710Bq/gU).
- 2. 350 grams of U235 in any chemical/physical form and at any enrichment for use in measurement and detection instruments, check sources, and instrument response standards.
- 3. 350 grams of U235 in any chemical/physical form and at any enrichment for use in researchanddevelopmentstudies.
- 4. 25 millicuries of plutonium as counting and calibration standards and/or for use in researchanddevelopmentstudies.
- 5. 1 microcurie of any SNM as sealed and unsealed radioactive sources for use in measurementanddetectioninstruments,checksources,instrumentresponsestandards, andcountingandcalibrationstandards.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page117
1.2.5 AuthorizedUsesandActivities
ThislicenseauthorizestheuseofSNMforoperationsinvolvingenricheduraniumpursuantto10
CFRPart70aslistedinthissection.Thisalsoincludesthesupportactivitiesrelatedtothe
manufactureofSNMcontainingproducts.
- 1. ManufacturingOperations
- a. FuelManufacturing-Conversionofuraniumoxidestouranylnitratesolutions, andfabricationofcoatedparticlesandfinalfuelformscontaininguranium.
- b. UraniumRecovery-recycling/recoveryofSNMfromprocessscrapmaterials.
- 2. LaboratoryOperations
- a. Chemical,instrumental,andphysicalanalysesandtestingonmaterialconsisting ofand/orcontainingSNM.
- b. Preparationofanyrequiredsamplesorstandards.
- 3. Research and Development Operations - Process, product, and other research and development activities using natural, source, and SNM compounds and mixtures in benchtop,laboratoryscale,and/orfullscaleprototypeequipmentenvironmentsrelated to:
- a. Enricheduraniumfueldesigns.
- b. Manufacturingandprocessingtechnologyandequipment.
c.
Recycling/recovery.
- 4. WasteOperations
- a. Volumereduction,treatment,packaging,andstorageofliquidandsolidwastes contaminatedwithorcontainingnonrecoverableuranium.
- b. Treatment,packaging,andstorageofhazardousormixedwaste.
c.
Shipmentofwastestolicensedfacilitiesfordisposal.
- 5. SupportOperations
- a. Receipt,handling,andstorageofrawmaterials.
- b. Storageoflicensedmaterialcompoundsandmixturesinareaswithcontainers arrangedspecificallyformaintenanceofradiologicalandnuclearsafety.
c.
Storage of finished fuel products and the preparation of these products for transportationoffsite.
- d. Decontaminationofequipmentandmaterials.
- e. Maintenance,repair,calibration,and/ortestingofSNMprocessingequipment, instruments,auxiliarysystems,contaminatedequipment,andfacilities.
1.2.6 SiteSafeguards
PhysicalsecurityattheTRISOXFFFisdescribedintheNRCapprovedTRISOXFuelFabrication
Facility Physical Security Plan, and nuclear material control and accountability (MC&A) is
describedintheNRCapprovedTRISOXFuelFabricationFacilityFundamentalNuclearMaterial
ControlPlan.Bothplansaremaintainedcurrentinaccordancewithapplicableregulationsas
outlinedinChapters12and13.Theseplansdetailthemeasuresemployedatthefacilitytodetect
potential loss of, and mitigate the opportunity for theft of, SNM of Moderate Strategic
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page118
Significance, in accordance with the applicable requirements of 10 CFR 73 and 10 CFR 74.
SafeguardsInformationiscontrolledasdescribedintheTRISOXFacilitySafeguardsInformation
Plan.
1.2.7 Terminology/Definitions
Definitionsfortermsspecifictoaparticularsafetyfunctionmaybegiveninthecorresponding
chapteronthatfunction.Thefollowingdefinitionsapplytotermsusedinthislicense:
Term
Definition
U235Enrichments
Low enriched uranium, which is also known as high assay low
enricheduranium(HALEU),isdefinedasanycompoundofuraniumin
whichtheenrichmentintheisotopeofuranium235islessthan20
percentbyweight.
NuclearSafety
Nuclearcriticalitysafety
Will,Shall
Arequirement.
Should
Arecommendation.
May
Permission(optional),neitherarequirementnorarecommendation.
Are
Anexistingpracticeforwhichthereisarequirementtocontinue.
Frequencies
Whenaudit,measurement,surveillance,and/orotherfrequenciesare
specifiedinlicensedocumentsandapprovedprocedures,thefollowing
timespansapply:
Monthly-anintervalnottoexceed40days
Quarterly-anintervalnottoexceed4months
SemiAnnually-anintervalnottoexceed7months
Annually-anintervalnottoexceed15months
Biennially-anintervalnottoexceed30months
Triennially-anintervalnottoexceed45months
Fortimespansnotcoveredabove,anextensionof0.25times theintervalwillapply.
CriticalityControlor
CriticalitySafety
Control
Theadministrativeandtechnicalrequirementsestablishedtominimize
theprobabilityofachievinginadvertentcriticalityintheenvironment
analyzed.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page119
Term
Definition
WorkAreaAir
Samplers
Stationary air samplers used to measure the effectiveness of
containment.Ifstationaryairsamplersaredemonstratedtorepresent
the air breathed by a worker, the results may be used to estimate
workerdose.Wherestationaryairsamplershavenotbeenprovento
berepresentativeoftheairaworkerbreathes,lapelairsamplersmay
beusedtoestimatetheworkersdose.
Equivalent
Experience
For the purpose of meeting educational requirements described
throughoutthelicense,two(2)yearsexperienceisconsideredtobe
equivalenttoone(1)yearofpostsecondaryeducation.Forexample,
eight(8)yearsofapplicableexperiencewillsatisfytherequirementfor
aB.S.degree(4yearsofpostsecondaryeducation).
OwnerControlled
Area
Asiteareaboundedbyafencedesignedtoprovidephysicalsecurity,
andwhichencompassestheControlledAccessArea.Theareacontains
radioactivematerialprocessing,storage,andlaboratoryareas,aswell
assupportfunctions.
RestrictedArea
A site area in which individuals may be exposed to radiation or
radioactive material at levels or concentrations in excess of that
allowedforthegeneralpublic(seedefinitionin10CFR20.1003).This
couldincludeanylocationonthesitewheretheTRISOXFFFislocated,
depending upon activities conducted and the exposure potential as
evaluatedbythesafetyfunction.
Radiologically
ControlledArea
Asiteareawhereuncontainedradioactivematerialispresent,suchthat
contamination levels are likely to be encountered in excess of
acceptablelevelsforunrestricteduse.Thistypeofarea,designatedfor
contaminationcontrolpurposes,requiresvariouslevelsofprotective
clothingandotherpersonnelprotectiveactions.Itcouldincludeany
location within the Restricted Area, either on a permanent or
temporarybasis.Thistermisanalogoustothe10CFR20.1003defined
termcontrolledareaanarea,outsideofarestrictedarea,butinside
thesiteboundary,accesstowhichcanbelimitedbythelicenseefor
anyreason.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page120
Term
Definition
UncontrolledArea
Asiteareawhereradioactivematerialsmaybehandledintheformof
sealedsources,inpackagesorclosedcontainers,insmallamounts(air
samples, bioassay samples, etc.), or not at all. This type of area is
designatedforcontaminationcontrolpurposesandisnotlikelytohave
contaminationatlevelsinexcessofthoseacceptableforunrestricted
use.
ConditionsAdverse
toSafety
AsusedinSections2.2,2.5.1,11.6,11.6.1,and11.8,eventsthatcould
havethepotentialtoimpactthesafetyoflicensedactivities,including
equipmentfailures,malfunctions,ordeficiencies;procedureproblems,
errors, or omissions; improper installations; nonconformances with
regulatoryrequirementsorcommitments;qualityrelatedissues;ora
significant condition, such that if uncorrected, could have a serious
effectonsafety.
1.3
SpecialExemptionsandSpecialAuthorizations
1.3.1 SpecialExemptions
1.3.1.1CriticalityMonitoring
10CFR70.24(a)requiresalicenseeauthorizedtopossessSNMinstatedamountstomaintainin
eachareainwhichsuchlicensedSNMishandled,usedorstoredtoemployaCriticalityAccident
AlarmSystem(CAAS)meetingthestatedrequirements.
Notwithstandingtherequirementsof10CFR70.24(a),thelicenseeisgrantedanexemptionfrom
criticalitymonitoringrequirementsforSNMstoredinauthorizedshippingcontainerscomplying
withtherequirementsoftheCodeofFederalRegulations,Title10,Part71,andwhicharein
isolatedarraysoronatransportvehicleandwhicharenomorereactivethanthatapprovedfor
transport.
Therequirementsin10CFR71.55,GeneralRequirementsforFissileMaterialPackages,and10
CFR 71.59, Standards for Arrays of Fissile Material Packages, ensure that arrays will remain
subcriticalundernormalconditionsandunderaccidentconditions.Theexemptiondoesnot
affectthelevelofprotectionforeitherthehealthandsafetyofworkersandthepublicorforthe
environment;nordoesitendangerlifeorpropertyorthecommondefenseandsecurity.
Under the provisions of 10 CFR 70.17, Specific Exemptions, the Commission may, upon
application, grant exemptions from the requirements of 10 CFR 70 when the exemption is
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page121
authorizedbylaw,willnotendangerlifeorpropertyorthecommondefenseandsecurityand
areotherwiseintheinterestofthepublic.
The exemption is authorized by law because the Atomic Energy Act of 1954, as amended,
containsnoprovisionsprohibitingalicenseefrombeingexemptedfromCAASmonitoringina
givenareainwhichthereisnegligibleriskofcriticality.Grantingsuchanexemptionwillnot
endangerlife,property,orthecommondefenseandsecurity.
Grantingthisexemptionto10CFR70.24(a)isinthepublicinterestbecausehavingcriticality
accidentalarmsinanareainwhichthereisanegligibleriskofcriticalitymaycauseunnecessary
evacuationsandanemergencyresponsebasedonapotentialspuriousalarm.Spuriousalarms
couldalsocauseunnecessaryrisktoindividualsduringanevacuationandprovideconfusing
informationaboutthesafetyofthefacilitytothepublic.
1.3.1.2PostingandLabeling
10CFR20.1904(a)requiresalicenseetoensurethateachcontaineroflicensedmaterialbearsa
durable, clearly visible label bearing the radiation symbol and the words: CAUTION,
RADIOACTIVEMATERIALorDANGER,RADIOACTIVEMATERIAL.Thelabelmustalsoprovide
sufficient information (such as the radionuclide(s) present, an estimate of the quantity of
radioactivity,thedateforwhichtheactivityisestimated,radiationlevels,kindsofmaterials,and
massenrichment)topermitindividualshandlingorusingthecontainers,orworkinginthevicinity
ofthecontainers,totakeprecautionstoavoidorminimizeexposure.
Notwithstandingtherequirementsof10CFR20.1904(a),thelicenseeisgrantedanexemption
fromaffixingalabeltoeachcontaineroflicensedmaterialwhenentrancesintoeachbuildingin
whichradioactivematerialsarestored,used,orhandledarepostedwithasignstating"EVERY
CONTAINERORVESSELWITHINTHISAREAMAYCONTAINRADIOACTIVEMATERIALS".
Granting this exemption request is otherwise in the public interest because it promotes
regulatoryefficiency.Theexemptionrelievesthelicenseefromarequirementtolabelcontainers
oflicensedmaterialincontrolledareastowhichthepublichasnoaccess;therefore,theactivities
donotpresentarisktopublichealthandsafety.Grantingtheexemptionallowsthelicenseeto
focustheresourcesrequiredtofulfillthelabelingrequirementonotheractivities.
Theexemptionisauthorizedbylawbecausethereisnostatutoryprohibitionontheproposed
postingofasinglesignindicatingthateverycontainerinthepostedareahasthepotentialfor
internalcontamination.Toreduceunnecessaryregulatoryburden,theNRCissuedafinalrulein
2007 that, in part, modified 10 CFR 20.1905, Exemptions to Labeling Requirements, thereby
exemptingcertaincontainersholdinglicensedmaterialfromthelabelingrequirementsof10CFR
20.1904ifcertainconditionsaremet.Althoughthe2007rulemakingonlyappliedtofacilities
licensedunder10CFR50and10CFR52,Licenses,Certifications,andApprovalsforNuclearPower
Plants,therationaleunderlyingtherulesupportstheexemptionrequest.ExemptingTRISOX
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page122
fromthisrequirementreduceslicenseeadministrativeandinformationcollectionburdensbut
servethesamehealthandsafetyfunctionsasthecurrentlabelingrequirements.Therefore,the
exemptiondoesnotaffectthelevelofprotectionforeitherthehealthandsafetyofworkersand
thepublicorfortheenvironment;nordoesitendangerlifeorpropertyorthecommondefense
andsecurity.
1.3.1.3ICRP68DACandALIValues
Derivedairconcentration(DAC)andtheannuallimitonintake(ALI)valuesbasedonthedose
coefficientspublishedintheInternationalCommissiononRadiationProtectionPublication68
(ICRP68)maybeusedinlieuoftheDACandALIvaluesinAppendixBof10CFR20inaccordance
withapprovedprocedures.SeeChapter4foradditionaldetails.
TheICRP68guidancewaspromulgatedafterthe10CFR20,AppendixBcriteriawereestablished,
and provides an updated and revised internal dosimetry model. Use of the ICRP68 models
providemoreaccuratedoseestimatesthanthemodelsusedin10CFR20andallowsTRISOXto
implement an appropriate level of internal exposure protection. In a Staff Requirements
MemorandumdatedApril21,1999(SECY99077),theCommissionapprovedthestaffgranting
exemptionsbasedontheprecedentsetbythedecisiontoauthorizetheuseofmodelsinICRP
Publication68.
ThisexemptionisinaccordancewiththeAsLowAsisReasonablyAchievable(ALARA)principle,
internationalstandardsonradiationprotection,anddoesnotconflictwithestablishedNRCdose
limits.Nonewaccidentprecursorsarecreatedbythisexemptiontoallowmodificationtothe
valuesusedtoassessinternaldose.Thereisnosignificantincreaseintherisktoworkersor
membersofthepublicasaresultofthisexemption.Theactivitiesthatareauthorizedbythis
exemptionareincompliancewithlawandwillnotendangerlifeorpropertyorthecommon
defenseandsecurity.
1.3.1.4ICRP60OrganDoseWeightingFactors
Tissue weighting factors listed in the International Commission on Radiation Protection
Publication 60 (ICRP60) may be used in lieu of the organ dose weighting factors in 10 CFR
20.1003 for effective dose assessments listed in ICRP68 methodologies, in accordance with
approvedprocedures.
TheICRP60guidancewaspromulgatedinthesameyearthat10CFR20organdoseweighting
factorswereestablished.UseoftheICRP60modelsprovidemoreaccuratedoseestimatesthan
themodelsusedin10CFR20andallowsTRISOXtoimplementanappropriatelevelofinternal
exposureprotection.InaStaffRequirementsMemorandumdatedApril21,1999(SECY99077),
the Commission approved the staff granting exemptions based on the precedentset by the
decisiontoauthorizetheuseofmodelsinICRPPublication68.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page123
Theunderlyingpurposeof10CFRPart20istoensurethatoccupationalworkersandmembers
ofthepublicareprotectedfromradiation;thattheirdoses,asaresultoflicensedactivities,are
withinprescribedlimits;andthattheirdosesareALARA.
ThisexemptionisinaccordancewiththeALARAprinciple,internationalstandardsonradiation
protection,anddoesnotconflictwithestablishedNRCdoselimits.Nonewaccidentprecursors
arecreatedbythisexemptiontoallowmodificationtothevaluesusedtoassessinternaldose.
Thereisnosignificantincreaseintherisktoworkersormembersofthepublicasaresultofthis
exemption.Theactivitiesthatareauthorizedbythisexemptionareincompliancewithlawand
willnotendangerlifeorpropertyorthecommondefenseandsecurity.
1.3.1.5CertainUnplannedContaminationEvents
Notwithstandingtherequirementsof10CFR70.50(b)(1),thelicenseeisgrantedanexemption
fromtherequirementtoreportunplannedcontaminationeventswhenthefollowingconditions
aremet:
- 1. Theeventoccursinarestrictedareainabuildingwhichismaintainedinaccessibleto thepublicbymultipleaccesscontrols.
- 2. Theareawascontrolledforcontaminationbeforetheeventoccurred,thereleaseof radioactivematerialisundercontrol,andnocontaminationhasspreadoutsidethearea.
- 3. Radiationsafetypersonneltrainedincontaminationcontrolarereadilyavailable.
- 4. Equipmentandfacilitiesthatmaybeneededforcontaminationcontrolarereadily available.
- 5. Theotherwisereportableunplannedcontaminationeventisdocumentedinthe licenseesCorrectiveActionProgram.
Chapter4describestheradiationprotectionprogrammeasuresthatkeepworkerexposures
ALARAthrough:(a)approvedradiationprotectionproceduresandradiationworkpermits;(b)
theuseofventilationsystems,containmentsystems,andrespiratorstocontrolexposureto
airborneradioactivematerial;(c)theuseofprotectiveclothingtopreventthespreadofsurface
contamination;(d)theuseofsurveysandmonitoringprogramstodocumentcontamination
levels and exposures to workers; and (e) identification of items relied on for safety and
managementmeasurestomaintainthoseitemsavailableandreliable.
Inaddition,(f)accesstothesiteisrestrictedtoindividualsthathavecompletedsitespecific
nuclearsafetytrainingrequirementsorindividualsthatareformallyescorted;(g)duringnormal
operations,trainedandqualifiedradiationprotectionstaffingisprovidedandreadilyavailableto
supportandrespondtoradiologicalconditions,andthestaffistrainedincontaminationcontrol
proceduresandtechniquesrequiredforrespondingtoacontaminationeventwhenneeded;(h)
appropriateradiationsurveysareperformedbyqualifiedpersonnelduringorafteranunplanned
contaminationeventasnecessarytoassessradiologicalconditionsandprovidetheappropriate
response,surveyresultsarecomparedtospecifiedactionguides,appropriateactionsaretaken
when contamination levels in excess of action levels are found and the affected area is
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page124
decontaminatedinasafeandtimelymanner,andsurveyrecordsforcontaminationeventsare
documentedpursuantto10CFR20.2103andareavailableforreview.
Based on the limited scope of the exemption, and the access and contamination controls,
training,radiationsurveysandotherALARAmeasuresdescribedintheapplication,grantingthe
exemptionasstatedabovedoesnotendangerlifeorproperty.Theexemptiondoesnotalter
reportingrequirementsforunplannedcontaminationeventsthroughotherNRCrequirements
suchas10CFR20.2202,Notificationofincidents,and10CFR20.2203,Reportsofexposures,
radiationlevelsandconcentrationsofradioactivematerialexceedingtheconstraintsorlimits.In
addition,theexemptiondoesnotinvolveinformationoractivitiesthatcouldimpactthecommon
defenseandsecurity.
Granting this exemption request is otherwise in the public interest because it promotes
regulatoryefficiency.Theexemptionrelievesthelicenseefromareportingrequirementfor
unplannedcontaminationeventsthatdonotpresentarisktopublichealthandsafetygiventhe
sitespecificconditionsandprogramsdescribedabove.Specifically,theexemptionrelievesthe
licenseefromgeneratingreportsofcontaminationeventsincontrolledareaswheretherelease
ofradioactivematerialisundercontrolandnocontaminationhasspreadoutsidethecontrolled
area.Grantingtheexemptionallowsthelicenseetofocustheresourcesrequiredtofulfillthe
reportingrequirementonotheractivities.Inaddition,itrelievestheNRCstafffromreceiving
andprocessingreportswhichdonotpresentarisktopublichealthandsafety.
Therefore,theexemptiondoesnotaffectthelevelofprotectionforeitherthehealthandsafety
ofworkersandthepublicorfortheenvironment;nordoesitendangerlifeorpropertyorthe
commondefenseandsecurity.Grantingofthisexemptionwillnotresultinaviolationofthe
AtomicEnergyActof1954,asamended,theCommissionsregulations,orotherlaws.Therefore,
theexemptionisauthorizedbylaw.
1.3.2 SpecialAuthorizations
1.3.2.1ChangestotheLicenseApplication
ChangesmaybemadetotheLicenseApplicationand/ortosupportingdocumentsreferencedin
thelicensewithoutpriorNRCapprovalprovidedthatthefollowingconditionsaremet:
- 1. Thechangedoesnotdecreasethelevelofeffectivenessofthedesignbasisasdescribed intheLicenseApplication.
- 2. Thechangedoesnotresultinadeparturefromthemethodsofevaluationdescribedin theLicenseApplicationusedinestablishingthedesignbasis.
- 3. Thechangedoesnotresultinadegradationofsafety.
- 4. Thechangedoesnotaffectcompliancewithapplicableregulatoryrequirements.
- 5. Thechangedoesnotconflictwithanexistinglicensecondition.
- 6. Within30daysaftertheendofthecalendaryearinwhichthechangeisimplemented, thelicenseeshallsubmittherevisedchaptersoftheLicenseApplicationtotheDirector,
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page125
NMSS,usinganappropriatemethodlistedin10CFR70.5(a),andacopytotheappropriate
NRCRegionalOffice.
Thisauthorizationisconsistentwiththeprocessformakingchangesunder10CFR70.72,Facility
ChangesandChangeProcess,andisfurthersupportedbySectionC5,OtherChanges,inNRC
RegulatoryGuide3.74,GuidanceforFuelCycleFacilityChangeProcesses,January2012.
1.3.2.2ReleaseforUnrestrictedUse
LimitsdevelopedbytheNRCasspecifiedinGuidelinesforDecontaminationofFacilitiesand
EquipmentPriortoReleaseforUnrestrictedUseorTerminationofLicensesforByproduct,Source,
orSpecialNuclearMaterial,U.S.NuclearRegulatoryCommission,April1993,maybeusedfor
decontaminationandsurveyofsurfacesorpremisesandequipmentpriortoabandonmentor
releaseforunrestricteduse.
TheseguidelinesareincludedasaregulatoryacceptancecriterioninNUREG1520,Standard
ReviewPlanfortheReviewofaLicenseApplicationforaFuelCycleFacility,asanacceptable
methodofdemonstratingcompliancewiththeradiationsurveyandmonitoringrequirementsin
10CFRPart20.SeeChapter4foradditionaldetails.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page126
Figure11:SiteLocation
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page127
Figure12:KeyFeaturesNeartheSite
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page128
Figure13:RegionalHighwaysandInterstatesNeartheSite
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page129
Figure14:SitePlan
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page130
Figure15:PlanViewofGeologicCrossSections
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page131
Figure16:GeologicCrossSection1
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page132
Figure17:GeologicCrossSection2
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page133
Figure18:GeologicCrossSection3
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page134
Figure19:GeologicCrossSection4
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page135
Figure110:GeologicCrossSection5
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page136
Figure111:GroundwaterContours-September2021
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page137
Figure112:GroundwaterContours-January2022
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page138
REVISION
SUMMARY
Revision
Date
Section/Page DescriptionofChanges
1
5Apr22
ALL
Initialissue.
2
4Nov22
N/A
AllchangesforthisrevisionarebasedonRSIresponsesinTX0LTR0006.
Section1.1.1
Addedgeotechnicaldiscussionofsiteregardingslopestability,soil
liquefaction,differentialsettlement,bearingcapacity,karstfeatures,and
sitecrosssections.(RSI7.1,7.2,7.3,7.4,7.5,7.6)
Section1.1.2
Addeddesignbasisvaluesforseismic,wind,precipitation,hydrological,
andgeologicalNPH.(RSI6.1)
Section1.3
Separatedspecialexemptionsandspecialauthorizations.Renumbered
subsections.(RSIObservation)
Section
1.3.1.1
Addeddetailforcriticalitymonitoringexemption.(RSI1A,RSI
Observation)
Figures13
thru18
Addednewfiguresforsitegeologicalcrosssections.(RSI7.6)
Dec24
ALL
AddeddocumentnumberTXFREGNRC0001toheader.
Section
1.1.1.1,
Figure12,
Figure13
RevisionsbasedonRAIresponses,TX0LTR0022
x AddedreferencetonewFigure12toshowkeyfeaturesnearthe siteduetoLicenseChapter1RAI1.
x AddedreferencetoEnvironmentalReportfiguresthatcontain moreinformationaboutpopulationnearthesiteduetoLicense Chapter1RAI5.
x Updatednearestschoolname,direction,anddistancedueto LicenseChapter1RAI5.
x AddeddescriptionofandreferencetonewFigure13toshow regionalhighwaysandinterstatesnearthesiteduetoLicense Chapter1RAI6.
Sections
1.1.1.3,1.1.2
Updatedtoreflectmorethanoneprocessbuildingisplannedforthesite.
Section
1.1.1.3
RevisionsbasedonRAIresponses
x Updateddescriptionofnearestusersofgroundwater downgradientofthesiteduetoTX0LTR0022,LicenseChapter1 RAI7.
x Addeddescriptionofthestormwatersystemonthesitedueto TX0REGLTR0042,HydrologyRAI4.
x AddeddescriptionofandreferencetonewFigures19and110 thatshowseasonalgroundwaterpotentiometriclevelcontourson thesite.(HydrologyRAI6)
Section
1.1.1.4
UpdatedPotentialforKarstFeaturesduetoTX0LTR0028,Hydrology
RAI1.AddedreferencetoadditionalboringsperformedforTX1location.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0001
SNMXXXX
CHAPTER1
ZŽ
December2024
Page139
Section1.1.2
x Expandedthedescriptionsofthefivebuildingsplannedforthesite duetoTX0LTR0022,LicenseChapter1RAI1.
x AddedcommitmenttoASCE716RiskCategoryIVduetoTX0REG LTR0045,Enclosure1StructuralRAI2,andupdateddesignload values.
Section1.1.3
AddedbriefdescriptionsforthemajormanufacturingstepsduetoTX0 LTR0022,LicenseChapter1RAI3.Alsoaddednewprocessstepto
receive/store/converturanylnitratetouraniumoxidetoaccountfor
alternateHALEUfeedmaterial.
Section1.1.4
UpdatedItems5,6,and7duetoTX0LTR0022,LicenseChapter1RAI8
andRAI9.
Section1.2.1
UpdatedlegalcorporateaddressforTRISOX,LLCduetocorporateoffice
relocation.UpdatedfacilityaddressrecentlyassignedbytheCityofOak
Ridge.
Section1.2.4
x Deletedreferencesto10CFR30and40anddeletedItems5and6 duetoTX0LTR0024,LicenseChapter1RAI10andRAI11.
x UpdatedU235valueforItem1basedonquantityrequiredto operateTX1andTX2.
x UpdatedcontaminantvaluesforItem1basedonevaluationof characterizationdataforthealternateHALEUfeedmaterialinthe formofuranylnitrate.
Section1.2.7
WorkAreaAirSamplers-rewordedtoimprovereadability.
ConditionsAdversetoSafety-updatedsectionreferences.
Section
1.3.1.2
Addressedwhygrantingtheexemptionrequestisotherwiseinthepublic
interestduetoTX0LTR0022,LicenseChapter1RAI14A.
Section
1.3.1.5
Addressedwhygrantingoftheexemptionisauthorizedbylaw.
Figure14
RenumberedFigure12duetoinsertionofnewFigures12and13.
Updatedtocurrentversionofsiteplan.
Figures15
to110
RenumberedFigures13to18duetoinsertionofnewFigures12and13.
Updatedfigurestoshowboringlocationssuperimposedonthefootprintof
theprocessbuildingduetoTX0LTR0028,GeotechnicalRAI1.
Figure111,
Figure112
AddedduetoTX0LTR0028,HydrologyRAI6.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0002 SNMXXXX CHAPTER 2 ZŽ
December 2024 Page 21 ORGANIZATION AND ADMINISTRATION Table of Contents SECTION TITLE STARTS ON PAGE 2.1 General Safety Policy and Responsibilities 22 2.2 Site Organization 22 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.4.4 2.3.4.5 2.3.4.6 2.3.4.7 2.3.4.8 2.3.4.9 2.3.5 Organizational Responsibilities, Authority, and Qualifications Plant Manager Manufacturing Engineering Regulatory Affairs Nuclear Criticality Safety Function Radiation Protection Function Environmental Protection Function Industrial, Chemical, and Fire Safety Functions Integrated Safety Analysis Function Licensing Function Material Control and Accountability Function Security Function Emergency Preparedness Function Quality Assurance 23 2.4 Safety Review Committee 29 2.5 2.5.1 2.5.2 2.5.3 Administration Reporting of Potentially Unsafe Conditions or Activities Management Measures OffSite Emergency Response Resources 210 2.6 Transition from Design to Construction to Operations 210 TRISO-X Document Control 2024.12.30 11:58:01
-05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page22
ORGANIZATIONANDADMINISTRATION
2.1
GeneralSafetyPolicyandResponsibilities
ItisTRISOXspolicythatradiationexposurestoemployeesandthegeneralpublicbekeptALARA.
TRISOXspolicyfurtherensuresthatenvironmentalprotectionmeasuresareinplacetocontrol
andmonitorgaseousandliquideffluentsandappropriatelymanageradioactivesolidwasteto
ensurefacilityoperationsmeetapplicableregulations.Responsibilityforsafetyinthevarious
manufacturing lines, processes, and services is delegated to the lowest practical level of
supervision.Safetyistheresponsibilityofeachsupervisorwithinhis/herownarea.Through
trainingandperiodicretraining,eachindividual,regardlessofposition,ismadeawarethatsafety
inhis/herworkareaisultimatelyhis/herresponsibility.
2.2 SiteOrganization
TheTRISOXorganizationprovidesthemanagement,administrative,andtechnicalcapabilities
forensuringthatdesign,construction,startup,modifications,andoperationsutilizinglicensed
materials are conducted in a manner that is protective of its workers, the public, and the
surroundingenvironment,andremainincompliancewithapplicableFederal,State,andlocal
regulations,licenses,andpermits.Thisresponsibilityisimplementedthroughthedisciplinesof
manufacturing, engineering, regulatory affairs, and quality assurance, as described in the
sectionsbelow,allofwhichhavesafetyrelatedresponsibilities.Figure21showsthecurrent
TRISOX functional organization, including the independence of manufacturing, regulatory
affairs,andqualityassurance.
Themanagementpositionsforeachdisciplinetogetherhavethedelegatedresponsibilityfor
plantsafetyandforcompliancewithconditionsofSNMlicensesandwithfederal,state,andlocal
regulations and laws governing operation of a nuclear facility in order to maintain a safe
workplaceforallemployees.Eachdisciplinemanagementteamisresponsiblefor
x ensuringthatallactivitiesintheirareaareperformedinasafeandeffectivemanner; x
managinganddirectingoperationswithintheirdiscipline; x
ensuringthatalloperationsunderitsguidancecomplywithsafetyandlicenseconditions, requirements for qualityrelated safety activities, and safetyrelated configuration managementrequirements; x
beingknowledgeableofthesafetyproceduresandprogramsastheyrelatetotheirarea ofresponsibility; x
developing,approving,andimplementingproceduresthatincorporatesafetyandquality controlsandlimitscommensuratewiththeparticularoperationinvolved;and x
ensuringthatconditionsadversetosafetyarereportedandinvestigatedpromptly,and that corrective actions are tracked to completion and, as applicable, monitored for effectiveness.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page23
2.3
OrganizationalResponsibilities,Authority,andQualifications
Thissectiondescribestheresponsibilities,education,andexperienceofkeypositionsrequired
bythislicenseapplication.
Keypersonnelarethoseindividualswhoareresponsibleforsafetyandforsafeoperationofthe
site and include the plant manager and the discipline managers described in this section.
Companypolicyrequireswrittendelegationofauthoritywhenseniormanagersareunavailable
toperformtheirduties.Theemergencyplandelineatesresponsiblemanagementpersonneland
reportingrelationshipsforhandlingsiteemergencysituations.
The positions described in this section are intended to describe the licenserelated
responsibilitiesanddonotreflectactualjobtitles.Theresponsibilitiesofthepositionsdescribed
may be fulfilled by one or more different organizational positions as long as the minimum
position qualifications specified in this chapter are met for functional area(s) he/she is
responsibletooversee.Similarly,functionalareasshowninFigure21anddescribedinSections
2.3.2,2.3.3,2.3.4,and2.3.5ofthischaptermaybegroupedwithintheirdisciplinesasneededto
supporttheTRISOXorganizationaslongastheindividual(s)responsibleforthefunction(s)have
a sufficient background to provide the capability for making sound safety and/or regulatory
decisions. A combination of education and experience may be substituted for minimum
qualificationsdescribedinthischapterifotherfactorsprovidesufficientdemonstrationofthe
abilitytofulfillthedutiesofaposition.Whensubstitutingexperienceforeducation,refertothe
definitionofEquivalentExperienceinSection1.2.7.Whensubstitutingtypeofworkexperience,
twoyearsofrelevantnonnuclearexperienceisequivalenttooneyearofnuclearexperience.
2.3.1 PlantManager
Theplantmanager,orthedisciplinemanagerauthorizedtobehis/heralternate,hastheoverall
responsibilityforthesafety,security,quality,andoperationalaspectsofalllicensedactivities
conductedattheTRISOXFuelFabricationFacility.Dailyresponsibilityforlicensedactivitiesmay
bedelegatedinwritingtooneormoreofthedisciplinemanagerpositionsspecifiedinSections
2.3.2and2.3.4.
TheminimumqualificationsfortheplantmanagerareaBS/BAoradvanceddegree(mastersor
doctorate) in science, engineering, or a technical field; at least five years of management
experience in the nuclear industry and/or a nuclearrelated field; and a general knowledge
concerningtheregulatoryaspectsofpoliciesandproceduresattheTRISOXFuelFabrication
Facility.
2.3.2 Manufacturing
The Manufacturing discipline is responsible for oversight of manufacturingrelated activities
involvingthehandlingandprocessingofSNM,includingdevelopingoperatingproceduresand
maintaining facilities and equipment in a safe operating condition. This discipline includes
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page24
activitiesassociatedwithenricheduraniumprocessing,transportationandwastemanagement
operations, and related equipment installation, startup, and maintenance. This discipline
managesthemanufacturingtechnicianworkforceandhaslinemanagementresponsibilityfor
implementationofthesafetyprogramsandsystemsforconductinganactiveALARAProgram.
TheminimumqualificationsforaManufacturingdisciplinemanagerareaBS/BAoradvanced
degree(mastersordoctorate)inscienceorengineeringandatleastfiveyearsofmanagement
experienceinthenuclearindustryand/oranuclearrelatedfield;andasufficientbackgroundin
manufacturingrelatedactivitiestoprovidethecapabilityformakingsoundsafetydecisions.
The minimum qualifications for individual(s) responsible for oversight of manufacturing
function(s)areaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringand
atleastthreeyearsofexperienceinthenuclearindustryand/oranuclearrelatedfield.He/she
musthaveasufficientbackgroundinmanufacturingrelatedactivitiestoprovidethecapability
formakingsoundsafetydecisions.
2.3.3 Engineering
The Engineering discipline performs and/or provides oversight of activities involving design,
construction, and/or installation of new and modified facilities and equipment; supplies
maintenance and process engineering support; conducts activities associated with product
researchanddevelopment;assuresthatallequipmentandfacilitieshaveappropriatesafety
controlsandhavebeenevaluatedwithinthespiritandintentofALARA;establishesconfiguration
management(CM)asdefinedinChapter11toensureconsistencyamongdesignandregulatory
requirements,physicalconfiguration,andfacilityconfigurationinformation;andmaintainsthis
consistencythroughoutthelifeofthefacilitiesandactivitiesuntilthepointthatCMisnolonger
needed.
TheminimumqualificationsforanEngineeringdisciplinemanagerareaBSoradvanceddegree
(masters or doctorate) in engineering and at least five years of management experience in
engineeringrelatedactivities,twoyearsofwhichhavebeeninthenuclearindustryand/ora
nuclearrelatedorotherhighlyregulatedfield.He/shemusthaveasufficientbackgroundin
manufacturingrelatedactivitiestoprovidethecapabilityformakingsoundsafetydecisions.
Theminimumqualificationsforindividual(s)responsibleforoversightofengineeringfunction(s)
areaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringandatleast
three years of experience in the nuclear industry and/or a nuclearrelated or other highly
regulatedfield.
2.3.4 RegulatoryAffairs
TheRegulatoryAffairsdisciplineprovidesprograms,procedures,andreviewstoassureworker
healthandsafety;security;environmentalprotection;andcompliancewithlicensesandpermits,
includingthoserelatedtotransportationanddisposaloflicensedmaterial.Theseactivitiesare
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page25
conductedwiththeALARAprincipleinmind.Functionalareasincludenuclearcriticalitysafety;
radiationprotection;environmentalprotection;industrial,chemical,andfiresafety;integrated
safety analysis; licensing; material control and accounting; security; and emergency
preparedness. Emergency preparedness and response programs are supported by each
functionalareaasneeded.Theintegratedsafetyanalysis(ISA)processissupportedbyeach
functionalareaprovidingISATeammembersasneeded.
TheRegulatoryAffairsdisciplinemonitorsoperationstoensuretheyareconductedincompliance
withfederal,state,andlocalregulations,andisauthorizedtosuspendoperations,approvere start of operations, and/or require additional safety precautions when such measures are
necessary in the interest of plant safety, security, or protection of the environment. The
RegulatoryAffairsdisciplineisadministrativelyindependentoftheManufacturingdiscipline,but
bothdisciplinesmayreporttoacommonmanagementposition.
TheRegulatoryAffairsdisciplineisresponsibleforoversightofthesafetyreviewcommitteeas
describedinSection2.4.TheChairpersonofthesafetyreviewcommitteeisconsideredtobea
memberofthecommitteeandhe/shemayrepresentoneofthedisciplines/functionsonthe
committeeifapprovedbytheplantmanager,ordesignatedalternate.
TheminimumqualificationsforaRegulatoryAffairsdisciplinemanagerareaBS/BAoradvanced
degree(mastersordoctorate)inscienceorengineeringandatleastfiveyearsofmanagement
experience in the nuclear industry, a nuclearrelated field, and/or in assignments involving
regulatoryactivities.He/shemusthaveappropriateunderstandingofthefunctionalprogram(s)
beingmanaged.
2.3.4.1NuclearCriticalitySafetyFunction
The nuclear criticality safety (NCS) function has responsibility for the development and
implementationofacomprehensivenuclearcriticalitysafetyprogram,asdefinedinChapter5.
KeyresponsibilitiesincludetheperformanceofNCSevaluationsofapplicableSNMoperations
andproposedchangestothoseoperations;establishingNCSlimitsandcontrolsbasedonthose
evaluations;assuringtheproperincorporationofNCSengineeredcontrolsintodesign;assuring
the proper incorporation of NCS limits and controls into applicable procedures and work
instructions;andmonitoringplantcompliancewiththeNCSrequirementsthroughauditsand
assessments. The NCS function is administratively independent of Production and has the
authoritytoshutdownpotentiallyunsafeoperations.
Theminimumqualificationsfortheindividualresponsibleforoversightofthenuclearcriticality
safetyfunctionareaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineering
andatleastthreeyearsofexperienceinnuclearcriticalitysafety.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page26
The minimum qualifications for nuclear criticality safety engineers are a BS/BA or advanced
degree(mastersordoctorate)inscienceorengineeringandsuccessfulcompletionofaformal
internaltrainingandqualificationprogramthatisdefinedinapprovedprocedures.
2.3.4.2RadiationProtectionFunction
Theradiationprotectionfunctionhasresponsibilityforestablishingandmaintainingtheradiation
safetyprogramnecessarytoensuretheprotectionofemployeesattheTRISOXFuelFabrication
Facilityandthecommunity,asdefinedinChapter4.Keyresponsibilitiesincludemanagementof
the ALARA, dosimetry, and radiation monitoring and surveillance programs; analysis and
approvalofoperationsinvolvingradiologicalsafetyandproposedchangestothoseoperations;
establishing radiation protection criteria, procedures, and training programs to control
contamination and exposure to individuals and the environment; and monitoring plant
compliancewiththeradiologicalprotectioncriteriathroughinspectionsandaudits.Radiation
monitoringincludesmeasurementofairborneradionuclideconcentration,contaminationlevel,
andexternalradiationlevels;evaluationoftheoperationalintegrityandreliabilityofradiation
detectioninstruments;andmaintenanceofrecordsrelatedtotheradiationmonitoringprogram.
Thesetasksareaccomplishedthroughtheuseofhealthandsafetytechnicians,healthandsafety
technician supervisor(s), health physicists, and individual(s) responsible for oversight of the
radiationprotectionfunction.Theradiationprotectionfunctionisadministrativelyindependent
ofproductionandhastheauthoritytoshutdownpotentiallyunsafeoperations.
The individual(s) responsible for oversight of the radiation protection function administer
activities associated with radiological safety and has direct access to the plant manager (or
equivalent)invitalmattersofradiologicalsafety.Thisincludesmonitoringandcontrolofareas
ofairborneradioactivity,surfacecontamination,containment,ventilation,internalandexternal
dosimetry,andbioassayservices.
The minimum qualifications for the individual(s) responsible for oversight of the radiation
protection function are a BS/BA or advanced degree (masters or doctorate) in science or
engineering,andatleastthreeyearsofexperienceinradiationsafetyandhaveanunderstanding
oftheapplicationanddirectionofradiationprotectionprograms.
TheminimumqualificationsforahealthphysicistareaBS/BAoradvanceddegree(mastersor
doctorate)inscienceorengineering,andatleastoneyearofexperienceinhealthphysicsata
nuclearfacility.
2.3.4.3EnvironmentalProtectionFunction
Theenvironmentalprotectionfunctionhasresponsibilityforestablishingandmaintainingthe
environmentalprotectionprogramnecessarytoensuretheprotectionofthepublicandthe
environment, as defined in Chapter 9. Key responsibilities include identification of
environmental requirements of federal, state, and local regulations governing TRISOX
operations; assurance of proper federal and state permits, licenses, and registrations for
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page27
radiologicalandnonradiologicaldischargesfromthefacilityandwastehandlinganddisposal
activities;analysisandapprovalofoperationsinvolvingpotentialenvironmentalreleasesand
proposed changes to those operations; establishing environmental protection criteria,
procedures,andtrainingprogramstomonitorgaseousandliquideffluentsandwastehandling
and disposal; and monitoring plant compliance with the environmental protection criteria
throughinspectionsandaudits.Theenvironmentalfunctionisadministrativelyindependentof
productionandhastheauthoritytoshutdownpotentiallyunsafeoperations.
Theminimumqualificationsfortheindividual(s)responsibleforoversightoftheenvironmental
protection function are a BS/BA or advanced degree (masters or doctorate) in science or
engineering, and at least three years of experience in applied health physics and/or
environmentalprotection.
TheminimumqualificationsforanenvironmentalprotectionspecialistareaBS/BAoradvanced
degree(mastersordoctorate)inscienceorengineering,andatleastoneyearofappliedhealth
physicsorenvironmentalprotectionexperience.
2.3.4.4Industrial,Chemical,andFireSafetyFunctions
Theindustrialandchemicalsafetyfunctionshaveresponsibilityforindustrialhygieneorchemical
safety,asdefinedinChapter6;industrialsafety;andrespiratoryprotection.Keyresponsibilities
includeanalysisandapprovalofoperationsinvolvingindustrialsafetyandproposedchangesto
thoseoperations;establishingindustrialsafetycriteria,procedures,andtrainingprogramsto
protecttheworkersfromindustrialhazards;andmonitoringplantcompliancewiththeindustrial
safety/hygieneprogramthroughinspectionsandaudits.
Thefiresafetyfunctionhasresponsibilityforthefireprotectionprogram,asdefinedinChapter
7.
Key responsibilities include analysis and approval of operations involving fire safety and proposedchangestothoseoperations;establishingfiresafetycriteria,procedures,andtraining programstoprotecttheworkersfromfirehazards;andmonitoringplantcompliancewiththe fireprotectionprogramthroughinspectionsandaudits.Theindustrial,chemical,andfiresafety functionsareadministrativelyindependentofProductionandhavetheauthoritytoshutdown potentiallyunsafeoperations.
The minimum qualifications for the individual(s) responsible for oversight of the industrial,
chemical,andfiresafetyfunction(s)areaBS/BAoradvanceddegree(mastersordoctorate),
dependingonfunctionalassignment(s),inindustrialhygiene,industrialsafety,fireprotection,or
other appropriate field, and at least three years of experience related to functional
assignment(s).
The minimum requirements for safety specialist positions are a BS/BA or advanced degree
(masters or doctorate) with specialized training, depending on functional assignment(s), in
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page28
environmentalhealth,fireprotection,industrialsafety/hygiene,chemicalsafety,orotherclosely
relatedfield,andatleastoneyearofexperiencerelatedtofunctionalassignment(s).
2.3.4.5IntegratedSafetyAnalysisFunction
TheintegratedsafetyanalysisfunctionhastheoverallresponsibilityfortheISAprogram,as
definedinChapter3.Keyresponsibilitiesincludetheperformanceofchemical,radiological,and
fire evaluations of applicable SNM operations and proposed changes to those operations;
establishingIROFSbasedonthoseevaluations;assuringtheproperincorporationofIROFSinto
applicableproceduresandworkinstructions;coordinatingupdatestotheISA;andmonitoring
plantcompliancewithISArequirementsthroughinspectionsandaudits.TheISAfunctionalso
hasresponsibilityformanagingtheSafetyRelatedEquipmentprogramforfunctionallytesting
IROFSonaperiodicbasis,asdefinedinChapter11.
TheminimumqualificationsfortheindividualresponsibleforoversightoftheISAfunctionarea
BS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringandatleastthree
years of experience in licensing, regulatory compliance, safety, and/or safety analysis in the
nuclearoranotherhighlyregulatedindustry.
2.3.4.6LicensingFunction
The licensing function has overall responsibility for acquiring and maintaining safetyrelated
licenses as required to operate the TRISOX Fuel Fabrication Facility, as well as the broad
responsibilityforinterfacewithregulatoryagencies.
Theminimumqualificationsfortheindividualresponsibleforoversightofthelicensingfunction
areaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringandatleast
threeyearsofexperienceinlicensing,regulatorycompliance,safety,and/orsafetyanalysisinthe
nuclearoranotherhighlyregulatedindustry.
2.4.3.7MaterialControlandAccountabilityFunction
Thematerialcontrolandaccountability(MC&A)functionmaintainsprogramstoassurethatSNM
is received, processed, stored, and transferred in accordance with federal regulations, and
implementsthesefunctionsthroughtheareasofSNMsafeguards,SNMaccountability,shipping,
andreceiving.
TheminimumqualificationsforkeyMC&ApersonnelaredefinedintheFundamentalNuclear
MaterialControlPlan.
2.3.4.8SecurityFunction
Thesecurityfunctionisresponsibleforimplementingthesecurityprogramasdefinedinthe
PhysicalSecurityPlanandtheSafeguardsInformationPlan.
TheminimumqualificationsforkeySecuritypersonnelaredefinedinthePhysicalSecurityPlan.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page29
2.3.4.9EmergencyPreparednessFunction
The emergency preparedness function is responsible for implementing the emergency
managementprogramasdefinedinChapter8andtheSiteEmergencyPlan.
TheminimumqualificationsforkeyEmergencyPreparednesspersonnelaredefinedintheSite
EmergencyPlan.
2.3.5 QualityAssurance
TheQualityAssurancedisciplineassessessystematicprogramsforindoctrinationandtrainingof
personnelperformingqualityrelatedsafetyactivities;forspecifyingduringthedesignphasethe
extent of quality assurance or confidence necessary for qualityrelated safety structures,
systems,andcomponents;andforperformingaudits,surveillances,andassessmentsofquality related safety activities. The quality assurance program is based on, but is not limited to,
applicablerequirementsandguidanceinISO9001:2015.TheQualityAssurancedisciplineis
administrativelyindependentofoperationsandhasnootherdutiesorresponsibilitiesunrelated
toqualityassurancethatwouldinterferewithcarryingoutthedutiesofthisdiscipline.
The minimum qualifications for the Quality Assurance discipline manager are a BS/BA or
advanceddegree(mastersordoctorate)inscienceorengineeringandatleastfiveyearsof
experience in quality assurancerelated activities in the nuclear or another highly regulated
industry.
2.4
SafetyReviewCommittee
The safety review committee membership includes discipline managers, or individuals
responsibleforoversightofregulatoryaffairsfunctionsthatmeetthequalificationsofadiscipline
manager,ofthefollowingdisciplines:
x Manufacturing; x
Engineering; x
Safety&Regulatory;and x
Safeguards.
Thecommitteeisresponsibletotheplantmanager,orthedisciplinemanagerauthorizedtobe
his/heralternate,whoretainsoverallauthorityfortheapprovalordisapprovalofcommittee
membershipandactions.
Theauthorityandresponsibilitiesofthefullsafetyreviewcommitteeincludethefollowing:
x Reviewingproposedlicensechangesaffectingsafety,physicalsecurity,emergency preparedness,and/ormaterialcontrolandaccountabilitybeforetheassociatedlicense amendmentapplicationsaresubmittedtotheNRC.
x ReviewingtheALARAprogramforatleastthefollowing:
Trendsinairactivity,
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page210
Cumulativeexposure,
Engineeringdesignandpersonnelworkpractices.
x WorkingwiththeRegulatoryAffairsdisciplinetoimplementtheALARAprogram.
x Reviewingresultsofsafetyinspections,audits,andinvestigationswhichthelicense requiresbeconducted.
x Reviewingallviolationsofregulationsorlicenseconditionshavingsafetysignificance.
Thecommitteewillmeetatthefollowingfrequencies:
x todiscusstopicssuchasproposedlicensechangesasneeded; x
todiscussALARAconsiderationsatleastsemiannually; x
toreviewlicenserequiredsafetyinspections,audits,investigations,andviolationsof regulationsorlicenseconditionsatleastquarterly.
Its proceedings, findings, and recommendations will be documented in writing and made
availabletotheplantmanageranddisciplinemanagement.Suchreportswillberetainedforat
leastfiveyears.
Committeereviewofmattersotherthanthebulleteditemsabovemaybeconductedbyeither
individualrevieworcollectivelyatameeting;however,individualmembersofthecommittee
havetheauthoritytorequestameetingoftheentirecommitteeonanygivenmatter.
2.5
Administration
2.5.1 ReportingofPotentiallyUnsafeConditionsorActivities
Procedures are available for any person at the TRISOX Fuel Fabrication Facility to report
potentiallyunsafeconditionsoractivitiestotheRegulatoryAffairsdiscipline.Promptreporting
is expected so that conditions adverse to safety can be corrected as soon as practicable.
Personnelhavetheauthoritytostopworkifunsafeconditionsorbehaviorsareobserved,orif
anyaspectofaprocedureisunclearorincorrectaswrittenasnotedinSection11.4.Theincident
investigationsandcorrectiveactionprogramisdiscussedfurtherinSection11.6.
2.5.2 ManagementMeasures
ManagementmeasuresthatensurethereliabilityandavailabilityofIROFSareestablishedas
describedinChapter11.
2.5.3 OffSiteEmergencyResponseResources
WrittenagreementswithoffsiteemergencyresponseorganizationsaredescribedinChapter8.
2.6
TransitionfromDesigntoConstructiontoOperations
The TRISOX organization as described in Sections 2.2 and 2.3 represents the personnel
responsiblefor safeoperations, and the organization is also responsible for providing direct
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page211
supervisionofplanning,organizing,andoverseeingtheconstruction,installation,initialtesting
andcommissioningofthefacilityandequipment,includingmodificationsinthefuture,using
writtenplansandprocedures.Constructionoversightplansandproceduresincludedescription
ofoversightactionstobeperformedbyTRISOXpersonnelforIROFS.
Forinitialfacilityconstruction,anarchitect/engineering(A/E)firmhasbeencontractedtospecify
facility structures and systems, as well as to ensure the design meets applicable codes and
standards.Duringtheconstructionphase,constructionactivitiesandpreparationofconstruction
documentsarecompletedusingappropriatelyexperiencedcontractors.TRISOXoversightofthe
A/Eandconstructioncontractsmayinvolveoneormoredisciplines/functionsdependingonthe
scopeofthedesignorconstructionactivity.
ConstructionphaseoversightofIROFSisprovidedbyTRISOXpersonnelwithintheEngineering,
RegulatoryAffairs,andQualityAssurancedisciplinesthatmeettheminimumrequirementsofa
BS/BAand/oradvanceddegree,andatleastoneyearofrelevantexperienceapplicabletothe
technicaldiscipline,scope,andcomplexityoftheconstructionoversightassignment.Whena
constructionmanagementfunctionisused,thesameminimumqualificationsapply.Oversight
activitiestypicallyinclude,butarenotlimitedto,witnessingofconstructionactivities,verifying
materialinputs,orconfirmingcompletioninaccordancewithstatedrequirements.Ifacode,
standard, or specification governing a particular element of construction identifies specialty
training or experience is required to conduct certain construction oversight activities,
appropriate resources will be identified and assigned. Issues or problems identified during
constructionofIROFSarereferredtotheincidentinvestigationsandcorrectiveactionprogram
asdiscussedfurtherinSection11.6.
Astheconstructionofsystemsiscompleted,theyundergofunctionalandacceptancetesting,as
appropriate, in accordance with approved procedures. Following successful completion of
testingandcommissioning,detailedplansdescribethetransitionfromcommissioning/startup
phasetooperations.OperationalreadinessreviewsledbytheTRISOXorganizationareusedto
confirmtheequipmentineachprocessareaisfunctionallytestedandreadytooperate,items
reliedonforsafetyareinplace,licenserequiredprogramsandcommitmentsareimplemented,
operating procedures are approved, and the assigned staff is trained and ready to safely
commenceoperationswhenauthorizedtodoso.
Theturnoverwillincludephysicalsystemsandcorrespondingdesigninformationandrecords.
Followingturnover,themanufacturingorganizationwillberesponsibleforsystemmaintenance
and configuration control. The design basis is maintained following the configuration
managementsystemdescribedinChapter11,ManagementMeasures.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page212
Figure21:FunctionalOrganizationChart
Disciplines
Functions
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page213
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0002toheader.
Section2.2
Deletedfunctionalinthesecondsentenceofthefirstparagraph
whendescribingtheorganizationaldisciplinesduetoTX0LTR0022,
LicenseChapter2RAI1andadditionalfeedbackfromNRCon
11/15/2024.
Section2.3
Paragraph1:Deletedfunctionalwhendescribingthekeypositions
duetoTX0LTR0022,LicenseChapter2RAI1andadditional
feedbackfromNRCon11/15/2024.
Paragraph3:
x ClarifiedwordingduetoTX0LTR0022,LicenseChapter2 RAI2.
x EquivalentexperiencechangesduetoTX0LTR0022,License Chapter2RAI6.
x TypeofworkexperiencechangesduetoTX0LTR0022, LicenseChapter2RAI7.PeradditionalfeedbackfromNRC on11/15/2024,addedrelevant.
Sections
2.3.2,2.3.3,
the6
subsections
of2.3.4,and
2.4
DuetoTX0LTR0022,LicenseChapter2RAI1andadditional
feedbackfromNRCon11/15/2024,addedoversightoftoclarify
thatthequalificationsapplytotheindividualresponsiblefor
oversightofthefunction,andnottoallmembersinthegroup.
Sections
2.3.1,2.3.2,
2.3.3,2.3.4
andrelated
subsections,
and2.3.5
ClarifiededucationrequirementstobeaBS/BAoradvanceddegree
(mastersordoctorate)duetoTX0LTR0022,LicenseChapter2RAI 6andRAI7.
Section2.3.4
Paragraphs1and2:ChangesduetoTX0LTR0022,LicenseChapter2
RAI4.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0002
SNMXXXX
CHAPTER2
ZŽ
December2024
Page214
Revision
Date
Section/Page
DescriptionofChanges
Paragraph3:ClarificationsduetoTX0LTR0022,LicenseChapter2
RAI5.
Section
2.3.4.3
ChangedanalysttospecialisttoalignwithSection2.3.4.4dueto
TX0LTR0022,LicenseChapter2RAI1.
Section2.4
Paragraph2:Deletedtoremovepotentialconflictsandconfusion
withthequalificationsthroughouttherestofChapter2duetoTX0 LTR0022,LicenseChapter2RAI5.
Paragraph3:Simplifiedtocoverbothmembershipandactionsdue
toTX0LTR0022,LicenseChapter2RAI5.
Section2.5.1
Addedstatementthatpersonnelhavetheauthoritytostopwork,
andimprovedalignmentwithSection11.6,duetoTX0LTR0022,
LicenseChapter2RAI3.
Section2.6
UpdatedconstructionphaseoversightactivitiesforIROFSand
experiencerequirementsbasedonTX0LTR0022,LicenseChapter2
RAI8,andTX0REGLTR0041,QA/MgtMeasuresRAI11,whichwas
acompletereplacementofTX0LTR0020,RAI11.
Added new last sentence Issues or problems identified during
constructionofIROFSarereferredtotheincidentinvestigationsand
correctiveactionprogramasdiscussedfurtherinSection11.6dueto
TX0LTR0022, Chapter 2 RAI8 as further discussed with NRC on
11/15/2024.
Figure21
AddeddashedlinestodistinguishbetweenDisciplinesand
FunctionsduetoTX0LTR0022,LicenseChapter2RAI1and
additionalfeedbackfromNRCon11/15/2024.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0003 SNMXXXX CHAPTER 3 Revision December 2024 Page 31 INTEGRATED SAFETY ANALYSIS Table of Contents SECTION TITLE STARTS ON PAGE 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 Integrated Safety Analysis (ISA) Program and Commitments Process Safety Information ISA Methods ISA Consequence Determination ISA IROFS Selection and Likelihood Determinations ISA Risk Index Determination ISA Team Qualifications ISA Change Management Additional ISA Program Commitments 32 3.2 ISA Summary and ISA Documentation 310 3.3 Management Measures 310 3.4 Recordkeeping 310 3.5 Requirements for New Facilities or New Processes at Existing Facilities 310 TRISO-X Document Control 2024.12.30 12:23:53 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page32
INTEGRATEDSAFETYANALYSIS
3.1
IntegratedSafetyAnalysis(ISA)ProgramandCommitments
TRISOX maintains an ISA for the areas of the facility that involve or could impact the safe
handlingofSNMinaccordancewith10CFR70SubpartHand10CFR70.65(a).TheISAProgram
establishesandmaintainsthesafetyprogramrequiredby10CFR70.62(a)(1)andconsistsofthe
followingelements:
- 1) ISAProgramcommitmentsinthischapter,
- 2) ISASummarydocuments,and
- 3) SupportingISAinformationmaintainedatthefacility.
3.1.1 ProcessSafetyInformation
Processsafetyinformationiscompiledandmaintainedinsufficientdetailtosupportthecreation
andupdatingoftheISArequiredby10CFR70.62(b).Thecompilationofwrittenprocesssafety
information includes information on the hazards, materials, technology, and equipment
associatedwitheachprocess.Processsafetyinformationcanvarydependingonthecomplexity
oftheoperation,butitmayincludeitemssuchaspipingandinstrumentationdiagrams(P&IDs),
flowdiagrams,processdescriptions,andotheraidsthatallowidentificationandunderstanding
ofthehazardsassociatedwitheachprocess.
3.1.2 ISAMethods
TheISAconductedandmaintainedasrequiredby10CFR70.62(c)isasystematicanalysisof
TRISOXFFFprocessesthatidentifiesfacilityandexternalhazardsandtheirpotentialforinitiating
credibleaccidentscenarios;theconsequencesandlikelihoodofthecredibleaccidentscenarios;
andtheitemsreliedonforsafety(IROFS)neededtomeettheperformancecriteriaspecifiedin
10CFR70.61.IROFSwillbeestablishedandmaintainedsuchthattheywillbeavailableand
reliableasneeded.
CredibleaccidentscenariosareidentifiedthroughPHAsusingmethodologieslistedinNUREG 1513,IntegratedSafetyAnalysisGuidanceDocument,andthemethodisselectedbasedonthe
complexityoftheprocesstobeanalyzedandtheseverityofthehazards.Hazardsreviewed
includepotentialforinadvertentnuclearcriticality;radiologicalexposures;andchemical,fire,
andfacilityhazardsthatcouldincreaseradiologicalrisk.Accidentscenariosconsidercredible
deviationsfromthenormaloperationoftheprocessandfailureoftheIROFSfortheprocess
beingreviewed,includingconsiderationofhumanactionsanderrorsthatcouldleadtoaccidents
ofconcern.Facilityeventsexternaltotheprocessbeingevaluatedarealsoreviewed.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page33
3.1.3 ISAConsequenceDetermination
For each credible accident scenario, the unmitigated consequences are evaluated using
qualitativeand/orquantitativemethods,suchasthosedescribedinNUREG/CR6410,Nuclear
Fuel Cycle Facility Accident Analysis Handbook. Alternative methods and other industry
accepted techniques may also be used to perform consequence calculations, provided the
methodsareappropriatetotheprocess,thephysicalsetting,andthespecificconditionbeing
evaluated.Accidentscenariosmaybegroupediftheywillresultinasimilarconsequence,such
asanindoorspillofuranylnitrate.Basedontheevaluationresultsascomparedtothe10CFR
70.61 consequence thresholds, each credible accident scenario is assigned a consequence
categoryofLow,Intermediate,orHigh.Credibleaccidentscenarioswiththepotentialof
resultinginacriticalityareassumedtobeHighconsequenceevents.Thethresholdcriteria
used to determine if unmitigated accident sequences have the potential to exceed the
intermediateorhighradiologicalorchemicalconsequencelevelsof10CFR70.61(b)and(c)as
summarizedinTable31below.
Table31
10CFR70.61RadiologicalandChemicalConsequenceExposureLevels
Consequence
Level
Radiological
Chemical(Note1)
Worker
Public/Environment
Worker
Public/Environment
High
TEDE100rem
TEDE25rem
CHEM3
400mgsolubleU
CHEM2
30mgsolubleU
Intermediate
100rem>
TEDE
25rem
25rem>
TEDE
5rem
5000x10CFR20,
Table2,
App.Blimits
averagedover
24hourperiod
CHEM2
<CHEM3
150mgand
<400mgsolubleU
CHEM1
<CHEM2
Low
<Intermediate
Levels
<Intermediate
Levels
<Intermediate
Levels
<Intermediate
Levels
CHEM=AEGL,ERPG,orTEEL
Note1:Forchemicalconsequences,theAcuteExposureGuidelineLevels(AEGLs)areusedifavailable.If
noAEGLsareavailable,EmergencyResponsePlanningGuidelines(ERPGs)areused.IfnoERPGs
areavailable,TemporaryEmergencyExposureLevels(TEELs)areused.IftherearenoAEGLs,
ERPGs,orTEELsavailable,theISASummaryidentifiesthemethodologyusedtodetermineifthe
chemicalposesanacutehazard.Thesolubleuraniumintakelimitsarebasedon10CFR70.61,
ISG14,NUREG1391,andDOESTD11362017.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page34
AriskassessmentisperformedforthosecredibleaccidentscenarioswithIntermediateor
High consequences. Qualitative or quantitative risk assessment methods are used to
determinethelikelihoodandriskofeachcredibleaccidentscenario.
3.1.4 ISAIROFSSelectionandLikelihoodDeterminations
IROFSareidentifiedtopreventormitigateeachcredibleaccidentscenariosuchthatthe10CFR
70.61performancecriteriaaremetbyIntermediateconsequenceeventsbeingunlikelyand
High consequence events being highly unlikely as defined in the ISA Summary. IROFS, in
preferential order, may be engineered controls (passive or active), enhanced administrative
controls(activefeaturesthatpromptapersontotakeanaction),oradministrativecontrols
(actionsofpeople).
TheInitiatingorEnablingEventFrequencyIndexisanumericalvalueassignedtoeachaccident
sequencebasedonaqualitativeorquantitativeassessment.Methodsoflikelihoodevaluation
anddefinitionsofthelikelihoodtermsunlikelyandhighlyunlikelymaymixqualitativeand
quantitative information. Therefore, the frequency index is defined both qualitatively and
quantitativelyinTable32.Theoccurrencerateandqualitativedescriptionfoundonthesame
rowapplytothesamefrequencyindexinTable32.TheOccurrenceRatecolumnprovidesa
quantitativedefinition,andisintendedtobeusedwhenquantitativeinformationisavailable,
such as industry acceptable values, analytical data, or vendor failure data. The Qualitative
Description column provides a qualitative definition, and is intended to be used when
qualitativeinformationisavailable,suchasengineeringjudgementorpastexperience.Oneor
bothsetsofinformationmaybeusedtodeterminethefrequencyindex.Theindexmaybeone
valuehigherorlowerthanlistedinTable32withsufficientjustificationasdocumentedinthe
NCSEorRiskAssessmentdocument.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page35
Table32
InitiatingandEnablingEventFrequency(IE/EE)
Frequency
Index
Occurrence
Rate1
QualitativeDescription
6
106/yr
Notcredible
4
104/yr
Physicallypossible,butnotexpectedtooccur,
equivalenttonofailuresin30yearsforhundredsof
similarIROFSinindustry.
3
103/yr
Notexpectedtooccurduringtheplantlifetime,
equivalenttonofailuresin30yearsfortensofsimilar
IROFSinindustry.
2
102/yr
Notexpected,butmightoccurinplantlifetime,
equivalenttonofailureofthistypeinthisfacilityin30
years.
1
101/yr
Afewfailuresmayoccurduringplantlifetime.
0
1/yr
Failuresoccurevery1to3years.
1
10/yr
Severaloccurrencesperyear.
1Basedonorderofmagnitudeapproximation.101/yrorlessis1,102/yrorlessis2,etc.
Ptypeeventsarecharacterizedbyaprobabilityoffailureupondemand(PFOD)andtypically
includeIROFSthatarenotcontinuouslychallengedbutthatmustperformasafetyfunctionon
demand(subsequenttoaprocessdeviationorfailure).Ftypeeventsarecharacterizedbya
frequencyofoccurrenceandtypicallyincludeIROFSthatarecontinuouslychallenged,ratherthan
thosethatarerequiredtoperformasafetyfunctiononlywhencertainconditionsarepresent.
Engineeredandadministrativecontrolsthatareneededtomeettheperformancerequirements
of10CFR70.61aredesignatedasIROFS.EachptypeIROFSisassignedanEffectivenessof
ProtectionIndex(EOPI)asspecifiedinTable33.Theindexisanumericalvalueassignedtoeach
IROFSbasedonaqualitativeorquantitativeassessmentrepresentingthecreditgiventoIROFS
inaccidentsequences,considering:
x CharacteristicsoftheIROFSusedtopreventormitigatetheaccidentofconcern(safety margin,typeofcontrol,properdesign,independence,reliability,availability,andother managementmeasures) x EvaluationofIROFSfailurestoensurethatcommonmodeorcommoncausefailures donotexistforaccidentsequencesthatinvolvemorethanoneIROFS.
x Industryacceptablevalues,engineeringjudgement,analyticaldata,andpast experience TheindexmaybeonevaluehigherorlowerthanlistedinTable33withsufficientjustification
asdocumentedintheNCSEorRiskAssessmentdocument.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page36
Table33
IROFSEffectivenessofProtectionIndex(EOPI)
Effectivenessof
ProtectionIndex
TypeofIROFS
4
ProtectedbyaninspectedPassiveEngineeredControlthatmeets
theadditionalbasisinISASummary,Section5.10.4.2,with
managementmeasuresappliedtoensureavailabilityandreliability.
OR
ProtectedbyaSafetyIntegrityLevel(SIL)4activeengineeredcontrol
withmanagementmeasuresappliedtoensureavailabilityand
reliability.SIL4ratingdemonstratedforallcomponentswithinthe
IROFSboundaryperthemethodsinIEC615111:2016,which
addresseslifecyclephasesfrominitialconcept,design,
implementation,operation,andmaintenancethrough
decommissioning.Supportedbyaprobabilityoffailureupon
demandorfailurefrequencycalculationperISASummary,Section
5.10.4.1.
3
ProtectedbyafunctionallytestedActiveEngineeredControlwith
managementmeasuresappliedtoensureavailabilityandreliability.
Supportedbyaprobabilityoffailureupondemandorfailure
frequencycalculationperISASummary,Section5.10.4.1.
OR
ProtectedbyaninspectedPassiveEngineeredControlwith
managementmeasuresappliedtoensureavailabilityandreliability.
2
Protectedbyatrainedoperatorperformingaroutinetaskwithan
approvedprocedure;anenhancedadministrativecontrol;oran
administrativecontrolwithmarginofsafety,independence,and
managementmeasuresappliedtoensureavailabilityandreliability.
1
Protectedbyatrainedoperatorperforminganonroutinetaskwith
approvedwritteninstructions.
0
Noprotection
IftheinitiatingeventinvolvesaptypeIROFSfailure,theEffectivenessofProtectionIndexper
Table33ismodifiedtotakedemandrateintoaccountperTable33a.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page37
Table33a
DemandRate
ModifyTable33Index
Hundredsoftimesperyear(daily)
Increasebaseindexby2
Tensoftimesperyear(monthly)
Increasebaseindexby1
Onceperyear
Usebaseindex
Onceevery10years
Decreasebaseindexby1
The modified EOPI is then assigned to the IROFS failure rather than the Initiating Event
FrequencyIndexfromTable32.TheEOPIismodifiedperTable33atoamaximumfrequency
indexof0.
ThedurationoftheIROFSfailureisalsoconsideredbasedontheDurationIndexprovidedin
Table34.TheDurationIndexisanumericalvalueassignedbasedonaqualitativeassessmentof
howquicklytheIROFSfailurewouldbediscoveredconsideringengineeringjudgement,design
information,pastexperience,andtheassociatedmanagementmeasures.TheDurationIndexis
identifiedasDurintheriskassessment.
Table34DurationIndex
(Dur)
DurationIndex
AverageFailureDuration
1
Morethan3years
0
1year
1
1month
2
Afewdays
3
8hours
4
1hour
5
5minutes
InordertocreditaDurationIndexoflessthan1,oneofthefollowingconditionsmustbe
satisfiedsoactionscanbetakentoaddressafailedIROFS:
x IROFSfailurewouldbeeasilydetectedbasedonitslocationandtypeoffailure(e.g.,
withinfrequenttravelpath).
x IROFSfailurewouldbeeasilydetectedbasedontheactivitythatcausesitsfailure(e.g.,
maintenanceactivitythatcausesareleaseofmaterialfromavesselwouldbe immediatelyrecognizedbythepersonnelperformingthework).
x IROFSfailureisidentifiedbyperiodictestsorrequiredsurveillancescorrespondingto theselectedduration(e.g.,shiftinspection,functionaltesting,etc.).
TheLikelihoodIndexisdeterminedbysummingtheInitiating/EnablingEventFrequencyIndex
numbers, the Effectiveness of Protection Index for each IROFS, and when applicable, the
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page38
Duration Index assigned to the accidentsequence. If an accident sequence usesa Duration
Index,thesequenceneedstobereversedwhenthefailureofoneoftheotherIROFScanlead
toamorepositiveindex(i.e.,resultsinahigherLikelihoodIndex).
Foreachaccidentsequence,theTotalLikelihoodIndexiscalculatedas:
LikelihoodIndexT=IE/EE+EOPIforeachIROFS+Dur(whereapplicable)
TheLikelihoodCategoryisdeterminedusingtheLikelihoodIndexasspecifiedinTable35.
Table35
TotalRiskLikelihoodCategory
LikelihoodIndex(T)
(=sumofindexnumbers)
LikelihoodCategory
T4
1
T=3
2
T>3
3
3.1.5 ISARiskIndexDetermination
TheRiskIndexisdeterminedbymultiplyingtheLikelihoodCategory(3.1.4)bytheConsequence
Category(3.1.3).TheRiskIndexisthencomparedtotheRiskMatrixinTable36todetermine
iftheRiskIndexisacceptableorunacceptable.
Table36
RiskMatrixwithRiskIndexValues
Severityof
Consequences
LikelihoodofOccurrence
LikelihoodCat.1
HighlyUnlikely
LikelihoodCat.2
Unlikely
LikelihoodCat.3
NotUnlikely
ConsequenceCat.3
High
AcceptableRisk
3
UnacceptableRisk
6
UnacceptableRisk
9
ConsequenceCat.2
Intermediate
AcceptableRisk
2
AcceptableRisk
4
UnacceptableRisk
6
ConsequenceCat.1
Low
BelowSeverityThreshold
3.1.6 ISATeamQualifications
PHAsareconductedbyanISATeamwithmembershipcommensuratewiththeprocessbeing
reviewed.Theteamtypicallyconsistsofateamleader;individualsknowledgeableoftheprocess
beinganalyzed;andindividualsrepresentingthesafetydiscipline,includingnuclearcriticality
safety,radiationprotection,chemicalsafety,andfiresafety;consistentwith10CFR70.62(c)(2).
Teammembersmayrepresentmorethanonefunctionalareabeingevaluated.Disciplinesthat
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page39
are not affected by the proposed process or change being evaluated do not require
representationontheteam.
Theteamleaderisdesignatedastheonememberoftheteamwhoisknowledgeableinthe
methodologies used to conduct PHAs and ensures that the team members understand the
methodologytobeused.
3.1.7 ISAChangeManagement
ChangestothefacilityoritsprocessesthatimpacttheISAareevaluatedusingaconfiguration
managementprogramthatmeetstherequirementsof10CFR70.72,asdescribedinChapter11,
sothattheISAanditssupportingdocumentationremainaccurateanduptodate.
Proposed changes to the facility or its processes are evaluated in accordance with the ISA
MethodsandISATeamQualificationsdescribedinthischapter.Ifaproposedchangeresultsin
a new credible accident scenario being identified or increases the consequences and/or
likelihood of a previously analyzed accident scenario, the existing IROFS and associated
managementmeasuresareevaluatedpromptlyforadequacyandnewIROFSareidentifiedor
changesaremade,ifrequired.IROFSwithunacceptableperformancedeficiencies,asidentified
throughthecorrectiveactionprogramorduringupdatestotheISA,areaddressed.
TheISASummaryisupdatedatleastannuallybyJanuary30th,incorporatingchangesmadeinthe
previouscalendaryearthataffectedtheISASummary.Theupdateddocumentsorpagesare
submittedtotheNRCper10CFR70.72(d)(3).
3.1.8 AdditionalISAProgramCommitments
- 1. TRISOXcommitstonosoleIROFS;therefore,afuturechangethatidentifiestheneedfor soleIROFSwouldresultinadeparturefromthemethodsofevaluationdescribedinthe LicenseApplicationthatestablishthedesignbasisandthusrequiresapprovalfromNRC priortoimplementationofthistypeofchange.
- 2. ThedefinitionsofhighlyunlikelyandunlikelyinSection9oftheISASummaryareusedto determine reportability when evaluating a process upset against the 10 CFR 70.61 performancerequirements.
- 3. Toprovideadditionalmarginofsafetysimilartothedoublecontingencyprincipleused fornuclearcriticalitysafety,noncriticalityaccidentsequences(chemical,radiological, fire) will be demonstrated to meet one additional order of magnitude beyond the definitionsofhighlyunlikelyandunlikelyinSection9oftheISASummary.
- 4. Accidentsequencesthatarepreventedormitigatedbyonlyadministrativecontrolsare addressedinSection3.5.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page310
3.2
ISASummaryandISADocumentation
TheISASummarycontainsthefollowingelementsasrequiredby10CFR70.65(b):
x Generaldescriptionofthesite; x
Generaldescriptionofthefacility; x
Descriptionoffacilityprocesses,hazards,andtypesofaccidentsequences; x
Demonstrationofcompliancewith10CFR70.61performancerequirements; x
DescriptionoftheISAteamqualificationsandISAmethods; x
ListofIROFS; x
Descriptionofchemicalconsequencestandards; x
ListofsoleIROFS(ifany);and x
Definitionsofthetermscredible,unlikely,andhighlyunlikely.
TheISADocumentationincludessupportinginformationsuchasPHAs,NuclearCriticalitySafety
Evaluations, Radiological / Chemical Accident Consequence Evaluations, and Fire Hazard
Analyses.Italsoincludesanycompleted10CFR70.72changemanagementdocumentationthat
maynothaveyetbeenincludedintheannualupdateoftheISASummary.
3.3
ManagementMeasures
Managementmeasuresrequiredby10CFR70.62(d)toensurethereliabilityandavailabilityof
eachIROFSareestablishedasdescribedinChapter11.
3.4
Recordkeeping
TRISOXdocumentationdevelopedinaccordancewithSection3.2andasrequiredby10CFR
70.62(a)(2)aremaintainedasrecords.TRISOXalsomaintainsrecordsoffailuresofIROFSor
management measures required by 10 CFR 70.62(a)(3). The TRISOX records management
programisdescribedinChapter11.
3.5
RequirementsforNewFacilitiesorNewProcessesatExistingFacilities
AsdescribedinSection11.1.2,designrequirementsarerequiredtobedeveloped,reviewed,
approved,anddocumentedfornewfacilitiesandprocesses/systemsbeforeinputofSNM.The
baselinedesigncriteriaidentifiedin10CFR70.64(a)areaddressedforIROFS.Asrequiredby10
CFR70.64(b),theTRISOXFuelFabricationFacilityisdesignedusingadefenseindepthapproach
forprotectionagainstprocessrelatedaccidents.Totheextentpracticable,thefacilitydesign
considerspreferencefortheselectionofengineeredcontrolsoveradministrativecontrolsto
increaseoverallsystemreliability,andfeaturesthatenhancesafetybyreducingchallengesto
IROFSareincorporated.Wherefacilityandsystemdesignsrelyonlyonadministrativecontrols,
theISAincludeswrittenjustificationthatdescribeswhyalternativestouseengineeredcontrols
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page311
arenotpractical.Thefacilitydesignaddressesthebaselinedesigncriteriaof10CFR70.64(a)for
newfacilitiesandthecontrolofprocesshazards.
TheISASummaryprovideshighlyunlikelydefinitionsforcrediblenaturalphenomenahazard
(NPH)initiatingeventssuchasearthquakes,tornadoes,andhighwindsthatcouldcauseadverse
damage/consequences.Collapseorlossoftheprocessbuildingsisconsideredhighlyunlikely
sincethedesignsatisfiesAmericanSocietyofCivilEngineers(ASCE)716,MinimumDesignLoads
andAssociatedCriteriaforBuildingsandOtherStructures,structuralrequirementsforaRisk
Category IV facility. This satisfies the performance requirements of 10 CFR 70.61 and the
requirementof10CFR70.64(a)(2)foradequateprotectionagainstnaturalphenomenawith
considerationofthemostseveredocumentedhistoricaleventsforthesite.
Thedesignbasisearthquake,highwind,tornado,andfloodingimpactstoprocessequipmentand
IROFSwithinthefacilityareevaluatedbytheindividualsafetyevaluationsuptothedesignbasis
NPHevent.Ifthefailureofprocessequipmenttoremaininplace(i.e.,collapseortopplingover)
orlosecontainmentcouldleadtoanintermediateorhighconsequence,sufficientIROFSare
establishedtomeettheperformancerequirements.GenericIROFSdesignatedasCriticalNon StructuralComponents(CNSCs)maybeused,whichinvokessectionC13.1.3ofASCE716to
ensurethecomponentremainsinplacebyusinganImportanceFactorof1.5toresistthedesign
basis NPH events. This satisfies the performance requirements of 10 CFR 70.61 and the
requirementof10CFR70.64(a)(2)foradequateprotectionagainstnaturalphenomenawith
considerationofthemostseveredocumentedhistoricaleventsforthesite.
Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense
amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontrolof
processhazards.Adefenseindepthapproachwillbeappliedtohigherriskaccidentsequences
asrequiredby10CFR70.64(b).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0003
SNMXXXX
CHAPTER3
Revision
December2024
Page312
REVISION
SUMMARY
Revision
Date
Section/Page DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0003toheader.
Section
3.1.4,
Table32
x Updatedtoreflectqualitativefrequencyindexvaluesand quantitativeoccurrenceratesduetoTX0REGLTR0040,Enclosure 1ISARAI7,andEnclosure4,ISASummarySection5.10.1and Table55.
x Addeddefinitionsofptype/ftypeeventsduetoTX0REGLTR 0040,Enclosure1ISARAI6,andEnclosure4,ISASummarySection 5.10.1.2.
Section
3.1.4,
Table33
x AddedreferencetoptypeIROFSandquantitativeassessments duetoTX0REGLTR0040,Enclosure1ISARAI6andISARAI8,and Enclosure4,ISASummarySection5.10.4.
x AddeddetailsfortheTypeofIROFSrepresentedbyEffectiveness ofProtectionIndexvaluesof4and3forpassiveandactive engineeredcontrolsduetoTX0REGLTR0040,Enclosure1ISA RAI3andISARAI8,andEnclosure4,ISASummaryTable56.
Section
3.1.4,
Table33a
AddednewTable33atomodifyTable33ifaninitiatingevent
involvesaptypeIROFSfailureduetoTX0REGLTR0040,Enclosure1
ISARAI8,andEnclosure4,ISASummarySection5.10.4.3andTable56a.
Section3.1.8
AddedAdditionalISAProgramCommitmentsasagreedtoin
meetingswithNRCon12/312/4/2024and12/16/2024toresolve
ISARAI5.
Section3.5
x Addedwherefacilityandsystemdesignsrelyonlyon administrativecontrols,theISAincludeswrittenjustification thatdescribeswhyalternativestouseengineeredcontrols arenotpracticalduetomeetingswithNRCon12/312/4/2024 and12/16/2024toresolveISARAI5toalignwithexplanationin NUREG1520,page321,Itemd,paragraph2.
x Naturalphenomenaeventchangesdueto(1)TX0REGLTR0040, Enclosure1ISARAI9andISARAI10,andEnclosure4,ISA SummarySection5.10.1.1;and(2)TX0REGLTR0045,Enclosure1 StructuralRAI2.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0004 SNMXXXX CHAPTER 4 ZŽ
December 2024 Page 41 RADIATION SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 4.1 Radiation Protection Program 42 4.2 ALARA Program 43 4.3 Organization and Personnel Qualifications 44 4.4 Procedures and Radiation Work Permits 44 4.5 Radiation Safety Training 45 4.6 4.6.1 4.6.2 4.6.3 4.6.4 Ventilation and Respiratory Protection Building / Area Ventilation Localized Ventilation Laboratory Ventilation Respiratory Protection 46 4.7 4.7.1 4.7.2 4.7.2.1 4.7.2.2 4.7.2.3 4.7.3 4.7.3.1 4.7.3.2 4.7.3.3 4.7.3.4 4.7.3.5 4.7.4 Radiation Survey and Monitoring Programs Radiation Surveys Dosimetry Program External Dosimetry Internal Dosimetry Air Sampling and Monitoring Program Contamination Control Access Control Surveying of Surfaces Protective Clothing Release for Unrestricted Use Leak Testing of Sealed Sources Environmental Monitoring 48 4.8 4.8.1 4.8.2 4.8.3 Additional Program Commitments Records Event Reporting Annual Dose Monitoring Report 415 4.9 Criticality Monitoring and Detection 415 TRISO-X Document Control 2024.12.30 15:57:18 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page42
RADIATIONSAFETY
4.1
RadiationProtectionProgram
TRISOXhasestablished,maintains,andimplementsaRadiationProtectionProgram(RPP)in
accordancewith10CFR20.1101thatiscommensuratewiththescopeandextentoflicensed
activitiesandensurescompliancewithapplicablesectionsof10CFR20.ThepurposeoftheRPP
istomaintainoccupationalandpublicdosesbelowregulatorylimitsandaslowasreasonably
achievable (ALARA). Engineered controls (e.g., confinement, ventilation, equipment layout)
provideprimaryradiationprotectionfunctions.Additionalprotectionforworkersisprovided
throughaneffectiveRPPthatfocusesonmaintainingexposurestoionizingradiationALARA.The
guiding principles and requirements outlined in the RPP are reflected in programs and
implementingprocedurestoensurethat:
x RadiationexposuretooccupationalworkersandthepublicismaintainedALARA, x
Radiationprotectionstaffaretrainedandqualifiedtocarryoutradiationprotection procedures, x
Workisguidedbyandsupplementedwithdetailedandeffectiveradiationprotection proceduresandradiationworkpermits(RWPs),
x Personnelaretrainedinradiationprotectionprinciples,howtousetoolsandtechniques tominimizeexposuretoradiation,andqualifiedtoproperlyusePersonalProtective Equipment(PPE),
x Facilityventilationandcontainmentsystemsaredesignedtocontrolairborne concentrationsofradioactivematerial, x
Aradiologicalsurveyandmonitoringprogramisinplacetodocumentlevelsofradiation andcontamination,anddocumentoccupationalexposurestoradiation, x
IROFSthatlimithighandintermediateconsequencesareidentified,areconsistentwith regulatoryperformancecriteria,haveappropriatemanagementmeasureinplaceto ensuretheyareavailableandreliable,and, x
Programsandproceduresareinplacethataddressrecordsmaintenance,corrective actions,andreportingrequirements,asdescribedinChapter11.
TRISOXmanagementcommitmenttokeepexposuresALARAisdocumentedinaformalpolicy
statementthatholdsalllevelsofmanagementandindividualworkersresponsibleforadhering
to the companys ALARA policy. To ensure that this commitment is implemented without
influencefromproductiondemands,theorganizationalstructurereflectsradiationprotection
staffreportingrelationshipsthatareindependentfromthefacilitysoperationsasdiscussedin
Chapter 2. Radiation protection staff have clearly defined responsibilities, and possess the
authority,andtraining,toolsandequipmenttocarryoutthoseresponsibilities.Asrequiredby
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page43
10CFR20.1101(c),theRPPisreviewedonanannualbasisandconsiderschangesinthefacility,
technologies,andprocessesthatcouldenhancetheeffectivenessofALARAimplementation.
4.2
ALARAProgram
ALARAimplementationissupportedatthehighestlevelsofmanagementthroughwrittenpolicy.
These policies provide trained and qualified radiation protection staff with the authority to
preventpracticesthatarenotalignedwiththeALARAphilosophy.Managementpromotessafety
ingeneral,andradiationsafetyespecially,bysupportingacultureofinterdependence,learning,
employeeownershipandinputthatisessentialforimprovingsafety andkeepingexposures
ALARA. Management is committed to providing facilities, operating and maintenance
procedures,andequipmentthatensuresthatexposurestoradiationareALARA.Additionally,
ALARA principles are integrated into approved policies and procedures and are an integral
componentinthegenerationanduseofRadiationWorkPermits(RWPs).
TheALARAprogramisoneoftheseveralwaysRPpersonnelinteractwithfacilitypersonnel.RP
personnelarealsoinvolvedinthepreparationofRWPs.ToprepareanRWP,RPpersonnelmust
interactwithfacilitypersonneltofullyunderstandtheactivityandfacilityconditionstoassess
associated radiological hazards. RP personnel also interact with facility personnel with
participatinginsafetyaudits.
TRISOXssafetyreviewcommittee,asdescribedinChapter2,servesastheALARACommittee.
ALARA topics are reviewed and discussed at least annually to monitor employee dose and
environmentalreleasetrends,identifyareasforimprovement,tosetALARAgoals,implement
requiredchangesandreviewALARAperformance.
TheRadiationSafetyOfficer(RSO)isresponsibleforoverallradiationsafetyandensuringthat
exposuresareALARA.Areasofresponsibilityinclude:
x Involvementinplanningroutineandnonroutineworkactivities.
x EnsuringthatworkisguidedbyRWPsthateffectivelydescribeworkrequirements, precautions,andALARAengineeringcontrols.
x Ensuringthatradiationprotectioninstrumentation,equipment,andsuppliesare available,ingoodworkingorder,andareproperlyusedandmaintainedaccordingto approvedproceduresbasedonmanufacturersspecifications.
x AuditingfacilityALARAimplementation(aspartoftheRPPannualreview)toinclude:
o Exposurerecordreview o
Radiologicalinspections(surveyresults) o InterviewswithstaffconcerningapplicationandimplementationofALARA x
Evaluatingoperatingandmaintenanceprocedures,equipmentandfacilitiesfor modificationsthatcouldreduceoccupationalandpublicexposures.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page44
x Trackingfacilityexposuresandtrendsandproposingcorrectiveactions.
x Assuringtheproperimplementationofradiologicalworkcontrols.
x Evaluatingtheeffectivenessofplansandproceduresinmaintainingoccupationaland publicdosesALARA.
RadiationprotectionstaffareresponsibleforoverseeingtheimplementationofALARApractices
onaneverydaybasis.TheyareanessentialresourceforevaluatingTRISOXFFFprocessesfor
modificationsandimprovementsforALARApurposes.
4.3
OrganizationandPersonnelQualifications
Staffthatareresponsibleforthemanagementandimplementationoftheradiationprotection
program possess the education and training commensurate with their responsibilities.
Responsibilities,andtheauthoritynecessarytoimplementthoseresponsibilities,aredelineated
inpoliciesandprocedures.Themanagementsystemandadministrativeprocedures,including
radiation protection staff education, experience, and training requirements are detailed in
Chapter2.
4.4
ProceduresandRadiationWorkPermits
ApprovedRPPimplementingproceduresincorporateradiationprotectionrequirementsfoundin
10CFR19,20,70,and71,andotherapplicableregulations.TheRPPisimplementedthrough
approved radiation safety procedures and inclusion of radiation protection requirements in
operatingprocedures,equipmentmaintenanceprocedures,andRWPstoalertworkerstospecial
hazardsorcontrolsnecessaryfortheirprotection.RadiationprotectionandALARAprinciplesare
integratedintoallfacilityprocessandmaintenanceprocedures.TheRSOreviewsandapproves
allradiationprotectionprocedures.AsdescribedinChapter11,thefacilityDocumentControl
Processensuresthatproceduresarepromptlymodifiedwhentherearechangesintechnology
orpracticesandguidesprocedureauthorizationanddistribution.Trainingspecificallyaddresses
procedural changes. The following is a general (not comprehensive), list of tasks or topics
associatedwithradiationsafetyforwhichproceduresareestablished.
x Measuringandreportingoccupationaldose x
MeasuringandreportingdosetothePublic x
RadiationSurveysandMonitoring x
PostingandLabeling x
AccessControl x
AirSampling/Monitoring x
CareandUseofPPE x
ReceivingandOpeningPackages x
StorageandControlofLicensedMaterial x
WasteManagementandDisposal
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page45
x IssuanceandTerminationofRWPs x
Investigationlevelsandactionguidesforexternalandinternalexposure TheRWPsystemisdocumentedinradiationprotectionproceduresandareissuedforspecific
tasksandforaspecifiedperiodoftime.TheRSO(ordesignee)mustreviewandapproveRWPs.
The RWP describes the tasks, work area known or potential radiological conditions, access,
monitoring,andPPErequirements,andanyspecialconditionsorprecautions.RWPsareposted
attheworksite,andpersonnelassignedtoworkundertheRWPreviewtherequirementsprior
toentryintothearea.
4.5
RadiationSafetyTraining
TRISOX management provides an effective radiation safety training program that meets
regulatoryrequirements,thatensuresthattheworkingenvironmentissafe,andensuresthat
employeesandvisitorsunderstandtherisksassociatedwithexposuretoradioactivematerials.
Trainingprogramsaredesignedandimplementedtocomplywiththerequirementsof10CFR
Parts19and20.Chapter11,ManagementMeasures,addressesthetrainingthatensuresthat
administrativecontrolIROFSareavailableandreliable.
RegulatoryguidanceusedtodeveloptheRadiationProtectionTrainingProgramincludes:
x ANSI/HPSN13.362001IonizingRadiationSafetyTrainingforWorkers x
NCRPReportNo.134OperationalRadiationSafetyTraining x
ASTME116895(R2008)RadiologicalProtectionTrainingforNuclearFacilityWorkers x
RegulatoryGuide8.10,Rev.2,August2016,OperatingPhilosophyforMaintaining OccupationalandPublicRadiationExposuresAsLowAsIsReasonablyAchievable x
RegulatoryGuide8.13,Rev.3,June1999,InstructionsConcerningPrenatalRadiation Exposure Agradedapproachthatiscommensuratewithradiationprotectionresponsibilitiesisappliedto
RadiationSafetyTraining.Levelsoftrainingarebasedonregulatoryrequirements,thepotential
forradiationexposure,andthecomplexityofthetask.Trainingandqualificationofworkers;
includingsiteorientation,generalemployee,radiationworker,radiationsafetytechnician,and
specialtytrainingisprovidedcommensuratewiththehazardandplannedactivities.Thelevelof
training reflects prior training, personnel that are responsible for supervising others, and
personnelthataredirectlyorcontinuouslysupervised.Tofacilitatefeedbackthatcouldassistin
keeping exposures ALARA, training for Health Physics personnel responsible for performing
surveysincludesspecifictrainingonprocessrelatedoperationsandtasks.Refreshertrainingis
providedeverythreeyearsandaddresseschangesinpolicies,procedures,requirements,andthe
facilityISA.
A formal review and evaluation of the radiation protection training program for accuracy,
effectiveness,andadequacyofthecurriculumandinstructorsisperformedatleasteverythree
years.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page46
Trainingisprovidedtoallpersonnelandvisitorsenteringrestrictedareasthatiscommensurate
with the potential radiological health risks associated with that individuals responsibilities.
Trainingincorporates,whereappropriate,theprovisionsin10CFR19.12,andalsoincludes,but
isnotlimitedto,trainingonthefollowingtopics.
x Radiationhazardsandhealthrisks, x
RadiationSafetyprinciples,policies,andprocedures, x
Safestorage,transfer,andhandlingofradioactivematerials, x
MaintainingRadiationDoseALARA, x
Access,egresscontrols,andescortprocedures, x
Contaminationcontrolprocedures,andPPE, x
ALARAandexposurelimits, x
Internalandexternalexposurecontrolandmonitoring, x
Radiationexposurereportstoindividuals, x
Monitoringinstruments, x
Emergencyresponse,and x
Reportingresponsibilities.
FurtherinformationonthetrainingprogramisfoundinChapter11.
4.6
VentilationandRespiratoryProtection
TheTRISOXFFFdesignsincorporateALARAprinciplesforconfinementandventilationsystems
tolimitairbornecontaminationlevels.Engineeredcontrolsandfeaturesminimizepotential
inhalationofradioactiveandotherhazardousmaterialsunderallnormaloperatingconditions;
therefore, for normal operations, respiratory protection is not required. Equipment is
maintainedandtestedtoensuresystemsoperatewhenrequiredandarewithintheirdesign
specifications,asdescribedinChapter11.Ifengineeringcontrolsarenotpracticalorfeasible
(certainmaintenanceoperationsforexample)andthepotentialexistsforlevelsofradioactive
materialtoexceedthosethatdefineanairborneradioactivityarea,monitoringisincreasedand
intakesarelimitedbyeithercontrolofaccess,limitingexposuretimes,ortheuseofrespiratory
protection.
4.6.1 Building/AreaVentilation
Barriersintheformofcontainment,ventilation,andfiltrationaredesignedtoreducedischarges
ofradioactivematerialtoALARAlevels.Appropriatelysizedventilationisprovidedinareasof
thefacilitywherethepotentialexistsforairborneconcentrationsofradionuclidestoexceedthe
DerivedAirConcentration(DAC)valuesduringnormaloperationsbasedonthedosecoefficient
valuesinICRPPublication68.Thedesignoftheconfinementventilationsystemensuresthe
desiredairflowduringnormaloperations.Airthatisrecirculatedisfilteredthroughatleastone
stageofHEPAfiltration.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page47
Theconfinementandventilationsystemsincludethefollowingcriticaldesigncharacteristics
andfunctionalmeasurements.
(1) Airflowsareinthedirectionfromareaswithlowerlevelsofpotentialcontaminationto areaswithahigherpotentialforcontamination.
(2) Areas where fume hoods and glove boxes are located are maintained at a negative pressurewithrespecttoatmosphereduringnormaloperationconditions.
(3) Ventilationductsaredesignedtominimizeaccumulationsofradioactivematerial.
(4) Fansareprovidedwithvariablefrequencydrivestoallowmaintenanceoftheflowrateas filter loading increases, and redundant capacity to service the full design load.
Measurementsaremadetoensurethatnoisefromthefansdoesnotinterferewiththe abilitytohearaudiblealarms.
(5) ProcessareaairfiltrationincludesaprefilterbankandaHEPAfilterbankinseries.HEPA filtershave99.97%efficiencytofilterout0.3micronparticlesfromtheairstreamand fireresistanceratingofUL586.Filtersareplacedtofacilitatemaintenanceandrepair, and where possible, bagin/out type filter housings are used to lessen personnel exposures.
4.6.2 LocalizedVentilation
Where necessary, enclosures (i.e., hoods, gloveboxes, downdraft tables) or other localized
ventilationdesignsareusedtopreventthespreadofairbornecontaminationwithinthefacility
andfurtherlimitthepotentialforintakebyinhalation.Inprocessareas,thedesigncriteriafor
inwardairflowthroughtheopenfaceofacontainmentenclosureusedtohandleradioactive
materialwhichhasapropensitytosuspendinairisatleast125(+/25)linearfeetperminute
(LFM).Foroperations,theinwardairflowismaintainedatleast100(+/20)LFM.
Foropeningsusedtotransfercontainerizedmaterialorequipment,orforopenfaceenclosures
whereexcessiveairflowinterfereswithsensitiveanalyticalequipmentormanufacturingprocess
steps,theproperaveragefacevelocityandminimumrateofflowisestablishedinapproved
procedures. Process enclosure air (from hoods, gloveboxes, etc.) is exhausted through the
primaryHEPAfilterunitstotheatmospherethroughmonitoredfacilityventstacks.
Thevelocityofairflowattheentranceofallhoodsandotherenclosuresandcapturepointsare
evaluatedonascheduledbasis.Devicesareprovidedtomeasurethedifferentialpressurewithin
a containment enclosure with respect to the outside atmosphere, except in containment
enclosureswherethenatureofanoperationmakesthisrequirementimpracticalforprocessing
purposes.Correctiveactionwillbetakenassoonaspossibleiftheairflowisfoundtobedeficient.
Processeswillceaseoperationinanenclosureiftheaveragefacevelocityfallsbelow100LFM,
orifoperabilityofenclosuresisimpaired.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page48
4.6.3 LaboratoryVentilation
Inlaboratoryareas,thedesigncriteriaforinwardairflowthroughtheopenfaceofacontainment
enclosureusedtohandleradioactivematerialwhichhasapropensitytosuspendinairisin
accordancewithANSI/AIHAZ9.52012recommendations.Theproperaveragefacevelocityand
minimumrateofflowisestablishedinapprovedprocedures.
Any ventilated containment with an open door or port through which uncontainerized
radioactive material is routinely handled is subject to these requirements; however, the
intermittent opening of a door, glove port, etc. for the sole purposeof adding or removing
containerizedmaterialorequipmentdoesnotconstitutehandlingradioactivematerialwitha
propensitytosuspendinair.Inaddition,anyventilatedcontainmentwithanopeningtothe
roomwhichishighefficiencyparticulateair(HEPA)filteredforexhaustoroverpressurization
protectionisexcludedfrominwardairflowrequirements.
4.6.4 RespiratoryProtection
Whenitisimpracticaltoapplyprocessorotherengineeringcontrolstolimitconcentrationsof
uraniumintheairbelowthosedefinedin10CFR20.1201(e),otherprecautionaryprocedures,
suchasincreasedsurveillance,limitationofexposuretimes,orprovisionofrespiratoryprotective
equipmentareusedtokeeptheintakeofuraniumbyanyindividualwithinregulatorylimits.
The respiratory protection program is developed according to the requirements detailed in
10CFR20 Subpart H - Respiratory Protection and Controls to Restrict Internal Exposure in
Restricted Areas. Appropriate protection factors consistent with 10 CFR 20 Appendix A are
appliedwhencalculatingintakeortheCommittedEffectiveDoseEquivalent(CEDE).
Approved procedures guide the selection, fitting, issuance, maintenance, testing, training of
personnel,monitoring,andrecordkeepingforindividualrespiratoryprotectionequipmentand
for specifying when such equipment is to be used. These procedures are revised to reflect
changesinprocesses,thefacility,orequipmentthataresignificantenoughtoimpactrespirator
use.RecordsaremaintainedasdescribedinChapter11.
TheRespiratoryProtectionProgramrequiresthatindividualsmustbemedicallyqualified,trained
(toincludeproperdonninganddoffing),andquantitativelyfittestedtoaspecificrespiratorprior
toinitialuseandonanannualbasis.Proceduresandtraining,asdescribedinChapter11,include
requirementsforcleaning,inspection,andreplacementofrespiratorparts.
4.7
RadiationSurveyandMonitoringPrograms
ThefacilityRPPproceduresdetailacomprehensivesurveyprogramthatimplementsoperational
surveysforradiologicalcontrol.Operationalsurveyscharacterizeworkplaceconditions,verify
theeffectivenessofengineeringandadministrativecontrols,evaluatechangesinradiological
conditions,identifyareasrequiringradiologicalposting,andassessradiologicalconditionsduring
the performance of work. Training for Health Physics personnel responsible for performing
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page49
surveys ensures that RP personnel are sufficiently familiar with process activities so that
precautionscanbetakentominimizeexposures.
Regulatory requirements related to monitoring are contained in 10 CFR 20 Subpart C,
OccupationalDoseLimits;SubpartD,RadiationDoseLimitsforIndividualMembersofthe
Public;andSubpartF,SurveysandMonitoring.Facilityprograms,policiesandprocedures
guidethetypesofsurveys,monitoring(includingtheairsamplinganddosimetryprograms),and
evaluationsforcompliancewiththesesubparts.
Types of surveys include external dose rate surveys, surface contamination surveys, air
concentration surveys, surveys of personnel, PPE, equipment, waste, packages, and on
containment/ventilationsystems.Minimumsurveyandmonitoringfrequenciesareshownin
Table41whichwasdevelopedfromAppendixBRegGuide8.24.HealthPhysicsstaffensure
thatsigns,labels,signals,otheraccesscontrols,requirednoticestoemployees,copiesoflicenses,
and other items are properly posted, legible, and operative, as required by 10 CFR Part 19,
Notices,Instructions,andReportstoWorkers:InspectionandInvestigations,and10CFRPart20
orspecificlicenseconditions.
Radiation survey and monitoring procedures address the procedure objectives, sampling
processes,dataanalysis,equipmentandinstrumentation,measurementfrequency,records,and
reporting requirements, and required actions when measurements exceed regulatory or
administrativeoractionlevels.Surveydocumentationisretainedinaccordancewith10CFR
20.2103.Surveyandmonitoringrecordsarereportedasmandatedin10CFRPart19and10CFR
Part20usingtheprocessesdescribedinimplementingprocedures.
AnadequatenumberofRadiologicalProtectioninstrumentsaremaintainedandusedtoperform
radiological surveys and provide the necessary analytical results. Radiation Protection
instrumentationincludes:installedinstrumentationsuchasaCriticalityAccidentAlarmSystem,
ContinuousAirMonitors,andAreaRadiationMonitors;laboratoryinstrumentationsuchasGas
Flow Proportional Monitors for smear and air sample counting; stationary contamination
monitorssuchasHandandFootMonitors,andPersonalContaminationMonitors;andanarray
of portable instrumentation for radiation and contamination monitoring (alpha scintillators,
betagamma plastic scintillators, GeigerMuller type instruments, ionization chambers, and
neutroncounter).Availableinstrumentsaredesignedandmanufacturedtodetecttheradiation
types of concern for the facility and that exhibit the level of sensitivity necessary to detect
radiationatorbelowapplicableactionlevels.
All radiation protection instrumentation is subject to a routine maintenance and calibration
programtoensurethatproperlycalibratedandoperableinstrumentsareavailableforuseby
healthphysicsstaff.InstrumentationiscalibratedannuallyorfollowingmaintenancetoNIST
traceablestandardsandaccordingtomanufacturersrecommendation.Allinstrumentationis
sourcecheckedpriortoeachdayofuse.Thequalitycontrolrequirementsforoperabilitychecks
aredetailedinimplementingprocedures.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page410
4.7.1 RadiationSurveys
TheHealthPhysicsStaffperformpreoperational,routine,andspecialsurveysoffacilityareas.All
areasinwhichradioactivematerialsarestoredorprocessedareidentifiedpriortooperations.
Surveys are performed to identify areas in which personnel monitoring would be required
accordingtotherequirementsof10CFR20.1502(a)(1).Thefrequencyandscopeofroutine
surveyswhereradioactivematerialsarestoredorprocessed,andwhereworkershaveaccess,
arebasedonradiologicalcontentandpotentialdoserates.
4.7.2 DosimetryProgram
Thedosimetryprogramincorporatesmeasurementsofexternalexposure,internalexposure,and
airsamplingdatatocompletethedoserecordforeachmonitoredemployee.Thedoserecordis
comparedtothedoselimitsspecifiedinSubpartCof10CFR20.Ifengineeringcontrolsarenot
adequatetolimitexposurestobelowregulatorylevels,additionalproceduressuchaslimiting
exposuretimetolicensedmaterialoruseofrespiratoryprotectionareimplemented.
The External Dosimetry Program establishes the criteria for participating in the program,
identifiestargetradiationtypes,establishesmonitoringmethods,assessmentsandrecording
criteria, specifies the dosimetry required, use, processing and evaluation, and documents
administrativeinvestigationandactionlevels.
TheInternalDosimetryProgramisdesignedincompliancewith10CFR20.1201Occupational
Dose Limits for Adults, 10 CFR 20.1204 Determination of Internal Exposure, and the
participationlevelsdetailedin10CFR1502(b)foradults,minors,andpregnantwomen.The
programestablishesthecriteriaforparticipatingintheprogram,identifiesthetypesofsampling,
frequencyofmeasurementandrequireddetectionlevels,detailsthemethodsformeasuring,
assessing and recording intakes, details the evaluation and interpretation of the analytical
results,anddocumentsthefacilityinvestigationandactionlevels.
Themonitoringrequirementsin10CFRPart20aresummarizedinTable42.Inaccordancewith
the requirements of 10 CFR Part 20.1202, the TEDE is calculated by adding the Deep Dose
Equivalent(DDE)totheCEDEforeachpersonwhorequiresbothinternalandexternaldose
monitoring.TheTEDEwillnotexceedthe10CFRPart20doselimits.Investigationlevelsand
actionguidesforexternalandinternalexposureareestablishedinRPPprocedures.Workactivity
restrictionsareimposedwhenanindividualsexposureexceeds80percentoftheapplicable10
CFR20.1201limit.
4.7.2.1ExternalDosimetry
Monitoringforexposuretoexternalradiationisestablishedaccordingtotherequirementsin10
CFR20.1502(a)ifexternaloccupationaldoseislikelytoexceed10%ofthedoselimitappropriate
fortheindividual(adult,minor,ordeclaredpregnantwoman).Externalradiationmonitoringis
alsoprovidedaccordingto10CFR20.1502(a)(3)foranyindividualenteringahighorveryhigh
radiationarea(areasrequiringHRAandVHRApostingarenotanticipatedattheTRISOXFFF).
Betagammasensitivethermoluminescenttypedosimeters(TLDs)capableofmeasuringdeep
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page411
dosetothewholebody,shallowdosetotheskinorextremities,anddosetothelensoftheeye
areindividuallyassignedforroutineexternalexposuremonitoringbasedonworkareasurveys,
occupancy time, or other exposure information such as area monitor results. Personnel
dosimeters,withsensitivitiesandexchangefrequenciesthatareappropriateforthesourceterm,
areprovidedandprocessedbyaNationalVoluntaryLaboratoryAccreditationProgram(NVLAP)
accrediteddosimetryvendororsupplier.Othertypesofdosemeasuringdevicesmaybeused
including electronic dosimeters, directreading dosimeters, extremity dosimeters, neutron
dosimetersand/ormeasurementsmadewithportableradiationsurveysinstruments.
4.7.2.2InternalDosimetry
TheTRISOXinternaldosimetryprogramestablishesandmanagesabioassayprogramtomonitor
andevaluateintakesfromuranium,distributionsofuraniumwithinthebodyfollowingintake,
andtheresultingradiationdosesorpossiblechemicaleffects.Thebioassaymeasurementsare
usedtoconfirmtheadequacyofradiologicalcontrolsandtodeterminecompliancewiththe
occupationaldoselimits.
Facilitypersonnellikelytoreceivegreaterthan10%oftheapplicableAnnualLimitonIntake(ALI)
valuesaremonitoredforintakesofradioactivematerial.Intakesareassignedtoindividuals
basedonairsampling(describedinSection4.7.2.3),urinalysisand/orinvivolungcounting.
Intakes are converted to committed dose equivalent (CDE) and committed effective dose
equivalent(CEDE)forthepurposesoflimitingandrecordingoccupationaldoses
The appropriate routine bioassay frequency is based on (1) the potential exposure of the
individual,(2)theretentionandexcretioncharacteristicsoftheradionuclide,(3)thesensitivity
ofthemeasurementtechnique,and(4)theacceptableuncertaintyintheestimateofintakeand
committeddoseequivalent.Bioassaymeasurementsusedfordemonstratingcompliancewith
the occupational dose limits are conducted often enough to identify and quantify potential
exposuresandresultantintakesthat,duringanyyear,arelikelytocollectivelyexceed0.1times
theALI.Table43liststheminimumbioassayfrequenciesforbioassayprogramparticipants.
Further evaluation, such as examination of airborne measurements or additional bioassay
measurements,toobtainthebestestimateofactualintakeisperformedifresultsexceed0.02
timestheannuallimitonintake(ALI),or40derivedairconcentration(DAC)hours.
UrinesampleconcentrationsareanalyzedbyeitherKineticPhosphorescenceAnalyzer(KPA)or
InductivelyCoupledPlasmaMassSpectrometry(ICPMS).ActionlevelsareestablishedinRPP
procedurestopreventanindividualfromexceedingtheoccupationalexposurelimitsspecifiedin
10CFR20andtoprotectagainsttoxicologicaldamagetothekidney.Controlactionsinclude
temporarilyrestrictingtheindividualfromworkinginanareacontainingairborneradioactivity,
andactionsaretakenasnecessarytoassureagainstrecurrence.Nasal,saliva,urineand/orfecal
samples, or in vivo chest counts may be collected from individuals when action limits are
exceeded. Approved procedures define when referral to the corrective action program, as
describedinChapter11,isrequired.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page412
Bioassayresultsareinterpretedusingindustrystandardmethodsandconsensusmodelsandmay
makeuseofincidentspecificdataand/oranexposedindividualspersonalcharacteristics.
4.7.2.3AirSamplingandMonitoringProgram
Airsamplingisperformedinallareasofthefacilitywheredispersibleformsoflicensedmaterials
arehandled,stored,orprocessedandwhereconcentrationsofairborneradioactivematerials
couldexceed10%ofaDAC.Airsamplingisperformedtoevaluateairbornehazardswhenever
respiratoryprotectiveequipmentisusedtolimitinhalationintakes,toevaluatecontainmentand
forpostingairborneareas,toidentifyifanintakeoccurredandestimatethemagnitude,andto
provideanearlywarningofelevatedairconcentration.
AsdescribedinChapter1,theDACisbasedonICRP66and68whichassumesanActivityMedian
AerodynamicDiameter(AMAD)of5micrometers.Ifappropriate,TRISOXmayelecttoadjust
ALIandDACvaluesbasedonmeasuredparticlesizedataforparticlesthatarelargerthan5
AMAD.
Airsamplingisperformedusingfixedlocationsamplersforbasicevaluationoftheexposureof
workers,personal(lapel)samplersforsupportivemeasurementsandspecialstudies,andair
monitors for early warning of unexpected releases. Continuous air monitoring (CAMs) is
performedwherethereisareasonablepotentialforunintendedreleasestocauseanintake
exceeding40DAChoursinaweekorless.Placementofairsamplingandmonitoringequipment
isbasedthepurposeofthemeasurement(estimatingworkerintakes,verifyingconfinementof
materials is effective, providing warning, detecting leaks, or determining if an airborne
radioactivityareaexist)andonairflowstudiestodeterminetheairflowpatternsintheworkplace
and optimal placement of monitors. Alarm set points for CAMs meet radiation protection
objectives,aredefensibleanddocumented,andaresetaslowaspracticalfortheworkbeing
conductedwithoutcausingexcessivefalsealarms.
Fixedairsamplingresults,lapelorotherspecialairsamplingresultsmaybeusedtodetermine
workerintakeandtocalculateCEDEinareasforwhichinternaldoseassessmentisrequired.
Whereairsamplingisusedtocomplywith10CFR20.1502(b)formeasuringintake,evaluations
demonstratethatthesamplingisrepresentativeoftheairbreathedbytheworkerorcorrection
factorsappliedwhereappropriate.
AirsamplingfrequencyisperformedinaccordancewithTable41,MinimumSurveyFrequency.
Ataminimum,areaspostedasAirborneRadioactivityAreashaveairsampleschangedatleast
onceperdaywhenproductionisongoinginthoseareas.Othercontaminatedareaswhere
licensedmaterialsarehandled,butarenotAirborneRadioactivityAreas,andwheretheairborne
levelscouldaveragegreaterthan10%DAC,haveairsampleschangedweeklywhenworkwith
licensedmaterialsisongoing.Airsamplingandmonitoringequipmentsuchascontinuousair
monitors, portable high volume and/or lapel air samplers may be utilized where a fixed air
samplingnetworkisnotpractical.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page413
QualityAssurance/QualityControlmeasuresincludeperiodiccalibrations,anddailysourceand
backgroundchecks.Airflowmetersarecalibratedaccordingtomanufacturerguidelinesatleast
annually,andwheneverrepairormodificationwarrant.
ActionlevelsforairsampleresultsareestablishedanddocumentedintheRPPimplementing
procedures.Actionlevelsareestablishedassociatedwithinvestigation,worksuspension,and
workrestrictionlevelsandtheirassociatedcorrectiveactions.Ameasurementindicatingan
intakeequaltoorgreaterthan10milligramsofTypeFuraniuminaweekwillresultinawork
restrictionbasedonchemicaltoxicitylimits.
4.7.3 ContaminationControl
ContaminationiscontrolledattheTRISOXFFFbycontainmentenclosuresandventilationand
supplementedbyareaclassificationandaccesscontrolassociatedwithradiologicalpostings,
routinesurveillance,protectiveclothingforpersonnel,andtraining.
4.7.3.1AccessControl
Allareasthatstore,handleorprocessradioactivematerialsareclassifiedasaRadiologically
Controlled Area (RCA). Change facilities are provided for personal clothing, showering, and
donningPPE.AreaswithintheRCAsarefurthercontrolledforaccessandegressasbufferareas,
or for levels of radiation, contamination, or airborne contamination in accordance with the
posting requirements in 10 CFR 20. Radiological postings inform workers of radiological
conditions and requirements for entry/exit. Stepoff pads and monitoring instruments are
providedatPPEdoffinglocations.
4.7.3.2SurveyingofSurfaces
A routine contamination control program is established to evaluate and control surface
contamination and to prevent unnecessary external or internal exposure of personnel to
radiation.Surveysareperformedonpersonnelleavingareasinwhichcontaminationcouldbe
present,materialsandequipmentdesignatedforreleasefromcontrolledareas,andonincoming
andoutgoingshipmentscontainingradioactivematerial.
Routinesurfacecontaminationcontrolsurveysareperformedforprocessandmanufacturing
areas, warehousing, and support facilities where licensed materials are stored, handled, or
processed.Uncontrolledareasinsidethefacilityarealsosurveyedperiodicallytoensurethat
radioactivematerialsareadequatelyconfinedintheRCAs.Minimumsurveyfrequenciesare
presentedinTable41.Areasinwhichthepotentialforsurfacecontaminationishigh,orthe
probabilityforhumanintakefromresuspensionishigh,aresurveyedmorefrequently.
Standardizedmethodsforcollectingandanalyzingsmearsamplesareestablishedandemployed
toaidincomparisonandestablishtrendsforfacilityandequipmentandmaterialsurveys.A
diagramofeachroutinelysurveyedareaisusedforrecordingsurveyresults.Methodsand
instrumentsusedforcountingsamplesofremovablesurfacecontaminationcandetectalpha
radiationfromuraniumatandbelowthelevelsspecifiedinAppendixA,AcceptableSurface
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page414
Contamination Levels, to Regulatory Guide 8.24. Regulatory Guide 8.24 Appendix A is
incorporatedasAttachment1.
The RPP requires that administrative action guidelines be established to assure that
contamination levels and employee exposures are kept ALARA and within regulatory limits.
Action guidelines are established to ensure appropriate corrective actions are taken for
contaminationcontrol.Approvedproceduresdetailtheactionguidelines,requiredactionsto
promptly address the contamination to a satisfactory resolution (cleaned or contained and
labeled), and when referral to the corrective action program, as described in Chapter 11, is
required.
4.7.3.3ProtectiveClothing
PPE is required to minimize opportunities for personnel and their clothing to become
contaminated. Protective clothing requirements are commensurate with anticipated work
conditions. Monitors are available in areas where workers doff PPE to perform a survey
(especiallyhead,hands,andotherexposedportionsofthebody)aftertheyremovePPEand
beforetheyleavetheRCA.Clothingsurveyedandfoundtohavelessthan200disintegrations
perminute(dpm)per100cm2ofuraniumcontaminationisacceptableoutsiderestrictedareas.
Reasonable efforts are made to reduce skin contamination to background levels.
Decontaminationattemptsunderthedirectionoftheradiationsafetystafformedicalconsultant
arerepeateduntil(1)suchattemptsceasetoachievesignificantreductions,or(2)suchattempts
threaten to damage the skin, at which point the individual will be released from the RCA.
Subsequentmeasurementswillbemadeontheareatoevaluatecontaminationlevelsovertime.
Exceptionsmaybemadeforemergenciesandemergencydrills.
4.7.3.4ReleaseforUnrestrictedUse
Equipment, materials, and facilities that are evaluated for both fixed and removable
contaminationusingguidanceinGuidelinesforDecontaminationofFacilitiesandEquipment
PriortoReleaseforUnrestrictedUseorTerminationofLicensesforByproduct,SourceorSpecial
NuclearMaterialasdescribedinChapter1,andthatdonotexceedthelevelsrepresentedin
Appendix A, Acceptable Surface Contamination Levels, to Regulatory Guide 8.24, may be
releasedfromrestrictedareasforunrestricteduse(seeAttachment1).
Equipmentandmaterialsmaybetransferredbetweenrestrictedareasthroughanunrestricted
areaiftheexteriorsurfacesoftheitemoritscontainerhavesmearablecontaminationlevelsless
than Attachment 1 levels. When contaminated items are transferred through unrestricted
areas,theroutewillminimizetransfertimeandthepossibilityofaccidentalrelease.
4.7.3.5LeakTestingofSealedSources
Nonexemptsealedsourcesusedforcalibrationandqualitycontrolproceduresareleaktested
inaccordancewithAppendixC,LeakTestRequirements,ofRegulatoryGuide8.24.Regulatory
Guide8.24AppendixCisincorporatedasAttachment2.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page415
4.7.4 EnvironmentalMonitoring
EffluentandenvironmentalradiationmonitoringareaddressedinChapter9ofthisapplication.
4.8
AdditionalProgramCommitments
Thefollowingsectionsprovidecommitmentstoachievecompliancewiththeregulationsin10
CFR20,SubpartL,10CFR20,SubpartM,Reportsand10CFR70.74.
4.8.1 Records
Inaccordancewith10CFR20,SubpartL,Records,TRISOXmaintainsrecordsoftheRPP,including
but not limited to, occupational exposure of personnel to radiation, releases of radioactive
materialstotheenvironment,radiationsurveyresults,andresultsofcorrectiveactionprogram
referrals,radiationworkpermitsandplannedspecialexposures.RecordsassociatedwithALARA
findings, employee training, personnel radiation exposures, and environmental activities are
generatedandretainedinsuchamannerastocomplywiththerelevantrequirementsof10CFR
20aspartoftherecordsmanagementprogramdescribedinChapter11.
4.8.2EventReporting
Approved procedures require reporting to the NRC, within the time specified in 10 CFR 20,
Subpart M, Reports, and 10 CFR 70.74, any event resulting in an occupational exposure to
radiationexceedingthedoselimitsin10CFR20.Approvedprocedurescontaininstructionsfor
whenandhowtoreporteventstotheNRC.
4.8.3AnnualDoseMonitoringReport
Anannualreportoftheresultsofindividualmonitoring,asrequiredby10CFR20.2206(b),is
submittedtotheNRC.
4.9
CriticalityMonitoringandDetection
The TRISOX FFF criticality accident alarm system (CAAS) is designed, and a documented
evaluationismaintained,todemonstratethatthesystemmeetstherequirementsof10CFR
70.24,aswellasANSI/ANS8.31997(R2017),CriticalityAccidentAlarmSystem,withexceptions
asnotedinRegulatoryGuide3.71,NuclearCriticalitySafetyStandardsforNuclearMaterials
OutsideReactorCores,Revision3(2018).Monitoringisperformedusingradiationdetectors
(e.g.,gamma,neutron)thatareproportionaltodoselevelsandnotsubjecttotheeffectsof
saturation.
Thecriticalitydetectionsystemconsistsofthreeessentialparts:thereadoutmodule,alarmrelay
module,andthedetectors.Thedetectorcollectslight,orachargecausedbyincidentradiation.
Thislightorchargeisthenconditionedandtransmittedviamulticonductorcableanddisplayed
onthereadoutmodule.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page416
A calibration check is performed for all units in service based on detector manufacturers
recommendationsorifsystemmonitoringindicatesanomalousdetectorresponse,howevernot
toexceed5years.Detectorsarealsoresponsetestedinaccordancewithinternalproceduresto
ensurecontinuedoperability.Periodically,thealarmissoundedforfamiliarity,training,ordrills.
Alarmaudibility(e.g.,siren,lights)istestedinaccordancewithapprovedprocedures.
Tomeetregulatoryrequirementsin10CFR70.24andtoassurealimitednumberoffalsealarms,
thesystemissetupwithatleasttwodetectorsateachdesignatedmonitoringlocation.Alarm
actuationiscausedbyatleasttwodetectorsatalocationexceedingtheiralarmtrippoint,orby
asingledetectorfailurecoupledwiththeseconddetectorinalarm,whichresultsinaplantwide
evacuation and worker accountability. The same logic would apply to a system with three
detectors,withtwoofthreealarming.Detectororotherelectroniccomponentfailurewillresult
inawarningsignal.Thissignalwillinitiatecontingencymeasureswhichmayincludeevacuation
ofpersonnel,suspensionofoperations,deploymentofauxiliarymonitoringequipment,and/or
immediatesystemrepair.Thesystemisalsoprovidedwithabackuppowersupply.
Theplacementoftheradiationdetectorsaresuchthatallareasofthefacilitywheremonitoring
isrequiredarecovered.Typically,thealarmtrippointissetat20mR/hr.Alarmsetpointsmay
varyduetoambientradiationlevelsandmeasurementuncertainty.Thistrippointallowsfor
minimizationofanalarmfromsourcesotherthancriticality.Whenthealarmtrippointhasbeen
reached or exceeded, the system will produce an alarm throughout the facility which will
continueregardlessoftheradiationleveluntilmanuallyreset.Thealarmcontrolandrelay
cabinetshavelimitedaccess.Manualinitiationofthealarmsystemisprovidedfortesting.A
warning signal is generated at the central control unit in the event of a detection system
malfunction.Provisionsareincorporatedintothealarmsystemtoallowappropriatetestingand
remotereadoutsarepresentatthecentral/secondaryalarmstationsthatwillalertpersonnelin
theeventofcomponentfailure.
Thesystemisdemonstratedtorespondtoaminimumcriticalityaccidentofconcern.Acriticality
accidentproducinganabsorbeddoseinairof20radsat2meterswithinoneminuteisthelimiting
accidentconsideredforthedemonstrationofthesystemresponse.
Detectorplacementisconservativelydemonstratedbyaccountingforshieldingfromfacilityand
processmaterialsbetweenapostulatedaccidentandthedetectors,aswellasdistance.The
accident is evaluated from a number of locations to demonstrate the possible effects of
attenuation. Common modeling codes are used to perform the evaluations (e.g., MCNP).
Complianceisdemonstratedifmodelingresultsindicatethatthepostulatedminimumaccident
ofconcernwillresultinanexposurerateexceedingthealarmsetpointatadetectorlocation.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page417
Table41:MinimumSurveyFrequencies
FACILITYAREAS
EXTERNAL
RADIATION
SURVEYS
AIRSAMPLING
REMOVABLESURFACE
CONTAMINATION
SURVEYS
Uraniumreceiving,
warehousing,and
shipping
Monthly
Continuousairsampling;
sampleschangedweekly
andfollowingany
indicationofrelease
leadingtoairborne
concentrationsofuranium
Monthlyandfollowing
anyindicationofrelease
Manufacturing
processingareas,
scraprecovery,
wastehandling,
maintenance,and
changerooms
Monthly
Continuousairsampling;
sampleschangedeachshift,
followinganychangein
equipmentorprocess
control,andfollowing
detectionofanyeventthat
mayhavereleaseduranium
Weeklyandfollowingany
indicationofrelease
Laboratories
Monthly
Continuousairsampling;
sampleschangedeachshift
Weekly
Finalfuelform
packagingand
storage
Monthly
Continuoussampling;
sampleschangedweekly
Monthly
Lunchrooms,
cafeterias,snack
bars,andvending
machineareas
Quarterly
None
Monthly
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page418
Table42:Summaryof10CFR20.1502MonitoringRequirements
Theuseofindividualmonitoringdevicesforexternaldoseisrequired:
x Foradultswhoarelikelytoreceiveanannualdoseinexcessofanyofthefollowing (eachevaluatedseparately):
0.5rem(0.005Sv)deepdoseequivalent.
1.5rems(0.015Sv)eyedoseequivalent.
5rems(0.05Sv)shallowdoseequivalenttotheskin.
5rems(0.05Sv)shallowdoseequivalenttoanyextremity.
x Forminorswhoarelikelytoreceiveanannualdoseinexcessofanyofthefollowing (eachevaluatedseparately):
0.05rem(0.5mSv)deepdoseequivalent.
0.15rem(1.5mSv)eyedoseequivalent.
0.5rem(0.005Sv)shallowdoseequivalenttotheskin.
0.5rem(0.005Sv)shallowdoseequivalenttoanyextremity.
x Fordeclaredpregnantwomenwhoarelikelytoreceiveanannualdosefrom occupationalexposureinexcessof0.05remdeepdoseequivalent,althoughthe doselimitappliestotheentiregestationperiod.
x Individualsenteringahighoraveryhighradiationarea.
Internalexposuremonitoring(notnecessarilyindividualmonitoringdevices)isrequired:
x Foradultslikelytoreceivein1yearanintakeinexcessof10%oftheapplicableALIs foringestionandinhalation.
x Forminorsanddeclaredpregnantwomenlikelytoreceivein1yearacommitted effectivedoseequivalentinexcessof0.05rem(0.5mSv).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page419
Table43:RoutineMinimumBioassayFrequencies
fromANSI/HPSN13.222013BioassayProgramsforUranium,
Table8MinimumFrequenciesofBioassay
10CFR20
SolubilityClass
Situation
Urine
Invivo
D
Radiological
Monthly
Notnormallyused
W
Radiological
Quarterly
Annually
SpecialY
Radiological
Quarterly
Annually
Y
Radiological
Notnormallyused
Annually
DandW
ChemicalToxicity
Monthly
AnnuallyforClassW
FecalbioassaysamplingisperformedasneededforallClassestoaddressspecial
situationssuchasincident/accidentinvestigations.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page420
Attachment1
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page421
Attachment2
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0004
SNMXXXX
CHAPTER4
ZŽ
December2024
Page422
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0004toheader.
4.6.1
RemovedandlaterfromdiscussionofICRP68basedonchanges
fromTX0REGLTR0029,Chapter4RAI10.
4.7.2
AddedstatementWorkactivityrestrictionsareimposedwhenan
individualsexposureexceeds80percentoftheapplicable10CFR
20.1201limit.BasedonchangesfromTX0REGLTR0029,Chapter4
RAI9.
4.7.2.1
Addedstatementthatpersonneldosimetershavesensitivitiesand
exchangefrequenciesappropriateforthesourceterm.Basedon
changesfromTX0REGLTR0029,Chapter4RAI9.
Table43
Simplifiednotebelowtabletostatesamplingisperformedas
neededforallclassestoalignwithbioassaytechnicalbasis.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0005 SNMXXXX CHAPTER 5 ZŽ
December 2024 Page 51 NUCLEAR CRITICALITY SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 5.1 Nuclear Criticality Safety Program and Philosophy 52 5.2 5.2.1 5.2.2 Organization and Administration of the NCS Program NCS Program Objectives NCS Program Commitments 53 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 Management Measures Applied to the NCS Program General Management Measures Employee Training Training and Qualifications of NCS Staff Auditing, Assessing, and Upgrading the NCS Program Procedures NCS Reviews of New or Modified Equipment Posting of Nuclear Criticality Safety Limits ISA Process and ISA Summary Corrective Action Program Records Management 54 5.4 5.4.1 5.4.2 5.4.3 Emergency Notification, Planning, and Response Criticality Accident Alarm System (CAAS)
Portable CAAS Emergency Management 57 5.5 5.5.1 5.5.2 5.5.3 Methodologies and Technical Practices Means of Control Methods of Control Computer Codes and Associated Safety Limits 58 5.6 Sources of Criticality Data and Analytical Techniques 518 5.7 Requirements for New Facilities or New Processes at Existing Facilities 519 TRISO-X Document Control 2024.12.30 11:55:29 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page52
NUCLEARCRITICALITYSAFETY
5.1
NuclearCriticalitySafetyProgramandPhilosophy
TRISOXprovidesaneffectivenuclearcriticalitysafety(NCS)program,includingmethodologies
andtechnicalpractices,tosupportsafeoperationoftheTRISOXFFF.Controlsandbarriersthat
aredesignatedasItemsReliedonforSafety(IROFS)topreventaninadvertentnuclearcriticality
aredocumentedinNCSEvaluations(NCSEs)orinsupportingRiskAssessmentEvaluationsforthe
respectiveNCSEandtheIntegratedSafetyAnalysis(ISA)Summaryasappropriate.
TRISOXprovidesfortheappropriatemanagementoftheNCSprogram.Theresponsibilitiesand
authoritiesofindividualsthatdevelopandimplementtheNCSprogramarealsoprovidedin
Chapter2.Inaddition,facilitymanagementmeasuresareprovidedthatsupportimplementation
andmaintenanceoftheNCSprogram.
Subcriticalityismaintainedforallnormalandcredibleabnormalconditionsasrequiredby10CFR
70.61(d).TheDoubleContingencyPrincipleofANSI/ANS8.12014(R2018),NuclearCriticality
SafetyinOperationswithFissionableMaterialsOutsideReactors,formulatesthepreferredbasis
forthedesignandoperationofspecialnuclearmaterial(SNM)processeswithintheTRISOXFFF.
Tosupportthisoverarchingrequirement,processdesignsincorporatesufficientfactorsofsafety
and controls provide sufficient redundancy and diversity to require at least two unlikely,
independent, and concurrent changes in process conditions before a criticality accident is
possible.Thefocusshouldbeonunderstandingeachcrediblechangeinprocessconditionsand
implementing the best overall control strategy to maintain subcriticality such that no single
credibleeventorfailurewillresultinacriticalityaccident.TheNCSEwillalsodocumentthebasis
thatachangeinaprocessconditionisunlikely.WhenconsideringNCSaccidentsequences,
guidancefromAppendixA,ANSI/ANS8.12014(R2018),isusedtosupporttheevaluationof
typicalchangesinprocessconditions.
Allcredibleeventsinwhichcriticalityispossiblewillbedocumentedtobehighlyunlikelyas
requiredby10CFR70.61(b)pertheISAriskassessmentmethodsdescribedinChapter3.While
thedoublecontingencyprincipleisnotusedtodemonstratecompliancewith10CFR70.61(b),
thecriticalitysafetycontrols,thebasisfortheindependenceofcontrols,andthedemonstration
ofsubcriticalityfromtheanalysismaybeusedasinputtotheISAriskassessment.
TRISOXFFFreliesonpassive,active,enhancedadministrative,andadministrativecontrolsto
maintainsubcriticality.Wherepracticable,relianceisplacedonpassiveequipmentdesignsto
maintainsubcriticalityratherthanonadministrativecontrols.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page53
5.2
OrganizationandAdministrationoftheNCSProgram
TRISOX provides an NCS program with sufficient resources to implement and maintain an
effectiveprogram.TheTRISOXNCSprogrammeetstheregulatoryrequirementsof10CFR70
toensureadequateprotectionagainsttheconsequencesofaccidentalcriticalityevents.The
primarymeansofdoingthisispreventionbyensuringthatprocessesremainsubcriticalunder
normalandcredibleabnormalconditions.
5.2.1 NCSProgramObjectives
TheTRISOXNCSprogramincludesthefollowingobjectives:
- 1. Perform and document NCS evaluations for new or changed processes and establish safetylimits,controls,andproceduresasnecessarytoensurethatprocesseswillremain subcriticalundernormalandcredibleabnormalconditions.
- 2. Establish,aspracticable,doublecontingencyprotectionanddefenseindepthmeasures; ensuringsufficientmarginsofsafetyandsubcriticalitytoprovideadditionalassurance thatthelikelihoodofcriticalitywillbeacceptablylow.
- 3. Establish and maintain a Criticality Accident Alarm System (CAAS) and emergency responseprocedurestoprotecthealthandsafetyintheeventcriticalityoccurs.
- 4. Provide technical support to emergency response personnel in responding to and recoveringfromabnormalconditionsandemergenciesuptoandincludingacriticality accident.
- 5. Verify the adequacy of NCS controls through audits and assessments of operations includingverificationofequipmentconfiguration(s).
- 6. EnsureadequacyofNCSevaluationsthroughpeerreviews,assessments,andvalidation andverificationofcalculationalmethods.
- 7. Trainandotherwisesupportoperationsinproceduredevelopmentandimplementation toensurethesafehandlingofspecialnuclearmaterial.
- 8. Supportregulatorycomplianceregardingeventreporting(10CFR70.50andAppendixA to10CFR70),complywiththefacilitychangeprocess(10CFR70.72),andparticipatein theperformanceanddocumentationofthefacilitysISA(10CFR70.61through70.66) insofarastheypertaintocriticalitysafety.
5.2.2 NCSProgramCommitments
TheTRISOXNCSprogramshallmeettherequirementsof10CFR70.Theobjectivesofthe
programinclude:
- 1. AnNCSprogramstructurethatisconsistentwithcurrentindustrypracticeasdefinedin ANSI/ANS8.12014(R2018)andANSI/ANS8.192014(R2019),AdministrativePractices forNuclearCriticalitySafety,includingestablishingtherolesandresponsibilitiesofkey programpersonnel.InformationregardingTRISOXorganizationandadministrationis describedinChapter2.Chapter2alsoincludestheorganizationalpositions,functional responsibilities, qualifications, and authorities of NCS management and staff who develop,organize,implement,andadministertheNCSprogram.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page54
- 2. EstablishandmaintainNCSsafetylimits,controls,procedures,andanyNCSoperating limits established for IROFS in fissile material processes and maintain management measurestoensuretheircontinuedreliabilityandavailabilitytoperformtheirintended safetyfunctionwhenrequired.
- 3. Support operations personnel through development of training, preparation of NCS postings, and other appropriate operator aids for key administrative controls (e.g.,
paintedlinesonthefloorandwarninglights),andreviewofproceduresandoperations toensuretheyareunambiguous,easilyunderstood,andreadilyachievable.
- 4. Evaluate modifications to the facility or safety program to ascertain their impact on criticalitysafety.
- 5. RequirepersonneltoreportdefectiveNCSconditionstooperationssupervisionandthe NCS function. Management policies reinforce operators stopwork authority and encouragethereportingofdefectiveconditions.
- 6. Renderprocessessafeorsuspendoperationsuponlossofdoublecontingencyprotection untilsuchprotectioncanberestoredandassesstheadequacyoftheaffectedcontrols.
- 7. Controlsareestablishedonsystemparameterstoprecludechangesinprocessconditions.
Controlsneededtomeettheperformancerequirementof10CFR70.61(b)pertheISA riskassessmentmethodsdescribedinChapter3aredesignatedasIROFSinaccordance with10CFR70.61(e).
- 8. Theconditionresultingfromthefailureofalegofdoublecontingencyhasbeenshownto besubcriticalwithanacceptablemargin(e.g.,keffislessthanUSL,parametersarewithin subcriticallimitsspecifiedinthelicenseorendorsedstandards).
- 9. Controls are sufficiently reliable to ensure that each change in process conditions necessaryforcriticalityisunlikely.Managementmeasuresareestablishedtoensure thattheyareavailableandreliabletoperformtheirsafetyfunction.
5.3
ManagementMeasuresAppliedtotheNCSProgram
5.3.1 GeneralManagementMeasures
Information regarding management measures programs is described in Chapter 11. These
programsincludethemanagementmeasuresidentifiedin10CFR70.62usedtoimplementand
maintaintheNCSprogram.
5.3.2 EmployeeTraining
TRISOX complies with the requirements of ANSI/ANS8.192014 (R2019), and Section 7 of
ANSI/ANS8.201991(R2020),NuclearCriticalitySafetyTraining,astheyrelatetoNCStraining.
TrainingisprovidedtoallpersonneltorecognizetheCriticalityAccidentAlarmSystem(CAAS)
signal and to evacuate promptly to a safe area. In addition, TRISOX employees receive
instructiontrainingregardingtheNCSPolicy.RefertoChapter11foradditionaldiscussionabout
trainingpersonnelregardingproceduralcompliance,stopworkauthority,responsetoalarms,
andreportingofdefectiveconditions.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page55
5.3.3 TrainingandQualificationsofNCSStaff
A formal training and qualification program is implemented and maintained for NCS staff
consistentwithguidelinespresentedinANSI/ANS8.262007(R2016),CriticalitySafetyEngineer
TrainingandQualificationProgram,excludingSection7.4.Elementsoftheprogramincludeon thejobtraining,offsiteNCSrelatedtrainingcourses,andmentoringbyseniorNCSengineers.
5.3.4 Auditing,Assessing,andUpgradingtheNCSProgram
TRISOXcomplieswiththerequirementsofANSI/ANS8.192014(R2019)asitrelatestoNCS
auditsandassessments.AuditsandassessmentsofsiteoperationsinvolvingSNMareperformed
onascheduledbasisasdefinedinwrittenapprovedprocedurestoconfirmthatactivitiesare
beingconductedinaccordancewithnuclearcriticalitysafetyrequirementsincludinglimitsand
controls.
As part of the audits and assessments program described in Chapter 11, NCS audits and
assessmentsoffacilityactivitiesareconductedonascheduledbasisasdefinedinapproved
proceduressuchthatSNMprocessingorstorageareas/facilities,evaluatedunderthescopeof
anNCSE,arereviewedatleasttriennially.Thepurposeofanauditistodeterminethat:(a)
operations are conducted in compliance with license conditions, operating procedures, and
postedlimits;(b)administrativecontrolsandpostingsareconsistentwithNCSEs;(c)equipment
and operations comply with NCSEs; and (d) corrective actions relative to findings of NCS
inspections are adequate. The audit frequency for an area is based on its respective NCSE
implementationdate,andsubsequentrevisionswillextendthatauditrequirementintoitsnext
cycle.Thepurposeofanauditisfocusedoncompliancewhereasanassessmentisfocusedon
improvementefforts.AuditsmaybeperformedunderaformalQAprogram,asdirectedbythat
function,orunderthescopeofthenuclearcriticalitysafetyprogram.
Assessmentsareconductedtoevaluatewhetherthenuclearcriticalitysafetyprogrammeetsthe
requirements of related ANSI/ANS8 series standards. Facility walkthrough assessments are
performedperiodicallybyNCSforeachoftheSNMoperations.Facilitywalkthroughassessments
focusonfieldcompliancewithestablishedNCSlimitsandcontrols.Assessmentfrequenciesare
based on the perceived criticality safety risk of an operation and may be performed more
frequentlyforhigherriskoperations.TheassessmentprogramsupportstheNCSauditschedule
byidentifyingproblematicSNMoperationsthatshouldbereviewedmorefrequentlyduringthe
triennialperiod.
An independent assessment of the nuclear criticality safety program is conducted at least
triennially.
Findings and observations from NCS audits and assessments areentered into the corrective
actionprogramandtrackeduntilclosureasdescribedChapter11.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page56
5.3.5 Procedures
TRISOXcommitstotherequirementsofANSI/ANS8.192014(R2019)asitrelatestooperating
procedures.AsdescribedinChapter11,proceduresareprovidedforactivitiesinvolvingSNM,
andtheproceduresincorporatesafetylimitsandcontrolsasappropriate.Theseproceduresare
reviewedandapprovedbytheNCSfunction.Duringthereviewandapprovalprocess,theNCS
staffmayrecommendorrequiremodificationstotheprocedurestoreducethelikelihoodof
occurrenceofaninadvertentnuclearcriticality.
5.3.6 NCSReviewsofNeworModifiedEquipment
Each proposed addition of new equipment or change to existing equipment used in the
processingorstorageofSNM,andanyprocedurechangesresultingtherefrom,isreviewedand
approved by the NCS function as part of the ISA and Configuration Management processes
describedinChapters3and11.Duringthereviewandapprovalprocess,theNCSstaffmay
recommend or require modifications to the design and/or to the procedures to reduce the
likelihoodofoccurrenceofaninadvertentnuclearcriticality.NCScalculationsandevaluations
areincorporatedintotheconfigurationmanagementprogram.
5.3.7 PostingofNuclearCriticalitySafetyLimits
NCSrequirementsissuedbytheNCSfunctionforeachprocesssystemaremadeavailabletowork
areasintheformofwrittenorelectronicoperatingprocedures.Clear,visiblesignsornotices
maybepostedatworkstationsorfloorareasmaybemarked,asappropriate,tosupplementthe
proceduresbyemphasizingspecificlimitsandcontrols.
Postednuclearcriticalitysafetyrequirementsandlimitsaredefinedbythenuclearcriticality
safetyfunctionandinclude,asappropriate:
- 1. Limitsonmaterialtypesandforms;
- 2. Allowablequantitiesbymassornumberofitems/containers;
- 3. Allowableenrichments;
- 4. Limitsonreflectingmaterials;
- 5. Requiredspacingbetweenunits;
- 6. Controllimits,whenapplicable,onquantitiessuchasmoderation, concentration/density,andthepresenceofadditives.
5.3.8 ISAProcessandISASummary
RefertoChapter3foradiscussionoftheISAprocess,includingprocesshazardanalysesandISA
Summaryrevisions.
5.3.9 CorrectiveActionProgram
AcorrectiveactionprogramisimplementedtodocumentandmanageNCSrelatedproblems,
observations, findings, investigations, corrective actions, and any unacceptable NCSrelated
performancedeficiencies.RefertoChapter11foradiscussionofthecorrectiveactionprogram.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page57
5.3.10 RecordsManagement
RecordsoftheNCSprogramareretainedinaccordancewiththeregulatoryretentionprogram.
TheserecordsincludeNCScalculationsandevaluationsanddocumentationofcorrectiveactions
taken.RefertoChapter11foradiscussionoftherecordsmanagementprogram.
5.4
EmergencyNotification,Planning,andResponse
5.4.1 CriticalityAccidentAlarmSystem(CAAS)
Acriticalityaccidentalarmsystem(CAAS)isdesignedandinstalledtoprovidepromptdetection
andannunciationofaninadvertentnuclearcriticality.Thesystemutilizesanaudible(e.g.,siren)
and/orvisualsignal(e.g.,buildingentryandhighnoiseareas)toalertpersonnelintheareato
evacuateanddeterpersonnelfromenteringafteranevacuation.Thesystemisdesigned,anda
documentedevaluationismaintained,todemonstratethattheCAASmeetstherequirementsof
10CFR70.24,aswellasANSI/ANS8.31997(R2017),CriticalityAccidentAlarmSystem,with
exceptionsasnotedinRegulatoryGuide3.71,NuclearCriticalitySafetyStandardsforNuclear
MaterialsOutsideReactorCores,Revision3.
Thesystemisdesignedtoremainoperationalduringcredibleadverseevents,andthesystemwill
alarmduringcrediblefailuremodes.Intheeventoflossofnormalpower,emergencypoweris
automaticallysuppliedtotheCAAS.RefertoChapter4foradescriptionoftheCAAS.
IftheCAASisoutofservice,coverageislostforanSNMoperation,orsystemcomponentsare
beingtestedorrepaired,compensatorymeasuresareestablishedtoensurepromptpersonnel
evacuation as documented in a written approved procedure. Compensatory measures may
includesuspendedorlimitedmovementofSNMintheaffectedarea,limitedpersonnelaccess,
useoftemporarydetectionequipmentforpersonnelthatmustaccesstheareaduringaCAAS
outage,and/ormonitoringofthecriticalityalarmpanel.Compensatorymeasuresandrequired
evacuationproceduresareapprovedanddocumented.
EmployeesandvisitorsaretrainedinrespondingtotheCAASannunciation.Anongoingaspect
of this training is a quarterly annunciation on all shifts in which SNM operations are being
conducted.
TheneedforCAAScoverageshallbeevaluatedforallactivitiesinwhichtheinventoryoffissile
materialsinindividualunrelatedareasexceeds700g235U[ANSI/ANS8.31997(R2017)].CAAS
coverageofanSNMoperationisdocumentedduringtheprocessforNCSevaluation.Inaddition,
anyexceptionstoCAAScoveragearealsodocumentedinNCSevaluationsandarebasedona
conclusionintheNCSEthatacriticalityaccidentisnoncrediblespecifictotheareainwhich
conductoftheoperationisapproved.Conclusionsregardingnoncredibilitybasedentirelyon
fissilematerialpresentrequireataminimumthattheinventoryoffissilematerialintheareais
lessthan700g235U.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page58
CAAScoverageisprovidedforSNMoperations,exceptasspecifiedinChapter1.Inadditionto
theexemptionsincludedinChapter1,CAAScoverageisnotrequiredfor1)areaswherean
evaluationhasdeterminedtheriskofcriticalityisverylowduetotheamountorconfigurationof
fissilematerialpresent,2)materialsand/orcontainersthatsatisfythefissilematerialexceptions
in49CFR173and/or10CFR71,or3)areasthatcontainlessthan700g235U.Areasthatdonot
containSNMoperationsdonotrequireanNCSEanddonotrequireCAAScoverage.
5.4.2 PortableCAAS
IntheeventanSNMoperationrequiringCAAScoverageisperformedbeyondthedetectionrange
of the established CAAS or CAAS coverage for an SNM operation is determined to not be
available,aportableunitmaybeusedtoprovidecoverage.Theportableunithasequivalent
detectioncapabilitiesasthepermanentlyinstalledunits,howeveralarmannunciationislimited
totheimmediatearea.Compensatorymeasures(e.g.,useoffacilitypublicaddresssystem,
and/or radio communication) are established to ensure prompt evacuation of personnel as
documentedinanapprovedprocedure.
5.4.3 EmergencyManagement
RefertoChapter8foradiscussionoftheemergencymanagementprogramandemergencyplan.
RefertoChapter4foradiscussionofaccidentdosimetry.GuidancefromANSI/ANS8.232019,
NuclearCriticalityAccidentEmergencyPlanningandResponse,isalsousedfornuclearcriticality
accidentemergencyplanningandresponse.
5.5
MethodologiesandTechnicalPractices
5.5.1 MeansofControl
Therelativeeffectivenessandreliabilityofcontrolsareconsideredduringthenuclearcriticality
safetyanalysisprocess.Engineeredcontrolsordesignfeaturesarepreferredoveradministrative
controls.Passiveengineeredcontrolsordesignfeaturesarepreferredoverallothersystem
controlsandareutilizedwhenpracticableandappropriate.Activeengineeredcontrolsarethe
nextpreferredmethodofcontrol.Administrativecontrolsaretheleastpreferredmethodof
control;however,whenadministrativecontrolsaredeemednecessary,enhancedadministrative
controlsarepreferredoveradministrativecontrols.
- 1. Passive engineered controls (most preferred) use fixed design features or devices to maintain safe process conditions. No human intervention or action is required.
Assurance is maintained through initial verification prior to operation. Periodic inspections are performed on those systems where credible changes in equipment dimensionsmayoccurasdeterminedbynuclearcriticalitysafetyevaluations.Assurance isalsomaintainedthroughtheconfigurationmanagementprogram.
- 2. Activeengineeredcontrolsuseaddon,activehardware(e.g.,electrical,mechanical),or movingpartstomaintainsafeprocessconditions.Nohumaninterventionoractionis
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page59
required during operation. Assurance is maintained through initial and periodic
inspection,functionaltesting,and/orcalibration.Activeengineeredcontrolsdetectan
undesirablechangeinprocessconditionsandautomaticallysecurethesystemtoasafe
condition.
- 3. Enhanced administrative controls rely on human judgment, training, and personal responsibility for implementation and are augmented by warning devices (visual or audible)whichrequirehumanactionaccordingtoprocedure.Avisualoraudiblealarm alertstheoperatortoanundesirablechangeinprocessconditions,whichrequireshuman actionorinterventioninaccordancewithapprovedprocedurestomaintainorreturnthe processtoasafecondition.Alarmintegrityandreliabilityisensuredbyinitialandperiodic inspectionorfunctionaltesting.
- 4. Administrativecontrols(leastpreferred)relyonhumanjudgment,training,andpersonal responsibilityforimplementationwhenthecontrolfunctionisneeded.Thecontrolisa proceduralhumanactionthatisrequiredtomaintainsafeprocessconditions.Assurance ismaintainedthroughperiodicverification,audit,ortraining.
5.5.2 MethodsofControl
Thefollowingrecognizedcontrolmethodsarealsoreferredtoasparameters,whichmaybe
controlledfornuclearcriticalitysafetypurposes(i.e.,controlledparameters).Whenevaluating
anSNMbearingsystemforcriticalitysafety,theprocedureforpreparationofanNCSErequires
thateachofthecontrolledparameterswillbeassumedtobeattheiroptimumcrediblecondition
(i.e.,mostreactivecrediblecondition)unlesscontrols,includingpassivedesignrequirements,are
specified,andimplementedtolimittheparameterstocertainvalues.Whencomputercodesare
usedtodeterminethesafetyofasystem,thevaluesmeetthekefflimitsofthischapter.Criticality
safety may also be based on data or methods provided in industry accepted handbooks,
referencedocuments,and/orexperimentaldata.Maximumsubcriticalvaluesmaybeusedas
providedinhandbooksorstandards(e.g.,maximumsubcriticalvaluesprovidedinANSI/ANS8.1).
- 1. Geometry-Geometrycontrolisachievedbyincreasingneutronleakagebylimitingthe dimensionsofdefinedgeometricalshapes.Equipmentrelyinguponfavorablegeometry forcontrolincludeadequatefactorsofsafetytoensurereliabilityundercredibleaccident conditions. Before beginning an operation, all dimensions relied upon for geometry controlareverified.Thefacilityconfigurationmanagementprogramisusedtomaintain thesedimensions.Periodicinspectionsareperformedonthosesystemswherecredible changesinequipmentdimensionsmayoccurasdeterminedbynuclearcriticalitysafety evaluations.
- 2. Spacing(orUnitInteraction)-Spacing(orUnitInteraction)controlisamethodoflimiting theintroductionofneutronsleakedfromoneSNMunitintoaneighboringSNMunitby controllingtheseparationdistancebetweenunits.Wherespacingcontrolisrequired,a
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page510
passiveengineereddevice(e.g.,aspacer,fixedbumper,orpermanentfloormounting)is
thepreferredmethodofcontrolandisusedwherepracticable.Thestructuralintegrity
ofanyspacers/racksshouldbesufficientfornormalandcredibleabnormalconditions.If
notpracticable,administrativecontrolsmaybeutilizedandshouldincludesuchitemsas
proceduralinstructions,postings,andvisualindicators,asappropriate.
- a. Equipment, facilities, and individually subcritical units are effectively non interactingorneutronicallyisolatedwhentheirsurfacesareseparatedbyanyof thefollowing:
- i. A12inchthicklayerofwater,or ii. Athicknessequivalenttoa12inchthicklayerofwater,or iii. 12feetofair,or iv. Subarraysseparatedbynotlessthanthesmallestdimensionofthefacing surfacesofthesubarrays,or
- v. Thegreatestdistanceacrossanorthographicprojectionofthelargestof thefissileaccumulationsonaplaneperpendiculartothelinejoiningtheir centers,or vi. 12inchesofsolidconcrete(blockorpoured).
- b. Thedesignconditionsforinteractionbetweenmultipleunitsorbetweenarrays that experience neutron interaction will be based on values that can be demonstratedsafebyoneofthefollowingmethods:
- i. SolidAngleMethod ii. SurfaceDensityMethod iii. Areal Density - When criticality safety is contingent only upon maintenanceofalimitedarealdensityoffissilematerial,controlswillbe implementedtoensurethatthelimitisnotexceeded.Thecontrolswill limitthearealdensitytoasafevalue,whichisdefinedtobenomorethan 45percentoftheminimumcriticalarealdensity.
iv. MonteCarlo Calculations (Each application of MonteCarlo calculations mustcomplywiththerequirementsofthischapter).
- v. American National Standard, ANSI/ANS8.71998 (R2017), Nuclear CriticalitySafetyintheStorageofFissileMaterials vi. NRCand/orDOTpackagingortransportationregulations(e.g.,stagingof packagesinaccordancewiththeCriticalitySafetyIndex)
- 3. Volume-VolumecontrolisamethodoflimitingthevolumeofSNMtoanacceptable value.Equipmentrelieduponforvolumecontrolincludesadequatefactorsofsafetyto ensurethatasafevolumeismaintainedundercredibleaccidentconditions.Priortothe equipmentbeingreleasedforuse,thevolumeoftheequipmentisverified.Thefacility configurationmanagementprogramisusedtomaintainthevolume.Periodicinspections areperformedonthosesystemswherecrediblechangesinequipmentvolumemayoccur asdeterminedbynuclearcriticalitysafetyevaluations.Whenthesolutionvolumeis measured(i.e.,quantityofsolution),appropriateinstrumentationisused.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page511
- 4. NeutronAbsorber(Fixed/Soluble)-Neutronabsorbercontrolisamethodofreducingthe numberofneutronsinafissilematerialsystemavailabletocauseafissionevent,by introducing a parasitic neutron absorber (i.e., neutron poison) into the system. This methodofcontrolincludesuseoffixedorsolubleneutronabsorbers.Whenevaluating absorbereffectiveness,neutronspectraareconsidered(e.g.,cadmiumisaneffective absorberforthermalneutrons,butineffectiveforfastneutrons).
Fixedneutronabsorbercontrolisamethodofincreasingneutronabsorptioninmaterial byplacingasolidabsorber(i.e.,poison)inthesystemthatmayincludetheuseof"poison fixtures" as well as taking credit for the neutron absorption properties of structural materials.Forfixedneutronabsorbers,thethicknessoftheabsorberismeasuredand documentedpriortofirstuse.Thecompositionoftheabsorberwillbeverifiedunlessthe chemical properties of the materials consist of standard structural materials (e.g.,
stainlesssteel,carbonsteel,etc.).Controls,asnecessary,areexercisedtomaintainthe continuedpresenceandtheintendeddistributionandcontributionoftheabsorber.
Iffixedneutronabsorbersareused,therequirementsofANSI/ANS8.211995(R2011),
UseOfFixedNeutronAbsorbersInNuclearFacilitiesOutsideReactors,areapplied.If borosilicateglassRaschigringsareused,therequirementsofANSI/ANS8.51996(R2017),
Use Of BorosilicateGlass Raschig Rings as a Neutron Absorber In Solutions Of Fissile Material, are applied. If soluble neutron absorbers are used, the requirements of ANSI/ANS8.142004 (R2016), Use Of Soluble Neutron Absorbers In Nuclear Facilities OutsideReactors,areapplied.Fixedneutronabsorber,includingamoderator,useis prevalentinfissilematerialshippingcontainersandfurthersubjecttotherequirements asspecifiedinthepackageNRCcertificateofcomplianceforuseintheTRISOXFFF.
- 5. PieceCount-Piececountisamethodoflimitingfissilematerialmassand/orgeometry bylimitingthenumberofcontainersand/orcomponentswithknownamountsofSNM and/orfixedgeometriesatagivenlocation.
- 6. Mass-MasscontrolisamethodoflimitingtheamountofSNMatagivenlocationtoan acceptablevalue.Masscontrolmaybeusedonitsownorincombinationwithother controlmethods.Whenagivenmassofmaterialhasbeendetermined,apercentage factorisusedtodeterminethemasspercentageofSNMinthatmaterial.Whenfixed geometricdevicesareusedtolimitthemassofSNM,aconservativeprocessdensityis used.WhenoverbatchingofSNMiscredible,thelargestmassresultingfromasingle failure is shown to be subcritical. Overbatching beyond double batching should be consideredunlessitrequiresmultipleindependentfailuresorisprecludedbyequipment capacity,availabilityofmaterial,orotherconsiderations.Whenthemassismeasured, appropriateinstrumentationisused(e.g.,scales,nondestructiveassayequipment).
- 7. Moderation-Moderationcontrolisamethodoflimitingorexcludingeitherinterstitial (i.e.,withintheSNM)orinterspersed(i.e.,betweenSNMunits)moderatingmaterialsor
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page512
both.TRISOXcomplieswiththerequirementsofANSI/ANS8.221997(R2016),Nuclear
CriticalitySafetyBasedOnLimitingAndControllingModerators,asitrelatestolimiting
andcontrollingmoderators.Nuclearcriticalitysafetybasedoncontrolofmoderation
requires that sources of moderation be identified and controlled. When designing
physicalstructuresformoderationcontrol,thedesignshouldprecludetheingressof
moderation.Whendevelopingfirefightingproceduresforuseinamoderationcontrolled
area,restrictionsshouldbeplacedontheuseofmoderatormaterial.Afterevaluatingall
credible sources of moderation for the potential for intrusion into a moderation controlledarea/workstation,theingressofmoderationisprecludedorcontrolled.When
moderation is measured, the measurement is obtained by using instrumentation,
calculation,orbyvisualinspectionasappropriate.Inaddition,whentheNCSorganization
requires samples to be taken and analyzed by the laboratory (e.g., wt. % H2O) to
determinecompliancewithmoderationlimits,dualindependentsamplingmethodswill
beemployed.Shipperinformationmayalsobeusedasabasisformoderationcontent.
- 8. Concentration - Concentration control is a method of measuring and controlling the concentration of SNM in hydrogenous liquids to an acceptable value. When concentrationcontrolisutilizedinanunfavorablegeometrysystem,theconcentrationis determined by appropriate sampling and analysis techniques (e.g., dual independent sampling)andbyinstrumentationwhichhasbeenproperlymaintainedandcalibrated (e.g.,inlinemonitor)priortotransfertotheunfavorablegeometrysystem.Theanalysis will consider the solubility limits of the SNM composition and possible concentrating mechanisms(e.g.,precipitation,evaporation,freezing,settling,chemicalphasechange) and controls are established, as necessary, to prevent or provide margin for such mechanisms.Whenatankcontainingconcentrationcontrolledsolutionisused,thetank ismaintainedclosedtopreventunauthorizedintroductionofprecipitatingagentswhich couldchangetheconcentration.
- 9. MaterialComposition-Materialcomposition(e.g.,materialtype,density,heterogeneity, etc.) control is based on consideration of the physical, chemical, and/or nuclear propertiesofamaterialsuchthatthe235Udensityandneutronscattering/absorptionof othermaterialswithinthecompoundareidentifiedandunderstood(e.g.,metalversus oxideversusnitrate,etc.).Manufacturingvariabilityandmeasurementuncertaintyare considered when using material specification as a method of control. Possible misidentification is considered for feed materials when using the feed material specificationascontrol.Heterogeneouseffectsareonlyrelevantforlowenriched(less than 6.0 wt. %) uranium processes, where all other parameters being equal, heterogeneous systems are more reactive than homogeneous systems, however this trendisnotprevalentat20wt.%andthehomogeneousmodeledsystemisboundingfor enrichmentsgreaterthan20wt.%.Withregardtodensity,whenthedensityismeasured, themeasurementisobtainedbytheuseofappropriateinstrumentation.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page513
- 10. Enrichment-Enrichmentcontrolutilizestheinherentdifferencesincriticalattributes (criticaldimensions,mass,etc.)ofuraniumatdifferentenrichmentsof235U.Amethodof segregatingenrichmentsisusedtoensuredifferingenrichmentswillnotbeinterchanged, orelsethemostlimitingenrichmentisappliedtoallSNM.Whentheenrichmentneeds tobemeasured,themeasurementisobtainedbyusingappropriateinstrumentation(e.g.,
labanalysis,nondestructiveassayequipment).
- 11. Reflection-Reflectioncontrolisamethodofcontrolwhichlimitsneutronreturntoan SNMbearingsystem.Refertothefollowingreflectionrequirements:
- a. GeneralReflectionRequirements Conservativereflectionconditionsareestablishedwhenevaluatingthecriticality safetyofindividualunitsorarrays.Ifreflectionconditionsareuncontrolled,the maximum credible amount of water reflection (as established below) is considered when calculating system reactivity. Under certain conditions, however, materials such as concrete, carbon, and polyethylene may be more effective reflectors than water. The thickness and location of these types of reflectorsareconsideredifanyarepresentinthicknessorquantitythatexceeds theequivalentwaterreflectionmodeled.Ifitiscredibleforreflectionconditions toexceedthoseusedintheanalysisofsystemreactivity,thenreflectioncontrols areimplementedtomaintainconditionstowithintheboundsoftheanalysis.
Wherepositivebarriersareusedtomaintainreflectioncontrol,thebarriersare maintainedthroughtheconfigurationmanagementandmaintenanceprograms.
In all cases, the impact of standard reflection conditions (e.g., the maximum credibleamountofwaterreflectionpresentedbyadjacentwaterbodies)should be evaluated to determine if the presence of standard reflector conditions reducessystemreactivitybydecreasinginteraction.
- b. SinglePortableUnits Asingleunit(e.g.,container)isshowntobesubcriticalwhenreflectedbyatleast 30cmofclosefittingwaterunless:
- i. reflector(s)moreeffectivethanwaterarewithin30cmoftheunit,or ii. where30cmofclosefittingwaterreflectionisnotcredible,or iii. reflectioncontrolsareimplementedtomaintainconditionstowithinthe boundsoftheanalysis.
Whenreflectorsmoreeffectivethanwaterarewithin30cmofasingleunit,the
thickness and location of these reflectors are considered in the modeled
configuration.Whenareflectorisoffsetfromasingleunit,subcriticalitywillbe
demonstratedforthethicknessandmaterialofthereflectoratnomorethanthe
offsetdistance.Subcriticalityforsingleunitreflectionmaybedemonstratedwith
calculations or by reference to documented subcritical values (e.g., maximum
subcriticalvaluesprovidedinANSI/ANS8.1).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page514
c.
MultiplePortableContainers Unless controls are implemented to limit reflection, evaluation of multiple portableunits(e.g.,multiplecontainers)mustbeshowntobesubcriticalwithat least a 15 cm thick, 183 cm tall, and 38 cm wide closefitting water cuboid, representinganearbyoperator,ononesideofthecontainers,andatleast1.27 cmoftangentialwaterreflectionontheremainingverticalsidesofthecontainers, representingoperatorhandcontact.Thesereflectorsaremodeledasslabsora boxthatistangentialtothegroupofcontainers,orasatangentialannulusaround thegroupofcontainers.
- d. Enclosures/Gloveboxes Subcriticalityofenclosuresisdemonstratedwiththeaccessibleouterfront,back, andsidesoftheenclosuresreflectedbyatleast2.5cmofclosefittingwater.In addition,aminimumofatleasttwowatercuboids(eachcuboidconsistingofa15 cmthick,183cmtall,and38cmwideorequivalentblock)representingnearby operatorsshouldbeplacednearcomponents(s)inthesystemsuchthatsystem reactivityisexpectedtobemaximized.Thethicknessandlocationofreflectors thatmaybemoreeffectivethanwater(e.g.,concrete,carbon,andpolyethylene) shouldbeevaluatedinthemodeliftheyarelocatedwithin60cmfromthefront, back,sides,andtopoftheenclosureorwithin90cmfromthebottomofthe enclosure.
Overall enclosure reactivity is calculated with portable containers (e.g.,
containers) located in positions expected to maximize system reactivity, consideringanyfixedspacingcontrolsthatmaybepresentintheenclosure.Ata minimum, at least one unit in the glovebox should be evaluated with vertical reflectionprovidedbyhands(1.27cmthickwater)intheglovebox(e.g.,portable containers,equipment).
- e. ArraysofItems Arrays(oneormoreunitsspacedinoneormoredimensions)ofinteractingitems (e.g.,columns,storageracks)aredemonstratedtobesubcriticalusingaminimum ofatleasttwowatercuboids(eachcuboidconsistingofa15cmthick,183cmtall, and38cmwideoranequivalentwaterbody,sizedtomaximizereflection,thatis at least 15 cm thick) representing nearby operators, should be placed near components(s) in the system such that system reactivity is expected to be maximized.Thethicknessandlocationofreflectorsthatmaybemoreeffective thanwater(e.g.,concrete,carbon,andpolyethylene)arealsoconsidered.The densityofwaterinterspersedbetweenunitswithinthearrayisvariedfrom0.0to 0.01gramspercubiccentimeter,toboundconditionsthatmayexistduringfire sprinkleractivationoruptofulldensitywateriffullfloodingiscredible.Local
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page515
reflection from thin water films on fissile items that might accumulate during
sprinkleractivationshallbeconservativelyrepresentedbyplacinga0.35cmthick
fulldensitywaterlayeronverticalsurfacesanda0.7cmthickfulldensitywater
layeronhorizontalsurfaces.
5.5.3 ComputerCodesandAssociatedSafetyLimits
ComputerCodes
Computercodesmaybeusedtocalculatesystemreactivity(i.e.,keff).Proceduresforcomputer
codevalidationfortheTRISOXFFFincorporateapplicablerequirementsfromANSI/ANS8.24 2017,ValidationofNeutronTransportMethodsforNuclearCriticalitySafetyCalculations,asit
relatestothevalidationprocessforcomputercodes,withexceptionsandqualificationsasnoted
inNRCRegulatoryGuide3.71,October2018.
Nuclear criticality safety calculations are performed using approved and validated computer
codessuchasSCALE,MCNP,XSDRN,etc.Therequirementsfortheverificationandvalidationof
computer codes are defined in approved procedures and incorporate the conservatisms as
discussedherein.Thevalidationreportforacomputercodeisdocumentedinawrittenapproved
report.Therequiredcontentforavalidationreportisfurtherdiscussed.
Validationestablishesthesuitabilityofthecomputercodesystem(hardwareandsoftware)for
use in criticality safety evaluations by establishing the calculation margin, a margin of
subcriticality,andtheUpperSubcriticalLimit(USL).Thecalculationmarginisestablishedby
simulatingbenchmarkexperimentstoestimatethesystematicdifferencebetweenthecalculated
multiplicationfactor(keff),andthemeasuredkeffofthebenchmarkexperiments.Thesystematic
differenceisthecodebias.Biasandbiasuncertaintyofthecomputercodesystemareincluded
in the calculational margin. The calculational margin incorporates appropriate statistical
methodsthataccountforthebehaviorofbiasandbiasuncertainty(e.g.,byconsideringtrends
in bias) throughout the range of parameters included in the collection of benchmark
experiments.Theareaofapplicabilityofthevalidationisasubsetoftherangeofparameters
includedinthebenchmarkexperiments.Thecalculationalmarginisbasedonwidelyaccepted
statisticalmethodssuchasthe95percentconfidencelimit,the95/95lowertolerancelimit,ora
rankandpercentile nonparametric method, applied to various subsets of the chosen
benchmarks. The statistical method and subset of benchmarks that produce the largest
calculationmargin,asdocumentedinthevalidationreport,isusedindeterminingthebounding
USL.
Computercodesarevalidatedtoensurethattheycalculatewithinacceptablerangesandthat
theassumptionsareappropriate.Theapplicabilityofcomputercodevalidationisdocumented
innuclearcriticalitysafetycalculationsand/orevaluationsforthesystembeingevaluated.The
computercodevalidationreportsareincorporatedintotheconfigurationmanagementprogram.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page516
Validation reports are prepared, reviewed, and approved by qualified individuals for each
combinationofcomputationalmethod(e.g.,code),crosssectionlibrary,computerplatform,and
analytical area of applicability, as appropriate. In all cases, each validation report, or the
calculationdocumentingananalysisusingaspecificcomputationalmethod,shallincludethe
following:
- a. Description of the methodology that is sufficiently detailed and clear to allow independent duplication of results, including the method used to select benchmark experiments,todeterminethebiasandbiasuncertainty,andtodeterminetheUpper SubcriticalLimit.
- b. Summaryofthephysicalsystemsandarea(s)ofapplicabilitythatidentifiestherangeof valuesforwhichvalidresultshavebeenobtained.
c.
Descriptionofthemethodsusedtoextendthearea(s)ofapplicabilitybeyondtherange ofvaluescoveredbythebenchmarkexperiments.Anysuchextensionshouldbedoneby makinguseoftrendsinthebias,includingaccountingforanyincreaseduncertaintydue totheextrapolation.
- d. Descriptionofthebenchmarkexperimentsorbenchmarksetsused.
- e. Descriptionofthemarginofsubcriticalityforsafetyandjustificationofitsadequacy, includingastatementoftheminimummarginofsubcriticalityandanyotherfactorsthat providereasonableassuranceofsubcriticality.
f.
Descriptionofthecontrolledsoftwareandhardwareused.
- g. Descriptionofanylimitationsonmethodusenecessarytoestablishorensurethevalidity ofthemethod.
- h. Descriptionoftheverificationprocessanddemonstrationofacceptableresults.
Changestothecodeorcrosssectionversionsrequireadditionalcodevalidation.Verification
testingisperformedduringinitialinstallationorwhenchangesaremadethatcouldadversely
impactthecalculationprocess.Validationorverificationarenotrequiredforchangesthatwould
not reasonably be expected to change calculation results. To ensure continued code
performance,verificationtestingisperformedanddocumentedinapplicablecalculationresults.
SafetyLimits
Thevalidationestablishesthetechnicalbasisforthemargin(s)ofsubcriticalitybasedonthe
quantityandqualityofbenchmarkdata,andtheoverallsimilarityofthebenchmarkexperiments
tothesystemsbeingevaluated.Aminimummarginofsubcriticalityof0.02inkeffisusedto
establish the USL for criticality calculations for normal and abnormal conditions within the
validatedareaofapplicabilityandfurthersubjecttoanylimitationsorrestrictionsdocumented
intheTRISOXFFFapplicableCodeValidationReport.Theareaofapplicabilitymaybeextended
beyondtherangeofthebenchmarksbymakinguseoftrendsinthedata,andinaccordancewith
applicablerequirementsofANSI/ANS8.242017,asdocumentedintheCodeValidationReport.
Anadditionalmarginofsubcriticalitymaybenecessaryintheseextendedrangesasdocumented
intheCodeValidationReportorintheevaluationofaspecificprocess.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page517
Theminimummarginofsubcriticalityisjustifiedbasedonbothconservativemodelingpractices
andconservatisminthevalidationmethodology.FortheTRISOXFFF,conservativemodeling
practicesincludeusinganenrichmentof20wt.%235U,assumingoptimalmoderationorsaturated
conditions for bounding material densities, using bounding fissile material compositions,
modelinggeometriccomponentstoouterdimensions,andneglectingmaterialsofconstruction
of components unless shown to lead to a more reactive configuration. Some materials of
constructionarecreditedinfissilematerialshippingpackages;however,theseitemsarequalified
undermorestringentdesignandtestingprogramswithmaterialsofconstructionreduced(e.g.,
outerdrumwallthickness)toconservativelyboundanylossesduringthelifeofthepackage.
Conservatisminthevalidationmethodologyincludestheuseofdiversestatisticalmethodsand
theconsiderationofmanydiversesubgroupsofthebenchmarkdata.Thechoiceofmethodsand
datathatproducethelargestcalculationalmarginshallbeconservativelyappliedindetermining
theUSL,includingnotcreditingapositivebias.However,positivebiasvalueswillbeincludedin
theestimateofbiasuncertaintyandwillconservativelyincreasebiasuncertaintyanddecrease
theassociatedUSL.Thissameconservativeapproachwillbeappliedtothevalidationofthecode
atotherenrichmentranges.
TheUSLvarieswiththecomputercodesystem(hardware,codes,andcrosssections)asthe
calculationalmarginvaries.TheUSListhekeffofacriticalsystem(i.e.,1.0)minusthesumof
calculationalmarginandthemarginofsubcriticality.Systemsthatareevaluatedwithinthearea
ofapplicability,andthathaveakeff+2lessthanorequaltotheUSL,demonstratesubcriticality.
ThecalculationofkeffisaccomplishedusingcomputercodesystemsthatutilizeMonteCarlo
techniques to determine keff of a system. Computer models representing the geometric
configurationandmaterialcompositionsofthesystemaredevelopedforusewithinthecode.
Thedevelopmentofappropriatemodelsmustaccountfororconservativelyboundbothnormal
andcredibleabnormalprocessconditions.Thedevelopmentofappropriatemodelsshallalso
accountfororconservativelyboundbothnormalandcredibleabnormalprocessconditions.
FortheinitialdesignoftheTRISOXFFF,theSCALE6.2.3codewiththeV7252groupENDF/B VII.1crosssectionlibraryisusedonvalidatedstandaloneworkstationsforcriticalitycalculations.
Futureversionsofthecodeornucleardataoruseofotherindustryacceptedcodes(e.g.,MCNP)
willbecontrolled,verified,andvalidatedwiththesamelevelofrigor,asdiscussedinthissection.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page518
Whendeterminingsubcriticalitybasedoncomputercodecalculations,thefollowingUSLlimits,
regardlessofthemethodemployed,shallnotbeexceeded:
System
UpperSubcriticalLimit
Highenrichedsystems
(Uraniumenrichedin235U>than20wt.%)
0.95
Highassaylowenrichedsystems
(Uraniumenrichedin235U20wt.%and>10wt.%)
0.96
Lowenrichedsystems
(Uraniumenrichedin235U10wt.%)
0.97
TheUSLvaluesareexactlimitvalues,anddonotimplythatcomplianceneedonlybeshownto2
significantfigures.ThedeterminationoftheappropriateUSLshallbedocumentedinavalidation
reportandlesservaluesshallbeusedbasedonvariancesinthecalculatedbias,biasuncertainty,
marginofsubcriticality,andthestatisticalmethodandsubsetofbenchmarkthatproducethe
largest calculation margin. Compliance with these values shall include the calculational
inaccuracies,suchasMonteCarlovariance,bymeetingthelimitwithamarginintheconservative
directionofatleasttwostandarddeviations(i.e.,keff+2).Anyroundingisintheconservative
direction.
5.6
SourcesofCriticalityDataandAnalyticalTechniques
TheNCSstaffmayusethefollowingsourcesofcriticalitydataandanalyticaltechniquesto
supportnuclearcriticalitysafetyanalysesandevaluations:
- 1. J.H.Chalmers,G.Walker,andJ.Pugh,HandbookofCriticalityData,UKAEAHandbook AHSB(S),1965.
2.
H.C.PaxtonandN.L.Pruvost,CriticalDimensionsofSystemsContaining235U,239Pu, and233U,LA10860,LosAlamosNationalLaboratory,1986.
- 3. N.L.PruvostandH.C.Paxton,NuclearCriticalitySafetyGuide,LA12808,LosAlamos NationalLaboratory,1996.
- 4. R.D.Carter,G.R.Kiel,andK.R.Ridgway,CriticalityHandbook,VolumesI,II,andIII, ARH600,AtlanticRichfieldHanfordCompany,1968.
- 5. GesellschaftfürAnlagenundReaktorsicherheit(GRS)gGmbH,HandbuchzurKritikalitt, GRS380,2019.
- 6. DeterminationofH/URatiosinUO2WaterandADUWaterMixtures,JN712,1971.
- 7. B.T.ReardonandM.A.Jessee,Eds.,SCALECodeSystem,ORNL/TM2005/39,Version 6.2.3,March2018.
- 8. AmericanNuclearSociety,NuclearCriticalitySafetyinOperationswithFissionable MaterialsOutsideReactors,ANSI/ANS8.12014(R2018).
- 9. AmericanNuclearSociety,CriticalityAccidentAlarmSystem,ANSI/ANS8.31997 (R2017).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page519
- 10. AmericanNuclearSociety,UseOfBorosilicateGlassRaschigRingsAsANeutron AbsorberInSolutionsOfFissileMaterial,ANSI/ANS8.51996(R2017).
- 11. AmericanNuclearSociety,NuclearCriticalitySafetyintheStorageofFissileMaterials, ANSI/ANS8.71998(R2017).
- 12. AmericanNuclearSociety,UseOfSolubleNeutronAbsorbersInNuclearFacilities OutsideReactors,ANSI/ANS8.142004(R2016).
- 13. AmericanNuclearSociety,AdministrativePracticesforNuclearCriticalitySafety, ANSI/ANS8.192014(R2019).
- 14. AmericanNuclearSociety,NuclearCriticalitySafetyTraining,ANSI/ANS8.201991 (R2020).
- 15. AmericanNuclearSociety,UseOfFixedNeutronAbsorbersInNuclearFacilitiesOutside Reactors,ANSI/ANS8.211995(R2011).
- 16. AmericanNuclearSociety,NuclearCriticalitySafetyBasedOnLimitingAndControlling Moderators,ANSI/ANS8.221997(R2016).
- 17. AmericanNuclearSociety,ValidationofNeutronTransportMethodsforNuclear CriticalitySafetyEvaluations,ANSI/ANS8.242017.
- 18. AmericanNuclearSociety,CriticalitySafetyEngineerTrainingandQualification Program,ANSI/ANS8.262007(R2016).
- 19. RonaldAllenKnief,NuclearCriticalitySafetyTheoryandPractice.AmericanNuclear Society,1993.
- 20. D.F.Hollenbach,NuclearCriticalitySafetyDataBook,Rev.2,DACEN801768A100, https://www.osti.gov/servlets/purl/1339414,2016.
- 21. GmelinlnstitutfürAnorganischeChemie,GmelinHandbookofInorganicChemistry, SupplementVolumeA6,GeneralProperties-Criticality,1983.
- 22. JapanAtomicEnergyResearchInstitute,NuclearCriticalitySafetyHandbook,JAERI Review95013,1995.
- 23. J.T.Thomas,Ed.,NuclearSafetyGuide,TID7016,Revision2,NUREG/CR0095, ORNL/NUREG/CSD6,U.S.NuclearRegulatoryCommission,1978.
- 24. InternationalHandbookofEvaluatedCriticalitySafetyBenchmarkExperiments, NEA/NSC/DOC(95),NuclearEnergyAgencyScienceCommittee,Organizationfor EconomicCoOperationandDevelopment,2020.
5.7
RequirementsforNewFacilitiesorNewProcessesatExistingFacilities
Asrequiredby10CFR70.64(b),thefacilityisdesignedusingadefenseindepthapproachfor
protectionagainstinadvertentcriticality.Totheextentpracticable,thefacilitydesignconsiders
preference for the selection of engineered controls over administrative controls to increase
overallsystemreliability,andfeaturesthatenhancesafetybyreducingchallengestoIROFSare
incorporated.Thefacilitydesignaddressesthebaselinedesigncriteriaof10CFR70.64(a)for
newfacilitiesandcriticalitycontrol.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page520
As required by 10 CFR 70.64(a)(9), the TRISOX Fuel Fabrication Facility design provides for
criticalitycontrolincludingapplicationofthedoublecontingencyprinciple.
Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense
amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontrolof
criticalityhazards.Adefenseindepthapproachwillbeappliedtohigherriskaccidentsequences
asrequiredby10CFR70.64(b).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0005
SNMXXXX
CHAPTER5
ZŽ
December2024
Page521
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0005toheader.
5.1
ClarifiedthatISAriskassessmentmethodsareusedtodemonstrate
compliancewith10CFR70.61(b).ChangesmadeperTX0REGLTR 0040Enclosure1,RAI1.
5.2.2
AddedNCSProgramCommitments7,8,and9whichalignwiththe
guidanceprovidedinNUREG1520Rev.2,p.5A7(twobullets)and
5A8(firstbullet)asagreedtoinmeetingswithNRCon12/3 12/4/2024and12/16/2024toresolveISARAI5.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0006 SNMXXXX CHAPTER 6 ZŽ
December 2024 Page 61 CHEMICAL PROCESS SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 6.1 Chemical Process Safety Program 62 6.2 6.2.1 6.2.2 6.2.3 6.2.4 Process Chemical Risk and Accident Sequences Process Descriptions Identification and Evaluation of Chemical Accident Sequences Chemical Consequence Estimates Chemical Exposure Standards 62 6.3 6.3.1 6.3.2 6.3.3 IROFS and Management Measures Chemical Process IROFS Management Measures Chemical Process Safety Coordination with Emergency Management 63 6.4 Requirements for New Facilities or New Processes at Existing Facilities 64 TRISO-X Document Control 2024.12.30 12:00:56 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0006
SNMXXXX
CHAPTER6
ZŽ
December2024
Page62
CHEMICALPROCESSSAFETY
6.1
ChemicalProcessSafetyProgram
TRISOXhasestablishedandmaintainsachemicalprocesssafetyprogramtoassurethatworkers,
thepublic,andtheenvironmentareadequatelyprotectedfromthechemicalhazardsrelatedto
thestorage,handling,andprocessingoflicensedmaterials.WithrespecttoNRCoversight,the
programisimplemented,andthefacilityisdesigned,toaddresschemicalhazardsassociated
withlicensedmaterialsandhazardouschemicalsproducedfromlicensedmaterials,andchemical
risksoffacilityconditionsthatcouldaffectthesafetyoflicensedmaterials.Thechemicalsafety
element of the safety program required by 10 CFR 70.62(a) is evaluated and implemented
throughtheISAprocessdescribedinChapter3.
Based on the 2013 Memorandum of Understanding (MOU) between the NRC and the
OccupationalSafetyandHealthAdministration(OSHA),theNRCoverseeschemicalsafetyissues
relatedtoradiationrisksoflicensedmaterials,chemicalrisksoflicensedmaterials,andfacility
conditionsthataffectormayaffectthesafetyoflicensedmaterialsandthuspresentanincreased
radiationrisktoworkers.OSHAoverseesfacilityconditionsthatdonotaffectorinvolvethe
safetyoflicensedmaterials.
6.2 ProcessChemicalRiskandAccidentSequences
6.2.1 ProcessDescriptions
AgeneralprocessdescriptionoftheproductionoperationsisprovidedinChapter1.Thisis
supplementedbymoredetailedprocesssystemdescriptionsinthefacilitysISASummaryas
requiredby10CFR70.65(b)(3)thatincluderelevantinformationtoprovideabasicunderstanding
ofoperation,allowanunderstandingofthechemicalhazards,andsupportthedevelopmentof
potentialaccidentsequences.
6.2.2 IdentificationandEvaluationofChemicalAccidentSequences
Potential accident sequences involving chemical hazards related to the safety of licensed
materialsareincorporatedaspartoftheISA.Accidentsequenceidentification,consequenceand
likelihooddetermination,andriskassessmentmethodsarediscussedinChapter3andtheISA
Summary.
TheISAincludesevaluationsofchemicalrisksoflicensedmaterials,riskofchemicalsderivedfrom
licensedmaterials,andchemicalrisksintroducedbyfacilityconditionsthatcouldaffectthesafety
oflicensedmaterials.TheISAidentifiesandevaluatescredibleunmitigatedaccidentsinvolving
acute chemical exposures under NRC regulatory jurisdiction. The acute chemical exposure
pathwaysevaluatedareinhalation,dermal,andingestion.Analysisassumptionsconsiderthe
maximumforeseeableinventoriesofchemicalsatspecificlocations.Routine,nonroutine,and
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0006
SNMXXXX
CHAPTER6
ZŽ
December2024
Page63
credibleabnormaloperationalscenariosareincludedintheanalysis,alongwithconservative
physicalpropertiesoftheassociatedchemicals.Resultsoftheevaluationsarecomparedtothe
performancecriteriain10CFR70.61,andunmitigatedscenariosthatcouldresultinIntermediate
orHighconsequencesaredocumentedintheISASummary.IROFSandappropriatemanagement
measures are applied to Intermediate or High consequence scenarios to ensure that the
performancecriteriain10CFR70.61aremet.
6.2.3 ChemicalConsequenceEstimates
ChemicalconsequenceestimatesarebasedonguidanceinNUREG/CR6410,whereappropriate,
forsourcetermdetermination,releasefractions,dispersionfactors,meteorologicalconditions,
and consequence modeling techniques. Alternative methods and other industry accepted
techniquesmayalsobeusedtoperformconsequencecalculations,providedthemethodsare
appropriate to the process, the physical setting, and the specific condition being evaluated.
SafetyDataSheetsarealsoreviewedwhenassessingchemicalconsequences.Dispersionmodels
maybeutilizedtoassesstheconsequencesofaccidentalchemicalreleasescenariossothatthe
resultscanbecomparedtotheperformancecriteriain10CFR70.61aspartoftheISAprocess.
Sourcetermanddispersionmodelsareselectedbasedonthechemicalbeingevaluatedand
shouldprovideforaconservativeestimateofthepotentialconsequences.
6.2.4 ChemicalExposureStandards
Chemicalexposurestandardsusedinsupportofassessingtheconsequencesofanacutechemical
exposuretoanindividualareidentifiedinaccordancewith10CFR70.65(b)(7).PerNUREG1520,
acceptable chemical exposure standards include, but are not limited to, Acute Exposure
Guideline Levels (AEGLs) developed by the United States Environmental Protection Agency,
EmergencyResponsePlanningGuidelines(ERPGs)producedbytheAmericanIndustrialHygiene
Association, and exposure limits established by OSHA. If no AEGLs or ERPGs are available,
TemporaryEmergencyExposureLimitsdevelopedbytheUnitedStatesDepartmentofEnergy
maybeused.ThesestandardsaredocumentedintheISASummary.
6.3
IROFSandManagementMeasures
6.3.1 ChemicalProcessIROFS
IROFS are identified and implemented for chemical accident sequences that can lead to
IntermediateorHighconsequencescenariostoensurethattheperformancecriteriain10CFR
70.61 are met. The IROFS and associated accident sequences are documented in the ISA
Summarytodemonstratecompliancewiththeperformancecriteriaof10CFR70.61.IROFSmay
beengineeredcontrols(passiveoractive),enhancedadministrativecontrols(activeengineered
featuresthatalertapersontotakeanaction),oradministrativecontrols(actionsofpeople).
6.3.2 ManagementMeasures
ManagementmeasuresthatensurethereliabilityandavailabilityofIROFSareestablishedas
describedinChapter11.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0006
SNMXXXX
CHAPTER6
ZŽ
December2024
Page64
6.3.3 ChemicalProcessSafetyCoordinationwithEmergencyManagement
IROFSidentifiedintheISASummarycreditedtoaddresschemicalconsequencesmayalsobe
described in the Site Emergency Plan. The Site Emergency Plan described within Chapter 8
addressesresponsetoandmitigationofaccidentsinvolvingprocesschemicals.
6.4
RequirementsforNewFacilitiesorNewProcessesatExistingFacilities
Asrequiredby10CFR70.64(b),theTRISOXFuelFabricationFacilityisdesignedusingadefense indepth approach forprotectionagainst chemical accidents. To the extent practicable, the
facilitydesignconsiderspreferencefortheselectionofengineeredcontrolsoveradministrative
controls to increase overall system reliability, and features that enhance safety by reducing
challengestoIROFSareincorporated.Thefacilitydesignaddressesthebaselinedesigncriteria
of10CFR70.64(a)fornewfacilitiesandthecontrolofchemicalhazards.
Asrequiredby10CFR70.64(a)(5),thedesignprovidesforadequateprotectionagainstchemical
risks produced from licensed material, facility conditions that affect the safety of licensed
material,andhazardouschemicalsproducedfromlicensedmaterial.Thedesignprocessincludes
reviewofopportunitiestoremoveorreducethehazardsinchemicalprocessingconsidering
inherentlysafedesignconcepts-minimize,substitute,moderate,simplify.Theproperhandling,
use, and storage of chemicals is addressed through approved procedures and Hazard
Communicationtraining.
Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense
amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontrolof
chemicalhazards.Adefenseindepthapproachwillbeappliedtohigherriskaccidentsequences
asrequiredby10CFR70.64(b).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0006
SNMXXXX
CHAPTER6
ZŽ
December2024
Page65
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0006toheader.
6.2.2
AddedstatementsclarifyingthattheISAidentifiesandevaluates
credibleunmitigatedaccidentsinvolvingacutechemicalexposures
underNRCregulatoryjurisdiction.Theacutechemicalexposure
pathwaysevaluatedareinhalation,dermal,andingestion.Changes
basedonTX0REGLTR0029Enclosure2,RAI1.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0007 SNMXXXX CHAPTER 7 ZŽ
December 2024 Page 71 FIRE SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 7.1 Fire Safety 72 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 Fire Safety Management Measures Fire Safety Organization Fire Prevention Inspection, Testing, and Maintenance of Fire Protection Systems Emergency Response Organization PreFire Plans 72 7.3 Fire Hazards Analysis 74 7.4 7.4.1 Facility Design Facility Design Criteria 74 7.5 Process Fire Safety 75 7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 7.6.7 Fire Protection and Emergency Response Water Supply Hydrants, Standpipes, and Hose Houses Fixed Fire Protection Systems Fire Detection and Alarm Systems Portable Fire Extinguishers Lightning Protection Emergency Response Team 75 7.7 Requirements for New Facilities or New Processes at Existing Facilities 77 TRISO-X Document Control 2024.12.30 12:12:05 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page72
FIRESAFETY
7.1
FireSafety
TheTRISOXfireprotectionprogramisbasedonacombinationoffireprotectionmeasuresand
systems.Suchmeasuresandsystemsaredesignedandmaintainedinaccordancewithindustry
standardsandprudentindustrypractices.Thestandardsandpracticesmostoftenconsultedare
thoseoftheNationalFireProtectionAssociation(NFPA).
Thefireprotectionprogramisdesignedtominimizethepotentialforandprovidereasonable
protection against fire and explosive hazards associated with the processing, handling, and
storage of licensed materials during normal operations, anticipated operational offnormal
occurrences,andcredibleaccidents.AspartoftheISAprocessdescribedinChapter3,area
operationsareevaluatedforthepotentialfor,andconsequencesof,fireandexplosivehazards
thatcouldaffectthesafetyoflicensedmaterialsandthuspresentanincreasedradiologicalrisk.
Wheretheseconsequencescouldexceedtheperformancerequirementsin10CFR70.61,IROFS
areassigned.TheseIROFSareidentifiedandcontrolledasdescribedintheISASummaryandin
approvedprocedurestoensuretheyremainavailableandreliable.
TheTRISOXfireprotectionprogramandgeneralfacilitydesignweredevelopedusingNFPA801,
Standard for Fire Protection for Facilities Handling Radioactive Materials, 2014 edition. In
additiontotheFireHazardsAnalysis(FHA)preparedasrequiredtocomplywithNFPA801and
tosupporttheISAprocess,TRISOXhasageneralfiresafetyprogramthatincludesgeneralfire
safety management measures, facility design requirements, and general fire protection and
emergencyresponsemeasures.TheFHAconfirmsthatanadequateleveloffireprotectionand
lifesafetyhasbeenachievedthatincludesdefenseindepthprotectionandconformancewith
national codes, standards, and federal regulations applicable to the facilitys design and
construction,andmanufacturingoperations.
7.2
FireSafetyManagementMeasures
7.2.1 FireSafetyOrganization
Fireprotectionprogramorganization,authorities,andresponsibilitiesaredescribedinChapter
- 2. TheAuthorityHavingJurisdiction(AHJ)forthefireprotectionprogramisheldbythefire protectionfunctionunlessmandatedbylocaland/orstateregulation,wherethespecifically requiredAHJisutilized.
TheequivalencyconceptmaybeappliedinmeetingtheprovisionsofNFPAcodesorstandards,
providedthattechnicaldocumentationdemonstratesequivalency,andthatthemethod,system,
ordeviceislistedorapprovedfortheintendedpurpose.Equivalencyevaluationrecordsare
retained as described in Chapter 11, and records are made available for NRC review and
inspection.Whererequiredbycode,equivalencyevaluationsaresubmittedtotheAHJ.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page73
If an IROFSrelated NFPA code commitment cannot be met and an alternate method that
provides an equivalent level of safety cannot be identified, a formal request to approve a
deviation from the NFPA code commitment will be submitted to the NRC for review and
inspectionrelativetoeffectsonnuclearsafety.
The configuration management program described in Chapter 11 assures that any facility
changesareproperlyevaluatedwithregardtotheimpactuponfiresafetyanddocumented
withinthefacilitysafetybases.Newfacilitiesandprocessesarereviewedbythefacilitysafety
reviewcommittee.
7.2.2 FirePrevention
- 1. Employee Training - General fire safety awareness training is administered to each employee as part of their general employee training. Applicable IROFS training is providedaspartofjobspecifictraining.
- 2. FacilityAuditsandInspections-Periodicauditsandinspections,asdetailedinChapter11 andapprovedprocedures,areperformedforfacilitiescontaininglicensedmaterialsina quantityandformthatcouldcauseatleastanintermediateconsequenceasdefinedin 10CFR70.61iftotallyconsumedbyfire.Itemsidentifiedareenteredintothefacility's correctiveactionprogramandtrackedtoclosure.
- 3. FirePreventionProcedures-Approvedproceduresaremaintainedfortheadministration ofthegeneralfirepreventionprogram.Firesafetyproceduresaddressareassuchasthe storage,handling,andcontrolofcombustible(includingtransientandworkgenerated),
flammable, and pyrophoric materials; the review and issuance of permits for work performedinthefacilitytocontrolsourcesofignition,suchaswelding,cutting,brazing, soldering,andgrinding;andfirepreventionsurveillancetoensurethatTRISOXmaintains a readiness to extinguish fires and limit consequences of a fire through use of fire detectionandsuppressionsystems.
7.2.3 Inspection,Testing,andMaintenanceofFireProtectionSystems
Proceduralguidanceisestablishedfortheinspection,testing,andmaintenanceoffireprotection
systems routinely performed by TRISOX personnel. These procedures are applied to fire
detection,warning,andsuppressionsystems.Inspection,testing,andmaintenancemayalsobe
conductedbyoutsidevendorsthatspecializeinthetypeofworkrequired.RecordsofTRISOX
activitiesandofoutsidevendoractivitiesaremaintainedasdescribedinChapter11.
7.2.4 EmergencyResponseOrganization
TRISOX maintains an emergency response organization in accordance with 10 CFR 70.22.
Approvedproceduresoutlinetheoverallemergencyresponseprogram,includingbutnotlimited
tostaffing,training,drillsandexercises,responsemeasures,andoffsiteagencycoordination.
TheEmergencyPreparednessprogram,asdescribedinChapter8,includesmemorandumsof
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page74
understandingbetweenTRISOXandoffsiteagencies,andaddressesperiodicoffsitetraining
anddrills.TheTRISOXemergencyresponseteamisdiscussedinSection7.6.7.
7.2.5 PreFirePlans
TRISOXmaintainsprefireplansforeachbuilding,orpartthereof,that,iftotallyconsumedby
fire, could release licensed material in a quantity and form that could cause at least an
intermediateconsequenceasdefinedin10CFR70.61.Theseprefireplansprovideinformation
neededbyfirefightingpersonnelrespondingtotheemergencyandarelocatedforreadyaccess
bythefacilityemergencyresponseteamandlocalfiredepartmentswhomayrespondtoan
emergencyattheTRISOXFFF.WhereCriticalityoradversechemicalreactionconcernsmay
excludewatersuppressiontechniqueswithincertainprocessareas,orifdetectionand/orother
suppressionmethodsareselectedtofurthermitigatethepotentialforcriticality,thisisaddressed
intheassociatedprefireplans.Prefireplansforbuildings/areasthatinvolvelicensedmaterials
arereviewedbyNCSstaff.
7.3 FireHazardsAnalysis
An FHA has been developed as required by NFPA 801 (2014 edition). This document was
preparedforthemanufacturingbuildingthatisinvolvedinprocessingorstorageoflicensed
materials in sufficient quantities and in a form that, if released in a fire, could result in an
intermediateorhighconsequenceeventasdefinedintheISAsummary.
TheFHAisacomponentoftheISAprocess,asdescribedinChapter3.TheFHAfocuseson
boundingfirescenarioswithinbuildingsthatcontainlicensedmaterialsandconsiderfireloading,
the consequences and analysis of an unmitigated fire, and mitigating controls. Fire and/or
explosion hazards which have the potential to create high or intermediate consequences as
definedin10CFR70.61arecontrolledviatheapplicationofappropriateIROFS.TheseIROFSare
documentedintheISASummaryasdescribedinChapter3.Managementmeasuresthatensure
thereliabilityandavailabilityofIROFSareestablishedasdescribedinChapter11.
7.4
FacilityDesign
7.4.1 FacilityDesignCriteria
TheTRISOXFFFisdesignedandconstructedconsistentwiththerequirementsofNFPA801(2014
edition),aswellasapplicablestateandlocalbuilding,electrical,andfirecodesineffectatthe
time of construction. The FHA and/or facility design documentation describes the type of
construction,buildingmaterials,exterioropenings,firedetectionandalarmsystem,automatic
firesuppressionsystems,andthefirewaterdistributionsystem.
Designandconstructioncriteriaforfacilitiesthatprocesslicensedmaterialsincludeanevaluation
todeterminethepropermethodstoprevent,detect,extinguish,limit,andcontrolfiresand
explosions.Fireresistiveandnoncombustiblematerialsareusedasappropriate.Fireareasmay
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page75
subdividespecifiedprocessesormaterialsinvolvingsignificantfirehazardstoconfinethespread
offiretotheareaoforigin,andfirebarriersareprovidedasrecommendedbytheFHA.
Criticality or adverse chemical reaction concerns may exclude automatic water suppression
extinguishing systems from certain process areas, or detection and/or other suppression
methodsmaybeselectedtofurthermitigatethepotentialforcriticalitywheretheseareashave
significantfirerisks.
Electricalinstallation,ventilation,lightningprotection,firewaterrunoff,lifesafetyandworker
egress, and firefighter access are considered. Physical security features designed for the
protectionoflicensedmaterialarereviewedtopreventorminimizetheinadvertentdelayof
eitherworkeregressorfirefighteraccessduringemergencysituations.
7.5
ProcessFireSafety
Processfiresafetyisconsideredintheplanning,design,andconstructionofnewfacilitiesand
processes.Inareaswherefireand/orexplosionhazardsmayimpactlicensedmaterial,risksare
evaluatedanddocumentedbytheISAprocess.TheISAevaluatesthespecialfireriskassociated
with:
x Combustible,flammable,andpyrophoricprocesschemicals(solids,liquids,gases),inuse andinstorage, x
Exothermicreactionsofuraniumoxides,and x
Hightemperatureand/orhighpressureequipment.
TheISAsummaryidentifiesthefireinitiatedreleasescenariosthatmayimpactlicensedmaterial.
Processrelated fire hazards are controlled with IROFS to the extent necessary to meet the
performancerequirementsof10CFR70.61.
7.6
FireProtectionandEmergencyResponse
7.6.1 WaterSupply
FireprotectionwaterisprovidedtoTRISOXfacilitiesthroughastandaloneundergroundloop
systemfedbytheCityofOakRidgewaterdistributionsystem.Detailsofthefireprotectionwater
supplyarecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.
7.6.2 Hydrants,Standpipes,andHoseHouses
Multiplehydrantsareprovidedthroughoutthefireprotectionloop.Locationsaresuchthatthey
allowreadyaccessforquickusewhenneededtoassistinfirefighting.Inareaswhereautomatic
watersuppressionextinguishingsystemsareexcludedorarenotpreferredduetocriticalityor
adverse chemical reaction concerns, standpipe hose cabinets are provided for use when
authorized. Hose houses may also be provided in areas that are hard to access or are
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page76
inaccessible.Detailsofthehydrants,standpipes,andhosehousesarecontainedintheFHA,in
prefireplans,and/orinapprovedprocedures.
7.6.3 FixedFireProtectionSystems
Fixed fire protection systems, including clean agent and/or gaseous fire extinguishing and
automaticsprinklersystems,areutilizedthroughoutTRISOXfacilities.Selectionofequipment
considerstheseverityofthehazard,thetypeofactivitiesperformedinthearea,thepotential
consequencesofafire,andthepotentialconsequencesofuseofthesuppressionequipment
(e.g.,riskofanaccidentalcriticality,orsubstantialelectricalhazard).Detailsofthefixedfire
protectionsystemsarecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.
7.6.4 FireDetectionandAlarmSystems
TRISOX facilities are equipped with fire detection and alarm systems that include initiating
devices(e.g.,smokedetection,heatdetection,manualpullstations)andnotificationappliances
(e.g.,audiblealarm,visualstrobe).Selectionofequipmentconsidersthetypesofhazardsinthe
areaandtheenvironmentinwhichtheequipmentwillbeinstalled.Firedetection,alarm,and
suppressionsystemsarecontinuouslymonitored.Detailsofthefiredetectionandalarmsystems
arecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.
7.6.5 PortableFireExtinguishers
Portable fire extinguishers are located throughout TRISOX facilities for use by employees
respondingtoincipientstagefires.Selectionofequipmentconsiderstheclassoffiresthatcould
occurintheareaandcapacityrequired.Detailsregardingthetypeandlocationoftheportable
fireextinguishersarecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.
7.6.6 LightningProtection
TRISOXfacilitieshavebeenoutfittedwithlightningprotectionsystemsasspecifiedintheFHA.
7.6.7 EmergencyResponseTeam
TRISOXmaintainsanemergencyresponseteam.Theemergencyresponseteamisanorganized
groupofemployeeswhoareknowledgeable,trained,andskilledinbasicfirefightingoperations,
firstaidtechniques,andemergencyresponse.Trainingandeducationareprovidedforteam
memberscommensuratewiththosedutiesandfunctionsthattheyareexpectedtoperform.
TRISOXreliesonsupportfromoffsitefirefightingresourcesforfireandhazardousmaterials
releaseresponse.
The TRISOX Emergency Preparedness program, as described in Chapter 8, includes
memorandumsofunderstandingbetweenTRISOXandoffsiteagencies,andaddressesperiodic
offsitetraininganddrills.TheTRISOXemergencyresponseorganizationisdiscussedinSection
7.2.4.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page77
7.7RequirementsforNewFacilitiesorNewProcessesatExistingFacilities
Asrequiredby10CFR70.64(b),theTRISOXFuelFabricationFacilityisdesignedusingadefense indepthapproachforprotectionagainstfireandexplosionaccidents.Totheextentpracticable,
the facility design considers preference for the selection of engineered controls over
administrativecontrolstoincreaseoverallsystemreliability,andfeaturesthatenhancesafetyby
reducingchallengestoIROFSareincorporated.
Consistent with the guidance provided in NFPA 801, the FHA and ISA demonstrate that the
design,buildingconstruction,fireareas,lifesafety,andventilationofthefacility;processfire
safety;firedetectionandsuppressionsystems;prefireplanning;andmanualfiresuppression
capability together form the basis for compliance with the BDC of 10 CFR 70.64(a) and the
defenseindepthrequirementsof10CFR70.64(b).
Asrequiredby10CFR70.64(a)(3),thedesignprovidesforadequateprotectionagainstfireand
explosionbyincorporatingdefenseindepthconceptssuchthathealthandsafetyarenotwholly
dependentonanysingleelementofthedesign,construction,maintenanceoroperationofthe
facility.Thisisaccomplishedbyachievingabalancebetweenpreventingfiresfromstarting;
quickly detecting, controlling and promptly extinguishing those fires that do occur; and
protectingstructures,systems,andcomponentssuchthatafirewillnotleadtoanunacceptable
consequence.
Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense
amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontroloffire
hazards. A defenseindepth approach will be applied to higher risk accident sequences as
requiredby10CFR70.64(b).
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0007
SNMXXXX
CHAPTER7
ZŽ
December2024
Page78
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0007toheader.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0008 SNMXXXX CHAPTER 8 ZŽ
December 2024 Page 81 EMERGENCY MANAGEMENT Table of Contents SECTION TITLE STARTS ON PAGE 8.1 Emergency Plan 82 8.2 Emergency Plan Implementing Procedures 82 8.3 Amendment of the Emergency Plan 82 8.4 Agreements with Offsite Emergency Response Resources 82 8.5 Requirements for New Facilities or New Processes at Existing Facilities 82 TRISO-X Document Control 2024.12.30 12:38:16 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0008
SNMXXXX
CHAPTER8
ZŽ
December2024
Page82
EMERGENCYMANAGEMENT
8.1
EmergencyPlan
TRISOX maintains an emergency plan in accordance with the requirements of 10 CFR
70.22(i)(1)(ii).Contentoftheplanisinaccordancewith10CFR70.22(i)(3)andisconsistentwith
U.S.NuclearRegulatory(NRC)guidanceinRegulatoryGuide3.67,StandardFormatandContent
forEmergencyPlansforFuelCycleandMaterialsFacilities.
8.2
EmergencyPlanImplementingProcedures
Therequirementsoftheemergencyplanareimplementedthroughapprovedproceduresand
checklists.
8.3
AmendmentoftheEmergencyPlan
Theemergencyplanismaintainedasneeded.TRISOXmaychangetheapprovedplanwithout
NRCapprovalifthechangesdonotdecreasetheeffectivenessoftheplan.Inaccordancewith
10CFR70.32(i),copiesofchangesthatdonotdecreaseeffectivenesswillbeprovidedtotheNRC
andappropriateorganizationswithinsixmonthsofmakingthechanges.Proposedchangesto
theplanthatdecreaseitseffectivenesswillnotbeimplementedwithoutpriorapprovalbythe
NRC.
8.4
AgreementswithOffsiteEmergencyResponseResources
Formal written agreements with offsite medical response organizations (Methodist Medical
Center and University of Tennessee Medical Center) have been established and will be
maintained to assure implementation of the emergency plan and emergency response
procedures.Thesehospitalswillserveasemergencyresponsehospitalsforinjuredindividuals
thatmaybecontaminatedorexposedtoradiologicalmaterials.Hospitalstaffhavealsoreceived
training from the Radiation Emergency Assistance Center/Training Site in Oak Ridge. These
agreementsarereviewedandrenewedasdescribedintheemergencyplanandaremaintained
onfileattheTRISOXFuelFabricationFacility.Localfire,police,andambulanceservices(Cityof
OakRidge,RoaneCounty)arerequiredbyTennesseestatelawtorespondtoemergencieswhen
911iscalled.
8.5
RequirementsforNewFacilitiesorNewProcessesatExistingFacilities
Asrequiredby10CR70.64(a)(6),andasdescribedintheemergencyplan,theTRISOXFuel
Fabrication Facility design provides for emergency capability to maintain control of licensed
material and hazardous chemicals produced from licensed material, evacuation of onsite
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0008
SNMXXXX
CHAPTER8
ZŽ
December2024
Page83
personnel,andonsiteemergencyfacilitiesandservicesthatfacilitatetheuseofavailableoffsite
services.
Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense
amendment, the baseline design criteria of 10 CFR 70.64(a) will be applied to emergency
capability.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0008
SNMXXXX
CHAPTER8
ZŽ
December2024
Page84
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0008toheader.
Section8.4
Updatedoffsiteemergencyresponseresourceinformationdueto
TX0LTR0022,EmergencyManagementRAI1.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0009 SNMXXXX CHAPTER 9 ZŽ
December 2024 Page 91 ENVIRONMENTAL SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 9.1 Environmental ALARA 92 9.2 9.2.1 9.2.2 9.2.3 Gaseous Effluent Control Gaseous Effluent Sampling HighEfficiency Particulate Absolute (HEPA) Filtration Final HEPA Filter Surveillance 92 9.3 9.3.1 Liquid Effluent Control Wastewater Collection/Treatment 94 9.4 Waste Management 95 9.5 Environmental Monitoring 95 9.6 Program Management 96 TRISO-X Document Control 2024.12.30 12:55:39 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page92
ENVIRONMENTALSAFETY
9.1
EnvironmentalALARA
TRISOX has established and maintains an environmental safety program to maintain
concentrationsofradioactivematerialsinfacilityeffluentsandthesurroundingenvironmentas
lowasreasonablyachievable(ALARA).TheTRISOXALARAprogramisdescribedinChapter4.
Environmentalreleasesarelimitedandmonitoredsuchthatcompliancewiththepublicdose
limits of 10 CFR 20.1301 and the effluent limits of 10 CFR 20.1302 can be achieved and
demonstrated. These objectives are supported by performing routine measurements and
calculations,comparingresultstoactionlevels,andreportingresultstofacilitymanagementand
theNRC,asappropriate.Internalactionlevelsareimplementedthroughapprovedprocedures
to provide early identification of potential problems and prevent exceedance of established
guidelines.Ifactionlevelsareexceeded,investigationsareinitiatedtoidentifythecause,and
appropriatecorrectiveaction(s)aretakentominimizethelikelihoodofrecurrenceaspartofthe
correctiveactionprogramoutlinedinChapter11.
Theenvironmentalsafetyprogramimplementingproceduresensurecompliancewith10CFR20
SubpartsB,RadiationProtectionPrograms,D,DosetothePublic,F,SurveysandMonitoring,K,
WasteDisposal,L,Records,andM,Reports,thataddresseffluentcontrolandtreatment.The
programincludesprovisionsforthemonitoringofthefacilityenvironment,includingambientair,
surfacewater,groundwater,soils,andvegetation,thatcouldbeaffectedbyfacilityeffluents.
TheTRISOXISASummaryandEnvironmentalReportprovideadditionalinformation.Chapter2
ofthisapplicationaddressesstaffqualificationsofindividualsresponsiblefortheenvironmental
safetyprogram.
9.2GaseousEffluentControl Operatingandengineeredcontrolsareusedasnecessarytoensurethatenvironmentalairborne
concentrationsofradioactivematerialsattributabletogaseouseffluentsareconstrainedand
resultantradiologicaldosestomembersofthepubliccomplywiththeconcentrationlimitsand
publicdoselimitspecifiedin10CFR20.1101(d),consistentwithguidanceinRegulatoryGuide
4.20.Dosecalculationsareperformedusingnationallyrecognizedmethods.
Dosecalculationsaswellasenvironmentalconcentrationsin10CFR20,AppendixB,Table2for
membersofthepublicmaybemodifiedbasedonICRP66and68asdescribedinChapter1,
assuminganActivityMedianAerodynamicDiameter(AMAD)of5micrometer.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page93
9.2.1 GaseousEffluentSampling
Continuous representative sampling is performed in stacks exhausting air with potential
concentrationsofradioactivematerialsthataresignificantwithrespecttothesitescompliance
with10CFR20.Samplesarecollectedandanalyzedforparticulateradioactivematerialona
scheduledbasisasdefinedinapprovedproceduresusingmethodsandfrequenciesappropriate
fortheeffluentmediumandtheradionuclide(s)beingsampled.Effluentsaresampledunless
periodic sampling or other means have established that radioactivity in the effluent is
insignificantandwillremainso.
Gaseous effluent sampling is performed during manufacturing operations involving licensed
materials.Samplingofexhaustairstacksisnotrequiredwhentheunderlyingventilationsystem
hasbeenshutdowninconjunctionwithacessationoftheprocessingoflicensedmaterialsinthe
affectedventilatedspaces.Anypassiveemissionsofradioactivematerialsareabatedbythe
continuedpresenceoftheHEPAfiltersinplace.Approvedproceduresdefineactionlevelsto
ensurethatcompliancewithapplicablelimitsismaintained.
9.2.2 HighEfficiencyParticulateAbsolute(HEPA)Filtration
HEPAfiltrationisusedonstacksexhaustingairthatpotentiallycontainradioactivematerialsthat
aresignificantwithrespecttothesitescompliancewith10CFR20.Thisexhaustairispassed
throughatleastonestageofHEPAfiltrationpriortoreleasefromthestack.FireresistantHEPA
filtersthatarecertifiedbythemanufacturerasmeetingHEPAefficiencyspecificationsareused.
TheadequacyoffinalHEPAfilterinstallationsisverifiedbyinplacetestingpriortoinitiating
operationswithradioactivematerialsinthefollowinginstances:
x Startupofanewfacility x
Followingreplacementoffinalfilters x
Aftermaintenanceworkonthefinalfilterbankthatcouldhaveforeseeableadverse impactsontheireffectiveoperation x
Afterexposureofthefinalfilterstoaconditionoragentthatmayhaveadversely impactedtheireffectiveoperation,ifdeemednecessarybasedonvisual/operational inspection.
9.2.3 FinalHEPAFilterSurveillance
Measuresasdescribedinapprovedproceduresaretakentoconservativelymonitorthepotential
onsetof,oradverseemissionsimpactsfromHEPAfilterdeterioration.Thesemeasuresinclude
thefollowing:
x PeriodicinspectionofHEPAfilters; x
PeriodicmeasurementofdifferentialpressuresacrossHEPAfilterbanks;and x
Stackemissionsmonitoringthatestablishactionlevelstriggeringnotificationstothe maintenance/engineeringorganizationandperformanceofHEPAfilterinspectionsat
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page94
measuredoffgasradionuclideconcentrationssetbelowapplicable10CFR20AppendixB
effluentlimits,andlevelsabovewhichtheprocesswouldbeshutdown.
Final HEPA filter installations are equipped with pressure differential measuring/indicating
devices. Measured differential pressures are used to evaluate the need for filter
changeout/maintenance.
9.3
LiquidEffluentControl
NoliquideffluentsareplannedforradiologicalprocessstreamsintheTRISOXFFF.Designofthe
facility, along with operating and engineered controls, is used as necessary to ensure that
radiologicalliquideffluentdischargestotheenvironmentdonotoccur.Approvedprocedures
defineactionlevelstoensurethatcompliancewithapplicablelimitsismaintained.
9.3.1 WastewaterCollection/Treatment
Processsolutionsgeneratedbyprocesssystemsandequipmentarerecycledtothemaximum
extent practical. Process solutions contaminated with uranium that cannot be recovered/
recycledareidentifiedasliquidwastes.Liquidwastesarecollectedandsampledtodetermine
appropriatehandling/treatmentsteps.TreatmenttypicallyinvolvesadjustmentofpH,filtering,
ionexchange,and/orprecipitation.Precipitatesaredewatered,andthesolidsarepackagedfor
offsitedisposal.Ifneeded,liquidwastesthathavebeenhandled/treatedcanbesampledand
dischargedthroughaninlinemonitortoshippingpackagesorconveyancesforoffsitedisposal.
SanitarysewerdischargestotheCityofOakRidgesewersystemfromfacilityrestroomsandnon radiologicalprocessstreamsrelatedtoequipmentblowdowns,flushes,andcleaningactivities
areconductedinaccordancewithalocallyissuedpermit.Usedoilsmayalsobesampledand
containerizedforshipmenttoalicenseddisposalfacility.
Licensed radioactive material discharges to the sanitary sewer are prevented by locating
restrooms,changeroomfacilities(i.e.,lockerrooms,showers,andbathrooms),anddrainsthat
lead to the sanitary sewer outside of the Restricted Area (the process area boundary). The
RestrictedAreaincludestheRadiologicallyControlledArea(RCA).Personnelarerequiredtodoff
personal protective equipment (PPE) and proceed through contamination monitors prior to
exitingtheRestrictedArea.ThesanitarysewerisnotphysicallyconnectedtotheRestrictedArea
ortoanyprocessequipmentwithintheRestrictedArea.
TRISOXpreventstransportofdispersibleradioactivematerialoutsidetheRestrictedAreaby
requiringpersonneltodoffPPEandproceedthroughcontaminationmonitorspriortoexitingthe
Restricted Area. In addition, the Restricted Area is kept at a slight negative pressure, which
preventsdispersibleradioactivematerialfrommigratingoutsideoftheRestrictedArea.License
Chapter 4 establishes a rigorous Contamination Control Program that includes routine
contamination control surveys and radiological surveys for any items removed from the
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page95
RestrictedAreaanddocumentsthecontaminationstatusofareasbothinsideandoutsideofthe
RestrictedArea.
9.4
WasteManagement
TheTRISOXWasteManagementProgram(WMP)isconsistentwithEPAandNRCguidanceto
meettherequirementsin10CFR20.1406,andisdesignedtominimizefacilitygeneratedwaste.
TheWMPisendorsedandsupportedbyuppermanagement,detailswastestreamsandthe
wastecharacterizationprocess,andisevaluatedonascheduledbasisforimprovement.The
WMPproceduresandfacilitiesforwastehandling,stagingforshipment,andmonitoringresultin
safeandtimelydispositionofmaterials.
Solid waste disposal preparation facilities, with sufficient capacity and capability to enable
processing,packaging,andtransfersofsolidwastetolicensedtreatmentand/ordisposalsitesin
accordance with the regulations, are provided and maintained as required to support the
operationoftheTRISOXFuelFabricationFacility.
9.5
EnvironmentalMonitoring
TRISOX conducts a routine environmental surveillance program. Compliance with 10 CFR
20.1301isachievedusingtheoptionprovidedin10CFR1302(b)(2)(i)todemonstratethatthe
annual average concentrations of radioactive material released in gaseous effluents at the
boundary of the unrestricted area (the point of stack discharge) do not exceed the values
specifiedinTable2ofAppendixBtoPart20.Demonstrationisaccomplishedbycalculationand
validatedbymeasurement.Thisensuresthatenvironmentalconcentrationsatthesiteboundary
andoffsitearewellbelowregulatorylimits.
Surfaceenvironmentalmediaandgroundwatersamplesarecollectedfromstrategiclocationsin
thesurroundingenvironsandanalyzedforpertinentconstituentsofconcern.Baselinelevelsof
radionuclidesinmediasurroundingthefacilityareestablishedthroughsamplingandanalysis
priortooperationsusingSNM.Feedmaterialischaracterizedforenrichmentandotherpotential
contaminantspriortouse.Futuresampleresultsareevaluatedagainstactionlevelsandthe
facilitysourcetermtoidentifyanyconfoundingnaturalsourcesofradioactivityorsourcesfrom
operationsexternaltothefacility.Actionlevelsandassociatedresponsesarespecifiedforeach
environmentalmediumandradionuclideasdefinedinapprovedprocedures.
Theprogramprovidesearlydetectionandresponsetoanegativetrendinenvironmentaldata,
andsupportdataintheeventofareleaseofradioactivematerial.Continuousstackmonitoring
providesamethodforearlydetectionofanegativetrendingaseouseffluentreleasesfrom
normaloperations.Ambientairsamplersverifytheabsenceofroutinegroundlevelgaseous
effluentreleasesandprovideamethodforearlydetectionofgroundlevelgaseouseffluent
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page96
releases from an offnormal event. Information from these monitoring activities is used to
support assessments of normal operations or following offnormal events. Environmental
dosimetersarecolocatedwiththeambientairsamplerstoconfirmtheabsenceofambient
externaldoseratesabovebackgroundinunrestrictedareasandtoassistwiththeassessmentof
potentialaccidents.
AsummaryoftypicalsamplingactivitiesisincludedinTable91.Typicalsamplinglocationsare
providedinFigure91.Thelocationsforsamplingofsoilandvegetationwillbeconcentrated
alongthepredominantwinddirections.Thelocationsforambientairsamplingareselectedbased
on predominant wind directions and the direction of potential receptors. Four groundwater
observationwellsareinstalledonthesite.Groundwaterelevationmeasurementsandmodeling
indicate that groundwater generally flows in a southwest direction toward East Fork Poplar
Creek.Therearenoknownhousehold,public,orindustrialusersofgroundwaterdowngradient
ofthesite.
Table91:EnvironmentalMonitoringParameters
TypeofSample
Analyses
Numberof
Locations
TypicalSampling
Frequency
AirEffluentDischarge
Points
GrossAlpha/Beta
IsotopicUranium
2
Continuous(collection
weekly)
AmbientAir
GrossAlpha/Beta
6
Continuous(collection
monthly)
Groundwater
GrossAlpha/Beta
IsotopicUranium
4
Quarterly
Soil
GrossAlpha/Beta
IsotopicUranium
4
Semiannually
Vegetation
GrossAlpha/Beta
IsotopicUranium
4
Semiannually
Stormwater
GrossAlpha/Beta
IsotopicUranium
3
Quarterly
Environmental
Dosimetry
Determinedby
NVLAPaccredited
vendor
6
Quarterly
9.6
ProgramManagement
Quantitiesofradioactivematerialinairandliquidsreleasedfromthefacilityarereportedtothe
NRC on a semiannual basis as required by 10 CFR 70.59, Effluent monitoring reporting
requirements.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page97
Approved procedures outline sampling techniques, sample processing and analysis
methodologies,qualityassurance,andothernecessaryinformationtovalidateanalyticalresults
andmaintainaviableprogram.
Sampleanalysismaybeperformedeitheronsiteoroffsite.Inallcases,analyticaltechniques
forsampleanalysisofeachmediumareappropriateforthequantitiesandtypesofradionuclides
presentatthefacilityandaresensitiveenoughtoensureadequatedetectionandquantification
basedonmediaradiologicalcontentandlimits.Qualitycontrolprocedures,foronsiteoroff site analysis, detail the periodic checks necessary to demonstrate the operability of the
instrumentationusedforanalysis.Analyticalresultsarereportedinatimelymannersothatstaff
candeterminetheappropriateresponsetoestablishedactionlevels.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page98
Figure91:TypicalSamplingLocations
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0009
SNMXXXX
CHAPTER9
ZŽ
December2024
Page99
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0009toheader.
9.2.2
Addedthisatbeginningofsentence2tomoredirectlyconnectthe
contenttosentence1duetoTX0REGLTR0038,Chapter1RAI9,
andameetingwithNRCon11/5/2024todiscussopenitemsfor
LicenseChapter1.
9.2.3
DeletedmodifiedduetoTX0REGLTR0038,Chapter1RAI9,and
ameetingwithNRCon11/5/2024todiscussopenitemsforLicense
Chapter1.
9.3.1
Addeddetailforpreventingradioactivematerialdischargetothe
sanitarysewerandpreventingthetransportofdispersible
radioactivematerialoutsidetheRestrictedArea.Changesmade
basedonTX0REGLTR0038RAI3.
9.5
Addeddetailfordemonstratingcompliancewith10CFR20.1301
basedonTX0REGLTR0038RAI1.
Figure91
AddednewFigure91andupdatedTable91toinclude
environmentalsamplinglocationsbasedonTX0REGLTR0038RAI
- 1. RevisedFigure91basedonanupdatedsitelayoutshowingthe TX1andTX2processbuildings.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0010 SNMXXXX CHAPTER 10 ZŽ
December 2024 Page 101 DECOMMISSIONING Table of Contents SECTION TITLE STARTS ON PAGE 10.1 Decommissioning Funding Plan (DFP) 102 10.2 Decommissioning Cost Estimate 102 10.3 Financial Assurance for Decommissioning 102 10.4 Recordkeeping for Decommissioning 102 TRISO-X Document Control 2024.12.30 13:23:51 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0010
SNMXXXX
CHAPTER10
ZŽ
December2024
Page102
DECOMMISSIONING
10.1DecommissioningFundingPlan(DFP)
TRISOXmaintainsaDFPthatcontainstheelementscalledforin10CFR70.25(e)(1),includinga
decommissioning cost estimate; a description of the methods used to assure funds for
decommissioning are available when needed; a means for adjusting the cost estimate and
associated funding levels periodically over the life of the facility; and, when applicable,
certificationthatfinancialassurancehasbeenprovidedinanamountthatcoversthecurrent
estimate for decommissioning. The DFP addresses the decommissioning of facilities with
potentialforcontaminationwithlicensedmaterialsattheTRISOXFuelFabricationFacilitysite.
TheDFPdescribeshowfacilitydesignandproceduresforoperationwillminimize,totheextent
practicable,contaminationofthefacilityandtheenvironmentandgenerationofradioactive
waste,andwillfacilitateeventualdecommissioningasrequiredby10CFR20.1406(a).
10.2
DecommissioningCostEstimate
Consistentwith10CFR70.25(e)(2),thedecommissioningcostestimatewillbereviewedand
updatedatanintervalnottoexceedthreeyears.
10.3
FinancialAssuranceforDecommissioning
Financialassurancefordecommissioningwillbeprovidedbythemethodsauthorizedin10CFR
70.25(f)andwillbeinplacepriortointroducinglicensedmaterial.TRISOXwillprovidetheNRC
withsignedoriginalsofthefinancialinstrumentsobtainedtosatisfytherequirementsof10CFR
70.25(f).
10.4 RecordkeepingforDecommissioning
In accordance with 10 CFR 70.25(g), records will be maintained that are important to the
decommissioningoftheTRISOXFuelFabricationFacilityuntilsuchtimeasthefacilityisreleased
forunrestricteduse.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0010
SNMXXXX
CHAPTER10
ZŽ
December2024
Page103
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0010toheader.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0011 SNMXXXX CHAPTER 11 ZŽ
December 2024 Page 111 MANAGEMENT MEASURES Table of Contents SECTION TITLE STARTS ON PAGE 11.1 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 Configuration Management (CM)
CM Program Design Requirements Document Control Change Control Assessments 112 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 Maintenance Surveillance and Monitoring Corrective Maintenance Preventive Maintenance Functional Testing Maintenance Records 114 11.3 11.3.1 11.3.2 11.3.3 Training and Qualification General Safety Training Training and Qualification for Activities Involving the Handling of SNM Personnel Qualification 116 11.4 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 Procedure Development and Implementation Operating Procedures General Safety and Emergency Procedures Maintenance Procedures Temporary Procedures Periodic Reviews of Procedures 119 11.5 11.5.1 11.5.2 Audits and Assessments Internal Audits Independent Assessments 1112 11.6 11.6.1 Incident Investigations and Corrective Action Conduct of Incident Investigations 1113 11.7 Records Management 1114 11.8 Other Quality Assurance (QA) Elements for IROFS 1115 TRISO-X Document Control 2024.12.30 13:48:21 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page112
MANAGEMENTMEASURES
Asspecifiedin10CFR70.62(d),managementmeasuresareappliedtoItemsReliedonForSafety
(IROFS) to provide reasonable assurance that the IROFS are designed, implemented, and
maintainedtoensuretheyareavailableandreliabletoperformtheirfunctionswhenneeded.
TheISASummaryidentifiesIROFSappliedtofacilitysystemsandactivitiestoassuretheyfunction
tosatisfytheperformancerequirementsof10CFR70.61.IROFSmaybeengineeredcontrols
(passiveoractive),enhancedadministrativecontrols(activefeaturesthatpromptapersonto
take an action), or administrative controls (actions of people). Management measures are
applied to IROFS based on the type of control (passive, active, enhanced administrative,
administrative)asidentifiedinTable111.Methodsusedtoselectandassignmanagement
measurestoIROFSaredocumentedinapprovedprocedures.
11.1
ConfigurationManagement(CM)
A formal review and approval process is used to evaluate modifications to systems and
components to ensure that configuration changes do not adversely impact currently
implementedIROFSandtoensurenewprocessesmeettheperformancerequirementsof10CFR
70.61.TheCMprogramcapturesformaldocumentationgoverningthedesign,safetybases,and
continued modification of the site, structures, processes, systems, equipment, components,
selectedcomputerprograms,personnelactivities,andsupportingmanagementmeasures.
11.1.1 CMProgram
TheTRISOXCMProgramcontrolsfacilitiesandprocessessosafetybasesaremaintained,and
changesareevaluatedanddocumentedaccordingtoapprovedproceduresconsistentwith10
CFR70.72inSection11.1.4andthelicenseapplicationchangeprocessdiscussedinChapter1.
TheCMprocessprovidesassurancethatconsistencyisestablishedandmaintainedbetween
facilitydesign,operationalrequirements,physicalconfiguration,andfacilitydocumentation.CM
provides oversight and control of design information, safety information, and records of
modificationsthatmightimpacttheabilityofIROFStoperformtheirfunctionswhenneeded.
EngineeringisresponsiblefortheimplementationandongoingmanagementoftheCMProgram.
AllTRISOXpersonnelandorganizationsareresponsibleforcomplyingwiththeCMProgram
objectives and implementing Program requirements as an integral part of their respective
functionalareasofoperation.
11.1.2 DesignRequirements
Configuration control is accomplished during design using procedures for controlling design,
preparation, review, and approval. Design requirements and associated design bases are
establishedandmaintainedduringdesign,construction,andoperations.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page113
Fornewfacilitiesandprocesses/systems,designrequirementsarerequiredtobedeveloped,
reviewed,approved,anddocumentedbeforeinputofSNM.Thebaselinedesigncriteria(BDC)
identifiedin10CFR70.64(a)areaddressedforIROFS.Thepreferreddesignapproachisusedto
theextentpracticaltoselectengineeredcontrolsoveradministrativecontrols.Newfacilityand
systemdesignisalsobasedondefenseindepthpracticesinaccordancewith10CFR70.64(b)to
enhance safety by reducing challenges to IROFS. Design requirements and documents are
prepared by the engineering organization. Applicable codes and standards are identified in
designdocuments.Priortoapproval,thedesigndocumentsarereviewedforadequacy,accuracy
andcompletenessasperapprovedprocedures.ChangestodesigndocumentsortheISAare
subjecttothechangecontrolprocessesasdescribedinChapter1andSection11.1.4
11.1.3 DocumentControl
Proceduresareestablishedtocontrolthepreparationandissuanceofdocuments.Thisincludes
creation, revision, storage, tracking, distribution, and retrieval of applicable information, to
include but not limited to, manuals, instructions, drawings, procedures, design documents,
specifications, plans, and other documents that pertain to the CM function. Measures are
establishedtoensuredocuments,includingrevisions,areadequatelyreviewed,approved,and
releasedforusebyauthorizedpersonnel.Anelectronicdocumentmanagementsystemisused
bothtofilefacilityrecordsandtomakeavailablethelatestrevision(i.e.,thecontrolledcopy)of
designdocuments.Controlleddocumentsaremaintaineduntilcancelledorsuperseded.
Aspartoftheconfigurationmanagementprogram,refertoSection11.7forfurtherdiscussionof
thedocumentcontrolandrecordsmanagementprocedures.
11.1.4 ChangeControl
The objective of the change control process is to maintain consistency among design
requirements,thephysicalconfiguration,andtherelatedfacilitydocumentation(includingthe
ISA).Theprocessisusedtoensurefacilityconfigurationdocumentationchangesareproperly
reviewed, approved and implemented to assure that all impacts of proposed changes are
identified and evaluated, design requirements (and bases) are maintained or appropriately
revised, and changes are coordinated across the affected organizations and personnel
responsibleforactivitiesandprogramsattheTRISOXFFF.
Typesofchangesaredefinedandmayrangefromreplacementwithidenticaldesignthatare
authorizedaspartofnormalmaintenance,tonewordifferentdesignsthatrequirespecified
review and approval. Major changes include substantial modifications to existing licensed
facilitiesand/ornewprocesses,newlicensedfacilities,ornewprocessesinexistinglicensed
facilities.Anychangerequiringalicenseamendmentisalsoconsideredamajorchange.The
changecontrolprocessisimplementedviaapprovedprocedurestowhichappropriatepersonnel
aretrained.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page114
Thechangecontrolprocessassuresthatthefollowingitemsareaddressedpriortoimplementing
achangeasrequiredby10CFR70.72(a):
- 1) Thetechnicalbasisforthechange;
- 2) Theimpactofthechangeonsafety,health,andcontroloflicensedmaterial;
- 3) Modificationstoexistingdrawings,procedures,andtraining;
- 4) Authorizationrequirementsforthechange;
- 5) Fortemporarychanges,theapprovedduration(e.g.,expirationdate)ofthechange;
- 6) The impacts or modifications to the ISA, ISA Summary, nuclear criticality safety evaluation,orothersafetyprograminformation,developedinaccordancewith10CFR 70.62and/or10CFR70.64;and
- 7) AnevaluationastowhetherornotalicenseamendmentmustbeapprovedbytheNRC priortoimplementationofthechangeinaccordancewith10CFR70.72(c).
Finaldocumentationofthechangeapprovalismaintained,andtheapplicabledocumentationis
madeavailabletotheaffectedpersonnel.Per10CFR70.72(d)(2),abriefsummaryofmajor
changesthatrequiredrevisionoftheapplicablesafetyorenvironmentalbaseswillbesubmitted
within30daysaftertheendofthecalendaryearduringwhichthechangesoccurred.
11.1.5 Assessments
Periodicauditsand/orassessmentsoftheconfigurationmanagementprogramareconductedin
accordancewiththerequirementsinSection11.5forthepurposeofevaluatingtheprogram's
effectivenessandtocorrectdeficiencies.Theresultsoftheseassessmentsaredocumentedand
maintainedinaccordancewithapprovedprocedures.
11.2
Maintenance
ThemaintenanceprogramisdesignedtoensurethatIROFSaremaintainedinamannertoensure
they are available and reliable to perform their intended function when needed. The
maintenanceprogramconsistsofthefollowingkeyprogramelements,includingmanagement
systemsthatprovideschedulinganddocumentationoftheseelementswhenappliedtoIROFS:
- 1) SurveillanceandMonitoring,
- 2) CorrectiveMaintenance,
- 3) PreventiveMaintenance,and
- 4) FunctionalTesting.
MaintenanceproceduresandinstructionsareanintegralpartoftheMaintenanceprogramas
describedinSection11.4.3.
11.2.1 SurveillanceandMonitoring
Thesurveillanceandmonitoringprogramisimplementedtomonitorthecurrentandlongterm
performanceofIROFS.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page115
Surveillanceactivitiesincludepreventivemaintenance(11.2.3)andfunctionaltesting(11.2.4)
that are performed on a scheduled basis, and followup to corrective maintenance (11.2.2).
Documentation of surveillances is prepared as per approved procedures. Frequencies of
surveillancesarebasedonthetypeandsafetysignificanceoftheIROFS,aswellasmanufacturers
recommendations.Theresultsofsurveillancesaretrendedtosupportthedeterminationof
performance trends for IROFS and can lead to changes to maintenance frequencies, if
appropriate.Maintenanceproceduresalsoprescribecompensatorymeasures,ifappropriatefor
surveillancetestsofIROFSthatcanonlybeperformedwhiletheequipmentisoutofservice.
IROFSfoundtobeoutoftoleranceorunabletoperformtheirintendedfunctionarereportedin
atimelymannerthroughthecorrectiveactionprogramdiscussedinSection11.6.Reportsof
IROFSfailuresareenteredintothecorrectiveactionprogramwhichprovidesameanstoevaluate
thefailure,identifythecauseoffailure,andassignappropriatecorrectiveactionstobeinitiated.
Records of IROFS performance issues and corrective actions are maintained within the
maintenanceandcorrectiveactionprograms,asapplicable.RecordsforfailuresofIROFSare
maintainedinaccordancewith10CFR70.62(a)(3)withinthecorrectiveactionprogram.
11.2.2 CorrectiveMaintenance
Correctivemaintenanceisperformedusingasystematic,integrated,andcontrolledapproachto
ensurethatIROFSandothersystemsnecessaryforthesafeoperationofthefacilityareproperly
repairedandrestoredtoserviceinamannerthatmaintainsfacilitysafetyandthefunctionofthe
safetysystem.MaintenanceactivitiesareperformedonIROFSinamannerthatminimizesor
eliminatestherecurrenceofunacceptableperformancedeficiencies.
Correctivemaintenanceisauthorized,initiated,anddocumentedthroughaformallyestablished
process that includes steps requiring coordination between the maintenance and operating
organizations.TheprocessalsoincludesanevaluationtodetermineifIROFSperformancehave
been, or may be, adversely affected by the equipment failure/malfunction or the ensuing
maintenanceandwhetherpostmodificationfunctionaltestingofIROFSisrequired.
11.2.3 PreventiveMaintenance
Preventivemaintenance(PM)isperformedinapreplannedandscheduledmannertorefurbish
oroverhaulIROFStoensurethattheycontinuetoperformtheirintendedfunction.PMactivities
areappropriatelybalancedagainsttheobjectiveofminimizingunavailabilityofIROFS.Periodic
calibrationsareconductedwhererecommendedbymanufacturerorindustryguidance.After
conductingPM,andbeforereturningasafetycontroltoservice,afunctionaltestmayberequired
toprovidereasonableassurancethatthesafetycontrolperformsasdesignedandprovidesthe
safetyactionexpected.
AscheduleforperformingPMonIROFSismaintainedasspecifiedinapprovedprocedures,and
frequenciesareestablishedbasedonoperatinghistory,manufacturerandindustryguidance,
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page116
feedback from surveillance and maintenance activities, and/or recommendations from the
correctiveactionprogram.
11.2.4 FunctionalTesting
FunctionaltestingofIROFSisperformedusingapprovedwritteninstructionspriortostartupof
facilitiesorprocessoperationsinvolvingIROFS(preoperationaltesting)andatperiodicintervals
during operations. This is intended to provide reasonable assurance that the safety control
performsasdesignedandprovidesthedesiredsafetyaction.Functionaltestinstructionsand
frequencies are based on operating history, manufacturer and industry guidance, risk
assessment,feedbackfromsurveillanceandmaintenanceactivities,and/orrecommendations
fromthecorrectiveactionprogram.Duringprocessoperations,compensatorymeasuresare
usedasappropriatewhilefunctionaltestingisperformedonIROFS.
AdministrativecontrolsthatareidentifiedasIROFSaredocumentedinapprovedprocedures.
Administrativecontrolsareassuredtoavailableandreliableduringoperationsbyapplyingthe
applicablemeasuresaddressedinthischapter(e.g.,procedures,trainingandqualifications).
11.2.5MaintenanceRecords
TheresultsofSurveillanceandMonitoring,CorrectiveMaintenance,PreventiveMaintenance,
and Functional Testing for IROFS are documented, and the documentation is maintained as
"recordspertainingtosafety"asspecifiedinSection11.7.
11.3
TrainingandQualification
TheTrainingandQualificationProgramprovidesworkerswiththeknowledgeandskillstosafely
performtheirjobfunction,recognizetheimportanceofIROFS,effectivelydealwiththehazards
oftheworkplace,implementpropercontrolandaccountingofSNM,andproperlyrespondto
emergencysituations.Thequalificationaspectofthisprogramensuresthatoperationsand
maintenanceareperformedonlybyproperlytrainedpersonnel.
RequirementsandmethodsforthetrainingandqualificationprogramsareapprovedbyTRISOX
management,whoalsoprovideongoingevaluationoftheeffectivenessoftheprograms.
Thistrainingtypicallyfallsintooneofthefollowingcategories:
- 1) Generalsafetytrainingnotspecifictoaparticularworkstationoractivity;
- 2) Trainingtoassureproperperformanceforpositionsandworkactivitiesthatarereliedon forsafety,inparticularthosedesignatedasIROFS;and
- 3) PropercontrolandaccountingofSNM.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page117
11.3.1 GeneralSafetyTraining
TheTrainingandQualificationProgramrequiresthatallpersonnelwhoaregrantedunescorted
access to the ownercontrolled area receive formal safety and security orientation training.
Safetyorientationtrainingcoversfacilitysecurityandsafetyrules,radiological,nuclearcriticality,
chemical, fire, and environmental safety topics as appropriate to the job function of the
individualsbeingtrained.Inaddition,thistrainingcoversproperresponsetoemergencies.
Continuingtrainingisconductedintheseareasasnecessarytomaintainemployeeproficiency.
Thecontentofsafetytrainingisevaluatedonascheduledbasis,asappropriateforthesubjectof
thetraining,toensureitremainscurrentandrelevant.
11.3.2 TrainingandQualificationforActivitiesInvolvingtheHandlingofSNM
TheTrainingandQualificationProgramincludesworktrainingforoperatingpersonnelandothers
who directly handle greater than laboratory sample quantities of special nuclear material.
Facility specific activities are correlated with applicable supporting procedures and training
materials.Worktrainingtypicallyincludesclassroom,onthejob,andguidedworkexperience
training necessary to provide the desired knowledge and/or skill. It covers the operating
procedures, alarms, emergency response actions, special nuclear material controls and
accounting,andradiological,nuclearcriticality,industrial,andenvironmentalsafetycontrolsand
limitsspecifictotheparticularworkassignment.
Work training includes appropriate reinstruction for previously qualified individuals prior to
implementation of a process change or procedural modification. When changes are made
relative to safety or emergency response requirements, provisions are made to assure that
affectedemployeesareappropriatelyinformedandinstructedonthechanges.Worktrainingis
evaluated, and necessary recurrent training / retraining / requalification is identified and
documented. Additional details about the work training program are provided in approved
procedures.
TheTrainingandQualificationProgramprovidesfortheinstructionandtrainingofmechanics
involvedinmaintenanceactivities.Thetypeandleveloftrainingiscommensuratewiththejob
assignments.
OrganizationandManagementofTraining
Theresponsibilityfortheassuranceofproperlytrainedandqualifiedpersonnelresideswiththe
disciplinemanagementteamandpertinentlinemanagement.Supporttolinemanagementfor
thedevelopment,implementation,andadministrationofthefacilityTrainingandQualification
ProgramisprovidedbytheTrainingfunction.ImplementationoftheTrainingandQualification
Programisaccomplishedinaccordancewithapprovedprocedures.Alltrainingisconductedby,
orunderthesupervisionof,individualsrecognizedbymanagementaspossessingthenecessary
knowledgeandskillstoconductthetraining.Exemptionsfromtrainingareonlyauthorizedas
describedinapprovedprocedures.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page118
Training records are maintained to support management information needs and provide
requiredinformationoneachindividualstrainingandqualification.Therecordsaremaintained
inaccordancewithapprovedprocedures.
IdentificationofActivitiesRequiringTraining
Positionsimpactingtheavailability/reliabilityofIROFSareassessed,basedonagradedapproach
thatconsidersthehazardsandthesafetyresponsibilitiesassociatedwitheachposition.Input
fromsubjectmatterexperts,withsupportfromthetrainingfunction,isutilizedasappropriate.
PositionTrainingRequirements
Objectives and requirements for training programs are jointly agreed upon by management
based upon facility needs and input provided by the training function and the appropriate
discipline.EachpositioninvolvingpersonnelassignedtoSNMprocessoperationsisevaluatedto
determinethespecificrequirementsthatapplytothedefinedjobfunction.Personnelmust
remaincurrentonthedefinedsetofrequirementstomaintainjobqualifications.
BasesforTraining
Theobjectiveoftrainingistoensuresafeandefficientoperationofthefacilityandcompliance
withapplicableestablishedregulationsandrequirements.Learningobjectivesareestablished
forthosepositions/activitiesimpactingthesafetyandsecurityoflicensedmaterialoperations,
andinparticulartheavailability/reliabilityofdesignatedIROFS.Objectivesinclude,asapplicable,
theknowledgeskills,andabilitiesthetraineeshoulddemonstrate;theconditionsunderwhich
requiredactionswilltakeplace;andthestandardsofperformancethetraineeshouldachieve
uponcompletionofthetrainingactivity.
TrainingMaterials
Lessonplans,computerbasedtraining,andothertrainingguides(forselfstudy,classroom,and
onthejob training) developed for activities relied on for safety and security are based on
learning objectives developed from specific job performance requirements. Information
provided,reviewed,andapprovedbysubjectmatterexpertsisincludedinthecontentoftraining
elementswithclearlydefinedobjectives.Thelessonplansalsoprovidereasonableassurance
thattrainingisconductedinareliableandconsistentmanner.Lessonplans,guidesandother
trainingmaterialsarereviewedandapprovedbeforetheirissuanceanduse.TheCMProgram
providesameanstoassurethatdesignchangesandmodificationstoIROFSareaccountedforin
thetrainingandthatpersonnelareinstructedusingcurrentprocedures.
EvaluationofTraineeAccomplishment
Traineeunderstandingandcommandoflearningobjectivesareevaluated.Theevaluationmay
beaccomplishedthroughacombinationofobservation/skillsdemonstration,writtentests,or
oralexaminations.Theresultsoftraineeevaluationsaredocumented.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page119
OntheJobTraining(OJT)
OJTrequirementsforactivitiesreliedonforsafetyandlistedintheISASummary,ifapplicable,
arespecifiedaspartofpertinentpositiontrainingrequirements.CompletionofOJTmaybe
demonstratedbyactualtaskperformance(preferred)ortasksimulation.OJTisconductingby
qualifiedindividualsusingcurrenttrainingmaterials.CompletionofOJTisdemonstratedthrough
actual task actions (or simulation) using conditions encountered during the performance of
assigneddutiesincludingtheuseofreferencesandtools,andequipmentconditionsreflecting
theactualtasktotheextentpracticable.CompletionofOJTrequirementsaredocumented.
TrainingProgramReview
TheeffectivenessoftheTrainingandQualificationProgramisassessedonaperiodicbasis.Work
assignmentsinvolvingthehandlingofSNMareevaluatedforneededrecurrenttrainingand/or
reevaluation of qualification activities. Improvements and changes are made to training as
neededtocorrectanydeficienciesorperformanceproblems.
11.3.3PersonnelQualification
Theminimumqualificationsforkeymanagementandtechnicalprofessionalstaffpositionsare
describedinChapter2.Qualificationsforpersonnelwhoconductactivitiesinvolvingthehandling
ofSNMaredescribedinSection11.3.2.
11.4ProcedureDevelopmentandImplementation
Activities involving the handling of SNM and/or IROFS are conducted in accordance with
approvedproceduresasdefinedinthissection.Proceduresaddressthefollowingactivities:
design, configuration management, procurement, construction, operations, radiation safety,
maintenance, waste management, quality assurance, training and qualification, audits and
assessments,incidentinvestigations,recordsmanagement,nuclearcriticalitysafety,firesafety,
chemicalprocesssafety,environmentalprotection,andreportingrequirements.Proceduresalso
address the requirements contained within the Site Emergency Plan, Fundamental Nuclear
MaterialControlPlan,andPhysicalSecurityPlan.Proceduresareclassifiedintothegeneral
categories of operating, general safety and emergency, and maintenance. Administrative
procedures are used for activities that support the process operations, and do not include
activitiesinvolvingthehandlingofSNMand/oroperatingIROFS.
Theprocessforthedevelopment,management,andimplementationofproceduresisdefinedin
approved procedures. These procedures address how procedures are developed, reviewed,
approved,distributed,revised,anddeleted.Eachprocedurecontainsanidentifyingnumber,
title, revision number, and date. The system ensures that the most current revisions of
proceduresarereadilyavailabletoworkerswithintheirworkareas(operatingprocedures),orin
a centralized location accessible to all affected personnel, that any necessary training and
qualificationrequirementsareidentified,andthatthetimeframeforwhichtheprocedureisvalid
isdefined.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1110
Proceduresareapprovedbyappropriatemanagementpersonnelwhoareresponsibleforthe
activitygovernedbytheprocedure.Changesand/orrevisionstoprocedurescoveringlicensed
material operations and/or IROFS are reviewed by the regulatory affairs functions, as
appropriate,inaccordancewiththerequirementsoftheCMprogram,asdiscussedinSection
11.1,toensurethatallassociatedactivitiesanddocumentation(safetyanalyses,reviews,testing,
training,etc.)arecompletedbeforeproceduralchangesareimplemented.
Ifanyaspectofaprocedureisunclearorincorrectaswritten,personnelareauthorizedtosafely
stoptheoperationand/oractivityandcontactmanagement.Intheeventofanunusualincident,
accident, significant operator error, equipment malfunction, or system modification, the
applicableproceduresareevaluatedandrevisedasnecessary.
11.4.1OperatingProcedures
Operatingproceduresaredocumentswrittentoauthorizetheprocessingofradioactivematerial;
and within these documents, detailed instructions for operation of equipment used in the
processoractivity,instructionsfordispositionofradioactivewastes,andlimitsandcontrols
establishedforsafetyandregulatorypurposes,includingIROFS,areidentified.
Operating procedures include the required actions and limits for startup, operation, and
shutdown;actionsnecessarytopreventormitigateaccidentsidentifiedintheISASummary;and
responses to alarms and applicable offnormal conditions, including failure of an IROFS.
Operatingproceduresincludeprovisionstoplaceprocessoperationsinasafeconditionifastep
oftheprocedurecannotbeperformedaswritten.Workplacepostingoflimitsandcontrols,
training,andothercommunicationdevicesareused,ifappropriate,toenhancecomprehension
andunderstandingofoperatingprocedures.
Duringoperatingproceduredevelopment,thetechnicalaccuracyisverified.Changestoexisting
operatingproceduresareevaluatedtodetermineifthescopeofthechangewarrantsawalk downand/oranindependentverification/validation.Newoperatingproceduresarevalidated
byoperationsstafftoensurethattheycanbeperformedaswritten.
11.4.2GeneralSafetyandEmergencyProcedures
Generalsafetyproceduresoutlinehealthandsafetypracticesthathelpmaintainoccupational
radiationexposuresatlevelsaslowasreasonablyachievable(ALARA).Theseproceduresare
generallyapplicableonafacilitywidebasistoincludesafeworkpracticestocontrolprocesses
with licensed material, IROFS, and hazardous materials. Included in this category are the
EmergencyPlanimplementingproceduresandtheCriticalitycontrolprocedures.Generalsafety
proceduresarereviewedandapprovedbytheapplicableregulatoryaffairsfunctions.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1111
11.4.3MaintenanceProcedures
Maintenanceoffacilitystructures,systemsandcomponentsisperformedinaccordancewith
approved procedures, documented instructions, checklists, or drawings appropriate to the
circumstancesthatconformtoapplicablecodes,standards,specifications,andotherappropriate
criteria.Maintenanceprogramproceduresensurethatcorrectiveandpreventivemaintenance
as well as functional testing are implemented for IROFS; that reviews for accuracy and
completenessareconductedforworktobeperformed;andrequiretheaffectedorganizations
to be notified prior to performing the maintenance work and at completion of the work.
ProceduresprovidecompensatorymeasuresforIROFSthatmaybedegradedortakenoutof serviceduringmaintenanceactivities.
Proceduresrequireworktobecontrolledthroughreviewoftheplannedworkbytheapplicable
regulatoryaffairsfunctions.Themaintenanceprogramidentifiesqualificationsofpersonnel
authorizedtoperformmaintenance,specificationsforreplacementcomponentsascoveredby
CM,requirementsforpostmaintenancetesting,requiredrecordsmanagementofmaintenance
activities,andsafeworkpracticesapplicabletotheworktobeperformed.
11.4.4 TemporaryProcedures
Approvedtemporaryproceduresareusedwhenpermanentproceduresdonotexistto:
- 1) Directoperationsduringtesting,maintenance,andfacilitymodifications;
- 2) Provideguidanceinunusualsituationsnotwithinthescopeofpermanentprocedures;or,
- 3) Provideassuranceoforderlyanduniformoperationsforperiodsofshortdurationwhen thefacility,asystem,oracomponentisperforminginamannernotcoveredbyexisting permanentproceduresorhasbeenmodifiedorextendedinsuchamannerthatportions ofexistingproceduresdonotapply.
Temporary procedures are controlled, reviewed, and approved as specified by a written
procedureandwillnotchangeanISAexceptasauthorizedunder10CFR70.72.Thereviewand
approvalprocessrequiredfortemporaryproceduresisthesameasforotherprocedures,anda
timeframeisdefinedforwhichtheprocedureisvalid.
11.4.5PeriodicReviewsofProcedures
ProceduresgoverningactivitiesreliedonforsafetyinvolvingthehandlingofSNMand/orIROFS
arereviewedperiodicallytoensurecontentremainscurrentandrelevantandthatadministrative
IROFSremainavailableandreliable.Thereviewfrequencyisdefinedinapprovedprocedures
andmaybegradedbasedonimportancetosafety.Emergencyproceduresarereviewedperthe
Emergency Plan required in Chapter 8. Safeguards procedures are reviewed per the
FundamentalNuclearMaterialControlPlanrequiredinChapter12.Securityrelatedprocedures
are reviewed per the Physical Security Plan required in Chapter 13. The corrective action
program(Section11.6)includesprovisionstoassesstheroleofproceduresinadverseconditions
oreventsevaluatedwithintheprogram.Correctionsofproceduraldeficienciesaretrackedto
completionwithinthesystem.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1112
11.5AuditsandAssessments
Aprogramisinplaceforconductingauditsandassessmentsofactivitiessignificanttofacility
safety,safeguards,andenvironmentalprotectionthatidentifiesresponsibilityfor:
1)
Determining the appropriate utilization of internal and/or external personnel for particularauditandassessmentactivities.
2)
Assuringauditandassessmentpersonnelhavetheexpertiseandbackgroundsufficientto successfullyconductauditandassessmentactivities.
3)
Assuringauditandassessmentpersonnelaresufficientlyindependentoftheareabeing reviewed.
4)
Verifyingtheutilizationofaneffectivecorrectiveactionprogramtoaddressfindingsof auditsandassessments.
Auditsandassessmentsareconductedfortheareasofradiationsafety,nuclearcriticalitysafety,
chemical safety, fire safety, environmental protection, quality assurance, configuration
management,maintenance,trainingandqualification,procedures,incidentinvestigation,and
recordsmanagement.Theareasofemergencymanagement,safeguards,andsecurityarealso
auditedandassessedinaccordancewiththeEmergencyPlan,FundamentalNuclearMaterial
Control Plan, and Physical Security Plan. Approved procedures and guidance used to plan,
schedule,andperformtheauditsandassessmentscontainthefollowinginformation:
Activitiestobereviewed.
Frequencyofreviews.
Applicableguidancetobeusedinconductingthereviews.
Responsibilitiesforeachphaseofthereviews.
Instructionsforrecordingtheresults,andrecommendingandapprovingactionstobe taken.
Thelevelsofmanagementtowhichresultsarereported.
Results, including findings and observations, are captured in the corrective action program.
Correctiveactionstopreventrecurrenceareassignedtoowners,documented,andtrackedto
completioninaccordancewiththerequirementsspecifiedinthecorrectiveactionprogram.
11.5.1InternalAudits
Internal audits are compliancebased evaluation activities with an objective of verifying
complianceofoperationswithestablishedregulatoryrequirements,licensecommitments,and
standardindustrypractice.AuditsalsoensurethatadministrativeIROFSremainavailableand
reliabletoperformtheirintendedsafetyfunctionoverextendedperiodsofoperation.
Members of the regulatory affairs functions, as described in Chapter 2, perform audits of
activitiesinvolvingthehandlingofSNM,includingsupportareas,onascheduledbasisasdefined
inapprovedprocedures.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1113
MembersoftheQualityAssurancedisciplineperiodicallyauditfacilityprogramsasdirectedby
plantmanagement.
11.5.2IndependentAssessments
Independentassessmentsareperformancebasedevaluationactivitiesconductedtoassessthe
effectiveness of health, safety, and environmental compliance functions in achieving their
designated purpose, particularly in providing reasonable assurance of the availability and
reliability of IROFS. The assessments are conducted using offsite groups or individuals not
involvedinthelicensedactivity.
11.6.IncidentInvestigationsandCorrectiveAction
Acorrectiveactionprogramisimplementedthroughapprovedprocedurestoinvestigateand
documenteventsforoperationsinvolvingspecialnuclearmaterials,includingthoserequiredto
be reported under 10 CFR 70.50, 70.62, and 70.74. Events, including those with conditions
adverse to safety, are reported, investigated, tracked, and corrective actions are assigned
throughaformalcorrectiveactionprogram.Agraded,riskbasedapproachisusedtoestablish
therequirementsfordeterminingspecificorgenericrootcause(s)andgenericimplication(s)of
events.
Eventsarereviewedandclassifiedbasedonthesafetysignificanceandregulatorycompliance,
includingtheimpactonthehealthandsafetyofthepublicandtheenvironment;impacton
reliabilityoravailabilityofsafetycontrolsand/or;andimpactstoregulatorycommitments.
11.6.1 ConductofIncidentInvestigations
Agraded,riskbasedapproachisappliedtotheassignmentofthelevelofinvestigation;and,
basedonseverityorpotentialseverityoftheevent,theinvestigationmaybeconductedbyone
ormoreindividual(s).Levelsofinvestigation,aswellasreviewsandapprovals,areassignedfor
eventsinaccordancewithapprovedprocedures.Correctiveactionsaredeveloped,documented,
approved,andimplemented.Measurestopreventrecurrenceand/ortocontroltheaffected
workinprogressmayalsobetaken.Proceduralguidanceforconductinganinvestigationdefines
responsibilitiesforinvestigatorsandapprovers;generalmethodsforconductofinvestigations;
and requirements for report preparation, approval, and distribution. A graded, riskbased
approachisappliedtoprioritizecompletionofcorrectiveactionssothatconditionsadverseto
safetyarecorrectedassoonaspracticable.Theprocessusedtomonitorcorrectiveactionsalso
includesverificationofcompletion,andasapplicable,reviewsofeffectivenessandmanagement
attentionforthosecorrectiveactionsdeemedineffective.
Corrective actions generated from investigations are used to make corrections and
improvements(i.e.,lessonslearned)necessarytopreventorminimizesingleorcommonmode
failures. Details of the accident event sequence(s) are compared with accidentsequence(s)
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1114
alreadyconsideredintheISA,andtheISASummarywillbemodifiedtoincludeevaluationofthe
riskassociatedwithaccidentsofthetypeexperienced.
Auditablerecordsanddocumentationrelatedtoevents,investigations,androotcauseanalysis
aremaintainedasdescribedinapprovedprocedures.Proceduresrequiremaintenanceofall
documentationrelatingtoeventsfortwoyears(orforthelifeoftheoperation),whicheveris
longer.Thisdocumentationwillalsobeusedaspartofalessonslearnedprogramthatmaybe
appliedtofutureoperationsofthefacility.
11.7RecordsManagement
Arecordsmanagementsystem,asappliedtolicensedregulatoryandqualityassuranceactivities,
ismaintainedinaccordancewithapprovedprocedures.
Informationrelatedtooccupationalexposureofpersonneltoradiation,releasesofradioactive
materialstotheenvironment,andotherpertinentactivities,aremaintainedinsuchamanneras
todemonstratecompliancewithlicenseconditionsandtherelevantregulatoryrequirementsof
10CFR20.
Allrecordspertainingtosafetyareretainedforatleasttwoyearsunlesslongerretentionis
requiredbyotherregulatoryorlicensespecifications.Forexample,recordsofmajorchanges
implementedunder10CFR70.72willbemaintaineduntilterminationofthelicense.Major
changesaredefinedin11.1.4.
Recordsmanagementprocedures(a)assignresponsibilitiesforrecordsmanagement,(b)specify
the authority needed for records retention or disposal, (c) specify which records must have
controlledaccessandprovidethecontrolsneeded,(d)providefortheprotectionofrecordsfrom
loss,damage,tampering,theft,orduringanemergency,and(e)specifyproceduresforensuring
thattherecordsmanagementsystemremainseffective.
Afunctionalorganizationisinplacetoensurepromptdetectionandcorrectionofdeficienciesin
therecordsmanagementsystemoritsimplementation.Therecordsmanagementprocedures
providethefollowinginstructionstoensurethat:
Recordsareprepared,verified,characterized,andmaintained.
Recordsarelegible,identifiable,andretrievablefortheirdesignatedlifetimes.
Recordsareprotectedagainsttampering,theft,loss,unauthorizedaccess,damage,or deteriorationforthetimetheyareinstorage;and, Procedures are established and documented specifying the requirements and responsibilities for record selection, verification, protection, transmittal, distribution, retention,maintenance,anddisposition.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1115
Recordsarecategorizedbytheirrelativeimportancetosafetyand/orregulatorycomplianceto
identifyrecordprotectionandstorageneedsandtodesignatetheretentionperiodfor
individualkindsofrecords.RecordsofIROFSfailuresarekeptandupdatedinaccordancewith
10CFR70.62(a)(3).Thedecommissioningrecordkeepingrequirementsof10CFR70.25(g)are
addressedinChapter10.
11.8OtherQualityAssurance(QA)ElementsforIROFS
TheTRISOXqualitysystemconsistsoftheorganizationalstructure,procedures,processes,and
resourcesneededtoimplementqualitymanagement.OtherQualityAssurance(QA)elements
areappliedtoIROFStoensurethatthereisreasonableassurancethatIROFSareavailableand
reliabletoperformtheirfunctionswhenneeded,asfurtherdescribedinapprovedprocedures.
Thesamelevelofmanagementmeasures,includingQAelements,areuniformlyandconsistently
appliedtoIROFSirrespectiveofwhethertheyareneededtopreventormitigateintermediateor
highconsequenceevents.
1.
OrganizationandResponsibilities Chapter 2 provides the commitments associated with the organizational structure, authority,andresponsibilitiestoensurethatactivitiesinvolvingthehandlingofSNM and/or IROFS are performed safely and in compliance with license and regulatory requirements.
2.
QualityAssuranceProgram TheQAProgramisbasedon,butisnotlimitedto,applicablerequirementsandguidance inISO9001:2015,undertheoverallresponsibilityoftheQualityAssurancediscipline.
AspectsofthisprogramareappliedtoIROFSbasedoncriteriaincluding,butnotlimited to,typeofIROFS(passive,active,enhancedadministrative,administrative),complexityof designorfabrication,uniquenessoftheitem(commerciallyavailableorcustomdesign),
historyof supply and performance, evaluationof the suppliers qualifications, and/or industryacceptedpractices.
3.
DesignControl DesigncontrolisanelementoftheConfigurationManagementProgramasdescribedin Section11.1andinapprovedprocedures.
4.
ProcurementDocumentControl ProcurementdocumentsincludethosenecessaryrequirementstoensurethatIROFSwill beofthedesiredquality.Theseincludethefollowing,asappropriate:
Scopeofwork-descriptionofservicesoritemsbeingprocured.
Basictechnicalrequirementsincludingdrawings,specifications,codes,and
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1116
industrialstandardswithapplicablerevisiondata,testandinspectionrequirements,
specialrequirementssuchasfordesigning,fabricating,cleaning,identification
marking,erecting,packaging,handlingshippingandstorage.
QArequirements-theextenttowhichwilldependuponthetypeanduseofthe
itemorservicesbeingprocured.
Requirementsforthecontrolofnonconformancesandchanges,includingprovisions
tocontrolandreportnonconformanceandchangestoproductsbeingdelivered.
Requirementsonsubtiersuppliersincludingthepassdownofrelevanttechnical
andqualityrequirements.
Procurementdocumentsandchangestheretoarereviewedtoensuretheyinclude
theappropriaterequirements.
Applicable10CFR21,ReportingofDefectsandNoncompliance,reporting
requirements(ifany).
5.
Instructions,Procedures,andDrawings Section 11.4 includes the commitment that "activities involving the handling of SNM and/orIROFSareconductedinaccordancewithapprovedprocedures".Thissectionalso describes the process for developing and implementing procedures. Drawings are controlledundertheConfigurationManagementProgramasdescribedinSection11.1.
6.
DocumentControl Aprocessisinplacefordeveloping,implementing,andrevisingdocumentstoprovide reasonableassurancethattheappropriatedocumentsareinuse(refertoSections11.1 and 11.4). Document changes are reviewed for adequacy and approved for implementationbyauthorizedpersonnel.
7.
ControlofPurchasedItemsandServices The procurement of IROFS is controlled to ensure conformance with documented requirements. The controls provide the following, as appropriate: supplier (source) evaluationandselection;evaluationofobjectiveevidenceofqualityfurnishedbythe supplier;andexaminationofitemsorservicesupondeliveryorcompletion.Supplierswill providewrittenqualitydocumentationforevaluationpriortoselection.
Sourcingactivitiesareplannedanddocumentedtoensureasystematicapproachtothe procurement process. Supplier selection is based, in part, on an evaluation of the supplier'scapabilitytoprovideitemsorservicesinaccordancewiththerequirementsof sourcing documents. Additional considerations may include complexity of design or fabrication,uniquenessoftheitem(commerciallyavailableorcustomdesign),historyof supplyandperformance,and/orindustryacceptedpractices.
Supplier nonconformances may be identified either by TRISOX or by the supplier.
Nonconforming items are not released for use until the nonconforming condition is
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1117
reviewedandacceptedbyTRISOXandimplementationofthedispositionisverified,
exceptwhereotherwisecontrolledanddocumentedaccordingtoapprovedprocedures.
Recordsofsuppliernonconformancearemaintained.
AcceptanceofpurchasedIROFSequipmentwillbeperformedtodocumentevidenceof
compliance with the technical, quality and other requirements of the procurement
document.
8.
IdentificationandControlofItems Controls are established to assure that only correct and accepted items are used or installed.Identificationismaintainedontheitemsorindocumentstraceabletothe items, or in a manner that assures identification is established and maintained as describedinthissection.
Where specified, items having a limited operating or shelf life are identified and controlled to preclude use of items whose operating life or shelf life has expired.
Procedures provide for item identification consistent with the planned duration and conditionsofstorage.
9.
ControlofSpecialProcesses SpecialprocessesidentifiedbyEngineeringthatcontrolorverifyquality(forexample, welding or nondestructive examination) are performed by qualified personnel using approvedproceduresinaccordancewithspecifiedrequirements,codes,orstandards.
Whentheoutcomeoftheprocessishighlydependentonpersonalskills,suchindividuals are certified in accordance with specified requirements.When the outcome is highly dependentoncontrolofprocessparameters,theprocessandequipmentareprequalified in accordance with specified requirements. Special process plans and/or procedures prescribe the necessary equipment, process parameters, calibration, and acceptance criteria. Records are maintained of currently qualified personnel, processes, and equipmentforspecialprocesses.
10.
Inspection Acceptancetestingand/orinspectionisapartoftheConfigurationManagementProgram which ensures that IROFS meet specified requirements prior to initial use. The SurveillanceandMonitoring,PreventiveMaintenance,andFunctionalTestingfunctions, asdescribedinSection11.2,provideassurancethatIROFScontinuetomeetspecified requirementsbyassuringthatthesetestingandinspectionactivitiesarescheduledand implemented.Characteristicsofitemsinspected,includingthoseidentifiedasIROFS,will bespecifiedinapprovedprocedures,specifications,orplans.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1118
11.
TestControl Acceptancetestingand/orinspectionisapartoftheConfigurationManagementProgram which ensures that IROFS meet specified requirements prior to initial use. The SurveillanceandMonitoring,PreventiveMaintenance,andFunctionalTestingelements, asdescribedinSection11.2,provideassurancethatIROFScontinuetomeetspecified requirementsbyassuringthatthesetestingandinspectionactivitiesarescheduledand implemented. Characteristics verified through testing are stated in approved test instructions.
12.
ControlofMeasuringandTestEquipment Measuring and Test Equipment (M&TE) used in activities affecting the availability or reliability of IROFS are controlled, calibrated, and adjusted at specified intervals to maintainequipmentperformancewithinrequiredlimits.Policies,plans,andprocedures ensurethatdevicesandstandardsusedformeasurement,tests,andcalibrationactivities are of the proper type, range, and accuracy. Calibration control is not necessary for commercialdevicessuchasrulers,tapemeasures,levels,andstopwatches.Alistof devicesisestablishedtoidentifythoseitemswithinthecalibrationcontrolsystem.This identificationlistingincludes,asaminimum,theduedateofthenextcalibrationandany uselimitations(whencalibratedforlimiteduse).
M&TEiscalibratedatspecifiedintervalsorpriortouseagainstequipmenthavingaknown validrelationshiptonationallyrecognizedstandards.Ifnonationallyrecognizedstandard exists,thebasisforcalibrationisdocumented.M&TEisproperlyhandledandstoredto maintain accuracy. When M&TE is found to be out of calibration, asfound data are recorded, and an evaluation is made and documented as to the validity of previous inspection,testresults,andoftheacceptabilityofitemspreviouslyinspectedortested.
Outofcalibrationdevicesaretaggedorsegregatedandarenotuseduntilrecalibrated.
WhenM&TEisconsistentlyfoundtobeoutofcalibration,itisrepairedorreplaced.
Calibrationsarealsoperformedwhenpersonnelperformingmeasurementsandtests deemtheaccuracyoftheequipmentsuspect.Recordsaremaintainedandequipmentis suitablymarkedorotherwiseidentifiedtoindicateitscalibrationstatus 13.
ItemHandling,Storage,andShipping Materialsandequipmentarehandled,stored,andshippedinaccordancewithdesignand procurement requirements to protect against damage, deterioration, or loss. Special coverings,equipment,andprotectiveenvironmentsarespecifiedandprovidedwhere necessaryfortheprotectionofparticularitemsfromdamageordeterioration.
14.
Inspection,Test,andOperatingStatus Acceptancetestingand/orinspectionisapartoftheConfigurationManagementProgram which ensures that IROFS meet specified requirements prior to initial use. The SurveillanceandMonitoring,PreventiveMaintenance,andFunctionalTestingelements,
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1119
asdescribedinSection11.2,provideassurancethatIROFScontinuetomeetspecified
requirementsbyassuringthatthesetestingandinspectionactivitiesarescheduledand
implemented.TheConfigurationManagementandPurchasingProgramshaveprovisions
foridentifyingandcontrollingitems,includingIROFS,toprovidereasonableassurance
thatincorrectordefectiveitemsarenotused.
15.
ControlofNonconformingItems Itemsandrelatedactivitiesthatdonotconformtospecifiedrequirementsarecontrolled topreventinadvertentinstallationoruse.Nonconformingitemsaresegregated,when practical.Whensegregationisimpracticalorimpossibleduetophysicalconditions(for example,size,weight,oraccesslimitations),othermeasuresareemployedtopreclude inadvertentuseoftheitem.
Nonconforming items are reviewed and dispositioned. Further processing, delivery, installation,oruseofthenonconformingitemiscontrolledpendinganevaluationand approved disposition by personnel as authorized in approved policies, plans, and/or procedures,anddocumentednotificationtoaffectedorganizationsisprovided.
The responsibility and authority for the evaluation and disposition of nonconforming itemsisdefined.
Nonconformance documentation identifies the nonconforming item, describes the nonconformance, contains the disposition and any reinspection requirements, and containstheappropriatesignaturesapprovingthedisposition.
16.
CorrectiveAction Reports ofconditions adverse to safetyare promptly identified andentered intothe CorrectiveActionProgram(seeSection.11.6),whichprovidesameanstoevaluatethe problem,identifythecauseoftheproblem,assignappropriatecorrectiveactionstobe initiated,andtrackthecorrectiveactionstoclosure.Promptidentificationandeffective correctiveactionsshouldprovidereasonableassurancethatrepetitionoftheproblem willbeminimized.
17.
QualityAssuranceRecords TheRecordsManagementProgram,asdescribedinSection11.7,hasprovisionsforthe identification,retention,retrieval,andmaintenanceofrecordsthatfurnishevidenceof thecontrolofqualityofIROFS.
18.
Audits Section 11.5 includes the commitments for scheduling and implementing audits and assessments.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1120
Table111
ManagementMeasuresforIROFS
ManagementMeasures1
Passive
Engineered
Control
Active
Engineered
Control
Enhanced
Administrative
Control
Administrative
Control
ConfigurationManagement
X
X
X
X
ControlledListing
Identification
X
X
X
X
DrawingIdentification
X
X
X Setpointanalyses
X
X
X DesignSpecifications
X
X
X SafetyInstallation
Verification
X
X
X PreoperationalSafety
Review
X
X
X
X
Maintenance
X
X
X
X
PeriodicFunctionalTest
X
X
X
X-Note2
Calibration X
X Verificationafter
Maintenance
X
X
X PreoperationalTests
X
X
X TrainingandQualification
X
X
X
X
Procedures
X
X
X
X
Procedural
Identification
X
X
PostingIdentification
X
X
X
X
AuditsandAssessments
X
X
X
X
RecordsManagement
X
X
X
X
IncidentInvestigations
X
X
X
X
OtherQualityAssurance
Elements
X
X
X
X
Note1-Themanagementmeasuresidentifiedforeachtypeofcontrolaretheminimumrequired,if
applicable.Forexample,itisnotpossibletocalibratecertaintypesofactiveengineeredcontrols.
Note2-Forfrequentlyusedequipment,functionalityisreadilyapparentateachuse(e.g.,leakingvalve
visuallynoticedatusepointwhenvalveisoperated).Therefore,aperiodicfunctionaltestisnotrequired.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0011
SNMXXXX
CHAPTER11
ZŽ
December2024
Page1121
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0011toheader.
Introduction
Clarifiedapplicationofmanagementmeasuresisbasedontypeof
controlduetoTX0REGLTR0041,QA/MgtMeasuresRAI12.
Section
11.1.2
Addednewsentencetostateapplicablecodesandstandardsare
identifiedindesigndocumentsduetoTX0REGLTR0029,QA/Mgt
MeasuresRAI12.
Section11.8
Changesinthissection(exceptItem9)duetoTX0REGLTR0041,
QA/MgtMeasuresRAI12.
Item9changesduetoTX0LTR0020,RAI15.
Table111
AddedduetoTX0REGLTR0041,QA/MgtMeasuresRAI12.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0012 SNMXXXX CHAPTER 12 ZŽ
December 2024 Page 121 MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL
Table of Contents SECTION TITLE STARTS ON PAGE 12.1 Fundamental Nuclear Material Control Plan 122 12.2 Fundamental Nuclear Material Control Plan Implementation 122 12.3 Amendment of the Fundamental Nuclear Material Control Plan 123 TRISO-X Document Control 2024.12.30 14:04:33 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0012
SNMXXXX
CHAPTER12
ZŽ
December2024
Page122
MATERIALCONTROLANDACCOUNTINGOFSPECIALNUCLEARMATERIAL
12.1 FundamentalNuclearMaterialControlPlan
TRISOXmaintainsaFundamentalNuclearMaterialControlPlan(FNMCP)forlicensedCategory
II-Fuelfacilities/licenseesauthorizedtopossessSpecialNuclearMaterial(SNM)ofmoderate
strategicsignificance,asdefinedin10CFR74.4.10CFR70.22(b)requiresthattheapplication
containafulldescriptionoftheprogramforcontrolandaccountingofSNMinthelicensees
possession authorized by the license. The FNMCP demonstrates how compliance with the
applicablerequirementsof10CFR74.31,74.33,74.41,or74.51isaccomplished.Baseduponthe
possessionlimitsidentifiedinthelicenseapplication,therequirementscontainedwithin10CFR
74.41,nuclearmaterialcontrolandaccountingforspecialnuclearmaterialofmoderatestrategic
significance,isapplicabletotheTRISOXFuelFabricationFacility.TheFNMCPprovidesthefull
descriptionofthisprogram.
The TRISOX FMNCP addresses commitments regarding the material control and accounting
(MC&A)program inthefollowingareas:
1.
Managementstructureandpersonnelqualificationandtraining 2.
Measurementsystems 3.
Measurementcontrolsystem 4.
Useofstatisticstoensurerequirementsaremet 5.
Conductofperiodicphysicalinventoriesandreconciliationofbookrecordstotheresults ofthephysicalinventories 6.
Itemcontrolsystem 7.
Shipper/receivercomparisons 8.
IndependentassessmentoftheMC&Aprogram 9.
Tampersafing(UseofTamperIndicatingDevices) 10.
Designationofmaterialbalanceareas,itemcontrolareas,andcustodians 11.
Resolvingindicationsofloss,theft,diversion,ormisuseofSNM 12.
AssistingintheinvestigationandrecoveryofmissingSNM 13.
Recordkeeping 12.2
FundamentalNuclearMaterialControlPlanImplementation
TherequirementsoftheFNMCPareimplementedthroughapprovedproceduresandcontrolled
softwareusedfortheaccountingofSNM.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0012
SNMXXXX
CHAPTER12
ZŽ
December2024
Page123
12.3
AmendmentoftheFundamentalNuclearMaterialControlPlan
TheFundamentalNuclearMaterialControlPlanismaintainedasneeded.TRISOXmaymodify
thisFNMCPwithoutreceivingpriorNRCApprovalprovidedthechangedoesnotdecreasethe
effectivenessoftheMC&Aprogram.Whensuchachangeismade,thelicenseenotifiestheNRC
ofthechangewithinsixmonthsofthedatethechangeisimplementedbyprovidingareport
containingadescriptionofthechangeandjustificationofwhythechangedoesnotdecreasethe
effectivenessoftheprogram,inaccordancewith10CFR70.32(c)(2)(ii).ThelicenseeobtainsNRC
approvalofmodificationstotheplaninaccordancewith10CFR70.34ifthemodificationwould
resultinadecreasetheeffectivenessoftheMC&Aprogram.Thepoliciesusedtocontrolchanges
totheFNMCPandensurethatonlythecurrentversionisusedaredescribedinChapter11.
Proposedchangestotheplanthatdecreaseitseffectivenesswillnotbeimplementedwithout
priorapprovalbytheNRC.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0012
SNMXXXX
CHAPTER12
ZŽ
December2024
Page124
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24
ALL
AddeddocumentnumberTXFREGNRC0012toheader.
12.3
CorrectedtypographicalerrorduetoTX0REGLTR0031,
Observationbullet1.
Revision
Summary
Addedrevisionsummarytoendofchapter.
NRC SPECIAL NUCLEAR MATERIAL LICENSE
TXFREGNRC0013 SNMXXXX CHAPTER 13 Revision December 2024 Page 131 PROTECTION OF SPECIAL NUCLEAR MATERIAL
Table of Contents SECTION TITLE STARTS ON PAGE 13.1 Physical Security Plan 132 13.2 Physical Security and SGI Plan Implementation 132 13.3 Amendment of the Plans 132 TRISO-X Document Control 2024.12.30 14:16:44 -05'00'
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0013
SNMXXXX
CHAPTER13
Revision
December2024
Page132
PROTECTIONOFSPECIALNUCLEARMATERIAL
13.1 PhysicalSecurityPlan
TRISOXmaintainsaPhysicalSecurityPlan(PSP)forlicensedCategoryII-Fuelfacilities/licensees
authorized to possess special nuclear material (SNM) of moderate strategic significance, as
definedin10CFR74.4.ThePSPmaintainsaphysicalprotectionsystem,asrequiredby10CFR
Part73,PhysicalProtectionofPlantsandMaterials,and10CFRPart70,DomesticLicensing
ofSpecialNuclearMaterial.Thephysicalprotectionsystemprovidesreasonableassurancethat
activitiesinvolvingtheprotectionofSNMarenotinimicaltothecommondefenseandsecurity
anddonotconstituteanunreasonablerisktothepublichealthandsafety.ThePSPdemonstrates
compliance with the applicable requirements. The PSP provides the full description of the
securityprogram.
TRISOX maintains a Safeguards Information Plan (SIP) that establishes, implements, and
maintainsaninformationprotectionsystemforSafeguardsInformation(SGI)generatedforthe
TRISOXFuelFabricationFacilitytosatisfytherequirementsoutlinedin10CFRPart73andensure
SGIisprotectedfromunauthorizeddisclosure.
13.2
PhysicalSecurityandSGIPlanImplementation
TherequirementsofthePSPareimplementedthroughpassiveandactiveengineeredfeatures
andapprovedprocedures.TherequirementsoftheSIPareimplementedthroughapproved
procedures.
13.3
AmendmentofthePlans
ThePhysicalSecurityPlanismaintainedasneeded.TRISOXmaymodifythePSPand/orSIP
withoutreceivingpriorNRCApprovalprovidedthechangedoesnotdecreasetheeffectiveness
ofthesecurityplaninaccordancewith10CFR70.32(e).Whensuchachangeismade,the
licenseenotifiestheNRCofthechangewithintwomonthsofthedatethechangeisimplemented
byprovidingareportcontainingadescriptionofthechangeandjustificationofwhythechange
doesnotdecreasetheeffectivenessofthesecurityplan.ThelicenseeobtainsNRCapprovalof
modificationstotheplaninaccordancewith10CFR70.34ifthemodificationwouldresultina
decreasetheeffectivenessofthesecurityplan.ThepoliciesusedtocontrolchangestothePSP
andSIPthatensurethatonlythecurrentversionisusedaredescribedinChapter11.Proposed
changestoaplanthatdecreaseitseffectivenesswillnotbeimplementedwithoutpriorapproval
bytheNRC.
NRCSPECIALNUCLEARMATERIALLICENSE
TXFREGNRC0013
SNMXXXX
CHAPTER13
Revision
December2024
Page133
REVISION
SUMMARY
Revision
Date
Section/Page
DescriptionofChanges
1
5Apr22
ALL
Initialissue.
Dec24 ALL
AddeddocumentnumberTXFREGNRC0013toheader.
Revision
Summary
Addedrevisionsummarytoendofchapter.