ML24365A256

From kanterella
Jump to navigation Jump to search
Enclosure 2: License Application Chapters 1-13
ML24365A256
Person / Time
Site: Triso-X
Issue date: 12/30/2024
From:
Triso-X
To:
Office of Nuclear Material Safety and Safeguards
Shared Package
ML24365A254 List:
References
TX0-REG-LTR-0050
Download: ML24365A256 (1)


Text

TXFREGNRC0000 ZŽ

December 2024 Page i TRISO-X Fuel Fabrication Facility Special Nuclear Material License Application Cover Page, Chapter Index, Abbreviations, and Acronyms Revision Status NRC Docket No.



$SSURYHG



TRISO-X Document Control 2024.12.30 15:01:25 -05'00'

TXFREGNRC0000

ZŽ

December2024

Pageii

SPECIALNUCLEARMATERIALLICENSE

CHAPTERINDEX CHAPTER

TITLE

REVISION

REVISIONDATE

1

GeneralInformation

3

December2024

2

OrganizationandAdministration

2

December2024

3

IntegratedSafetyAnalysis

2

December2024

4

RadiationSafety

2

December2024

5

NuclearCriticalitySafety

2

December2024

6

ChemicalProcessSafety

2

December2024

7

FireSafety

2

December2024

8

EmergencyManagement

2

December2024

9

EnvironmentalSafety

2

December2024

10

Decommissioning

2

December2024

11

ManagementMeasures

2

December2024

12

MaterialControlandAccountingofSpecial

NuclearMaterial

2

December2024

13

ProtectionofSpecialNuclearMaterial

2

December2024

Addendum

SensitiveInformation

2

December2024

TXFREGNRC0000

ZŽ

December2024

Pageiii

REVISION

SUMMARY

Revision

Date

Section/Page DescriptionofChange

1

5Apr22

ALL

Initialissue.

2

4Nov22

Chapter

Index

UpdatedLicenseChapter1toRevision2.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0000toheader.

Chapter

Index

UpdatedLicenseChapter1toRevision3,andallotherChapterstoRevision

2.

Revision

Summary

DeletedrevisionsummaryentriesforRevision2onthispagebecauseall

wereaddedtotheLicenseChapter1revisionsummary.

TXFREGNRC0000

ZŽ

December2024

Pageiv

ABBREVIATIONSANDACRONYMS

Thislistcontainstheabbreviationsandacronymsusedinthisdocument.

Abbreviationor

Acronym

Definition

ALARA

AsLowAsReasonablyAchievable

ALI

AnnualLimitonIntake

AHJ

AuthorityHavingJurisdiction

ANS

AmericanNuclearSociety

ANSI

AmericanNationalStandardsInstitute

ASCE

AmericanSocietyofCivilEngineers

BDC

BaselineDesignCriteria

BS/BA

BachelorofScience/BachelorofArts

CAA

ControlledAccessArea

CAAS

CriticalityAccidentAlarmSystem

CEDE

CumulativeEffectiveDoseEquivalent

CFR

CodeofFederalRegulations

CM

ConfigurationManagement

DAC

DerivedAirConcentration

DFP

DecommissioningFundingPlan

DOE

U.S.DepartmentofEnergy

DOT

U.S.DepartmentofTransportation

EPA

U.S.EnvironmentalProtectionAgency

ETSZ

EastTennesseeSeismicZone

FFF

FuelFabricationFacility

FHA

FireHazardsAnalyses

FNMCP

FundamentalNuclearMaterialControlPlan

HALEU

HighAssayLowEnrichedUranium

HPGe

HighPurityGermanium

IAEA

InternationalAtomicEnergyAgency

IBC

InternationalBuildingCode

ICPMS

InductivelyCoupledPlasmaMassSpectrometry

ICRP

InternationalCommissiononRadiationProtectionPublication

ISA

IntegratedSafetyAnalysis

IROFS

ItemsReliedOnForSafety

KPA

KineticPhosphorescenceAnalyzer

LA

LicenseApplication

LEU

LowEnrichedUranium

MBA

MaterialBalanceArea

TXFREGNRC0000

ZŽ

December2024

Pagev

Abbreviationor

Acronym

Definition

MC&A

MaterialControlandAccountability

MMI

ModifiedMercalliIntensity

MOU

MemorandumofUnderstanding

NCRP

NationalCommissiononRadiationProtection

NCS

NuclearCriticalitySafety

NFPA

NationalFireProtectionAssociation

NIST

NationalInstituteofStandardsandTechnology

NMSS

NuclearMaterialsSafetyandSafeguards

NRC

U.S.NuclearRegulatoryCommission

OCA

OwnerControlledArea

OJT

OntheJobTraining

OSHA

OccupationalSafetyandHealthAdministration

PHA

ProcessHazardAnalyses

PM

Preventivemaintenance

PSP

PhysicalSecurityPlan

QA

QualityAssurance

RCA

RadiologicallyControlledArea

REM

RoentgenEquivalentMan

RPP

RadiationProtectionProgram

RSO

RadiationSafetyOfficer

RWP

RadiationWorkPermits

SEP

SiteEmergencyPlan

SME

SubjectMatterExpert

SNM

SpecialNuclearMaterial

SRC

SafetyReviewCommittee

TEDE

TotalEffectiveDoseEquivalent

TRISOXFFF

TRISOXFuelFabricationFacility

U

Uranium

U235

Uranium235

U238

Uranium238

UL

UnderwritersLaboratory

USGS

UnitedStatesGeologicalSurvey

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0001 SNMXXXX CHAPTER 1 ZŽ

December 2024 Page 11 GENERAL INFORMATION Table of Contents SECTION TITLE STARTS ON PAGE 1.1 1.1.1 1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.2 1.1.3 1.1.4 Facility and Process Information Site Description and Location Population, Nearby Land Uses, and Transportation Meteorology Hydrology Geology Facility Buildings and Structures General Process Description Raw Materials, Products, ByProducts and Wastes 12 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 Institutional Information Corporate Identity U.S. Nuclear Regulatory Commission License Information Financial Qualifications Type, Quantity, and Form of Licensed Material Authorized Uses and Activities Site Safeguards Terminology / Definitions 115 1.3 1.3.1 1.3.1.1 1.3.1.2 1.3.1.3 1.3.1.4 1.3.1.5 1.3.2 1.3.2.1 1.3.2.2 Special Exemptions and Special Authorizations Special Exemptions Criticality Monitoring Posting and Labeling ICRP68 DAC and ALI Values ICRP60 Organ Dose Weighting Factors Certain Unplanned Contamination Events Special Authorizations Changes to the License Application Release for Unrestricted Use 120 TRISO-X Document Control 2024.12.30 15:23:56 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page12

GENERALINFORMATION

1.1

FacilityandProcessInformation

TheprimarypurposeoftheTRISOXFuelFabricationFacility(FFF)inOakRidge,Tennessee,isto

manufacturecoatedparticlefuelforthenextgenerationofcommercialnuclearreactors.The

modulardesignoftheprocesscells/areasanticipatesadditionalmanufacturingcapabilitiesto

satisfytheneedsofavarietyoffueldesignsandreactors(e.g.,pebblebedhightemperaturegas cooled, prismatic gascooled, molten saltcooled, accident tolerant fuel, nuclear thermal

propulsion,andothers).Nuclearmaterialsenrichedtolessthan20weightpercentU235are

utilizedintheproductmanufacturingoperationsauthorizedbythislicense.

1.1.1 SiteDescriptionandLocation

TheTRISOXsiteislocatedintheHorizonCenterIndustrialParkonpropertyabuttingportionsof

RenovareBoulevard,withinthewesternlimitsoftheCityofOakRidgeandinthenortheastern

portionofRoaneCounty,Tennessee.Thesiteissituatedinanareadedicatedandzonedfor

industrialdevelopment,onanapproximately110acregreenfieldsite.Ofthetotalacreage,

approximately 60 acres are designated for manufacturing and administrative buildings,

equipmentyards,accessroads,parking,andstormwatermanagement.Thesiteissituatedat

approximatelylatitudeN35°5741andlongitudeW84°2213.

ThesitelocationinnortheasternRoaneCountyisintheValleyandRidgephysiographicprovince.

The regional topography near the site is typical of the Valley and Ridge province which is

characterized by northeast-southwest trending ridges and intervening valleys.  The site and

otherdevelopedareasalongStateRoute95(TN95-OakRidgeTurnpike)tothenortheastand

southwestarelocatedonrelativelyflatorslightlyundulatingterrainassociatedwiththeEastFork

PoplarCreekValley,whilejustnorthwestofthesite,thereisasteepinclinetothetopofBlack

OakRidge.Severalotherridgesorientednortheasttosouthwestarepresentwithinthevicinity

ofthesite.ThePoplarCreekValleyisthenextvalleynorthandparallelsBlackOakRidge.East

ForkRidgeislocatedtothesouthandeastofthesiteandisinterruptedbythevalleyofBear

CreekandTN95.PineRidgeislocatedsouthandeastofEastForkRidge.

1.1.1.1

Population,NearbyLandUses,andTransportation

Asitelocationmap,includingthepopulationcenterslocatednearthesite,isshowninFigure1

1. KeyfeaturesnearthesiteareshowninFigure12.Theclosestmajorpopulationcenteristhe CityofOakRidgewhichhadapopulationof31,402asofApril1,2020,pertheUnitedStates CensusBureauwebsite.Theclosestresidentstothesitearelocatedinaresidentialdevelopment offPoplarCreekRoad,approximately0.6milesnorthwestofthesiteboundary,separatedfrom the site by Black Oak Ridge and areas of dense vegetation. There are also residential neighborhoodslocatedtotheeastoffTN95,approximately1.3milesormorefromthesite.The Environmental Report, Figures 3.10.11 through 3.10.14, provides more information about

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page13

populationnearthesite.TheNorthBoundaryGreenway,alowdensityrecreationaltrailusedfor

hikingandbiking,bordersthesiteboundarytothenorthwest.

Theimmediateareasurroundingthesiteconsistsofruralwoodedareaandlightcommercialand

industrialusebuildings.Theimmediatelyadjacentonestorywarehouse/officebuildinglocated

near the southern corner of the property is the corporate office of Philotechnics Inc., a

radiologicalserviceandmixedandradioactivewastebrokerageproviderlicensedbytheStateof

Tennessee,doesnotmanage,utilize,orstorechemicals(hazardousmaterials)inquantitiesthat

posehazardstotheTRISOXsite.RenovareBoulevard,whichbordersthesitetothesoutheast,

isatwolanedividedroadwaythatprovidesaccesstothesiteandtootherparcelswithinthe

HorizonCenterIndustrialPark.

Landsadjacenttotheindustrialparkarepredominantlyundevelopedandforested,consistingof

largetractsofU.SDepartmentofEnergyOakRidgeReservationlandwhichborderthesitetothe

northwestandsurroundtheindustrialparkinotherdirections,withtheexceptionoftheTN95

roadway corridor to the east.  The existing land use within one mile of the site consists of

primarily industrial development and woodlands.  Within a fivemile radius of the site,

approximately83percentofthelandisundeveloped(e.g.,forest,pasture,wetland)andthe

remainderisdeveloped.Otherlanduseswithin5milesofthesiteincludeheavyindustrial,light

industrial/manufacturing,commercial/officespace,agricultural,andresidential.TheMethodist

MedicalCenterofOakRidgeisthenearesthospital,locatedapproximately9milesfromthesite.

TheclosestschooltothesiteisDyllisSpringsElementarySchool,locatedapproximately3.2miles

northeastofthesite.

TransportationinfrastructurenearthesiteincludesRenovareBoulevard;TN95;twointerstate

highways-Interstate40andInterstate75-severalTennesseestatehighways;andlocalroads.

RegionalhighwaysandinterstatesnearthesiteareshowninFigure13.TheMcGheeTyson

Airport,whichservespublicandmilitaryneeds,islocated26milesfromOakRidgebyroad.Oliver

SpringsAirportisasmallprivateairportlocated6milesnortheastofthesite.Theclosestrailroad

trackisapproximately1milesouthwestofthesiteboundary,adjacenttoBlairRoad.Theclosest

majorwaterway,theClinchRiver,isapproximately3mileswestofthesiteboundary.Shipping

ofmaterialsandproductstoandfromthesitewillbeconductedbytruck;nouseofrailroador

riverbargeisplanned.TruckshipmentswouldlikelyuseInterstate40andStateRoute58westof

thesiteduetotheeaseofaccessvia4lanehighwayslocatedinlesspopulatedareaswithless

traffic.

1.1.1.2

Meteorology

OakRidgeislocatedinthebroadTennesseeRivervalleybetweentheCumberlandMountains,

whichlietothenorthwest,andtheGreatSmokyMountains,tothesoutheast.TheCumberland

Mountainsmoderatethelocalclimatebyretardingtheflowofcoldairfromthenorthduring

winter.Bothmountainrangesaregenerallyorientedinanortheastsouthwestdirection.The

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page14

valleybetweenthemiscorrugatedbybrokenridgesapproximately300to500feethighand

orientedparalleltothemainvalleyinanapproximatenortheastsouthwestdirection.

The climate of Oak Ridge is classified as humid subtropical. The subtropical designation

indicatesthattheregionexperiencesawiderangeofseasonaltemperatures.Suchareasare

typifiedbysignificanttemperaturedifferencesbetweensummerandwinter.Thenormalliquid

equivalentannualprecipitationintheOakRidgeareais50.91inches,andtheaverageannual

snowfall is 5.9 inches.  The normal daily minimum temperature in January is 28.9 degrees

Fahrenheit(°F)andthenormaldailymaximumtemperatureinJulyis88.4°F.

Directdeflectionofthewindsbyterrainisadominantmechanismthatdrivesthewindsinthe

TennesseeRivervalley.Thismechanismactsapproximately50-60percentofthetime,resulting

inwindsthatblowindirectionsgenerallyalongtheapproximatenortheastsouthwestaxisofthe

valley.Thedistributionofprevailingmonthlywinddirectionsisbimodal,withwindsfromthe

northeast(50-60degrees),orfromthesouthwest(210-220degrees).Themeanannualwind

speedis2.8milesperhour.

SeverestormconditionsareinfrequentintheOakRidgearea,duetotheareabeingsouthof

mostblizzardconditions,andtoofarinlandtobeaffectedbyhurricaneactivity.Tornadoes

generallyoccurmorefrequentlyinthewesternandmiddleportionsofTennessee;however,

EasternTennesseeexperiencestornadooutbreaksofvaryingmagnitudesapproximatelyevery

threetosixyears.Inafourcountyareaaroundthesitefortheperiod1950to2020,thehighest

intensitytornadoeswereratedF3asaresultofstormsonFebruary21,1993.Duetothelow

frequency of tornadoes in this region, no specific design criteria relative to tornadoes are

requiredbytheInternationalBuildingCode.Lightningriskatthesitehasbeenaddressedthrough

lightningprotectionsystemsasspecifiedintheFireHazardsAnalysisasdescribedinChapter7.

1.1.1.3

Hydrology

Thesiteiscategorizedasupland;nowaterbodiesorwetlandswereidentifiedwithinthesite.

ThenearestwaterbodytothesiteisEastForkPoplarCreek,theclosestportionsofwhichrunin

asouthwestdirectionthroughtheindustrialparkbetweenTN95andRenovareBoulevardatan

approximateelevationoflessthan770feet.EastForkPoplarCreekemptiesintoPoplarCreek

approximately1.25milessouthwestofthesite,andPoplarCreekemptiesintotheClinchRiver

approximately3milessouthwestofthesiteboundary.

FederalEmergencyManagementAgencyFloodInsuranceRateMapNumber47145C0130F,Panel

0130F,RoaneCounty,Tennessee,andIncorporatedAreas,EffectiveDateSeptember28,2007,

showsthesitetobeinanareaofminimalfloodhazard(ZoneX).Thenearestsectionofdetailed

studyforEastForkPoplarCreekisapproximately1.5milesnortheastofthesite,witha100year

basefloodelevationof783feetatthedownstreamendofmapping.TheclosestClinchRiver

locationtothesitehasa100yearbasefloodelevationof747feetatthePoplarCreekoutlet.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page15

ThefloorsintheTRISOXFFFprocessbuildingsarelocatedatanelevationofapproximately811

feet, and the elevation of Renovare Boulevard near the primary entrance to the site is

approximately776feet.Therefore,thefacilityfloorelevationrangesfrom28to64feetabove

themapped100yearbasefloodelevationsofthenearestwaterbodiesasdescribedabove,and

thefloorelevationismorethan35feetaboveRenovareBoulevard.RenovareBoulevardis

situatedatahigherelevationthanthelowerlyingunmappedportionsofEastForkPoplarCreek

closesttothesite.

Fourgroundwaterobservationwellswereinstalledonthesiteinfallof2021withtotaldepths

andscreenedintervalsbasedonobservedfirstwateridentifiedintheuppermostbedrockduring

drilling.Nowaterwasidentifiedintheshallowunconsolidatedsurficialsedimentsabovethe

bedrock.Totalwelldepthsrangefromapproximately39feetto75feetbelowgroundsurface.

Theunderlyingbedrockinwhichtheobservationwellsarecompletedisprimarilycomprisedof

dolomiteandisthefirsttypeofbedrockencounteredatallsites.

Depth to groundwater measurements taken at the four observation wells vary from

approximately 10 to 57 feet below the top of the well casing.  Groundwater elevation

measurementsandmodelingindicatethatgroundwatergenerallyflowsinasouthwestdirection

towardEastForkPoplarCreek.Basedonasearchofseveraldatabasesources,thereareno

knownhousehold,public,orindustrialusersofgroundwaterdowngradientofthesiteforthe3 miledistancethatEastForkPoplarCreektravelstoemptyintotheClinchRiver.Theclosestwell

tothesiteisaresidentialwelllocatedupgradient,1milenorthnorthwestofthesite,withinthe

PoplarCreekValleywhichisseparatedfromthesitebyBlackoakRidge.

StormwaterdischargesfromallonsitedetentionbasinsarepermittedbythestateofTennessee

undertheNPDESStormwaterMultiSectorpermittingprogramfordischargesfromindustrial

facilities.Aspartofthepermitprogram,thestateofTennesseedefinesminimumgeneralsite

maintenanceandhousekeepingpracticesandestablisheswaterqualitybasindischargeoutfall

requirementsfordischargesleavingthesite.

Stormwatercollectedduringnormaloperationswouldcontainpollutantstypicallyassociated

withrunoffcollectedfrompublicstreetsandparkingareas.Smallamountsofoilandgrease,

metals,andotherconstituentsassociatedwithvehicularactivityareexpectedtobecarriedin

runofffromtheroadsandparkingareaswithinthesite.Waterqualityofstormwaterrunoffis

maintainedthroughtheuseofdetentionponds.Stormwatergeneratediscollectedinperipheral

ditchesandtheinteriorstormwatersystembeforebeingdischargedtothestormwaterdetention

basin.Thedetentionbasinisdividedintotwoseparatesections,theforebaysectionandthemain

detentionbasinsection.Theforebaysectioncollectstherunofffromtheentirepermanentsite

areasandprovidesstorageforaportionoftherunoffforwaterqualitytreatmentthatallows

sedimentandsitegeneratedtotalsuspendedsolids(TSS)tosettleatthebottomoftheforebay.

Themaindetentionbasinsectionreceivesstormwateroverflowfromtheforebaysectionand

providesadditionalstoragefortheremainingstormwatervolumetoallowforTSStosettleatthe

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page16

bottomofthedetentionbasinsection.TreatedwatereffluentisdischargedviathevalvedNW

Outletpipeintoanexistingdrainageswalethattraversesatleast400feetthroughavegetated

pathtoanobservedsinkholefeatureintheadjacentparcel.Theintentofthedetentionbasin

designisnottooverwhelmthesinkholeareabylimitingthepostdevelopedvolumetolessthan

thepredevelopedvolumewithinthefirst24hoursofarainfallevent.Assuch,allconstituents

withinstormwaterrunoffareexpectedtobeatorbelowtheallowablelimitssetbythestateof

Tennessee.Anystormwaterrunofffromelectricaltransformers,mechanicalyardsandabove

groundtankcontainmentsiscollectedseparatelyanddisposedofafteradequatetreatment.

Groundwaterhydraulicgradientsarebasedonpotentiometriclevelcontoursofwaterlevels

collectedonSeptember16,2021,andJanuary12,2022,andareshownonFigures19and110,

respectively.Thesetwomonthswereselectedfortheirseasonalinfluence(summerandwinter)

onpotentiometriclevels,asitisapparentthatlowerevapotranspirationlevelsduringcolder

shorter days (i.e., decreases naturally as vegetation is dormant, and less need of infiltrating

water) influences groundwater availability. The interpreted flow paths, perpendicular to

contours,indicategroundwaterflowsfromnorthofthesiteinapredominantlysoutheastern

direction toward East Fork Poplar Creek and is consistent in summer and winter. The

groundwaterflowpathsdonotindicateflowtowardanypotentialgroundwaterusers.

1.1.1.4

Geology

TheTRISOXsiteislocatedwithintheValleyandRidgeProvince,along,narrowbelttrending

northeasttosouthwestthatisborderedonthewestbytheAppalachianPlateauandontheeast

bytheBlueRidgeProvince.TheprovinceisexpansiveandextendsfromVermonttoAlabama.

Thisphysiographicprovinceconsistsofaseriesofnortheast/southwesttrendingsynclinesand

anticlinescomposedofEarlyPaleozoicsedimentaryrocks.DrainagepatternsintheValleyand

Ridge Province generally follow the northeastsouthwest trend of topography. However,

segments of major rivers cut across the regional topographic alignment following deeply

entrenched,ancientstreamcourses.TheseincludethePowell,Clinch,Holston,andFrenchBroad

riversthatjointoformtheTennesseeRiverafterflowingmanymilesinnortheast/southwest trendingvalleys.

The Rome Formation and the Conasauga, Knox, and Chickamauga Groups and associated

formationscomprisethemajorityoftheunderlyingbedrockoftheValleyandRidgeProvince.

ThesiteisunderlainbylimestonesdolomitesoftheKnoxGroupandlimestoneswithinterbedded

shale, argillaceous limestone, mudstone, and wackestone associated with the Chickamauga

Group.

SiteTopography

TheterrainwithintheHorizonCenterSite(HCS)boundariesistypicaloftheOakRidgeregionand

generallycontainsmildrollinghillswithridgesandvalleys.Theexistingsitesurfaceelevations

varyfromapproximatelyElevation780feettoElevation825feetinmostpartsoftheHCS,except

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page17

atthenorthcornerwheretheexistingsurfaceelevationrisestoapproximately850feet.More

detailedtopographydescriptionsareincludedinSection3.3oftheEnvironmentalReport.

The site development for the project will include extensive site grading with cut and fill.

Engineeredfillwillbeusedforplacementandcompaction.Thefinalsitegradewillberelatively

levelacrossthesitewithmostboundariesmatchingtheexistingsurroundingtopography.The

onlysignificantslopeforthesiteisonthenorthsideofthefacility,separatedfromtheprimary

facilitystructuresandequipmentbyaperimeteraccessroad.Thisslopewillbedesignedwitha

gradeofapproximately3:1(Horizontal:Vertical)afterexcavation.Thedesignwillbeverifiedby

aslopestabilitycalculationanddesignedusingstandardgeotechnicalengineeringpractice.The

toeofthenorthslopeisexpectedtobeapproximately75feetfromtheedgeoftheeasternmost

processbuilding(PB).

SiteGeotechnicalInvestigations

SitespecificgeotechnicalinvestigationspresentedintheEnvironmentalReport,Section3.3.3.2,

indicatetheoverallsubsurfaceprofileconsistsofclaysoilsunderlainbyweatheredlimestone

anddolomitetomorecompetentbedrockatgreaterdepths.Theclayoverburdenisclassifiedas

CHorCLperUSCS(unifiedsoilclassificationsystem)andisconsideredtohavenegligiblepotential

ofliquefaction.Theinsitumediumstifftoverystifforhardclaysarenotsusceptibletostrength

degradationduringseismicevents.

Based on the drilling logs from the construction of groundwater monitoring wells (GW1 to

GW6),theoverburdensoilthicknessvariesfrom7feetto50feet.Thesoilthicknessof50feet

wasencounteredatGW1withthesurfaceelevationat841.55feet,whichwaslocatedonthe

hillatthenorthcornerofthepropertyboundary.However,thegroundwatermonitoringwells

arelocatedawayfromthemainfacilitiesnearthepropertyboundaries.Detailedinformation

about groundwater monitoring wells can be found in Section 3.4.1.2 of the Environmental

Report.

BasedonthesoilboringlogswithinthefootprintoftheHCS,theoverburdenconsistsofresidual

claysoilsencounteredatdepthsrangingfrom3.6feetto31.5feetbelowtheexistingground

surfaceatboringlocations.Thesoiloverburdenbecomesdeeperatlocationsclosertothenorth

andnorthwestboundariesonthehillside.

PotentialforDifferentialSettlement

Aftersitegradingcutandfilltoestablishthefinalgrade,theoverburdensoilthicknessbelowthe

finalgradeisexpectedtovarygenerallyfromlessthan5feettoapproximately25feetwithinthe

footprintofthetwoPBs.ThemajorityofthePBarea,alowlyingareainthemiddleofthesite,

willreceivefill.Potentialsettlementinthisareawillbemitigatedwiththefollowingmeasures.

The entire PBs are designed to rest on a large mat foundation to reduce the potential for

differentialsettlement.Furthermore,ageotechnicalgroundimprovementapproachusingan

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page18

intermediatefoundationsystemisdesignedtofurtherminimizethepotentialfordifferential

settlementfromtheunderlyingclaysoils.Thisintermediatefoundationtypeiscalledarigid

inclusion(RI)system,whichprimarilyconsistsofcementgroutcolumnsbeinginstalleddownto

thetopofbedrockacrosstheentirePBareainagridpattern.TheRIelementsaresimilartoa

pilefoundation,withoutsteelreinforcement.Typically,betweenthefoundationmatandthetop

oftheRIelementsthereisalayerofcompactedgranularsoilcalledtheloadtransferplatform

(LTP).TheLTP,RIelements,andtheinsitusoilsactasacompositematrixsystemwithoverall

improvedengineeringpropertiestomitigatedifferentialsettlements.Thelargematfoundation

supportedbytheRImatrixsystemwillminimizethepotentiallongtermdifferentialsettlement

ofthePBandensurethesafeoperationoftheproposedfacility.

SubsurfaceBearingCapacity

Thesubsurfacemediumstifftoverystiffclaysoilsdiscoveredbythesitespecificgeotechnical

investigationsexhibitadequatebearingcapacityforthePBwithstandardfactorofsafetyagainst

general soil failure based on the preliminary analysis. The primary design concern was the

potentialfordifferentialsettlementproducedbytheunderlyingclaysoils.Asdiscussedabove,

thelargematfoundationsupportedbytheRImatrixsystemwillminimizethepotentialforlong termdifferentialsettlementofthePBandensurethesafeoperationoftheproposedfacility.

WiththeuseoftheRImatrixsystem,theoverallfoundationbearingcapacitywillbeimprovedas

well.  Detailed information about geology and soils can be found in Section 3.3 of the

EnvironmentalReport.

PotentialforKarstFeatures

AccordingtotheUnitedStatesGeologicalSurvey(USGS),theregioncontainingthesitemay

containcarbonaterocksthatcanbecomekarstified.Thesefoldedandfaultedcarbonaterocks

arePaleozoicinageandaresubjecttodissolutionthatmayproducearangeoffeaturesthat

includesolution,collapse,covercollapsesinkholesandcaves.Karstfeaturespreviouslyreported

onlandsadjacenttothesitehaveincludedspringsandsinkholesofvarioussizes.Whilesinkholes

areknowntooccuradjacenttothesite,nosinkholeswerereportedtooccurdirectlyonthesite.

Basedonthetopographyofthesite,severalshallowdrawsanddepressionsexistonthesite

whichmayrevealkarstfeaturesbeneaththesurface.Karstfeaturesarecausedbydissolutionof

carbonaterocksanddeepweatheringalongprevailingfracturesandstrikeorientedbedding,

creatingconduitsandvoids(openand/orclayfilled).Voidswithinthedolomiteandlimestone

bedrockwereencounteredonthesiteduringthegeotechnicaldrillingprogramtosupportfacility

design.Bedrockwasencounteredduringdrillingataminimumdepthof3.6feetandamaximum

depthof50.0feet.

Inearly2022,asubsurfaceinvestigationwasperformedtosupportthefacilitydesign,which

involved22geotechnicalsoilborings(B1toB22)andasurfacegeophysicalinvestigation.There

were6boringslocatedwithinthePBfootprintwithtotalboringdepthsrangingfrom30feetto

100feetbelowgroundsurface(b.g.s.)androckcoretotallengthsrangingfrom22feetto100

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page19

feet.VoidswereencounteredduringrockcoringinmostboringswithinthePBfootprintwiththe

verticaldimensionsfromasthinas0.2feettoapproximately2.6feet.The2.6feetopeningwas

at82feetdeepb.g.s.atonecornerofthePB,whilethemajorityofvoidswerefilledwithstiff

clayandencounteredwithintheupper25feetb.g.s.

The surface geophysical investigation performed shear wave seismic refraction tomography

(SWSRT)andelectricalresistivitytomography(ERT)tomapthesubsurfacebedrockconditions,

includingpossiblemajorvoid(emptyorsoilfilled)anomaliesassociatedwithkarstfeatures.The

tomographysurveylineswereover700feetlongeachandspacedat50feettocovertheentire

PBarea.Thegeophysicalfindingsindicatedthesamegeneralsubsurfaceprofilesasdiscovered

by soil borings, which contained shallow residual stiff overburden underlain by weathered

bedrockwithhigherweatheringatupperrockformationandveryhardcompetentrockatgreater

depths.ThegeophysicalreportalsoidentifiedsomeanomalieswheretheERTresultsshowed

highresistivityatdeepzonescomparedtothesurroundingrockdata,althoughtheshearwave

velocityatthosedeepzonesdidnotshowabnormalresults.

FurthersoilboringinvestigationswereperformedinJune2022tofocusontheanomalylocations

identifiedinthegeophysicalworkandincluded6borings(B23toB28)inthePBfootprint.Rock

coringof 60 feet to 80 feet were performed to reach those anomaly zones as identifiedby

geophysicalinvestigationand20feetto30feetbeyond(deeper)theanomalylocations.These

additionalrockcoringsamplesdidnotfindanysignificantvoidsatthoseanomalies.

Anadditionalgeotechnicalboringsubsurfaceexplorationincludedtheadvancementofeight

geotechnicaltestborings(B29toB36)atpredeterminedlocationsrepresentingtheareawhere

theTX1buildings(includingtheProcessBuilding)wouldbelocated.Similartotheprevious

subsurfaceexplorations,voidswithinthelimestonebedrockwereencounteredwithinsixofthe

eight borings. Voids ranged from as thin as 0.1 ft. (0.03 m) to as much as 4.7 ft. (1.4 m).

Occurrenceofvoidswerelimitedtotheupper45ft.(13.8m)belowgroundsurface.Thesevoids

werefoundwithinlimestoneandlimestoneinterbeddedwithshale.Detailedinformationabout

geologyandsoilscanbefoundinSection3.3,andkarstisdiscussedin3.3.2,oftheEnvironmental

Report.

SubsurfaceEngineeringCharacteristics

ThesoillayeroverbedrockgenerallyconsistsofmediumstifftoverystiffCHandCLclayatdepths

rangingfrom3.6feetto18feetbelowtheexistinggroundsurfacewithinthePBfootprint.Ata

boringlocationtothesouthofthePB,theclaywasencounteredtoadepthof27feetb.g.s.Based

onthe12geotechnicalboringsperformedinthePB/ABarea,thelimestoneanddolomitebedrock

exhibithigherweatheringatshallowerdepth(generallyupper10feetto20feet)andbecame

morecompetentatgreaterdepths.Therockcorerecoveryrangesfromapproximately24%to

100%whileRockQualityDesignation(RQD)rangesfrom0to100%.ThelowerrecoveryandRQD

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page110

weremostlywithintheupperrocklayers.Theunconfinedcompressivestrengthvaluesofintact

rockcoresrangefrom4,500psito19,500psi,whichindicateshardtoveryhardstrength.

Thecrosssectionsofsubsurfacesoil/rockprofilesareprovidedinFigures15through110.

Seismicity

TheEastTennesseeSeismicZone(ETSZ)isthesecondmostactivezoneintheeasternUnited

Statesintermsofsmallmagnitude(M<5)seismicity,secondinfrequencytotheNewMadrid

seismiczone.ActivityintheETSZhasremainedhighforseveraldecadeswithonlyafewevents

havingmagnitudesaslargeasM4.6.Generally,earthquakesintheETSZproduceminororno

damage: the largest observed earthquakes have produced only minor damage to buildings,

typicallychimneycollapse,cracksinplaster,andbrokenwindows,consistentwithintensityVIon

theModifiedMercalliIntensity(MMI)scale.

1.1.2 FacilityBuildingsandStructures

AsiteplanshowingthelocationandarrangementofbuildingsisincludedasFigure14.Security

fencingalongornearthepropertyboundariesdefinestheOwnerControlledArea.Fivebuildings

arelocatedontheTRISOXproperty:theSecurity/EmergencyOperationsCenterBuilding,the

AdministrationBuilding,twoProcessBuildings,andtheGraphite

MatrixPowder(GMP)Building.Additionalstructuresonsiteincludeexhauststacks,electrical

equipmentyards,mechanicalequipmentyards,coolingtowers,roads,parkingareas,loading

docks,storagetanks,andadetentionbasin.

TheSecurity/EmergencyOperationsCenterBuildingislocatednearthemainentrancetothe

property at Renovare Boulevard and serves as the main entry/exit security checkpoint for

vehiclesandpeopleaccessingtheproperty.TheSecurity/EmergencyOperationsCenterBuilding

alsoservesastheemergencyoperationscenterintheeventofasiteemergency.Noradiological

materialishousedinthisbuilding.

TheAdministrationBuildingisconnectedtothesouthwestcorneroftheProcessBuildingand

containsoffices,meetingrooms,lockerrooms,restrooms,andabreakareaforemployeesand

authorizedvisitors.TheAdministrationBuildingalsocontainstheentry/exitpointforworkers

accessingtheradiologicallycontrolledProcessBuilding.Noradiologicalmaterialishousedinthis

building.

ThetwoProcessBuildings,locatedatthecenteroftheproperty,receivespecialnuclearmaterial

(SNM)andshipoutfinalfuelforms(pebbles,compacts,etc.).TheProcessBuildingshouseSNM,

chemicals,andequipmenttosupportmanufactureofcoatedparticlefuelforthenextgeneration

ofcommercialnuclearreactors.TheProcessBuildingsalsoreceiveGMPfromtheGMPBuilding.

Allhandling,processing,andstorageofSNMoccursintheProcessBuildings.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page111

TheGMPBuildingislocatedsouthwestoftheProcessBuildingsandisusedtoprepareGMPfrom

rawmaterials.GMPistransportedfromtheGMPBuildingtotheProcessBuildingstobeusedin

themanufacturingprocess.NoradiologicalmaterialishousedinthisBuilding.

AdditionallayoutdescriptionsforthebuildingsandstructuresonsiteareavailableintheISA

SummarySection2.0,andtheEmergencyPlanSection1.2.

Thebuildingcodeofrecordforthebuildingsonthesiteisthe2018EditionoftheInternational

BuildingCode.ThedesignsatisfiesAmericanSocietyofCivilEngineers(ASCE)716,Minimum

DesignLoadsandAssociatedCriteriaforBuildingsandOtherStructures,structuralrequirements

for a RiskCategory IV facility.Thetypeof construction isclassified as noncombustible. All

handling,processing,andstorageoflicensedmaterialoccursinthetwoprocessbuildings.One

processbuildingissizedforoneprocessline,andtheotherprocessbuildingissizedfortwo

processlines,eachbuildingincludingsimilarprocessstepsasoutlinedinSection1.1.3.

SeismicLoad:Thedesignofthestructuresandfacilitiescomplieswithseismicloadingsbasedon

the 2018 Edition of the International Building Code and ASCE 716, as appropriate for the

geographiclocationofthesite.

TheASCE7designbasisearthquakeissetat2/3ofthesiteclassadjustedMaximumConsidered

Earthquake(MCER)accelerationsinaccordancewithSection11.4.5ofASCE716:

SDS(Design,5%damped,spectralresponseacceleration,shortperiods)=2/3*SMS=0.432

SD1(Design,5%damped,spectralresponseacceleration,1speriods)=2/3*SM1=0.122

TheSeismicDesignCategory(SDC)isdeterminedinaccordancewithSection11.6ofASCE716

asafunctionofthestructuresRiskCategoryandthemagnitudeofthedesignspectralresponse

accelerationparametersstatedabove.TheSDCfortheTRISOXFFFProcessBuildingisD.The

equivalentlateralforce(ELF)seismicanalysisprocedureisusedaspermittedbySection12.6of

ASCE716.TheELFproceduredetailedinSection12.8ofASCE716takesintoconsiderationthe

dynamic properties of the structure along with the seismic Importance Factor (1.5 for Risk

CategoryIV)structurestodeterminetheseismicresponsecoefficient(Cs)andultimatelythe

seismicforcesonthestructure.

WindLoad:Thebasic(general)windspeedof116MPHisbasedupona3,000yrreturnperiod

forRiskCategoryIVstructuresperASCE716Figure26.51DandCommentarySectionC26.5.1.

Fortornadowindloads,thedesignwindpressuresforanEF1(110MPH)tornadoutilizingthe

methoddetailedinASCE716CommentarySectionC26.14.4exceedthoseforthegeneralwind

speeds.Conservatively,thehigherpressuresdeterminedfortornadowindsareutilizedinthe

loadcombinationsintendedforgeneralwindloads.

SnowLoad:Thegroundsnowloadof10psfisdictatedbyASCE716Figure7.21andusedin

conjunctionwithequationsinCh.7ofASCE716todeterminetheloadsonthestructure.Per

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page112

ASCE716CommentarySectionC7.2,thegroundsnowloadmapsweredevelopedbytheCorp

ofEngineers,ColdRegionResearchandEngineeringLaboratory(CRREL)toestimatesnowloads

witha2%annualprobabilityofbeingexceeded(50yrMeanRecurrenceIntervalorMRI).Further

detail is provided in the aforementioned commentary section. Note also that the Snow

ImportanceFactorforaRiskCategoryIVstructureis1.20whichincreasestheflatroomsnow

loadby20%fromwhatwouldbecalculatedforacommonRiskCategoryIIstructure.

RainLoad:ThedesignrainloadfortheTRISOXFacilityis6.14in/hr(15mindurationand3.24

in/hr(60minduration).Theserainfallintensitieshaveacorrespondingannualprobabilityof

exceedanceofoncein100years.Chapter8.3ofASCE716requiresthateachportionofaroof

shallbedesignedtosustaintheloadofallrainwaterthatwillaccumulateonitiftheprimary

drainagesystemforthatportionisblockedplustheuniformloadcausebythewaterthatrises

abovetheinletofthesecondarydrainagesystematitsdesignflow.

NUREG/CR7046wasusedtoestimateadesignbasisfloodduetolocalintenseprecipitation(LIP)

andlocalstormrunoff.NUREG/CR7046definesLIPasameasureoftheextremeprecipitationat

agivenlocation.NationalOceanicandAtmosphericAdministration(NOAA)Hydrometeorological

ReportNo.56(HMR56)recommendedprobablemaximumprecipitation(PMP)valueswereused

todetermineLIPvalues.ThedesignbasisfloodfortheTRISOXfacilityisanLIPeventbasedona

1hourPMPof17.61inchesanda6hourPMPvalueof36.30inches.

IceLoad:TheProcessBuildingdoesnotmeetthedefinitionofanicesensitivestructureas

giveninSection10.2ofASCE716whichiswhyatmosphericicingloadsandwindoniceloads

arenotexplicitlyevaluatedasaloadcase.

Hydrologicaland/orGeologicalLoad:Therearenoadditionalhydrologicalloadsthatapplyto

thestructuredesignotherthansnow,ice,andrain.Therearenofloodingloadsonthestructure

andthefoundationsareabovethegroundwatertable.

1.1.3 GeneralProcessDescription

TRISOX FFF manufacturing operations consist of receiving high assay low enriched uranium

(HALEU)intheformofuraniumoxidepowderenrichedtolessthan20weightpercentU235;

convertingtheoxideintoauranylnitratesolution,intogelspheres,andthenintofuelkernels;

and processing the fuel kernels through coating, overcoating, fuel form pressing, and

carbonization.Coatedparticlesand/orfinalfuelformsareremovedfromtheprocessatthe

appropriatepointandloadedintolicensedshippingcontainersforshipmenttootherlicensed

facilities.Theseoperationsaresupportedbyshippingandreceiving,laboratory,qualitycontrol,

research and development, uranium and chemical recovery, and waste disposal processes.

DetailedfacilityandprocessdescriptionsareprovidedintheTRISOXFuelFabricationFacility

IntegratedSafetyAnalysisSummary.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page113

Alistofthemajormanufacturingstepsisprovidedbelowintheorderinwhichthematerialflows

throughtheprocessbuilding.Themaximumquantityofmaterialintheprocessiscontrolledby

thepossessionlimitsforthesiteaslistedinLicenseChapter1,Section1.2.4.MaterialControl

andAccountingproceduresusedtotrackandinventorySNMaredescribedintheTRISOXFuel

FabricationFacilityFundamentalNuclearMaterialControlPlan.

ReceiptofUraniumFeedstock-IncomingU3O8feedstockenrichedtolessthan20weightpercent

235UarrivesbytruckinapprovedcontainerslicensedbytheNRC.Shippingpackagesareunloaded

fromthedeliverytruckandmovedtoasecurestoragelocationinsidetheprocessbuildings.

ReceiptmeasurementsforMaterialControlandAccountingareperformed,andthefeedstockis

transferredintoportablecontainersandstoreduntilreadyforuseintheDissolutionprocess.

ReceiptofUranylNitrateSolution(TX1only)-Incomingliquiduranylnitratefeedstockenriched

tolessthan20weightpercentarrivesbytruckinapprovedcontainerslicensedbytheNRCor

DOE.Shippingpackagescontainingliquiduranylnitrateremainonthedeliverytrailerwhilethe

feedstocksolutionistransferredthroughahosetoastoragetanklocatedinsidetheTX1process

building.ReceiptmeasurementsforMaterialControlandAccountingareperformed,andthe

liquiduranylnitrateisconvertedtoU3O8powderbytheDiluteUranylNitrateEvaporation(DUNE)

processforuseintheDissolutionprocess.

Dissolution-U3O8powderismanuallytransferredfromaportablecontainerintoahopperina

glovebox.TheU3O8powderisthenmeteredintoanitricacidandwatersolutioninacolumn

whereitismixeduntiltherequiredamountofU3O8isdissolvedresultinginauranylnitrate

solution.Theuranylnitratesolutionisthentransferredtostoragecolumnsuntilitisreadytobe

usedintheGelationprocess.

Gelation-Theuranylnitratesolutionismixedwithorganicadditives,andliquiddropletsare

formedthatreactwithheatedsiliconeoiltoproducegelspheres.Thegelspheresareagedin

siliconeoil,washedandrinsedtoremovethesiliconeandadditives,anddried.Theresultingdried

microspheresarecombinedbymasstoformtheinputbatchestotheKernelConversionprocess.

KernelConversion-Thedriedmicrospheresareconvertedinahightemperaturefurnacetofuel

kernelsofuraniumcompounds,suchasuraniumdioxideanduraniumdicarbide,basedonthe

fuel design being fabricated. The fuel kernels undergo quality checks, and nonconforming

productsarerejectedandsenttotheUraniumRecoveryprocess.Thefuelkernelsthatpassthe

qualitychecksarecombinedbymasstoformtheinputbatchestotheCoatingprocess.

Coating-Thefuelkernelsarecoatedwithseveralcarbonouslayersusingafluidizedbedchemical

vapordepositionsystem,resultingincoatedparticlefuel.Whenfourcarbonouslayersareused,

theresultinguraniumbearingmicrospheresareknownasTRISOparticles.Thecoatedparticles

undergo quality checks and nonconforming products are rejected and sent to the Uranium

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page114

Recoveryprocess.Thecoatedparticlesthatpassthequalitychecksarecombinedbymassto

formtheinputbatchestotheOvercoatingprocess.

Overcoating-Thecoatedparticlesareovercoatedwithalayerofgraphitematrixpowder,based

onthefueldesignbeingfabricatedandthepackingfractionrequiredinthefuelelement.The

overcoatedparticles(OCPs)undergoqualitychecksandnonconformingproductsarerejected

andsenttoawashingstationtoremovetheovercoatinglayerbeforebeingreintroducedinto

theOvercoatingprocess.TheOCPsthatpassthequalitychecksarebatchedandsenttotheFuel

FormPreparationprocess.

FuelFormPreparation-OCPsarepouredintomoldsortoolingandcompressedorcompacted

intogreenfuelformsofthedesiredgeometry,suchascompactsorpebbles,basedonthefuel

designbeingfabricated.SomefueldesignsrequireencapsulatingOCPsinadditionalGMPand/or

shaping.Thegreenfuelformsundergodimensionalchecks,andnonconformingproductsare

rejectedandsenttotheUraniumRecoveryprocess.Thegreenfuelformsthatpassthequality

checksarebatchedandsenttotheHighTemperatureCarbonizationprocess.

High Temperature Carbonization - The green fuel forms are processed through a high

temperaturefurnacetoconvertthegreenbodyintoastrongcarbonizedfuelformcapableof

withstandinghandlingandreactorserviceconditions.Finalfuelformpebblesaremachinedto

thespecifiedfueldiameter.Thefinalfuelformsundergoqualitychecksandthosethatpassare

loadedintointerimstoragecontainersuntilanorderisreadyforloadingintoshippingcontainers.

NonconformingproductsarerejectedandsenttotheUraniumRecoveryprocess.

Uranium Recovery - Uranium is recovered from damaged, degraded, or otherwise non conformingproductmaterialsthroughavarietyofbatchoperations.Thebatchoperationssize

reduce,deconsolidate,oxidize,and/orconvertthenonconformingproductmaterialstoU3O8

powdersothatitcanbeusedasfeedstockfortheDissolutionprocess.

ShippingandTransportation-Allshipmentsofnuclearmaterialsandwastesareconductedin

conformance with NRC, U.S. Department of Transportation, and State of Tennessee

requirements.IncomingU3O8feedstockarrivesbytruckinapprovedcontainerslicensedbythe

NRC.Incomingliquiduranylnitratefeedstockarrivesbytruckinapprovedcontainerslicensedby

theNRCorDOE.Finalfuelformsareshippedouttocustomersbytruckinapprovedcontainers

licensedbytheNRC.Lowlevelwasteshipmentsareappropriatelypackagedandanalyzedfor

uraniumcontentpriortoshipmenttolicensedlowlevelwastedisposalsites.

1.1.4 RawMaterials,Products,ByProductsandWastes

1. ThefeedmaterialfortheTRISOXFFFisuraniumoxidepowder.Themanufacturing, recovery,support,andwastepackagingactivitiesaresupportedbyanumberofnon

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page115

radiologicalchemicalmaterialsstoredinbulkquantities,aslistedintheNRCrequired

EmergencyPlanandISASummary.

2. Finished products containing licensed material include coated particles and final fuel formsinvariousshapesandconfigurations.
3. There are no byproducts as defined by 10 Code of Federal Regulations (CFR) 30.4 extractedorconvertedafterextractionfromtheTRISOXFFFforuseinacommercial, medical,orresearchactivity.
4. Uraniumisrecoveredfromnonconformingproductmaterials,processsolutions,and scrapmaterialsbyprocessingitintoaformthatissuitableforuseasfeedstockinthe manufacturingprocess.
5. Process solutions contaminated with uranium that cannot be recovered/recycled are identified as liquid wastes.  Liquid wastes are collected and sampled to determine appropriatehandling/treatmentsteps.TreatmenttypicallyinvolvesadjustmentofpH, filtering,ionexchange,and/orprecipitation.Precipitatesaredewatered,andthesolids are packaged for offsite disposal.  If needed, liquid wastes that have been handled/treatedcanbesampledanddischargedthroughaninlinemonitortoshipping packages for offsite disposal.  Used oils may also be sampled and containerized for shipmenttoalicenseddisposalfacility.
6. Airborneeffluentsaredischargedtotheatmosphereviaanumberofprocessstacks.

HEPA filtration and scrubber systems are used where needed to remove radioactive particulatesandchemicalsfromairborneeffluentstoassurecompliancewith10CFR20 andapplicableStateofTennesseeregulationspriortodischargetotheatmosphere.See Chapters4and9forprogrammaticinformationformanagingandmonitoringradioactive airborneeffluentdischarges.

7. Wastewater from systems and equipment in nonradiological mechanical equipment areasofthefacilityandsanitarywastesfrombathroomsandshowersaredischarged through piping which goes to the City of Oak Ridge publicly owned treatment works (POTW).TheCityofOakRidgeprocessforpermittingdischargestothePOTWwilldefine monitoringrequirementstoassesspotentialcontaminantsinsanitarywastestreams.No uraniumwillbepresentinthiswastewaterstream.
8. Solid waste materials include, but are not limited to, damaged and/or obsolete equipment,usedventilationfiltersandpersonalprotectiveequipment,processingand wastetreatmentresidues,andmiscellaneouscombustiblewastes.Materialscouldbe radiologically contaminated, noncontaminated, hazardous, or mixed (hazardous and radioactive).  Solid waste materials are processed, recycled, and/or containerized for shipmenttoalicenseddisposalfacility.

1.2 InstitutionalInformation

1.2.1 CorporateIdentity

ThisapplicationisfiledbyTRISOX,LLC,aDelawarelimitedliabilitycompany,headquarteredat

530GaitherRoad,7thFloor,Rockville,Maryland.TRISOX,LLCisawhollyownedsubsidiaryofX

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page116

Energy,LLC,aMarylandlimitedliabilitycompany.TRISOX,LLCisaprivatelyheldcompanyand

is not owned or controlled by a foreign corporation or government.  The principal place of

businessandlocationofthelicensedfacilityisasfollows:

TRISOXFuelFabricationFacility

170RenovareBoulevard

OakRidge,Tennessee37830

1.2.2 U.S.NuclearRegulatoryCommissionLicenseInformation

1. DocketNumber:707027
2. LicenseNumber:TBD
3. PeriodofLicense:40years 1.2.3 FinancialQualifications

AsummaryoffinancialqualificationsthatdemonstratesthefinancialcapabilityofTRISOX,LLC

toconstructandoperatetheTRISOXFFFhasbeensubmittedseparatelyforNRCreview.The

financialarrangementstoassurethatdecommissioningfundswillbeavailablearesetforthin

Chapter10.

1.2.4 Type,Quantity,andFormofLicensedMaterial

The following types, maximum quantities, and forms of special nuclear materials (SNM) are

authorizedunder10CFR70.

1. [

]SRIkilogramsofU235containedinuraniumenrichedtolessthan20%,inany chemical/physical form.  Contaminants may include transuranic materials and fission products(SumofAlphas1,410Bq/gU,SumofBetas243Bq/gU,SumofGammas

2,710Bq/gU).

2. 350 grams of U235 in any chemical/physical form and at any enrichment for use in measurement and detection instruments, check sources, and instrument response standards.
3. 350 grams of U235 in any chemical/physical form and at any enrichment for use in researchanddevelopmentstudies.
4. 25 millicuries of plutonium as counting and calibration standards and/or for use in researchanddevelopmentstudies.
5. 1 microcurie of any SNM as sealed and unsealed radioactive sources for use in measurementanddetectioninstruments,checksources,instrumentresponsestandards, andcountingandcalibrationstandards.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page117

1.2.5 AuthorizedUsesandActivities

ThislicenseauthorizestheuseofSNMforoperationsinvolvingenricheduraniumpursuantto10

CFRPart70aslistedinthissection.Thisalsoincludesthesupportactivitiesrelatedtothe

manufactureofSNMcontainingproducts.

1. ManufacturingOperations
a. FuelManufacturing-Conversionofuraniumoxidestouranylnitratesolutions, andfabricationofcoatedparticlesandfinalfuelformscontaininguranium.
b. UraniumRecovery-recycling/recoveryofSNMfromprocessscrapmaterials.
2. LaboratoryOperations
a. Chemical,instrumental,andphysicalanalysesandtestingonmaterialconsisting ofand/orcontainingSNM.
b. Preparationofanyrequiredsamplesorstandards.
3. Research and Development Operations - Process, product, and other research and development activities using natural, source, and SNM compounds and mixtures in benchtop,laboratoryscale,and/orfullscaleprototypeequipmentenvironmentsrelated to:
a. Enricheduraniumfueldesigns.
b. Manufacturingandprocessingtechnologyandequipment.

c.

Recycling/recovery.

4. WasteOperations
a. Volumereduction,treatment,packaging,andstorageofliquidandsolidwastes contaminatedwithorcontainingnonrecoverableuranium.
b. Treatment,packaging,andstorageofhazardousormixedwaste.

c.

Shipmentofwastestolicensedfacilitiesfordisposal.

5. SupportOperations
a. Receipt,handling,andstorageofrawmaterials.
b. Storageoflicensedmaterialcompoundsandmixturesinareaswithcontainers arrangedspecificallyformaintenanceofradiologicalandnuclearsafety.

c.

Storage of finished fuel products and the preparation of these products for transportationoffsite.

d. Decontaminationofequipmentandmaterials.
e. Maintenance,repair,calibration,and/ortestingofSNMprocessingequipment, instruments,auxiliarysystems,contaminatedequipment,andfacilities.

1.2.6 SiteSafeguards

PhysicalsecurityattheTRISOXFFFisdescribedintheNRCapprovedTRISOXFuelFabrication

Facility Physical Security Plan, and nuclear material control and accountability (MC&A) is

describedintheNRCapprovedTRISOXFuelFabricationFacilityFundamentalNuclearMaterial

ControlPlan.Bothplansaremaintainedcurrentinaccordancewithapplicableregulationsas

outlinedinChapters12and13.Theseplansdetailthemeasuresemployedatthefacilitytodetect

potential loss of, and mitigate the opportunity for theft of, SNM of Moderate Strategic

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page118

Significance, in accordance with the applicable requirements of 10 CFR 73 and 10 CFR 74.

SafeguardsInformationiscontrolledasdescribedintheTRISOXFacilitySafeguardsInformation

Plan.

1.2.7 Terminology/Definitions

Definitionsfortermsspecifictoaparticularsafetyfunctionmaybegiveninthecorresponding

chapteronthatfunction.Thefollowingdefinitionsapplytotermsusedinthislicense:

Term

Definition

U235Enrichments

Low enriched uranium, which is also known as high assay low

enricheduranium(HALEU),isdefinedasanycompoundofuraniumin

whichtheenrichmentintheisotopeofuranium235islessthan20

percentbyweight.

NuclearSafety

Nuclearcriticalitysafety

Will,Shall

Arequirement.

Should

Arecommendation.

May

Permission(optional),neitherarequirementnorarecommendation.

Are

Anexistingpracticeforwhichthereisarequirementtocontinue.

Frequencies

Whenaudit,measurement,surveillance,and/orotherfrequenciesare

specifiedinlicensedocumentsandapprovedprocedures,thefollowing

timespansapply:

Monthly-anintervalnottoexceed40days

Quarterly-anintervalnottoexceed4months

SemiAnnually-anintervalnottoexceed7months

Annually-anintervalnottoexceed15months

Biennially-anintervalnottoexceed30months

Triennially-anintervalnottoexceed45months

Fortimespansnotcoveredabove,anextensionof0.25times theintervalwillapply.

CriticalityControlor

CriticalitySafety

Control

Theadministrativeandtechnicalrequirementsestablishedtominimize

theprobabilityofachievinginadvertentcriticalityintheenvironment

analyzed.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page119

Term

Definition

WorkAreaAir

Samplers

Stationary air samplers used to measure the effectiveness of

containment.Ifstationaryairsamplersaredemonstratedtorepresent

the air breathed by a worker, the results may be used to estimate

workerdose.Wherestationaryairsamplershavenotbeenprovento

berepresentativeoftheairaworkerbreathes,lapelairsamplersmay

beusedtoestimatetheworkersdose.

Equivalent

Experience

For the purpose of meeting educational requirements described

throughoutthelicense,two(2)yearsexperienceisconsideredtobe

equivalenttoone(1)yearofpostsecondaryeducation.Forexample,

eight(8)yearsofapplicableexperiencewillsatisfytherequirementfor

aB.S.degree(4yearsofpostsecondaryeducation).

OwnerControlled

Area

Asiteareaboundedbyafencedesignedtoprovidephysicalsecurity,

andwhichencompassestheControlledAccessArea.Theareacontains

radioactivematerialprocessing,storage,andlaboratoryareas,aswell

assupportfunctions.

RestrictedArea

A site area in which individuals may be exposed to radiation or

radioactive material at levels or concentrations in excess of that

allowedforthegeneralpublic(seedefinitionin10CFR20.1003).This

couldincludeanylocationonthesitewheretheTRISOXFFFislocated,

depending upon activities conducted and the exposure potential as

evaluatedbythesafetyfunction.

Radiologically

ControlledArea

Asiteareawhereuncontainedradioactivematerialispresent,suchthat

contamination levels are likely to be encountered in excess of

acceptablelevelsforunrestricteduse.Thistypeofarea,designatedfor

contaminationcontrolpurposes,requiresvariouslevelsofprotective

clothingandotherpersonnelprotectiveactions.Itcouldincludeany

location within the Restricted Area, either on a permanent or

temporarybasis.Thistermisanalogoustothe10CFR20.1003defined

termcontrolledareaanarea,outsideofarestrictedarea,butinside

thesiteboundary,accesstowhichcanbelimitedbythelicenseefor

anyreason.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page120

Term

Definition

UncontrolledArea

Asiteareawhereradioactivematerialsmaybehandledintheformof

sealedsources,inpackagesorclosedcontainers,insmallamounts(air

samples, bioassay samples, etc.), or not at all.  This type of area is

designatedforcontaminationcontrolpurposesandisnotlikelytohave

contaminationatlevelsinexcessofthoseacceptableforunrestricted

use.

ConditionsAdverse

toSafety

AsusedinSections2.2,2.5.1,11.6,11.6.1,and11.8,eventsthatcould

havethepotentialtoimpactthesafetyoflicensedactivities,including

equipmentfailures,malfunctions,ordeficiencies;procedureproblems,

errors, or omissions; improper installations; nonconformances with

regulatoryrequirementsorcommitments;qualityrelatedissues;ora

significant condition, such that if uncorrected, could have a serious

effectonsafety.

1.3

SpecialExemptionsandSpecialAuthorizations

1.3.1 SpecialExemptions

1.3.1.1CriticalityMonitoring

10CFR70.24(a)requiresalicenseeauthorizedtopossessSNMinstatedamountstomaintainin

eachareainwhichsuchlicensedSNMishandled,usedorstoredtoemployaCriticalityAccident

AlarmSystem(CAAS)meetingthestatedrequirements.

Notwithstandingtherequirementsof10CFR70.24(a),thelicenseeisgrantedanexemptionfrom

criticalitymonitoringrequirementsforSNMstoredinauthorizedshippingcontainerscomplying

withtherequirementsoftheCodeofFederalRegulations,Title10,Part71,andwhicharein

isolatedarraysoronatransportvehicleandwhicharenomorereactivethanthatapprovedfor

transport.

Therequirementsin10CFR71.55,GeneralRequirementsforFissileMaterialPackages,and10

CFR 71.59, Standards for Arrays of Fissile Material Packages, ensure that arrays will remain

subcriticalundernormalconditionsandunderaccidentconditions.Theexemptiondoesnot

affectthelevelofprotectionforeitherthehealthandsafetyofworkersandthepublicorforthe

environment;nordoesitendangerlifeorpropertyorthecommondefenseandsecurity.

Under the provisions of 10 CFR 70.17, Specific Exemptions, the Commission may, upon

application, grant exemptions from the requirements of 10 CFR 70 when the exemption is

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page121

authorizedbylaw,willnotendangerlifeorpropertyorthecommondefenseandsecurityand

areotherwiseintheinterestofthepublic.

The exemption is authorized by law because the Atomic Energy Act of 1954, as amended,

containsnoprovisionsprohibitingalicenseefrombeingexemptedfromCAASmonitoringina

givenareainwhichthereisnegligibleriskofcriticality.Grantingsuchanexemptionwillnot

endangerlife,property,orthecommondefenseandsecurity.

Grantingthisexemptionto10CFR70.24(a)isinthepublicinterestbecausehavingcriticality

accidentalarmsinanareainwhichthereisanegligibleriskofcriticalitymaycauseunnecessary

evacuationsandanemergencyresponsebasedonapotentialspuriousalarm.Spuriousalarms

couldalsocauseunnecessaryrisktoindividualsduringanevacuationandprovideconfusing

informationaboutthesafetyofthefacilitytothepublic.

1.3.1.2PostingandLabeling

10CFR20.1904(a)requiresalicenseetoensurethateachcontaineroflicensedmaterialbearsa

durable, clearly visible label bearing the radiation symbol and the words: CAUTION,

RADIOACTIVEMATERIALorDANGER,RADIOACTIVEMATERIAL.Thelabelmustalsoprovide

sufficient information (such as the radionuclide(s) present, an estimate of the quantity of

radioactivity,thedateforwhichtheactivityisestimated,radiationlevels,kindsofmaterials,and

massenrichment)topermitindividualshandlingorusingthecontainers,orworkinginthevicinity

ofthecontainers,totakeprecautionstoavoidorminimizeexposure.

Notwithstandingtherequirementsof10CFR20.1904(a),thelicenseeisgrantedanexemption

fromaffixingalabeltoeachcontaineroflicensedmaterialwhenentrancesintoeachbuildingin

whichradioactivematerialsarestored,used,orhandledarepostedwithasignstating"EVERY

CONTAINERORVESSELWITHINTHISAREAMAYCONTAINRADIOACTIVEMATERIALS".

Granting this exemption request is otherwise in the public interest because it promotes

regulatoryefficiency.Theexemptionrelievesthelicenseefromarequirementtolabelcontainers

oflicensedmaterialincontrolledareastowhichthepublichasnoaccess;therefore,theactivities

donotpresentarisktopublichealthandsafety.Grantingtheexemptionallowsthelicenseeto

focustheresourcesrequiredtofulfillthelabelingrequirementonotheractivities.

Theexemptionisauthorizedbylawbecausethereisnostatutoryprohibitionontheproposed

postingofasinglesignindicatingthateverycontainerinthepostedareahasthepotentialfor

internalcontamination.Toreduceunnecessaryregulatoryburden,theNRCissuedafinalrulein

2007 that, in part, modified 10 CFR 20.1905, Exemptions to Labeling Requirements, thereby

exemptingcertaincontainersholdinglicensedmaterialfromthelabelingrequirementsof10CFR

20.1904ifcertainconditionsaremet.Althoughthe2007rulemakingonlyappliedtofacilities

licensedunder10CFR50and10CFR52,Licenses,Certifications,andApprovalsforNuclearPower

Plants,therationaleunderlyingtherulesupportstheexemptionrequest.ExemptingTRISOX

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page122

fromthisrequirementreduceslicenseeadministrativeandinformationcollectionburdensbut

servethesamehealthandsafetyfunctionsasthecurrentlabelingrequirements.Therefore,the

exemptiondoesnotaffectthelevelofprotectionforeitherthehealthandsafetyofworkersand

thepublicorfortheenvironment;nordoesitendangerlifeorpropertyorthecommondefense

andsecurity.

1.3.1.3ICRP68DACandALIValues

Derivedairconcentration(DAC)andtheannuallimitonintake(ALI)valuesbasedonthedose

coefficientspublishedintheInternationalCommissiononRadiationProtectionPublication68

(ICRP68)maybeusedinlieuoftheDACandALIvaluesinAppendixBof10CFR20inaccordance

withapprovedprocedures.SeeChapter4foradditionaldetails.

TheICRP68guidancewaspromulgatedafterthe10CFR20,AppendixBcriteriawereestablished,

and provides an updated and revised internal dosimetry model. Use of the ICRP68 models

providemoreaccuratedoseestimatesthanthemodelsusedin10CFR20andallowsTRISOXto

implement an appropriate level of internal exposure protection.  In a Staff Requirements

MemorandumdatedApril21,1999(SECY99077),theCommissionapprovedthestaffgranting

exemptionsbasedontheprecedentsetbythedecisiontoauthorizetheuseofmodelsinICRP

Publication68.

ThisexemptionisinaccordancewiththeAsLowAsisReasonablyAchievable(ALARA)principle,

internationalstandardsonradiationprotection,anddoesnotconflictwithestablishedNRCdose

limits.Nonewaccidentprecursorsarecreatedbythisexemptiontoallowmodificationtothe

valuesusedtoassessinternaldose.Thereisnosignificantincreaseintherisktoworkersor

membersofthepublicasaresultofthisexemption.Theactivitiesthatareauthorizedbythis

exemptionareincompliancewithlawandwillnotendangerlifeorpropertyorthecommon

defenseandsecurity.

1.3.1.4ICRP60OrganDoseWeightingFactors

Tissue weighting factors listed in the International Commission on Radiation Protection

Publication 60 (ICRP60) may be used in lieu of the organ dose weighting factors in 10 CFR

20.1003 for effective dose assessments listed in ICRP68 methodologies, in accordance with

approvedprocedures.

TheICRP60guidancewaspromulgatedinthesameyearthat10CFR20organdoseweighting

factorswereestablished.UseoftheICRP60modelsprovidemoreaccuratedoseestimatesthan

themodelsusedin10CFR20andallowsTRISOXtoimplementanappropriatelevelofinternal

exposureprotection.InaStaffRequirementsMemorandumdatedApril21,1999(SECY99077),

the Commission approved the staff granting exemptions based on the precedentset by the

decisiontoauthorizetheuseofmodelsinICRPPublication68.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page123

Theunderlyingpurposeof10CFRPart20istoensurethatoccupationalworkersandmembers

ofthepublicareprotectedfromradiation;thattheirdoses,asaresultoflicensedactivities,are

withinprescribedlimits;andthattheirdosesareALARA.

ThisexemptionisinaccordancewiththeALARAprinciple,internationalstandardsonradiation

protection,anddoesnotconflictwithestablishedNRCdoselimits.Nonewaccidentprecursors

arecreatedbythisexemptiontoallowmodificationtothevaluesusedtoassessinternaldose.

Thereisnosignificantincreaseintherisktoworkersormembersofthepublicasaresultofthis

exemption.Theactivitiesthatareauthorizedbythisexemptionareincompliancewithlawand

willnotendangerlifeorpropertyorthecommondefenseandsecurity.

1.3.1.5CertainUnplannedContaminationEvents

Notwithstandingtherequirementsof10CFR70.50(b)(1),thelicenseeisgrantedanexemption

fromtherequirementtoreportunplannedcontaminationeventswhenthefollowingconditions

aremet:

1. Theeventoccursinarestrictedareainabuildingwhichismaintainedinaccessibleto thepublicbymultipleaccesscontrols.
2. Theareawascontrolledforcontaminationbeforetheeventoccurred,thereleaseof radioactivematerialisundercontrol,andnocontaminationhasspreadoutsidethearea.
3. Radiationsafetypersonneltrainedincontaminationcontrolarereadilyavailable.
4. Equipmentandfacilitiesthatmaybeneededforcontaminationcontrolarereadily available.
5. Theotherwisereportableunplannedcontaminationeventisdocumentedinthe licenseesCorrectiveActionProgram.

Chapter4describestheradiationprotectionprogrammeasuresthatkeepworkerexposures

ALARAthrough:(a)approvedradiationprotectionproceduresandradiationworkpermits;(b)

theuseofventilationsystems,containmentsystems,andrespiratorstocontrolexposureto

airborneradioactivematerial;(c)theuseofprotectiveclothingtopreventthespreadofsurface

contamination;(d)theuseofsurveysandmonitoringprogramstodocumentcontamination

levels and exposures to workers; and (e) identification of items relied on for safety and

managementmeasurestomaintainthoseitemsavailableandreliable.

Inaddition,(f)accesstothesiteisrestrictedtoindividualsthathavecompletedsitespecific

nuclearsafetytrainingrequirementsorindividualsthatareformallyescorted;(g)duringnormal

operations,trainedandqualifiedradiationprotectionstaffingisprovidedandreadilyavailableto

supportandrespondtoradiologicalconditions,andthestaffistrainedincontaminationcontrol

proceduresandtechniquesrequiredforrespondingtoacontaminationeventwhenneeded;(h)

appropriateradiationsurveysareperformedbyqualifiedpersonnelduringorafteranunplanned

contaminationeventasnecessarytoassessradiologicalconditionsandprovidetheappropriate

response,surveyresultsarecomparedtospecifiedactionguides,appropriateactionsaretaken

when contamination levels in excess of action levels are found and the affected area is

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page124

decontaminatedinasafeandtimelymanner,andsurveyrecordsforcontaminationeventsare

documentedpursuantto10CFR20.2103andareavailableforreview.

Based on the limited scope of the exemption, and the access and contamination controls,

training,radiationsurveysandotherALARAmeasuresdescribedintheapplication,grantingthe

exemptionasstatedabovedoesnotendangerlifeorproperty.Theexemptiondoesnotalter

reportingrequirementsforunplannedcontaminationeventsthroughotherNRCrequirements

suchas10CFR20.2202,Notificationofincidents,and10CFR20.2203,Reportsofexposures,

radiationlevelsandconcentrationsofradioactivematerialexceedingtheconstraintsorlimits.In

addition,theexemptiondoesnotinvolveinformationoractivitiesthatcouldimpactthecommon

defenseandsecurity.

Granting this exemption request is otherwise in the public interest because it promotes

regulatoryefficiency.Theexemptionrelievesthelicenseefromareportingrequirementfor

unplannedcontaminationeventsthatdonotpresentarisktopublichealthandsafetygiventhe

sitespecificconditionsandprogramsdescribedabove.Specifically,theexemptionrelievesthe

licenseefromgeneratingreportsofcontaminationeventsincontrolledareaswheretherelease

ofradioactivematerialisundercontrolandnocontaminationhasspreadoutsidethecontrolled

area.Grantingtheexemptionallowsthelicenseetofocustheresourcesrequiredtofulfillthe

reportingrequirementonotheractivities.Inaddition,itrelievestheNRCstafffromreceiving

andprocessingreportswhichdonotpresentarisktopublichealthandsafety.

Therefore,theexemptiondoesnotaffectthelevelofprotectionforeitherthehealthandsafety

ofworkersandthepublicorfortheenvironment;nordoesitendangerlifeorpropertyorthe

commondefenseandsecurity.Grantingofthisexemptionwillnotresultinaviolationofthe

AtomicEnergyActof1954,asamended,theCommissionsregulations,orotherlaws.Therefore,

theexemptionisauthorizedbylaw.

1.3.2 SpecialAuthorizations

1.3.2.1ChangestotheLicenseApplication

ChangesmaybemadetotheLicenseApplicationand/ortosupportingdocumentsreferencedin

thelicensewithoutpriorNRCapprovalprovidedthatthefollowingconditionsaremet:

1. Thechangedoesnotdecreasethelevelofeffectivenessofthedesignbasisasdescribed intheLicenseApplication.
2. Thechangedoesnotresultinadeparturefromthemethodsofevaluationdescribedin theLicenseApplicationusedinestablishingthedesignbasis.
3. Thechangedoesnotresultinadegradationofsafety.
4. Thechangedoesnotaffectcompliancewithapplicableregulatoryrequirements.
5. Thechangedoesnotconflictwithanexistinglicensecondition.
6. Within30daysaftertheendofthecalendaryearinwhichthechangeisimplemented, thelicenseeshallsubmittherevisedchaptersoftheLicenseApplicationtotheDirector,

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page125

NMSS,usinganappropriatemethodlistedin10CFR70.5(a),andacopytotheappropriate

NRCRegionalOffice.

Thisauthorizationisconsistentwiththeprocessformakingchangesunder10CFR70.72,Facility

ChangesandChangeProcess,andisfurthersupportedbySectionC5,OtherChanges,inNRC

RegulatoryGuide3.74,GuidanceforFuelCycleFacilityChangeProcesses,January2012.

1.3.2.2ReleaseforUnrestrictedUse

LimitsdevelopedbytheNRCasspecifiedinGuidelinesforDecontaminationofFacilitiesand

EquipmentPriortoReleaseforUnrestrictedUseorTerminationofLicensesforByproduct,Source,

orSpecialNuclearMaterial,U.S.NuclearRegulatoryCommission,April1993,maybeusedfor

decontaminationandsurveyofsurfacesorpremisesandequipmentpriortoabandonmentor

releaseforunrestricteduse.

TheseguidelinesareincludedasaregulatoryacceptancecriterioninNUREG1520,Standard

ReviewPlanfortheReviewofaLicenseApplicationforaFuelCycleFacility,asanacceptable

methodofdemonstratingcompliancewiththeradiationsurveyandmonitoringrequirementsin

10CFRPart20.SeeChapter4foradditionaldetails.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page126

Figure11:SiteLocation

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page127

Figure12:KeyFeaturesNeartheSite

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page128

Figure13:RegionalHighwaysandInterstatesNeartheSite

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page129

Figure14:SitePlan

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page130

Figure15:PlanViewofGeologicCrossSections

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page131

Figure16:GeologicCrossSection1

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page132

Figure17:GeologicCrossSection2

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page133

Figure18:GeologicCrossSection3

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page134

Figure19:GeologicCrossSection4

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page135

Figure110:GeologicCrossSection5

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page136

Figure111:GroundwaterContours-September2021

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page137

Figure112:GroundwaterContours-January2022

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page138

REVISION

SUMMARY

Revision

Date

Section/Page DescriptionofChanges

1

5Apr22

ALL

Initialissue.

2

4Nov22

N/A

AllchangesforthisrevisionarebasedonRSIresponsesinTX0LTR0006.

Section1.1.1

Addedgeotechnicaldiscussionofsiteregardingslopestability,soil

liquefaction,differentialsettlement,bearingcapacity,karstfeatures,and

sitecrosssections.(RSI7.1,7.2,7.3,7.4,7.5,7.6)

Section1.1.2

Addeddesignbasisvaluesforseismic,wind,precipitation,hydrological,

andgeologicalNPH.(RSI6.1)

Section1.3

Separatedspecialexemptionsandspecialauthorizations.Renumbered

subsections.(RSIObservation)

Section

1.3.1.1

Addeddetailforcriticalitymonitoringexemption.(RSI1A,RSI

Observation)

Figures13

thru18

Addednewfiguresforsitegeologicalcrosssections.(RSI7.6)



Dec24

ALL

AddeddocumentnumberTXFREGNRC0001toheader.

Section

1.1.1.1,

Figure12,

Figure13

RevisionsbasedonRAIresponses,TX0LTR0022

x AddedreferencetonewFigure12toshowkeyfeaturesnearthe siteduetoLicenseChapter1RAI1.

x AddedreferencetoEnvironmentalReportfiguresthatcontain moreinformationaboutpopulationnearthesiteduetoLicense Chapter1RAI5.

x Updatednearestschoolname,direction,anddistancedueto LicenseChapter1RAI5.

x AddeddescriptionofandreferencetonewFigure13toshow regionalhighwaysandinterstatesnearthesiteduetoLicense Chapter1RAI6.

Sections

1.1.1.3,1.1.2

Updatedtoreflectmorethanoneprocessbuildingisplannedforthesite.

Section

1.1.1.3

RevisionsbasedonRAIresponses

x Updateddescriptionofnearestusersofgroundwater downgradientofthesiteduetoTX0LTR0022,LicenseChapter1 RAI7.

x Addeddescriptionofthestormwatersystemonthesitedueto TX0REGLTR0042,HydrologyRAI4.

x AddeddescriptionofandreferencetonewFigures19and110 thatshowseasonalgroundwaterpotentiometriclevelcontourson thesite.(HydrologyRAI6)

Section

1.1.1.4

UpdatedPotentialforKarstFeaturesduetoTX0LTR0028,Hydrology

RAI1.AddedreferencetoadditionalboringsperformedforTX1location.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0001

SNMXXXX

CHAPTER1

ZŽ

December2024

Page139

Section1.1.2

x Expandedthedescriptionsofthefivebuildingsplannedforthesite duetoTX0LTR0022,LicenseChapter1RAI1.

x AddedcommitmenttoASCE716RiskCategoryIVduetoTX0REG LTR0045,Enclosure1StructuralRAI2,andupdateddesignload values.

Section1.1.3

AddedbriefdescriptionsforthemajormanufacturingstepsduetoTX0 LTR0022,LicenseChapter1RAI3.Alsoaddednewprocessstepto

receive/store/converturanylnitratetouraniumoxidetoaccountfor

alternateHALEUfeedmaterial.

Section1.1.4

UpdatedItems5,6,and7duetoTX0LTR0022,LicenseChapter1RAI8

andRAI9.

Section1.2.1

UpdatedlegalcorporateaddressforTRISOX,LLCduetocorporateoffice

relocation.UpdatedfacilityaddressrecentlyassignedbytheCityofOak

Ridge.

Section1.2.4

x Deletedreferencesto10CFR30and40anddeletedItems5and6 duetoTX0LTR0024,LicenseChapter1RAI10andRAI11.

x UpdatedU235valueforItem1basedonquantityrequiredto operateTX1andTX2.

x UpdatedcontaminantvaluesforItem1basedonevaluationof characterizationdataforthealternateHALEUfeedmaterialinthe formofuranylnitrate.

Section1.2.7

WorkAreaAirSamplers-rewordedtoimprovereadability.

ConditionsAdversetoSafety-updatedsectionreferences.

Section

1.3.1.2

Addressedwhygrantingtheexemptionrequestisotherwiseinthepublic

interestduetoTX0LTR0022,LicenseChapter1RAI14A.

Section

1.3.1.5

Addressedwhygrantingoftheexemptionisauthorizedbylaw.

Figure14

RenumberedFigure12duetoinsertionofnewFigures12and13.

Updatedtocurrentversionofsiteplan.

Figures15

to110

RenumberedFigures13to18duetoinsertionofnewFigures12and13.

Updatedfigurestoshowboringlocationssuperimposedonthefootprintof

theprocessbuildingduetoTX0LTR0028,GeotechnicalRAI1.

Figure111,

Figure112

AddedduetoTX0LTR0028,HydrologyRAI6.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0002 SNMXXXX CHAPTER 2 ZŽ

December 2024 Page 21 ORGANIZATION AND ADMINISTRATION Table of Contents SECTION TITLE STARTS ON PAGE 2.1 General Safety Policy and Responsibilities 22 2.2 Site Organization 22 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.4.4 2.3.4.5 2.3.4.6 2.3.4.7 2.3.4.8 2.3.4.9 2.3.5 Organizational Responsibilities, Authority, and Qualifications Plant Manager Manufacturing Engineering Regulatory Affairs Nuclear Criticality Safety Function Radiation Protection Function Environmental Protection Function Industrial, Chemical, and Fire Safety Functions Integrated Safety Analysis Function Licensing Function Material Control and Accountability Function Security Function Emergency Preparedness Function Quality Assurance 23 2.4 Safety Review Committee 29 2.5 2.5.1 2.5.2 2.5.3 Administration Reporting of Potentially Unsafe Conditions or Activities Management Measures OffSite Emergency Response Resources 210 2.6 Transition from Design to Construction to Operations 210 TRISO-X Document Control 2024.12.30 11:58:01

-05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page22

ORGANIZATIONANDADMINISTRATION

2.1

GeneralSafetyPolicyandResponsibilities

ItisTRISOXspolicythatradiationexposurestoemployeesandthegeneralpublicbekeptALARA.

TRISOXspolicyfurtherensuresthatenvironmentalprotectionmeasuresareinplacetocontrol

andmonitorgaseousandliquideffluentsandappropriatelymanageradioactivesolidwasteto

ensurefacilityoperationsmeetapplicableregulations.Responsibilityforsafetyinthevarious

manufacturing lines, processes, and services is delegated to the lowest practical level of

supervision.Safetyistheresponsibilityofeachsupervisorwithinhis/herownarea.Through

trainingandperiodicretraining,eachindividual,regardlessofposition,ismadeawarethatsafety

inhis/herworkareaisultimatelyhis/herresponsibility.

2.2 SiteOrganization

TheTRISOXorganizationprovidesthemanagement,administrative,andtechnicalcapabilities

forensuringthatdesign,construction,startup,modifications,andoperationsutilizinglicensed

materials are conducted in a manner that is protective of its workers, the public, and the

surroundingenvironment,andremainincompliancewithapplicableFederal,State,andlocal

regulations,licenses,andpermits.Thisresponsibilityisimplementedthroughthedisciplinesof

manufacturing, engineering, regulatory affairs, and quality assurance, as described in the

sectionsbelow,allofwhichhavesafetyrelatedresponsibilities.Figure21showsthecurrent

TRISOX functional organization, including the independence of manufacturing, regulatory

affairs,andqualityassurance.

Themanagementpositionsforeachdisciplinetogetherhavethedelegatedresponsibilityfor

plantsafetyandforcompliancewithconditionsofSNMlicensesandwithfederal,state,andlocal

regulations and laws governing operation of a nuclear facility in order to maintain a safe

workplaceforallemployees.Eachdisciplinemanagementteamisresponsiblefor

x ensuringthatallactivitiesintheirareaareperformedinasafeandeffectivemanner; x

managinganddirectingoperationswithintheirdiscipline; x

ensuringthatalloperationsunderitsguidancecomplywithsafetyandlicenseconditions, requirements for qualityrelated safety activities, and safetyrelated configuration managementrequirements; x

beingknowledgeableofthesafetyproceduresandprogramsastheyrelatetotheirarea ofresponsibility; x

developing,approving,andimplementingproceduresthatincorporatesafetyandquality controlsandlimitscommensuratewiththeparticularoperationinvolved;and x

ensuringthatconditionsadversetosafetyarereportedandinvestigatedpromptly,and that corrective actions are tracked to completion and, as applicable, monitored for effectiveness.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page23

2.3

OrganizationalResponsibilities,Authority,andQualifications

Thissectiondescribestheresponsibilities,education,andexperienceofkeypositionsrequired

bythislicenseapplication.

Keypersonnelarethoseindividualswhoareresponsibleforsafetyandforsafeoperationofthe

site and include the plant manager and the discipline managers described in this section.

Companypolicyrequireswrittendelegationofauthoritywhenseniormanagersareunavailable

toperformtheirduties.Theemergencyplandelineatesresponsiblemanagementpersonneland

reportingrelationshipsforhandlingsiteemergencysituations.

The positions described in this section are intended to describe the licenserelated

responsibilitiesanddonotreflectactualjobtitles.Theresponsibilitiesofthepositionsdescribed

may be fulfilled by one or more different organizational positions as long as the minimum

position qualifications specified in this chapter are met for functional area(s) he/she is

responsibletooversee.Similarly,functionalareasshowninFigure21anddescribedinSections

2.3.2,2.3.3,2.3.4,and2.3.5ofthischaptermaybegroupedwithintheirdisciplinesasneededto

supporttheTRISOXorganizationaslongastheindividual(s)responsibleforthefunction(s)have

a sufficient background to provide the capability for making sound safety and/or regulatory

decisions.  A combination of education and experience may be substituted for minimum

qualificationsdescribedinthischapterifotherfactorsprovidesufficientdemonstrationofthe

abilitytofulfillthedutiesofaposition.Whensubstitutingexperienceforeducation,refertothe

definitionofEquivalentExperienceinSection1.2.7.Whensubstitutingtypeofworkexperience,

twoyearsofrelevantnonnuclearexperienceisequivalenttooneyearofnuclearexperience.

2.3.1 PlantManager

Theplantmanager,orthedisciplinemanagerauthorizedtobehis/heralternate,hastheoverall

responsibilityforthesafety,security,quality,andoperationalaspectsofalllicensedactivities

conductedattheTRISOXFuelFabricationFacility.Dailyresponsibilityforlicensedactivitiesmay

bedelegatedinwritingtooneormoreofthedisciplinemanagerpositionsspecifiedinSections

2.3.2and2.3.4.

TheminimumqualificationsfortheplantmanagerareaBS/BAoradvanceddegree(mastersor

doctorate) in science, engineering, or a technical field; at least five years of management

experience in the nuclear industry and/or a nuclearrelated field; and a general knowledge

concerningtheregulatoryaspectsofpoliciesandproceduresattheTRISOXFuelFabrication

Facility.

2.3.2 Manufacturing

The Manufacturing discipline is responsible for oversight of manufacturingrelated activities

involvingthehandlingandprocessingofSNM,includingdevelopingoperatingproceduresand

maintaining facilities and equipment in a safe operating condition.  This discipline includes

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page24

activitiesassociatedwithenricheduraniumprocessing,transportationandwastemanagement

operations, and related equipment installation, startup, and maintenance.  This discipline

managesthemanufacturingtechnicianworkforceandhaslinemanagementresponsibilityfor

implementationofthesafetyprogramsandsystemsforconductinganactiveALARAProgram.

TheminimumqualificationsforaManufacturingdisciplinemanagerareaBS/BAoradvanced

degree(mastersordoctorate)inscienceorengineeringandatleastfiveyearsofmanagement

experienceinthenuclearindustryand/oranuclearrelatedfield;andasufficientbackgroundin

manufacturingrelatedactivitiestoprovidethecapabilityformakingsoundsafetydecisions.

The minimum qualifications for individual(s) responsible for oversight of manufacturing

function(s)areaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringand

atleastthreeyearsofexperienceinthenuclearindustryand/oranuclearrelatedfield.He/she

musthaveasufficientbackgroundinmanufacturingrelatedactivitiestoprovidethecapability

formakingsoundsafetydecisions.

2.3.3 Engineering

The Engineering discipline performs and/or provides oversight of activities involving design,

construction, and/or installation of new and modified facilities and equipment; supplies

maintenance and process engineering support; conducts activities associated with product

researchanddevelopment;assuresthatallequipmentandfacilitieshaveappropriatesafety

controlsandhavebeenevaluatedwithinthespiritandintentofALARA;establishesconfiguration

management(CM)asdefinedinChapter11toensureconsistencyamongdesignandregulatory

requirements,physicalconfiguration,andfacilityconfigurationinformation;andmaintainsthis

consistencythroughoutthelifeofthefacilitiesandactivitiesuntilthepointthatCMisnolonger

needed.

TheminimumqualificationsforanEngineeringdisciplinemanagerareaBSoradvanceddegree

(masters or doctorate) in engineering and at least five years of management experience in

engineeringrelatedactivities,twoyearsofwhichhavebeeninthenuclearindustryand/ora

nuclearrelatedorotherhighlyregulatedfield.He/shemusthaveasufficientbackgroundin

manufacturingrelatedactivitiestoprovidethecapabilityformakingsoundsafetydecisions.

Theminimumqualificationsforindividual(s)responsibleforoversightofengineeringfunction(s)

areaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringandatleast

three years of experience in the nuclear industry and/or a nuclearrelated or other highly

regulatedfield.

2.3.4 RegulatoryAffairs

TheRegulatoryAffairsdisciplineprovidesprograms,procedures,andreviewstoassureworker

healthandsafety;security;environmentalprotection;andcompliancewithlicensesandpermits,

includingthoserelatedtotransportationanddisposaloflicensedmaterial.Theseactivitiesare

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page25

conductedwiththeALARAprincipleinmind.Functionalareasincludenuclearcriticalitysafety;

radiationprotection;environmentalprotection;industrial,chemical,andfiresafety;integrated

safety analysis; licensing; material control and accounting; security; and emergency

preparedness.  Emergency preparedness and response programs are supported by each

functionalareaasneeded.Theintegratedsafetyanalysis(ISA)processissupportedbyeach

functionalareaprovidingISATeammembersasneeded.

TheRegulatoryAffairsdisciplinemonitorsoperationstoensuretheyareconductedincompliance

withfederal,state,andlocalregulations,andisauthorizedtosuspendoperations,approvere start of operations, and/or require additional safety precautions when such measures are

necessary in the interest of plant safety, security, or protection of the environment.  The

RegulatoryAffairsdisciplineisadministrativelyindependentoftheManufacturingdiscipline,but

bothdisciplinesmayreporttoacommonmanagementposition.

TheRegulatoryAffairsdisciplineisresponsibleforoversightofthesafetyreviewcommitteeas

describedinSection2.4.TheChairpersonofthesafetyreviewcommitteeisconsideredtobea

memberofthecommitteeandhe/shemayrepresentoneofthedisciplines/functionsonthe

committeeifapprovedbytheplantmanager,ordesignatedalternate.

TheminimumqualificationsforaRegulatoryAffairsdisciplinemanagerareaBS/BAoradvanced

degree(mastersordoctorate)inscienceorengineeringandatleastfiveyearsofmanagement

experience in the nuclear industry, a nuclearrelated field, and/or in assignments involving

regulatoryactivities.He/shemusthaveappropriateunderstandingofthefunctionalprogram(s)

beingmanaged.

2.3.4.1NuclearCriticalitySafetyFunction

The nuclear criticality safety (NCS) function has responsibility for the development and

implementationofacomprehensivenuclearcriticalitysafetyprogram,asdefinedinChapter5.

KeyresponsibilitiesincludetheperformanceofNCSevaluationsofapplicableSNMoperations

andproposedchangestothoseoperations;establishingNCSlimitsandcontrolsbasedonthose

evaluations;assuringtheproperincorporationofNCSengineeredcontrolsintodesign;assuring

the proper incorporation of NCS limits and controls into applicable procedures and work

instructions;andmonitoringplantcompliancewiththeNCSrequirementsthroughauditsand

assessments.  The NCS function is administratively independent of Production and has the

authoritytoshutdownpotentiallyunsafeoperations.

Theminimumqualificationsfortheindividualresponsibleforoversightofthenuclearcriticality

safetyfunctionareaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineering

andatleastthreeyearsofexperienceinnuclearcriticalitysafety.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page26

The minimum qualifications for nuclear criticality safety engineers are a BS/BA or advanced

degree(mastersordoctorate)inscienceorengineeringandsuccessfulcompletionofaformal

internaltrainingandqualificationprogramthatisdefinedinapprovedprocedures.

2.3.4.2RadiationProtectionFunction

Theradiationprotectionfunctionhasresponsibilityforestablishingandmaintainingtheradiation

safetyprogramnecessarytoensuretheprotectionofemployeesattheTRISOXFuelFabrication

Facilityandthecommunity,asdefinedinChapter4.Keyresponsibilitiesincludemanagementof

the ALARA, dosimetry, and radiation monitoring and surveillance programs; analysis and

approvalofoperationsinvolvingradiologicalsafetyandproposedchangestothoseoperations;

establishing radiation protection criteria, procedures, and training programs to control

contamination and exposure to individuals and the environment; and monitoring plant

compliancewiththeradiologicalprotectioncriteriathroughinspectionsandaudits.Radiation

monitoringincludesmeasurementofairborneradionuclideconcentration,contaminationlevel,

andexternalradiationlevels;evaluationoftheoperationalintegrityandreliabilityofradiation

detectioninstruments;andmaintenanceofrecordsrelatedtotheradiationmonitoringprogram.

Thesetasksareaccomplishedthroughtheuseofhealthandsafetytechnicians,healthandsafety

technician supervisor(s), health physicists, and individual(s) responsible for oversight of the

radiationprotectionfunction.Theradiationprotectionfunctionisadministrativelyindependent

ofproductionandhastheauthoritytoshutdownpotentiallyunsafeoperations.

The individual(s) responsible for oversight of the radiation protection function administer

activities associated with radiological safety and has direct access to the plant manager (or

equivalent)invitalmattersofradiologicalsafety.Thisincludesmonitoringandcontrolofareas

ofairborneradioactivity,surfacecontamination,containment,ventilation,internalandexternal

dosimetry,andbioassayservices.

The minimum qualifications for the individual(s) responsible for oversight of the radiation

protection function are a BS/BA or advanced degree (masters or doctorate) in science or

engineering,andatleastthreeyearsofexperienceinradiationsafetyandhaveanunderstanding

oftheapplicationanddirectionofradiationprotectionprograms.

TheminimumqualificationsforahealthphysicistareaBS/BAoradvanceddegree(mastersor

doctorate)inscienceorengineering,andatleastoneyearofexperienceinhealthphysicsata

nuclearfacility.

2.3.4.3EnvironmentalProtectionFunction

Theenvironmentalprotectionfunctionhasresponsibilityforestablishingandmaintainingthe

environmentalprotectionprogramnecessarytoensuretheprotectionofthepublicandthe

environment, as defined in Chapter 9.  Key responsibilities include identification of

environmental requirements of federal, state, and local regulations governing TRISOX

operations; assurance of proper federal and state permits, licenses, and registrations for

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page27

radiologicalandnonradiologicaldischargesfromthefacilityandwastehandlinganddisposal

activities;analysisandapprovalofoperationsinvolvingpotentialenvironmentalreleasesand

proposed changes to those operations; establishing environmental protection criteria,

procedures,andtrainingprogramstomonitorgaseousandliquideffluentsandwastehandling

and disposal; and monitoring plant compliance with the environmental protection criteria

throughinspectionsandaudits.Theenvironmentalfunctionisadministrativelyindependentof

productionandhastheauthoritytoshutdownpotentiallyunsafeoperations.

Theminimumqualificationsfortheindividual(s)responsibleforoversightoftheenvironmental

protection function are a BS/BA or advanced degree (masters or doctorate) in science or

engineering, and at least three years of experience in applied health physics and/or

environmentalprotection.

TheminimumqualificationsforanenvironmentalprotectionspecialistareaBS/BAoradvanced

degree(mastersordoctorate)inscienceorengineering,andatleastoneyearofappliedhealth

physicsorenvironmentalprotectionexperience.

2.3.4.4Industrial,Chemical,andFireSafetyFunctions

Theindustrialandchemicalsafetyfunctionshaveresponsibilityforindustrialhygieneorchemical

safety,asdefinedinChapter6;industrialsafety;andrespiratoryprotection.Keyresponsibilities

includeanalysisandapprovalofoperationsinvolvingindustrialsafetyandproposedchangesto

thoseoperations;establishingindustrialsafetycriteria,procedures,andtrainingprogramsto

protecttheworkersfromindustrialhazards;andmonitoringplantcompliancewiththeindustrial

safety/hygieneprogramthroughinspectionsandaudits.

Thefiresafetyfunctionhasresponsibilityforthefireprotectionprogram,asdefinedinChapter

7.

Key responsibilities include analysis and approval of operations involving fire safety and proposedchangestothoseoperations;establishingfiresafetycriteria,procedures,andtraining programstoprotecttheworkersfromfirehazards;andmonitoringplantcompliancewiththe fireprotectionprogramthroughinspectionsandaudits.Theindustrial,chemical,andfiresafety functionsareadministrativelyindependentofProductionandhavetheauthoritytoshutdown potentiallyunsafeoperations.

The minimum qualifications for the individual(s) responsible for oversight of the industrial,

chemical,andfiresafetyfunction(s)areaBS/BAoradvanceddegree(mastersordoctorate),

dependingonfunctionalassignment(s),inindustrialhygiene,industrialsafety,fireprotection,or

other appropriate field, and at least three years of experience related to functional

assignment(s).

The minimum requirements for safety specialist positions are a BS/BA or advanced degree

(masters or doctorate) with specialized training, depending on functional assignment(s), in

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page28

environmentalhealth,fireprotection,industrialsafety/hygiene,chemicalsafety,orotherclosely

relatedfield,andatleastoneyearofexperiencerelatedtofunctionalassignment(s).

2.3.4.5IntegratedSafetyAnalysisFunction

TheintegratedsafetyanalysisfunctionhastheoverallresponsibilityfortheISAprogram,as

definedinChapter3.Keyresponsibilitiesincludetheperformanceofchemical,radiological,and

fire evaluations of applicable SNM operations and proposed changes to those operations;

establishingIROFSbasedonthoseevaluations;assuringtheproperincorporationofIROFSinto

applicableproceduresandworkinstructions;coordinatingupdatestotheISA;andmonitoring

plantcompliancewithISArequirementsthroughinspectionsandaudits.TheISAfunctionalso

hasresponsibilityformanagingtheSafetyRelatedEquipmentprogramforfunctionallytesting

IROFSonaperiodicbasis,asdefinedinChapter11.

TheminimumqualificationsfortheindividualresponsibleforoversightoftheISAfunctionarea

BS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringandatleastthree

years of experience in licensing, regulatory compliance, safety, and/or safety analysis in the

nuclearoranotherhighlyregulatedindustry.

2.3.4.6LicensingFunction

The licensing function has overall responsibility for acquiring and maintaining safetyrelated

licenses as required to operate the TRISOX Fuel Fabrication Facility, as well as the broad

responsibilityforinterfacewithregulatoryagencies.

Theminimumqualificationsfortheindividualresponsibleforoversightofthelicensingfunction

areaBS/BAoradvanceddegree(mastersordoctorate)inscienceorengineeringandatleast

threeyearsofexperienceinlicensing,regulatorycompliance,safety,and/orsafetyanalysisinthe

nuclearoranotherhighlyregulatedindustry.

2.4.3.7MaterialControlandAccountabilityFunction

Thematerialcontrolandaccountability(MC&A)functionmaintainsprogramstoassurethatSNM

is received, processed, stored, and transferred in accordance with federal regulations, and

implementsthesefunctionsthroughtheareasofSNMsafeguards,SNMaccountability,shipping,

andreceiving.

TheminimumqualificationsforkeyMC&ApersonnelaredefinedintheFundamentalNuclear

MaterialControlPlan.

2.3.4.8SecurityFunction

Thesecurityfunctionisresponsibleforimplementingthesecurityprogramasdefinedinthe

PhysicalSecurityPlanandtheSafeguardsInformationPlan.

TheminimumqualificationsforkeySecuritypersonnelaredefinedinthePhysicalSecurityPlan.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page29

2.3.4.9EmergencyPreparednessFunction

The emergency preparedness function is responsible for implementing the emergency

managementprogramasdefinedinChapter8andtheSiteEmergencyPlan.

TheminimumqualificationsforkeyEmergencyPreparednesspersonnelaredefinedintheSite

EmergencyPlan.

2.3.5 QualityAssurance

TheQualityAssurancedisciplineassessessystematicprogramsforindoctrinationandtrainingof

personnelperformingqualityrelatedsafetyactivities;forspecifyingduringthedesignphasethe

extent of quality assurance or confidence necessary for qualityrelated safety structures,

systems,andcomponents;andforperformingaudits,surveillances,andassessmentsofquality related safety activities.  The quality assurance program is based on, but is not limited to,

applicablerequirementsandguidanceinISO9001:2015.TheQualityAssurancedisciplineis

administrativelyindependentofoperationsandhasnootherdutiesorresponsibilitiesunrelated

toqualityassurancethatwouldinterferewithcarryingoutthedutiesofthisdiscipline.

The minimum qualifications for the Quality Assurance discipline manager are a BS/BA or

advanceddegree(mastersordoctorate)inscienceorengineeringandatleastfiveyearsof

experience in quality assurancerelated activities in the nuclear or another highly regulated

industry.

2.4

SafetyReviewCommittee

The safety review committee membership includes discipline managers, or individuals

responsibleforoversightofregulatoryaffairsfunctionsthatmeetthequalificationsofadiscipline

manager,ofthefollowingdisciplines:

x Manufacturing; x

Engineering; x

Safety&Regulatory;and x

Safeguards.

Thecommitteeisresponsibletotheplantmanager,orthedisciplinemanagerauthorizedtobe

his/heralternate,whoretainsoverallauthorityfortheapprovalordisapprovalofcommittee

membershipandactions.

Theauthorityandresponsibilitiesofthefullsafetyreviewcommitteeincludethefollowing:

x Reviewingproposedlicensechangesaffectingsafety,physicalsecurity,emergency preparedness,and/ormaterialcontrolandaccountabilitybeforetheassociatedlicense amendmentapplicationsaresubmittedtotheNRC.

x ReviewingtheALARAprogramforatleastthefollowing:

Trendsinairactivity,

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page210

Cumulativeexposure,

Engineeringdesignandpersonnelworkpractices.

x WorkingwiththeRegulatoryAffairsdisciplinetoimplementtheALARAprogram.

x Reviewingresultsofsafetyinspections,audits,andinvestigationswhichthelicense requiresbeconducted.

x Reviewingallviolationsofregulationsorlicenseconditionshavingsafetysignificance.

Thecommitteewillmeetatthefollowingfrequencies:

x todiscusstopicssuchasproposedlicensechangesasneeded; x

todiscussALARAconsiderationsatleastsemiannually; x

toreviewlicenserequiredsafetyinspections,audits,investigations,andviolationsof regulationsorlicenseconditionsatleastquarterly.

Its proceedings, findings, and recommendations will be documented in writing and made

availabletotheplantmanageranddisciplinemanagement.Suchreportswillberetainedforat

leastfiveyears.

Committeereviewofmattersotherthanthebulleteditemsabovemaybeconductedbyeither

individualrevieworcollectivelyatameeting;however,individualmembersofthecommittee

havetheauthoritytorequestameetingoftheentirecommitteeonanygivenmatter.

2.5

Administration

2.5.1 ReportingofPotentiallyUnsafeConditionsorActivities

Procedures are available for any person at the TRISOX Fuel Fabrication Facility to report

potentiallyunsafeconditionsoractivitiestotheRegulatoryAffairsdiscipline.Promptreporting

is expected so that conditions adverse to safety can be corrected as soon as practicable.

Personnelhavetheauthoritytostopworkifunsafeconditionsorbehaviorsareobserved,orif

anyaspectofaprocedureisunclearorincorrectaswrittenasnotedinSection11.4.Theincident

investigationsandcorrectiveactionprogramisdiscussedfurtherinSection11.6.

2.5.2 ManagementMeasures

ManagementmeasuresthatensurethereliabilityandavailabilityofIROFSareestablishedas

describedinChapter11.

2.5.3 OffSiteEmergencyResponseResources

WrittenagreementswithoffsiteemergencyresponseorganizationsaredescribedinChapter8.

2.6

TransitionfromDesigntoConstructiontoOperations

The TRISOX organization as described in Sections 2.2 and 2.3 represents the personnel

responsiblefor safeoperations, and the organization is also responsible for providing direct

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page211

supervisionofplanning,organizing,andoverseeingtheconstruction,installation,initialtesting

andcommissioningofthefacilityandequipment,includingmodificationsinthefuture,using

writtenplansandprocedures.Constructionoversightplansandproceduresincludedescription

ofoversightactionstobeperformedbyTRISOXpersonnelforIROFS.

Forinitialfacilityconstruction,anarchitect/engineering(A/E)firmhasbeencontractedtospecify

facility structures and systems, as well as to ensure the design meets applicable codes and

standards.Duringtheconstructionphase,constructionactivitiesandpreparationofconstruction

documentsarecompletedusingappropriatelyexperiencedcontractors.TRISOXoversightofthe

A/Eandconstructioncontractsmayinvolveoneormoredisciplines/functionsdependingonthe

scopeofthedesignorconstructionactivity.

ConstructionphaseoversightofIROFSisprovidedbyTRISOXpersonnelwithintheEngineering,

RegulatoryAffairs,andQualityAssurancedisciplinesthatmeettheminimumrequirementsofa

BS/BAand/oradvanceddegree,andatleastoneyearofrelevantexperienceapplicabletothe

technicaldiscipline,scope,andcomplexityoftheconstructionoversightassignment.Whena

constructionmanagementfunctionisused,thesameminimumqualificationsapply.Oversight

activitiestypicallyinclude,butarenotlimitedto,witnessingofconstructionactivities,verifying

materialinputs,orconfirmingcompletioninaccordancewithstatedrequirements.Ifacode,

standard, or specification governing a particular element of construction identifies specialty

training or experience is required to conduct certain construction oversight activities,

appropriate resources will be identified and assigned. Issues or problems identified during

constructionofIROFSarereferredtotheincidentinvestigationsandcorrectiveactionprogram

asdiscussedfurtherinSection11.6.

Astheconstructionofsystemsiscompleted,theyundergofunctionalandacceptancetesting,as

appropriate, in accordance with approved procedures.  Following successful completion of

testingandcommissioning,detailedplansdescribethetransitionfromcommissioning/startup

phasetooperations.OperationalreadinessreviewsledbytheTRISOXorganizationareusedto

confirmtheequipmentineachprocessareaisfunctionallytestedandreadytooperate,items

reliedonforsafetyareinplace,licenserequiredprogramsandcommitmentsareimplemented,

operating procedures are approved, and the assigned staff is trained and ready to safely

commenceoperationswhenauthorizedtodoso.

Theturnoverwillincludephysicalsystemsandcorrespondingdesigninformationandrecords.

Followingturnover,themanufacturingorganizationwillberesponsibleforsystemmaintenance

and configuration control.  The design basis is maintained following the configuration

managementsystemdescribedinChapter11,ManagementMeasures.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page212

Figure21:FunctionalOrganizationChart

Disciplines

Functions

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page213

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0002toheader.

Section2.2

Deletedfunctionalinthesecondsentenceofthefirstparagraph

whendescribingtheorganizationaldisciplinesduetoTX0LTR0022,

LicenseChapter2RAI1andadditionalfeedbackfromNRCon

11/15/2024.

Section2.3

Paragraph1:Deletedfunctionalwhendescribingthekeypositions

duetoTX0LTR0022,LicenseChapter2RAI1andadditional

feedbackfromNRCon11/15/2024.

Paragraph3:

x ClarifiedwordingduetoTX0LTR0022,LicenseChapter2 RAI2.

x EquivalentexperiencechangesduetoTX0LTR0022,License Chapter2RAI6.

x TypeofworkexperiencechangesduetoTX0LTR0022, LicenseChapter2RAI7.PeradditionalfeedbackfromNRC on11/15/2024,addedrelevant.

Sections

2.3.2,2.3.3,

the6

subsections

of2.3.4,and

2.4

DuetoTX0LTR0022,LicenseChapter2RAI1andadditional

feedbackfromNRCon11/15/2024,addedoversightoftoclarify

thatthequalificationsapplytotheindividualresponsiblefor

oversightofthefunction,andnottoallmembersinthegroup.

Sections

2.3.1,2.3.2,

2.3.3,2.3.4

andrelated

subsections,

and2.3.5

ClarifiededucationrequirementstobeaBS/BAoradvanceddegree

(mastersordoctorate)duetoTX0LTR0022,LicenseChapter2RAI 6andRAI7.

Section2.3.4

Paragraphs1and2:ChangesduetoTX0LTR0022,LicenseChapter2

RAI4.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0002

SNMXXXX

CHAPTER2

ZŽ

December2024

Page214

Revision

Date

Section/Page

DescriptionofChanges

Paragraph3:ClarificationsduetoTX0LTR0022,LicenseChapter2

RAI5.

Section

2.3.4.3

ChangedanalysttospecialisttoalignwithSection2.3.4.4dueto

TX0LTR0022,LicenseChapter2RAI1.

Section2.4

Paragraph2:Deletedtoremovepotentialconflictsandconfusion

withthequalificationsthroughouttherestofChapter2duetoTX0 LTR0022,LicenseChapter2RAI5.

Paragraph3:Simplifiedtocoverbothmembershipandactionsdue

toTX0LTR0022,LicenseChapter2RAI5.

Section2.5.1

Addedstatementthatpersonnelhavetheauthoritytostopwork,

andimprovedalignmentwithSection11.6,duetoTX0LTR0022,

LicenseChapter2RAI3.

Section2.6

UpdatedconstructionphaseoversightactivitiesforIROFSand

experiencerequirementsbasedonTX0LTR0022,LicenseChapter2

RAI8,andTX0REGLTR0041,QA/MgtMeasuresRAI11,whichwas

acompletereplacementofTX0LTR0020,RAI11.

Added new last sentence Issues or problems identified during

constructionofIROFSarereferredtotheincidentinvestigationsand

correctiveactionprogramasdiscussedfurtherinSection11.6dueto

TX0LTR0022, Chapter 2 RAI8 as further discussed with NRC on

11/15/2024.

Figure21

AddeddashedlinestodistinguishbetweenDisciplinesand

FunctionsduetoTX0LTR0022,LicenseChapter2RAI1and

additionalfeedbackfromNRCon11/15/2024.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0003 SNMXXXX CHAPTER 3 Revision December 2024 Page 31 INTEGRATED SAFETY ANALYSIS Table of Contents SECTION TITLE STARTS ON PAGE 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 Integrated Safety Analysis (ISA) Program and Commitments Process Safety Information ISA Methods ISA Consequence Determination ISA IROFS Selection and Likelihood Determinations ISA Risk Index Determination ISA Team Qualifications ISA Change Management Additional ISA Program Commitments 32 3.2 ISA Summary and ISA Documentation 310 3.3 Management Measures 310 3.4 Recordkeeping 310 3.5 Requirements for New Facilities or New Processes at Existing Facilities 310 TRISO-X Document Control 2024.12.30 12:23:53 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page32

INTEGRATEDSAFETYANALYSIS

3.1

IntegratedSafetyAnalysis(ISA)ProgramandCommitments

TRISOX maintains an ISA for the areas of the facility that involve or could impact the safe

handlingofSNMinaccordancewith10CFR70SubpartHand10CFR70.65(a).TheISAProgram

establishesandmaintainsthesafetyprogramrequiredby10CFR70.62(a)(1)andconsistsofthe

followingelements:

1) ISAProgramcommitmentsinthischapter,
2) ISASummarydocuments,and
3) SupportingISAinformationmaintainedatthefacility.

3.1.1 ProcessSafetyInformation

Processsafetyinformationiscompiledandmaintainedinsufficientdetailtosupportthecreation

andupdatingoftheISArequiredby10CFR70.62(b).Thecompilationofwrittenprocesssafety

information includes information on the hazards, materials, technology, and equipment

associatedwitheachprocess.Processsafetyinformationcanvarydependingonthecomplexity

oftheoperation,butitmayincludeitemssuchaspipingandinstrumentationdiagrams(P&IDs),

flowdiagrams,processdescriptions,andotheraidsthatallowidentificationandunderstanding

ofthehazardsassociatedwitheachprocess.

3.1.2 ISAMethods

TheISAconductedandmaintainedasrequiredby10CFR70.62(c)isasystematicanalysisof

TRISOXFFFprocessesthatidentifiesfacilityandexternalhazardsandtheirpotentialforinitiating

credibleaccidentscenarios;theconsequencesandlikelihoodofthecredibleaccidentscenarios;

andtheitemsreliedonforsafety(IROFS)neededtomeettheperformancecriteriaspecifiedin

10CFR70.61.IROFSwillbeestablishedandmaintainedsuchthattheywillbeavailableand

reliableasneeded.

CredibleaccidentscenariosareidentifiedthroughPHAsusingmethodologieslistedinNUREG 1513,IntegratedSafetyAnalysisGuidanceDocument,andthemethodisselectedbasedonthe

complexityoftheprocesstobeanalyzedandtheseverityofthehazards.Hazardsreviewed

includepotentialforinadvertentnuclearcriticality;radiologicalexposures;andchemical,fire,

andfacilityhazardsthatcouldincreaseradiologicalrisk.Accidentscenariosconsidercredible

deviationsfromthenormaloperationoftheprocessandfailureoftheIROFSfortheprocess

beingreviewed,includingconsiderationofhumanactionsanderrorsthatcouldleadtoaccidents

ofconcern.Facilityeventsexternaltotheprocessbeingevaluatedarealsoreviewed.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page33

3.1.3 ISAConsequenceDetermination

For each credible accident scenario, the unmitigated consequences are evaluated using

qualitativeand/orquantitativemethods,suchasthosedescribedinNUREG/CR6410,Nuclear

Fuel Cycle Facility Accident Analysis Handbook.  Alternative methods and other industry

accepted techniques may also be used to perform consequence calculations, provided the

methodsareappropriatetotheprocess,thephysicalsetting,andthespecificconditionbeing

evaluated.Accidentscenariosmaybegroupediftheywillresultinasimilarconsequence,such

asanindoorspillofuranylnitrate.Basedontheevaluationresultsascomparedtothe10CFR

70.61 consequence thresholds, each credible accident scenario is assigned a consequence

categoryofLow,Intermediate,orHigh.Credibleaccidentscenarioswiththepotentialof

resultinginacriticalityareassumedtobeHighconsequenceevents.Thethresholdcriteria

used to determine if unmitigated accident sequences have the potential to exceed the

intermediateorhighradiologicalorchemicalconsequencelevelsof10CFR70.61(b)and(c)as

summarizedinTable31below.

Table31

10CFR70.61RadiologicalandChemicalConsequenceExposureLevels

Consequence

Level

Radiological

Chemical(Note1)

Worker

Public/Environment

Worker

Public/Environment

High

TEDE100rem

TEDE25rem

CHEM3

400mgsolubleU

CHEM2

30mgsolubleU

Intermediate

100rem>

TEDE

25rem

25rem>

TEDE

5rem

5000x10CFR20,

Table2,

App.Blimits

averagedover

24hourperiod

CHEM2

<CHEM3

150mgand

<400mgsolubleU

CHEM1

<CHEM2

Low

<Intermediate

Levels

<Intermediate

Levels

<Intermediate

Levels

<Intermediate

Levels

CHEM=AEGL,ERPG,orTEEL

Note1:Forchemicalconsequences,theAcuteExposureGuidelineLevels(AEGLs)areusedifavailable.If

noAEGLsareavailable,EmergencyResponsePlanningGuidelines(ERPGs)areused.IfnoERPGs

areavailable,TemporaryEmergencyExposureLevels(TEELs)areused.IftherearenoAEGLs,

ERPGs,orTEELsavailable,theISASummaryidentifiesthemethodologyusedtodetermineifthe

chemicalposesanacutehazard.Thesolubleuraniumintakelimitsarebasedon10CFR70.61,

ISG14,NUREG1391,andDOESTD11362017.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page34

AriskassessmentisperformedforthosecredibleaccidentscenarioswithIntermediateor

High consequences.  Qualitative or quantitative risk assessment methods are used to

determinethelikelihoodandriskofeachcredibleaccidentscenario.

3.1.4 ISAIROFSSelectionandLikelihoodDeterminations

IROFSareidentifiedtopreventormitigateeachcredibleaccidentscenariosuchthatthe10CFR

70.61performancecriteriaaremetbyIntermediateconsequenceeventsbeingunlikelyand

High consequence events being highly unlikely as defined in the ISA Summary.  IROFS, in

preferential order, may be engineered controls (passive or active), enhanced administrative

controls(activefeaturesthatpromptapersontotakeanaction),oradministrativecontrols

(actionsofpeople).

TheInitiatingorEnablingEventFrequencyIndexisanumericalvalueassignedtoeachaccident

sequencebasedonaqualitativeorquantitativeassessment.Methodsoflikelihoodevaluation

anddefinitionsofthelikelihoodtermsunlikelyandhighlyunlikelymaymixqualitativeand

quantitative information. Therefore, the frequency index is defined both qualitatively and

quantitativelyinTable32.Theoccurrencerateandqualitativedescriptionfoundonthesame

rowapplytothesamefrequencyindexinTable32.TheOccurrenceRatecolumnprovidesa

quantitativedefinition,andisintendedtobeusedwhenquantitativeinformationisavailable,

such as industry acceptable values, analytical data, or vendor failure data. The Qualitative

Description column provides a qualitative definition, and is intended to be used when

qualitativeinformationisavailable,suchasengineeringjudgementorpastexperience.Oneor

bothsetsofinformationmaybeusedtodeterminethefrequencyindex.Theindexmaybeone

valuehigherorlowerthanlistedinTable32withsufficientjustificationasdocumentedinthe

NCSEorRiskAssessmentdocument.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page35

Table32

InitiatingandEnablingEventFrequency(IE/EE)

Frequency

Index

Occurrence

Rate1

QualitativeDescription

6

106/yr

Notcredible

4

104/yr

Physicallypossible,butnotexpectedtooccur,

equivalenttonofailuresin30yearsforhundredsof

similarIROFSinindustry.

3

103/yr

Notexpectedtooccurduringtheplantlifetime,

equivalenttonofailuresin30yearsfortensofsimilar

IROFSinindustry.

2

102/yr

Notexpected,butmightoccurinplantlifetime,

equivalenttonofailureofthistypeinthisfacilityin30

years.

1

101/yr

Afewfailuresmayoccurduringplantlifetime.

0

1/yr

Failuresoccurevery1to3years.

1

10/yr

Severaloccurrencesperyear.

1Basedonorderofmagnitudeapproximation.101/yrorlessis1,102/yrorlessis2,etc.

Ptypeeventsarecharacterizedbyaprobabilityoffailureupondemand(PFOD)andtypically

includeIROFSthatarenotcontinuouslychallengedbutthatmustperformasafetyfunctionon

demand(subsequenttoaprocessdeviationorfailure).Ftypeeventsarecharacterizedbya

frequencyofoccurrenceandtypicallyincludeIROFSthatarecontinuouslychallenged,ratherthan

thosethatarerequiredtoperformasafetyfunctiononlywhencertainconditionsarepresent.

Engineeredandadministrativecontrolsthatareneededtomeettheperformancerequirements

of10CFR70.61aredesignatedasIROFS.EachptypeIROFSisassignedanEffectivenessof

ProtectionIndex(EOPI)asspecifiedinTable33.Theindexisanumericalvalueassignedtoeach

IROFSbasedonaqualitativeorquantitativeassessmentrepresentingthecreditgiventoIROFS

inaccidentsequences,considering:

x CharacteristicsoftheIROFSusedtopreventormitigatetheaccidentofconcern(safety margin,typeofcontrol,properdesign,independence,reliability,availability,andother managementmeasures) x EvaluationofIROFSfailurestoensurethatcommonmodeorcommoncausefailures donotexistforaccidentsequencesthatinvolvemorethanoneIROFS.

x Industryacceptablevalues,engineeringjudgement,analyticaldata,andpast experience TheindexmaybeonevaluehigherorlowerthanlistedinTable33withsufficientjustification

asdocumentedintheNCSEorRiskAssessmentdocument.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page36

Table33

IROFSEffectivenessofProtectionIndex(EOPI)

Effectivenessof

ProtectionIndex

TypeofIROFS

4

ProtectedbyaninspectedPassiveEngineeredControlthatmeets

theadditionalbasisinISASummary,Section5.10.4.2,with

managementmeasuresappliedtoensureavailabilityandreliability.

OR

ProtectedbyaSafetyIntegrityLevel(SIL)4activeengineeredcontrol

withmanagementmeasuresappliedtoensureavailabilityand

reliability.SIL4ratingdemonstratedforallcomponentswithinthe

IROFSboundaryperthemethodsinIEC615111:2016,which

addresseslifecyclephasesfrominitialconcept,design,

implementation,operation,andmaintenancethrough

decommissioning.Supportedbyaprobabilityoffailureupon

demandorfailurefrequencycalculationperISASummary,Section

5.10.4.1.

3

ProtectedbyafunctionallytestedActiveEngineeredControlwith

managementmeasuresappliedtoensureavailabilityandreliability.

Supportedbyaprobabilityoffailureupondemandorfailure

frequencycalculationperISASummary,Section5.10.4.1.

OR

ProtectedbyaninspectedPassiveEngineeredControlwith

managementmeasuresappliedtoensureavailabilityandreliability.

2

Protectedbyatrainedoperatorperformingaroutinetaskwithan

approvedprocedure;anenhancedadministrativecontrol;oran

administrativecontrolwithmarginofsafety,independence,and

managementmeasuresappliedtoensureavailabilityandreliability.

1

Protectedbyatrainedoperatorperforminganonroutinetaskwith

approvedwritteninstructions.

0

Noprotection

IftheinitiatingeventinvolvesaptypeIROFSfailure,theEffectivenessofProtectionIndexper

Table33ismodifiedtotakedemandrateintoaccountperTable33a.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page37

Table33a

DemandRate

ModifyTable33Index

Hundredsoftimesperyear(daily)

Increasebaseindexby2

Tensoftimesperyear(monthly)

Increasebaseindexby1

Onceperyear

Usebaseindex

Onceevery10years

Decreasebaseindexby1

The modified EOPI is then assigned to the IROFS failure rather than the Initiating Event

FrequencyIndexfromTable32.TheEOPIismodifiedperTable33atoamaximumfrequency

indexof0.

ThedurationoftheIROFSfailureisalsoconsideredbasedontheDurationIndexprovidedin

Table34.TheDurationIndexisanumericalvalueassignedbasedonaqualitativeassessmentof

howquicklytheIROFSfailurewouldbediscoveredconsideringengineeringjudgement,design

information,pastexperience,andtheassociatedmanagementmeasures.TheDurationIndexis

identifiedasDurintheriskassessment.

Table34DurationIndex

(Dur)

DurationIndex

AverageFailureDuration

1

Morethan3years

0

1year

1

1month

2

Afewdays

3

8hours

4

1hour

5

5minutes

InordertocreditaDurationIndexoflessthan1,oneofthefollowingconditionsmustbe

satisfiedsoactionscanbetakentoaddressafailedIROFS:

x IROFSfailurewouldbeeasilydetectedbasedonitslocationandtypeoffailure(e.g.,

withinfrequenttravelpath).

x IROFSfailurewouldbeeasilydetectedbasedontheactivitythatcausesitsfailure(e.g.,

maintenanceactivitythatcausesareleaseofmaterialfromavesselwouldbe immediatelyrecognizedbythepersonnelperformingthework).

x IROFSfailureisidentifiedbyperiodictestsorrequiredsurveillancescorrespondingto theselectedduration(e.g.,shiftinspection,functionaltesting,etc.).

TheLikelihoodIndexisdeterminedbysummingtheInitiating/EnablingEventFrequencyIndex

numbers, the Effectiveness of Protection Index for each IROFS, and when applicable, the

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page38

Duration Index assigned to the accidentsequence. If an accident sequence usesa Duration

Index,thesequenceneedstobereversedwhenthefailureofoneoftheotherIROFScanlead

toamorepositiveindex(i.e.,resultsinahigherLikelihoodIndex).

Foreachaccidentsequence,theTotalLikelihoodIndexiscalculatedas:

LikelihoodIndexT=IE/EE+EOPIforeachIROFS+Dur(whereapplicable)

TheLikelihoodCategoryisdeterminedusingtheLikelihoodIndexasspecifiedinTable35.

Table35

TotalRiskLikelihoodCategory

LikelihoodIndex(T)

(=sumofindexnumbers)

LikelihoodCategory

T4

1

T=3

2

T>3

3

3.1.5 ISARiskIndexDetermination

TheRiskIndexisdeterminedbymultiplyingtheLikelihoodCategory(3.1.4)bytheConsequence

Category(3.1.3).TheRiskIndexisthencomparedtotheRiskMatrixinTable36todetermine

iftheRiskIndexisacceptableorunacceptable.

Table36

RiskMatrixwithRiskIndexValues

Severityof

Consequences

LikelihoodofOccurrence

LikelihoodCat.1

HighlyUnlikely

LikelihoodCat.2

Unlikely

LikelihoodCat.3

NotUnlikely

ConsequenceCat.3

High

AcceptableRisk

3

UnacceptableRisk

6

UnacceptableRisk

9

ConsequenceCat.2

Intermediate

AcceptableRisk

2

AcceptableRisk

4

UnacceptableRisk

6

ConsequenceCat.1

Low

BelowSeverityThreshold

3.1.6 ISATeamQualifications

PHAsareconductedbyanISATeamwithmembershipcommensuratewiththeprocessbeing

reviewed.Theteamtypicallyconsistsofateamleader;individualsknowledgeableoftheprocess

beinganalyzed;andindividualsrepresentingthesafetydiscipline,includingnuclearcriticality

safety,radiationprotection,chemicalsafety,andfiresafety;consistentwith10CFR70.62(c)(2).

Teammembersmayrepresentmorethanonefunctionalareabeingevaluated.Disciplinesthat

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page39

are not affected by the proposed process or change being evaluated do not require

representationontheteam.

Theteamleaderisdesignatedastheonememberoftheteamwhoisknowledgeableinthe

methodologies used to conduct PHAs and ensures that the team members understand the

methodologytobeused.

3.1.7 ISAChangeManagement

ChangestothefacilityoritsprocessesthatimpacttheISAareevaluatedusingaconfiguration

managementprogramthatmeetstherequirementsof10CFR70.72,asdescribedinChapter11,

sothattheISAanditssupportingdocumentationremainaccurateanduptodate.

Proposed changes to the facility or its processes are evaluated in accordance with the ISA

MethodsandISATeamQualificationsdescribedinthischapter.Ifaproposedchangeresultsin

a new credible accident scenario being identified or increases the consequences and/or

likelihood of a previously analyzed accident scenario, the existing IROFS and associated

managementmeasuresareevaluatedpromptlyforadequacyandnewIROFSareidentifiedor

changesaremade,ifrequired.IROFSwithunacceptableperformancedeficiencies,asidentified

throughthecorrectiveactionprogramorduringupdatestotheISA,areaddressed.

TheISASummaryisupdatedatleastannuallybyJanuary30th,incorporatingchangesmadeinthe

previouscalendaryearthataffectedtheISASummary.Theupdateddocumentsorpagesare

submittedtotheNRCper10CFR70.72(d)(3).

3.1.8 AdditionalISAProgramCommitments

1. TRISOXcommitstonosoleIROFS;therefore,afuturechangethatidentifiestheneedfor soleIROFSwouldresultinadeparturefromthemethodsofevaluationdescribedinthe LicenseApplicationthatestablishthedesignbasisandthusrequiresapprovalfromNRC priortoimplementationofthistypeofchange.
2. ThedefinitionsofhighlyunlikelyandunlikelyinSection9oftheISASummaryareusedto determine reportability when evaluating a process upset against the 10 CFR 70.61 performancerequirements.
3. Toprovideadditionalmarginofsafetysimilartothedoublecontingencyprincipleused fornuclearcriticalitysafety,noncriticalityaccidentsequences(chemical,radiological, fire) will be demonstrated to meet one additional order of magnitude beyond the definitionsofhighlyunlikelyandunlikelyinSection9oftheISASummary.
4. Accidentsequencesthatarepreventedormitigatedbyonlyadministrativecontrolsare addressedinSection3.5.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page310

3.2

ISASummaryandISADocumentation

TheISASummarycontainsthefollowingelementsasrequiredby10CFR70.65(b):

x Generaldescriptionofthesite; x

Generaldescriptionofthefacility; x

Descriptionoffacilityprocesses,hazards,andtypesofaccidentsequences; x

Demonstrationofcompliancewith10CFR70.61performancerequirements; x

DescriptionoftheISAteamqualificationsandISAmethods; x

ListofIROFS; x

Descriptionofchemicalconsequencestandards; x

ListofsoleIROFS(ifany);and x

Definitionsofthetermscredible,unlikely,andhighlyunlikely.

TheISADocumentationincludessupportinginformationsuchasPHAs,NuclearCriticalitySafety

Evaluations, Radiological / Chemical Accident Consequence Evaluations, and Fire Hazard

Analyses.Italsoincludesanycompleted10CFR70.72changemanagementdocumentationthat

maynothaveyetbeenincludedintheannualupdateoftheISASummary.

3.3

ManagementMeasures

Managementmeasuresrequiredby10CFR70.62(d)toensurethereliabilityandavailabilityof

eachIROFSareestablishedasdescribedinChapter11.

3.4

Recordkeeping

TRISOXdocumentationdevelopedinaccordancewithSection3.2andasrequiredby10CFR

70.62(a)(2)aremaintainedasrecords.TRISOXalsomaintainsrecordsoffailuresofIROFSor

management measures required by 10 CFR 70.62(a)(3). The TRISOX records management

programisdescribedinChapter11.

3.5

RequirementsforNewFacilitiesorNewProcessesatExistingFacilities

AsdescribedinSection11.1.2,designrequirementsarerequiredtobedeveloped,reviewed,

approved,anddocumentedfornewfacilitiesandprocesses/systemsbeforeinputofSNM.The

baselinedesigncriteriaidentifiedin10CFR70.64(a)areaddressedforIROFS.Asrequiredby10

CFR70.64(b),theTRISOXFuelFabricationFacilityisdesignedusingadefenseindepthapproach

forprotectionagainstprocessrelatedaccidents.Totheextentpracticable,thefacilitydesign

considerspreferencefortheselectionofengineeredcontrolsoveradministrativecontrolsto

increaseoverallsystemreliability,andfeaturesthatenhancesafetybyreducingchallengesto

IROFSareincorporated.Wherefacilityandsystemdesignsrelyonlyonadministrativecontrols,

theISAincludeswrittenjustificationthatdescribeswhyalternativestouseengineeredcontrols

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page311

arenotpractical.Thefacilitydesignaddressesthebaselinedesigncriteriaof10CFR70.64(a)for

newfacilitiesandthecontrolofprocesshazards.

TheISASummaryprovideshighlyunlikelydefinitionsforcrediblenaturalphenomenahazard

(NPH)initiatingeventssuchasearthquakes,tornadoes,andhighwindsthatcouldcauseadverse

damage/consequences.Collapseorlossoftheprocessbuildingsisconsideredhighlyunlikely

sincethedesignsatisfiesAmericanSocietyofCivilEngineers(ASCE)716,MinimumDesignLoads

andAssociatedCriteriaforBuildingsandOtherStructures,structuralrequirementsforaRisk

Category IV facility. This satisfies the performance requirements of 10 CFR 70.61 and the

requirementof10CFR70.64(a)(2)foradequateprotectionagainstnaturalphenomenawith

considerationofthemostseveredocumentedhistoricaleventsforthesite.

Thedesignbasisearthquake,highwind,tornado,andfloodingimpactstoprocessequipmentand

IROFSwithinthefacilityareevaluatedbytheindividualsafetyevaluationsuptothedesignbasis

NPHevent.Ifthefailureofprocessequipmenttoremaininplace(i.e.,collapseortopplingover)

orlosecontainmentcouldleadtoanintermediateorhighconsequence,sufficientIROFSare

establishedtomeettheperformancerequirements.GenericIROFSdesignatedasCriticalNon StructuralComponents(CNSCs)maybeused,whichinvokessectionC13.1.3ofASCE716to

ensurethecomponentremainsinplacebyusinganImportanceFactorof1.5toresistthedesign

basis NPH events. This satisfies the performance requirements of 10 CFR 70.61 and the

requirementof10CFR70.64(a)(2)foradequateprotectionagainstnaturalphenomenawith

considerationofthemostseveredocumentedhistoricaleventsforthesite.

Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense

amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontrolof

processhazards.Adefenseindepthapproachwillbeappliedtohigherriskaccidentsequences

asrequiredby10CFR70.64(b).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0003

SNMXXXX

CHAPTER3

Revision

December2024

Page312

REVISION

SUMMARY

Revision

Date

Section/Page DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0003toheader.

Section

3.1.4,

Table32

x Updatedtoreflectqualitativefrequencyindexvaluesand quantitativeoccurrenceratesduetoTX0REGLTR0040,Enclosure 1ISARAI7,andEnclosure4,ISASummarySection5.10.1and Table55.

x Addeddefinitionsofptype/ftypeeventsduetoTX0REGLTR 0040,Enclosure1ISARAI6,andEnclosure4,ISASummarySection 5.10.1.2.

Section

3.1.4,

Table33

x AddedreferencetoptypeIROFSandquantitativeassessments duetoTX0REGLTR0040,Enclosure1ISARAI6andISARAI8,and Enclosure4,ISASummarySection5.10.4.

x AddeddetailsfortheTypeofIROFSrepresentedbyEffectiveness ofProtectionIndexvaluesof4and3forpassiveandactive engineeredcontrolsduetoTX0REGLTR0040,Enclosure1ISA RAI3andISARAI8,andEnclosure4,ISASummaryTable56.

Section

3.1.4,

Table33a

AddednewTable33atomodifyTable33ifaninitiatingevent

involvesaptypeIROFSfailureduetoTX0REGLTR0040,Enclosure1

ISARAI8,andEnclosure4,ISASummarySection5.10.4.3andTable56a.

Section3.1.8

AddedAdditionalISAProgramCommitmentsasagreedtoin

meetingswithNRCon12/312/4/2024and12/16/2024toresolve

ISARAI5.

Section3.5

x Addedwherefacilityandsystemdesignsrelyonlyon administrativecontrols,theISAincludeswrittenjustification thatdescribeswhyalternativestouseengineeredcontrols arenotpracticalduetomeetingswithNRCon12/312/4/2024 and12/16/2024toresolveISARAI5toalignwithexplanationin NUREG1520,page321,Itemd,paragraph2.

x Naturalphenomenaeventchangesdueto(1)TX0REGLTR0040, Enclosure1ISARAI9andISARAI10,andEnclosure4,ISA SummarySection5.10.1.1;and(2)TX0REGLTR0045,Enclosure1 StructuralRAI2.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0004 SNMXXXX CHAPTER 4 ZŽ

December 2024 Page 41 RADIATION SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 4.1 Radiation Protection Program 42 4.2 ALARA Program 43 4.3 Organization and Personnel Qualifications 44 4.4 Procedures and Radiation Work Permits 44 4.5 Radiation Safety Training 45 4.6 4.6.1 4.6.2 4.6.3 4.6.4 Ventilation and Respiratory Protection Building / Area Ventilation Localized Ventilation Laboratory Ventilation Respiratory Protection 46 4.7 4.7.1 4.7.2 4.7.2.1 4.7.2.2 4.7.2.3 4.7.3 4.7.3.1 4.7.3.2 4.7.3.3 4.7.3.4 4.7.3.5 4.7.4 Radiation Survey and Monitoring Programs Radiation Surveys Dosimetry Program External Dosimetry Internal Dosimetry Air Sampling and Monitoring Program Contamination Control Access Control Surveying of Surfaces Protective Clothing Release for Unrestricted Use Leak Testing of Sealed Sources Environmental Monitoring 48 4.8 4.8.1 4.8.2 4.8.3 Additional Program Commitments Records Event Reporting Annual Dose Monitoring Report 415 4.9 Criticality Monitoring and Detection 415 TRISO-X Document Control 2024.12.30 15:57:18 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page42

RADIATIONSAFETY

4.1

RadiationProtectionProgram

TRISOXhasestablished,maintains,andimplementsaRadiationProtectionProgram(RPP)in

accordancewith10CFR20.1101thatiscommensuratewiththescopeandextentoflicensed

activitiesandensurescompliancewithapplicablesectionsof10CFR20.ThepurposeoftheRPP

istomaintainoccupationalandpublicdosesbelowregulatorylimitsandaslowasreasonably

achievable (ALARA).  Engineered controls (e.g., confinement, ventilation, equipment layout)

provideprimaryradiationprotectionfunctions.Additionalprotectionforworkersisprovided

throughaneffectiveRPPthatfocusesonmaintainingexposurestoionizingradiationALARA.The

guiding principles and requirements outlined in the RPP are reflected in programs and

implementingprocedurestoensurethat:

x RadiationexposuretooccupationalworkersandthepublicismaintainedALARA, x

Radiationprotectionstaffaretrainedandqualifiedtocarryoutradiationprotection procedures, x

Workisguidedbyandsupplementedwithdetailedandeffectiveradiationprotection proceduresandradiationworkpermits(RWPs),

x Personnelaretrainedinradiationprotectionprinciples,howtousetoolsandtechniques tominimizeexposuretoradiation,andqualifiedtoproperlyusePersonalProtective Equipment(PPE),

x Facilityventilationandcontainmentsystemsaredesignedtocontrolairborne concentrationsofradioactivematerial, x

Aradiologicalsurveyandmonitoringprogramisinplacetodocumentlevelsofradiation andcontamination,anddocumentoccupationalexposurestoradiation, x

IROFSthatlimithighandintermediateconsequencesareidentified,areconsistentwith regulatoryperformancecriteria,haveappropriatemanagementmeasureinplaceto ensuretheyareavailableandreliable,and, x

Programsandproceduresareinplacethataddressrecordsmaintenance,corrective actions,andreportingrequirements,asdescribedinChapter11.

TRISOXmanagementcommitmenttokeepexposuresALARAisdocumentedinaformalpolicy

statementthatholdsalllevelsofmanagementandindividualworkersresponsibleforadhering

to the companys ALARA policy.  To ensure that this commitment is implemented without

influencefromproductiondemands,theorganizationalstructurereflectsradiationprotection

staffreportingrelationshipsthatareindependentfromthefacilitysoperationsasdiscussedin

Chapter 2.  Radiation protection staff have clearly defined responsibilities, and possess the

authority,andtraining,toolsandequipmenttocarryoutthoseresponsibilities.Asrequiredby

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page43

10CFR20.1101(c),theRPPisreviewedonanannualbasisandconsiderschangesinthefacility,

technologies,andprocessesthatcouldenhancetheeffectivenessofALARAimplementation.

4.2

ALARAProgram

ALARAimplementationissupportedatthehighestlevelsofmanagementthroughwrittenpolicy.

These policies provide trained and qualified radiation protection staff with the authority to

preventpracticesthatarenotalignedwiththeALARAphilosophy.Managementpromotessafety

ingeneral,andradiationsafetyespecially,bysupportingacultureofinterdependence,learning,

employeeownershipandinputthatisessentialforimprovingsafety andkeepingexposures

ALARA.  Management is committed to providing facilities, operating and maintenance

procedures,andequipmentthatensuresthatexposurestoradiationareALARA.Additionally,

ALARA principles are integrated into approved policies and procedures and are an integral

componentinthegenerationanduseofRadiationWorkPermits(RWPs).

TheALARAprogramisoneoftheseveralwaysRPpersonnelinteractwithfacilitypersonnel.RP

personnelarealsoinvolvedinthepreparationofRWPs.ToprepareanRWP,RPpersonnelmust

interactwithfacilitypersonneltofullyunderstandtheactivityandfacilityconditionstoassess

associated radiological hazards.  RP personnel also interact with facility personnel with

participatinginsafetyaudits.

TRISOXssafetyreviewcommittee,asdescribedinChapter2,servesastheALARACommittee.

ALARA topics are reviewed and discussed at least annually to monitor employee dose and

environmentalreleasetrends,identifyareasforimprovement,tosetALARAgoals,implement

requiredchangesandreviewALARAperformance.

TheRadiationSafetyOfficer(RSO)isresponsibleforoverallradiationsafetyandensuringthat

exposuresareALARA.Areasofresponsibilityinclude:

x Involvementinplanningroutineandnonroutineworkactivities.

x EnsuringthatworkisguidedbyRWPsthateffectivelydescribeworkrequirements, precautions,andALARAengineeringcontrols.

x Ensuringthatradiationprotectioninstrumentation,equipment,andsuppliesare available,ingoodworkingorder,andareproperlyusedandmaintainedaccordingto approvedproceduresbasedonmanufacturersspecifications.

x AuditingfacilityALARAimplementation(aspartoftheRPPannualreview)toinclude:

o Exposurerecordreview o

Radiologicalinspections(surveyresults) o InterviewswithstaffconcerningapplicationandimplementationofALARA x

Evaluatingoperatingandmaintenanceprocedures,equipmentandfacilitiesfor modificationsthatcouldreduceoccupationalandpublicexposures.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page44

x Trackingfacilityexposuresandtrendsandproposingcorrectiveactions.

x Assuringtheproperimplementationofradiologicalworkcontrols.

x Evaluatingtheeffectivenessofplansandproceduresinmaintainingoccupationaland publicdosesALARA.

RadiationprotectionstaffareresponsibleforoverseeingtheimplementationofALARApractices

onaneverydaybasis.TheyareanessentialresourceforevaluatingTRISOXFFFprocessesfor

modificationsandimprovementsforALARApurposes.

4.3

OrganizationandPersonnelQualifications

Staffthatareresponsibleforthemanagementandimplementationoftheradiationprotection

program possess the education and training commensurate with their responsibilities.

Responsibilities,andtheauthoritynecessarytoimplementthoseresponsibilities,aredelineated

inpoliciesandprocedures.Themanagementsystemandadministrativeprocedures,including

radiation protection staff education, experience, and training requirements are detailed in

Chapter2.

4.4

ProceduresandRadiationWorkPermits

ApprovedRPPimplementingproceduresincorporateradiationprotectionrequirementsfoundin

10CFR19,20,70,and71,andotherapplicableregulations.TheRPPisimplementedthrough

approved radiation safety procedures and inclusion of radiation protection requirements in

operatingprocedures,equipmentmaintenanceprocedures,andRWPstoalertworkerstospecial

hazardsorcontrolsnecessaryfortheirprotection.RadiationprotectionandALARAprinciplesare

integratedintoallfacilityprocessandmaintenanceprocedures.TheRSOreviewsandapproves

allradiationprotectionprocedures.AsdescribedinChapter11,thefacilityDocumentControl

Processensuresthatproceduresarepromptlymodifiedwhentherearechangesintechnology

orpracticesandguidesprocedureauthorizationanddistribution.Trainingspecificallyaddresses

procedural changes.  The following is a general (not comprehensive), list of tasks or topics

associatedwithradiationsafetyforwhichproceduresareestablished.

x Measuringandreportingoccupationaldose x

MeasuringandreportingdosetothePublic x

RadiationSurveysandMonitoring x

PostingandLabeling x

AccessControl x

AirSampling/Monitoring x

CareandUseofPPE x

ReceivingandOpeningPackages x

StorageandControlofLicensedMaterial x

WasteManagementandDisposal

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page45

x IssuanceandTerminationofRWPs x

Investigationlevelsandactionguidesforexternalandinternalexposure TheRWPsystemisdocumentedinradiationprotectionproceduresandareissuedforspecific

tasksandforaspecifiedperiodoftime.TheRSO(ordesignee)mustreviewandapproveRWPs.

The RWP describes the tasks, work area known or potential radiological conditions, access,

monitoring,andPPErequirements,andanyspecialconditionsorprecautions.RWPsareposted

attheworksite,andpersonnelassignedtoworkundertheRWPreviewtherequirementsprior

toentryintothearea.

4.5

RadiationSafetyTraining

TRISOX management provides an effective radiation safety training program that meets

regulatoryrequirements,thatensuresthattheworkingenvironmentissafe,andensuresthat

employeesandvisitorsunderstandtherisksassociatedwithexposuretoradioactivematerials.

Trainingprogramsaredesignedandimplementedtocomplywiththerequirementsof10CFR

Parts19and20.Chapter11,ManagementMeasures,addressesthetrainingthatensuresthat

administrativecontrolIROFSareavailableandreliable.

RegulatoryguidanceusedtodeveloptheRadiationProtectionTrainingProgramincludes:

x ANSI/HPSN13.362001IonizingRadiationSafetyTrainingforWorkers x

NCRPReportNo.134OperationalRadiationSafetyTraining x

ASTME116895(R2008)RadiologicalProtectionTrainingforNuclearFacilityWorkers x

RegulatoryGuide8.10,Rev.2,August2016,OperatingPhilosophyforMaintaining OccupationalandPublicRadiationExposuresAsLowAsIsReasonablyAchievable x

RegulatoryGuide8.13,Rev.3,June1999,InstructionsConcerningPrenatalRadiation Exposure Agradedapproachthatiscommensuratewithradiationprotectionresponsibilitiesisappliedto

RadiationSafetyTraining.Levelsoftrainingarebasedonregulatoryrequirements,thepotential

forradiationexposure,andthecomplexityofthetask.Trainingandqualificationofworkers;

includingsiteorientation,generalemployee,radiationworker,radiationsafetytechnician,and

specialtytrainingisprovidedcommensuratewiththehazardandplannedactivities.Thelevelof

training reflects prior training, personnel that are responsible for supervising others, and

personnelthataredirectlyorcontinuouslysupervised.Tofacilitatefeedbackthatcouldassistin

keeping exposures ALARA, training for Health Physics personnel responsible for performing

surveysincludesspecifictrainingonprocessrelatedoperationsandtasks.Refreshertrainingis

providedeverythreeyearsandaddresseschangesinpolicies,procedures,requirements,andthe

facilityISA.

A formal review and evaluation of the radiation protection training program for accuracy,

effectiveness,andadequacyofthecurriculumandinstructorsisperformedatleasteverythree

years.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page46

Trainingisprovidedtoallpersonnelandvisitorsenteringrestrictedareasthatiscommensurate

with the potential radiological health risks associated with that individuals responsibilities.

Trainingincorporates,whereappropriate,theprovisionsin10CFR19.12,andalsoincludes,but

isnotlimitedto,trainingonthefollowingtopics.

x Radiationhazardsandhealthrisks, x

RadiationSafetyprinciples,policies,andprocedures, x

Safestorage,transfer,andhandlingofradioactivematerials, x

MaintainingRadiationDoseALARA, x

Access,egresscontrols,andescortprocedures, x

Contaminationcontrolprocedures,andPPE, x

ALARAandexposurelimits, x

Internalandexternalexposurecontrolandmonitoring, x

Radiationexposurereportstoindividuals, x

Monitoringinstruments, x

Emergencyresponse,and x

Reportingresponsibilities.

FurtherinformationonthetrainingprogramisfoundinChapter11.

4.6

VentilationandRespiratoryProtection

TheTRISOXFFFdesignsincorporateALARAprinciplesforconfinementandventilationsystems

tolimitairbornecontaminationlevels.Engineeredcontrolsandfeaturesminimizepotential

inhalationofradioactiveandotherhazardousmaterialsunderallnormaloperatingconditions;

therefore, for normal operations, respiratory protection is not required.  Equipment is

maintainedandtestedtoensuresystemsoperatewhenrequiredandarewithintheirdesign

specifications,asdescribedinChapter11.Ifengineeringcontrolsarenotpracticalorfeasible

(certainmaintenanceoperationsforexample)andthepotentialexistsforlevelsofradioactive

materialtoexceedthosethatdefineanairborneradioactivityarea,monitoringisincreasedand

intakesarelimitedbyeithercontrolofaccess,limitingexposuretimes,ortheuseofrespiratory

protection.

4.6.1 Building/AreaVentilation

Barriersintheformofcontainment,ventilation,andfiltrationaredesignedtoreducedischarges

ofradioactivematerialtoALARAlevels.Appropriatelysizedventilationisprovidedinareasof

thefacilitywherethepotentialexistsforairborneconcentrationsofradionuclidestoexceedthe

DerivedAirConcentration(DAC)valuesduringnormaloperationsbasedonthedosecoefficient

valuesinICRPPublication68.Thedesignoftheconfinementventilationsystemensuresthe

desiredairflowduringnormaloperations.Airthatisrecirculatedisfilteredthroughatleastone

stageofHEPAfiltration.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page47

Theconfinementandventilationsystemsincludethefollowingcriticaldesigncharacteristics

andfunctionalmeasurements.

(1) Airflowsareinthedirectionfromareaswithlowerlevelsofpotentialcontaminationto areaswithahigherpotentialforcontamination.

(2) Areas where fume hoods and glove boxes are located are maintained at a negative pressurewithrespecttoatmosphereduringnormaloperationconditions.

(3) Ventilationductsaredesignedtominimizeaccumulationsofradioactivematerial.

(4) Fansareprovidedwithvariablefrequencydrivestoallowmaintenanceoftheflowrateas filter loading increases, and redundant capacity to service the full design load.

Measurementsaremadetoensurethatnoisefromthefansdoesnotinterferewiththe abilitytohearaudiblealarms.

(5) ProcessareaairfiltrationincludesaprefilterbankandaHEPAfilterbankinseries.HEPA filtershave99.97%efficiencytofilterout0.3micronparticlesfromtheairstreamand fireresistanceratingofUL586.Filtersareplacedtofacilitatemaintenanceandrepair, and where possible, bagin/out type filter housings are used to lessen personnel exposures.

4.6.2 LocalizedVentilation

Where necessary, enclosures (i.e., hoods, gloveboxes, downdraft tables) or other localized

ventilationdesignsareusedtopreventthespreadofairbornecontaminationwithinthefacility

andfurtherlimitthepotentialforintakebyinhalation.Inprocessareas,thedesigncriteriafor

inwardairflowthroughtheopenfaceofacontainmentenclosureusedtohandleradioactive

materialwhichhasapropensitytosuspendinairisatleast125(+/25)linearfeetperminute

(LFM).Foroperations,theinwardairflowismaintainedatleast100(+/20)LFM.

Foropeningsusedtotransfercontainerizedmaterialorequipment,orforopenfaceenclosures

whereexcessiveairflowinterfereswithsensitiveanalyticalequipmentormanufacturingprocess

steps,theproperaveragefacevelocityandminimumrateofflowisestablishedinapproved

procedures.  Process enclosure air (from hoods, gloveboxes, etc.) is exhausted through the

primaryHEPAfilterunitstotheatmospherethroughmonitoredfacilityventstacks.

Thevelocityofairflowattheentranceofallhoodsandotherenclosuresandcapturepointsare

evaluatedonascheduledbasis.Devicesareprovidedtomeasurethedifferentialpressurewithin

a containment enclosure with respect to the outside atmosphere, except in containment

enclosureswherethenatureofanoperationmakesthisrequirementimpracticalforprocessing

purposes.Correctiveactionwillbetakenassoonaspossibleiftheairflowisfoundtobedeficient.

Processeswillceaseoperationinanenclosureiftheaveragefacevelocityfallsbelow100LFM,

orifoperabilityofenclosuresisimpaired.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page48

4.6.3 LaboratoryVentilation

Inlaboratoryareas,thedesigncriteriaforinwardairflowthroughtheopenfaceofacontainment

enclosureusedtohandleradioactivematerialwhichhasapropensitytosuspendinairisin

accordancewithANSI/AIHAZ9.52012recommendations.Theproperaveragefacevelocityand

minimumrateofflowisestablishedinapprovedprocedures.

Any ventilated containment with an open door or port through which uncontainerized

radioactive material is routinely handled is subject to these requirements; however, the

intermittent opening of a door, glove port, etc. for the sole purposeof adding or removing

containerizedmaterialorequipmentdoesnotconstitutehandlingradioactivematerialwitha

propensitytosuspendinair.Inaddition,anyventilatedcontainmentwithanopeningtothe

roomwhichishighefficiencyparticulateair(HEPA)filteredforexhaustoroverpressurization

protectionisexcludedfrominwardairflowrequirements.

4.6.4 RespiratoryProtection

Whenitisimpracticaltoapplyprocessorotherengineeringcontrolstolimitconcentrationsof

uraniumintheairbelowthosedefinedin10CFR20.1201(e),otherprecautionaryprocedures,

suchasincreasedsurveillance,limitationofexposuretimes,orprovisionofrespiratoryprotective

equipmentareusedtokeeptheintakeofuraniumbyanyindividualwithinregulatorylimits.

The respiratory protection program is developed according to the requirements detailed in

10CFR20 Subpart H - Respiratory Protection and Controls to Restrict Internal Exposure in

Restricted Areas.  Appropriate protection factors consistent with 10 CFR 20 Appendix A are

appliedwhencalculatingintakeortheCommittedEffectiveDoseEquivalent(CEDE).

Approved procedures guide the selection, fitting, issuance, maintenance, testing, training of

personnel,monitoring,andrecordkeepingforindividualrespiratoryprotectionequipmentand

for specifying when such equipment is to be used.  These procedures are revised to reflect

changesinprocesses,thefacility,orequipmentthataresignificantenoughtoimpactrespirator

use.RecordsaremaintainedasdescribedinChapter11.

TheRespiratoryProtectionProgramrequiresthatindividualsmustbemedicallyqualified,trained

(toincludeproperdonninganddoffing),andquantitativelyfittestedtoaspecificrespiratorprior

toinitialuseandonanannualbasis.Proceduresandtraining,asdescribedinChapter11,include

requirementsforcleaning,inspection,andreplacementofrespiratorparts.

4.7

RadiationSurveyandMonitoringPrograms

ThefacilityRPPproceduresdetailacomprehensivesurveyprogramthatimplementsoperational

surveysforradiologicalcontrol.Operationalsurveyscharacterizeworkplaceconditions,verify

theeffectivenessofengineeringandadministrativecontrols,evaluatechangesinradiological

conditions,identifyareasrequiringradiologicalposting,andassessradiologicalconditionsduring

the performance of work.  Training for Health Physics personnel responsible for performing

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page49

surveys ensures that RP personnel are sufficiently familiar with process activities so that

precautionscanbetakentominimizeexposures.

Regulatory requirements related to monitoring are contained in 10 CFR 20 Subpart C,

OccupationalDoseLimits;SubpartD,RadiationDoseLimitsforIndividualMembersofthe

Public;andSubpartF,SurveysandMonitoring.Facilityprograms,policiesandprocedures

guidethetypesofsurveys,monitoring(includingtheairsamplinganddosimetryprograms),and

evaluationsforcompliancewiththesesubparts.

Types of surveys include external dose rate surveys, surface contamination surveys, air

concentration surveys, surveys of personnel, PPE, equipment, waste, packages, and on

containment/ventilationsystems.Minimumsurveyandmonitoringfrequenciesareshownin

Table41whichwasdevelopedfromAppendixBRegGuide8.24.HealthPhysicsstaffensure

thatsigns,labels,signals,otheraccesscontrols,requirednoticestoemployees,copiesoflicenses,

and other items are properly posted, legible, and operative, as required by 10 CFR Part 19,

Notices,Instructions,andReportstoWorkers:InspectionandInvestigations,and10CFRPart20

orspecificlicenseconditions.

Radiation survey and monitoring procedures address the procedure objectives, sampling

processes,dataanalysis,equipmentandinstrumentation,measurementfrequency,records,and

reporting requirements, and required actions when measurements exceed regulatory or

administrativeoractionlevels.Surveydocumentationisretainedinaccordancewith10CFR

20.2103.Surveyandmonitoringrecordsarereportedasmandatedin10CFRPart19and10CFR

Part20usingtheprocessesdescribedinimplementingprocedures.

AnadequatenumberofRadiologicalProtectioninstrumentsaremaintainedandusedtoperform

radiological surveys and provide the necessary analytical results.  Radiation Protection

instrumentationincludes:installedinstrumentationsuchasaCriticalityAccidentAlarmSystem,

ContinuousAirMonitors,andAreaRadiationMonitors;laboratoryinstrumentationsuchasGas

Flow Proportional Monitors for smear and air sample counting; stationary contamination

monitorssuchasHandandFootMonitors,andPersonalContaminationMonitors;andanarray

of portable instrumentation for radiation and contamination monitoring (alpha scintillators,

betagamma plastic scintillators, GeigerMuller type instruments, ionization chambers, and

neutroncounter).Availableinstrumentsaredesignedandmanufacturedtodetecttheradiation

types of concern for the facility and that exhibit the level of sensitivity necessary to detect

radiationatorbelowapplicableactionlevels.

All radiation protection instrumentation is subject to a routine maintenance and calibration

programtoensurethatproperlycalibratedandoperableinstrumentsareavailableforuseby

healthphysicsstaff.InstrumentationiscalibratedannuallyorfollowingmaintenancetoNIST

traceablestandardsandaccordingtomanufacturersrecommendation.Allinstrumentationis

sourcecheckedpriortoeachdayofuse.Thequalitycontrolrequirementsforoperabilitychecks

aredetailedinimplementingprocedures.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page410

4.7.1 RadiationSurveys

TheHealthPhysicsStaffperformpreoperational,routine,andspecialsurveysoffacilityareas.All

areasinwhichradioactivematerialsarestoredorprocessedareidentifiedpriortooperations.

Surveys are performed to identify areas in which personnel monitoring would be required

accordingtotherequirementsof10CFR20.1502(a)(1).Thefrequencyandscopeofroutine

surveyswhereradioactivematerialsarestoredorprocessed,andwhereworkershaveaccess,

arebasedonradiologicalcontentandpotentialdoserates.

4.7.2 DosimetryProgram

Thedosimetryprogramincorporatesmeasurementsofexternalexposure,internalexposure,and

airsamplingdatatocompletethedoserecordforeachmonitoredemployee.Thedoserecordis

comparedtothedoselimitsspecifiedinSubpartCof10CFR20.Ifengineeringcontrolsarenot

adequatetolimitexposurestobelowregulatorylevels,additionalproceduressuchaslimiting

exposuretimetolicensedmaterialoruseofrespiratoryprotectionareimplemented.

The External Dosimetry Program establishes the criteria for participating in the program,

identifiestargetradiationtypes,establishesmonitoringmethods,assessmentsandrecording

criteria, specifies the dosimetry required, use, processing and evaluation, and documents

administrativeinvestigationandactionlevels.

TheInternalDosimetryProgramisdesignedincompliancewith10CFR20.1201Occupational

Dose Limits for Adults, 10 CFR 20.1204 Determination of Internal Exposure, and the

participationlevelsdetailedin10CFR1502(b)foradults,minors,andpregnantwomen.The

programestablishesthecriteriaforparticipatingintheprogram,identifiesthetypesofsampling,

frequencyofmeasurementandrequireddetectionlevels,detailsthemethodsformeasuring,

assessing and recording intakes, details the evaluation and interpretation of the analytical

results,anddocumentsthefacilityinvestigationandactionlevels.

Themonitoringrequirementsin10CFRPart20aresummarizedinTable42.Inaccordancewith

the requirements of 10 CFR Part 20.1202, the TEDE is calculated by adding the Deep Dose

Equivalent(DDE)totheCEDEforeachpersonwhorequiresbothinternalandexternaldose

monitoring.TheTEDEwillnotexceedthe10CFRPart20doselimits.Investigationlevelsand

actionguidesforexternalandinternalexposureareestablishedinRPPprocedures.Workactivity

restrictionsareimposedwhenanindividualsexposureexceeds80percentoftheapplicable10

CFR20.1201limit.

4.7.2.1ExternalDosimetry

Monitoringforexposuretoexternalradiationisestablishedaccordingtotherequirementsin10

CFR20.1502(a)ifexternaloccupationaldoseislikelytoexceed10%ofthedoselimitappropriate

fortheindividual(adult,minor,ordeclaredpregnantwoman).Externalradiationmonitoringis

alsoprovidedaccordingto10CFR20.1502(a)(3)foranyindividualenteringahighorveryhigh

radiationarea(areasrequiringHRAandVHRApostingarenotanticipatedattheTRISOXFFF).

Betagammasensitivethermoluminescenttypedosimeters(TLDs)capableofmeasuringdeep

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page411

dosetothewholebody,shallowdosetotheskinorextremities,anddosetothelensoftheeye

areindividuallyassignedforroutineexternalexposuremonitoringbasedonworkareasurveys,

occupancy time, or other exposure information such as area monitor results.  Personnel

dosimeters,withsensitivitiesandexchangefrequenciesthatareappropriateforthesourceterm,

areprovidedandprocessedbyaNationalVoluntaryLaboratoryAccreditationProgram(NVLAP)

accrediteddosimetryvendororsupplier.Othertypesofdosemeasuringdevicesmaybeused

including electronic dosimeters, directreading dosimeters, extremity dosimeters, neutron

dosimetersand/ormeasurementsmadewithportableradiationsurveysinstruments.

4.7.2.2InternalDosimetry

TheTRISOXinternaldosimetryprogramestablishesandmanagesabioassayprogramtomonitor

andevaluateintakesfromuranium,distributionsofuraniumwithinthebodyfollowingintake,

andtheresultingradiationdosesorpossiblechemicaleffects.Thebioassaymeasurementsare

usedtoconfirmtheadequacyofradiologicalcontrolsandtodeterminecompliancewiththe

occupationaldoselimits.

Facilitypersonnellikelytoreceivegreaterthan10%oftheapplicableAnnualLimitonIntake(ALI)

valuesaremonitoredforintakesofradioactivematerial.Intakesareassignedtoindividuals

basedonairsampling(describedinSection4.7.2.3),urinalysisand/orinvivolungcounting.

Intakes are converted to committed dose equivalent (CDE) and committed effective dose

equivalent(CEDE)forthepurposesoflimitingandrecordingoccupationaldoses

The appropriate routine bioassay frequency is based on (1) the potential exposure of the

individual,(2)theretentionandexcretioncharacteristicsoftheradionuclide,(3)thesensitivity

ofthemeasurementtechnique,and(4)theacceptableuncertaintyintheestimateofintakeand

committeddoseequivalent.Bioassaymeasurementsusedfordemonstratingcompliancewith

the occupational dose limits are conducted often enough to identify and quantify potential

exposuresandresultantintakesthat,duringanyyear,arelikelytocollectivelyexceed0.1times

theALI.Table43liststheminimumbioassayfrequenciesforbioassayprogramparticipants.

Further evaluation, such as examination of airborne measurements or additional bioassay

measurements,toobtainthebestestimateofactualintakeisperformedifresultsexceed0.02

timestheannuallimitonintake(ALI),or40derivedairconcentration(DAC)hours.

UrinesampleconcentrationsareanalyzedbyeitherKineticPhosphorescenceAnalyzer(KPA)or

InductivelyCoupledPlasmaMassSpectrometry(ICPMS).ActionlevelsareestablishedinRPP

procedurestopreventanindividualfromexceedingtheoccupationalexposurelimitsspecifiedin

10CFR20andtoprotectagainsttoxicologicaldamagetothekidney.Controlactionsinclude

temporarilyrestrictingtheindividualfromworkinginanareacontainingairborneradioactivity,

andactionsaretakenasnecessarytoassureagainstrecurrence.Nasal,saliva,urineand/orfecal

samples, or in vivo chest counts may be collected from individuals when action limits are

exceeded.  Approved procedures define when referral to the corrective action program, as

describedinChapter11,isrequired.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page412

Bioassayresultsareinterpretedusingindustrystandardmethodsandconsensusmodelsandmay

makeuseofincidentspecificdataand/oranexposedindividualspersonalcharacteristics.

4.7.2.3AirSamplingandMonitoringProgram

Airsamplingisperformedinallareasofthefacilitywheredispersibleformsoflicensedmaterials

arehandled,stored,orprocessedandwhereconcentrationsofairborneradioactivematerials

couldexceed10%ofaDAC.Airsamplingisperformedtoevaluateairbornehazardswhenever

respiratoryprotectiveequipmentisusedtolimitinhalationintakes,toevaluatecontainmentand

forpostingairborneareas,toidentifyifanintakeoccurredandestimatethemagnitude,andto

provideanearlywarningofelevatedairconcentration.

AsdescribedinChapter1,theDACisbasedonICRP66and68whichassumesanActivityMedian

AerodynamicDiameter(AMAD)of5micrometers.Ifappropriate,TRISOXmayelecttoadjust

ALIandDACvaluesbasedonmeasuredparticlesizedataforparticlesthatarelargerthan5

AMAD.

Airsamplingisperformedusingfixedlocationsamplersforbasicevaluationoftheexposureof

workers,personal(lapel)samplersforsupportivemeasurementsandspecialstudies,andair

monitors for early warning of unexpected releases.  Continuous air monitoring (CAMs) is

performedwherethereisareasonablepotentialforunintendedreleasestocauseanintake

exceeding40DAChoursinaweekorless.Placementofairsamplingandmonitoringequipment

isbasedthepurposeofthemeasurement(estimatingworkerintakes,verifyingconfinementof

materials is effective, providing warning, detecting leaks, or determining if an airborne

radioactivityareaexist)andonairflowstudiestodeterminetheairflowpatternsintheworkplace

and optimal placement of monitors.  Alarm set points for CAMs meet radiation protection

objectives,aredefensibleanddocumented,andaresetaslowaspracticalfortheworkbeing

conductedwithoutcausingexcessivefalsealarms.

Fixedairsamplingresults,lapelorotherspecialairsamplingresultsmaybeusedtodetermine

workerintakeandtocalculateCEDEinareasforwhichinternaldoseassessmentisrequired.

Whereairsamplingisusedtocomplywith10CFR20.1502(b)formeasuringintake,evaluations

demonstratethatthesamplingisrepresentativeoftheairbreathedbytheworkerorcorrection

factorsappliedwhereappropriate.

AirsamplingfrequencyisperformedinaccordancewithTable41,MinimumSurveyFrequency.

Ataminimum,areaspostedasAirborneRadioactivityAreashaveairsampleschangedatleast

onceperdaywhenproductionisongoinginthoseareas.Othercontaminatedareaswhere

licensedmaterialsarehandled,butarenotAirborneRadioactivityAreas,andwheretheairborne

levelscouldaveragegreaterthan10%DAC,haveairsampleschangedweeklywhenworkwith

licensedmaterialsisongoing.Airsamplingandmonitoringequipmentsuchascontinuousair

monitors, portable high volume and/or lapel air samplers may be utilized where a fixed air

samplingnetworkisnotpractical.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page413

QualityAssurance/QualityControlmeasuresincludeperiodiccalibrations,anddailysourceand

backgroundchecks.Airflowmetersarecalibratedaccordingtomanufacturerguidelinesatleast

annually,andwheneverrepairormodificationwarrant.

ActionlevelsforairsampleresultsareestablishedanddocumentedintheRPPimplementing

procedures.Actionlevelsareestablishedassociatedwithinvestigation,worksuspension,and

workrestrictionlevelsandtheirassociatedcorrectiveactions.Ameasurementindicatingan

intakeequaltoorgreaterthan10milligramsofTypeFuraniuminaweekwillresultinawork

restrictionbasedonchemicaltoxicitylimits.

4.7.3 ContaminationControl

ContaminationiscontrolledattheTRISOXFFFbycontainmentenclosuresandventilationand

supplementedbyareaclassificationandaccesscontrolassociatedwithradiologicalpostings,

routinesurveillance,protectiveclothingforpersonnel,andtraining.

4.7.3.1AccessControl

Allareasthatstore,handleorprocessradioactivematerialsareclassifiedasaRadiologically

Controlled Area (RCA).  Change facilities are provided for personal clothing, showering, and

donningPPE.AreaswithintheRCAsarefurthercontrolledforaccessandegressasbufferareas,

or for levels of radiation, contamination, or airborne contamination in accordance with the

posting requirements in 10 CFR 20.  Radiological postings inform workers of radiological

conditions and requirements for entry/exit.  Stepoff pads and monitoring instruments are

providedatPPEdoffinglocations.

4.7.3.2SurveyingofSurfaces

A routine contamination control program is established to evaluate and control surface

contamination and to prevent unnecessary external or internal exposure of personnel to

radiation.Surveysareperformedonpersonnelleavingareasinwhichcontaminationcouldbe

present,materialsandequipmentdesignatedforreleasefromcontrolledareas,andonincoming

andoutgoingshipmentscontainingradioactivematerial.

Routinesurfacecontaminationcontrolsurveysareperformedforprocessandmanufacturing

areas, warehousing, and support facilities where licensed materials are stored, handled, or

processed.Uncontrolledareasinsidethefacilityarealsosurveyedperiodicallytoensurethat

radioactivematerialsareadequatelyconfinedintheRCAs.Minimumsurveyfrequenciesare

presentedinTable41.Areasinwhichthepotentialforsurfacecontaminationishigh,orthe

probabilityforhumanintakefromresuspensionishigh,aresurveyedmorefrequently.

Standardizedmethodsforcollectingandanalyzingsmearsamplesareestablishedandemployed

toaidincomparisonandestablishtrendsforfacilityandequipmentandmaterialsurveys.A

diagramofeachroutinelysurveyedareaisusedforrecordingsurveyresults.Methodsand

instrumentsusedforcountingsamplesofremovablesurfacecontaminationcandetectalpha

radiationfromuraniumatandbelowthelevelsspecifiedinAppendixA,AcceptableSurface

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page414

Contamination Levels, to Regulatory Guide 8.24.  Regulatory Guide 8.24 Appendix A is

incorporatedasAttachment1.

The RPP requires that administrative action guidelines be established to assure that

contamination levels and employee exposures are kept ALARA and within regulatory limits.

Action guidelines are established to ensure appropriate corrective actions are taken for

contaminationcontrol.Approvedproceduresdetailtheactionguidelines,requiredactionsto

promptly address the contamination to a satisfactory resolution (cleaned or contained and

labeled), and when referral to the corrective action program, as described in Chapter 11, is

required.

4.7.3.3ProtectiveClothing

PPE is required to minimize opportunities for personnel and their clothing to become

contaminated.  Protective clothing requirements are commensurate with anticipated work

conditions.  Monitors are available in areas where workers doff PPE to perform a survey

(especiallyhead,hands,andotherexposedportionsofthebody)aftertheyremovePPEand

beforetheyleavetheRCA.Clothingsurveyedandfoundtohavelessthan200disintegrations

perminute(dpm)per100cm2ofuraniumcontaminationisacceptableoutsiderestrictedareas.

Reasonable efforts are made to reduce skin contamination to background levels.

Decontaminationattemptsunderthedirectionoftheradiationsafetystafformedicalconsultant

arerepeateduntil(1)suchattemptsceasetoachievesignificantreductions,or(2)suchattempts

threaten to damage the skin, at which point the individual will be released from the RCA.

Subsequentmeasurementswillbemadeontheareatoevaluatecontaminationlevelsovertime.

Exceptionsmaybemadeforemergenciesandemergencydrills.

4.7.3.4ReleaseforUnrestrictedUse

Equipment, materials, and facilities that are evaluated for both fixed and removable

contaminationusingguidanceinGuidelinesforDecontaminationofFacilitiesandEquipment

PriortoReleaseforUnrestrictedUseorTerminationofLicensesforByproduct,SourceorSpecial

NuclearMaterialasdescribedinChapter1,andthatdonotexceedthelevelsrepresentedin

Appendix A, Acceptable Surface Contamination Levels, to Regulatory Guide 8.24, may be

releasedfromrestrictedareasforunrestricteduse(seeAttachment1).

Equipmentandmaterialsmaybetransferredbetweenrestrictedareasthroughanunrestricted

areaiftheexteriorsurfacesoftheitemoritscontainerhavesmearablecontaminationlevelsless

than Attachment 1 levels.  When contaminated items are transferred through unrestricted

areas,theroutewillminimizetransfertimeandthepossibilityofaccidentalrelease.

4.7.3.5LeakTestingofSealedSources

Nonexemptsealedsourcesusedforcalibrationandqualitycontrolproceduresareleaktested

inaccordancewithAppendixC,LeakTestRequirements,ofRegulatoryGuide8.24.Regulatory

Guide8.24AppendixCisincorporatedasAttachment2.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page415

4.7.4 EnvironmentalMonitoring

EffluentandenvironmentalradiationmonitoringareaddressedinChapter9ofthisapplication.

4.8

AdditionalProgramCommitments

Thefollowingsectionsprovidecommitmentstoachievecompliancewiththeregulationsin10

CFR20,SubpartL,10CFR20,SubpartM,Reportsand10CFR70.74.

4.8.1 Records

Inaccordancewith10CFR20,SubpartL,Records,TRISOXmaintainsrecordsoftheRPP,including

but not limited to, occupational exposure of personnel to radiation, releases of radioactive

materialstotheenvironment,radiationsurveyresults,andresultsofcorrectiveactionprogram

referrals,radiationworkpermitsandplannedspecialexposures.RecordsassociatedwithALARA

findings, employee training, personnel radiation exposures, and environmental activities are

generatedandretainedinsuchamannerastocomplywiththerelevantrequirementsof10CFR

20aspartoftherecordsmanagementprogramdescribedinChapter11.

4.8.2EventReporting

Approved procedures require reporting to the NRC, within the time specified in 10 CFR 20,

Subpart M, Reports, and 10 CFR 70.74, any event resulting in an occupational exposure to

radiationexceedingthedoselimitsin10CFR20.Approvedprocedurescontaininstructionsfor

whenandhowtoreporteventstotheNRC.

4.8.3AnnualDoseMonitoringReport

Anannualreportoftheresultsofindividualmonitoring,asrequiredby10CFR20.2206(b),is

submittedtotheNRC.

4.9

CriticalityMonitoringandDetection

The TRISOX FFF criticality accident alarm system (CAAS) is designed, and a documented

evaluationismaintained,todemonstratethatthesystemmeetstherequirementsof10CFR

70.24,aswellasANSI/ANS8.31997(R2017),CriticalityAccidentAlarmSystem,withexceptions

asnotedinRegulatoryGuide3.71,NuclearCriticalitySafetyStandardsforNuclearMaterials

OutsideReactorCores,Revision3(2018).Monitoringisperformedusingradiationdetectors

(e.g.,gamma,neutron)thatareproportionaltodoselevelsandnotsubjecttotheeffectsof

saturation.

Thecriticalitydetectionsystemconsistsofthreeessentialparts:thereadoutmodule,alarmrelay

module,andthedetectors.Thedetectorcollectslight,orachargecausedbyincidentradiation.

Thislightorchargeisthenconditionedandtransmittedviamulticonductorcableanddisplayed

onthereadoutmodule.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page416

A calibration check is performed for all units in service based on detector manufacturers

recommendationsorifsystemmonitoringindicatesanomalousdetectorresponse,howevernot

toexceed5years.Detectorsarealsoresponsetestedinaccordancewithinternalproceduresto

ensurecontinuedoperability.Periodically,thealarmissoundedforfamiliarity,training,ordrills.

Alarmaudibility(e.g.,siren,lights)istestedinaccordancewithapprovedprocedures.

Tomeetregulatoryrequirementsin10CFR70.24andtoassurealimitednumberoffalsealarms,

thesystemissetupwithatleasttwodetectorsateachdesignatedmonitoringlocation.Alarm

actuationiscausedbyatleasttwodetectorsatalocationexceedingtheiralarmtrippoint,orby

asingledetectorfailurecoupledwiththeseconddetectorinalarm,whichresultsinaplantwide

evacuation and worker accountability.  The same logic would apply to a system with three

detectors,withtwoofthreealarming.Detectororotherelectroniccomponentfailurewillresult

inawarningsignal.Thissignalwillinitiatecontingencymeasureswhichmayincludeevacuation

ofpersonnel,suspensionofoperations,deploymentofauxiliarymonitoringequipment,and/or

immediatesystemrepair.Thesystemisalsoprovidedwithabackuppowersupply.

Theplacementoftheradiationdetectorsaresuchthatallareasofthefacilitywheremonitoring

isrequiredarecovered.Typically,thealarmtrippointissetat20mR/hr.Alarmsetpointsmay

varyduetoambientradiationlevelsandmeasurementuncertainty.Thistrippointallowsfor

minimizationofanalarmfromsourcesotherthancriticality.Whenthealarmtrippointhasbeen

reached or exceeded, the system will produce an alarm throughout the facility which will

continueregardlessoftheradiationleveluntilmanuallyreset.Thealarmcontrolandrelay

cabinetshavelimitedaccess.Manualinitiationofthealarmsystemisprovidedfortesting.A

warning signal is generated at the central control unit in the event of a detection system

malfunction.Provisionsareincorporatedintothealarmsystemtoallowappropriatetestingand

remotereadoutsarepresentatthecentral/secondaryalarmstationsthatwillalertpersonnelin

theeventofcomponentfailure.

Thesystemisdemonstratedtorespondtoaminimumcriticalityaccidentofconcern.Acriticality

accidentproducinganabsorbeddoseinairof20radsat2meterswithinoneminuteisthelimiting

accidentconsideredforthedemonstrationofthesystemresponse.

Detectorplacementisconservativelydemonstratedbyaccountingforshieldingfromfacilityand

processmaterialsbetweenapostulatedaccidentandthedetectors,aswellasdistance.The

accident is evaluated from a number of locations to demonstrate the possible effects of

attenuation.  Common modeling codes are used to perform the evaluations (e.g., MCNP).

Complianceisdemonstratedifmodelingresultsindicatethatthepostulatedminimumaccident

ofconcernwillresultinanexposurerateexceedingthealarmsetpointatadetectorlocation.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page417

Table41:MinimumSurveyFrequencies

FACILITYAREAS

EXTERNAL

RADIATION

SURVEYS

AIRSAMPLING

REMOVABLESURFACE

CONTAMINATION

SURVEYS

Uraniumreceiving,

warehousing,and

shipping

Monthly

Continuousairsampling;

sampleschangedweekly

andfollowingany

indicationofrelease

leadingtoairborne

concentrationsofuranium

Monthlyandfollowing

anyindicationofrelease

Manufacturing

processingareas,

scraprecovery,

wastehandling,

maintenance,and

changerooms

Monthly

Continuousairsampling;

sampleschangedeachshift,

followinganychangein

equipmentorprocess

control,andfollowing

detectionofanyeventthat

mayhavereleaseduranium

Weeklyandfollowingany

indicationofrelease

Laboratories

Monthly

Continuousairsampling;

sampleschangedeachshift

Weekly

Finalfuelform

packagingand

storage

Monthly

Continuoussampling;

sampleschangedweekly

Monthly

Lunchrooms,

cafeterias,snack

bars,andvending

machineareas

Quarterly

None

Monthly

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page418

Table42:Summaryof10CFR20.1502MonitoringRequirements

Theuseofindividualmonitoringdevicesforexternaldoseisrequired:

x Foradultswhoarelikelytoreceiveanannualdoseinexcessofanyofthefollowing (eachevaluatedseparately):

0.5rem(0.005Sv)deepdoseequivalent.

1.5rems(0.015Sv)eyedoseequivalent.

5rems(0.05Sv)shallowdoseequivalenttotheskin.

5rems(0.05Sv)shallowdoseequivalenttoanyextremity.

x Forminorswhoarelikelytoreceiveanannualdoseinexcessofanyofthefollowing (eachevaluatedseparately):

0.05rem(0.5mSv)deepdoseequivalent.

0.15rem(1.5mSv)eyedoseequivalent.

0.5rem(0.005Sv)shallowdoseequivalenttotheskin.

0.5rem(0.005Sv)shallowdoseequivalenttoanyextremity.

x Fordeclaredpregnantwomenwhoarelikelytoreceiveanannualdosefrom occupationalexposureinexcessof0.05remdeepdoseequivalent,althoughthe doselimitappliestotheentiregestationperiod.

x Individualsenteringahighoraveryhighradiationarea.

Internalexposuremonitoring(notnecessarilyindividualmonitoringdevices)isrequired:

x Foradultslikelytoreceivein1yearanintakeinexcessof10%oftheapplicableALIs foringestionandinhalation.

x Forminorsanddeclaredpregnantwomenlikelytoreceivein1yearacommitted effectivedoseequivalentinexcessof0.05rem(0.5mSv).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page419

Table43:RoutineMinimumBioassayFrequencies

fromANSI/HPSN13.222013BioassayProgramsforUranium,

Table8MinimumFrequenciesofBioassay

10CFR20

SolubilityClass

Situation

Urine

Invivo

D

Radiological

Monthly

Notnormallyused

W

Radiological

Quarterly

Annually

SpecialY

Radiological

Quarterly

Annually

Y

Radiological

Notnormallyused

Annually

DandW

ChemicalToxicity

Monthly

AnnuallyforClassW

FecalbioassaysamplingisperformedasneededforallClassestoaddressspecial

situationssuchasincident/accidentinvestigations.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page420

Attachment1

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page421

Attachment2

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0004

SNMXXXX

CHAPTER4

ZŽ

December2024

Page422

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0004toheader.

4.6.1

RemovedandlaterfromdiscussionofICRP68basedonchanges

fromTX0REGLTR0029,Chapter4RAI10.

4.7.2

AddedstatementWorkactivityrestrictionsareimposedwhenan

individualsexposureexceeds80percentoftheapplicable10CFR

20.1201limit.BasedonchangesfromTX0REGLTR0029,Chapter4

RAI9.

4.7.2.1

Addedstatementthatpersonneldosimetershavesensitivitiesand

exchangefrequenciesappropriateforthesourceterm.Basedon

changesfromTX0REGLTR0029,Chapter4RAI9.

Table43

Simplifiednotebelowtabletostatesamplingisperformedas

neededforallclassestoalignwithbioassaytechnicalbasis.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0005 SNMXXXX CHAPTER 5 ZŽ

December 2024 Page 51 NUCLEAR CRITICALITY SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 5.1 Nuclear Criticality Safety Program and Philosophy 52 5.2 5.2.1 5.2.2 Organization and Administration of the NCS Program NCS Program Objectives NCS Program Commitments 53 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 Management Measures Applied to the NCS Program General Management Measures Employee Training Training and Qualifications of NCS Staff Auditing, Assessing, and Upgrading the NCS Program Procedures NCS Reviews of New or Modified Equipment Posting of Nuclear Criticality Safety Limits ISA Process and ISA Summary Corrective Action Program Records Management 54 5.4 5.4.1 5.4.2 5.4.3 Emergency Notification, Planning, and Response Criticality Accident Alarm System (CAAS)

Portable CAAS Emergency Management 57 5.5 5.5.1 5.5.2 5.5.3 Methodologies and Technical Practices Means of Control Methods of Control Computer Codes and Associated Safety Limits 58 5.6 Sources of Criticality Data and Analytical Techniques 518 5.7 Requirements for New Facilities or New Processes at Existing Facilities 519 TRISO-X Document Control 2024.12.30 11:55:29 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page52

NUCLEARCRITICALITYSAFETY

5.1

NuclearCriticalitySafetyProgramandPhilosophy

TRISOXprovidesaneffectivenuclearcriticalitysafety(NCS)program,includingmethodologies

andtechnicalpractices,tosupportsafeoperationoftheTRISOXFFF.Controlsandbarriersthat

aredesignatedasItemsReliedonforSafety(IROFS)topreventaninadvertentnuclearcriticality

aredocumentedinNCSEvaluations(NCSEs)orinsupportingRiskAssessmentEvaluationsforthe

respectiveNCSEandtheIntegratedSafetyAnalysis(ISA)Summaryasappropriate.

TRISOXprovidesfortheappropriatemanagementoftheNCSprogram.Theresponsibilitiesand

authoritiesofindividualsthatdevelopandimplementtheNCSprogramarealsoprovidedin

Chapter2.Inaddition,facilitymanagementmeasuresareprovidedthatsupportimplementation

andmaintenanceoftheNCSprogram.

Subcriticalityismaintainedforallnormalandcredibleabnormalconditionsasrequiredby10CFR

70.61(d).TheDoubleContingencyPrincipleofANSI/ANS8.12014(R2018),NuclearCriticality

SafetyinOperationswithFissionableMaterialsOutsideReactors,formulatesthepreferredbasis

forthedesignandoperationofspecialnuclearmaterial(SNM)processeswithintheTRISOXFFF.

Tosupportthisoverarchingrequirement,processdesignsincorporatesufficientfactorsofsafety

and controls provide sufficient redundancy and diversity to require at least two unlikely,

independent, and concurrent changes in process conditions before a criticality accident is

possible.Thefocusshouldbeonunderstandingeachcrediblechangeinprocessconditionsand

implementing the best overall control strategy to maintain subcriticality such that no single

credibleeventorfailurewillresultinacriticalityaccident.TheNCSEwillalsodocumentthebasis

thatachangeinaprocessconditionisunlikely.WhenconsideringNCSaccidentsequences,

guidancefromAppendixA,ANSI/ANS8.12014(R2018),isusedtosupporttheevaluationof

typicalchangesinprocessconditions.

Allcredibleeventsinwhichcriticalityispossiblewillbedocumentedtobehighlyunlikelyas

requiredby10CFR70.61(b)pertheISAriskassessmentmethodsdescribedinChapter3.While

thedoublecontingencyprincipleisnotusedtodemonstratecompliancewith10CFR70.61(b),

thecriticalitysafetycontrols,thebasisfortheindependenceofcontrols,andthedemonstration

ofsubcriticalityfromtheanalysismaybeusedasinputtotheISAriskassessment.

TRISOXFFFreliesonpassive,active,enhancedadministrative,andadministrativecontrolsto

maintainsubcriticality.Wherepracticable,relianceisplacedonpassiveequipmentdesignsto

maintainsubcriticalityratherthanonadministrativecontrols.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page53

5.2

OrganizationandAdministrationoftheNCSProgram

TRISOX provides an NCS program with sufficient resources to implement and maintain an

effectiveprogram.TheTRISOXNCSprogrammeetstheregulatoryrequirementsof10CFR70

toensureadequateprotectionagainsttheconsequencesofaccidentalcriticalityevents.The

primarymeansofdoingthisispreventionbyensuringthatprocessesremainsubcriticalunder

normalandcredibleabnormalconditions.

5.2.1 NCSProgramObjectives

TheTRISOXNCSprogramincludesthefollowingobjectives:

1. Perform and document NCS evaluations for new or changed processes and establish safetylimits,controls,andproceduresasnecessarytoensurethatprocesseswillremain subcriticalundernormalandcredibleabnormalconditions.
2. Establish,aspracticable,doublecontingencyprotectionanddefenseindepthmeasures; ensuringsufficientmarginsofsafetyandsubcriticalitytoprovideadditionalassurance thatthelikelihoodofcriticalitywillbeacceptablylow.
3. Establish and maintain a Criticality Accident Alarm System (CAAS) and emergency responseprocedurestoprotecthealthandsafetyintheeventcriticalityoccurs.
4. Provide technical support to emergency response personnel in responding to and recoveringfromabnormalconditionsandemergenciesuptoandincludingacriticality accident.
5. Verify the adequacy of NCS controls through audits and assessments of operations includingverificationofequipmentconfiguration(s).
6. EnsureadequacyofNCSevaluationsthroughpeerreviews,assessments,andvalidation andverificationofcalculationalmethods.
7. Trainandotherwisesupportoperationsinproceduredevelopmentandimplementation toensurethesafehandlingofspecialnuclearmaterial.
8. Supportregulatorycomplianceregardingeventreporting(10CFR70.50andAppendixA to10CFR70),complywiththefacilitychangeprocess(10CFR70.72),andparticipatein theperformanceanddocumentationofthefacilitysISA(10CFR70.61through70.66) insofarastheypertaintocriticalitysafety.

5.2.2 NCSProgramCommitments

TheTRISOXNCSprogramshallmeettherequirementsof10CFR70.Theobjectivesofthe

programinclude:

1. AnNCSprogramstructurethatisconsistentwithcurrentindustrypracticeasdefinedin ANSI/ANS8.12014(R2018)andANSI/ANS8.192014(R2019),AdministrativePractices forNuclearCriticalitySafety,includingestablishingtherolesandresponsibilitiesofkey programpersonnel.InformationregardingTRISOXorganizationandadministrationis describedinChapter2.Chapter2alsoincludestheorganizationalpositions,functional responsibilities, qualifications, and authorities of NCS management and staff who develop,organize,implement,andadministertheNCSprogram.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page54

2. EstablishandmaintainNCSsafetylimits,controls,procedures,andanyNCSoperating limits established for IROFS in fissile material processes and maintain management measurestoensuretheircontinuedreliabilityandavailabilitytoperformtheirintended safetyfunctionwhenrequired.
3. Support operations personnel through development of training, preparation of NCS postings, and other appropriate operator aids for key administrative controls (e.g.,

paintedlinesonthefloorandwarninglights),andreviewofproceduresandoperations toensuretheyareunambiguous,easilyunderstood,andreadilyachievable.

4. Evaluate modifications to the facility or safety program to ascertain their impact on criticalitysafety.
5. RequirepersonneltoreportdefectiveNCSconditionstooperationssupervisionandthe NCS function.  Management policies reinforce operators stopwork authority and encouragethereportingofdefectiveconditions.
6. Renderprocessessafeorsuspendoperationsuponlossofdoublecontingencyprotection untilsuchprotectioncanberestoredandassesstheadequacyoftheaffectedcontrols.
7. Controlsareestablishedonsystemparameterstoprecludechangesinprocessconditions.

Controlsneededtomeettheperformancerequirementof10CFR70.61(b)pertheISA riskassessmentmethodsdescribedinChapter3aredesignatedasIROFSinaccordance with10CFR70.61(e).

8. Theconditionresultingfromthefailureofalegofdoublecontingencyhasbeenshownto besubcriticalwithanacceptablemargin(e.g.,keffislessthanUSL,parametersarewithin subcriticallimitsspecifiedinthelicenseorendorsedstandards).
9. Controls are sufficiently reliable to ensure that each change in process conditions necessaryforcriticalityisunlikely.Managementmeasuresareestablishedtoensure thattheyareavailableandreliabletoperformtheirsafetyfunction.

5.3

ManagementMeasuresAppliedtotheNCSProgram

5.3.1 GeneralManagementMeasures

Information regarding management measures programs is described in Chapter 11.  These

programsincludethemanagementmeasuresidentifiedin10CFR70.62usedtoimplementand

maintaintheNCSprogram.

5.3.2 EmployeeTraining

TRISOX complies with the requirements of ANSI/ANS8.192014 (R2019), and Section 7 of

ANSI/ANS8.201991(R2020),NuclearCriticalitySafetyTraining,astheyrelatetoNCStraining.

TrainingisprovidedtoallpersonneltorecognizetheCriticalityAccidentAlarmSystem(CAAS)

signal and to evacuate promptly to a safe area.  In addition, TRISOX employees receive

instructiontrainingregardingtheNCSPolicy.RefertoChapter11foradditionaldiscussionabout

trainingpersonnelregardingproceduralcompliance,stopworkauthority,responsetoalarms,

andreportingofdefectiveconditions.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page55

5.3.3 TrainingandQualificationsofNCSStaff

A formal training and qualification program is implemented and maintained for NCS staff

consistentwithguidelinespresentedinANSI/ANS8.262007(R2016),CriticalitySafetyEngineer

TrainingandQualificationProgram,excludingSection7.4.Elementsoftheprogramincludeon thejobtraining,offsiteNCSrelatedtrainingcourses,andmentoringbyseniorNCSengineers.

5.3.4 Auditing,Assessing,andUpgradingtheNCSProgram

TRISOXcomplieswiththerequirementsofANSI/ANS8.192014(R2019)asitrelatestoNCS

auditsandassessments.AuditsandassessmentsofsiteoperationsinvolvingSNMareperformed

onascheduledbasisasdefinedinwrittenapprovedprocedurestoconfirmthatactivitiesare

beingconductedinaccordancewithnuclearcriticalitysafetyrequirementsincludinglimitsand

controls.

As part of the audits and assessments program described in Chapter 11, NCS audits and

assessmentsoffacilityactivitiesareconductedonascheduledbasisasdefinedinapproved

proceduressuchthatSNMprocessingorstorageareas/facilities,evaluatedunderthescopeof

anNCSE,arereviewedatleasttriennially.Thepurposeofanauditistodeterminethat:(a)

operations are conducted in compliance with license conditions, operating procedures, and

postedlimits;(b)administrativecontrolsandpostingsareconsistentwithNCSEs;(c)equipment

and operations comply with NCSEs; and (d) corrective actions relative to findings of NCS

inspections are adequate.  The audit frequency for an area is based on its respective NCSE

implementationdate,andsubsequentrevisionswillextendthatauditrequirementintoitsnext

cycle.Thepurposeofanauditisfocusedoncompliancewhereasanassessmentisfocusedon

improvementefforts.AuditsmaybeperformedunderaformalQAprogram,asdirectedbythat

function,orunderthescopeofthenuclearcriticalitysafetyprogram.

Assessmentsareconductedtoevaluatewhetherthenuclearcriticalitysafetyprogrammeetsthe

requirements of related ANSI/ANS8 series standards.  Facility walkthrough assessments are

performedperiodicallybyNCSforeachoftheSNMoperations.Facilitywalkthroughassessments

focusonfieldcompliancewithestablishedNCSlimitsandcontrols.Assessmentfrequenciesare

based on the perceived criticality safety risk of an operation and may be performed more

frequentlyforhigherriskoperations.TheassessmentprogramsupportstheNCSauditschedule

byidentifyingproblematicSNMoperationsthatshouldbereviewedmorefrequentlyduringthe

triennialperiod.

An independent assessment of the nuclear criticality safety program is conducted at least

triennially.

Findings and observations from NCS audits and assessments areentered into the corrective

actionprogramandtrackeduntilclosureasdescribedChapter11.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page56

5.3.5 Procedures

TRISOXcommitstotherequirementsofANSI/ANS8.192014(R2019)asitrelatestooperating

procedures.AsdescribedinChapter11,proceduresareprovidedforactivitiesinvolvingSNM,

andtheproceduresincorporatesafetylimitsandcontrolsasappropriate.Theseproceduresare

reviewedandapprovedbytheNCSfunction.Duringthereviewandapprovalprocess,theNCS

staffmayrecommendorrequiremodificationstotheprocedurestoreducethelikelihoodof

occurrenceofaninadvertentnuclearcriticality.

5.3.6 NCSReviewsofNeworModifiedEquipment

Each proposed addition of new equipment or change to existing equipment used in the

processingorstorageofSNM,andanyprocedurechangesresultingtherefrom,isreviewedand

approved by the NCS function as part of the ISA and Configuration Management processes

describedinChapters3and11.Duringthereviewandapprovalprocess,theNCSstaffmay

recommend or require modifications to the design and/or to the procedures to reduce the

likelihoodofoccurrenceofaninadvertentnuclearcriticality.NCScalculationsandevaluations

areincorporatedintotheconfigurationmanagementprogram.

5.3.7 PostingofNuclearCriticalitySafetyLimits

NCSrequirementsissuedbytheNCSfunctionforeachprocesssystemaremadeavailabletowork

areasintheformofwrittenorelectronicoperatingprocedures.Clear,visiblesignsornotices

maybepostedatworkstationsorfloorareasmaybemarked,asappropriate,tosupplementthe

proceduresbyemphasizingspecificlimitsandcontrols.

Postednuclearcriticalitysafetyrequirementsandlimitsaredefinedbythenuclearcriticality

safetyfunctionandinclude,asappropriate:

1. Limitsonmaterialtypesandforms;
2. Allowablequantitiesbymassornumberofitems/containers;
3. Allowableenrichments;
4. Limitsonreflectingmaterials;
5. Requiredspacingbetweenunits;
6. Controllimits,whenapplicable,onquantitiessuchasmoderation, concentration/density,andthepresenceofadditives.

5.3.8 ISAProcessandISASummary

RefertoChapter3foradiscussionoftheISAprocess,includingprocesshazardanalysesandISA

Summaryrevisions.

5.3.9 CorrectiveActionProgram

AcorrectiveactionprogramisimplementedtodocumentandmanageNCSrelatedproblems,

observations, findings, investigations, corrective actions, and any unacceptable NCSrelated

performancedeficiencies.RefertoChapter11foradiscussionofthecorrectiveactionprogram.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page57

5.3.10 RecordsManagement

RecordsoftheNCSprogramareretainedinaccordancewiththeregulatoryretentionprogram.

TheserecordsincludeNCScalculationsandevaluationsanddocumentationofcorrectiveactions

taken.RefertoChapter11foradiscussionoftherecordsmanagementprogram.

5.4

EmergencyNotification,Planning,andResponse

5.4.1 CriticalityAccidentAlarmSystem(CAAS)

Acriticalityaccidentalarmsystem(CAAS)isdesignedandinstalledtoprovidepromptdetection

andannunciationofaninadvertentnuclearcriticality.Thesystemutilizesanaudible(e.g.,siren)

and/orvisualsignal(e.g.,buildingentryandhighnoiseareas)toalertpersonnelintheareato

evacuateanddeterpersonnelfromenteringafteranevacuation.Thesystemisdesigned,anda

documentedevaluationismaintained,todemonstratethattheCAASmeetstherequirementsof

10CFR70.24,aswellasANSI/ANS8.31997(R2017),CriticalityAccidentAlarmSystem,with

exceptionsasnotedinRegulatoryGuide3.71,NuclearCriticalitySafetyStandardsforNuclear

MaterialsOutsideReactorCores,Revision3.

Thesystemisdesignedtoremainoperationalduringcredibleadverseevents,andthesystemwill

alarmduringcrediblefailuremodes.Intheeventoflossofnormalpower,emergencypoweris

automaticallysuppliedtotheCAAS.RefertoChapter4foradescriptionoftheCAAS.

IftheCAASisoutofservice,coverageislostforanSNMoperation,orsystemcomponentsare

beingtestedorrepaired,compensatorymeasuresareestablishedtoensurepromptpersonnel

evacuation as documented in a written approved procedure.  Compensatory measures may

includesuspendedorlimitedmovementofSNMintheaffectedarea,limitedpersonnelaccess,

useoftemporarydetectionequipmentforpersonnelthatmustaccesstheareaduringaCAAS

outage,and/ormonitoringofthecriticalityalarmpanel.Compensatorymeasuresandrequired

evacuationproceduresareapprovedanddocumented.

EmployeesandvisitorsaretrainedinrespondingtotheCAASannunciation.Anongoingaspect

of this training is a quarterly annunciation on all shifts in which SNM operations are being

conducted.

TheneedforCAAScoverageshallbeevaluatedforallactivitiesinwhichtheinventoryoffissile

materialsinindividualunrelatedareasexceeds700g235U[ANSI/ANS8.31997(R2017)].CAAS

coverageofanSNMoperationisdocumentedduringtheprocessforNCSevaluation.Inaddition,

anyexceptionstoCAAScoveragearealsodocumentedinNCSevaluationsandarebasedona

conclusionintheNCSEthatacriticalityaccidentisnoncrediblespecifictotheareainwhich

conductoftheoperationisapproved.Conclusionsregardingnoncredibilitybasedentirelyon

fissilematerialpresentrequireataminimumthattheinventoryoffissilematerialintheareais

lessthan700g235U.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page58

CAAScoverageisprovidedforSNMoperations,exceptasspecifiedinChapter1.Inadditionto

theexemptionsincludedinChapter1,CAAScoverageisnotrequiredfor1)areaswherean

evaluationhasdeterminedtheriskofcriticalityisverylowduetotheamountorconfigurationof

fissilematerialpresent,2)materialsand/orcontainersthatsatisfythefissilematerialexceptions

in49CFR173and/or10CFR71,or3)areasthatcontainlessthan700g235U.Areasthatdonot

containSNMoperationsdonotrequireanNCSEanddonotrequireCAAScoverage.

5.4.2 PortableCAAS

IntheeventanSNMoperationrequiringCAAScoverageisperformedbeyondthedetectionrange

of the established CAAS or CAAS coverage for an SNM operation is determined to not be

available,aportableunitmaybeusedtoprovidecoverage.Theportableunithasequivalent

detectioncapabilitiesasthepermanentlyinstalledunits,howeveralarmannunciationislimited

totheimmediatearea.Compensatorymeasures(e.g.,useoffacilitypublicaddresssystem,

and/or radio communication) are established to ensure prompt evacuation of personnel as

documentedinanapprovedprocedure.

5.4.3 EmergencyManagement

RefertoChapter8foradiscussionoftheemergencymanagementprogramandemergencyplan.

RefertoChapter4foradiscussionofaccidentdosimetry.GuidancefromANSI/ANS8.232019,

NuclearCriticalityAccidentEmergencyPlanningandResponse,isalsousedfornuclearcriticality

accidentemergencyplanningandresponse.

5.5

MethodologiesandTechnicalPractices

5.5.1 MeansofControl

Therelativeeffectivenessandreliabilityofcontrolsareconsideredduringthenuclearcriticality

safetyanalysisprocess.Engineeredcontrolsordesignfeaturesarepreferredoveradministrative

controls.Passiveengineeredcontrolsordesignfeaturesarepreferredoverallothersystem

controlsandareutilizedwhenpracticableandappropriate.Activeengineeredcontrolsarethe

nextpreferredmethodofcontrol.Administrativecontrolsaretheleastpreferredmethodof

control;however,whenadministrativecontrolsaredeemednecessary,enhancedadministrative

controlsarepreferredoveradministrativecontrols.

1. Passive engineered controls (most preferred) use fixed design features or devices to maintain safe process conditions.  No human intervention or action is required.

Assurance is maintained through initial verification prior to operation.  Periodic inspections are performed on those systems where credible changes in equipment dimensionsmayoccurasdeterminedbynuclearcriticalitysafetyevaluations.Assurance isalsomaintainedthroughtheconfigurationmanagementprogram.

2. Activeengineeredcontrolsuseaddon,activehardware(e.g.,electrical,mechanical),or movingpartstomaintainsafeprocessconditions.Nohumaninterventionoractionis

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page59

required during operation.  Assurance is maintained through initial and periodic

inspection,functionaltesting,and/orcalibration.Activeengineeredcontrolsdetectan

undesirablechangeinprocessconditionsandautomaticallysecurethesystemtoasafe

condition.

3. Enhanced administrative controls rely on human judgment, training, and personal responsibility for implementation and are augmented by warning devices (visual or audible)whichrequirehumanactionaccordingtoprocedure.Avisualoraudiblealarm alertstheoperatortoanundesirablechangeinprocessconditions,whichrequireshuman actionorinterventioninaccordancewithapprovedprocedurestomaintainorreturnthe processtoasafecondition.Alarmintegrityandreliabilityisensuredbyinitialandperiodic inspectionorfunctionaltesting.
4. Administrativecontrols(leastpreferred)relyonhumanjudgment,training,andpersonal responsibilityforimplementationwhenthecontrolfunctionisneeded.Thecontrolisa proceduralhumanactionthatisrequiredtomaintainsafeprocessconditions.Assurance ismaintainedthroughperiodicverification,audit,ortraining.

5.5.2 MethodsofControl

Thefollowingrecognizedcontrolmethodsarealsoreferredtoasparameters,whichmaybe

controlledfornuclearcriticalitysafetypurposes(i.e.,controlledparameters).Whenevaluating

anSNMbearingsystemforcriticalitysafety,theprocedureforpreparationofanNCSErequires

thateachofthecontrolledparameterswillbeassumedtobeattheiroptimumcrediblecondition

(i.e.,mostreactivecrediblecondition)unlesscontrols,includingpassivedesignrequirements,are

specified,andimplementedtolimittheparameterstocertainvalues.Whencomputercodesare

usedtodeterminethesafetyofasystem,thevaluesmeetthekefflimitsofthischapter.Criticality

safety may also be based on data or methods provided in industry accepted handbooks,

referencedocuments,and/orexperimentaldata.Maximumsubcriticalvaluesmaybeusedas

providedinhandbooksorstandards(e.g.,maximumsubcriticalvaluesprovidedinANSI/ANS8.1).

1. Geometry-Geometrycontrolisachievedbyincreasingneutronleakagebylimitingthe dimensionsofdefinedgeometricalshapes.Equipmentrelyinguponfavorablegeometry forcontrolincludeadequatefactorsofsafetytoensurereliabilityundercredibleaccident conditions.  Before beginning an operation, all dimensions relied upon for geometry controlareverified.Thefacilityconfigurationmanagementprogramisusedtomaintain thesedimensions.Periodicinspectionsareperformedonthosesystemswherecredible changesinequipmentdimensionsmayoccurasdeterminedbynuclearcriticalitysafety evaluations.
2. Spacing(orUnitInteraction)-Spacing(orUnitInteraction)controlisamethodoflimiting theintroductionofneutronsleakedfromoneSNMunitintoaneighboringSNMunitby controllingtheseparationdistancebetweenunits.Wherespacingcontrolisrequired,a

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page510

passiveengineereddevice(e.g.,aspacer,fixedbumper,orpermanentfloormounting)is

thepreferredmethodofcontrolandisusedwherepracticable.Thestructuralintegrity

ofanyspacers/racksshouldbesufficientfornormalandcredibleabnormalconditions.If

notpracticable,administrativecontrolsmaybeutilizedandshouldincludesuchitemsas

proceduralinstructions,postings,andvisualindicators,asappropriate.

a. Equipment, facilities, and individually subcritical units are effectively non interactingorneutronicallyisolatedwhentheirsurfacesareseparatedbyanyof thefollowing:
i. A12inchthicklayerofwater,or ii. Athicknessequivalenttoa12inchthicklayerofwater,or iii. 12feetofair,or iv. Subarraysseparatedbynotlessthanthesmallestdimensionofthefacing surfacesofthesubarrays,or
v. Thegreatestdistanceacrossanorthographicprojectionofthelargestof thefissileaccumulationsonaplaneperpendiculartothelinejoiningtheir centers,or vi. 12inchesofsolidconcrete(blockorpoured).
b. Thedesignconditionsforinteractionbetweenmultipleunitsorbetweenarrays that experience neutron interaction will be based on values that can be demonstratedsafebyoneofthefollowingmethods:
i. SolidAngleMethod ii. SurfaceDensityMethod iii. Areal Density - When criticality safety is contingent only upon maintenanceofalimitedarealdensityoffissilematerial,controlswillbe implementedtoensurethatthelimitisnotexceeded.Thecontrolswill limitthearealdensitytoasafevalue,whichisdefinedtobenomorethan 45percentoftheminimumcriticalarealdensity.

iv. MonteCarlo Calculations (Each application of MonteCarlo calculations mustcomplywiththerequirementsofthischapter).

v. American National Standard, ANSI/ANS8.71998 (R2017), Nuclear CriticalitySafetyintheStorageofFissileMaterials vi. NRCand/orDOTpackagingortransportationregulations(e.g.,stagingof packagesinaccordancewiththeCriticalitySafetyIndex)
3. Volume-VolumecontrolisamethodoflimitingthevolumeofSNMtoanacceptable value.Equipmentrelieduponforvolumecontrolincludesadequatefactorsofsafetyto ensurethatasafevolumeismaintainedundercredibleaccidentconditions.Priortothe equipmentbeingreleasedforuse,thevolumeoftheequipmentisverified.Thefacility configurationmanagementprogramisusedtomaintainthevolume.Periodicinspections areperformedonthosesystemswherecrediblechangesinequipmentvolumemayoccur asdeterminedbynuclearcriticalitysafetyevaluations.Whenthesolutionvolumeis measured(i.e.,quantityofsolution),appropriateinstrumentationisused.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page511

4. NeutronAbsorber(Fixed/Soluble)-Neutronabsorbercontrolisamethodofreducingthe numberofneutronsinafissilematerialsystemavailabletocauseafissionevent,by introducing a parasitic neutron absorber (i.e., neutron poison) into the system.  This methodofcontrolincludesuseoffixedorsolubleneutronabsorbers.Whenevaluating absorbereffectiveness,neutronspectraareconsidered(e.g.,cadmiumisaneffective absorberforthermalneutrons,butineffectiveforfastneutrons).

Fixedneutronabsorbercontrolisamethodofincreasingneutronabsorptioninmaterial byplacingasolidabsorber(i.e.,poison)inthesystemthatmayincludetheuseof"poison fixtures" as well as taking credit for the neutron absorption properties of structural materials.Forfixedneutronabsorbers,thethicknessoftheabsorberismeasuredand documentedpriortofirstuse.Thecompositionoftheabsorberwillbeverifiedunlessthe chemical properties of the materials consist of standard structural materials (e.g.,

stainlesssteel,carbonsteel,etc.).Controls,asnecessary,areexercisedtomaintainthe continuedpresenceandtheintendeddistributionandcontributionoftheabsorber.

Iffixedneutronabsorbersareused,therequirementsofANSI/ANS8.211995(R2011),

UseOfFixedNeutronAbsorbersInNuclearFacilitiesOutsideReactors,areapplied.If borosilicateglassRaschigringsareused,therequirementsofANSI/ANS8.51996(R2017),

Use Of BorosilicateGlass Raschig Rings as a Neutron Absorber In Solutions Of Fissile Material, are applied.  If soluble neutron absorbers are used, the requirements of ANSI/ANS8.142004 (R2016), Use Of Soluble Neutron Absorbers In Nuclear Facilities OutsideReactors,areapplied.Fixedneutronabsorber,includingamoderator,useis prevalentinfissilematerialshippingcontainersandfurthersubjecttotherequirements asspecifiedinthepackageNRCcertificateofcomplianceforuseintheTRISOXFFF.

5. PieceCount-Piececountisamethodoflimitingfissilematerialmassand/orgeometry bylimitingthenumberofcontainersand/orcomponentswithknownamountsofSNM and/orfixedgeometriesatagivenlocation.
6. Mass-MasscontrolisamethodoflimitingtheamountofSNMatagivenlocationtoan acceptablevalue.Masscontrolmaybeusedonitsownorincombinationwithother controlmethods.Whenagivenmassofmaterialhasbeendetermined,apercentage factorisusedtodeterminethemasspercentageofSNMinthatmaterial.Whenfixed geometricdevicesareusedtolimitthemassofSNM,aconservativeprocessdensityis used.WhenoverbatchingofSNMiscredible,thelargestmassresultingfromasingle failure is shown to be subcritical.  Overbatching beyond double batching should be consideredunlessitrequiresmultipleindependentfailuresorisprecludedbyequipment capacity,availabilityofmaterial,orotherconsiderations.Whenthemassismeasured, appropriateinstrumentationisused(e.g.,scales,nondestructiveassayequipment).
7. Moderation-Moderationcontrolisamethodoflimitingorexcludingeitherinterstitial (i.e.,withintheSNM)orinterspersed(i.e.,betweenSNMunits)moderatingmaterialsor

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page512

both.TRISOXcomplieswiththerequirementsofANSI/ANS8.221997(R2016),Nuclear

CriticalitySafetyBasedOnLimitingAndControllingModerators,asitrelatestolimiting

andcontrollingmoderators.Nuclearcriticalitysafetybasedoncontrolofmoderation

requires that sources of moderation be identified and controlled.  When designing

physicalstructuresformoderationcontrol,thedesignshouldprecludetheingressof

moderation.Whendevelopingfirefightingproceduresforuseinamoderationcontrolled

area,restrictionsshouldbeplacedontheuseofmoderatormaterial.Afterevaluatingall

credible sources of moderation for the potential for intrusion into a moderation controlledarea/workstation,theingressofmoderationisprecludedorcontrolled.When

moderation is measured, the measurement is obtained by using instrumentation,

calculation,orbyvisualinspectionasappropriate.Inaddition,whentheNCSorganization

requires samples to be taken and analyzed by the laboratory (e.g., wt. % H2O) to

determinecompliancewithmoderationlimits,dualindependentsamplingmethodswill

beemployed.Shipperinformationmayalsobeusedasabasisformoderationcontent.

8. Concentration - Concentration control is a method of measuring and controlling the concentration of SNM in hydrogenous liquids to an acceptable value.  When concentrationcontrolisutilizedinanunfavorablegeometrysystem,theconcentrationis determined by appropriate sampling and analysis techniques (e.g., dual independent sampling)andbyinstrumentationwhichhasbeenproperlymaintainedandcalibrated (e.g.,inlinemonitor)priortotransfertotheunfavorablegeometrysystem.Theanalysis will consider the solubility limits of the SNM composition and possible concentrating mechanisms(e.g.,precipitation,evaporation,freezing,settling,chemicalphasechange) and controls are established, as necessary, to prevent or provide margin for such mechanisms.Whenatankcontainingconcentrationcontrolledsolutionisused,thetank ismaintainedclosedtopreventunauthorizedintroductionofprecipitatingagentswhich couldchangetheconcentration.
9. MaterialComposition-Materialcomposition(e.g.,materialtype,density,heterogeneity, etc.) control is based on consideration of the physical, chemical, and/or nuclear propertiesofamaterialsuchthatthe235Udensityandneutronscattering/absorptionof othermaterialswithinthecompoundareidentifiedandunderstood(e.g.,metalversus oxideversusnitrate,etc.).Manufacturingvariabilityandmeasurementuncertaintyare considered when using material specification as a method of control.  Possible misidentification is considered for feed materials when using the feed material specificationascontrol.Heterogeneouseffectsareonlyrelevantforlowenriched(less than 6.0 wt. %) uranium processes, where all other parameters being equal, heterogeneous systems are more reactive than homogeneous systems, however this trendisnotprevalentat20wt.%andthehomogeneousmodeledsystemisboundingfor enrichmentsgreaterthan20wt.%.Withregardtodensity,whenthedensityismeasured, themeasurementisobtainedbytheuseofappropriateinstrumentation.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page513

10. Enrichment-Enrichmentcontrolutilizestheinherentdifferencesincriticalattributes (criticaldimensions,mass,etc.)ofuraniumatdifferentenrichmentsof235U.Amethodof segregatingenrichmentsisusedtoensuredifferingenrichmentswillnotbeinterchanged, orelsethemostlimitingenrichmentisappliedtoallSNM.Whentheenrichmentneeds tobemeasured,themeasurementisobtainedbyusingappropriateinstrumentation(e.g.,

labanalysis,nondestructiveassayequipment).

11. Reflection-Reflectioncontrolisamethodofcontrolwhichlimitsneutronreturntoan SNMbearingsystem.Refertothefollowingreflectionrequirements:
a. GeneralReflectionRequirements Conservativereflectionconditionsareestablishedwhenevaluatingthecriticality safetyofindividualunitsorarrays.Ifreflectionconditionsareuncontrolled,the maximum credible amount of water reflection (as established below) is considered when calculating system reactivity.  Under certain conditions, however, materials such as concrete, carbon, and polyethylene may be more effective reflectors than water.  The thickness and location of these types of reflectorsareconsideredifanyarepresentinthicknessorquantitythatexceeds theequivalentwaterreflectionmodeled.Ifitiscredibleforreflectionconditions toexceedthoseusedintheanalysisofsystemreactivity,thenreflectioncontrols areimplementedtomaintainconditionstowithintheboundsoftheanalysis.

Wherepositivebarriersareusedtomaintainreflectioncontrol,thebarriersare maintainedthroughtheconfigurationmanagementandmaintenanceprograms.

In all cases, the impact of standard reflection conditions (e.g., the maximum credibleamountofwaterreflectionpresentedbyadjacentwaterbodies)should be evaluated to determine if the presence of standard reflector conditions reducessystemreactivitybydecreasinginteraction.

b. SinglePortableUnits Asingleunit(e.g.,container)isshowntobesubcriticalwhenreflectedbyatleast 30cmofclosefittingwaterunless:
i. reflector(s)moreeffectivethanwaterarewithin30cmoftheunit,or ii. where30cmofclosefittingwaterreflectionisnotcredible,or iii. reflectioncontrolsareimplementedtomaintainconditionstowithinthe boundsoftheanalysis.

Whenreflectorsmoreeffectivethanwaterarewithin30cmofasingleunit,the

thickness and location of these reflectors are considered in the modeled

configuration.Whenareflectorisoffsetfromasingleunit,subcriticalitywillbe

demonstratedforthethicknessandmaterialofthereflectoratnomorethanthe

offsetdistance.Subcriticalityforsingleunitreflectionmaybedemonstratedwith

calculations or by reference to documented subcritical values (e.g., maximum

subcriticalvaluesprovidedinANSI/ANS8.1).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page514

c.

MultiplePortableContainers Unless controls are implemented to limit reflection, evaluation of multiple portableunits(e.g.,multiplecontainers)mustbeshowntobesubcriticalwithat least a 15 cm thick, 183 cm tall, and 38 cm wide closefitting water cuboid, representinganearbyoperator,ononesideofthecontainers,andatleast1.27 cmoftangentialwaterreflectionontheremainingverticalsidesofthecontainers, representingoperatorhandcontact.Thesereflectorsaremodeledasslabsora boxthatistangentialtothegroupofcontainers,orasatangentialannulusaround thegroupofcontainers.

d. Enclosures/Gloveboxes Subcriticalityofenclosuresisdemonstratedwiththeaccessibleouterfront,back, andsidesoftheenclosuresreflectedbyatleast2.5cmofclosefittingwater.In addition,aminimumofatleasttwowatercuboids(eachcuboidconsistingofa15 cmthick,183cmtall,and38cmwideorequivalentblock)representingnearby operatorsshouldbeplacednearcomponents(s)inthesystemsuchthatsystem reactivityisexpectedtobemaximized.Thethicknessandlocationofreflectors thatmaybemoreeffectivethanwater(e.g.,concrete,carbon,andpolyethylene) shouldbeevaluatedinthemodeliftheyarelocatedwithin60cmfromthefront, back,sides,andtopoftheenclosureorwithin90cmfromthebottomofthe enclosure.

Overall enclosure reactivity is calculated with portable containers (e.g.,

containers) located in positions expected to maximize system reactivity, consideringanyfixedspacingcontrolsthatmaybepresentintheenclosure.Ata minimum, at least one unit in the glovebox should be evaluated with vertical reflectionprovidedbyhands(1.27cmthickwater)intheglovebox(e.g.,portable containers,equipment).

e. ArraysofItems Arrays(oneormoreunitsspacedinoneormoredimensions)ofinteractingitems (e.g.,columns,storageracks)aredemonstratedtobesubcriticalusingaminimum ofatleasttwowatercuboids(eachcuboidconsistingofa15cmthick,183cmtall, and38cmwideoranequivalentwaterbody,sizedtomaximizereflection,thatis at least 15 cm thick) representing nearby operators, should be placed near components(s) in the system such that system reactivity is expected to be maximized.Thethicknessandlocationofreflectorsthatmaybemoreeffective thanwater(e.g.,concrete,carbon,andpolyethylene)arealsoconsidered.The densityofwaterinterspersedbetweenunitswithinthearrayisvariedfrom0.0to 0.01gramspercubiccentimeter,toboundconditionsthatmayexistduringfire sprinkleractivationoruptofulldensitywateriffullfloodingiscredible.Local

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page515

reflection from thin water films on fissile items that might accumulate during

sprinkleractivationshallbeconservativelyrepresentedbyplacinga0.35cmthick

fulldensitywaterlayeronverticalsurfacesanda0.7cmthickfulldensitywater

layeronhorizontalsurfaces.

5.5.3 ComputerCodesandAssociatedSafetyLimits

ComputerCodes

Computercodesmaybeusedtocalculatesystemreactivity(i.e.,keff).Proceduresforcomputer

codevalidationfortheTRISOXFFFincorporateapplicablerequirementsfromANSI/ANS8.24 2017,ValidationofNeutronTransportMethodsforNuclearCriticalitySafetyCalculations,asit

relatestothevalidationprocessforcomputercodes,withexceptionsandqualificationsasnoted

inNRCRegulatoryGuide3.71,October2018.

Nuclear criticality safety calculations are performed using approved and validated computer

codessuchasSCALE,MCNP,XSDRN,etc.Therequirementsfortheverificationandvalidationof

computer codes are defined in approved procedures and incorporate the conservatisms as

discussedherein.Thevalidationreportforacomputercodeisdocumentedinawrittenapproved

report.Therequiredcontentforavalidationreportisfurtherdiscussed.

Validationestablishesthesuitabilityofthecomputercodesystem(hardwareandsoftware)for

use in criticality safety evaluations by establishing the calculation margin, a margin of

subcriticality,andtheUpperSubcriticalLimit(USL).Thecalculationmarginisestablishedby

simulatingbenchmarkexperimentstoestimatethesystematicdifferencebetweenthecalculated

multiplicationfactor(keff),andthemeasuredkeffofthebenchmarkexperiments.Thesystematic

differenceisthecodebias.Biasandbiasuncertaintyofthecomputercodesystemareincluded

in the calculational margin.  The calculational margin incorporates appropriate statistical

methodsthataccountforthebehaviorofbiasandbiasuncertainty(e.g.,byconsideringtrends

in bias) throughout the range of parameters included in the collection of benchmark

experiments.Theareaofapplicabilityofthevalidationisasubsetoftherangeofparameters

includedinthebenchmarkexperiments.Thecalculationalmarginisbasedonwidelyaccepted

statisticalmethodssuchasthe95percentconfidencelimit,the95/95lowertolerancelimit,ora

rankandpercentile nonparametric method, applied to various subsets of the chosen

benchmarks.  The statistical method and subset of benchmarks that produce the largest

calculationmargin,asdocumentedinthevalidationreport,isusedindeterminingthebounding

USL.

Computercodesarevalidatedtoensurethattheycalculatewithinacceptablerangesandthat

theassumptionsareappropriate.Theapplicabilityofcomputercodevalidationisdocumented

innuclearcriticalitysafetycalculationsand/orevaluationsforthesystembeingevaluated.The

computercodevalidationreportsareincorporatedintotheconfigurationmanagementprogram.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page516

Validation reports are prepared, reviewed, and approved by qualified individuals for each

combinationofcomputationalmethod(e.g.,code),crosssectionlibrary,computerplatform,and

analytical area of applicability, as appropriate.  In all cases, each validation report, or the

calculationdocumentingananalysisusingaspecificcomputationalmethod,shallincludethe

following:

a. Description of the methodology that is sufficiently detailed and clear to allow independent duplication of results, including the method used to select benchmark experiments,todeterminethebiasandbiasuncertainty,andtodeterminetheUpper SubcriticalLimit.
b. Summaryofthephysicalsystemsandarea(s)ofapplicabilitythatidentifiestherangeof valuesforwhichvalidresultshavebeenobtained.

c.

Descriptionofthemethodsusedtoextendthearea(s)ofapplicabilitybeyondtherange ofvaluescoveredbythebenchmarkexperiments.Anysuchextensionshouldbedoneby makinguseoftrendsinthebias,includingaccountingforanyincreaseduncertaintydue totheextrapolation.

d. Descriptionofthebenchmarkexperimentsorbenchmarksetsused.
e. Descriptionofthemarginofsubcriticalityforsafetyandjustificationofitsadequacy, includingastatementoftheminimummarginofsubcriticalityandanyotherfactorsthat providereasonableassuranceofsubcriticality.

f.

Descriptionofthecontrolledsoftwareandhardwareused.

g. Descriptionofanylimitationsonmethodusenecessarytoestablishorensurethevalidity ofthemethod.
h. Descriptionoftheverificationprocessanddemonstrationofacceptableresults.

Changestothecodeorcrosssectionversionsrequireadditionalcodevalidation.Verification

testingisperformedduringinitialinstallationorwhenchangesaremadethatcouldadversely

impactthecalculationprocess.Validationorverificationarenotrequiredforchangesthatwould

not reasonably be expected to change calculation results.  To ensure continued code

performance,verificationtestingisperformedanddocumentedinapplicablecalculationresults.

SafetyLimits

Thevalidationestablishesthetechnicalbasisforthemargin(s)ofsubcriticalitybasedonthe

quantityandqualityofbenchmarkdata,andtheoverallsimilarityofthebenchmarkexperiments

tothesystemsbeingevaluated.Aminimummarginofsubcriticalityof0.02inkeffisusedto

establish the USL for criticality calculations for normal and abnormal conditions within the

validatedareaofapplicabilityandfurthersubjecttoanylimitationsorrestrictionsdocumented

intheTRISOXFFFapplicableCodeValidationReport.Theareaofapplicabilitymaybeextended

beyondtherangeofthebenchmarksbymakinguseoftrendsinthedata,andinaccordancewith

applicablerequirementsofANSI/ANS8.242017,asdocumentedintheCodeValidationReport.

Anadditionalmarginofsubcriticalitymaybenecessaryintheseextendedrangesasdocumented

intheCodeValidationReportorintheevaluationofaspecificprocess.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page517

Theminimummarginofsubcriticalityisjustifiedbasedonbothconservativemodelingpractices

andconservatisminthevalidationmethodology.FortheTRISOXFFF,conservativemodeling

practicesincludeusinganenrichmentof20wt.%235U,assumingoptimalmoderationorsaturated

conditions for bounding material densities, using bounding fissile material compositions,

modelinggeometriccomponentstoouterdimensions,andneglectingmaterialsofconstruction

of components unless shown to lead to a more reactive configuration.  Some materials of

constructionarecreditedinfissilematerialshippingpackages;however,theseitemsarequalified

undermorestringentdesignandtestingprogramswithmaterialsofconstructionreduced(e.g.,

outerdrumwallthickness)toconservativelyboundanylossesduringthelifeofthepackage.

Conservatisminthevalidationmethodologyincludestheuseofdiversestatisticalmethodsand

theconsiderationofmanydiversesubgroupsofthebenchmarkdata.Thechoiceofmethodsand

datathatproducethelargestcalculationalmarginshallbeconservativelyappliedindetermining

theUSL,includingnotcreditingapositivebias.However,positivebiasvalueswillbeincludedin

theestimateofbiasuncertaintyandwillconservativelyincreasebiasuncertaintyanddecrease

theassociatedUSL.Thissameconservativeapproachwillbeappliedtothevalidationofthecode

atotherenrichmentranges.

TheUSLvarieswiththecomputercodesystem(hardware,codes,andcrosssections)asthe

calculationalmarginvaries.TheUSListhekeffofacriticalsystem(i.e.,1.0)minusthesumof

calculationalmarginandthemarginofsubcriticality.Systemsthatareevaluatedwithinthearea

ofapplicability,andthathaveakeff+2lessthanorequaltotheUSL,demonstratesubcriticality.

ThecalculationofkeffisaccomplishedusingcomputercodesystemsthatutilizeMonteCarlo

techniques to determine keff of a system.  Computer models representing the geometric

configurationandmaterialcompositionsofthesystemaredevelopedforusewithinthecode.

Thedevelopmentofappropriatemodelsmustaccountfororconservativelyboundbothnormal

andcredibleabnormalprocessconditions.Thedevelopmentofappropriatemodelsshallalso

accountfororconservativelyboundbothnormalandcredibleabnormalprocessconditions.

FortheinitialdesignoftheTRISOXFFF,theSCALE6.2.3codewiththeV7252groupENDF/B VII.1crosssectionlibraryisusedonvalidatedstandaloneworkstationsforcriticalitycalculations.

Futureversionsofthecodeornucleardataoruseofotherindustryacceptedcodes(e.g.,MCNP)

willbecontrolled,verified,andvalidatedwiththesamelevelofrigor,asdiscussedinthissection.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page518

Whendeterminingsubcriticalitybasedoncomputercodecalculations,thefollowingUSLlimits,

regardlessofthemethodemployed,shallnotbeexceeded:

System

UpperSubcriticalLimit

Highenrichedsystems

(Uraniumenrichedin235U>than20wt.%)

0.95

Highassaylowenrichedsystems

(Uraniumenrichedin235U20wt.%and>10wt.%)

0.96

Lowenrichedsystems

(Uraniumenrichedin235U10wt.%)

0.97

TheUSLvaluesareexactlimitvalues,anddonotimplythatcomplianceneedonlybeshownto2

significantfigures.ThedeterminationoftheappropriateUSLshallbedocumentedinavalidation

reportandlesservaluesshallbeusedbasedonvariancesinthecalculatedbias,biasuncertainty,

marginofsubcriticality,andthestatisticalmethodandsubsetofbenchmarkthatproducethe

largest calculation margin.  Compliance with these values shall include the calculational

inaccuracies,suchasMonteCarlovariance,bymeetingthelimitwithamarginintheconservative

directionofatleasttwostandarddeviations(i.e.,keff+2).Anyroundingisintheconservative

direction.

5.6

SourcesofCriticalityDataandAnalyticalTechniques

TheNCSstaffmayusethefollowingsourcesofcriticalitydataandanalyticaltechniquesto

supportnuclearcriticalitysafetyanalysesandevaluations:

1. J.H.Chalmers,G.Walker,andJ.Pugh,HandbookofCriticalityData,UKAEAHandbook AHSB(S),1965.

2.

H.C.PaxtonandN.L.Pruvost,CriticalDimensionsofSystemsContaining235U,239Pu, and233U,LA10860,LosAlamosNationalLaboratory,1986.

3. N.L.PruvostandH.C.Paxton,NuclearCriticalitySafetyGuide,LA12808,LosAlamos NationalLaboratory,1996.
4. R.D.Carter,G.R.Kiel,andK.R.Ridgway,CriticalityHandbook,VolumesI,II,andIII, ARH600,AtlanticRichfieldHanfordCompany,1968.
5. GesellschaftfürAnlagenundReaktorsicherheit(GRS)gGmbH,HandbuchzurKritikalitt, GRS380,2019.
6. DeterminationofH/URatiosinUO2WaterandADUWaterMixtures,JN712,1971.
7. B.T.ReardonandM.A.Jessee,Eds.,SCALECodeSystem,ORNL/TM2005/39,Version 6.2.3,March2018.
8. AmericanNuclearSociety,NuclearCriticalitySafetyinOperationswithFissionable MaterialsOutsideReactors,ANSI/ANS8.12014(R2018).
9. AmericanNuclearSociety,CriticalityAccidentAlarmSystem,ANSI/ANS8.31997 (R2017).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page519

10. AmericanNuclearSociety,UseOfBorosilicateGlassRaschigRingsAsANeutron AbsorberInSolutionsOfFissileMaterial,ANSI/ANS8.51996(R2017).
11. AmericanNuclearSociety,NuclearCriticalitySafetyintheStorageofFissileMaterials, ANSI/ANS8.71998(R2017).
12. AmericanNuclearSociety,UseOfSolubleNeutronAbsorbersInNuclearFacilities OutsideReactors,ANSI/ANS8.142004(R2016).
13. AmericanNuclearSociety,AdministrativePracticesforNuclearCriticalitySafety, ANSI/ANS8.192014(R2019).
14. AmericanNuclearSociety,NuclearCriticalitySafetyTraining,ANSI/ANS8.201991 (R2020).
15. AmericanNuclearSociety,UseOfFixedNeutronAbsorbersInNuclearFacilitiesOutside Reactors,ANSI/ANS8.211995(R2011).
16. AmericanNuclearSociety,NuclearCriticalitySafetyBasedOnLimitingAndControlling Moderators,ANSI/ANS8.221997(R2016).
17. AmericanNuclearSociety,ValidationofNeutronTransportMethodsforNuclear CriticalitySafetyEvaluations,ANSI/ANS8.242017.
18. AmericanNuclearSociety,CriticalitySafetyEngineerTrainingandQualification Program,ANSI/ANS8.262007(R2016).
19. RonaldAllenKnief,NuclearCriticalitySafetyTheoryandPractice.AmericanNuclear Society,1993.
20. D.F.Hollenbach,NuclearCriticalitySafetyDataBook,Rev.2,DACEN801768A100, https://www.osti.gov/servlets/purl/1339414,2016.
21. GmelinlnstitutfürAnorganischeChemie,GmelinHandbookofInorganicChemistry, SupplementVolumeA6,GeneralProperties-Criticality,1983.
22. JapanAtomicEnergyResearchInstitute,NuclearCriticalitySafetyHandbook,JAERI Review95013,1995.
23. J.T.Thomas,Ed.,NuclearSafetyGuide,TID7016,Revision2,NUREG/CR0095, ORNL/NUREG/CSD6,U.S.NuclearRegulatoryCommission,1978.
24. InternationalHandbookofEvaluatedCriticalitySafetyBenchmarkExperiments, NEA/NSC/DOC(95),NuclearEnergyAgencyScienceCommittee,Organizationfor EconomicCoOperationandDevelopment,2020.

5.7

RequirementsforNewFacilitiesorNewProcessesatExistingFacilities

Asrequiredby10CFR70.64(b),thefacilityisdesignedusingadefenseindepthapproachfor

protectionagainstinadvertentcriticality.Totheextentpracticable,thefacilitydesignconsiders

preference for the selection of engineered controls over administrative controls to increase

overallsystemreliability,andfeaturesthatenhancesafetybyreducingchallengestoIROFSare

incorporated.Thefacilitydesignaddressesthebaselinedesigncriteriaof10CFR70.64(a)for

newfacilitiesandcriticalitycontrol.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page520

As required by 10 CFR 70.64(a)(9), the TRISOX Fuel Fabrication Facility design provides for

criticalitycontrolincludingapplicationofthedoublecontingencyprinciple.

Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense

amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontrolof

criticalityhazards.Adefenseindepthapproachwillbeappliedtohigherriskaccidentsequences

asrequiredby10CFR70.64(b).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0005

SNMXXXX

CHAPTER5

ZŽ

December2024

Page521

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0005toheader.

5.1

ClarifiedthatISAriskassessmentmethodsareusedtodemonstrate

compliancewith10CFR70.61(b).ChangesmadeperTX0REGLTR 0040Enclosure1,RAI1.

5.2.2

AddedNCSProgramCommitments7,8,and9whichalignwiththe

guidanceprovidedinNUREG1520Rev.2,p.5A7(twobullets)and

5A8(firstbullet)asagreedtoinmeetingswithNRCon12/3 12/4/2024and12/16/2024toresolveISARAI5.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0006 SNMXXXX CHAPTER 6 ZŽ

December 2024 Page 61 CHEMICAL PROCESS SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 6.1 Chemical Process Safety Program 62 6.2 6.2.1 6.2.2 6.2.3 6.2.4 Process Chemical Risk and Accident Sequences Process Descriptions Identification and Evaluation of Chemical Accident Sequences Chemical Consequence Estimates Chemical Exposure Standards 62 6.3 6.3.1 6.3.2 6.3.3 IROFS and Management Measures Chemical Process IROFS Management Measures Chemical Process Safety Coordination with Emergency Management 63 6.4 Requirements for New Facilities or New Processes at Existing Facilities 64 TRISO-X Document Control 2024.12.30 12:00:56 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0006

SNMXXXX

CHAPTER6

ZŽ

December2024

Page62

CHEMICALPROCESSSAFETY

6.1

ChemicalProcessSafetyProgram

TRISOXhasestablishedandmaintainsachemicalprocesssafetyprogramtoassurethatworkers,

thepublic,andtheenvironmentareadequatelyprotectedfromthechemicalhazardsrelatedto

thestorage,handling,andprocessingoflicensedmaterials.WithrespecttoNRCoversight,the

programisimplemented,andthefacilityisdesigned,toaddresschemicalhazardsassociated

withlicensedmaterialsandhazardouschemicalsproducedfromlicensedmaterials,andchemical

risksoffacilityconditionsthatcouldaffectthesafetyoflicensedmaterials.Thechemicalsafety

element of the safety program required by 10 CFR 70.62(a) is evaluated and implemented

throughtheISAprocessdescribedinChapter3.

Based on the 2013 Memorandum of Understanding (MOU) between the NRC and the

OccupationalSafetyandHealthAdministration(OSHA),theNRCoverseeschemicalsafetyissues

relatedtoradiationrisksoflicensedmaterials,chemicalrisksoflicensedmaterials,andfacility

conditionsthataffectormayaffectthesafetyoflicensedmaterialsandthuspresentanincreased

radiationrisktoworkers.OSHAoverseesfacilityconditionsthatdonotaffectorinvolvethe

safetyoflicensedmaterials.

6.2 ProcessChemicalRiskandAccidentSequences

6.2.1 ProcessDescriptions

AgeneralprocessdescriptionoftheproductionoperationsisprovidedinChapter1.Thisis

supplementedbymoredetailedprocesssystemdescriptionsinthefacilitysISASummaryas

requiredby10CFR70.65(b)(3)thatincluderelevantinformationtoprovideabasicunderstanding

ofoperation,allowanunderstandingofthechemicalhazards,andsupportthedevelopmentof

potentialaccidentsequences.

6.2.2 IdentificationandEvaluationofChemicalAccidentSequences

Potential accident sequences involving chemical hazards related to the safety of licensed

materialsareincorporatedaspartoftheISA.Accidentsequenceidentification,consequenceand

likelihooddetermination,andriskassessmentmethodsarediscussedinChapter3andtheISA

Summary.

TheISAincludesevaluationsofchemicalrisksoflicensedmaterials,riskofchemicalsderivedfrom

licensedmaterials,andchemicalrisksintroducedbyfacilityconditionsthatcouldaffectthesafety

oflicensedmaterials.TheISAidentifiesandevaluatescredibleunmitigatedaccidentsinvolving

acute chemical exposures under NRC regulatory jurisdiction. The acute chemical exposure

pathwaysevaluatedareinhalation,dermal,andingestion.Analysisassumptionsconsiderthe

maximumforeseeableinventoriesofchemicalsatspecificlocations.Routine,nonroutine,and

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0006

SNMXXXX

CHAPTER6

ZŽ

December2024

Page63

credibleabnormaloperationalscenariosareincludedintheanalysis,alongwithconservative

physicalpropertiesoftheassociatedchemicals.Resultsoftheevaluationsarecomparedtothe

performancecriteriain10CFR70.61,andunmitigatedscenariosthatcouldresultinIntermediate

orHighconsequencesaredocumentedintheISASummary.IROFSandappropriatemanagement

measures are applied to Intermediate or High consequence scenarios to ensure that the

performancecriteriain10CFR70.61aremet.

6.2.3 ChemicalConsequenceEstimates

ChemicalconsequenceestimatesarebasedonguidanceinNUREG/CR6410,whereappropriate,

forsourcetermdetermination,releasefractions,dispersionfactors,meteorologicalconditions,

and consequence modeling techniques.  Alternative methods and other industry accepted

techniquesmayalsobeusedtoperformconsequencecalculations,providedthemethodsare

appropriate to the process, the physical setting, and the specific condition being evaluated.

SafetyDataSheetsarealsoreviewedwhenassessingchemicalconsequences.Dispersionmodels

maybeutilizedtoassesstheconsequencesofaccidentalchemicalreleasescenariossothatthe

resultscanbecomparedtotheperformancecriteriain10CFR70.61aspartoftheISAprocess.

Sourcetermanddispersionmodelsareselectedbasedonthechemicalbeingevaluatedand

shouldprovideforaconservativeestimateofthepotentialconsequences.

6.2.4 ChemicalExposureStandards

Chemicalexposurestandardsusedinsupportofassessingtheconsequencesofanacutechemical

exposuretoanindividualareidentifiedinaccordancewith10CFR70.65(b)(7).PerNUREG1520,

acceptable chemical exposure standards include, but are not limited to, Acute Exposure

Guideline Levels (AEGLs) developed by the United States Environmental Protection Agency,

EmergencyResponsePlanningGuidelines(ERPGs)producedbytheAmericanIndustrialHygiene

Association, and exposure limits established by OSHA.  If no AEGLs or ERPGs are available,

TemporaryEmergencyExposureLimitsdevelopedbytheUnitedStatesDepartmentofEnergy

maybeused.ThesestandardsaredocumentedintheISASummary.

6.3

IROFSandManagementMeasures

6.3.1 ChemicalProcessIROFS

IROFS are identified and implemented for chemical accident sequences that can lead to

IntermediateorHighconsequencescenariostoensurethattheperformancecriteriain10CFR

70.61 are met.  The IROFS and associated accident sequences are documented in the ISA

Summarytodemonstratecompliancewiththeperformancecriteriaof10CFR70.61.IROFSmay

beengineeredcontrols(passiveoractive),enhancedadministrativecontrols(activeengineered

featuresthatalertapersontotakeanaction),oradministrativecontrols(actionsofpeople).

6.3.2 ManagementMeasures

ManagementmeasuresthatensurethereliabilityandavailabilityofIROFSareestablishedas

describedinChapter11.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0006

SNMXXXX

CHAPTER6

ZŽ

December2024

Page64

6.3.3 ChemicalProcessSafetyCoordinationwithEmergencyManagement

IROFSidentifiedintheISASummarycreditedtoaddresschemicalconsequencesmayalsobe

described in the Site Emergency Plan.  The Site Emergency Plan described within Chapter 8

addressesresponsetoandmitigationofaccidentsinvolvingprocesschemicals.

6.4

RequirementsforNewFacilitiesorNewProcessesatExistingFacilities

Asrequiredby10CFR70.64(b),theTRISOXFuelFabricationFacilityisdesignedusingadefense indepth approach forprotectionagainst chemical accidents.  To the extent practicable, the

facilitydesignconsiderspreferencefortheselectionofengineeredcontrolsoveradministrative

controls to increase overall system reliability, and features that enhance safety by reducing

challengestoIROFSareincorporated.Thefacilitydesignaddressesthebaselinedesigncriteria

of10CFR70.64(a)fornewfacilitiesandthecontrolofchemicalhazards.

Asrequiredby10CFR70.64(a)(5),thedesignprovidesforadequateprotectionagainstchemical

risks produced from licensed material, facility conditions that affect the safety of licensed

material,andhazardouschemicalsproducedfromlicensedmaterial.Thedesignprocessincludes

reviewofopportunitiestoremoveorreducethehazardsinchemicalprocessingconsidering

inherentlysafedesignconcepts-minimize,substitute,moderate,simplify.Theproperhandling,

use, and storage of chemicals is addressed through approved procedures and Hazard

Communicationtraining.

Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense

amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontrolof

chemicalhazards.Adefenseindepthapproachwillbeappliedtohigherriskaccidentsequences

asrequiredby10CFR70.64(b).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0006

SNMXXXX

CHAPTER6

ZŽ

December2024

Page65

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0006toheader.

6.2.2

AddedstatementsclarifyingthattheISAidentifiesandevaluates

credibleunmitigatedaccidentsinvolvingacutechemicalexposures

underNRCregulatoryjurisdiction.Theacutechemicalexposure

pathwaysevaluatedareinhalation,dermal,andingestion.Changes

basedonTX0REGLTR0029Enclosure2,RAI1.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0007 SNMXXXX CHAPTER 7 ZŽ

December 2024 Page 71 FIRE SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 7.1 Fire Safety 72 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 Fire Safety Management Measures Fire Safety Organization Fire Prevention Inspection, Testing, and Maintenance of Fire Protection Systems Emergency Response Organization PreFire Plans 72 7.3 Fire Hazards Analysis 74 7.4 7.4.1 Facility Design Facility Design Criteria 74 7.5 Process Fire Safety 75 7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 7.6.7 Fire Protection and Emergency Response Water Supply Hydrants, Standpipes, and Hose Houses Fixed Fire Protection Systems Fire Detection and Alarm Systems Portable Fire Extinguishers Lightning Protection Emergency Response Team 75 7.7 Requirements for New Facilities or New Processes at Existing Facilities 77 TRISO-X Document Control 2024.12.30 12:12:05 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page72

FIRESAFETY

7.1

FireSafety

TheTRISOXfireprotectionprogramisbasedonacombinationoffireprotectionmeasuresand

systems.Suchmeasuresandsystemsaredesignedandmaintainedinaccordancewithindustry

standardsandprudentindustrypractices.Thestandardsandpracticesmostoftenconsultedare

thoseoftheNationalFireProtectionAssociation(NFPA).

Thefireprotectionprogramisdesignedtominimizethepotentialforandprovidereasonable

protection against fire and explosive hazards associated with the processing, handling, and

storage of licensed materials during normal operations, anticipated operational offnormal

occurrences,andcredibleaccidents.AspartoftheISAprocessdescribedinChapter3,area

operationsareevaluatedforthepotentialfor,andconsequencesof,fireandexplosivehazards

thatcouldaffectthesafetyoflicensedmaterialsandthuspresentanincreasedradiologicalrisk.

Wheretheseconsequencescouldexceedtheperformancerequirementsin10CFR70.61,IROFS

areassigned.TheseIROFSareidentifiedandcontrolledasdescribedintheISASummaryandin

approvedprocedurestoensuretheyremainavailableandreliable.

TheTRISOXfireprotectionprogramandgeneralfacilitydesignweredevelopedusingNFPA801,

Standard for Fire Protection for Facilities Handling Radioactive Materials, 2014 edition.  In

additiontotheFireHazardsAnalysis(FHA)preparedasrequiredtocomplywithNFPA801and

tosupporttheISAprocess,TRISOXhasageneralfiresafetyprogramthatincludesgeneralfire

safety management measures, facility design requirements, and general fire protection and

emergencyresponsemeasures.TheFHAconfirmsthatanadequateleveloffireprotectionand

lifesafetyhasbeenachievedthatincludesdefenseindepthprotectionandconformancewith

national codes, standards, and federal regulations applicable to the facilitys design and

construction,andmanufacturingoperations.

7.2

FireSafetyManagementMeasures

7.2.1 FireSafetyOrganization

Fireprotectionprogramorganization,authorities,andresponsibilitiesaredescribedinChapter

2. TheAuthorityHavingJurisdiction(AHJ)forthefireprotectionprogramisheldbythefire protectionfunctionunlessmandatedbylocaland/orstateregulation,wherethespecifically requiredAHJisutilized.

TheequivalencyconceptmaybeappliedinmeetingtheprovisionsofNFPAcodesorstandards,

providedthattechnicaldocumentationdemonstratesequivalency,andthatthemethod,system,

ordeviceislistedorapprovedfortheintendedpurpose.Equivalencyevaluationrecordsare

retained as described in Chapter 11, and records are made available for NRC review and

inspection.Whererequiredbycode,equivalencyevaluationsaresubmittedtotheAHJ.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page73

If an IROFSrelated NFPA code commitment cannot be met and an alternate method that

provides an equivalent level of safety cannot be identified, a formal request to approve a

deviation from the NFPA code commitment will be submitted to the NRC for review and

inspectionrelativetoeffectsonnuclearsafety.

The configuration management program described in Chapter 11 assures that any facility

changesareproperlyevaluatedwithregardtotheimpactuponfiresafetyanddocumented

withinthefacilitysafetybases.Newfacilitiesandprocessesarereviewedbythefacilitysafety

reviewcommittee.

7.2.2 FirePrevention

1. Employee Training - General fire safety awareness training is administered to each employee as part of their general employee training.  Applicable IROFS training is providedaspartofjobspecifictraining.
2. FacilityAuditsandInspections-Periodicauditsandinspections,asdetailedinChapter11 andapprovedprocedures,areperformedforfacilitiescontaininglicensedmaterialsina quantityandformthatcouldcauseatleastanintermediateconsequenceasdefinedin 10CFR70.61iftotallyconsumedbyfire.Itemsidentifiedareenteredintothefacility's correctiveactionprogramandtrackedtoclosure.
3. FirePreventionProcedures-Approvedproceduresaremaintainedfortheadministration ofthegeneralfirepreventionprogram.Firesafetyproceduresaddressareassuchasthe storage,handling,andcontrolofcombustible(includingtransientandworkgenerated),

flammable, and pyrophoric materials; the review and issuance of permits for work performedinthefacilitytocontrolsourcesofignition,suchaswelding,cutting,brazing, soldering,andgrinding;andfirepreventionsurveillancetoensurethatTRISOXmaintains a readiness to extinguish fires and limit consequences of a fire through use of fire detectionandsuppressionsystems.

7.2.3 Inspection,Testing,andMaintenanceofFireProtectionSystems

Proceduralguidanceisestablishedfortheinspection,testing,andmaintenanceoffireprotection

systems routinely performed by TRISOX personnel.  These procedures are applied to fire

detection,warning,andsuppressionsystems.Inspection,testing,andmaintenancemayalsobe

conductedbyoutsidevendorsthatspecializeinthetypeofworkrequired.RecordsofTRISOX

activitiesandofoutsidevendoractivitiesaremaintainedasdescribedinChapter11.

7.2.4 EmergencyResponseOrganization

TRISOX maintains an emergency response organization in accordance with 10 CFR 70.22.

Approvedproceduresoutlinetheoverallemergencyresponseprogram,includingbutnotlimited

tostaffing,training,drillsandexercises,responsemeasures,andoffsiteagencycoordination.

TheEmergencyPreparednessprogram,asdescribedinChapter8,includesmemorandumsof

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page74

understandingbetweenTRISOXandoffsiteagencies,andaddressesperiodicoffsitetraining

anddrills.TheTRISOXemergencyresponseteamisdiscussedinSection7.6.7.

7.2.5 PreFirePlans

TRISOXmaintainsprefireplansforeachbuilding,orpartthereof,that,iftotallyconsumedby

fire, could release licensed material in a quantity and form that could cause at least an

intermediateconsequenceasdefinedin10CFR70.61.Theseprefireplansprovideinformation

neededbyfirefightingpersonnelrespondingtotheemergencyandarelocatedforreadyaccess

bythefacilityemergencyresponseteamandlocalfiredepartmentswhomayrespondtoan

emergencyattheTRISOXFFF.WhereCriticalityoradversechemicalreactionconcernsmay

excludewatersuppressiontechniqueswithincertainprocessareas,orifdetectionand/orother

suppressionmethodsareselectedtofurthermitigatethepotentialforcriticality,thisisaddressed

intheassociatedprefireplans.Prefireplansforbuildings/areasthatinvolvelicensedmaterials

arereviewedbyNCSstaff.

7.3 FireHazardsAnalysis

An FHA has been developed as required by NFPA 801 (2014 edition).  This document was

preparedforthemanufacturingbuildingthatisinvolvedinprocessingorstorageoflicensed

materials in sufficient quantities and in a form that, if released in a fire, could result in an

intermediateorhighconsequenceeventasdefinedintheISAsummary.

TheFHAisacomponentoftheISAprocess,asdescribedinChapter3.TheFHAfocuseson

boundingfirescenarioswithinbuildingsthatcontainlicensedmaterialsandconsiderfireloading,

the consequences and analysis of an unmitigated fire, and mitigating controls.  Fire and/or

explosion hazards which have the potential to create high or intermediate consequences as

definedin10CFR70.61arecontrolledviatheapplicationofappropriateIROFS.TheseIROFSare

documentedintheISASummaryasdescribedinChapter3.Managementmeasuresthatensure

thereliabilityandavailabilityofIROFSareestablishedasdescribedinChapter11.

7.4

FacilityDesign

7.4.1 FacilityDesignCriteria

TheTRISOXFFFisdesignedandconstructedconsistentwiththerequirementsofNFPA801(2014

edition),aswellasapplicablestateandlocalbuilding,electrical,andfirecodesineffectatthe

time of construction.  The FHA and/or facility design documentation describes the type of

construction,buildingmaterials,exterioropenings,firedetectionandalarmsystem,automatic

firesuppressionsystems,andthefirewaterdistributionsystem.

Designandconstructioncriteriaforfacilitiesthatprocesslicensedmaterialsincludeanevaluation

todeterminethepropermethodstoprevent,detect,extinguish,limit,andcontrolfiresand

explosions.Fireresistiveandnoncombustiblematerialsareusedasappropriate.Fireareasmay

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page75

subdividespecifiedprocessesormaterialsinvolvingsignificantfirehazardstoconfinethespread

offiretotheareaoforigin,andfirebarriersareprovidedasrecommendedbytheFHA.

Criticality or adverse chemical reaction concerns may exclude automatic water suppression

extinguishing systems from certain process areas, or detection and/or other suppression

methodsmaybeselectedtofurthermitigatethepotentialforcriticalitywheretheseareashave

significantfirerisks.

Electricalinstallation,ventilation,lightningprotection,firewaterrunoff,lifesafetyandworker

egress, and firefighter access are considered.  Physical security features designed for the

protectionoflicensedmaterialarereviewedtopreventorminimizetheinadvertentdelayof

eitherworkeregressorfirefighteraccessduringemergencysituations.

7.5

ProcessFireSafety

Processfiresafetyisconsideredintheplanning,design,andconstructionofnewfacilitiesand

processes.Inareaswherefireand/orexplosionhazardsmayimpactlicensedmaterial,risksare

evaluatedanddocumentedbytheISAprocess.TheISAevaluatesthespecialfireriskassociated

with:

x Combustible,flammable,andpyrophoricprocesschemicals(solids,liquids,gases),inuse andinstorage, x

Exothermicreactionsofuraniumoxides,and x

Hightemperatureand/orhighpressureequipment.

TheISAsummaryidentifiesthefireinitiatedreleasescenariosthatmayimpactlicensedmaterial.

Processrelated fire hazards are controlled with IROFS to the extent necessary to meet the

performancerequirementsof10CFR70.61.

7.6

FireProtectionandEmergencyResponse

7.6.1 WaterSupply

FireprotectionwaterisprovidedtoTRISOXfacilitiesthroughastandaloneundergroundloop

systemfedbytheCityofOakRidgewaterdistributionsystem.Detailsofthefireprotectionwater

supplyarecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.

7.6.2 Hydrants,Standpipes,andHoseHouses

Multiplehydrantsareprovidedthroughoutthefireprotectionloop.Locationsaresuchthatthey

allowreadyaccessforquickusewhenneededtoassistinfirefighting.Inareaswhereautomatic

watersuppressionextinguishingsystemsareexcludedorarenotpreferredduetocriticalityor

adverse chemical reaction concerns, standpipe hose cabinets are provided for use when

authorized.  Hose houses may also be provided in areas that are hard to access or are

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page76

inaccessible.Detailsofthehydrants,standpipes,andhosehousesarecontainedintheFHA,in

prefireplans,and/orinapprovedprocedures.

7.6.3 FixedFireProtectionSystems

Fixed fire protection systems, including clean agent and/or gaseous fire extinguishing and

automaticsprinklersystems,areutilizedthroughoutTRISOXfacilities.Selectionofequipment

considerstheseverityofthehazard,thetypeofactivitiesperformedinthearea,thepotential

consequencesofafire,andthepotentialconsequencesofuseofthesuppressionequipment

(e.g.,riskofanaccidentalcriticality,orsubstantialelectricalhazard).Detailsofthefixedfire

protectionsystemsarecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.

7.6.4 FireDetectionandAlarmSystems

TRISOX facilities are equipped with fire detection and alarm systems that include initiating

devices(e.g.,smokedetection,heatdetection,manualpullstations)andnotificationappliances

(e.g.,audiblealarm,visualstrobe).Selectionofequipmentconsidersthetypesofhazardsinthe

areaandtheenvironmentinwhichtheequipmentwillbeinstalled.Firedetection,alarm,and

suppressionsystemsarecontinuouslymonitored.Detailsofthefiredetectionandalarmsystems

arecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.

7.6.5 PortableFireExtinguishers

Portable fire extinguishers are located throughout TRISOX facilities for use by employees

respondingtoincipientstagefires.Selectionofequipmentconsiderstheclassoffiresthatcould

occurintheareaandcapacityrequired.Detailsregardingthetypeandlocationoftheportable

fireextinguishersarecontainedintheFHA,inprefireplans,and/orinapprovedprocedures.

7.6.6 LightningProtection

TRISOXfacilitieshavebeenoutfittedwithlightningprotectionsystemsasspecifiedintheFHA.

7.6.7 EmergencyResponseTeam

TRISOXmaintainsanemergencyresponseteam.Theemergencyresponseteamisanorganized

groupofemployeeswhoareknowledgeable,trained,andskilledinbasicfirefightingoperations,

firstaidtechniques,andemergencyresponse.Trainingandeducationareprovidedforteam

memberscommensuratewiththosedutiesandfunctionsthattheyareexpectedtoperform.

TRISOXreliesonsupportfromoffsitefirefightingresourcesforfireandhazardousmaterials

releaseresponse.

The TRISOX Emergency Preparedness program, as described in Chapter 8, includes

memorandumsofunderstandingbetweenTRISOXandoffsiteagencies,andaddressesperiodic

offsitetraininganddrills.TheTRISOXemergencyresponseorganizationisdiscussedinSection

7.2.4.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page77

7.7RequirementsforNewFacilitiesorNewProcessesatExistingFacilities

Asrequiredby10CFR70.64(b),theTRISOXFuelFabricationFacilityisdesignedusingadefense indepthapproachforprotectionagainstfireandexplosionaccidents.Totheextentpracticable,

the facility design considers preference for the selection of engineered controls over

administrativecontrolstoincreaseoverallsystemreliability,andfeaturesthatenhancesafetyby

reducingchallengestoIROFSareincorporated.

Consistent with the guidance provided in NFPA 801, the FHA and ISA demonstrate that the

design,buildingconstruction,fireareas,lifesafety,andventilationofthefacility;processfire

safety;firedetectionandsuppressionsystems;prefireplanning;andmanualfiresuppression

capability together form the basis for compliance with the BDC of 10 CFR 70.64(a) and the

defenseindepthrequirementsof10CFR70.64(b).

Asrequiredby10CFR70.64(a)(3),thedesignprovidesforadequateprotectionagainstfireand

explosionbyincorporatingdefenseindepthconceptssuchthathealthandsafetyarenotwholly

dependentonanysingleelementofthedesign,construction,maintenanceoroperationofthe

facility.Thisisaccomplishedbyachievingabalancebetweenpreventingfiresfromstarting;

quickly detecting, controlling and promptly extinguishing those fires that do occur; and

protectingstructures,systems,andcomponentssuchthatafirewillnotleadtoanunacceptable

consequence.

Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense

amendment,thebaselinedesigncriteriaof10CFR70.64(a)willbeappliedtothecontroloffire

hazards.  A defenseindepth approach will be applied to higher risk accident sequences as

requiredby10CFR70.64(b).

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0007

SNMXXXX

CHAPTER7

ZŽ

December2024

Page78

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0007toheader.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0008 SNMXXXX CHAPTER 8 ZŽ

December 2024 Page 81 EMERGENCY MANAGEMENT Table of Contents SECTION TITLE STARTS ON PAGE 8.1 Emergency Plan 82 8.2 Emergency Plan Implementing Procedures 82 8.3 Amendment of the Emergency Plan 82 8.4 Agreements with Offsite Emergency Response Resources 82 8.5 Requirements for New Facilities or New Processes at Existing Facilities 82 TRISO-X Document Control 2024.12.30 12:38:16 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0008

SNMXXXX

CHAPTER8

ZŽ

December2024

Page82

EMERGENCYMANAGEMENT

8.1

EmergencyPlan

TRISOX maintains an emergency plan in accordance with the requirements of 10 CFR

70.22(i)(1)(ii).Contentoftheplanisinaccordancewith10CFR70.22(i)(3)andisconsistentwith

U.S.NuclearRegulatory(NRC)guidanceinRegulatoryGuide3.67,StandardFormatandContent

forEmergencyPlansforFuelCycleandMaterialsFacilities.

8.2

EmergencyPlanImplementingProcedures

Therequirementsoftheemergencyplanareimplementedthroughapprovedproceduresand

checklists.

8.3

AmendmentoftheEmergencyPlan

Theemergencyplanismaintainedasneeded.TRISOXmaychangetheapprovedplanwithout

NRCapprovalifthechangesdonotdecreasetheeffectivenessoftheplan.Inaccordancewith

10CFR70.32(i),copiesofchangesthatdonotdecreaseeffectivenesswillbeprovidedtotheNRC

andappropriateorganizationswithinsixmonthsofmakingthechanges.Proposedchangesto

theplanthatdecreaseitseffectivenesswillnotbeimplementedwithoutpriorapprovalbythe

NRC.

8.4

AgreementswithOffsiteEmergencyResponseResources

Formal written agreements with offsite medical response organizations (Methodist Medical

Center and University of Tennessee Medical Center) have been established and will be

maintained to assure implementation of the emergency plan and emergency response

procedures.Thesehospitalswillserveasemergencyresponsehospitalsforinjuredindividuals

thatmaybecontaminatedorexposedtoradiologicalmaterials.Hospitalstaffhavealsoreceived

training from the Radiation Emergency Assistance Center/Training Site in Oak Ridge. These

agreementsarereviewedandrenewedasdescribedintheemergencyplanandaremaintained

onfileattheTRISOXFuelFabricationFacility.Localfire,police,andambulanceservices(Cityof

OakRidge,RoaneCounty)arerequiredbyTennesseestatelawtorespondtoemergencieswhen

911iscalled.

8.5

RequirementsforNewFacilitiesorNewProcessesatExistingFacilities

Asrequiredby10CR70.64(a)(6),andasdescribedintheemergencyplan,theTRISOXFuel

Fabrication Facility design provides for emergency capability to maintain control of licensed

material and hazardous chemicals produced from licensed material, evacuation of onsite

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0008

SNMXXXX

CHAPTER8

ZŽ

December2024

Page83

personnel,andonsiteemergencyfacilitiesandservicesthatfacilitatetheuseofavailableoffsite

services.

Ifaplannednewfacilityand/ornewprocessmeetsthe10CFR70.72criteriarequiringalicense

amendment, the baseline design criteria of 10 CFR 70.64(a) will be applied to emergency

capability.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0008

SNMXXXX

CHAPTER8

ZŽ

December2024

Page84

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0008toheader.

Section8.4

Updatedoffsiteemergencyresponseresourceinformationdueto

TX0LTR0022,EmergencyManagementRAI1.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0009 SNMXXXX CHAPTER 9 ZŽ

December 2024 Page 91 ENVIRONMENTAL SAFETY Table of Contents SECTION TITLE STARTS ON PAGE 9.1 Environmental ALARA 92 9.2 9.2.1 9.2.2 9.2.3 Gaseous Effluent Control Gaseous Effluent Sampling HighEfficiency Particulate Absolute (HEPA) Filtration Final HEPA Filter Surveillance 92 9.3 9.3.1 Liquid Effluent Control Wastewater Collection/Treatment 94 9.4 Waste Management 95 9.5 Environmental Monitoring 95 9.6 Program Management 96 TRISO-X Document Control 2024.12.30 12:55:39 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page92

ENVIRONMENTALSAFETY

9.1

EnvironmentalALARA

TRISOX has established and maintains an environmental safety program to maintain

concentrationsofradioactivematerialsinfacilityeffluentsandthesurroundingenvironmentas

lowasreasonablyachievable(ALARA).TheTRISOXALARAprogramisdescribedinChapter4.

Environmentalreleasesarelimitedandmonitoredsuchthatcompliancewiththepublicdose

limits of 10 CFR 20.1301 and the effluent limits of 10 CFR 20.1302 can be achieved and

demonstrated.  These objectives are supported by performing routine measurements and

calculations,comparingresultstoactionlevels,andreportingresultstofacilitymanagementand

theNRC,asappropriate.Internalactionlevelsareimplementedthroughapprovedprocedures

to provide early identification of potential problems and prevent exceedance of established

guidelines.Ifactionlevelsareexceeded,investigationsareinitiatedtoidentifythecause,and

appropriatecorrectiveaction(s)aretakentominimizethelikelihoodofrecurrenceaspartofthe

correctiveactionprogramoutlinedinChapter11.

Theenvironmentalsafetyprogramimplementingproceduresensurecompliancewith10CFR20

SubpartsB,RadiationProtectionPrograms,D,DosetothePublic,F,SurveysandMonitoring,K,

WasteDisposal,L,Records,andM,Reports,thataddresseffluentcontrolandtreatment.The

programincludesprovisionsforthemonitoringofthefacilityenvironment,includingambientair,

surfacewater,groundwater,soils,andvegetation,thatcouldbeaffectedbyfacilityeffluents.

TheTRISOXISASummaryandEnvironmentalReportprovideadditionalinformation.Chapter2

ofthisapplicationaddressesstaffqualificationsofindividualsresponsiblefortheenvironmental

safetyprogram.

9.2GaseousEffluentControl Operatingandengineeredcontrolsareusedasnecessarytoensurethatenvironmentalairborne

concentrationsofradioactivematerialsattributabletogaseouseffluentsareconstrainedand

resultantradiologicaldosestomembersofthepubliccomplywiththeconcentrationlimitsand

publicdoselimitspecifiedin10CFR20.1101(d),consistentwithguidanceinRegulatoryGuide

4.20.Dosecalculationsareperformedusingnationallyrecognizedmethods.

Dosecalculationsaswellasenvironmentalconcentrationsin10CFR20,AppendixB,Table2for

membersofthepublicmaybemodifiedbasedonICRP66and68asdescribedinChapter1,

assuminganActivityMedianAerodynamicDiameter(AMAD)of5micrometer.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page93

9.2.1 GaseousEffluentSampling

Continuous representative sampling is performed in stacks exhausting air with potential

concentrationsofradioactivematerialsthataresignificantwithrespecttothesitescompliance

with10CFR20.Samplesarecollectedandanalyzedforparticulateradioactivematerialona

scheduledbasisasdefinedinapprovedproceduresusingmethodsandfrequenciesappropriate

fortheeffluentmediumandtheradionuclide(s)beingsampled.Effluentsaresampledunless

periodic sampling or other means have established that radioactivity in the effluent is

insignificantandwillremainso.

Gaseous effluent sampling is performed during manufacturing operations involving licensed

materials.Samplingofexhaustairstacksisnotrequiredwhentheunderlyingventilationsystem

hasbeenshutdowninconjunctionwithacessationoftheprocessingoflicensedmaterialsinthe

affectedventilatedspaces.Anypassiveemissionsofradioactivematerialsareabatedbythe

continuedpresenceoftheHEPAfiltersinplace.Approvedproceduresdefineactionlevelsto

ensurethatcompliancewithapplicablelimitsismaintained.

9.2.2 HighEfficiencyParticulateAbsolute(HEPA)Filtration

HEPAfiltrationisusedonstacksexhaustingairthatpotentiallycontainradioactivematerialsthat

aresignificantwithrespecttothesitescompliancewith10CFR20.Thisexhaustairispassed

throughatleastonestageofHEPAfiltrationpriortoreleasefromthestack.FireresistantHEPA

filtersthatarecertifiedbythemanufacturerasmeetingHEPAefficiencyspecificationsareused.

TheadequacyoffinalHEPAfilterinstallationsisverifiedbyinplacetestingpriortoinitiating

operationswithradioactivematerialsinthefollowinginstances:

x Startupofanewfacility x

Followingreplacementoffinalfilters x

Aftermaintenanceworkonthefinalfilterbankthatcouldhaveforeseeableadverse impactsontheireffectiveoperation x

Afterexposureofthefinalfilterstoaconditionoragentthatmayhaveadversely impactedtheireffectiveoperation,ifdeemednecessarybasedonvisual/operational inspection.

9.2.3 FinalHEPAFilterSurveillance

Measuresasdescribedinapprovedproceduresaretakentoconservativelymonitorthepotential

onsetof,oradverseemissionsimpactsfromHEPAfilterdeterioration.Thesemeasuresinclude

thefollowing:

x PeriodicinspectionofHEPAfilters; x

PeriodicmeasurementofdifferentialpressuresacrossHEPAfilterbanks;and x

Stackemissionsmonitoringthatestablishactionlevelstriggeringnotificationstothe maintenance/engineeringorganizationandperformanceofHEPAfilterinspectionsat

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page94

measuredoffgasradionuclideconcentrationssetbelowapplicable10CFR20AppendixB

effluentlimits,andlevelsabovewhichtheprocesswouldbeshutdown.

Final HEPA filter installations are equipped with pressure differential measuring/indicating

devices.  Measured differential pressures are used to evaluate the need for filter

changeout/maintenance.

9.3

LiquidEffluentControl

NoliquideffluentsareplannedforradiologicalprocessstreamsintheTRISOXFFF.Designofthe

facility, along with operating and engineered controls, is used as necessary to ensure that

radiologicalliquideffluentdischargestotheenvironmentdonotoccur.Approvedprocedures

defineactionlevelstoensurethatcompliancewithapplicablelimitsismaintained.

9.3.1 WastewaterCollection/Treatment

Processsolutionsgeneratedbyprocesssystemsandequipmentarerecycledtothemaximum

extent practical.  Process solutions contaminated with uranium that cannot be recovered/

recycledareidentifiedasliquidwastes.Liquidwastesarecollectedandsampledtodetermine

appropriatehandling/treatmentsteps.TreatmenttypicallyinvolvesadjustmentofpH,filtering,

ionexchange,and/orprecipitation.Precipitatesaredewatered,andthesolidsarepackagedfor

offsitedisposal.Ifneeded,liquidwastesthathavebeenhandled/treatedcanbesampledand

dischargedthroughaninlinemonitortoshippingpackagesorconveyancesforoffsitedisposal.

SanitarysewerdischargestotheCityofOakRidgesewersystemfromfacilityrestroomsandnon radiologicalprocessstreamsrelatedtoequipmentblowdowns,flushes,andcleaningactivities

areconductedinaccordancewithalocallyissuedpermit.Usedoilsmayalsobesampledand

containerizedforshipmenttoalicenseddisposalfacility.

Licensed radioactive material discharges to the sanitary sewer are prevented by locating

restrooms,changeroomfacilities(i.e.,lockerrooms,showers,andbathrooms),anddrainsthat

lead to the sanitary sewer outside of the Restricted Area (the process area boundary). The

RestrictedAreaincludestheRadiologicallyControlledArea(RCA).Personnelarerequiredtodoff

personal protective equipment (PPE) and proceed through contamination monitors prior to

exitingtheRestrictedArea.ThesanitarysewerisnotphysicallyconnectedtotheRestrictedArea

ortoanyprocessequipmentwithintheRestrictedArea.

TRISOXpreventstransportofdispersibleradioactivematerialoutsidetheRestrictedAreaby

requiringpersonneltodoffPPEandproceedthroughcontaminationmonitorspriortoexitingthe

Restricted Area. In addition, the Restricted Area is kept at a slight negative pressure, which

preventsdispersibleradioactivematerialfrommigratingoutsideoftheRestrictedArea.License

Chapter 4 establishes a rigorous Contamination Control Program that includes routine

contamination control surveys and radiological surveys for any items removed from the

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page95

RestrictedAreaanddocumentsthecontaminationstatusofareasbothinsideandoutsideofthe

RestrictedArea.

9.4

WasteManagement

TheTRISOXWasteManagementProgram(WMP)isconsistentwithEPAandNRCguidanceto

meettherequirementsin10CFR20.1406,andisdesignedtominimizefacilitygeneratedwaste.

TheWMPisendorsedandsupportedbyuppermanagement,detailswastestreamsandthe

wastecharacterizationprocess,andisevaluatedonascheduledbasisforimprovement.The

WMPproceduresandfacilitiesforwastehandling,stagingforshipment,andmonitoringresultin

safeandtimelydispositionofmaterials.

Solid waste disposal preparation facilities, with sufficient capacity and capability to enable

processing,packaging,andtransfersofsolidwastetolicensedtreatmentand/ordisposalsitesin

accordance with the regulations, are provided and maintained as required to support the

operationoftheTRISOXFuelFabricationFacility.

9.5

EnvironmentalMonitoring

TRISOX conducts a routine environmental surveillance program. Compliance with 10 CFR

20.1301isachievedusingtheoptionprovidedin10CFR1302(b)(2)(i)todemonstratethatthe

annual average concentrations of radioactive material released in gaseous effluents at the

boundary of the unrestricted area (the point of stack discharge) do not exceed the values

specifiedinTable2ofAppendixBtoPart20.Demonstrationisaccomplishedbycalculationand

validatedbymeasurement.Thisensuresthatenvironmentalconcentrationsatthesiteboundary

andoffsitearewellbelowregulatorylimits.

Surfaceenvironmentalmediaandgroundwatersamplesarecollectedfromstrategiclocationsin

thesurroundingenvironsandanalyzedforpertinentconstituentsofconcern.Baselinelevelsof

radionuclidesinmediasurroundingthefacilityareestablishedthroughsamplingandanalysis

priortooperationsusingSNM.Feedmaterialischaracterizedforenrichmentandotherpotential

contaminantspriortouse.Futuresampleresultsareevaluatedagainstactionlevelsandthe

facilitysourcetermtoidentifyanyconfoundingnaturalsourcesofradioactivityorsourcesfrom

operationsexternaltothefacility.Actionlevelsandassociatedresponsesarespecifiedforeach

environmentalmediumandradionuclideasdefinedinapprovedprocedures.

Theprogramprovidesearlydetectionandresponsetoanegativetrendinenvironmentaldata,

andsupportdataintheeventofareleaseofradioactivematerial.Continuousstackmonitoring

providesamethodforearlydetectionofanegativetrendingaseouseffluentreleasesfrom

normaloperations.Ambientairsamplersverifytheabsenceofroutinegroundlevelgaseous

effluentreleasesandprovideamethodforearlydetectionofgroundlevelgaseouseffluent

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page96

releases from an offnormal event. Information from these monitoring activities is used to

support assessments of normal operations or following offnormal events. Environmental

dosimetersarecolocatedwiththeambientairsamplerstoconfirmtheabsenceofambient

externaldoseratesabovebackgroundinunrestrictedareasandtoassistwiththeassessmentof

potentialaccidents.

AsummaryoftypicalsamplingactivitiesisincludedinTable91.Typicalsamplinglocationsare

providedinFigure91.Thelocationsforsamplingofsoilandvegetationwillbeconcentrated

alongthepredominantwinddirections.Thelocationsforambientairsamplingareselectedbased

on predominant wind directions and the direction of potential receptors. Four groundwater

observationwellsareinstalledonthesite.Groundwaterelevationmeasurementsandmodeling

indicate that groundwater generally flows in a southwest direction toward East Fork Poplar

Creek.Therearenoknownhousehold,public,orindustrialusersofgroundwaterdowngradient

ofthesite.

Table91:EnvironmentalMonitoringParameters

TypeofSample

Analyses

Numberof

Locations

TypicalSampling

Frequency

AirEffluentDischarge

Points

GrossAlpha/Beta

IsotopicUranium

2

Continuous(collection

weekly)

AmbientAir

GrossAlpha/Beta

6

Continuous(collection

monthly)

Groundwater

GrossAlpha/Beta

IsotopicUranium

4

Quarterly

Soil

GrossAlpha/Beta

IsotopicUranium

4

Semiannually

Vegetation

GrossAlpha/Beta

IsotopicUranium

4

Semiannually

Stormwater

GrossAlpha/Beta

IsotopicUranium

3

Quarterly

Environmental

Dosimetry

Determinedby

NVLAPaccredited

vendor

6

Quarterly

9.6

ProgramManagement

Quantitiesofradioactivematerialinairandliquidsreleasedfromthefacilityarereportedtothe

NRC on a semiannual basis as required by 10 CFR 70.59, Effluent monitoring reporting

requirements.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page97

Approved procedures outline sampling techniques, sample processing and analysis

methodologies,qualityassurance,andothernecessaryinformationtovalidateanalyticalresults

andmaintainaviableprogram.

Sampleanalysismaybeperformedeitheronsiteoroffsite.Inallcases,analyticaltechniques

forsampleanalysisofeachmediumareappropriateforthequantitiesandtypesofradionuclides

presentatthefacilityandaresensitiveenoughtoensureadequatedetectionandquantification

basedonmediaradiologicalcontentandlimits.Qualitycontrolprocedures,foronsiteoroff site analysis, detail the periodic checks necessary to demonstrate the operability of the

instrumentationusedforanalysis.Analyticalresultsarereportedinatimelymannersothatstaff

candeterminetheappropriateresponsetoestablishedactionlevels.

NRCSPECIALNUCLEARMATERIALLICENSE

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page98

Figure91:TypicalSamplingLocations

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0009

SNMXXXX

CHAPTER9

ZŽ

December2024

Page99

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0009toheader.

9.2.2

Addedthisatbeginningofsentence2tomoredirectlyconnectthe

contenttosentence1duetoTX0REGLTR0038,Chapter1RAI9,

andameetingwithNRCon11/5/2024todiscussopenitemsfor

LicenseChapter1.

9.2.3

DeletedmodifiedduetoTX0REGLTR0038,Chapter1RAI9,and

ameetingwithNRCon11/5/2024todiscussopenitemsforLicense

Chapter1.

9.3.1

Addeddetailforpreventingradioactivematerialdischargetothe

sanitarysewerandpreventingthetransportofdispersible

radioactivematerialoutsidetheRestrictedArea.Changesmade

basedonTX0REGLTR0038RAI3.

9.5

Addeddetailfordemonstratingcompliancewith10CFR20.1301

basedonTX0REGLTR0038RAI1.

Figure91

AddednewFigure91andupdatedTable91toinclude

environmentalsamplinglocationsbasedonTX0REGLTR0038RAI

1. RevisedFigure91basedonanupdatedsitelayoutshowingthe TX1andTX2processbuildings.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0010 SNMXXXX CHAPTER 10 ZŽ

December 2024 Page 101 DECOMMISSIONING Table of Contents SECTION TITLE STARTS ON PAGE 10.1 Decommissioning Funding Plan (DFP) 102 10.2 Decommissioning Cost Estimate 102 10.3 Financial Assurance for Decommissioning 102 10.4 Recordkeeping for Decommissioning 102 TRISO-X Document Control 2024.12.30 13:23:51 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0010

SNMXXXX

CHAPTER10

ZŽ

December2024

Page102

DECOMMISSIONING

10.1DecommissioningFundingPlan(DFP)

TRISOXmaintainsaDFPthatcontainstheelementscalledforin10CFR70.25(e)(1),includinga

decommissioning cost estimate; a description of the methods used to assure funds for

decommissioning are available when needed; a means for adjusting the cost estimate and

associated funding levels periodically over the life of the facility; and, when applicable,

certificationthatfinancialassurancehasbeenprovidedinanamountthatcoversthecurrent

estimate for decommissioning.  The DFP addresses the decommissioning of facilities with

potentialforcontaminationwithlicensedmaterialsattheTRISOXFuelFabricationFacilitysite.

TheDFPdescribeshowfacilitydesignandproceduresforoperationwillminimize,totheextent

practicable,contaminationofthefacilityandtheenvironmentandgenerationofradioactive

waste,andwillfacilitateeventualdecommissioningasrequiredby10CFR20.1406(a).

10.2

DecommissioningCostEstimate

Consistentwith10CFR70.25(e)(2),thedecommissioningcostestimatewillbereviewedand

updatedatanintervalnottoexceedthreeyears.

10.3

FinancialAssuranceforDecommissioning

Financialassurancefordecommissioningwillbeprovidedbythemethodsauthorizedin10CFR

70.25(f)andwillbeinplacepriortointroducinglicensedmaterial.TRISOXwillprovidetheNRC

withsignedoriginalsofthefinancialinstrumentsobtainedtosatisfytherequirementsof10CFR

70.25(f).

10.4 RecordkeepingforDecommissioning

In accordance with 10 CFR 70.25(g), records will be maintained that are important to the

decommissioningoftheTRISOXFuelFabricationFacilityuntilsuchtimeasthefacilityisreleased

forunrestricteduse.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0010

SNMXXXX

CHAPTER10

ZŽ

December2024

Page103

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0010toheader.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0011 SNMXXXX CHAPTER 11 ZŽ

December 2024 Page 111 MANAGEMENT MEASURES Table of Contents SECTION TITLE STARTS ON PAGE 11.1 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 Configuration Management (CM)

CM Program Design Requirements Document Control Change Control Assessments 112 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 Maintenance Surveillance and Monitoring Corrective Maintenance Preventive Maintenance Functional Testing Maintenance Records 114 11.3 11.3.1 11.3.2 11.3.3 Training and Qualification General Safety Training Training and Qualification for Activities Involving the Handling of SNM Personnel Qualification 116 11.4 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 Procedure Development and Implementation Operating Procedures General Safety and Emergency Procedures Maintenance Procedures Temporary Procedures Periodic Reviews of Procedures 119 11.5 11.5.1 11.5.2 Audits and Assessments Internal Audits Independent Assessments 1112 11.6 11.6.1 Incident Investigations and Corrective Action Conduct of Incident Investigations 1113 11.7 Records Management 1114 11.8 Other Quality Assurance (QA) Elements for IROFS 1115 TRISO-X Document Control 2024.12.30 13:48:21 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page112

MANAGEMENTMEASURES

Asspecifiedin10CFR70.62(d),managementmeasuresareappliedtoItemsReliedonForSafety

(IROFS) to provide reasonable assurance that the IROFS are designed, implemented, and

maintainedtoensuretheyareavailableandreliabletoperformtheirfunctionswhenneeded.

TheISASummaryidentifiesIROFSappliedtofacilitysystemsandactivitiestoassuretheyfunction

tosatisfytheperformancerequirementsof10CFR70.61.IROFSmaybeengineeredcontrols

(passiveoractive),enhancedadministrativecontrols(activefeaturesthatpromptapersonto

take an action), or administrative controls (actions of people).  Management measures are

applied to IROFS based on the type of control (passive, active, enhanced administrative,

administrative)asidentifiedinTable111.Methodsusedtoselectandassignmanagement

measurestoIROFSaredocumentedinapprovedprocedures.

11.1

ConfigurationManagement(CM)

A formal review and approval process is used to evaluate modifications to systems and

components to ensure that configuration changes do not adversely impact currently

implementedIROFSandtoensurenewprocessesmeettheperformancerequirementsof10CFR

70.61.TheCMprogramcapturesformaldocumentationgoverningthedesign,safetybases,and

continued modification of the site, structures, processes, systems, equipment, components,

selectedcomputerprograms,personnelactivities,andsupportingmanagementmeasures.

11.1.1 CMProgram

TheTRISOXCMProgramcontrolsfacilitiesandprocessessosafetybasesaremaintained,and

changesareevaluatedanddocumentedaccordingtoapprovedproceduresconsistentwith10

CFR70.72inSection11.1.4andthelicenseapplicationchangeprocessdiscussedinChapter1.

TheCMprocessprovidesassurancethatconsistencyisestablishedandmaintainedbetween

facilitydesign,operationalrequirements,physicalconfiguration,andfacilitydocumentation.CM

provides oversight and control of design information, safety information, and records of

modificationsthatmightimpacttheabilityofIROFStoperformtheirfunctionswhenneeded.

EngineeringisresponsiblefortheimplementationandongoingmanagementoftheCMProgram.

AllTRISOXpersonnelandorganizationsareresponsibleforcomplyingwiththeCMProgram

objectives and implementing Program requirements as an integral part of their respective

functionalareasofoperation.

11.1.2 DesignRequirements

Configuration control is accomplished during design using procedures for controlling design,

preparation, review, and approval.  Design requirements and associated design bases are

establishedandmaintainedduringdesign,construction,andoperations.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page113

Fornewfacilitiesandprocesses/systems,designrequirementsarerequiredtobedeveloped,

reviewed,approved,anddocumentedbeforeinputofSNM.Thebaselinedesigncriteria(BDC)

identifiedin10CFR70.64(a)areaddressedforIROFS.Thepreferreddesignapproachisusedto

theextentpracticaltoselectengineeredcontrolsoveradministrativecontrols.Newfacilityand

systemdesignisalsobasedondefenseindepthpracticesinaccordancewith10CFR70.64(b)to

enhance safety by reducing challenges to IROFS.  Design requirements and documents are

prepared by the engineering organization. Applicable codes and standards are identified in

designdocuments.Priortoapproval,thedesigndocumentsarereviewedforadequacy,accuracy

andcompletenessasperapprovedprocedures.ChangestodesigndocumentsortheISAare

subjecttothechangecontrolprocessesasdescribedinChapter1andSection11.1.4

11.1.3 DocumentControl

Proceduresareestablishedtocontrolthepreparationandissuanceofdocuments.Thisincludes

creation, revision, storage, tracking, distribution, and retrieval of applicable information, to

include but not limited to, manuals, instructions, drawings, procedures, design documents,

specifications, plans, and other documents that pertain to the CM function.  Measures are

establishedtoensuredocuments,includingrevisions,areadequatelyreviewed,approved,and

releasedforusebyauthorizedpersonnel.Anelectronicdocumentmanagementsystemisused

bothtofilefacilityrecordsandtomakeavailablethelatestrevision(i.e.,thecontrolledcopy)of

designdocuments.Controlleddocumentsaremaintaineduntilcancelledorsuperseded.

Aspartoftheconfigurationmanagementprogram,refertoSection11.7forfurtherdiscussionof

thedocumentcontrolandrecordsmanagementprocedures.

11.1.4 ChangeControl

The objective of the change control process is to maintain consistency among design

requirements,thephysicalconfiguration,andtherelatedfacilitydocumentation(includingthe

ISA).Theprocessisusedtoensurefacilityconfigurationdocumentationchangesareproperly

reviewed, approved and implemented to assure that all impacts of proposed changes are

identified and evaluated, design requirements (and bases) are maintained or appropriately

revised, and changes are coordinated across the affected organizations and personnel

responsibleforactivitiesandprogramsattheTRISOXFFF.

Typesofchangesaredefinedandmayrangefromreplacementwithidenticaldesignthatare

authorizedaspartofnormalmaintenance,tonewordifferentdesignsthatrequirespecified

review and approval.  Major changes include substantial modifications to existing licensed

facilitiesand/ornewprocesses,newlicensedfacilities,ornewprocessesinexistinglicensed

facilities.Anychangerequiringalicenseamendmentisalsoconsideredamajorchange.The

changecontrolprocessisimplementedviaapprovedprocedurestowhichappropriatepersonnel

aretrained.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page114

Thechangecontrolprocessassuresthatthefollowingitemsareaddressedpriortoimplementing

achangeasrequiredby10CFR70.72(a):

1) Thetechnicalbasisforthechange;
2) Theimpactofthechangeonsafety,health,andcontroloflicensedmaterial;
3) Modificationstoexistingdrawings,procedures,andtraining;
4) Authorizationrequirementsforthechange;
5) Fortemporarychanges,theapprovedduration(e.g.,expirationdate)ofthechange;
6) The impacts or modifications to the ISA, ISA Summary, nuclear criticality safety evaluation,orothersafetyprograminformation,developedinaccordancewith10CFR 70.62and/or10CFR70.64;and
7) AnevaluationastowhetherornotalicenseamendmentmustbeapprovedbytheNRC priortoimplementationofthechangeinaccordancewith10CFR70.72(c).

Finaldocumentationofthechangeapprovalismaintained,andtheapplicabledocumentationis

madeavailabletotheaffectedpersonnel.Per10CFR70.72(d)(2),abriefsummaryofmajor

changesthatrequiredrevisionoftheapplicablesafetyorenvironmentalbaseswillbesubmitted

within30daysaftertheendofthecalendaryearduringwhichthechangesoccurred.

11.1.5 Assessments

Periodicauditsand/orassessmentsoftheconfigurationmanagementprogramareconductedin

accordancewiththerequirementsinSection11.5forthepurposeofevaluatingtheprogram's

effectivenessandtocorrectdeficiencies.Theresultsoftheseassessmentsaredocumentedand

maintainedinaccordancewithapprovedprocedures.

11.2

Maintenance

ThemaintenanceprogramisdesignedtoensurethatIROFSaremaintainedinamannertoensure

they are available and reliable to perform their intended function when needed. The

maintenanceprogramconsistsofthefollowingkeyprogramelements,includingmanagement

systemsthatprovideschedulinganddocumentationoftheseelementswhenappliedtoIROFS:

1) SurveillanceandMonitoring,
2) CorrectiveMaintenance,
3) PreventiveMaintenance,and
4) FunctionalTesting.

MaintenanceproceduresandinstructionsareanintegralpartoftheMaintenanceprogramas

describedinSection11.4.3.

11.2.1 SurveillanceandMonitoring

Thesurveillanceandmonitoringprogramisimplementedtomonitorthecurrentandlongterm

performanceofIROFS.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page115

Surveillanceactivitiesincludepreventivemaintenance(11.2.3)andfunctionaltesting(11.2.4)

that are performed on a scheduled basis, and followup to corrective maintenance (11.2.2).

Documentation of surveillances is prepared as per approved procedures.  Frequencies of

surveillancesarebasedonthetypeandsafetysignificanceoftheIROFS,aswellasmanufacturers

recommendations.Theresultsofsurveillancesaretrendedtosupportthedeterminationof

performance trends for IROFS and can lead to changes to maintenance frequencies, if

appropriate.Maintenanceproceduresalsoprescribecompensatorymeasures,ifappropriatefor

surveillancetestsofIROFSthatcanonlybeperformedwhiletheequipmentisoutofservice.

IROFSfoundtobeoutoftoleranceorunabletoperformtheirintendedfunctionarereportedin

atimelymannerthroughthecorrectiveactionprogramdiscussedinSection11.6.Reportsof

IROFSfailuresareenteredintothecorrectiveactionprogramwhichprovidesameanstoevaluate

thefailure,identifythecauseoffailure,andassignappropriatecorrectiveactionstobeinitiated.

Records of IROFS performance issues and corrective actions are maintained within the

maintenanceandcorrectiveactionprograms,asapplicable.RecordsforfailuresofIROFSare

maintainedinaccordancewith10CFR70.62(a)(3)withinthecorrectiveactionprogram.

11.2.2 CorrectiveMaintenance

Correctivemaintenanceisperformedusingasystematic,integrated,andcontrolledapproachto

ensurethatIROFSandothersystemsnecessaryforthesafeoperationofthefacilityareproperly

repairedandrestoredtoserviceinamannerthatmaintainsfacilitysafetyandthefunctionofthe

safetysystem.MaintenanceactivitiesareperformedonIROFSinamannerthatminimizesor

eliminatestherecurrenceofunacceptableperformancedeficiencies.

Correctivemaintenanceisauthorized,initiated,anddocumentedthroughaformallyestablished

process that includes steps requiring coordination between the maintenance and operating

organizations.TheprocessalsoincludesanevaluationtodetermineifIROFSperformancehave

been, or may be, adversely affected by the equipment failure/malfunction or the ensuing

maintenanceandwhetherpostmodificationfunctionaltestingofIROFSisrequired.

11.2.3 PreventiveMaintenance

Preventivemaintenance(PM)isperformedinapreplannedandscheduledmannertorefurbish

oroverhaulIROFStoensurethattheycontinuetoperformtheirintendedfunction.PMactivities

areappropriatelybalancedagainsttheobjectiveofminimizingunavailabilityofIROFS.Periodic

calibrationsareconductedwhererecommendedbymanufacturerorindustryguidance.After

conductingPM,andbeforereturningasafetycontroltoservice,afunctionaltestmayberequired

toprovidereasonableassurancethatthesafetycontrolperformsasdesignedandprovidesthe

safetyactionexpected.

AscheduleforperformingPMonIROFSismaintainedasspecifiedinapprovedprocedures,and

frequenciesareestablishedbasedonoperatinghistory,manufacturerandindustryguidance,

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page116

feedback from surveillance and maintenance activities, and/or recommendations from the

correctiveactionprogram.

11.2.4 FunctionalTesting

FunctionaltestingofIROFSisperformedusingapprovedwritteninstructionspriortostartupof

facilitiesorprocessoperationsinvolvingIROFS(preoperationaltesting)andatperiodicintervals

during operations. This is intended to provide reasonable assurance that the safety control

performsasdesignedandprovidesthedesiredsafetyaction.Functionaltestinstructionsand

frequencies are based on operating history, manufacturer and industry guidance, risk

assessment,feedbackfromsurveillanceandmaintenanceactivities,and/orrecommendations

fromthecorrectiveactionprogram.Duringprocessoperations,compensatorymeasuresare

usedasappropriatewhilefunctionaltestingisperformedonIROFS.

AdministrativecontrolsthatareidentifiedasIROFSaredocumentedinapprovedprocedures.

Administrativecontrolsareassuredtoavailableandreliableduringoperationsbyapplyingthe

applicablemeasuresaddressedinthischapter(e.g.,procedures,trainingandqualifications).

11.2.5MaintenanceRecords

TheresultsofSurveillanceandMonitoring,CorrectiveMaintenance,PreventiveMaintenance,

and Functional Testing for IROFS are documented, and the documentation is maintained as

"recordspertainingtosafety"asspecifiedinSection11.7.

11.3

TrainingandQualification

TheTrainingandQualificationProgramprovidesworkerswiththeknowledgeandskillstosafely

performtheirjobfunction,recognizetheimportanceofIROFS,effectivelydealwiththehazards

oftheworkplace,implementpropercontrolandaccountingofSNM,andproperlyrespondto

emergencysituations.Thequalificationaspectofthisprogramensuresthatoperationsand

maintenanceareperformedonlybyproperlytrainedpersonnel.

RequirementsandmethodsforthetrainingandqualificationprogramsareapprovedbyTRISOX

management,whoalsoprovideongoingevaluationoftheeffectivenessoftheprograms.

Thistrainingtypicallyfallsintooneofthefollowingcategories:

1) Generalsafetytrainingnotspecifictoaparticularworkstationoractivity;
2) Trainingtoassureproperperformanceforpositionsandworkactivitiesthatarereliedon forsafety,inparticularthosedesignatedasIROFS;and
3) PropercontrolandaccountingofSNM.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page117

11.3.1 GeneralSafetyTraining

TheTrainingandQualificationProgramrequiresthatallpersonnelwhoaregrantedunescorted

access to the ownercontrolled area receive formal safety and security orientation training.

Safetyorientationtrainingcoversfacilitysecurityandsafetyrules,radiological,nuclearcriticality,

chemical, fire, and environmental safety topics as appropriate to the job function of the

individualsbeingtrained.Inaddition,thistrainingcoversproperresponsetoemergencies.

Continuingtrainingisconductedintheseareasasnecessarytomaintainemployeeproficiency.

Thecontentofsafetytrainingisevaluatedonascheduledbasis,asappropriateforthesubjectof

thetraining,toensureitremainscurrentandrelevant.

11.3.2 TrainingandQualificationforActivitiesInvolvingtheHandlingofSNM

TheTrainingandQualificationProgramincludesworktrainingforoperatingpersonnelandothers

who directly handle greater than laboratory sample quantities of special nuclear material.

Facility specific activities are correlated with applicable supporting procedures and training

materials.Worktrainingtypicallyincludesclassroom,onthejob,andguidedworkexperience

training necessary to provide the desired knowledge and/or skill.  It covers the operating

procedures, alarms, emergency response actions, special nuclear material controls and

accounting,andradiological,nuclearcriticality,industrial,andenvironmentalsafetycontrolsand

limitsspecifictotheparticularworkassignment.

Work training includes appropriate reinstruction for previously qualified individuals prior to

implementation of a process change or procedural modification.  When changes are made

relative to safety or emergency response requirements, provisions are made to assure that

affectedemployeesareappropriatelyinformedandinstructedonthechanges.Worktrainingis

evaluated, and necessary recurrent training / retraining / requalification is identified and

documented.  Additional details about the work training program are provided in approved

procedures.

TheTrainingandQualificationProgramprovidesfortheinstructionandtrainingofmechanics

involvedinmaintenanceactivities.Thetypeandleveloftrainingiscommensuratewiththejob

assignments.

OrganizationandManagementofTraining

Theresponsibilityfortheassuranceofproperlytrainedandqualifiedpersonnelresideswiththe

disciplinemanagementteamandpertinentlinemanagement.Supporttolinemanagementfor

thedevelopment,implementation,andadministrationofthefacilityTrainingandQualification

ProgramisprovidedbytheTrainingfunction.ImplementationoftheTrainingandQualification

Programisaccomplishedinaccordancewithapprovedprocedures.Alltrainingisconductedby,

orunderthesupervisionof,individualsrecognizedbymanagementaspossessingthenecessary

knowledgeandskillstoconductthetraining.Exemptionsfromtrainingareonlyauthorizedas

describedinapprovedprocedures.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page118

Training records are maintained to support management information needs and provide

requiredinformationoneachindividualstrainingandqualification.Therecordsaremaintained

inaccordancewithapprovedprocedures.

IdentificationofActivitiesRequiringTraining

Positionsimpactingtheavailability/reliabilityofIROFSareassessed,basedonagradedapproach

thatconsidersthehazardsandthesafetyresponsibilitiesassociatedwitheachposition.Input

fromsubjectmatterexperts,withsupportfromthetrainingfunction,isutilizedasappropriate.

PositionTrainingRequirements

Objectives and requirements for training programs are jointly agreed upon by management

based upon facility needs and input provided by the training function and the appropriate

discipline.EachpositioninvolvingpersonnelassignedtoSNMprocessoperationsisevaluatedto

determinethespecificrequirementsthatapplytothedefinedjobfunction.Personnelmust

remaincurrentonthedefinedsetofrequirementstomaintainjobqualifications.

BasesforTraining

Theobjectiveoftrainingistoensuresafeandefficientoperationofthefacilityandcompliance

withapplicableestablishedregulationsandrequirements.Learningobjectivesareestablished

forthosepositions/activitiesimpactingthesafetyandsecurityoflicensedmaterialoperations,

andinparticulartheavailability/reliabilityofdesignatedIROFS.Objectivesinclude,asapplicable,

theknowledgeskills,andabilitiesthetraineeshoulddemonstrate;theconditionsunderwhich

requiredactionswilltakeplace;andthestandardsofperformancethetraineeshouldachieve

uponcompletionofthetrainingactivity.

TrainingMaterials

Lessonplans,computerbasedtraining,andothertrainingguides(forselfstudy,classroom,and

onthejob training) developed for activities relied on for safety and security are based on

learning objectives developed from specific job performance requirements.  Information

provided,reviewed,andapprovedbysubjectmatterexpertsisincludedinthecontentoftraining

elementswithclearlydefinedobjectives.Thelessonplansalsoprovidereasonableassurance

thattrainingisconductedinareliableandconsistentmanner.Lessonplans,guidesandother

trainingmaterialsarereviewedandapprovedbeforetheirissuanceanduse.TheCMProgram

providesameanstoassurethatdesignchangesandmodificationstoIROFSareaccountedforin

thetrainingandthatpersonnelareinstructedusingcurrentprocedures.

EvaluationofTraineeAccomplishment

Traineeunderstandingandcommandoflearningobjectivesareevaluated.Theevaluationmay

beaccomplishedthroughacombinationofobservation/skillsdemonstration,writtentests,or

oralexaminations.Theresultsoftraineeevaluationsaredocumented.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page119

OntheJobTraining(OJT)

OJTrequirementsforactivitiesreliedonforsafetyandlistedintheISASummary,ifapplicable,

arespecifiedaspartofpertinentpositiontrainingrequirements.CompletionofOJTmaybe

demonstratedbyactualtaskperformance(preferred)ortasksimulation.OJTisconductingby

qualifiedindividualsusingcurrenttrainingmaterials.CompletionofOJTisdemonstratedthrough

actual task actions (or simulation) using conditions encountered during the performance of

assigneddutiesincludingtheuseofreferencesandtools,andequipmentconditionsreflecting

theactualtasktotheextentpracticable.CompletionofOJTrequirementsaredocumented.

TrainingProgramReview

TheeffectivenessoftheTrainingandQualificationProgramisassessedonaperiodicbasis.Work

assignmentsinvolvingthehandlingofSNMareevaluatedforneededrecurrenttrainingand/or

reevaluation of qualification activities.  Improvements and changes are made to training as

neededtocorrectanydeficienciesorperformanceproblems.

11.3.3PersonnelQualification

Theminimumqualificationsforkeymanagementandtechnicalprofessionalstaffpositionsare

describedinChapter2.Qualificationsforpersonnelwhoconductactivitiesinvolvingthehandling

ofSNMaredescribedinSection11.3.2.

11.4ProcedureDevelopmentandImplementation

Activities involving the handling of SNM and/or IROFS are conducted in accordance with

approvedproceduresasdefinedinthissection.Proceduresaddressthefollowingactivities:

design, configuration management, procurement, construction, operations, radiation safety,

maintenance, waste management, quality assurance, training and qualification, audits and

assessments,incidentinvestigations,recordsmanagement,nuclearcriticalitysafety,firesafety,

chemicalprocesssafety,environmentalprotection,andreportingrequirements.Proceduresalso

address the requirements contained within the Site Emergency Plan, Fundamental Nuclear

MaterialControlPlan,andPhysicalSecurityPlan.Proceduresareclassifiedintothegeneral

categories of operating, general safety and emergency, and maintenance.  Administrative

procedures are used for activities that support the process operations, and do not include

activitiesinvolvingthehandlingofSNMand/oroperatingIROFS.

Theprocessforthedevelopment,management,andimplementationofproceduresisdefinedin

approved procedures.  These procedures address how procedures are developed, reviewed,

approved,distributed,revised,anddeleted.Eachprocedurecontainsanidentifyingnumber,

title, revision number, and date.  The system ensures that the most current revisions of

proceduresarereadilyavailabletoworkerswithintheirworkareas(operatingprocedures),orin

a centralized location accessible to all affected personnel, that any necessary training and

qualificationrequirementsareidentified,andthatthetimeframeforwhichtheprocedureisvalid

isdefined.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1110

Proceduresareapprovedbyappropriatemanagementpersonnelwhoareresponsibleforthe

activitygovernedbytheprocedure.Changesand/orrevisionstoprocedurescoveringlicensed

material operations and/or IROFS are reviewed by the regulatory affairs functions, as

appropriate,inaccordancewiththerequirementsoftheCMprogram,asdiscussedinSection

11.1,toensurethatallassociatedactivitiesanddocumentation(safetyanalyses,reviews,testing,

training,etc.)arecompletedbeforeproceduralchangesareimplemented.

Ifanyaspectofaprocedureisunclearorincorrectaswritten,personnelareauthorizedtosafely

stoptheoperationand/oractivityandcontactmanagement.Intheeventofanunusualincident,

accident, significant operator error, equipment malfunction, or system modification, the

applicableproceduresareevaluatedandrevisedasnecessary.

11.4.1OperatingProcedures

Operatingproceduresaredocumentswrittentoauthorizetheprocessingofradioactivematerial;

and within these documents, detailed instructions for operation of equipment used in the

processoractivity,instructionsfordispositionofradioactivewastes,andlimitsandcontrols

establishedforsafetyandregulatorypurposes,includingIROFS,areidentified.

Operating procedures include the required actions and limits for startup, operation, and

shutdown;actionsnecessarytopreventormitigateaccidentsidentifiedintheISASummary;and

responses to alarms and applicable offnormal conditions, including failure of an IROFS.

Operatingproceduresincludeprovisionstoplaceprocessoperationsinasafeconditionifastep

oftheprocedurecannotbeperformedaswritten.Workplacepostingoflimitsandcontrols,

training,andothercommunicationdevicesareused,ifappropriate,toenhancecomprehension

andunderstandingofoperatingprocedures.

Duringoperatingproceduredevelopment,thetechnicalaccuracyisverified.Changestoexisting

operatingproceduresareevaluatedtodetermineifthescopeofthechangewarrantsawalk downand/oranindependentverification/validation.Newoperatingproceduresarevalidated

byoperationsstafftoensurethattheycanbeperformedaswritten.

11.4.2GeneralSafetyandEmergencyProcedures

Generalsafetyproceduresoutlinehealthandsafetypracticesthathelpmaintainoccupational

radiationexposuresatlevelsaslowasreasonablyachievable(ALARA).Theseproceduresare

generallyapplicableonafacilitywidebasistoincludesafeworkpracticestocontrolprocesses

with licensed material, IROFS, and hazardous materials.  Included in this category are the

EmergencyPlanimplementingproceduresandtheCriticalitycontrolprocedures.Generalsafety

proceduresarereviewedandapprovedbytheapplicableregulatoryaffairsfunctions.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1111

11.4.3MaintenanceProcedures

Maintenanceoffacilitystructures,systemsandcomponentsisperformedinaccordancewith

approved procedures, documented instructions, checklists, or drawings appropriate to the

circumstancesthatconformtoapplicablecodes,standards,specifications,andotherappropriate

criteria.Maintenanceprogramproceduresensurethatcorrectiveandpreventivemaintenance

as well as functional testing are implemented for IROFS; that reviews for accuracy and

completenessareconductedforworktobeperformed;andrequiretheaffectedorganizations

to be notified prior to performing the maintenance work and at completion of the work.

ProceduresprovidecompensatorymeasuresforIROFSthatmaybedegradedortakenoutof serviceduringmaintenanceactivities.

Proceduresrequireworktobecontrolledthroughreviewoftheplannedworkbytheapplicable

regulatoryaffairsfunctions.Themaintenanceprogramidentifiesqualificationsofpersonnel

authorizedtoperformmaintenance,specificationsforreplacementcomponentsascoveredby

CM,requirementsforpostmaintenancetesting,requiredrecordsmanagementofmaintenance

activities,andsafeworkpracticesapplicabletotheworktobeperformed.

11.4.4 TemporaryProcedures

Approvedtemporaryproceduresareusedwhenpermanentproceduresdonotexistto:

1) Directoperationsduringtesting,maintenance,andfacilitymodifications;
2) Provideguidanceinunusualsituationsnotwithinthescopeofpermanentprocedures;or,
3) Provideassuranceoforderlyanduniformoperationsforperiodsofshortdurationwhen thefacility,asystem,oracomponentisperforminginamannernotcoveredbyexisting permanentproceduresorhasbeenmodifiedorextendedinsuchamannerthatportions ofexistingproceduresdonotapply.

Temporary procedures are controlled, reviewed, and approved as specified by a written

procedureandwillnotchangeanISAexceptasauthorizedunder10CFR70.72.Thereviewand

approvalprocessrequiredfortemporaryproceduresisthesameasforotherprocedures,anda

timeframeisdefinedforwhichtheprocedureisvalid.

11.4.5PeriodicReviewsofProcedures

ProceduresgoverningactivitiesreliedonforsafetyinvolvingthehandlingofSNMand/orIROFS

arereviewedperiodicallytoensurecontentremainscurrentandrelevantandthatadministrative

IROFSremainavailableandreliable.Thereviewfrequencyisdefinedinapprovedprocedures

andmaybegradedbasedonimportancetosafety.Emergencyproceduresarereviewedperthe

Emergency Plan required in Chapter 8.  Safeguards procedures are reviewed per the

FundamentalNuclearMaterialControlPlanrequiredinChapter12.Securityrelatedprocedures

are reviewed per the Physical Security Plan required in Chapter 13.  The corrective action

program(Section11.6)includesprovisionstoassesstheroleofproceduresinadverseconditions

oreventsevaluatedwithintheprogram.Correctionsofproceduraldeficienciesaretrackedto

completionwithinthesystem.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1112

11.5AuditsandAssessments

Aprogramisinplaceforconductingauditsandassessmentsofactivitiessignificanttofacility

safety,safeguards,andenvironmentalprotectionthatidentifiesresponsibilityfor:

1)

Determining the appropriate utilization of internal and/or external personnel for particularauditandassessmentactivities.

2)

Assuringauditandassessmentpersonnelhavetheexpertiseandbackgroundsufficientto successfullyconductauditandassessmentactivities.

3)

Assuringauditandassessmentpersonnelaresufficientlyindependentoftheareabeing reviewed.

4)

Verifyingtheutilizationofaneffectivecorrectiveactionprogramtoaddressfindingsof auditsandassessments.

Auditsandassessmentsareconductedfortheareasofradiationsafety,nuclearcriticalitysafety,

chemical safety, fire safety, environmental protection, quality assurance, configuration

management,maintenance,trainingandqualification,procedures,incidentinvestigation,and

recordsmanagement.Theareasofemergencymanagement,safeguards,andsecurityarealso

auditedandassessedinaccordancewiththeEmergencyPlan,FundamentalNuclearMaterial

Control Plan, and Physical Security Plan.  Approved procedures and guidance used to plan,

schedule,andperformtheauditsandassessmentscontainthefollowinginformation:

Activitiestobereviewed.

Frequencyofreviews.

Applicableguidancetobeusedinconductingthereviews.

Responsibilitiesforeachphaseofthereviews.

Instructionsforrecordingtheresults,andrecommendingandapprovingactionstobe taken.

Thelevelsofmanagementtowhichresultsarereported.

Results, including findings and observations, are captured in the corrective action program.

Correctiveactionstopreventrecurrenceareassignedtoowners,documented,andtrackedto

completioninaccordancewiththerequirementsspecifiedinthecorrectiveactionprogram.

11.5.1InternalAudits

Internal audits are compliancebased evaluation activities with an objective of verifying

complianceofoperationswithestablishedregulatoryrequirements,licensecommitments,and

standardindustrypractice.AuditsalsoensurethatadministrativeIROFSremainavailableand

reliabletoperformtheirintendedsafetyfunctionoverextendedperiodsofoperation.

Members of the regulatory affairs functions, as described in Chapter 2, perform audits of

activitiesinvolvingthehandlingofSNM,includingsupportareas,onascheduledbasisasdefined

inapprovedprocedures.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1113

MembersoftheQualityAssurancedisciplineperiodicallyauditfacilityprogramsasdirectedby

plantmanagement.

11.5.2IndependentAssessments

Independentassessmentsareperformancebasedevaluationactivitiesconductedtoassessthe

effectiveness of health, safety, and environmental compliance functions in achieving their

designated purpose, particularly in providing reasonable assurance of the availability and

reliability of IROFS.  The assessments are conducted using offsite groups or individuals not

involvedinthelicensedactivity.

11.6.IncidentInvestigationsandCorrectiveAction

Acorrectiveactionprogramisimplementedthroughapprovedprocedurestoinvestigateand

documenteventsforoperationsinvolvingspecialnuclearmaterials,includingthoserequiredto

be reported under 10 CFR 70.50, 70.62, and 70.74.  Events, including those with conditions

adverse to safety, are reported, investigated, tracked, and corrective actions are assigned

throughaformalcorrectiveactionprogram.Agraded,riskbasedapproachisusedtoestablish

therequirementsfordeterminingspecificorgenericrootcause(s)andgenericimplication(s)of

events.

Eventsarereviewedandclassifiedbasedonthesafetysignificanceandregulatorycompliance,

includingtheimpactonthehealthandsafetyofthepublicandtheenvironment;impacton

reliabilityoravailabilityofsafetycontrolsand/or;andimpactstoregulatorycommitments.

11.6.1 ConductofIncidentInvestigations

Agraded,riskbasedapproachisappliedtotheassignmentofthelevelofinvestigation;and,

basedonseverityorpotentialseverityoftheevent,theinvestigationmaybeconductedbyone

ormoreindividual(s).Levelsofinvestigation,aswellasreviewsandapprovals,areassignedfor

eventsinaccordancewithapprovedprocedures.Correctiveactionsaredeveloped,documented,

approved,andimplemented.Measurestopreventrecurrenceand/ortocontroltheaffected

workinprogressmayalsobetaken.Proceduralguidanceforconductinganinvestigationdefines

responsibilitiesforinvestigatorsandapprovers;generalmethodsforconductofinvestigations;

and requirements for report preparation, approval, and distribution.  A graded, riskbased

approachisappliedtoprioritizecompletionofcorrectiveactionssothatconditionsadverseto

safetyarecorrectedassoonaspracticable.Theprocessusedtomonitorcorrectiveactionsalso

includesverificationofcompletion,andasapplicable,reviewsofeffectivenessandmanagement

attentionforthosecorrectiveactionsdeemedineffective.

Corrective actions generated from investigations are used to make corrections and

improvements(i.e.,lessonslearned)necessarytopreventorminimizesingleorcommonmode

failures.  Details of the accident event sequence(s) are compared with accidentsequence(s)

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1114

alreadyconsideredintheISA,andtheISASummarywillbemodifiedtoincludeevaluationofthe

riskassociatedwithaccidentsofthetypeexperienced.

Auditablerecordsanddocumentationrelatedtoevents,investigations,androotcauseanalysis

aremaintainedasdescribedinapprovedprocedures.Proceduresrequiremaintenanceofall

documentationrelatingtoeventsfortwoyears(orforthelifeoftheoperation),whicheveris

longer.Thisdocumentationwillalsobeusedaspartofalessonslearnedprogramthatmaybe

appliedtofutureoperationsofthefacility.

11.7RecordsManagement

Arecordsmanagementsystem,asappliedtolicensedregulatoryandqualityassuranceactivities,

ismaintainedinaccordancewithapprovedprocedures.

Informationrelatedtooccupationalexposureofpersonneltoradiation,releasesofradioactive

materialstotheenvironment,andotherpertinentactivities,aremaintainedinsuchamanneras

todemonstratecompliancewithlicenseconditionsandtherelevantregulatoryrequirementsof

10CFR20.

Allrecordspertainingtosafetyareretainedforatleasttwoyearsunlesslongerretentionis

requiredbyotherregulatoryorlicensespecifications.Forexample,recordsofmajorchanges

implementedunder10CFR70.72willbemaintaineduntilterminationofthelicense.Major

changesaredefinedin11.1.4.

Recordsmanagementprocedures(a)assignresponsibilitiesforrecordsmanagement,(b)specify

the authority needed for records retention or disposal, (c) specify which records must have

controlledaccessandprovidethecontrolsneeded,(d)providefortheprotectionofrecordsfrom

loss,damage,tampering,theft,orduringanemergency,and(e)specifyproceduresforensuring

thattherecordsmanagementsystemremainseffective.

Afunctionalorganizationisinplacetoensurepromptdetectionandcorrectionofdeficienciesin

therecordsmanagementsystemoritsimplementation.Therecordsmanagementprocedures

providethefollowinginstructionstoensurethat:

Recordsareprepared,verified,characterized,andmaintained.

Recordsarelegible,identifiable,andretrievablefortheirdesignatedlifetimes.

Recordsareprotectedagainsttampering,theft,loss,unauthorizedaccess,damage,or deteriorationforthetimetheyareinstorage;and, Procedures are established and documented specifying the requirements and responsibilities for record selection, verification, protection, transmittal, distribution, retention,maintenance,anddisposition.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1115

Recordsarecategorizedbytheirrelativeimportancetosafetyand/orregulatorycomplianceto

identifyrecordprotectionandstorageneedsandtodesignatetheretentionperiodfor

individualkindsofrecords.RecordsofIROFSfailuresarekeptandupdatedinaccordancewith

10CFR70.62(a)(3).Thedecommissioningrecordkeepingrequirementsof10CFR70.25(g)are

addressedinChapter10.

11.8OtherQualityAssurance(QA)ElementsforIROFS

TheTRISOXqualitysystemconsistsoftheorganizationalstructure,procedures,processes,and

resourcesneededtoimplementqualitymanagement.OtherQualityAssurance(QA)elements

areappliedtoIROFStoensurethatthereisreasonableassurancethatIROFSareavailableand

reliabletoperformtheirfunctionswhenneeded,asfurtherdescribedinapprovedprocedures.

Thesamelevelofmanagementmeasures,includingQAelements,areuniformlyandconsistently

appliedtoIROFSirrespectiveofwhethertheyareneededtopreventormitigateintermediateor

highconsequenceevents.

1.

OrganizationandResponsibilities Chapter 2 provides the commitments associated with the organizational structure, authority,andresponsibilitiestoensurethatactivitiesinvolvingthehandlingofSNM and/or IROFS are performed safely and in compliance with license and regulatory requirements.

2.

QualityAssuranceProgram TheQAProgramisbasedon,butisnotlimitedto,applicablerequirementsandguidance inISO9001:2015,undertheoverallresponsibilityoftheQualityAssurancediscipline.

AspectsofthisprogramareappliedtoIROFSbasedoncriteriaincluding,butnotlimited to,typeofIROFS(passive,active,enhancedadministrative,administrative),complexityof designorfabrication,uniquenessoftheitem(commerciallyavailableorcustomdesign),

historyof supply and performance, evaluationof the suppliers qualifications, and/or industryacceptedpractices.

3.

DesignControl DesigncontrolisanelementoftheConfigurationManagementProgramasdescribedin Section11.1andinapprovedprocedures.

4.

ProcurementDocumentControl ProcurementdocumentsincludethosenecessaryrequirementstoensurethatIROFSwill beofthedesiredquality.Theseincludethefollowing,asappropriate:

Scopeofwork-descriptionofservicesoritemsbeingprocured.

Basictechnicalrequirementsincludingdrawings,specifications,codes,and

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1116

industrialstandardswithapplicablerevisiondata,testandinspectionrequirements,

specialrequirementssuchasfordesigning,fabricating,cleaning,identification

marking,erecting,packaging,handlingshippingandstorage.

QArequirements-theextenttowhichwilldependuponthetypeanduseofthe

itemorservicesbeingprocured.

Requirementsforthecontrolofnonconformancesandchanges,includingprovisions

tocontrolandreportnonconformanceandchangestoproductsbeingdelivered.

Requirementsonsubtiersuppliersincludingthepassdownofrelevanttechnical

andqualityrequirements.

Procurementdocumentsandchangestheretoarereviewedtoensuretheyinclude

theappropriaterequirements.

Applicable10CFR21,ReportingofDefectsandNoncompliance,reporting

requirements(ifany).

5.

Instructions,Procedures,andDrawings Section 11.4 includes the commitment that "activities involving the handling of SNM and/orIROFSareconductedinaccordancewithapprovedprocedures".Thissectionalso describes the process for developing and implementing procedures. Drawings are controlledundertheConfigurationManagementProgramasdescribedinSection11.1.

6.

DocumentControl Aprocessisinplacefordeveloping,implementing,andrevisingdocumentstoprovide reasonableassurancethattheappropriatedocumentsareinuse(refertoSections11.1 and 11.4).  Document changes are reviewed for adequacy and approved for implementationbyauthorizedpersonnel.

7.

ControlofPurchasedItemsandServices The procurement of IROFS is controlled to ensure conformance with documented requirements. The controls provide the following, as appropriate: supplier (source) evaluationandselection;evaluationofobjectiveevidenceofqualityfurnishedbythe supplier;andexaminationofitemsorservicesupondeliveryorcompletion.Supplierswill providewrittenqualitydocumentationforevaluationpriortoselection.

Sourcingactivitiesareplannedanddocumentedtoensureasystematicapproachtothe procurement process.  Supplier selection is based, in part, on an evaluation of the supplier'scapabilitytoprovideitemsorservicesinaccordancewiththerequirementsof sourcing documents. Additional considerations may include complexity of design or fabrication,uniquenessoftheitem(commerciallyavailableorcustomdesign),historyof supplyandperformance,and/orindustryacceptedpractices.

Supplier nonconformances may be identified either by TRISOX or by the supplier.

Nonconforming items are not released for use until the nonconforming condition is

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1117

reviewedandacceptedbyTRISOXandimplementationofthedispositionisverified,

exceptwhereotherwisecontrolledanddocumentedaccordingtoapprovedprocedures.

Recordsofsuppliernonconformancearemaintained.

AcceptanceofpurchasedIROFSequipmentwillbeperformedtodocumentevidenceof

compliance with the technical, quality and other requirements of the procurement

document.

8.

IdentificationandControlofItems Controls are established to assure that only correct and accepted items are used or installed.Identificationismaintainedontheitemsorindocumentstraceabletothe items, or in a manner that assures identification is established and maintained as describedinthissection.

Where specified, items having a limited operating or shelf life are identified and controlled to preclude use of items whose operating life or shelf life has expired.

Procedures provide for item identification consistent with the planned duration and conditionsofstorage.

9.

ControlofSpecialProcesses SpecialprocessesidentifiedbyEngineeringthatcontrolorverifyquality(forexample, welding or nondestructive examination) are performed by qualified personnel using approvedproceduresinaccordancewithspecifiedrequirements,codes,orstandards.

Whentheoutcomeoftheprocessishighlydependentonpersonalskills,suchindividuals are certified in accordance with specified requirements.When the outcome is highly dependentoncontrolofprocessparameters,theprocessandequipmentareprequalified in accordance with specified requirements. Special process plans and/or procedures prescribe the necessary equipment, process parameters, calibration, and acceptance criteria. Records are maintained of currently qualified personnel, processes, and equipmentforspecialprocesses.

10.

Inspection Acceptancetestingand/orinspectionisapartoftheConfigurationManagementProgram which ensures that IROFS meet specified requirements prior to initial use.  The SurveillanceandMonitoring,PreventiveMaintenance,andFunctionalTestingfunctions, asdescribedinSection11.2,provideassurancethatIROFScontinuetomeetspecified requirementsbyassuringthatthesetestingandinspectionactivitiesarescheduledand implemented.Characteristicsofitemsinspected,includingthoseidentifiedasIROFS,will bespecifiedinapprovedprocedures,specifications,orplans.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1118

11.

TestControl Acceptancetestingand/orinspectionisapartoftheConfigurationManagementProgram which ensures that IROFS meet specified requirements prior to initial use.  The SurveillanceandMonitoring,PreventiveMaintenance,andFunctionalTestingelements, asdescribedinSection11.2,provideassurancethatIROFScontinuetomeetspecified requirementsbyassuringthatthesetestingandinspectionactivitiesarescheduledand implemented. Characteristics verified through testing are stated in approved test instructions.

12.

ControlofMeasuringandTestEquipment Measuring and Test Equipment (M&TE) used in activities affecting the availability or reliability of IROFS are controlled, calibrated, and adjusted at specified intervals to maintainequipmentperformancewithinrequiredlimits.Policies,plans,andprocedures ensurethatdevicesandstandardsusedformeasurement,tests,andcalibrationactivities are of the proper type, range, and accuracy. Calibration control is not necessary for commercialdevicessuchasrulers,tapemeasures,levels,andstopwatches.Alistof devicesisestablishedtoidentifythoseitemswithinthecalibrationcontrolsystem.This identificationlistingincludes,asaminimum,theduedateofthenextcalibrationandany uselimitations(whencalibratedforlimiteduse).

M&TEiscalibratedatspecifiedintervalsorpriortouseagainstequipmenthavingaknown validrelationshiptonationallyrecognizedstandards.Ifnonationallyrecognizedstandard exists,thebasisforcalibrationisdocumented.M&TEisproperlyhandledandstoredto maintain accuracy. When M&TE is found to be out of calibration, asfound data are recorded, and an evaluation is made and documented as to the validity of previous inspection,testresults,andoftheacceptabilityofitemspreviouslyinspectedortested.

Outofcalibrationdevicesaretaggedorsegregatedandarenotuseduntilrecalibrated.

WhenM&TEisconsistentlyfoundtobeoutofcalibration,itisrepairedorreplaced.

Calibrationsarealsoperformedwhenpersonnelperformingmeasurementsandtests deemtheaccuracyoftheequipmentsuspect.Recordsaremaintainedandequipmentis suitablymarkedorotherwiseidentifiedtoindicateitscalibrationstatus 13.

ItemHandling,Storage,andShipping Materialsandequipmentarehandled,stored,andshippedinaccordancewithdesignand procurement requirements to protect against damage, deterioration, or loss. Special coverings,equipment,andprotectiveenvironmentsarespecifiedandprovidedwhere necessaryfortheprotectionofparticularitemsfromdamageordeterioration.

14.

Inspection,Test,andOperatingStatus Acceptancetestingand/orinspectionisapartoftheConfigurationManagementProgram which ensures that IROFS meet specified requirements prior to initial use.  The SurveillanceandMonitoring,PreventiveMaintenance,andFunctionalTestingelements,

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1119

asdescribedinSection11.2,provideassurancethatIROFScontinuetomeetspecified

requirementsbyassuringthatthesetestingandinspectionactivitiesarescheduledand

implemented.TheConfigurationManagementandPurchasingProgramshaveprovisions

foridentifyingandcontrollingitems,includingIROFS,toprovidereasonableassurance

thatincorrectordefectiveitemsarenotused.

15.

ControlofNonconformingItems Itemsandrelatedactivitiesthatdonotconformtospecifiedrequirementsarecontrolled topreventinadvertentinstallationoruse.Nonconformingitemsaresegregated,when practical.Whensegregationisimpracticalorimpossibleduetophysicalconditions(for example,size,weight,oraccesslimitations),othermeasuresareemployedtopreclude inadvertentuseoftheitem.

Nonconforming items are reviewed and dispositioned.  Further processing, delivery, installation,oruseofthenonconformingitemiscontrolledpendinganevaluationand approved disposition by personnel as authorized in approved policies, plans, and/or procedures,anddocumentednotificationtoaffectedorganizationsisprovided.

The responsibility and authority for the evaluation and disposition of nonconforming itemsisdefined.

Nonconformance documentation identifies the nonconforming item, describes the nonconformance, contains the disposition and any reinspection requirements, and containstheappropriatesignaturesapprovingthedisposition.

16.

CorrectiveAction Reports ofconditions adverse to safetyare promptly identified andentered intothe CorrectiveActionProgram(seeSection.11.6),whichprovidesameanstoevaluatethe problem,identifythecauseoftheproblem,assignappropriatecorrectiveactionstobe initiated,andtrackthecorrectiveactionstoclosure.Promptidentificationandeffective correctiveactionsshouldprovidereasonableassurancethatrepetitionoftheproblem willbeminimized.

17.

QualityAssuranceRecords TheRecordsManagementProgram,asdescribedinSection11.7,hasprovisionsforthe identification,retention,retrieval,andmaintenanceofrecordsthatfurnishevidenceof thecontrolofqualityofIROFS.

18.

Audits Section 11.5 includes the commitments for scheduling and implementing audits and assessments.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1120

Table111

ManagementMeasuresforIROFS

ManagementMeasures1

Passive

Engineered

Control

Active

Engineered

Control

Enhanced

Administrative

Control

Administrative

Control

ConfigurationManagement

X

X

X

X

ControlledListing

Identification

X

X

X

X

DrawingIdentification

X

X

X Setpointanalyses

X

X

X DesignSpecifications

X

X

X SafetyInstallation

Verification

X

X

X PreoperationalSafety

Review

X

X

X

X

Maintenance

X

X

X

X

PeriodicFunctionalTest

X

X

X

X-Note2

Calibration X

X Verificationafter

Maintenance

X

X

X PreoperationalTests

X

X

X TrainingandQualification

X

X

X

X

Procedures

X

X

X

X

Procedural

Identification

X

X

PostingIdentification

X

X

X

X

AuditsandAssessments

X

X

X

X

RecordsManagement

X

X

X

X

IncidentInvestigations

X

X

X

X

OtherQualityAssurance

Elements

X

X

X

X

Note1-Themanagementmeasuresidentifiedforeachtypeofcontrolaretheminimumrequired,if

applicable.Forexample,itisnotpossibletocalibratecertaintypesofactiveengineeredcontrols.

Note2-Forfrequentlyusedequipment,functionalityisreadilyapparentateachuse(e.g.,leakingvalve

visuallynoticedatusepointwhenvalveisoperated).Therefore,aperiodicfunctionaltestisnotrequired.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0011

SNMXXXX

CHAPTER11

ZŽ

December2024

Page1121

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0011toheader.

Introduction

Clarifiedapplicationofmanagementmeasuresisbasedontypeof

controlduetoTX0REGLTR0041,QA/MgtMeasuresRAI12.

Section

11.1.2

Addednewsentencetostateapplicablecodesandstandardsare

identifiedindesigndocumentsduetoTX0REGLTR0029,QA/Mgt

MeasuresRAI12.

Section11.8

Changesinthissection(exceptItem9)duetoTX0REGLTR0041,

QA/MgtMeasuresRAI12.

Item9changesduetoTX0LTR0020,RAI15.

Table111

AddedduetoTX0REGLTR0041,QA/MgtMeasuresRAI12.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0012 SNMXXXX CHAPTER 12 ZŽ

December 2024 Page 121 MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL

Table of Contents SECTION TITLE STARTS ON PAGE 12.1 Fundamental Nuclear Material Control Plan 122 12.2 Fundamental Nuclear Material Control Plan Implementation 122 12.3 Amendment of the Fundamental Nuclear Material Control Plan 123 TRISO-X Document Control 2024.12.30 14:04:33 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0012

SNMXXXX

CHAPTER12

ZŽ

December2024

Page122

MATERIALCONTROLANDACCOUNTINGOFSPECIALNUCLEARMATERIAL

12.1 FundamentalNuclearMaterialControlPlan

TRISOXmaintainsaFundamentalNuclearMaterialControlPlan(FNMCP)forlicensedCategory

II-Fuelfacilities/licenseesauthorizedtopossessSpecialNuclearMaterial(SNM)ofmoderate

strategicsignificance,asdefinedin10CFR74.4.10CFR70.22(b)requiresthattheapplication

containafulldescriptionoftheprogramforcontrolandaccountingofSNMinthelicensees

possession authorized by the license.  The FNMCP demonstrates how compliance with the

applicablerequirementsof10CFR74.31,74.33,74.41,or74.51isaccomplished.Baseduponthe

possessionlimitsidentifiedinthelicenseapplication,therequirementscontainedwithin10CFR

74.41,nuclearmaterialcontrolandaccountingforspecialnuclearmaterialofmoderatestrategic

significance,isapplicabletotheTRISOXFuelFabricationFacility.TheFNMCPprovidesthefull

descriptionofthisprogram.

The TRISOX FMNCP addresses commitments regarding the material control and accounting

(MC&A)program inthefollowingareas:

1.

Managementstructureandpersonnelqualificationandtraining 2.

Measurementsystems 3.

Measurementcontrolsystem 4.

Useofstatisticstoensurerequirementsaremet 5.

Conductofperiodicphysicalinventoriesandreconciliationofbookrecordstotheresults ofthephysicalinventories 6.

Itemcontrolsystem 7.

Shipper/receivercomparisons 8.

IndependentassessmentoftheMC&Aprogram 9.

Tampersafing(UseofTamperIndicatingDevices) 10.

Designationofmaterialbalanceareas,itemcontrolareas,andcustodians 11.

Resolvingindicationsofloss,theft,diversion,ormisuseofSNM 12.

AssistingintheinvestigationandrecoveryofmissingSNM 13.

Recordkeeping 12.2

FundamentalNuclearMaterialControlPlanImplementation

TherequirementsoftheFNMCPareimplementedthroughapprovedproceduresandcontrolled

softwareusedfortheaccountingofSNM.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0012

SNMXXXX

CHAPTER12

ZŽ

December2024

Page123

12.3

AmendmentoftheFundamentalNuclearMaterialControlPlan

TheFundamentalNuclearMaterialControlPlanismaintainedasneeded.TRISOXmaymodify

thisFNMCPwithoutreceivingpriorNRCApprovalprovidedthechangedoesnotdecreasethe

effectivenessoftheMC&Aprogram.Whensuchachangeismade,thelicenseenotifiestheNRC

ofthechangewithinsixmonthsofthedatethechangeisimplementedbyprovidingareport

containingadescriptionofthechangeandjustificationofwhythechangedoesnotdecreasethe

effectivenessoftheprogram,inaccordancewith10CFR70.32(c)(2)(ii).ThelicenseeobtainsNRC

approvalofmodificationstotheplaninaccordancewith10CFR70.34ifthemodificationwould

resultinadecreasetheeffectivenessoftheMC&Aprogram.Thepoliciesusedtocontrolchanges

totheFNMCPandensurethatonlythecurrentversionisusedaredescribedinChapter11.

Proposedchangestotheplanthatdecreaseitseffectivenesswillnotbeimplementedwithout

priorapprovalbytheNRC.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0012

SNMXXXX

CHAPTER12

ZŽ

December2024

Page124

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24

ALL

AddeddocumentnumberTXFREGNRC0012toheader.

12.3

CorrectedtypographicalerrorduetoTX0REGLTR0031,

Observationbullet1.

Revision

Summary

Addedrevisionsummarytoendofchapter.

NRC SPECIAL NUCLEAR MATERIAL LICENSE 

TXFREGNRC0013 SNMXXXX CHAPTER 13 Revision December 2024 Page 131 PROTECTION OF SPECIAL NUCLEAR MATERIAL

Table of Contents SECTION TITLE STARTS ON PAGE 13.1 Physical Security Plan 132 13.2 Physical Security and SGI Plan Implementation 132 13.3 Amendment of the Plans 132 TRISO-X Document Control 2024.12.30 14:16:44 -05'00'

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0013

SNMXXXX

CHAPTER13

Revision

December2024

Page132

PROTECTIONOFSPECIALNUCLEARMATERIAL

13.1 PhysicalSecurityPlan

TRISOXmaintainsaPhysicalSecurityPlan(PSP)forlicensedCategoryII-Fuelfacilities/licensees

authorized to possess special nuclear material (SNM) of moderate strategic significance, as

definedin10CFR74.4.ThePSPmaintainsaphysicalprotectionsystem,asrequiredby10CFR

Part73,PhysicalProtectionofPlantsandMaterials,and10CFRPart70,DomesticLicensing

ofSpecialNuclearMaterial.Thephysicalprotectionsystemprovidesreasonableassurancethat

activitiesinvolvingtheprotectionofSNMarenotinimicaltothecommondefenseandsecurity

anddonotconstituteanunreasonablerisktothepublichealthandsafety.ThePSPdemonstrates

compliance with the applicable requirements.  The PSP provides the full description of the

securityprogram.

TRISOX maintains a Safeguards Information Plan (SIP) that establishes, implements, and

maintainsaninformationprotectionsystemforSafeguardsInformation(SGI)generatedforthe

TRISOXFuelFabricationFacilitytosatisfytherequirementsoutlinedin10CFRPart73andensure

SGIisprotectedfromunauthorizeddisclosure.

13.2

PhysicalSecurityandSGIPlanImplementation

TherequirementsofthePSPareimplementedthroughpassiveandactiveengineeredfeatures

andapprovedprocedures.TherequirementsoftheSIPareimplementedthroughapproved

procedures.

13.3

AmendmentofthePlans

ThePhysicalSecurityPlanismaintainedasneeded.TRISOXmaymodifythePSPand/orSIP

withoutreceivingpriorNRCApprovalprovidedthechangedoesnotdecreasetheeffectiveness

ofthesecurityplaninaccordancewith10CFR70.32(e).Whensuchachangeismade,the

licenseenotifiestheNRCofthechangewithintwomonthsofthedatethechangeisimplemented

byprovidingareportcontainingadescriptionofthechangeandjustificationofwhythechange

doesnotdecreasetheeffectivenessofthesecurityplan.ThelicenseeobtainsNRCapprovalof

modificationstotheplaninaccordancewith10CFR70.34ifthemodificationwouldresultina

decreasetheeffectivenessofthesecurityplan.ThepoliciesusedtocontrolchangestothePSP

andSIPthatensurethatonlythecurrentversionisusedaredescribedinChapter11.Proposed

changestoaplanthatdecreaseitseffectivenesswillnotbeimplementedwithoutpriorapproval

bytheNRC.

NRCSPECIALNUCLEARMATERIALLICENSE 

TXFREGNRC0013

SNMXXXX

CHAPTER13

Revision

December2024

Page133

REVISION

SUMMARY



Revision

Date

Section/Page

DescriptionofChanges

1

5Apr22

ALL

Initialissue.



Dec24 ALL

AddeddocumentnumberTXFREGNRC0013toheader.

Revision

Summary

Addedrevisionsummarytoendofchapter.