ML24128A103

From kanterella
Jump to navigation Jump to search
Updated Safety Analysis Report (Usar), Revision 38, Section 11, Plant Power Conversion System
ML24128A103
Person / Time
Site: Prairie Island  Xcel Energy icon.png
Issue date: 04/30/2024
From:
Northern States Power Company, Minnesota, Xcel Energy
To:
Office of Nuclear Reactor Regulation
Shared Package
ML24128A092 List:
References
L-PI-24-010
Download: ML24128A103 (1)


Text

{{#Wiki_filter:PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 1 of 64 SECTION 11 PLANT POWER CONVERSION SYSTEM TABLE OF CONTENTS Page 11.1

SUMMARY

DESCRIPTION....................................................................7 11.1.1 Performance Description..........................................................7 11.1.2 Load Change Capability...........................................................7 11.1.3 Functional Limits......................................................................8 11.1.4 Secondary Functions...............................................................8 11.1.5 Codes and Classifications........................................................8 11.1.6 Schematic Flow Diagrams........................................................8 11.1.7 Single Failure Analysis.............................................................8 11.1.8 Shielding..................................................................................8 11.2 TURBINE-GENERATOR SYSTEM.........................................................9 11.2.1 Design Basis............................................................................9 11.2.2 Description...............................................................................9 11.2.3 Performance Analysis..............................................................10 11.3 MAIN CONDENSER SYSTEM................................................................15 11.3.1 Condenser................................................................................15 11.3.2 Main Condenser Air Removal System.....................................16 11.3.3 Condenser Spray System........................................................16 11.4 STEAM SAFETY, RELIEF AND DUMP SYSTEMS................................17 11.4.1 Design Basis............................................................................17 11.4.2 Description...............................................................................18 11.4.3 Performance Analysis..............................................................19 11.5 CIRCULATING WATER SYSTEM..........................................................21 11.5.1 Design Basis............................................................................21 11.5.2 Description...............................................................................22 11.5.3 Performance Analysis..............................................................23

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 2 of 64 TABLE OF CONTENTS [Continued] Page 11.6 COOLING TOWER SYSTEM..................................................................24 11.6.1 Design Basis............................................................................24 11.6.2 Description...............................................................................24 11.7 MAIN STEAM SYSTEM..........................................................................26 11.7.1 Design Basis............................................................................26 11.7.2 Description...............................................................................26 11.7.3 Performance Analysis..............................................................27 11.7.4 Inspection and Testing.............................................................28 11.8 CONDENSATE POLISHING SYSTEM...................................................30 11.8.1 Design Basis............................................................................30 11.8.2 Description...............................................................................30 11.8.3 Performance Evaluation...........................................................33 11.9 CONDENSATE, FEEDWATER AND AUXILIARY FEEDWATER SYSTEMS............................................................................................34 11.9.1 Design Basis............................................................................34 11.9.2 Description...............................................................................36 11.9.3 Performance Analysis..............................................................43 11.9.4 Inspection and Testing.............................................................51 11.10 REFERENCES........................................................................................53

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 3 of 64 TABLE OF CONTENTS [Continued] LIST OF TABLES TABLE 11.1-1 STEAM AND POWER CONVERSION SYSTEM COMPONENT DESIGN PARAMETERS TABLE 11.1-2 STEAM AND POWER CONVERSION SYSTEM CODE REQUIREMENTS TABLE 11.1-3 STEAM AND POWER CONVERSION SYSTEM SINGLE FAILURE ANALYSIS Table 11.9-1 CRITERIA FOR AUXILIARY FEEDWATER SYSTEM DESIGN BASIS CONDITIONS Table 11.9-2

SUMMARY

OF ASSUMPTIONS USED IN AFWS MINIMUM FLOW EVALUATION TABLE 11.9-3

SUMMARY

OF SENSIBLE HEAT SOURCES

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 4 of 64 TABLE OF CONTENTS [Continued] LIST OF FIGURES FIGURE 11.1-1 FLOW DIAGRAM - MAIN, AUXILIARY STEAM AND STEAM DUMP - UNIT 1 FIGURE 11.1-2 FLOW DIAGRAM - MAIN, AUXILIARY STEAM AND STEAM DUMP - UNIT 2 FIGURE 11.1-3 FLOW DIAGRAM - CONDENSATE SYSTEM - UNIT 1 FIGURE 11.1-4 FLOW DIAGRAM - CONDENSATE SYSTEM - UNIT 2 FIGURE 11.1-5 FLOW DIAGRAM - FEEDWATER SYSTEM - UNIT 1 FIGURE 11.1-6 FLOW DIAGRAM - FEEDWATER SYSTEM - UNIT 2 FIGURE 11.1-7 FLOW DIAGRAM - BLEED STEAM AND HEATER VENTS - UNIT 1 FIGURE 11.1-8 FLOW DIAGRAM - BLEED STEAM AND HEATER VENTS - UNIT 2 FIGURE 11.1-9 FLOW DIAGRAM - FEEDWATER HEATER, MOISTURE SEPARATOR AND REHEATER DRAIN SYSTEM - UNIT 1 FIGURE 11.1-10 FLOW DIAGRAM - FEED HEATER, MOISTURE SEPARATOR AND REHEATER DRAIN SYSTEM - UNIT 2 FIGURE 11.1-11 FLOW DIAGRAM - AIR REMOVAL - UNITS 1 & 2 FIGURE 11.1-12 FLOW DIAGRAM - TURBINE BUILDING TRAPS AND DRAINS - UNIT 1 FIGURE 11.1-13 FLOW DIAGRAM - TURBINE BUILDING TRAPS AND DRAINS - UNIT 2 FIGURE 11.1-14 FLOW DIAGRAM - FEEDWATER PUMP INJECTION AND GLAND SEAL PIPING - UNIT 1 FIGURE 11.1-15 FLOW DIAGRAM - FEEDWATER PUMP INJECTION AND GLAND SEAL PIPING - UNIT 2 FIGURE 11.1-16 FLOW DIAGRAM - CIRCULATING WATER - UNITS 1 & 2

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 5 of 64 TABLE OF CONTENTS [Continued] LIST OF FIGURES [Continued] FIGURE 11.1-17 FLOW DIAGRAM - EXTERNAL CIRCULATING WATER FIGURE 11.1-18 PLOT PLAN FIGURE 11.1-19 FLOW DIAGRAM - CONDENSATE POLISHING - UNITS 1 & 2 FIGURE 11.1-20 FLOW DIAGRAM - CONDENSATE FILTER DEMINERALIZER - UNIT 1 FIGURE 11.2-1 DELETED FIGURE 11.2-2 EXISTING HP TURBINE, MUR UPGRADE, VWO FIGURE 11.2-3 DELETED FIGURE 11.2-4 EXISTING HP TURBINE, MUR UPGRADE, 50% LOAD FIGURE 11.2-5 UNIT 1 - TURBINE GENERATOR HEAT BALANCE - 100% POWER - VALVES WIDE OPEN AT 1.60 IN HGA CONDENSER VACUUM FIGURE 11.2-6 UNIT 1 - TURBINE GENERATOR HEAT BALANCE - MAXIMUM STEAM FLOW WITH VALVES WIDE OPEN AT 1.60 IN HGA CONDENSER VACUUM FIGURE 11.2-7 PRAIRIE ISLAND UNIT 1 HBD-MUR FIGURE 11.2-8 EXISTING HP TURBINE, MUR UPGRADE, 1684 MWt FIGURE 11.9-1 AUXILIARY FEEDWATER PUMP CHARACTERISTIC CURVES FIGURE 11.9-2 DELETED FIGURE 11.9-3 DELETED FIGURE 11.9-4A DECAY HEAT CURVE - 1 TO 1000 SECONDS FIGURE 11.9-4B DECAY HEAT CURVE - GREATER THAN 1000 SECONDS

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 6 of 64 THIS PAGE IS LEFT INTENTIONALLY BLANK

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 7 of 64 SECTION 11 POWER PLANT CONVERSION SYSTEM 11.1

SUMMARY

DESCRIPTION The Steam and Power Conversion Systems of Units 1 and 2 are identical except as noted. 11.1.1 Performance Description The steam and power conversion system consists of a closed, regenerative cycle in which steam from the main turbine is condensed and returned to the steam generators as heated feedwater. The turbine-generator system consists of components of conventional design, designed for use in large central power stations. The equipment is arranged to provide high thermal efficiency with no sacrifice in safety. The component design parameters are given in Table 11.1-1. The Main Steam and Feedwater Systems are designed to remove heat from the reactor coolant in the two steam generators, producing steam for use in the turbine-generator. The Main Steam System can receive and dispose of the total heat existent or produced in the Reactor Coolant System following a turbine-generator trip at full load. Two auxiliary feedwater pumps, one turbine-driven and one electric-driven are provided for each unit to ensure that adequate feedwater is supplied to the steam generators for heat removal under all circumstances, including loss of power and normal heat sink. Feedwater flow can be maintained until power is restored or reactor decay heat removal can be accomplished by other systems. The Auxiliary Feedwater System is designed as a Class I system, and is described in Section 11.9. 11.1.2 Load Change Capability The plant can accommodate step load changes of 10% or ramp load changes of 5% per minute without reactor trip as described in USAR Sections 4 and 7. The Reactor Coolant System will accept a complete loss of load from full power with reactor trip. In addition, both units are designed to accept a step decrease of 40.0% of nominal full load with the combined operation of the Reactor Rod Control System and the Steam Dump System.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 8 of 64 11.1.3 Functional Limits The system incorporates backup means (power operated relief valves and code safety valves) for heat removal under any loss of normal heat sink (i.e., main-steam stop valves trip, condenser isolation, loss of circulating water flow) to accommodate reactor shutdown heat rejection requirements. 11.1.4 Secondary Functions The Steam and Power Conversion System also provides steam for driving the turbine-driven auxiliary feedwater pump and for turbine gland steam, reheater steam, condenser and water box steam-jet air ejectors, hogging ejectors, waste evaporator, boric acid evaporator packages and building heating. 11.1.5 Codes and Classifications The pressure boundary components comply with the codes given in Table 11.1-2. 11.1.6 Schematic Flow Diagrams The Main, Auxiliary Steam and Steam Dump, Condensate, Feedwater, Bleed Steam and Heater Vents, Feedwater Heater, Moisture Separator and Reheater Drains, Air Removal, Turbine Building Traps and Drains, Feedwater Pump Injection and Gland Seal Piping, Circulating Water, and Condensate Polishing Flow Diagrams are given in Figures 11.1-1 through 11.1-20, respectively. 11.1.7 Single Failure Analysis A single failure analysis has been made for all active components of the system which have an emergency function. The analysis, which is presented in Table 11.1-3, shows that the failure or malfunction of any single active component will not reduce the capability of the system to perform its emergency function. 11.1.8 Shielding No radiation shielding is required for the components of the Steam and Power Conversion System. Continuous access to the components of this system is possible during normal conditions, except for the components located inside the containment.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 9 of 64 11.2 TURBINE-GENERATOR SYSTEM 11.2.1 Design Basis The turbine is designed to produce a maximum calculated gross rating of 591,988 KW when operating with inlet steam conditions of 702 psia and 503.4F, exhausting at 1.6 in. Hg absolute, zero percent makeup, and with five stages of feedwater heating in service. The expected throttle flow at 591,988 KW is 7,370,720 lb/hr of steam. See Figures 11.2-1 through 11.2-5 for various turbine/condenser/reheat heat balance gross loads. The hydrogen inner-cooled generator is designed to produce rated 730,000 KVA at 1800 RPM and 60 psig hydrogen gas pressure. 11.2.2 Description The turbine is a three-element, tandem-compound, four-flow exhaust, 1800 rpm unit that has moisture separation and reheating between the HP and LP elements. The a-c generator and rotating rectifier exciter are direct-connected to the turbine shaft. The turbine consists of one double-flow HP element in tandem with two double-flow LP elements. Four combination moisture-separator reheater assemblies are located alongside the turbine. The turbine oil system is of a conventional design. It consists of three parts: a) a high pressure oil system, b) a lubrication system, and c) an Electro-Hydraulic (E/H) control system. The E/H control system is completely separate from the other two parts. Lube oil is also used to seal the generator glands to prevent hydrogen leakage from the machine. The fluid used for E/H control system is a fire resistant synthetic oil. The maximum available steam temperature is not capable of initiating a fire in the E/H oil system. The turbine oil system supplies all of the oil required for the emergency trip and lubrication system during normal operation. A turbine lube oil purification and filtration system purifies the lube oil for the turbine. A gland steam condenser maintains a pressure slightly below atmospheric in the Turbine Gland Leakoff System. Sealing steam and air leakage along the shaft at each turbine gland is fed to this condenser, thus preventing any leakage of steam into the turbine room. Two motor-driven exhausters are mounted on the gland condenser to remove noncondensable gases, as shown in Figure 11.1-11. The turbine has low speed, motor-driven spindle turning gear equipment which is side mounted on the outboard bearing of the low-pressure turbine nearest the generator.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 10 of 64 11.2.3 Performance Analysis 11.2.3.1 Turbine Controls High-pressure steam enters the turbine through two turbine stop valves and four governing valves. One turbine main steam stop and two main steam governing valves form a single assembly which is anchored above the turbine room floor line. An electro-hydraulic (E-H) actuator controls each turbine stop valve so that it is either in the wide-open or closed position. One of the control signals for this actuator comes from the mechanical-hydraulic overspeed trip portion of the Electro-Hydraulic Control System. The safety function of these turbine stop valves is to shut off the flow of steam to the turbine in the event the unit overspeeds beyond the setting of the overspeed trip. These valves are also tripped when the other protective devices function. The main steam governing valves are positioned by an electrical signal from the main governor portion of the Electro-Hydraulic Control System. Additionally, there are Reheat Steam Stop Valves (at the outlet of each reheater) and reheat steam intercept valves (in each reheat steam line just ahead of the low pressure turbine inlet). These reheat stop and intercept valves limit the reheated steam flow available to the low pressure turbine. The Electro-Hydraulic Turbine Control System combines triple modular redundant controller with a high-pressure fire-resistant fluid supply system which is independent of the lubricating oil. The design features and response characteristics of the E-H control system increase the reliability and availability of the power plant. The Electro-Hydraulic Control System includes the following features:

a.

Governor valve controller

b.

Load limit controller

c.

Overspeed Protection Controller

d.

Load Controller

e.

Operators touch screens on the control room control panel

f.

High-pressure hydraulic fluid pumping unit

g.

Turbine protective devices, including function limit trips, automatic load reference runback upon receipt of the OTT and OPT signal, and extraction line non-return valves closing signal.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 11 of 64 In the steam admission system, each steam path has two valves in series which are controlled by the high pressure E-H oil system. Loss of hydraulic fluid pressure or power supply causes closure of the steam valves. The auto-stop oil is dumped to drain, directly and indirectly via the interface valve, when any one of the protective trip devices is actuated. Independent reactor trip signals will actuate the EH controller trip logic to dump ET, OPC, and auto-stop oil to drain. Automatic turbine load reference runback is initiated as described in Section 7.2. 11.2.3.2 Turbine Overspeed Control Turbine overspeed, upon loss of electrical load, is prevented by the rapid cut-off of steam admission to the high pressure turbine, and to the low pressure turbine. Main steam admission to the high pressure turbine is controlled by a series array of main steam stop and governor valves; and reheat steam admission to the low pressure turbine is controlled by a series array of reheat steam stop and reheat steam intercept valves. All these valves are held open against strong spring pressure by high-pressure hydraulic fluid. Should loss of electrical load occur, the turbine will tend to accelerate, and the E-H control automatically switches from load follow to speed follow and calls for the maintaining of a turbine synchronous speed of 1800 rpm such that the main E-H governor calls for modulated closing of the main steam governor valves. (Should the loss of load be from maximum calculated load to zero load, the E-H overspeed protection controller alone limits turbine speed to a maximum of 108% of synchronous speed.) Overspeed control is accomplished by trip-valve release of hydraulic fluid pressure. Redundant shaft-speed sensors and trip-valving systems assure a highly reliable prevention of turbine overspeed and prevention of resultant turbine missiles. The Electro-Hydraulic Control System contains turbine shaft speed probes. At 103% of rated shaft speed the E-H controller releases actuating hydraulic fluid pressure to close the main steam governor and the reheat steam intercept valves, which cut off both high pressure and low pressure turbine steam admission. (Should this trip be from maximum calculated load to zero load, the 103% E-H overspeed trip function alone limits the turbine speed to a maximum of 111% of synchronous speed.) In addition to the two protective functions already described, the turbines are provided with three emergency overspeed trip functions which are activated at less than 111% of rated shaft speed.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 12 of 64 The first of these emergency overspeed trip functions is the conventional back-up control consisting of an overspeed trip valve and mechanical overspeed mechanism which consists of a spring-loaded eccentric weight mounted in the end of the turbine shaft. At 110% of rated speed, centrifugal force moves the weight outward to mechanically actuate the overspeed trip valve which dumps auto-stop oil pressure and in turn releases the actuating hydraulic fluid pressure to close the main steam stop valves, the main steam governor valves, the reheat steam stop valves, and the reheat steam intercept valves. The supply steam pressure and the spring force act to hold the stop valves closed. Upon loss of the actuating hydraulic fluid pressure, an air pilot valve closes the extraction non-return valves to heaters No. 14 and 15. Baffles in feedwater heaters No. 11, 12, and 13 minimize flashback of water in these heaters. The secondary emergency overspeed control is provided by the Electro-Hydraulic Control system if the turbine speed exceeds 108% of rated speed by 10 rpm. At this point ET, OPC, and AST solenoids are actuated to dump the auto-stop oil which in turn dumps the actuating hydraulic fluid pressure to ensure closing of the main steam stop valves, the main steam governor valves, the reheat steam stop valves and the reheat steam intercept valves. The third emergency overspeed control is provided by the Electro-Hydraulic Control system if the turbine speed exceeds 109% of rated speed. At this point the independent Protech system actuates the ET and OPC solenoids to dump ET oil header pressure, thereby depressurizing the AST header via the interface valve which in turn dumps the actuating hydraulic fluid pressure to ensure closing of the main steam stop valves, the main steam governor valves, the reheat steam stop valves and the reheat steam intercept valves. The Protech also provides trip input to the main EH controller to actuate the ET, OPC, and AST solenoids. The reheat steam stop valves and reheat steam intercept valves stop the steam flow to the low pressure turbine, such that assuming a single failure of one reheat steam intercept valve, the 111% overspeed trip point limits turbine shaft speed to less than the 120% of synchronous speed which was used as a design basis for the turbine-generator. Thus a 100% maximum calculated load rejection (with no in-plant load) cannot result in destructively excess overspeed.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 13 of 64 The overspeed trip function is tested periodically. The turbine valves function to control and protect the main turbine. They must be capable of moving freely in response to control and protection signals. In an effort to develop a reasonable basis for frequency of turbine valve testing, a probabilistic study of turbine valve failure mechanisms was undertaken by the Westinghouse Owners Group. This work was reported in WCAP-11525: Probabilistic Evaluation of Reduction in Turbine Valve Test Frequency (Reference 7). This study concluded that the Prairie Island turbine valves could be tested at a reduced frequency not exceeding one year while not exceeding NRC guidance for acceptable turbine missile ejection probability. A change to the Prairie Island Technical Specifications allowing the interval between turbine valve tests to be up to, but not exceeding one year, was approved by NRC SER dated February 7, 1989. (Reference 8). IT.S. has subsequently relocated these requirements to the TRM. In accordance with the program plan for tracking turbine valve failure rates, the Westinghouse Owners Group performed evaluations and updates of turbine stop and control valve failure rates. The evaluation process used the most recent study results to set the requirements for turbine valve testing. The turbine valve failure rates through January 1998 were reevaluated in March 1999 (reference 13) in accordance with the program plan established in WCAP 11525. This reevaluation resulted in conservative missile ejection probabilities relative to previous studies. WCAP-16054 was commissioned to re-check WCAP-11525. WCAP 16054 confirmed WCAP-11525 with the inclusion of recent valve failure data and increasing the valve exercise surveillance interval to 12 months. The total probability continues to be maintained at less than 1x10-5.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 14 of 64 11.2.3.3 Variables Limit Functions Trips, automatic control actions and alarms will be initiated by deviations of system variables within the Steam and Power Conversion System. The more significant malfunctions or faults which cause trips, or automatic actions in the Steam and Power Conversion System are listed below. Turbine Trips

a.

Generator electrical faults

b.

Low condenser vacuum

c.

Thrust bearing failure

d.

Low turbine bearing lubricating oil pressure

e.

Turbine overspeed

f.

Reactor trip

g.

Manual trip

h.

Loss of both main feedwater pumps

i.

Loss of E/H system internal power

j.

Low auto-stop oil pressure

k.

Steam generator High-High level.

l.

MSIV closure initiated turbine trip

m.

AMSAC actuation

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 15 of 64 11.3 MAIN CONDENSER SYSTEM 11.3.1 Condenser The condenser is the double-flow, dual-pressure, single-pass vertically divided surface type with fabricated steel water boxes at both ends. The hotwell has sufficient storage for three minutes operation at maximum throttle flow with an equal free volume for surge protection. There are two air coolers built integral with each condenser shell, located in the center of each tube bundle, extending from face to face of the tube sheets. The coolers are subdivided by the main support plates. The direct steam flow type tube bundle in each shell is arranged so that steam will enter at the top, outboard and inboard sides, and bottom where it flows through the tubes until reaches a common area at the center of the tube nest before entering the air coolers. The arrangement of the tubes in the tube bundle allows the steam to effectively feed to all the tubes. This tube arrangement creates decreasing cross-sectional area, and as the volume of steam is decreased by being condensed as it penetrates the depth of the tube bank, a brisk velocity is maintained at all times, assuring maximum condensation at maximum efficiency. In its passage through the tube bundle most of the steam is condensed and when the flow reaches the air cooler there remains only a mixture of air, non-condensible vapor and water vapor. The air and non-condensible vapors are cascaded from the outlet end to the inlet end of each condenser. This is accomplished by having each section of the condenser arranged so that the air and non-condensible vapors from preceding sections will be forced to pass over cooler tubes in every section of each condenser. In passing through the air coolers, the air and non-condensible vapors are cooled and a large part of the water vapor is condensed. This reduces the partial vapor pressure of the mixture which is analogous to shrinking what was originally a large volume of rarefied air into a small volume of dense air. In this state it is drawn into the air removal equipment where it is compressed to atmospheric pressure with a minimum expenditure of energy. Each condenser is divided into two sections by means of separate water boxes. This construction for practical purposes may be considered as two condensers placed side by side, having a common steam inlet and condensate outlet, but with separate air-vapor outlets. This construction also makes it possible to open the water boxes on one section of the condenser to clean and inspect the tubes while there is vacuum on the condenser and the turbine is operating.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 16 of 64 11.3.2 Main Condenser Air Removal System The steam-jet air ejector maintains a vacuum in the condenser. This ejector has three first-stage elements and three second-stage elements mounted on the shells of the intermediate and after-condensers. Only two of the three stages are required during normal operation. During startup, a separate hogging ejector is used to evacuate the condenser. The ejectors are supplied with steam from the main steam line, as shown in Figures 11.1-1,-2,-11, or from the plant heating boiler. They are used in parallel with the second stage of the steam jet air ejectors which are also started at the same time. After a vacuum of 20 to 25 Hg. has been established, the first stage jets of the air ejector are started automatically. Operation of the first and second stages of the air ejector will lower the turbine condenser steam space to its operating vacuum. The hogging ejectors are removed from service by closing, first, the suction valves, and second, closing their steam supply valves. The discharge of the hogging ejectors is not monitored for radioactivity because this parameter can be measured by the radiation monitor in the discharge of the normal steam jet air ejector which discharges to the Auxiliary Building Ventilation System. 11.3.3 Condenser Spray System The condenser spray system, as shown in Figures 11.1-3, -4, consists of a pump, filters, strainers, and spray nozzles. The system is designed to eliminate stratification which causes vacuum problems during unit startup. When steam dump and other steam sources enter the condenser, the steam in the process of going to a low pressure condition goes to a superheated condition. Since the superheated steam has a higher specific volume the steam rises to the top of the condenser. To prevent this steam from reaching the top of the condenser, the condenser spray system blankets the condenser with a water spray below the feed water heater level. Hydrazine is injected into the condenser spray system to start the O2 scavenging sooner in the condensate and feed water cycle. This will help reduce the dissolved O2 in the condensate pump suction. In this way the quantity of iron oxides produced in the condenser and carried to the steam generators is reduced.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 17 of 64 11.4 STEAM SAFETY, RELIEF AND DUMP SYSTEMS 11.4.1 Design Basis If the condenser heat sink is not available during a turbine trip, excess steam generated as a result of Reactor Coolant System sensible heat and core decay heat is discharged to the atmosphere. There are five 6-in. by 10-in. code safety valves located on each of the two 30-in. main steam lines outside the reactor containment and upstream of the main steam isolation and non-return valves. Discharge from these safety valves is carried to the atmosphere through individual vents. The total relieving capacity of all 10 valves is 7,745,470 lb/hr at 1194 psig. The five safety valves on each main steam line are set to relieve at 1077, 1093, 1110, 1120, and 1131 psig. The main steam safety valve Technical Specification originally required lift setpoints to be within + 1% of the specified setpoint. The Specification was difficult to meet when test instrument error and repeatability were considered. A License Amendment Request justified increasing the as-found setpoint tolerance to + 3%, provided the setpoint was returned to + 1% following testing. License Amendments 123 and 116 approving the request were issued May 21, 1996. In addition, one 5-in. power-operated relief valve is provided in each main steam line which is capable of releasing the sensible and core decay heat to the atmosphere. These valves are automatically controlled by pressure or may be manually operated from the main control board and have a total capability of ten per cent of the maximum calculated steam flow (405,000 lb/hr each at 1100 psia). Discharge from each power relief valve is carried to the atmosphere through an individual vent stack. In addition, the power-operated relief valves may be used to release the steam generated during reactor physics testing, operator license training, plant cooldown, and Mode 2, Startup, if the condenser is not available. Two steam dump systems, the condenser steam dump system and the atmospheric steam dump system, are available to remove energy for the steam generators downstream of the mainsteam isolation and non-return valves. The condenser steam dump system taps off one main steam line (downstream of the 20 bypass/equalizing line connecting the two lines) with a 16 then to 12 line. From the 12-in. line two valves are installed in parallel (one 8-in. and one 4-in.). These valves discharge through a 16-in. pipe into the condenser through a perforated diffuser. The 8-in. valve has a capacity of 590,000 lb/hr, at an inlet pressure of 722 psia. The 4-in. valve has a capacity of 200,000 lb/hr. However, the 4-inch valve receives no automatic control signals and can only be operated by manipulating it locally, intended to be used only if the 8-inch valve is out of service (i.e., unavailable for cooldown). Therefore, the effective capacity is only that of the 8-inch valve, at least 7.0% of full load steam flow.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 18 of 64 The atmospheric dump system provides two atmospheric dump valves on each steam generator main steam line. Each 8-in. valve is capable of dumping 590,000 lb/hr at an inlet pressure of 721 psia. Total capacity of all four atmospheric dump valves is at least 28.6% of full load steam flow. Two valves were installed to limit the maximum steam flow from one valve stuck open to 890,000 lb/hr at 1100 psia. A potential hazard in the form of an uncontrolled plant cooldown is thus eliminated. Manual isolation valves are provided at each control valve. 11.4.2 Description The relief, safety and steam dump system is shown in Figures 11.1-1 and 11.1-2. The atmospheric dump valves and the condenser dump valve are controlled by a servoloop. Either a Tavg error signal or a main steam pressure error signal may be selected as the loop error signal. The Tavg error signal is used for normal at power operation. Under this condition, the loop provides the capability for rejecting a minimum 40.0% of nominal full load without reactor trip. During a normal orderly shutdown of the turbine generator leading to plant cooldown, the operator may select pressure control for more accurate maintenance of no-load conditions using the steam dump valves to release steam generated by the residual heat. Plant cooldown, programmed to minimize thermal transients and based on residual heat release, is effected by a gradual manual adjustment of this pressure setpoint or by controlling the valve position in Manual until the cooldown process is completed or transferred to the Residual Heat Removal System. During start-up, Mode 2, Startup, or physics testing, the steam dump valves are remotely controlled from the main control board. The automatic condenser steam dump valve is prevented from opening on loss of condenser vacuum; it is also blocked on trip of both circulating water pumps that supply water to the Unit.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 19 of 64 11.4.3 Performance Analysis The condenser and atmospheric Steam Dump System has been included to increase the transient capability of the plant to provide a means for an orderly reactor power reduction in the event the load is suddenly decreased. The time for a return to full power operation is therefore minimized. The minimum dump capacity is equal to 35.6% of full load steam flow. Dump is initiated by a large rapid load change. Steam Dump Control is described in section 7.2.2.3. Table 4.1-8 lists the number of these type transients expected during the plant lifetime. If the condenser heat sink is not available during a turbine trip, excess steam, generated as a result of Reactor Coolant System sensible and core decay heat, is discharged to the atmosphere. The amount of steam that will be dumped to atmosphere during load reduction is as follows: Load Reduction of 10% no steam released Load Reduction of 20% no steam released Load Reduction of 30% 7000 lbs. Load Reduction of 40% 30,000 lbs. Load Reduction of 50% 75,000 lbs. Based on a 50% load loss and the subsequent release of 75,000 lbs. of steam, the total radioactivity release to atmosphere would be 1.4 curies of I-131 equivalent. Using the yearly average X/Q, the site boundary thyroid inhalation dose associated with this release would be less than 0.5 mrem. This value additionally assumes that the secondary system radioactivity level is at 0.1 Ci/gm and only 10% of the activity contained in the steam generator secondary side is available for dispersion to atmosphere. The analysis neglected any plate-out or condensation effects on the release plume. The requirement for monitoring the secondary coolant water chemistry is specified in the PINGP Chemistry Procedures. If the control valves should fail to dump steam, the result is a loss-of-load transient. If they operate to dump steam inadvertently, the result would be a load increase equivalent to a small steam break. In either case, the Reactor Control and Protection System precludes unsafe operation. These protection systems are provided to trip the reactor in the event of a sustained load mismatch between the reactor and turbine.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 20 of 64 Continuous radioactive monitoring of the secondary loops of the steam generators is provided by the Steam Generator Blowdown System Liquid Sample Monitor and the Condenser Air Ejector Gas Monitor as discussed in Sections 7.5.2.13 and 7.5.2.6. Once there is an indication of tube leakage in a steam generator, the affected units steam generators will be sampled and actual release documentation will be based on the known isotopic inventory and ODCM requirements. Isotopic analyses will quantify activity of the individual nuclides and total nuclide activity. Partitioning Factors will be applied to the steam generator bulk water particulate and iodine concentrations, to adjust activity results for a steam release, based on the differences in the volatility of individual isotopes. Radiation monitors will provide confirmation that no change in the system activity has taken place during the release. Normal turbine overspeed protection and the steam generator safety valves provide protection for these systems completely independent of any steam dump valve operation. In the event of failure of one feedwater pump, the feedwater pump remaining in service will carry approximately 65% of full load feedwater flow. If both main feedwater pumps fail, the turbine and the reactor will be tripped, and the auxiliary feedwater pumps start automatically. Pressure relief is required at the system design pressure of 1085 psig. The first safety valve is set to relieve at 1077 psig. Additional safety valves are set at pressures up to 1131 psig, as allowed by the ASME Code. In addition to the safety valves, one power-operated relief valve is installed for each steam generator which can be manually operated from the control room. The power-operated relief valves are set to open at a pressure slightly below that of the main steam safety valves. The original Westinghouse sizing criteria for the code safety valves was a flow rate equal to the original maximum calculated steam generation rate.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 21 of 64 11.5 CIRCULATING WATER SYSTEM 11.5.1 Design Basis The circulating water system provides the heat sink for the generating plant. Excess heat from the steam leaving the turbine is transferred to circulating water flowing through the condenser tubes. Based on seasonal limitations heat is transferred to the environment either by the use of the cooling towers, discharge to the river, or a combination of cooling towers and river discharge. Operating restrictions are governed by National Pollutant Discharge Elimination System (NPDES). During startup and shutdown of the steam plant, the Circulating Water System removes the heat of steam dumped to the condenser at low power. The Circulating Water System is designed to supply 294,000 gpm to each Unit in normal operation. Each Unit has two condenser circulating water pumps, each rated at 147,000 gpm at a TDH of 45 ft. The system is designed for condenser heat rejection of 3.88 x 109 BTU/hr from each Unit with a temperature rise across the condensers of 27F. Total plant heat rejection by the Circulating Water System is 8.09 x 109 BTU/hr. The Circulating Water System also supplies the water for the Cooling Water System and Fire Protection System. Water flows from the Intake Bay into the Plant Screenhouse. The Cooling Water pumps draw water from the screenhouse, pump it through the system and discharge to the warm circulating water leaving the condensers. Thus, the Circulating Water System indirectly cools the plant auxiliary equipment. The Intake Bay is required to remain intact during and after a design basis seismic event. The Intake Bay is classified as a Class I* structure. Refer to Section 12.2 for more discussion on classification of structures and components. Refer to Section 10.4 for more discussion on the cooling water system response to a seismic event. The circulating water system flow diagrams are shown in Figures 11.1-16 and 17. The general plan of the system external to the plant is shown in Figure 11.1-18.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 22 of 64 11.5.2 Description Circulating water for the generating plant is taken from the Mississippi River and directed to the plant site by the intake canal. The quantity of river water which may be appropriated for use in the Circulating Water System is specified in Water Appropriations Permit #69-072 (issued by the Minnesota Department of Natural Resources). Circulating water flows through the intake screenhouse to the intake canal and into the Screenhouse. Trash racks and traveling water screens located in the intake screenhouse collect fish, fish larvae and debris from the intake stream and return these organisms to the river to prevent them from entering plant systems. Two circulating water pumps for each unit individually pump circulating water through one side of each condenser for the associated unit. As the circulating water passes through the condenser tubes, it absorbs the heat of vaporization from the low pressure turbine exhaust system. The heated circulating water leaving the condenser is directed to the discharge basin through 102-in. concrete piping. From the discharge basin the water is directed to the river or to the cooling towers (see Section 11.6). From the cooling tower, the water flows through the cooling tower return canal to the distribution basin. A recycle canal is provided to recycle circulating water from the distribution basin back to the intake canal. Recycle control gates between the distribution basin and the recycle canal control the recycle flow rate. Guide walls and submerged mixing blocks are located in the intake canal to mix the warm recycle and cool river water to prevent large temperature differences between the four circulating water pumps. Water returned to the river is dispersed through pipes into the main body. The exterior circulating water system is operated to NPDES Permit MN0004006.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 23 of 64 11.5.3 Performance Analysis The design of the circulating water system allows for a variety of operating conditions that are governed by power levels and NPDES Permit requirements. In the open cycle mode the cooling towers are not used and the system acts as a once through design. In the closed cycle mode the cooling towers are in operation and there is limited return flow to the river. Depending on cooling requirements the system may be operated with cooling towers on line in addition to substantial blowdown to the river. System discharge to the river, blowdown, is measured in cubic feet per second (CFS) and is restricted by environmental impact considerations. The system can be operated with complete reliance on the cooling towers and a nominal (150 cfs) blowdown, as a once through system with maximum allowed blowdown, or at any desired blowdown rate in between in order to meet environmental impact based restrictions. Operations that exceed NPDES permit limits are reported to the appropriate state officials in accordance with the NPDES permit. Limitations are placed on the discharge flow rates by the NPDES permit April through June. During other periods of the year the intake flow rate may vary to provide maximum plant efficiency provided the thermal criteria of the NPDES permit are not exceeded.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 24 of 64 11.6 COOLING TOWER SYSTEM 11.6.1 Design Basis The cooling tower system is designed to dissipate to the atmosphere the heat rejected to the cooling water system and the entire circulating water flow passing through the condensers. 11.6.2 Description The cooling tower system is comprised of four towers, fans, water distribution headers and basins as shown in Figure 11.1-17. Each tower has one cooling tower pump. Each tower is made up of 12 cells grouped together (a bank). The cooling tower pumps intake water from the discharge basin and discharge into individual distribution pipes to the top of the cooling towers. The pumps are vertical, dry pit pumps mounted so that the casing will be flooded with the water in the discharge basin at normal level. The pump motors are mounted on, and supported by, the pump. The intakes to the pumps are submerged to prevent the intake of air from any cause. Spray nozzles at the top of the cooling towers break-up the water stream into small streams which drop by gravity through a maze of fill to a basin at the base of the towers. Fans draw air up through the streams of water and the heat of the water is carried into the atmosphere by the airstream. From the cold water basin at the bottom of the towers, the water flows through the cooling tower return canal to the distribution basin.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 25 of 64 THIS PAGE IS LEFT INTENTIONALLY BLANK

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 26 of 64 11.7 MAIN STEAM SYSTEM 11.7.1 Design Basis The Main Steam System is designed to remove heat from the reactor coolant in the two steam generators, producing steam for use in the turbine generator. The system can receive and dispose of the total heat existent or produced in the Reactor Coolant System following a turbine generator trip at full load. The steam and feedwater lines from the steam generators to their respective isolation valves are Class I. A failure either of the main steam or feedwater lines, or malfunction of a valve installed therein, will not impair the reliability of the Auxiliary Feedwater System, render inoperative any engineered safety feature, initiate a loss-of-coolant condition, or cause failure of any other steam or feedwater line. 11.7.2 Description Steam from each of the two steam generators supplies the turbine, where the steam expands through the double-flow, high-pressure turbine, and then flows through moisture separator reheaters to two, double-flow, low-pressure turbines, all in tandem. Five stages of extraction are provided, two from the high-pressure turbine (one of which is the exhaust) and three stages from the low-pressure turbines. The feedwater heaters for the lowest three stages are located in the condenser neck. All feedwater heaters are horizontal, halfsize units (two strings), including those for the lowest two extraction stage points, which are of the duplex type. The feedwater string is the closed type with deaeration accomplished in the condenser. The four reheaters drain to the No. 5 high-pressure heaters. The No. 5 heaters drain to the No. 4 feedwater heaters. The No. 4 heaters and the moisture separators drain to the heater drain tank. The heater drain pumps take suction from the drain tank and discharge to the feedwater pump suction. Drains from the three lower pressure heaters cascade to the condenser. The Main Steam System conducts steam in a 30-in. pipe from each of the two steam generators within the reactor containment through a swing-disc type isolation valve and a swing-disc type non-return valve to the turbine stop and control valves. The isolation and non-return valves are located outside of the containment. The two lines are cross-connected by a 20-in. equalizing line downstream of the isolation valves. The design pressure of the system is 1085 psig at 600F. A steam flow nozzle is provided in the line from each steam generator upstream of the isolation and non-return valves, to meter steam flow from each steam generator and to limit the rate of steam release in the event of a main steam line break. Steam flow signals are used by the Automatic Feedwater Flow Control System as discussed in Section 7.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 27 of 64 The steam for the turbine-driven auxiliary feedwater pump is obtained from both main steam lines, upstream of the main steam isolation valves, as shown in Figures 11.1-1 and 11.1-2. Main steam for the turbine gland steam supply control valve, the air ejectors, the reheater section of the four moisture separator reheaters, and the priming ejector, is obtained from branches on the main steam lines ahead of the turbine stop valves. Steam from five extraction points in the turbine casings is piped to the shells of the two parallel strings of feedwater heaters. The first point of extraction originates at the high-pressure turbine casing and supplies steam to the shell of the No. 5 high-pressure feedwater heater. The second point of extraction originates in the high-pressure turbine exhaust piping ahead of the moisture separators, and supplies steam to the No. 4 low-pressure feedwater heater. The third, fourth, and fifth point extractions all originate at the low-pressure turbine casings and supply steam to the No. 3, No. 2, and No. 1 low-pressure feedwater heaters, respectively, as shown in Figures 11.1-7 and 11.1-8. To prevent turbine overspeed from backflow of flashed condensate from the heaters after a turbine trip, non-return valves are provided in the extraction lines to heaters No. 4 and 5. The non-return valves are air-cylinder operated valves which are closed automatically upon a signal from the turbine trip circuit and on high level in the feedwater heater. 11.7.3 Performance Analysis The main steam line isolation and check valve assemblies have been modified by changing valve disc material to 410 stainless steel and by adding a rupture disc assembly to the isolation valve air-cylinder actuator. An extensive design analysis has shown that disc, linkage and valve body will perform as required for the entire range of valve closure incidents. In both the check and the isolation valve, the disc has been designed to withstand the maximum energy impact from closure. Separate valve models were made for the analysis of isolation valve and check valve. In order to determine the flow parameters of the fluid passing through the valve, a blowdown computer program was used. The relevant equations required to determine the angular acceleration, angular velocity and angular position of the valve disc are incorporated into the program. Valve flow coefficients were employed to calculate the frictional pressure drop across the valve at the various angular positions of the disc. Using appropriately conservative conditions, the highest closure energy calculated was 1.252 x 106 in.-lb. However, an additional margin was arbitrarily added to the closure energy (raising it to 1.35 x 106 in.lb.) for design.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 28 of 64 Details of the closure energy analysis are presented in a topical report PI0- 02-03 (Reference 15) titled: Analysis Report - Maximum Energy of Disc Impact - Main Steam Check and Isolation Valves for Kewaunee Unit 1, submitted to the Regulatory Staff on Kewaunee Docket 50-305. Because the main steam isolation and check valves for the Prairie Island and Kewaunee plants are identical, a jointly sponsored program was undertaken by Northern States Power Company and Wisconsin Public Service Corporation to determine disc closure energies. Due to the locations of postulated breaks relative to the valves, the Kewaunee plant has the highest disc closure energies. Therefore, in the analysis, the Kewaunee values were used; and the report, PI0-02-03 (Reference 15), not only applies to Prairie Island but also gives a margin of safety. Due to changes in the full power operating characteristics the MS check and isolation valve disc impact energies were updated in 09Q4836-CAL-002 (Reference 11); however, the Hot-Zero Power condition disc impact energies for the check and isolation valves of PI0-02-03 (Reference 15) remains applicable. A finite element model of the disc linkage and valve body was developed and an elastic plastic analysis was made to determine deformations. The elastic plastic design of the valve allows for permanent deformation of the disc upon spurious valve closure at full load steam flow conditions. A detailed presentation of the stress analysis was presented in a topical report PI0- 01-06 (Reference 9) titled: Analysis Report - Structural Analysis of Main Steam Check and Isolation Valves for Prairie Island Unit 1. An updated structural analysis of the main steam check and isolation valves is presented in 09Q4836-CAL-003 (Reference 10). The non-return valves prevent reverse flow of steam. If a steam line ruptures between a non-return valve and a steam generator, the affected steam generator will blow down. The non-return valve in the line eliminates blowdown from the other steam generator. The steam break incident is analyzed in Section 14.5. 11.7.4 Inspection and Testing The main steam line valves can be tested at regular intervals. The main steam isolation valves serve to limit an excessive reactor coolant system cooldown rate and resultant reactivity insertion following a main steam break incident. Their ability to close upon signal within a specified time interval is verified per Technical Specifications. See Technical Specification Surveillance Requirements 3.7.2.1 and 3.7.2.2 for more discussion and frequency requirements. 604000000634

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 29 of 64 THIS PAGE IS LEFT INTENTIONALLY BLANK

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 30 of 64 11.8 CONDENSATE POLISHING SYSTEM 11.8.1 Design Basis The condensate polishing system is typically used during unit start-up and is designed to remove suspended and dissolved impurities from the condensate so that the secondary water chemistry is maintained within specified limits. The system is designed to accommodate a maximum condenser tube leak of 0.5 gpm. The system was originally sized to process approximately 10,000 gpm of condensate. The peak flow capacity of the system is 11,000 gpm. The system is designed with 50% redundant capacity to provide for continuous operation when portions of the system are shutdown for maintenance or repair. The system also provides storage, handling and processing of waste solids with interfaces to the ultimate means of disposal via the plant waste solidification system, portable onsite solidification equipment, offsite solidification or offsite landfill. The system is provided with a process air supply which is designed with sufficient excess capacity to supplement the plant station air system. Chemistry sampling and monitoring is provided to ensure proper system operation. Shielding is provided for the protection of plant personnel. The design of the shielding is based on the maximum primary-to-secondary leakage allowed by the Technical Specifications. 11.8.2 Description The condensate polishing system (Figures 11.1-19 through 11.1-20) consists of the following subsystems:

a.

filter/demineralizer

b.

backwash and flush water

c.

spent resin disposal

d.

backwash air supply

e.

resin disposal building sump All system functions are controlled locally. System malfunctions are alarmed locally and in the control room.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 31 of 64 11.8.2.1 Filter/Demineralizer System The filter/demineralizer (F/D) system is shown in detail in Figure 11.1-20 and consists of three 50%-capacity, precoat-type F/D vessels per unit arranged in parallel in the condensate pump discharge header. Each F/D vessel is rated at 5500 gpm and 30 psi max P across the filter elements. During normal operation two vessels are online while the third is in backwash, precoat, shutdown or standby. One full-capacity bypass is provided for all three F/D vessels. The bypass valve is automatically actuated by F/D differential pressure to maintain a maximum total system P of 45 psid. Full capacity manual bypass is provided in parallel with the automatic bypass. A holding pump is provided for each vessel to retain the precoat on the filter elements. The holding pump maintains a 750 gpm flow through the F/D vessel and is automatically actuated on low F/D vessel effluent flow. Backwash air and water are supplied to each vessel for the purpose of dislodging precoat from the filters by pressurizing and then rapidly depressurizing the vessel. Separate precoating equipment is provided for each F/D train. The vessels are individually precoated via cross-ties to the precoat equipment. Adequate shielding is provided in the vicinity of the F/D vessels to allow personnel access through the area during design basis primary-to-secondary leakage conditions. 11.8.2.2 Backwash and Flush Water System Backwash and flush water is stored in the backwash water storage tank (BWST) which is manually supplied from the condensate storage tank (CST). A cross-tie is provided so that the BWST for one unit may be supplied from the CST of the other unit. Backwash waste water and resin from the F/D vessels dumps by gravity to the backwash waste receiving tank (BWRT). The slurry is then transferred to the resin disposal building (RDB). After dewatering via clamshell filters, the spent resin is diverted to the spent resin disposal system, and the backwash waste water is filtered and directed to the turbine building sump. The backwash waste water may be directed to the BWST should circumstances warrant. Each Units BWST and BWRT have capacity for two backwashes. Cross-ties are provided such that the dewatering equipment for each unit is interchangeable with the other unit.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 32 of 64 11.8.2.3 Spent Resin Disposal System Dewatered, spent resin from backwash system operations of both units is transferred, via the drain diverters and spent resin disposal chutes, to the spent resin transfer tank (SRXT) in the resin disposal building, or to barrels or to other containers, depending on ultimate disposal. Flush water is also supplied to the SRXT for disposal and/or processing of spent resins. Flush water or resin slurry in the SRXT can then be pumped under manual control to one of the following places for further processing and/or disposal:

a.

Atcor waste metering tank for solidification via the plant waste solidification system in the radwaste building

b.

Normally-closed, blind-flanged line in the resin disposal building for transfer to truck or portable solidification equipment

c.

backwash system for further reprocessing

d.

recirculation line to SRXT 11.8.2.4 Backwash Air Supply System Compressed air for resin backwashing operations is supplied from the Compressed Air System. The Compressed Air System is discussed in Section 10.3.10. 11.8.2.5 Resin Disposal Building Sump System The resin disposal building sump system consists of two sumps, each equipped with a redundant set of sump pumps. Sump A handles the RDB floor drains and may be discharged to either the miscellaneous drains collection tank or the waste holdup tanks. Sump B handles the truck loading enclosure floor drains and discharges to the aerated drains sump tank.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 33 of 64 11.8.3 Performance Evaluation The condensate polishing system is designed to maintain the EPRI PWR Secondary Water Chemistry Guidelines (Reference 1). During normal power operation, sampling of steam generator blowdown, condensate and feedwater is performed in accordance with these guidelines per plant chemistry procedures. System high conductivity is annunciated at local control panels and actuate the system trouble alarms in the main control room. The volume of spent powdered resin throughput from the plant is conservatively estimated at 3525 cubic feet annually for both units. Almost all of the spent powdered resin contains negligible radioactivity and can be safely disposed of by landfill burial. The annual volume of radioactive spent powdered resin depends on the amount of primary-to-secondary leakage. In general, the annual volume of radioactive spent powdered resin is extremely small and has sufficiently low activity to be disposed of as low level waste in accordance with applicable federal regulations.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 34 of 64 11.9 CONDENSATE, FEEDWATER AND AUXILIARY FEEDWATER SYSTEMS 11.9.1 Design Basis 11.9.1.1 Condensate and Feedwater Systems The Condensate and Feedwater System design is based on removing condensate from the hotwell of the condenser and supplying heated feedwater to the steam generators at all load conditions. There are three multi-stage, vertical, pit-type, centrifugal condensate pumps with vertical motor drives. Each pump is half capacity with the turbine operating at the maximum calculated rating. Two half-capacity, high speed, centrifugal, vertically-split case, motor-driven main feedwater pumps increase the pressure of the condensate for delivery through one stage of feedwater heating and the feedwater regulating valves to the steam generators. The main feedwater pumps are single-stage, horizontal, centrifugal pumps with barrel casings. Each feedwater pump is rated at 8600 gpm and 2100 ft. TDH. Shaft sealing is accomplished by a pressure breakdown style arrangement cooled with seal water injection. Bearing lubrication for the motor, the pump, and its step-up gear is accomplished by an integral Lubrication Oil System mounted on the pump base. Normal circulation of the lubrication oil is by shaft-driven pump. The Lubricating Oil System includes a reservoir, a cooler, and an ac motor-driven back-up oil pump. Feedwater pump bearing temperatures are available on ERCS. The feedwater pumps are started and stopped from the main control board. A minimum flow control system is provided to ensure 925 gpm flow during low system flow conditions. Should there be a loss of suction pressure, an automatic bypass around the low-pressure feedwater heaters ensures sufficient suction pressure at the feedwater pumps. 11.9.1.2 Auxiliary Feedwater System The Auxiliary Feedwater System supplies feedwater following interruption of the main feedwater supply. Feedwater must be provided for the removal of residual heat from the core by heat exchange in the steam generators if the main feedwater pumps cease to operate for any reason. The Auxiliary Feedwater System delivers feedwater from the condensate storage tank (or from the cooling water system) to the main feedwater piping at a location near the steam generator inlet. The system consists of the auxiliary feedwater pumps, associated valves and piping, and control systems. The entire system is redundant.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 35 of 64 The Auxiliary Feedwater System provides three essential functions during abnormal conditions:

a.

prevents thermal cycle of the steam generator tube sheet upon loss of main feedwater pump;

b.

removes residual heat from the reactor coolant system until the RCS temperature drops below 300-350F and the RHR system is capable of providing the necessary heat sink;

c.

maintains a head of water in the steam generator following a loss of coolant accident. The feedwater flow rate required to prevent thermal cycling of the tube sheet and for removing residual heat is the same and is about 160 gpm (historical) per Unit (or 80 gpm per steam generator). A 200-gpm flow is therefore sufficient to fulfill all the three functions stated above. However, since the Auxiliary Feedwater System is a safety features system, an additional 200-gpm pump is provided as a backup for the first for each Unit. 200 gpm is the design sizing of the AFW Pumps and not a minimum flow requirement. In other 2-loop plants (R.E. Ginna, Point Beach, etc.) prior to Prairie Island, the inventory of secondary side water in the steam generator versus secondary side water level was such that the pump size required to prevent thermal cycling was larger than the pump size required for removing the residual heat in the core (almost twice as big). As a result of this difference in capacity requirement between the two functions, these plants used the turbine driven pump to meet the larger capacity since it was not a safeguards requirement and therefore did not require redundancy. Smaller motor driven pumps are used for the safeguards requirements of removing fission product decay heat so as not to unnecessarily increase the diesel-generator size. The recent designs use a large steam generator with a different dimensional configuration. This reduces the pump size required to prevent thermal cycling, such duty being about the same as for removing residual heat, 160 gpm (historical) per unit or 80 gpm per steam generator. 160 gpm (historical) minimum flow rate is based on normal SG water levels at the time of the event (Reference 2). [Only one steam generator is required to remove all decay heat in the core.]

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 36 of 64 11.9.2 Description 11.9.2.1 Condensate and Feedwater Systems Condensate is taken from the condenser hotwell by the condensate pumps and pumped through the filter/demineralizer system or its bypass line, the air ejector condensers, gland steam condenser, and low-pressure heaters to the suction of the feedwater pumps. The feedwater pumps then send feedwater through the high-pressure heaters to each steam generator. The condensate and feedwater systems flow diagrams are shown in Figures 11.1-3 to 11.1-6. The two main feedwater pumps operate in series with the condensate and the heater drain pumps, discharging through check valves and motor-operated gate valves into the No. 5 heaters. The feedwater flows through the two parallel, high-pressure feedwater heaters and flows into a common header. Two 16-in. lines containing the feedwater control stations feed the two steam generators from the header. Bypass valves together with shutoff valves at the inlets and outlets of the feedwater heaters are provided to permit heaters to be taken out of service. The steam generator feedwater control system indicates, records and controls the water level in each of the two steam generators. Reactor trip is actuated by low-low steam generator water level. These trips are discussed in further detail in Section 7. The main feedwater control valves are closed when any one of the following conditions occurs: Abnormally high steam generator level Safety injection signal Reactor trip in coincidence with low Tavg Any safety injection signal will isolate the main feedwater lines by closing all control valves (main and bypass valves) and tripping the main feedwater pumps, which causes the discharge valves to close. One manual control station is provided for each feedwater valve. This unit consists of auto/manual transfer capability and analog output control. When in automatic, flow is adjusted as necessary to maintain narrow range steam generator level at its set point, which is programmed as a function of load.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 37 of 64 The reheater and moisture separator are housed in one pressure vessel. Reheaters are provided with drain tanks and level controls. The moisture separators are also provided with level control, while feedwater heater No. 15 is equipped with a duplex level control. All the low-pressure feedwater heaters, No. 11, 12, and 13, are located in the condenser neck. Feedwater heaters No. 11 & 12 are combined into one shell (duplex) with bolted-head construction. Feedwater heater No. 11 is provided with a separate Feedwater Heater Drain Cooler (No. 11). Drain from moisture separator and Feedwater heater No. 14 are drained directly to the Heater Drain Tank, as shown in Figures 11.1-9, 10. The level controllers operate the emergency drain dump valves which dump the various drains directly to the condenser in case of abnormally high level. Three half-capacity, vertical, centrifugal heater drain pumps are provided for pumping the heater drainage into the condensate line ahead of the feedwater pumps. The pumps are started and stopped from the main control board. Tank level is controlled by variable-speed pump drives. An emergency dump valve to the condenser is sized to pass all condensate from Feedwater Heater No. 14. 11.9.2.2 Auxiliary Feedwater System The Auxiliary Feedwater System is the most reliable system for decay heat removal following any reactor shutdown. Full flow capability is reached within a maximum response time of one minute when the pump drives are automatically energized from an open-valve standby status, when the normal coolant source is available. As discussed below, response time to other scenarios such as seismic events and tornadoes may take longer if there is a need to realign pump suction to the backup coolant source. Redundancy of flow paths, valving, pumps, and redundancy and diversity of coolant sources, and pump energy sources assures a high degree of system reliability. The Auxiliary Feedwater System consists of one steam turbine-driven pump and one motor-driven pump per operating unit, with each capable of delivering coolant to either or both steam generators of the same operating unit. Check valves are provided to prevent a rupture in either pumps discharge from negating the other pumps effectiveness. Welded construction is used where possible throughout the Auxiliary Feedwater System piping, valves, and equipment to minimize the possibility of leakage. The Auxiliary Feedwater System is shown on the Main Steam System and Feedwater System flow diagrams, Figures 11.1-1, 11.1-2, 11.1-5 and 11.1-6. Pump characteristic curves are shown on Figure 11.9-1. There is no interconnection between the two turbine-driven pumps, and there is no sharing of the Auxiliary Feedwater System components by the two operating units during normal operations. However, a cross-connection between the discharge lines of the motor-driven pumps is provided to achieve greater flexibility during operational emergencies. By incorporating two valves in this cross-connection, the Auxiliary Feedwater System has the capability to take an active or passive failure and still fulfill its functional requirements.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 38 of 64 The turbine-driven auxiliary feedwater pumps operate independent of all plant AC power sources and are supplied steam from both main steam lines of their associated operating unit. The two steam lines join together downstream of motor-operated isolation valves (one per line) to supply steam to the turbine through a single air-operated, fail open, steam admission valve. The air-operated steam admission valve has two safety related functions:

1)

Open: To allow passage of steam to start the associated turbine-driven auxiliary feedwater pump.

2)

Close: Tripping the pump on low turbine-driven auxiliary feedwater pump suction or discharge pressure. The steam admission valve safety related air pressure boundary is from the safety related check valve to the air-operated steam admission valve actuator. The instrument air system supplies air to the steam admission valve air pressure boundary. The air supply to the steam admission valve is controlled by a three-way DC powered solenoid. The air-operated steam admission valve opens automatically on a turbine-driven auxiliary feedwater pump start signal. Additionally, the turbine-driven auxiliary feedwater pump may also be started locally using a 3-way manual valve to locally bleed air pressure from the steam admission valve air pressure boundary. Failure of control power to the three-way DC powered solenoid valve causes the air pressure boundary to be vented, which results in the steam admission control valve to open, starting the associated pump. On failure of the instrument air system, the accumulator is capable of maintaining sufficient air pressure for the steam admission valve. The steam admission valve will remain closed until accumulator pressure is lost or an automatic start signal is received. In the case of loss of instrument air, the most likely start signal will be from Low-Low Steam Generator Water Level. The motor-driven auxiliary feedwater pumps are fed by separate safeguard buses, one each per operating unit, and are included in the load restoration sequencing onto the emergency buses. Motor-operated valves are not stripped from the emergency buses. A failure in the automatic circuitry will not affect the capability to manually initiate auxiliary feedwater from the control room. Instrumentation and logic circuits for starting both the motor-and turbine-driven pumps meet the single failure criterion (except for AMSAC) for actuation and are capable of being tested at power. Instrumentation power supplies are from the sites four vital 120 VAC buses, each supplied by an inverter connected to the associated 480 VAC emergency bus and 125 VDC power system. Motor-driven pump breaker controls are powered by the respective train of the 125 VDC system. Control power for the turbine-driven pumps steam admission control valves is also supplied from the Safeguards 125 VDC battery systems.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 39 of 64 The following signals automatically start the pump motors and open the steam admission control valve to the turbine-driven pumps:

a.

Low-low water level in either steam generator.

b.

Trip of both main feedwater pumps (bypassed during startup and shutdown operation).

c.

Safety injection.

d.

Loss of both 4.16 KV normal buses (turbine-driven pump only).

e.

AMSAC actuation. In addition, the motor-driven pumps and the turbine-driven pumps can be manually started locally or remotely. Each auxiliary feedwater pump has a pressure switch on its suction and on its discharge piping. If a low pressure setpoint is reached on either switch, the pump will trip either by closing the air-operated steam admission control valve on the turbine-driven auxiliary feedwater pumps, or by opening the motor breaker on the motor-driven auxiliary feedwater pumps. The low discharge pressure trip protects the pump from damage due to runout. The low suction pressure trip prevents damage to the pump from loss of suction. In either case, the pump will be protected so it can be restarted once the cause of low pressure is corrected. On 11 and 22 Turbine-Driven Auxiliary Feedwater Pumps, the low discharge pressure trip is blocked when in AUTO and the Reactor Trip Breakers are closed (RTA for relay contact for 11 TD AFW pump and RTB relay contact for 22 TD AFW pump). This circuit ensures that following the completion of the AMSAC initiation of Auxiliary Feedwater during an ATWS transient, the TD AFW pump will continue to run. During reactor operation, all pumps are on standby, and the isolation valves and pump suction and discharge valving are open. Start of an auxiliary feedwater pump causes the steam generator blowdown flow control valves in the associated operating unit to auto close. Auxiliary feedwater system coolant sources are redundant and diverse. The normal source is by gravity feed from the three cross-connected 150,000 gallon condensate storage tanks. The safety related (backup) water supply is provided by the Design Class I Cooling Water System. If an external event such as a tornado or seismic event were to cause flow disruption from the condensate storage tanks, the auxiliary feedwater pumps would likely trip on low suction pressure. Piping connecting the three condensate storage tanks has been evaluated against failure under seismic loads.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 40 of 64 An auxiliary feedwater reliability study [Ref. 14] was performed after the Three Mile Island accident and in response to NUREG-0611. This study determined steam generator dryout times with no auxiliary feedwater flow available. For a loss of normal feedwater event, the dryout time is approximately 30 minutes. For a loss of offsite power event, the dryout time is approximately 60 minutes. (Additional reliability study information follows near the end of this section.) Additional analysis (NSP-07-33, Reference 5) has determined that additional time is available for reinitiating of A.F. flow based on the effect on the primary system for a loss of offsite power due to an external event. PINGP has standing operating procedures for realigning the auxiliary feedwater pump suction from the condensate storage tanks to the Cooling Water System and for flow restoration after a low suction/low discharge pressure auxiliary feedwater pump trip. These procedures have been time-validated and can be accomplished within the SG dryout time frames listed above. In the normal cooldown procedure, after programmed reactor shutdown or trip, steam generator levels may be maintained by control of the feedwater flow control valves. If the Main Feedwater System is inoperable or its flow is too great, steam generator levels are controlled by local or remote manual operation of the auxiliary feedwater flow control valves for the turbine-and motor-driven pumps. When reactor containment isolation is initiated, the normally-open auxiliary feedwater containment isolation valves receive an open signal. Following blowdown in the loss-of-coolant accident, the Auxiliary Feedwater System maintains a positive pressure differential from the secondary side to the primary side of the steam generators, providing a barrier to prevent possible fission product escape to the Main Steam System. The SI actuation circuits which initiate auxiliary feedwater addition are safety grade, separated and trained. The SI actuation contacts which trip the normal feedwater pumps off are also safety grade, using additional relays to maintain separation even though both pumps are tripped off by both Train A and Train B SI signals. In addition, either Train A or Train B SI Signal causes closure of the parallel flow control valves downstream of the feedwater pumps. The SI signal causes closure of the containment isolation valves downstream of the normal feedwater flow control valves through the containment isolation signals. A cycle timer control circuit automatically runs the auxiliary motor-driven lube oil pump on each auxiliary feedwater pump for approximately 10 minutes twice per week. The minimum requirement is 5 minutes once per week. If the proper lube oil pressure is not reached following the lube oil pump start, an alarm is sounded in the control room. This ensures that sufficient auxiliary feedwater pump oil film for pump start is maintained at all times. Thus, the auxiliary motor-driven lube oil pump is not required for auxiliary feedwater pumps starting.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 41 of 64 The bearing oil coolers are cooled by recirculation flow from the discharge of the auxiliary feedwater pumps back to the condensate storage tanks. Oil cooling is thus available whenever the pump is running. As a result of the Three Mile Island accident, reliability of the auxiliary feedwater system received additional attention. The NRC issued Generic Letter 81-14, Seismic Qualification of AFW Systems. Several responses to the NRC were made from which the NRC concluded in a letter dated June 16, 1983 that, following a number of minor modifications, the auxiliary feedwater system had sufficient capability to withstand a safe shutdown earthquake and accomplish its safety function. Generic Issue No. 124, Auxiliary Feedwater System Reliability was also identified as a result of the Three Mile Island accident. The Prairie Island Auxiliary Feedwater System was determined to be in the low reliability range based on an NRC reliability analysis reported in NUREG-0611. As a result of Generic Issue No. 124, Northern States Power Company performed a probabilistic risk assessment study on the auxiliary feedwater and supporting systems, Prairie Island Units 1 and 2 Auxiliary Feedwater System Reliability Study [Ref 14]. Based on the NSP study, and an NRC staff audit of plant variables affecting the Auxiliary Feedwater system, Generic Issue No. 124 was closed out by an NRC Safety Evaluation Report transmitted by letter dated November 26, 1986. The following is a list of actions that were taken as a result of the NSP study and remaining NRC concerns expressed in the NRC Safety Evaluation to close out Generic Issue 124.

a.

Lube Oil Cooling - AFW pump discharge recirculation flow was rerouted to supply cooling water for pump lube oil coolers. This action removed the AFW dependency on cooling water for lube oil cooling.

b.

Manual Control of TDAFW Pump - A three way solenoid valve has been added to the air supply line to the TDAFW pump steam inlet supply control valve. This valve allows the pump to be run manually by locally opening the control valve by venting diaphragm air. A procedure has been written for manual auxiliary feedwater pump operations. All operations crews have been trained in use of the procedures.

c.

Eliminate Auto Open Signal to MV-32041 & MV-32042 - The auto open signal to the Condensate Emergency Supply Valve, MV-32041 (Unit 1) and MV-32042 (Unit 2), has been removed.

d.

Drain Valves from AFW Steam Lines to the Main Condenser - All drain valves from the AFW steam lines to the main condenser have been blocked open using safeguards hold cards.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 42 of 64

e.

Proceduralize Bypass of Control/Actuation Faults - The subject procedures have been written as subsections of the Auxiliary Feedwater System procedure.

f.

AFW System Valve Integrity - Check valve integrity is assured by monitoring the temperature of AFW discharge lines during each shift.

g.

Trip/Throttle Leakoff - Both the high and low pressure leakoff for the TDAFW pump trip/throttle valves have been rerouted to discharge into the turbine exhaust lines. This modification was completed to eliminate the potentially for creating a steam environment in the auxiliary feedwater pump room during operation of the turbine-driven auxiliary feedwater pump.

h.

Condensate Header Valve C-41 Condensate header valve C-41-1 was installed during plant construction to facilitate isolation and testing of systems. This valve was not used after plant startup and represented a potential for loss of AFW pump suction supply, it was removed from service and replaced by a spoolpiece.

i.

Actions Taken to Eliminate Final NRC Concerns:

1. Administratively locked open the condensate storage tank isolation valves to ensure AFW pumps suction supply.
2. A step ladder is located in each AFW pump room to aid operators in manipulating overhead AFW valves in emergency situations.
3. Installed additional emergency lighting in the area of the TDAFW pumps.
4. Work toward maintaining similarity between Unit 1 and Unit 2 AFW surveillance and maintenance procedures.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 43 of 64 11.9.3 Performance Analysis The Auxiliary Feedwater System serves as a backup system for supplying feedwater to the secondary side of the steam generators at times when the feedwater system is not available, thereby maintaining the heat sink capabilities of the steam generator. As an Engineered Safeguards System, the Auxiliary Feedwater System is directly relied upon to prevent core damage and system overpressurization in the event of transients such as a loss of normal feedwater or a secondary system pipe rupture, and to provide a means for plant cooldown following any plant transient. Following a reactor trip, decay heat is dissipated by evaporating water in the steam generators and venting the generated steam either to the condensers through the steam dump or to the atmosphere through the atmospheric steam dump valves, steam generator safety valves or the power-operated relief valves. Steam generator water inventory must be maintained at a level sufficient to ensure adequate heat transfer and continuation of the decay heat removal process. The water level is maintained under these circumstances by the Auxiliary Feedwater System which delivers an emergency water supply to the steam generators. The Auxiliary Feedwater System must be capable of functioning for extended periods, allowing time either to restore normal feedwater flow or to proceed with an orderly cooldown of the plant to the reactor coolant temperature where the Residual Heat Removal System can assume the burden of decay heat removal. The Auxiliary Feedwater System flow and the emergency water supply capacity must be sufficient to remove core decay heat, reactor coolant pump heat, and sensible heat during the plant cooldown. The Auxiliary Feedwater System can also be used to maintain the steam generator water levels above the tubes following a LOCA. In the latter function, the water head in the steam generators serves as a barrier to prevent leakage of fission products from the Reactor Coolant System into the secondary plant. The reactor plant conditions which impose performance requirements on the design of the Auxiliary Feedwater System are as follows for the Prairie Island plants. Loss of Main Feedwater Transient Loss of main feedwater with offsite power available (*) Loss of main feedwater without offsite power available (*) Secondary Pipe Ruptures Feedline rupture Steamline rupture (*) Loss of All AC Power (station blackout) Loss of coolant Accident (LOCA) (*) Cooldown (*) Impose safety related performance requirements

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 44 of 64

a.

Loss of Main Feedwater Transients The design loss of main feedwater transients are those caused by: Interruptions of the Main Feedwater System flow (LONF) due to a malfunction in the feedwater or condensate system Loss of offsite power (LOOP) with the consequential shutdown of the system pumps, auxiliaries, and controls Loss of main feedwater (LONF) transients are characterized by a rapid reduction in steam generator water levels which results in a reactor trip, a turbine trip, and auxiliary feedwater actuation by the protection system logic. Following reactor trip from high power, the power quickly falls to decay heat levels. The water levels continue to decrease, progressively uncovering the steam generator tubes as decay heat is transferred and discharged in the form of steam either through the steam dump valves (to the condenser or atmosphere) or through the steam generator safety or power-operated relief valves to the atmosphere. The reactor coolant temperature increases as the residual heat in excess of that dissipated through the steam generators is absorbed. With increased temperature, the volume of reactor coolant expands and begins filling the pressurizer. Without the addition of sufficient auxiliary feedwater, further expansion will result in water being discharged through the pressurizer safety and relief valves. If the temperature rise and the resulting volumetric expansion of the primary coolant are permitted to continue, then (1) pressurizer safety valve capacities may be exceeded causing overpressurization of the Reactor Coolant System and/or (2) the continuing loss of fluid from the primary coolant system may result in core uncovering, loss of natural circulation, and core damage. If such a situation were ever to occur, the Emergency Core Cooling System would be ineffectual because the primary coolant system pressure exceeds the shutoff head of the safety injection pumps, the nitrogen over-pressure in the accumulator tanks, and the design pressure of the Residual Heat Removal Loop. Hence, the timely introduction of sufficient auxiliary feedwater is necessary to arrest the decrease in the steam generator water levels, to reverse the rise in reactor coolant temperature, to prevent the pressurizer from filling to a water solid condition, and eventually to establish stable hot standby conditions. Subsequently, a decision may be made to proceed with plant cooldown if the problem cannot be satisfactorily corrected.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 45 of 64 The LOOP transient differs from a simple loss of main feedwater in that emergency power sources must be relied upon to operate vital equipment. The loss of power to the electric driven condenser circulating water pumps results in a loss of condenser vacuum and condenser dump valves. Hence, steam formed by decay heat is relieved through the atmospheric steam dump valves, steam generator safety valves or the power-operated relief valves. The calculated transient would be similar for both the loss of main feedwater and the LOOP, except that reactor coolant pump heat input is not a consideration in the LOOP transient following loss of power to the reactor coolant pump bus. The LONF transient serves as the basis for the minimum flow required for the smallest capacity single auxiliary feedwater pump for the Prairie Island plants due to the additional heat from Reactor Coolant Pump operation. The pump is sized so that any single pump will provide sufficient flow against the steam generator safety valve set pressure (with accumulation) to prevent water relief from the pressurizer. For decay heat removal using the safety valve(s), actual accumulation is a function of the steam flow rate required for the decay heat load and if the decay heat load is being removed by one or both Steam Generators.

b.

Secondary System Pipe Ruptures The feedwater line rupture accident not only results in the loss of feedwater flow to the steam generators but also results in the complete blowdown of one steam generator within a short time if the rupture should occur downstream of the last nonreturn valve in the main or auxiliary feedwater piping to an individual steam generator. Another significant result of a feedline rupture may be the spilling of auxiliary feedwater out the break as a consequence of the fact that the auxiliary feedwater branch line may be connected to the main feedwater line in the region of the postulated break. Such situations can result in the spilling of a disproportionately large fraction of the total auxiliary feedwater flow because the system preferentially pumps water to the lowest pressure region in the faulted loop rather than to the effective steam generator which is at a relatively high pressure. The system design must allow for terminating, limiting, or minimizing that fraction of auxiliary feedwater flow which is delivered to a faulted loop or spilled through a break in order to ensure that sufficient flow will be delivered to the remaining effective steam generator. The concerns are similar for the main feedwater line rupture as those explained for the loss of main feedwater transients.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 46 of 64 Main steamline rupture accident conditions are characterized initially by plant cooldown and, for breaks inside containment, by increasing containment pressure and temperature. Auxiliary feedwater is not needed during the early phase of the transient but flow to the faulted loop will contribute to the release of mass and energy to containment. Thus, steamline rupture conditions establish the upper limit on auxiliary feedwater flow delivered to a faulted loop. Eventually, however, the Reactor Coolant System will heat up again and auxiliary feedwater flow will be required to be delivered to the unfaulted loop, but at somewhat lower rates than for the loss of feedwater transients described previously. Provisions must be made in the design of the Auxiliary Feedwater System to allow limitation, control, or termination of the auxiliary feedwater flow to the faulted loop as necessary in order to prevent containment overpressurization following a steamline break inside containment, and to ensure the minimum flow to the remaining unfaulted loops.

c.

Loss of All AC Power The loss of all AC power is postulated as resulting from accident conditions wherein not only onsite and offsite AC power is lost but also AC emergency power is lost as an assumed common mode failure. Battery power for operation of protection circuits is assumed available. The impact on the Auxiliary Feedwater System is the necessity for providing both an auxiliary feedwater pump power and control source which are not dependent on AC power and which are capable of maintaining the plant in Mode 3, Hot Standby until AC power is restored.

d.

Loss-of-Coolant Accident (LOCA) The loss of coolant accidents do not impose on the auxiliary feedwater system any flow requirements in addition to those required by the other accidents addressed in this response. The following description of the small LOCA is provided here for the sake of completeness to explain the role of the auxiliary feedwater system in this transient. Small LOCAs are characterized by relatively slow rates of decrease in reactor coolant system pressure and liquid volume. The principal contribution from the Auxiliary Feedwater System following such small LOCAs is basically the same as the systems function during Mode 3, Hot Standby or following spurious safety injection signal which trips the reactor. Maintaining a water level inventory in the secondary side of the steam generators provides a heat sink for removing decay heat and establishes the capability for providing a buoyancy head for natural circulation. The auxiliary feedwater system may be utilized to assist in a system cooldown and depressurization following a small LOCA while bringing the reactor to Mode 5, Cold Shutdown.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 47 of 64

e.

Cooldown The cooldown function performed by the Auxiliary Feedwater System is a partial one since the reactor coolant system is reduced from normal zero load temperatures to a hot leg temperature of approximately 350F. The latter is the maximum temperature recommended for placing the Residual Heat Removal System (RHRS) into service. The RHR system completes the cooldown to Mode 5, Cold Shutdown conditions. Cooldown may be required following expected transients, following an accident such as a main feedline break, or during a normal cooldown prior to refueling or performing reactor plant maintenance. If the reactor is tripped following extended operation at rated power level, the AFWS is capable of delivering sufficient AFW to remove decay heat and reactor coolant pump (RCP) heat following reactor trip while maintaining the steam generator (SG) water level. Following transients or accidents, the recommended cooldown rate is consistent with expected needs and at the same time does not impose additional requirements on the capacities of the auxiliary feedwater pumps, considering a single failure. In any event, the process consists of being able to dissipate plant sensible heat in addition to the decay heat produced by the reactor core. Table 11.9-1 summarizes the criteria which are the general design bases for each event. Specific assumptions used in the analyses to verify that the design bases are met are discussed below. The primary function of the Auxiliary Feedwater System is to provide sufficient heat removal capability for heatup accidents following reactor trip to remove the decay heat generated by the core and prevent system overpressurization. Other plant protection systems are designed to meet short term or pre-trip fuel failure criteria. The effects of excessive coolant shrinkage are bounded by the analysis of the rupture of a main steam pipe transient. The maximum flow requirements determined by other bases are incorporated into this analysis, resulting in no additional flow requirements. Analyses have been performed for the limiting transients which define the AFWS performance requirements. Specifically, they include:

- Loss of Main Feedwater (LONF) 
- Rupture of a Main Feedwater Pipe 
- Rupture of a Main Steam Pipe Inside Containment 

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 48 of 64 The analyses described below are for determining the performance requirements of the AFWS; for example, sizing of the AFW Pumps. The description below, the criteria in Table 11.9-1, and the inputs and assumptions in Table 11.9-2 may be different than those used for the accident and transient analyses described in Section 14. In addition, the accidents and transients evaluated for AFW sizing may be different than those analyzed in Section 14. For example, the rupture of Main Feedwater Line (cannot be isolated from the associated SG) is evaluated for AFW sizing, but is not an analyzed accident in Section 14. That is, the Main Feedwater Line Break is not a design basis accident for Prairie Island. In addition to the above analyses, calculations have been performed specifically for the Prairie Island plants to determine the plant cooldown flow (storage capacity) requirements. The Loss of All AC Power is evaluated via a comparison to the transient results of a LOOP, assuming an available auxiliary pump having a diverse (non-AC) power supply. The LOCA analysis, as discussed in Item (d) above, incorporates the system flow requirements as defined by other transients, and therefore is not performed for the purpose of specifying AFWS flow requirements. Each of the analyses listed above are explained in further detail below. Loss of Main Feedwater (LONF) A loss of feedwater (LONF) transient assuming a single auxiliary feedwater pump delivering flow to both steam generators was evaluated to show that this event does not result in filling the pressurizer, that the peak RCS pressure remains below the criterion for Condition II transients and that no fuel failures occur (refer to Table 11.9-1). As previously discussed, for determining AFW flow requirements, maintaining off-site power is more conservative than losing off-site power. Table 11.9-2 summarizes the assumptions used in this analysis. The transient analysis begins at the time of the loss of main feedwater. The analysis assumes that the plant is initially operating at the power shown on the table, a very conservative assumption in defining decay heat and stored energy in the RCS. The reactor is assumed to be tripped on low-low steam generator level. Steam generator level at the time of reactor trip was assumed to be 0% NRS for additional conservatism; to that, allowance for level uncertainty was also accounted for. The analysis shows that there is a considerable margin with respect to filling the pressurizer. This analysis establishes the capacity of the smallest single pump and also establishes train association of equipment so that this analysis remains valid assuming the most limiting single failure.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 49 of 64 Rupture of Main Feedwater Pipe The double ended rupture of a main feedwater pipe inside of containment is analyzed for determining AFW performance requirements (Reference 3). Table 11.9-2 summarizes the assumptions used in the analyses. Reactor trip is assumed to occur as a result of a safety injection signal based on high containment pressure. This is a conservative time assumption which increases the stored heat prior to reactor trip and minimizes the ability of the steam generator to remove heat from the RCS following reactor trip due to a conservatively small total steam generator inventory. As in the loss of normal feedwater analysis, the initial power rating was assumed to be 1683 MWt. The analysis allows for 180 gpm auxiliary feedwater delivered to the intact loop within 10 minutes of the reactor trip (10 minutes for operator action to reroute flow paths and to start the auxiliary feedwater pumps). The criteria listed in Table 11.9-1 are met. The outside of containment main feedwater line break and subsequent blowdown of a steam generator is precluded by the closing of the check valve inside containment. However, the Turbine Building or Auxiliary Building would experience the break flow from the feedwater pump discharge. The reactor coolant system would experience an event which would be similar to the loss of normal feedwater transient. This analysis establishes the capacity requirements for a single pump, establishes requirements for layout to preclude indefinite loss of auxiliary feedwater to the postulated break, and establishes train association requirements for equipment so that the AFWS can deliver the minimum flow required in 10 minutes following operator actions assuming the worst single failure. Primary system heat removal due to blowdown is included in our analytical code model and is correctly simulated during the feedline rupture analysis. Rupture of a Main Steam Pipe Inside Containment Because the steamline break transient is a cooldown, the AFWS is not needed to remove heat in the short term. Furthermore, addition of excessive auxiliary feedwater to the faulted steam generator will affect the peak containment pressure following a steamline break inside containment. This transient is performed for several break sizes. Auxiliary feedwater is assumed to be initiated at the time of the break, independent of system actuation signals to provide the most conservative analysis with respect to containment pressure. Table 11.9-2 summarizes the assumptions used in this analysis. The criteria stated in Table 11.9-1 are met. This transient establishes auxiliary feedwater flow rate to a single faulted steam generator assuming one pump operational and establishes layout requirements so that the flow requirements may be met considering the worst single failure. Primary system heat removal due to blowdown is included in our analytical code model and is correctly simulated during the steamline rupture analysis.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 50 of 64 Plant Cooldown Maximum and minimum flow requirements from the previously discussed transients meet the flow requirements of plant cooldown. This operation, however, defines the basis for tankage size, based on the required cooldown duration, maximum decay heat input and maximum stored heat in the system. As previously discussed above the auxiliary feedwater system partially cools the system to the point where the RHRS may complete the cooldown, i.e., 350F in the RCS. Table 11.9-2 shows the assumptions used to determine the cooldown heat capacity of the auxiliary feedwater system. The cooldown is assumed to commence at the maximum rated power, and maximum trip delays and decay heat source terms are assumed when the reactor is tripped. Primary metal, primary water, secondary system metal and secondary system water are all included in the stored heat to be removed by the AFWS. See Table 11.9-3 for the items constituting the sensible heat stored in the NSSS. This operation is analyzed to establish minimum tank size requirements for auxiliary feedwater fluid source which are normally aligned. This analysis is documented in Reference 6.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 51 of 64 11.9.4 Inspection and Testing 11.9.4.1 Auxiliary Feedwater System The auxiliary feedwater pumps can be periodically operated to verify their operability, as discussed in Section 11.9.1. Proper functioning of the steam admission valve and subsequent starting of the steam-driven pump demonstrates the integrity of the system. Verification of correct operation can be made both from instrumentation within the main control room and direct visual observation of the pump. The actions required to provide a head of water in the steam generator after a loss of coolant accident are exactly the operations required to fill a tank with fluid using a pump. The test for the auxiliary feedwater system is to confirm the operability of the pumps, valves, and flow paths. The operability of the Auxiliary Feedwater System will be proven by starting any one of the pumps and demonstrating that steam generator water level is controlled using auxiliary feedwater during startup operations. Testing requirements are specified in Prairie Island Technical Specifications. If these operate, the ability of the system to maintain a water level in the steam generators is confirmed. The Auxiliary Feedwater System is operated during reactor shutdown until the reactor conditions permit use of the Residual Heat Removal System. The active components (valves, pumps and pump drives, lube-oil pumps) of the system can be tested at any other time. NRC IE Bulletin 85-01 presented a concern over the operability of a steam driven auxiliary feedwater pump due to steam binding (Generic Issue 89). Steam binding incidents have been observed as a result of back leakage through check valves from steam generators to the auxiliary feedwater pump casing. To alleviate concerns over auxiliary feedwater pump steam binding, Prairie Island has implemented procedures to monitor the temperature of pump discharge piping each shift. Procedures have also been implemented to recognize steam binding and for restoring the Auxiliary Feed System to operable status.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 52 of 64 11.9.4.2 Wall Thickness Monitoring of High-Energy Piping An Erosion/Corrosion program or Flow-Accelerated Corrosion program as referred to by EPRI to survey high-energy pipe wall thickness was begun at Prairie Island in 1983 and expanded following a feedwater pump suction line rupture event at the Surry plant in December 1986. The Prairie Island program incorporates guidelines from NRC Bulletin 87-01 (Reference 4), NRC Generic Letter 89-08 (Reference 12), and EPRI NSAC-202L to evaluate piping components susceptible to erosion/corrosion. Sample size and inspection frequency are adjusted based on engineering review of the operating conditions, previous inspection results, experience gained, and results of an analytical program. Non-Destructive Examination (NDE) methods such as: Ultrasonic Testing (UT) or Radiography Testing (RT) are used to determine pipe wall thickness for run/repair/replace decision. Run/repair/replace decisions are made by the plant system engineers following evaluation of the inspection data.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 53 of 64 11.10 REFERENCES

1.

EPRI PWR Secondary Water Chemistry Guidelines

2.

Westinghouse Letter PIW-N-50, Auxiliary Feedwater System, dated Sept. 4, 1968. [Film Loc. 7497-No Blip]

3.

NSP NAD-98006, Analysis of a Feedwater Line Break for Prairie Island, dated September 1998. [NAD Files]

4.

NRC Bulletin 87-01, Thinning of Pipe Walls in Nuclear Power Plants, July 9, 1987. (1400/0304)

5.

NSP-07-33, Loss of Offsite Power with Delayed AFW Analysis Results

6.

Calculation ENG-ME-443, latest Rev, Condensate Storage Tank Sizing

7.

WCAP-11525, Probabilistic Evaluation of Reduction in Turbine Valve Test Frequency, June, 1987. (1729/0009)

8.

Letter, D C DiIanni (NRC) to D M Musolf (NSP) Amendment Nos. 86 and 79 to Facility Operating Licenses Nos. DPR-42 and DPR-60: Turbine Valve Test Frequency Reduction (TACS Nos. 66867 and 66868), February 7, 1989. (1664/2491)

9.

PI0-01-06, Analysis Report - Structural Analysis of Main Steam Check and Isolation Valves for Prairie Island Unit 1, September 14, 1973 (7346/515)

10. 09Q4836-CAL-003, Updated Structural Analysis of Main Steam Check and Isolation Valves
11. 09Q4836-CAL-002, Updated Disc Impact Analysis of Main Steam Check and Isolation Valves
12. NRC Generic Letter 89-08, Erosion/Corrosion-Induced Pipe Wall Thinning, May 2, 1989. (1771/0376)
13. Westinghouse Owners Group Report, Update and Evaluation of BB-95/96 Turbine Valve Failure Data Base, March 1999 (Westinghouse Letter WOG-TVTF-99-007, March 24, 1999) (see PI copy of WCAP 11525).
14. NSPNAD-8606, Auxiliary Feedwater System Reliability Study, Rev. 0, April 1986, [Location: Library Manual and film at 1270-645].
15. PI0-02-03, Analysis Report Maximum Energy of Disc Impact Main Steam Check and Isolation Valves for Kewaunee Unit 1, dated December 23, 2009.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 54 of 64 THIS PAGE IS LEFT INTENTIONALLY BLANK

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 55 of 64 TABLE 11.1-1 STEAM AND POWER CONVERSION SYSTEM COMPONENT DESIGN PARAMETERS (Page 1 of 3) Turbine-Generator Turbine Three element, tandem-compound four-flow exhaust Turbine Capacity KW Maximum guaranteed 583,722 (Unit 1); 575,642 (Unit 2) (Note 1) Maximum calculated 591,988 Generator Rating (Kva) 730,000 Turbine Speed (rpm) 1800 Condensers Type Double flow, single pass deaerating Number 2 Steam Load, Lb./hr. 4,111,711 BTU Rejected per hour (total condenser A & B) 3,873,616,764 Absolute Pressure, Ins. Hg. Cond. A - 1.82 Cond. B - 1.28 Percent Cleanliness 85 Circulating Water Temperature, °F 60 Circulating Water Quantity, gpm 294,000 Water Velocity, fps 8.49 Friction in Water Circuit, ft. 35.7 Guaranteed 02 Content, CC/liter 0.003 Notes: (1) For various turbine / condenser / reheat heat balance gross loads see Figures 11.2-1 through 11.2-5.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 56 of 64 TABLE 11.1-1 STEAM AND POWER CONVERSION SYSTEM COMPONENT DESIGN PARAMETERS (Page 2 of 3) Condensate Pumps Type Multi-stage, vertical, pit-type, centrifugal Number 3 Design Capacity (each-gpm) 5250 Motor Type Vertical Motor Rating (hp) 1750 Feedwater Pumps Type High speed, vertically split single stage, double suction centrifugal Number 2 Design Capacity (each-gpm) 8600 Motor Type Horizontal Motor Rating (hp) 5000 Heater Drain Pump Type Multi-stage, vertical, can-type centrifugal Number 3 Design Capacity (each-gpm) 2800 Motor Type Vertical Motor Rating (hp) 500

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 57 of 64 TABLE 11.1-1 STEAM AND POWER CONVERSION SYSTEM COMPONENT DESIGN PARAMETERS (Page 3 of 3) Emergency Feedwater Source Three 150,000 gallon condensate storage tanks. Alternate supply from the cooling water system. Auxiliary Feedwater Pumps 2 total. One steam turbine-driven pump and one electric motor-driven pump. Design Capacity (gpm) 200 (turbine driven) 200 (motor driven)

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 58 of 64 TABLE 11.1-2 STEAM AND POWER CONVERSION SYSTEM CODE REQUIREMENTS System Pressure Vessels ASME VIII* Steam Generator Vessel See USAR Table 4.1-11 System Valves, Fittings and Piping USAS B31.1, 1967** American Society of Mechanical Engineers, Boiler and Pressure Vessel Code. Section VIII. (The Code version applicable to that which was in effect at the date of placement of order for each individual component).

    • Code for Pressure Piping.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 59 of 64 TABLE 11.1-3 STEAM AND POWER CONVERSION SYSTEM SINGLE FAILURE ANALYSIS Component or System Malfunction Comments and Consequences Auxiliary Feedwater System Auxiliary feedwater pump fails to start (following loss of main feedwater) One full-capacity steam driven pump and one full-capacity motor-driven auxiliary feedwater pumps are provided. Hence either of the two auxiliary feedwater pumps provide the required flow of feedwater. Steam Line Isolation System Failure of steam line isolation valve to close (following a main steam line rupture) Each steam line contains an isolation valve and a non-return valve in series. Hence a failure of an isolation (or non-return) valve will not permit the blowdown of more than one steam generator regardless of the steam line rupture location. Bypass and Atmospheric Steam Dump System Steam dump valve sticks open (following operation of the system resulting from a turbine trip) This steam dump system comprises one steam bypass valve and four atmospheric dump valves. One valve will only pass 12% of the maximum calculated steam flow and there is no hazard in the form of an uncontrolled plant cool down if a steam dump valve sticks open.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 60 of 64 TABLE 11.9-1 CRITERIA FOR AUXILIARY FEEDWATER SYSTEM DESIGN BASIS CONDITIONS3 Condition or Transient Classification1 Criteria1 Additional Design Criteria Loss of Main Feedwater Condition II Peak RCS pressure not to exceed design pressure. No consequential fuel failures Pressurizer does not fill with 1 single motor driven aux. feed pump feeding 2 SGs. Loss of Offsite Power (LOOP) Condition II (same as LMFW) Pressurizer does not fill with 1 single motor driven aux. feed pump feeding 2 SGs. Feedline Rupture Condition IV 10CFR100 dose limits. Containment design pressure not exceeded Core does not uncover Steamline Rupture Condition IV 10CFR100 dose limits. Containment design pressure not exceeded Loss of all A/C Power N/A Note2 Same as LOOP assuming turbine driven pump Loss of Coolant Condition III 10CFR100 dose limits 10CFR50 PCT limits Condition IV 10CFR100 dose limits 10CFR50 PCT limits Cooldown N/A 100F/hr 547F to 350 OF 1 Ref: ANSI N18.2 2 Note: Although this Transient establishes the basis for AFW pump powered by a diverse power source, this is not evaluated relative to typical criteria since multiple failures must be assumed to postulate this transient 3 Note: These criteria and conditions/transients were used for determining the performance capabilities for AFW and may be different than those used to analyze design basis accidents and transients in Section 14.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 61 of 64 TABLE 11.9-2

SUMMARY

OF ASSUMPTIONS USED IN AFWS MINIMUM FLOW EVALUATION (Page 1 of 2) Input Loss of Normal Feedwater or Loss of Off Site Power Cooldown Main Feedwater Line Break (Not isolated from SG) Main Steam Line Break (Containment) Initial Reactor Power (%) 1683 MWt 1683 MWt 1683 MWt Most limiting as determined in the analysis Time Delay from event to Rx Trip 15 seconds after Lo-Lo SG Level signal N/A Time for containment pressure to reach 4 psig + time delay for rod insertion Time for containment pressure to reach 4 psig + time delay for rod insertion. AFWS Actuation Signal Lo-Lo SG Level N/A SI SI Time Delay for AFWS flow (after initiating signal) 60 seconds N/A 10 minutes None (for containment pressure response) Initial SG liquid level 55% Narrow Range Level Nominal Nominal Greater than maximum operational band

  1. of SGs which receive AFW flow 2

2 1

  • 1
  • AFW Temperature 100°F 100°F 100°F 100°F AFW flow rate 190 gpm Variable (as necessary for plant cooldown) 180 gpm AFW flow is initially maximized for core and containment pressure analyses. Minimum AFW flow is variable and corresponds to the flow rate used for decay heat removal.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 62 of 64 TABLE 11.9-2

SUMMARY

OF ASSUMPTIONS USED IN AFWS MINIMUM FLOW EVALUATION (Page 2 of 2) Input Loss of Normal Feedwater or Loss of Off Site Power Cooldown Main Feedwater Line Break (Not isolated from SG) Main Steam Line Break (Containment) MFW Purge Volume/Temp. Included in Computer Model N/A Included in Computer Model Included in Computer Model Operator Action N/A (immediately) Control Cooldown Rate Start Pump and Realign AFW flow path within 10 minutes Start Pump and Realign AFW flow path within 10 minutes RCP Status** Running for LONF/ secured for LOOP Secured Running Running Sensible Heat See Cooldown Table 11.9-3 See Cooldown See Cooldown Decay Heat ANS 5.1-1979 + 2 Sigma Reference 6 120% of ANS 5.1-1971 120% of ANS 5.1-1971 or ANS 5.1-1979 + 2 Sigma Time at standby/time to cooldown to RHR See Cooldown 2 hours/6 hours See Cooldown See Cooldown Initially the faulted SG receives the AFW flow. Following the system flow path realignment, the intact SG receives the AFW flow. Availability of RCPs is a function of whether or not off-site power is available. For each transient, it is determined if it is worse to maintain off-site power or loss off-site power.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 63 of 64 TABLE 11.9-3

SUMMARY

OF SENSIBLE HEAT SOURCES Primary Water Sources (initially at rated power temperature and inventory) RCS fluid Pressurizer fluid (liquid and vapor) Primary Metal Sources (initially at rated power temperature) Reactor coolant piping, pumps and reactor vessel Pressurizer Steam generator tube metal and tube sheet Steam generator metal below tube sheet Reactor vessel internals Secondary Water Sources (initially at rated power temperature and inventory) Steam generator fluid (liquid and vapor) Main feedwater purge fluid between steam generator and AFWS piping. Secondary Metal Sources (initially at rated power temperature) All steam generator metal above tube sheet, excluding tubes.

PRAIRIE ISLAND UPDATED SAFETY ANALYSIS REPORT USAR Section 11 Revision 38 Page 64 of 64 THIS PAGE IS LEFT INTENTIONALLY BLANK

A B C D E F G H 14-MS-13 1 2 3 VENT TO ATMOSPHERE THRU ROOF 4 5 ITE-13114 ~-I i 1 TE-13113 I ~------------------------JC ___________________________, I 16-MS-26 I , - -jTE-13080 , --jTE-13075 , - ITE-13073 , -jTE-13074 I VENT O' J, ITE-13092~--7 ITE-13091 ~ - - ITE-13089 ~ - 7 NF-39<~frE-13090 I-- - F ---="'""* 1 I I,_ I TE-13131 ~ -, 1 1TE-13132 I : 16-MS-23 : 7 I I _J 6 16-MS-22

, ITE-13078

~ r-;--~ J, VJ ~ t I ITE-13111 f-7 I

C it i'l 11B~TYP)

IIA TYP) i'CCONT ITYPl ,, =~==

: dTE-13088 ____ +/-

I I ITE-13112 ~- 11 __________ _J1I VJ 7 ~ VJ VJ RS-6-1 LO LO V !1/2-MS --------..'"" LO V LO --1 RS-6-4 ! r.i...-- -l1/2-MS-72 ,cz~N~I ~sRlcz, 1B 11B 11B 1B I 1L _________ _ L __________ _ 16-MS-9 16-MS-10 10-MS-9 10-MS-10 SAFETY RLF VALVES RS-21-2 30-MS-1 6" ON 30" FLANG. 6" LENAPE NOZZLE (TYPJ C2 NSR NSR C2 IB 118 11B 1B VJ M MS-302-3 MS-302-4 ~MS-302-2I I (Fl\\ : ~i 23014 IMS-302-1! I MS-125-8 J, ' M 4113902 :,- 1 I 4'--1 I I 4113901 I 1 I I ....b..1 CONT 11 .. 87.. -...,.,....,,~ ~ 0" !MS-125-9! CONTAINMENT VESSEL SHIELD WALL CONT ~ ('1 (PI'\\-Z-T+--, ~---- 4W : : : RE m~ I I I 11323 51 111 -- 31-MS-1 I 469 '...r-', Pl 4113702 I I I 468 VJ Cl M 11 STEAM GENERATOR (I/1) 134-011 12 STEAM GENERATOR (I/1) 134-012 '----___,,v.E NOTE 6 SEE DE TAIL 'A' ON THIS DWG FOR LEVEL ALARM PIPING Pl '.J:@ I I I J I 4113701 II i i C2 MS-145-3 I NSA I MS-113-2 I I PI LP I I I I '7 LP 1 E9 :: 7 LP 1 I I I I HP VENT ~ I MS-22-3 ~ I J, ' R 3-MS-86 1-MS-53 V V n ~~~~~~~~~~~J 14-MS-15 ~ (/) 1 16-MS-15 10-MS-15 RS-21-7 !MS-302-7f--- f-1S-125-1$ I 11 CZ SR 1B 1B n NOTE 11


:7

'87", I I I


7 I I RS-16-2 f-- --

1 RS-16-1 ~ -- 1: 1@1 I 17ir 474 I I 1 I I 4114001 -h~-h - -- ---iMS-302-5I CONT Hs-125-13 I ~SRt C2* 111 1B NI M W r I 6" J, iil VJ N M I RS-15-2 I I ~ '----v--------- NF - 39233 F-11 10-MS-8 NSR CJ 11B NS 11B IC IC CJ t1/2"

  • 12-MS-76 11/2-MS-1 MV 32016 C2 C3 LD, I

J 1 ri 8 T~0~~-:~5--4~~~$C CJ :*:I$ r IIA NSR r ~ I I I I '----v--------- NF - 39233 E-12 1-MS-58 '\\' VJ I MS-20-7 NF-39244 0-4 MS-41-11 NF-39233 F-11


~N_S~-

ATM 1B A _6_:~S_:~ _J ~ 6' RUPTURE DlSC 1-MS-66 t-MS-51 10-MS-7 3/4" SMPL ! SS-2-1 I ,--'----'=-=---*1, --------;:'.,__T'---~ =-_,,o_:c-1_=_:_'___, _________ CONN SS-10 I J, XH-24 8-1 -I -""'H>,:J--,::J--'-~ SR IC ~ A-7 I ss-12-2 REGULATOJR w ID ~I NF-39222 "L' GLAND 'f' G-4 TD ~FWP STEM DRAIN ~ MS-20_4 i (IIl/31 1/2' PLUG /J,

,,,
Y:-:l-NF-98894 ~1.- )~~-201 3-MS-6 I

1 \\ f---------l:+:H- ---"---""'----"------IC:><:J---~, ~,

- - - - - - - - - - - - - - --1

~ 1/2* PLUG \\_ _JI // ",f- ",f- ...J (/) (/) 111 NSR 1 B STM RING DRAIN NF-39222 I I CASING DRAIN I T 1 ~ *- 1/a" RESTRICTION ~ ~

      • ~CJ ORIFICE_____. - - - -

1/2-MS-50 G-4 t1/2*: I I t1/2-MS-3 -i -I RS-16-4 ! -I RS-16-3 ! RS-I-I I I RS-17-1 f-CONT 111/3) 6' 1-MS-29 er 1" ~ f----~~==~':::'. ~--'~-'I ...., I I I ~ I RS-17-5 l'E ~ 7254 O' N J, 6-MS-29 5-145-1 NF-39224 ~ 1A/2A 18/28 S-145-14 NF-39230 F-4 MS-103-2 Pl 11873 6" 21/2-MS-77 ! MS-;'2-1 ! M (f) ei 10-MS-27 16-MS-36 30-MS-3 12-MS-3 12-MS-4 .._11/2-MS-4 I t1/2-MS-40 TB-6-1 I ' XH-2-15 A-4 - --jTE-15056 I 11/2-MS-41 rn-'s-2 I !MS-145-7I I MS-125-1 I I 7 I I I 1 I 41132 I I 7 8 9 10 11 12 REVISIONS 82 AS BUil T-ADDED NEW INPUTS TO lLR-460 ANO 47121 AND REMOVED FW CHART RECORDER COMPUTER CV 31097 RS-1-3 RS-1-4 I lNPUTS lLR-461/A AND C. PER ORR Pl-16-234 Hs-145-16'-- B-7 NF-39224-------.i ITYPI 30*'1' I RS-17-2 f-l' I I I RS-17-7 I 6-MS-28 --Hs-145-1$ l" 2A REHEATER 1111/3) IIA ! I HS-12-3 I ~1_:_M__?_:_6_§, I + I 1 IIA 111 41 NF-39605-1 F-2 6-MS-31 l 8' t"' ' ' A-11 8-11 3/4-MS-33 CONT '-i ;:- - I M lllt I ~ ! RS-20-1 f-llA I RS-20-3 r ~j-~~P'3/4~,-~M~S~-~68----1 1/2-MS-59 I rn-1s-1,- NF-39233 C-9 ~ I RS-13-1 V) I rl ~T0~-~1~1 -~5~1 V I NF-39233* C-2 HP TURBINE 1111/3) VALVES XH-2-15 A-5 RS-7-1 LP TURBlNE ())1/3) 1B CONDENSER ())1/3) RS-8-1 I 118.L_ IIAf RS-10-1 6-MS-35 OJ OJ ';-I ~ VJ VJ (!) (!) 8' RS-1-2 I 6" 7 RS-17-3 ! 6' 1-MS-39 I RS-17-4 f-1-MS-39 OWN: JEK 11-4-tS CHK'D: JH 11-lt-16 MOD*= EC-23906 APP'01 OB lt-14-16 85 AS BUILT-1-MS-38 -,MS-145-B! 3/4" !MS-145-9f--- I I I RS-17-B I ADDED NUMEROUS LINE NUMBERS. <;i VJ N IRS-17-6~ I~ 6-MS-38 I ' FE 27257 ,------::::;J PER ORR Pl-19-079 OWN: JEK 4-8-\\"l CHK'D= ERN 4-10-19 MOD"1 600C00021909 APP' : DB 4-11-l'l MS-145-171- ---f<S-145-l!j 8-6 30"' IMS-145-20 ~ B-8 30"' 1B REHEATER 2B REHEATER {III/3) 36' 36' (III/3) 1,i LB,,_t=t-------:1-;:;B--- I I ~-----:2:;:B;------t:::J.8~'..J ,I, ,I, MOISTURE SEPERATOR l l MOISTURE SEPERATOR f f 1111/31 .I.I 1111/3) B-5 A-5 ~--~NF-39224 ~--~ A-7 2ND STAGE EJECTOR CTYP) I MS-29-3 I B-7 (TYP) B" ' --jMS-145-19! IIA 1., ' B-B 6-MS-39 6-MS-39 86 AS BUil T-CHANGED VALVE RS-22-1 FROM CHECK VALVE TO GATE VALVE AT LDC F-3. PER ORR Pl-19-119 OWN: JEK 5-2-19 CHK'D: TED 5-7-19 MO "= 601000000735 APP' : DB 5-7-19 87 AS BUILT-REVISED DRAWING PER FW-AMSAC PROCESS CONTRO REPLACEMENT PROJECT. I 1' ~~--.. :"41t------~1--~----, ~ - 8-7 3'

  • --i AR-13-1 I I MS-29-2 I I

1' PER ORR Pl-2111-068 OWN: LAB 11-16-20 CHK'D= LAS 12-8-20 M0D":6MDD00026652 APP' : DB 12-8-20 I---- --~--------C,<J---'-"'1---------j ~ 3' a: lrA-R---13---z*~

  • I MS-29-1 I I

~ f---- i ~ u a: D ~ u w w a: <[ -1 MS-40-1 I I rn-13-2,- NF-39233 C-9 11 AIR EJECTOR 1111/31 1' I MS-25-I I I MS-131-1 I 2' ---1 I I I I I I I I JIB ~CONT I 1' ...ff\\.... - - 7 ~~-. I =~-4~*~1 I f I I NF-39233 f '- ______ ! C-10 V NF-39230 . I... C-2 .,uJ... IIA t 111 I I C2 NSR is 1111 1 REFERENCE DRAWINGS: NF-39215 CR SYS FLOW DIA. UNIT 1&2 NF-39222 - AF SYS FLOW DIA. UNIT 1 NF-39224 - BL SYS FLOW DIA. UNIT 1 NF-39226 HO SYS FLOW DIA. UNIT 1 NF-39230 - AR SYS FLOW OlA. UNIT 1&2 NF-39233 - TD SYS FLOW DIA. UNIT 1 NF-39244 - SA SYS FLOW !A. UNIT 1&2 NF-39247 - CG SYS FLOW DIA, UNIT 1&2 NF-39605 HS SYS FLOW DIA. UNIT 1&2 XH-248-1 SM SYS FLOW DlA. UNIT 1&2 LEGEND CLASS BREAK QA TYPE Cl - SAFETY-RELATED; ISi CLASS 1 C2 SAFETY-RELATED; !Sl CLASS 2 C3 SR SAFETY-RELATED; !SI CLASS 3 SAFETY-RELATED FLUID BOUNDARY; NON-CODE CLASS IIA

  • NF-i?_9z230

~---I>,<!- NF -39605-1 NSR - NON-SAFETY-RELATED lA,!B,!C,IIA,118 & 111 DENOTES PIPING OA TYPES. 16-MS-36 LP TURBINE (111/31 SPRAY PIPE !A CONDENSER ())1/31 0 II 16-MS-37 M J, <D MS-39-1 F-2 6" CONT 12-MS-36] I RS-2-1 ! I I l" I I I I I I RS-512 ~ I 12' I rl T----[3---B*h\\7 CV 1' I 111' ~I 31101 L-i

t.

NOTES: FOR VALVE POS!TIONS SEE OPS MANUAL C PROCEDURE CHECKLIST,

2. UNLESS OTHERWISE SHOWN. CLASS BOUNDARIES STOP AT VENT ANO DRAIN VALVES WITH DOWNSTREAM ITEMS (e.g., PIPE, CAPS, ETC.I CLASSED AS NON-SAFETY-RELATED.
3. +- DENOTES CATEGORY l VENTILATION ZONE
4. FOR SYMBOLS SEE XH-1-105, NF-39214.
5. I/1 DENOTES EQUIPMENT QA TYPE/

DESIGN CLASS.

6. SHELL SlOE C2, TUBE Sl E Cl.

7, CS4304S DELETED. E/P DISCONNECTED & ABANDONED IN PLACE. CV-31093 MANUALLY OPERATED ONLY. 8,

  • DENOTES FURNISHED WITH EQUIPMENT.

9, 0THRU@ DENOTES CONDENSER TERMINAL CONNECTION NUMBER, RS-11-1 ~ ~ -1 RS-11-2 I f-"'8~-M~S~-~3~5'--1~ IIAf NF-39233 C-12 10, 0 DENOTES CONTAINMENT PENETRATION NUMBER

11. SR/NSR BOUNDARY C INSTR. VLV. MANIFOLD.

8-MS-35 l' DWN MAW DAlE 8-23-07 111~ mop /doc,mom Is

  • tool to asslSI empl"I"'"" ~ lhe pe,lorrram>> Ol'tllelr )ll::s. YoJr peroonal salet'I I* pra.lded br tr)o" usr,;i sai,cy pr!Mrtlae>. pr.:,oe,ues and e,JJlpmeot as dOSCllb<:d i,.aer, trrlrl'{l prograr,s, manuai. md SPN!'s t

li,ifNSR ITYPI NF-39233 '-~--------------~---------~ NF-98894 1-MS-47 NF-39233 C-3 .-l, CONT rI =rn~-~11~-s*r-'i' 81c:tllRCNl'TNO. CHECl<ED 8630 4410 4221 C-11 1 2 3 4 5 6 7 8 NF-39233 C-2 9 10 PROJECT NO APP' il,CERT Fl.ME FLOW DIAGRAM MAIN AUXILIARY STEAM & STEAM DUMP UNIT 1 NORTHERN STATES POWER COMPANY 11-*- SCALE NONE REV 8 7 PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF-39218 RED WING, MINNESOTA NF-39218.DG"" j NSP GENERATION CNJ j 12 A B C D E F OJ - N CJ' (Y) J_ z H FIGURE 11. 1-1 REV. 37 CAD FILE: U1110LDGN N an " 0 0 0 0 0 0 ~ 0 co

A B C D E F G H 1 2 3 4 5 6 ATM ITE-134001--1 11TE-133971 THRU ROOF

  • I --ITE-13399I I

I !TE-133961------- /\\ -..:-14-2MS-16 ,-------------------;=-----------;cvE::Nc:;::--=:/\\siL~E-N_;_E_R_S_~=~~-----1-1/2---2-M-S--6-2---~c--'-==~--: 16-2MS-267 !-! 7 I E K><l<fl---, ITE-13394 ~ __ 1 j : - i 1rE-13392r-7 814 2' lr--HE-13387 ITE-13390r-1 1' NF-39234 G-11 r -ITE-13385 ~ ITE-13391 r 7 Ul I I ~TE-13386 ~ NF-39234 I 1 ~ ~ F-11 I 111rE-13388 ~ 1rE-13393r,: 11 N 1-2MS-65 11

1 rHE-13395 ITE-13398 r 11

~~-=-=_=_=_=_=_=_=_~ -----=...J - _-_-_-_-_-_-_-_-_-=}~ 16-ZMS-10 1$], I' VENT 8i N2 PURGE CONN 16-2MS-15 NF-39247 B-12 CTYPJ \\'.] ____ J 16-2MS-9 i-10-2MS-9 NSRj_iii C2~ (f) 7 l 16-2MS-14 ~ Cl) 1 N 1 L ~ {Sl Cl) L.J(.!}(',JI

?:

o - ., s,;, ~~ii~ 10-2Ms-14~ ~ "' I ZMS-16-1 I 16-2MS-18 10-2MS-IB 10-2MS-10~ IRs-21-12f-7 I 30-2MS-I ( ~ I s* ij J'"*y ~" "II as *,;:;;,i !' ~ZMS-17-31 l-2MS-29 6" 1B 1 11B 11B 1 f I 1 f I C2 NSR C2 I rry I 30-2MS-2 N~ l,!1,IJB 11p,1,B C2 NSR NSR C2 3-2MS-1 30-2MS-1 6-2MS-I 24-2MS-24 24-2MS-21 I' IZMS-17-61 6-2MS-29 ~--------< IZMS-145-17~ ~ 1 ZMS-145-tB I B-6 7 8 2MS-17-4 1-2MS-28 ~ ~ I 6-2MS-2B !2MS-!7-B! !2MS-145-20f-B-7 f------~ ~2MS-145-19I DP! I" 9 ~ 2MS-17-t I l-2MS-38 I' l-2MS-38 27260 l2Ms-1ls1 ~E ,--6_-2_M_S_-_3_8_---; f---f---_, I 2MS-145-13 H ~ ZMS-145-14 I ,~~, B-9 10 3/4" t~3/4_,*_--i I 2MS-145-16 ~ B-10 11 ~ 10 ~ 2MS-145-15 I I' 12 REVISIONS 86 AS BUil T-RELOCATED REDUCERS TO SHOW VLVS 2MS-3l-1, ZMS-28-1 & CV-31385 & ASSOCIATED PIPING AS t1/2* PER ORR Pl-13-171 OWN: JEK HH0-13 CHK'D: RTC U,-\\8-13 MOD", EC-12200 APP' = CMR Ull-28-13 87 AS BUILT-ADDEO VLY 2MS-142-1 THRU 4, 2MS*126-1,2, 2P[*506.7 Pl & SC BRK PER EC 16812 OWN: DB 4*15-14 CHK' : RWR 4-16*14 AS BUILT-ADD SECONDARY S[DE INSTR &VLVS 2MS-125*32 THRU 35 2MS-31112-17,18. REL C TIE-lN FOR 2L T4B7 &. 468. PER ORR PI-14-11162 OWN: DB 4*15-14 CHK' : RWR 4-16*14 M0 *1 EC-1681118 APP' : CMR 4-16*14 88 AS BUILT-ADDEO NEW INPUTS TO 2LR-4611l AND 47111 AND REMOVED FW CHART RECORDER COMPUTER lNPUTS 2LR-461/A AND C. PER ORR PI-15-170 OWN: JEK 11-2111-15 CHK'O: JLH 12*9*15 MO *: EC-23905 APP' : KJW 12-18-15

  • 91
  • CNDSG CHAMBER (TYP) --

DP! 1B374 &<----- NF-39225 -----a& 18375 DP! 18372 1~----NF-39225 ----+~ Pl 18373 89 AS BUILT-CORRECTED LABELING FOR 2FT-494 TO 496, 2FI-494 TO 496,2FT*496 TO 494 AND 2F[-496 TO 494. J I I 4173502 I CONT = IZMS-302-21--- IIA I" NF-39225 B-5 8' 30" IB REHEATER IIIl/3I 1B MOISTURE SEPARATOR (111/3) NF-39227 ~--~ A-5 NF-39227 ITYP 41~~ ~'{ B-6 21 HOGGING JET (l[ 1/3) 30" 2B REHEATER (((1/3) 2B 8, MOISTURE SEPARATOR (II 1/3),----NF-39227 NF-A-8 39225 B' ' B-7 2MS-115-3 21 CNDSR WTRBOX EJCTR (][1/31 NF-39215-1 ~ B-8 a:, a:, M (f) N w I' IIA 30' IA REHEATER (IJl/3) IA 8' MOISTURE SEPARATOR 36" 36" NF-39225 NF-39227 ~--~(((l/3r1 ___ B-8 A-8 NF-39225 2ND STAGE EJECTOR (TYP) B-10 !2MS-29-3! I

  • 1"
  • 3' ~ 2AR-13-l ! !2MS-29-2!

30' 2A REHEATER (III/3) 2A MOISTURE SEPARATOR (((1/3) 8' B-10 6-2MS-39 B' I" NF-39227 NF-39225 A-II B-11 PER ORR PI-17-169 OWN1 JEK 12-14-17 CHK'D: RLM 12-14-17 MO *: 600CEDl23544 APP' : DB 12-14-17 90 AS BUILT-ADDED NUMEROUS LINE NUMBERS. PER DAR Pl-19-079 OWN: JEK 4-8-19 CHK'D: ERN 4*10-19 MOD*: 600C00021909 APP'D1 DB 4-11*19 91 AS BUILT-0~ J NF -39230... - - - ~--'---C-:)--,---1-Dl(f-----, D-8 ~, 7 'c' (f) f---~-...:=-t~:'.:::'.:".::'.::'_'.~1 ~"_.._ _ _!'._I" ___j DELETED INSTR NUMBERS 4256B, 45269, 4173503, 4173B03 &. 4250401 PER FW/AMSAC PROCESS CONT REPLACEMENT PROJECT. PER ORR PI-20-034 u, N ' (") I I 4173501 2MS-24-1 V n 1-2MS-53 2TD-24-1 j 30-2MS-3 !1/2' RS-19-3 3/4-ZMS-44 3-ZMS-87 RS-19-4 (f) N M C2 NSR 111 1°1A (f) N ~ '\\' ~N N~ N ' "' IT ~ 12' NF-39234 F-9

~lij
  • --12rn-2*-*I 1B C2 f

11A NSR M u, N (") VJ N (") (") u, 'c' <") 'c' (f) N ' "' ~ I E-10 + k !2MS-9-I! I IIA 4-2MS-31 10-2MS-27 16-2MS-36 XH-1002-43 ! 2TB-123-1 I-A-5 2-2MS-40 .l 2MS-22-3 ~ HP VENTS 3/4" ti C2 1B 't/1':c t NSR IIA; ~ NF-39234 E-10 l-2MS-54 r* ~*.1 u RS-22-3 $ TMSRfiiAT ~ D 8 f f 8 N NF-39234 N L_ _J 12' NF-39234 E-10 12-2MS-97 ,----C:,<J-----~, - - J I !2TB-6-1! IC MV C2 CJ l 32019 ~ f---- ,I< NF-39234 E -II CJ NSR PT f--C>sl l-- 7 17006 IZMS-20-71 NF-39244 D-9 1/2-2MS-51 3-2MS-5 E-10 VENT TO ATM ,._,...-- EXHT HEAD !0-2MS-8 t1/4" DRAIN NSR 11B ! ZMS-41-11 ! NSR CJ CJ IC .'--~ ul;IB:flC~=~=i~


"6'-' ----i 2-FE \\--.__

820 VLV 6-2MS-7 3/4-2MS-65 LP ATM 6' RUPTURE DISC 22 TD AFWP ([))/1) 245-201 .!tl.SR L__l-[::f--'"flj HP REGULATO~ 1= NF-g_~223 'L' GLAND VJ .l STEM DRAIN J ~ ,J 1 1-2MS-58 ~ CJk ti NSRTiut ;' I I I I I I t l ~ NF-39234 C-11 2 1/2-2MS-52 3-2MS-6 1/2-2MS-47 1/2"PLUG ,,,, I NF-100034 1 1,.--...., I I \\

...., :--w~:u~------\\

~ ) ~\\ ', 4 - STM RING DRAIN NF-39223 NSR Ill CASING DRAIN G-9 1/2-2MS-50 l-2MS-4 7 3 4 30-2MS-3 2' '-! 2~T~D-~10~-~2=s f-* ITE-15059 I 30-2MS-4 HP TURBINE 1111/31 NF-39234 F -II 1-2MS-6B 3/4' Pl 41708 03 XH-24 B-1 .I.,s:;s,i;-;2:c-2::.I ~lrj\\____j SS-210 C-3 lzss~z-il ~3.0_-_2M_s_-3_~---, XH-24B-l SS-211 C-3 !2SS-2-3! I 12ss-2-41 l-2MS-69 1 I I 12-2MS-3 20-2MS-4 20'EOLZG &. BYPASS LN ------.. 30-2MS-4 --t2-2MS-4 l1/2-2MS-3--: f--t1/2-2MS-4 5 ' t NF-39234 C-3 6 =~=~~-,,- XH-1002-43 1TE-15060 I A-6 2-2MS-41 l2MS-125-7I l2TB-123-2I 7 I I @ J I ~ 41704 CONT 7 ~ u, N 1' I '1. I I I I I N ! 2MD-12-1 f-~ w B-ZMS-3l NF-39215-1 111 IIA E-8 2MS-20-2 CONT 3/4-2MS-32 l2MS-20-1f- ~2MS-20-3I 3/4-2MS-68 3/4-2MS-32 ~1 1/2-ZMS-32 _/ ~ ~ 'N NF-39234 N (") 'c' UJ (f) N N C-9 ,I< a:, !2MS-20-6f-l2MS-7-tl I 2TD-11-5 CV 31502 NOTE 6 4-2MS-35 LP TURBINE 1111/31 (") UJ N N Ni I ~I,~M~S~-2~0~-5c/l NF-39230 _j ! 2MS-115-l ! C-8 en B' (f) N ~ LP TURBINE 1111/31 NF-39234 C-2 2B CONDENSER 1][1/31 2A CONDENSER 1111/31 11B 11B~ 2MS-10-1 I 2MS-11-1 ~ IIA '11)-6--2_M_S_-_3_5 __ K'-E-<HJ_B~-~2:"M'.'.'S::-~3::5~ IIA 8 ~ H'+-Hl'----"8-'-2:::M.cS::.-_:3:::5=--,.,_-1 N ~ ! 2TD-l!-9 r-$ TD NF-39234 9 CONT I I I I 21/2" : I I OWN: JEK 5-7-20 CHK' : EC 5*26-20 MOD*:6MDD00026652 APP' : DB 5-27*20 @i'CONT,----6_-_2_M_S_-3_9_~ I I I I I I I <") (f) N N REFERENCE DWGS XH-24B-!-I - SM SYS FLOW DIA. UNIT 1&2 NF-39215 CR SYS FLOW DIA. UNIT 1&2 NF-39223 - AF SYS FLOW DIA, UNIT 2 NF-39225 BL SYS FLOW DIA. UNIT 2 NF-39227 HD SYS FLOW DIA. UNIT 2 NF-39230 AR SYS FLOW DIA. UNIT 1&2 NF-39234 TD SYS FLOW DIA. UNIT 2 NF-39244 SA SYS FLOW DIA. UNIT !&2 NF-39247 CG SYS FLOW DIA. UNIT 1&2 NF-39605 HS SYS FLOW DIA. UNIT 1&2 C2 NSR iB I nf LEGEND CLASS BREAK QA TYPE Ct - SAFETY-RELATED; !SI CLASS 1 C2 - SAFETY-RELATED; ISi CLASS 2 C3 - SAFETY-RELATED; ISI CLASS 3 SR - SAFETY-RELATED FLUID BOUNDARY; NON-CODE CLASS NSR - NON-SAFETY-RELATED IA, IB, IC, !IA, [IB, Ill DENOTES PIPING QA TYPES. NOTES:

t.

FOR VALVE POSITIONS SEE OPS MANUAL C PROCEDURE CHECKLIST.

2. UNLESS OTHERWISE SHOWN,CLASS BOUNDAR[ES STOP AT VENT ANO DRAIN VALVES WITH DOWNSTREAM ITEMS (e.g., PIPE, CAPS, ETC.)

CLASSED AS NON-SAFETY-RELATED,

3. +- DENOTES CATEGORY I VENTILATION ZONE
4.

FOR SYMBOLS SEE XH-1-105, NF-39214. I B 11B IIA 16-2MS-37 T >(:""1-C~-2MS-36 ~~~

5. 1/1 DENOTES EQUIPMENT A TYPE/

DESIGN CLASS.

6. SHELL SIDE C2, TUBE SIDE Ct.

t Pl ~ CV N 31118 w 11179 !2MS-5-1! I --l2MS-ll-2! 11\\ ~l!A -,.gS ~ ~ 10 DWN MAW CHECl<ED PROJECT NO APP' il,CERT Fl.ME

7. CS-43600 DELETED. E/P DISCONNECTED &

ABANDONED IN PLACE. CV-31502 MANUALLY OPERATED NL Y. t i 'v 'i' I I

8.
  • DENOTES FURNISHED WITH EQUIPMENT
9. Q)rnRu@ DENOTES CONNECTION NUMBER 10.Q CONDENSER TERMINAL NF-39234 C-11 DAlE 6*28-07 DENOTES CONT PENETRATION NUMBER
11. SR/NSR BOUNDARY Q INSTR. VLV. MANIFOLD.
12.

PI 17564 15 DISCONNECTED FROM GAGE LINES AND CAPPED. 111~ mop /doc,mom Is

  • tool to asslSI empl"I"'"" ~ lhe pe,lorrram>> Ol'tllelr )ll::s. YoJr peroonal salet'I I* pra.lded br tr)o" usr,;i sar,cy pr!Mrtlae>. pr.:,oe,ues and e!JJlpmeot as dOSCllb<:d i,.aer, trrlrl'{l prograr,s, manuai. md SPN!'s 81c:tllRCNl"TNO.

8630 4410 4221 FLOW DIAGRAM MAIN AUXILIARY STEAM & STEAM DUMP UNIT 2 NORTHERN STATES POWER COMPANY 1}"""1Ene,gr SCALE NONE REV 91 PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF-39219 RED WING, MINNESOTA NF-39219, G" j NSP GENERATION CNJ j 12 A B C D E F CJ' - N CJ' (Y) J_ z H FIGURE 11. 1-2 REV. 37 CAD FILE: U11102.DGN N an " 0 0 0 0 0 0 ~ 0 co

A B C D E 6' F ~ G H 1 2 3 LOW LEVEL A 47009 0601 I Gp 4

  • GAGE HIGH LEVEL A

47009 0501 I ~ 5 ~11B ~l'-.2* lA ~1-......- CDNENSER (lll/3l I~ ~ }!. \\\\ 1------ ~ \\ LA-4-131 I 1 / v_,,i LA-2-79 6 18 CIII/3) /~I/ CNDENSER r/v-----j_____j---;-L;;A_:;,,:_;--17 I \\


I 1

  • CONTROL LA 16600 CONTROL PMP, TR[P 7

LI 41223 01 I_ --f CONTROL 8 9 LEGEND Il/3 - DENOTES EQUIPMENT Q.A. TYPE/DESJGN CLASS @ - DENOTES FURNISHED BY WESTINGHOUSE

  • - DENOTES FURNISHED WITH EQUIPMENT

@ - DENOTES CONDENSER TERMINAL CONNECTION IC-IIB-III - DENOTES THE PIPING Q.A. TYPES - DENOTES LIMITS OF.A. TYPES +----- - DENOTES TIE-IN TO EXISTING SYSTEM DENOTES DISSIMILAR METAL 10 REFERENCE PIPING DWG. ND'S. CONDENSATE SYSTEM TURBINE BLDG. NF-39271-1, NF-39271-2 & NF-39271-3 11 LEVEL TROL & ALARM GAGE GLASS PIPING NF-39312-1, NF-39312-2 & NF-39312-3 BUILDING WALL ELECT. HEAT TRACED

=!~ ---y 14' HEATER DRAIN PUMP DISCH. SEE WO. NF-39226 6'
  • OVERFLOW 6'

6-DE-58---....., ELECT. HEAT BUIL lNG WALL BREAKDOWN ORIFICE NITROGEN BLANKET SUPPLY SEE NF-39247 CFS> TRACED SEE CONT.ON NF-39222 ~ JI,* N2 BLANKETING SEE NF-39247 3* 3' RECYCLE LINE r------=------.-----J_l.--l lA1: 1 I----+ FROM DEMINERALIZER

  • 6' Y~T IlB L*

I A RECYCLE ~,-+-~~~-+---I---- 47010 PUMP ~ / I 3 0106 C~T. / LDW LOW-LOW I 4

  • 11 CONDENSATE LEVEL LEVEL I

I MAKE-UP ~ I I STORAGE TANK I I lLT-724 SEE NF-39241-8 DE-60-2 I 3-E-53 4' MAKE-UP FROM EMINERALIZER __.,._ SEE NF-39241-8 I GRAB SAMPLE LA-4-2 20' /21!1-C0-7 C0-7 '3/4 CD 28/ _!'82" 2-C0-28 1-J SINK LOCATED Y WEST OF RMU \\_ STORAGE TANKS SEE NF-157545 {IIJ/3) 7ru'\\ I 12' C-5-1 I CD-24-6 ~ -: \\ \\~*i,4, - 2' MAKE-UP TO "121 HEATING ~ ~ ~ ~ ~ ~ SYSTEM MAKE-UP PUMP.. PI

  • ~><--~h

!LT->--+--~ SEE NF-39605-1 11089 r 12' PI 11451 1 ~6~~~~~ r B,. 723 ~.. ~

~-*!e-l 3/4I' TUB[NG J 2*
  • 4 LOW PRESS'U,R_E_T_U_R/BINE CIII/3) 160 160 LOW PRESS'U,R_E_T_U_RBINE (IIl/3l Il-,fl. '"~~'"'" ---~-~--~~.-J7!.-=-fl-+-.---~

~ 2.Y-' & 12-DE-54 it----H~o=.:,:;i] A C-23-3 I- ~ ~ I~ ~ 11 f'vv'-,J ..,_ L._ TO .k: 6 2-DE-547 C0-44-1 I r--- EXHAUST----..._ __- EXHAUST ----- rl C-37-1 ~ OE-110-1 VENT -,...., ATM,' 2 31001 CONTROL SPRAYS ~ Q2 SPRAYS ~ ~

  • .1.

.I. -.I.~- c-21-1 ~ Nz :~~Y TRA~ E-10ci-11 1., 31959 ~ ~--- ,~ I TE-1\\430 I I TE-154331 ,+ / 6' f-----....l C-29-l I 12* FLEXIBLE HOSE N NF 3"12~ T I C0-60-1 lc'o-'2'4-7] I ~--~ I ~ I C-23-l l1/2' @ ~ I P @) ~ c-61-1 F ~ -/ 4* \\ c-31:1-1 I E-59-3 ~""'1"1/2-c*'""1"*x,11"1/2**'-D_'°"--,8c=------- 118 ~' ~ ' L~1/2\\ ____ __c11/2-=-*refl.Dki-0eJ<ic:,-c,,o:;' c-31-2 i DRAIN TO GRADE N 2 SPARGER../' ICD-45-2 I ~-, '\\ FS 1,V I I JIB !1/2" I' H~-v@I TO CONDENSATE MAKE-UP 2* c-s2-1 '17.* \\

  • ~4-E-54 L4-E-55

!6a00 a

1las0, STORAGE TANK *21

'] '>I CD 45 I I /11/2* ">----+- l1/2-C0-1! 16 , 16" 1.-1--->* SEE NF-3922] ICD 50 2 I / l1/2' t1/2-C0-11---< I1/2"\\ 1/4-OE-64 t[~~~rt------------=~~~=t=c~-: 6:-,:.~,...=--11~~~-,ttc=- 6 ~-~ 2~t~~~~=------,_l!';'._J;__ ____ 7::,,,;:=;=::;t~~~-:__: 1/4-OE-63 M CONDENSATE TRANSFER TD 1111 & "'12 1 r....... GLAND SEAL TO CONDENSATE If REACTOR MAKE-UP WTR. l~. C-ZJ-2 3/4-CD-23 I3/4" 16' 3/4"I 3/4-CD-27 PUMPS. SEE wG. NF-39239 ~ ~ STR. TK'S. SEE WG. NF-39242 LJ ~-;:::=============:#.'"~-~c~-~'~=R1~'j"!i1*~*c-i~dJJ;f <";;-~ 1"'~~$=~1~*~-c~o~-,~=======:::;-7 c-37-3 CONT.:,.",,",," TC 2-0E ~ 1 CD-39-14 I I ( I 26301

  • !3A F.W. HEATER (III/3) r C-39-8 C0-39-11 H
  • 138 F.W. HEATER CI!l/3)

) 3"STEAM,SEE l--]-OE-57 ~3/4-OE-63 16' ~ 16' CONDENSATE TO UNIT 2, DWG. NF-3'1605-1-,. ~ 8 ,-E ~ I=- I I C-7-2 I 16' 16' - r 16-CD-l0 I TE-15434 h 20' \\ I SS-4-61-,,--' 3/4" SAMPLE CONN. SS-13 SEE DWG. X-HIAW-248-1 16-CO-7 _________,,. IIL ,-l - jr-,,-_-1-54_3_5~1 H 1FJ4A F.W. HEATER (lll/3l II~ :i-----1 C-7-L J f ,i 16'

  • 112-c -7

/ 16' l 1s-c -7 C-8-2 12' 12" [ 12-C0-10 C-8-1 I 12-CD-7 12-C0-10 16' C r - - -j TE-154361 [ 16-CO-l0 II~H C-7-4 I F 1Fl48 F.W. HEATER (lll/3) Il;r:t'@TT 17311 C-7-3 ~ 1 TE-15437 r........., SEE OWG.NF-39221 I C-34-4~ n 1' 2* /21/2-0E-57 2-C-11---- 3/4 CD 22 3/4" 3/4"

-t-----1*

,c:cc-D-cc2_6cc ".--------~:_________ 21/2-DE-5'] I c-51-lJ) 21/2" c-*s-* 21/2" 21/2' co-39-7 r ~ ',, ~ 'jc-JS-10 1 - -Dl<l~rf-cc~-=,~~-,L---:---:t'<l--f--J-{+=E___j-,1;'1==='=='3/4-1f---+--:!=-c->~~--- I TE-15429 I - ~ ' - - TE-15432 I

  • ]21 COND. M-U 1'

CD-46-5 ~PC J C0-?2-t I *21 CONDENSATE RECYCLE & : CD 46 3 L-STOR. TNK. FAZ. ~-~,,J-C-,ci;=;-'---' CJ_.\\,j.----f-j 26912 I c 5 t-1_ 2_1/2_*_ 16-CD-6 -.l.---"' -~I*~----- L-IG-CD-'l ,_....,...--L TRANSFER PUMP CIIl/3) I '----P-:RO:CT,.7*.,rn... _H_T_R.+\\ ',t11;.o-)-,'2D1/2<**~ /L{l---=--<!:,~:>-22\\!1/21/2,."'f-, 21/2-DE-12 12022 21/2*, I., I 21/2/ -r,," ~-,r;- I~ C-42-1 I I TD CW (4' CONO. TO STANO- -i..!...r I 2 ' --- CD-39-6 L +---- lIB IlB -- 1.,,. I CD-39-9 I ~i~ _________ _.,f-------sr_A_,_'_c_DN__,_"_s_A_"_,_-_-_-_-_~_-~- _ ~ 0S'I r---_ PUMP 1 - ~ '-~t e,e, *,-" a r _ _:::::::;-,;l I I CD-46-2 ~ ~ co 7 CONDENSATE RECYCLE TO ....._t"---13/4* 3/4"..... 1 I c-46-] ! l'- E-sJ----1 1/4* '--'===cl


1---1 1 1' 15*

is*

  • f 1-1 c -52 _2 7 31996 EMINERALIZERS, SEE DWG.

' 2, /\\ ~:.~ho~_:~; 1 1 21/2" I C-J4-3 1--

  • 11 CONENSATPEI RECYCLE &

NF-39241 1- ___ ~l~A_F_:_W_: ~E~T_!:~ ::1~~ 1-IL3/4-C0-21 3/4~o-~ 1 _ _ '.'.!~8 _F.:_W.:._ H~':_T~R-C~I~~ ___ 1 _ 1 -CO-J'I TRANSFER PUMP CIII/3) "11A F.W. HEATER <III/31 12,

  • 118 F.W. HEATER CHI/3)

~5-CD-34 rr l\\ 3-C0-34--. J C0-57-2 I 7 4'x2' RED. w/ /::. 21/2-0E-57~ I C-33-1 h llll2 '----------------J-J_J L_J_t~~::::;~::;i-'~:a:======---l---1--c,l[X~;: CD-71-1 REST.ORIF. I .,,,----CONDENSATE MAKE-UP ~3-C0-34 ~ I / I \\. ~ I C0-45-41 ~~I_...J--:---~2~~J ~ 21/2* 11/2* u \\_ - - v-* \\ ~ I--' 1Q ,,,_--12-oE-54 4-c-34~ s-co-J4!:~---

=:

('y

, +,,7 IIB
i,.,, :

3/4'- IIB II ,-21/2* TO BACKWASH WTR. M-U PUMP 6 (lJ / -~.1'

~ 74 r

~ 1 / 1111, SEE WG. NF-39253 11:! LDC. C-11 3/4" VENT c-57 -l ~ u c,, 2 16' ~-7--,r"l'ccD~-~J~*~-1~2J I co-ss-3 ' o DRAIN--, 21/2" 21/2" I-- DRAIN I T-----t ! i -VENT rf-@ WATER MAKE UP PUMP I TE-15428 r 16-CD-5 I\\ - - -]6-CD-35 ~ ¥- ~, c-34-2 1--' c-40-3 I/ I~ c-34-1 ~ u:~7 1 _ 16* 16' I \\ 3,A 21/2-E 21/2,. 16* 3/4-c-24 L.,---6-C0-12 C0-67-l I STEAM GEN. BLDWOOWN NF-88740 CC-7> i+ ~ 121/2" I 14' ,I, \\_ 16-CD-36 20-CD-10_..--"' C0-66-2 r 6-C0-34 TE-15431 I 16' _[_ h r 3/4* RECIRC. FROM BACKWASH -I I Ir 16 CD 8 u ~*, 3/4" VENT-1-- 21/2-E-56 lj ,------------1,--------------+-L--------1>-'"--------I------ 16" ~ UNIT 2 CONDENSATE~ \\SPOOL PlECE~~---=_._-~ 3/4* @-3'.~ C-32-l + 12' ~ TE~ST FLOW -I CD-39-5 I 1--12-CD-4 TEST FLOW SYSTEM, SEE OWG. 1 21/2" 16-C0 3/4" ~ ~ NF-392211 1 1 L .1 IIB 11:11A DRAIN 118 1 r8-C0-4 ~, s

  • ~

8, I C-41-2 _J ""'- s* 21/2"1 T

J COOLER (lII/3 l r

~/ 74-C -20 UJ 11:11B DRAIN PI - - - - - _1_ 7 --lHl1f---L-.---,--'==:;::,='-~t:1-,l::l-_..:_J__,r---___ ,r---_:'_3-~0IISE_:'-5~6=-1-l~____!8"._' ~,_::_;_,_:_J r-------t-~-----~-+- -~.-. ----+------- 12' ) /7 ~ j tO- ~8 ~JIB COOLER (!IJ/3) IIB a-E-56 4-E-5s--+------, L ~ .~ i i*1 16'~\\ ~ ia* _1,* / <'.il'y ~/\\- t--"----- 11454 I I I I 8-0E-56 TI i-------.._ r1;-=.-----'s:--<:J----------f--------t-------,---'---,-----"'---\\---c;;-:-c::-::=c--::=:-c---- "I~8~'---l-::,-----,U'-ccl6~,*L~Hl, __ ----"'---tx'1-H llr C-39-l r3/4"YENT 14' 20' 20' 20' 14" 14" 14' 1 4, ~'VENT 2-r--J E-29_5 12062 -~,-/ 1 '\\ I /is* 111 \\ 3/4"INSTR.TESTLINE ,j ,,r /' '\\' t + t + 1/

  • ,\\2 C0-4

/18-C0-4 J TD *1A a. 81B M[ST. SEPS. ~ IB '----'----'-------_l__J ~---I Tl ~2-0E-54 DIGITAL @I @/CV I C-12-1 ~ 18" &. REHEATER DRAIN TANKS,~ CDN~RDL CY CD-65-1 ~ C-13-1 12064 Tb0 A"'lJp Mb0 A~:p Mb0 A~ZJP rb0 A~up L-COUNTER 802 -809-71 C-24-3 I ~\\ I C-26-1 I + 2' DRAIN SEE OWG. NF-39226 ' a* ~I,;: 3Hil87 r-~-_-:_-:_-:_- r--3/4* VENT NF-39223 NF-39222 NF-39223 NF-39222 c-24 -5 1 ~ I I /16 CD l0 H-7 H-6 H-3 G-2 I CY \\,..f C-26-2 3/4" INSTR. TEST LINE .~ . ~k: 6 CD 41 ~ C-11-1 I l C-39-2 FROM AT MONITOR I TE-154271- - - 31122 "L TD "15A & "15B HP HTR'S. 3/4" 8-C-4 ~ '\\_ L 6' -:!::::========!=Bi' ~=~====:c-,-----;::=~::::;-,-2c10a;*----J SEET~~t~~~;~236 ~r--l 4all4 ~,.l /~ ~ J CONTROL r1--RECIRCULATING

E~F~~~2~=-39226

/ _B'_ B' \\ t- . 6' 55-4-7 1-- 12' ~ 4 B' \\Ts* 8'./ _ t0~EAKDOWN ORIFICE LINE 4-C0-4 / 4* ~_.,.._-_;6-C0-4 __:..j 6' ' 16' C-9-1 ---1,~:::c_-~1=1-~2:_J-:5*

,16_*~--~

~3/4* SAMPLE CONN. 55-14 ffiJ_ © CONDENSATE EMERG. ~L...> .c..:, L..> 1/2' VENT C-10-1 7 6-CD-I -., JB. 3/4" / 11/2"><2' RELIEF VALVE 'i C-9-2 I SEE DWG, X-HIAW-248-1 FE 27003 ~ F 23007 - ~-ffi1J--l SUPPLY & MAKE-UP-- 9 ~6-C0-4--r-6' 6' ~/ ~ [~ J/ SET AT 550 P,S.I.G, I TO & FROM CON./ SPRAY PIPES r:-:::-;-7j, 1---- lS-CO-l(ll I POLISHING SYS. ~ 4-0E-54,, CONTROL I"'~ IIB C-2B-t C-20-1 t C 15-1 I CD-39-15 I 6-C0-10 _,., 16, I SEE DWG NF 39253 J I I 13 TD HEATER DRAIN TANK lS' h 2-CO-H'I ~ 18 1*1

  • REMOVABLE CONTROLS--- -

u:-7 TE-15426 4-0E-54 4' 3/4-co 31 PUMP SUB COOLING _-1~ A,NBAPNLOADCN~E ,~ 3/4 1 111 12* 4* ---.::._J*~ 4*""'-1. , ~ =,r: SEE WG.NF-39226 C-25-1 c-25 2 ~ F FE I r-- ~* CONN. FOR CHEM. [~j~j==;x-;=::i:':::~:ca::.::;======~~::::====:::'.t-I' C-30-2 23009 27013 I FEED INJECTION. C0-39-4

  • _ J 18-C0-4.....

18' . £ I~ C-30-3 CONO. MAKE-UP /,";i\\ 1 vi-SEE CONDENSER LEVEL PI PS 3H23 I I SEE NF-39240-t 3/4*1 ,1>< ..--=--=_:_--"-------",:_-------f 3' c-35-1 I ~1-CONTROL & ALARM PIPING l\\043 is-co-10* L 2-co-rn c NTRLr1-- 1601l l f"S-C0-2 I IIB IIBT IIB IIB ~ {THIS DWG.l

  • J -

1". ~--~CONTROL/~--. 1, t0'CAP

  • 1 I8**i '* ;-1,-------~-k 3/4-co-19 7

~

PS ~ PI \\-1 r CONTROLS- - c::::__c= 18' J L,J\\_J lL 16010

  • '-11/2-c -10 11044 7' __

1'-.--11/2-c-10 / 1 c+ 2 ~ I ~ I " 1: 8 ~c5,~ 1, ~ ~ PS ~L ~~ c;~:~:1~ nYP.> PS ~L ~~c---2-,--,-~ I ~,, 4' ~ 3/4" SAMPLE CONN. SS-34 1Fl1 AIR EJECTOR (IIl/3) PT IFll GLAND STEAM 16020 16023 n '82" ~-+--- SEE WG. X-H[AW-248-1 TT PT l701t lB-CD-3 CONDENSER tIIl/ 3 J C-4-l l' IA 18 l~c'°o;-,,;;3;--;-11,-----'1' /,. CD-3" 13 18'* Lj 55-4-26 17303 17010 rl-CD 14 121k0 [OISCHARGE VENTS IIB CONDENSER (IIl/3) CONDENSER (Ill/3) 2-co-431\\ ~I C-19-llB @--c~ ~D GLAND SEAL P]PlNG / c6-CD-13.---: ~ r~~-rc---5-4--1~ @_"=;-7-~-/--<-i-A_"__-*T--1-----+,~ w-7---f 1192*0 D [ SEE DWG.NF-39239 I CD 62 Qe IL J-i ]::{ J= CONTROL~ - 8 C-31-17 r M0-9-4 I l-C0-15 T I CD 16 I' 3' 3' 3' 2' I- -l 1 ~\\ 2*,,,, ~2_-c-lB

  • 24'CROSS OVER

'----"r=~-;;:;~-;::;-=--~ ~--------]3~* ----~+-----------..~---~~3~* _________ JJ:J_JJ CD-53-1

  • 11 FEEDWATER PUMP (IIl/3l 1112 FEEDWATER PUMP CIIl/3l SPOOL PIECE CTYPICAU l:e~?@h f

24' MANWA~l ,------,r>'_3~*=-=-=-=---1'-----------\\, \\_\\_,__ __ _._a3._* --------1---l--l---J--J-J UI'\\ ,i 3) (3) I i0) I>- ~ 3/4'--.. \\ ~ UI'\\ I::;-,, 18, -(£H C-36-1 J) c-22-2 I \\ \\ 3'

f ~ ;;t t*t

-~- I c-47-l ' )41~:21 21:22 4' ~GALGA'ss*j-4'_'1/4j!I ~- 7fL~"2~.d-/----!,-----_J)----~~c-~2=*=-*:::J-;:_-,7L_~ ____ ~_?_3~-c:,o':_-l':33~ ~'__~\\_::__'Ss,iuc~ri:,1E'DN~'~'"'!:'i:'.s;__ ____ _.,JJJ_LLLL ~ "-, 30' 11830 ,\\ 2' '., r\\ ~IB ~~ 5 - ~,. CD-53-2 I PLUG,==-"'-',-~ ~ 48' 18-C0-2 I 48' 2-CD-17 j .,;:8. '\\[Bt-.. 118.\\ \\ j \\\\ \\ \\ \\ \\\\. '\\ \\ 3**0\\, "\\ I'.._ UB CD-62-2 I CD-48-11-\\ 1B'

  • ')

/ ~ 7 I ';:-' 24 DRAIN ).. _L_--'==,C-,=2,::2='-l~=CJ_O f---.---2"*----,**~,:'":-' ~l-~11_r+-1,---'CD--'-"'2+-JTrr-3/4--~--1~,-~--f-r-/fr-c"-'=2"'-2,,=,3--3-.-Cf--0--1-_+---~!* -+n~ t1 C-2-3 48-CO-I >- 30-CO-I

: I I TE-15423 I

/ l ** ORAI~'V30-~~~~~ \\1<1 ~ ~~~ \\ L SAM;::-~DNN. SS-48} Pl 18B96 CD-59-~ 3/4-C0 @- 2,-i C0-59-9 I (TYP.) CD-75-1 1-co-2-t-+..14 C-1-2 2-co-2-l----I--~ +-1 C-1-3 l[l I I 4-CD-1 \\ '\\ \\ SAMPLE CONN. SS-50 I M-8-4 f J J 7 ~--~

  • I I TE 15424 I

\\ SAMPLE CONN, SS-L2 4' t:;....._ l' 30-C0-1 _.., _r:/ ! J M0-8-5 C0-75-2 J MD-B-6 I j C0-75-3 I C-t?-l \\ \\_ j;'----=-\\ SAMPLE CONN, SS-51 SEE DWG. X-HIAW-248-1 CD Io 3,018' n I I 18' I' H /"J I 18.v 30*1 L...--.-1 SS-'-5 SAMPLE CNN,SS-45 17 i::...1 /I M-7 -4 M0-7-5 l' ~-' / ~ MD-7-6 I TE-154251 / \\ SAMPLE CDNN. 55-47 I c-2-1 0 ~ ' ci. 3* 30* t,__ H '..\\ 3' 30* t :_ ~~ I~ 1'+-z:,i. 3' ss-4-4 ~ V PS SAMPLE cNN. ss-46 ~c---,-,--~1 C-1-1 II HI-

  • --11--

i~ 71 TD FLR. HI-MANOMETER (TYP.l 1/ 16B96 r--------1.,'-----------------____j I ut.!_B'r-'-----l-7L!j C-14-l I 4 lB'r-~--I--7L!j C-14-2 I,~* L-t.i--1/2"TEST CONN.FOR MO 9 2 IIB I I UB ~ '11B I I 11B \\ rn'l I DRNS. I nR ---l I 55-4-3 CD-59-181 /~y~~-2 -=..:...+ c_ __ _J+-= ' =+ L_-~,J.....,:..::. ~ {TYP.J - ~ c !:::, C-14-3 55-4-2 Pl 18B95 ,s C0-59-1 I CHEM. INJECTION SEE NF-39240-1 2' c 6 I t-CD-59-5 I 12 REVISIONS lB_Ij AS BUILT REVISED OWG. TO REFLECT AS FOUND CON. ADDED OWG. REF. NUMBER. PER ORR: Pl-94-196 OWN: M.R.H. 01/16/95 CHK'D: MOD:,,...,,_,, FILMED: ~ AS BUILT-REV'O. OWG. CONT. TD READ NF-39216-2. PER ORR Pl-95-123 OWN: DB CHK'D: MOD":.----- FIL MEO: §_g AS BUILT-AOOEO COLOR CODED HEAT TRACINGS. PER ORR PI-97-120 OWN: JOS 11-5-97 CHK'D: ;:,es 1/29/98 M0 *1~ FILME01 2/98 l§.QJ AS BUil T-CORRECTEO COORDINATES A2 WAS Hl0 ANO ca WAS FI. PER ORR Pl-98-127 OWN: 8MS 2-8-99 CHK'D: PAS 2-12-99 MOD":~ FILMED 2-99 ~ AS BUILT-SHOW NORMAL POSITION OF VALVE CD-72-1 AS CLOSED. REDRAW COSR SPRAY PIPING TO ACCOMOOATE ADDITION OF EXISTING VALVES. MOVED LEGEND AND REFERENCES, PER ORR PHJ0-220 OWN: BMS 2-14-01 CHK'O: CMR 3/8/01 MO *:,,...._.., FILMED 3101 l§.EJ AS BUil T-C0-45-4 a. CD-70-1 REVISED TO REFLECT NORMALLY OPEN. PER ORR PH13-125 OWN: GPL 9-5-03 CHK'D: CMR 9-10-03 MOD":,....._,, FILMED 9/03 [Z§J AS BUil T-AOO OWG CONTS & GRID COORDINATES. NEW BORDER OEL REF MOTOR VALVES 04NS15 PER ORR PH18-080 OWN: JK 10-20-08 CHK'D: DB 8-21-09 MOD": EC-13291 FILMED 9-09 l2Z] AS BUILT-REVISEO TYP NOTE AT GRID F-ll PERTAINING TD REMOVABLE SPOOL PIECES. PER ORR PI-10-175 OWN: KJF 11-4-10 CHK'D: JLK ll-ll-10 MOD": EC-16990 APP' : CMR ll-17-10 ~ AS BUILT-AOOEO [SOLATIDN VALVE FOR PS-16B96 8. RELOCATED VALVE CD-59-2. PER ORR PI-12-128 OWN: JEK 6-28-12 CHK'D: RTC 7-2-12 MOD": EC-20022 APP' : CMR 7-9-12 ~ AS BUil T-CORRECTEO DRAWING CONTINUATION FROM NF-39241 TO NF-39241-B. PER ORR PI-13-021 OWN1 JEK l-2B-13 CHK'O: JCH 1-30-13 MOD*: EC-2011122 APP' : CMR 1-30-13 ~ AS BUILT-AOD'O NITROGEN BLANKETJNG ELIM.BELL ALARM ANO ASSOCIATED WIRING. PER ORR PI-15-134 OWN: MEA 10-21-15 CHK'O: ALM 10-23-15 MOO*: EC-24671 APP'D1 KJW 10-28-15 ~ AS BUILT-AOOED PRESSURE SWITCHES 16020 ANO 16023, PER ORR PI-16-255 OWN: JEK 11-22-16 CHK'D: MLM ll-28-16 MOD": EC-27246 APP' : OB ll-28-16 ~ AS BUILT-AOOEO LINE NUMBERS 2-C0-28, 43 a. 44, PER ORR P1-1q-079 OWN: JEK 4-8-19 CHK'O: ERN 4-10-19 MOD", 600C00021909 APP' : OB 4-11-19 ~ foilill f-c:::::J--1 foilill f- """'H '14 f__J Fs~s-f,-~1 t===::_,,,,,,, ~ ~ ~ ~ 1 r:~MOVABLE SPOOL PIECE WITH ADDITIONAL SEAL DETAILS OMIT TE~/ ri C0-59-3 I C0-59-7 rl CD-59-ll I Th~ rro,p /rjoocment1S a tool to.,,.,:,templi,ye.., i1 1ho i,e,Jom-anoe ofttie,r ;,t:.;. YoJr,.. s,malsalei;',. pro,,ided lor b)" usn;i ~ pr!ICll""".P""'"°J'"" arid e<p.Jlpmontas d0Mdb8d 1,.,..,,rt tralrln;i prograris, mariu/IB,.,d SP/IR's 10-c -2 _J M0-9-3 ~ ~ TEMPORARY STRAINER ITYP,l M0-7-3 I ss-4-36 r-1rs=sc'_,:=_:::35:=,r,,,,,,, I C0-56-1 I / 6-C0-34 I CD-55-21\\ CHECIED PRCIJECTND Slt!NIFICNITNO. 8630 1 ~ 11 7400 I I 2 I s I 4 I o I CL I

  • 11 CONDENSATE (l[I/3)

PUMP

  • 12 CONDENSATE

~ ([II/3) I '- CD-47-2 C0-49-1 t-- PUMP ~ '13 CONDENSATE f----...,._. CIIl/3) I ~ CD-47-3 EXPANSION JOINT (TYP.) PUMP M0-7-2 MD-7-1 CD-74-1 M0-8-3 rs:-_L __ _,___-----l'_":c-f----L-----'------P<'.1------'-----.----- F7r----c1<1-_J C0-55-1"' 3/4-C -3;; CD-59-2 IFl1 CONDENSER SPRAY PUMP C0-59-4 L CD-69-1 I It,, APP'D&CERT. Fl.MED FLOW DIAGRAM CONDENSATE SYSTEM UNIT 1 ~ C0-48-2 k-- cD-48-3 1 M0-8-2 MO 8 I 2-C0 L:J CD-68-l DRAIN NORTHERN STATES POWER COMPANY rJ,,_.,,,,.,,. PRAIRIE ISLAND NUCLEAR GENERATING PLANT NONE I REV 82 NF 39220 A f--- B f--- C D E F ISl N N (J" [YJ J z ~ H FIEDWINll, MINNESOTA $$USERNAME$$ NF-39220. G~ I NSP (ifNFRATIQN CAD I 1 2 3 4 5 6 7 8 9 10 $$$$$$SY T I ~ $$$$$S$$$$$S YDA TE$$$$$$ $$$$$$$$$DES IGNF IL$$$$$$$$$ 12 FIGURE 11. 1-3 REV. 37 CAD FILE: U11103,DGN N II) 0 0 0 0 0 0 ~ 0 co

A B C D E 6' F G H 1 2 NITROGEN BLANKETING1-i-

  • 6' VENT SUPPLY SEE r

NF-39247 (Ell) c<---,~---~------1,-- VEffi/12CD-46-2 t 3/4" 3-2DE-6/ 3 4 LOW LEVEL 47509 0605 H[GH LEVEL 47509 0505 5 ~118 ~l'-2* ~ 6 1 r 7 8 9 10 LEGEND 11 REFERENCE PIPING DWG. NO'S. CONDENSATE SYSTEM TURBINE BLDG. NF-39272-1.NF-39272-2 & NF-39272-3 3' I 7 I ~ CONDENSER 2A ~ ~~m ~ CONTROL CONTROL PMP. TRIP LI 41698 DENOTES FURNISHED BY WESTINGHOUSE CORP. DENOTES FURNISHED WITH EQUIPMENT DENOTES CONDENSER TERMINAL CONNECTION -.+._ - DENOTES LIMITS OF .A. TYPES LEVEL TROL & ALARM GAGE GLASS PIPING NF-39313-1, NF-39313-2 & NF-39313-3 I

  • OVERFLOW -....,._

'"22 CONDENSATE MAKE-UP STORAGE TANK I==:::::;J;---,1,,.,

  • GAGE rn 1 2LA-4-1

~"'-- ~--~ \\ "':~ ---r2LA-4-1"5 '-.lr:2~LA~*-4~-737 I - --t CONTROL IC-IIB-III <Il/3) DENOTES THE PIPING.A. TYPES CHEM FEED - NF-39240-1 DENOTES EQUIPMENT .A. TYPE/OESJGN CLASS 6' ZC0-54-t I TI 12367 GLASS~~ ~--- = 1-~~~~~-$-~-~---= ~1----t-"~r==i:,o::i-t=~fJ-~ ...... ~ ~ ~ .,_,..___ ~ ) 2LA-4-4 I S/CV .~ 48819 -- T 14' HEATER DRAIN PUMP DISCH. SEE DWG. NF-39227 4~ SPARGER NOZZLE~ 6-ZDE-13----......, 6'~ zc 2 DRAIN TO GRADE BLDG. I ELECT.HEAT WALL TRACED / 12-2DE-7 2' \\ 3/4' T. I ZCD-46-5 ~..l!!-! 12" ~ 2-2DE-l2 J* FLEXIBLE HOSE SAMPLE ZCD-44-11 SEE NF-157545 zc-46-6/rl::->-~_..,*,- SEE CONT. ON !1/2' NF-39223 HEAT WALL f 3" RECYCLE LINE VEE~NT ZCD-39-3 I 3/4" .._ 6' 3/4-ZCD-37 VECtNT 2CD-46-l _,E~L~E~C~T -o't-~B~L~O~G~. -~/ 3/4"... J-2DE-, TRA~ 0ED 3/4" ~-~~-,-----,c----------'-; IIB IlB N[TROGEN BLANKE TI NOi ),. J

  • 6' VENT L*

r--4---~-----7------+--,~--s "t,~:";11-----"4-FROM DEMINERALIZER SEE NF-39241 SUPPLY SEE r AIN NF-39247 <E11l ,-L.-L+---.-L----1--, 1-cc~~ I 2co-s1-1 I [....---6-ZCD-12

  • OVERFLOW --.......

6' I '"'21 CONDENSATE MAKE-UP STORAGE TANK <III/3) 4751i19 061213 47510 RAJN 2CD-46-7 121101 RECYCLE ~ 2* L~~~L L~~v~~W ~~~~- ~ ~~ §_~I I _! 11: -~~\\ \\ '0§7 ~ 2DE-60-2 12' 6-ZE-10-.....,.,_ SPARGER 2C-27-1 I I ~~~ 40.,.

~;, ~~"~o~z7z,_L,'~--..,.~~~~:~~F~~,2~-2~*=;;\\~~~~t*1 ~~~,.~----1.~'~-"--_20_,~;~'----,-~----~~------------~

,r1..: _ _:_ _______ _:,, _ _J 3/4" Ill B I\\ ~ 6' ~zco-29-1 6' DRAIN TO GRADE ~ ~-~12' FLEXIBLE ELECT. HT. TRACED r==-ccc-c, £C0*<6* 41~PLE 3~~;0 HOSE BLOG. WALL _,t:::.==;;,L--;~t*s'~':...'."~'f,*,t~5~7~5~<,1,,l';-...J j TT I ELECT. HEAT TRACED 17313 ~ :/ VENT.~C0-39-141 f BLDG, WALL FROM WTR. HTR. _...,T_ 12c_o_-_.,_-_'~T~H~'--c';f IT J2c_o_-..,"--2;::::=3/4=* v:::::::::;-3/4-:*,2_0,_*_l2 ____ _,i-- 2-2DE-l2 FOR CONT. SEE I,. \\ I 4' MAKE-UP FROM DEMINERALIZER SEE NF-392-'ll J4* ~ ~r1-~"~"--,::l;!~------, 3/4\\ \\co/ I 2' L-f;<"c7 ~ ~ ~1-------~** -r-----~ ~ 3/4'INST.TEST ~ CONN, SEE DWG, NF-39240 CONDENSER LEVEL CONTROL & ALARM PIPING Pl 1H1l90 ( '"'23A F.W. HEATER (III/3) 17 2LA-4-106 '1 2LA-4-2 20' /21!1-ZCD-7 2c-7 "23B F.W. HEATER CIII/3) Pl 11452 ,7 TE-155651 I 16' I 2CD-7-2 ~ 7 I - r l6-2CD-10 IIL).16" H 1124A F.W. HEATER (IIl/31 I TE-15564 h 20* ~ II~ ;i.----1 2C0-7-l I J f . 3. 16" 12-2co-7 12* [ 12-2CD-l0 I 255-4-6 l--""' I / 16' I.---'" 16-2C -7 L{ 2CD-8-1 I 3/4" SAMPLE CONN. SS-213 SEE DWG. X-HIAW-248-1 16' { l6-2CD-10 16-2CD-7----- J. 16 *. ~ 2CD-7-4 II~ F "248 F.W. HEATER (III/3) 11;r=:,7 I 2CD-7-3 12' DWG. NF-39220 / I 2* 2 2" Ji. 2*DE-63----,L_='""'h_J 2CD*46-3 3/4' I 2CD-24-7 2" 1--1/4-2DE-12 w '-4 2CD-30-1 I L4-20E-7 L 4-2 E-B CONDENSATE TRANSFER TO *21 & "22 REACTOR MAKE-UP WATER STORAGE TANKS. 3/4 2CD 24 B3/4*

    • E 3/4 2CD 27 1 TE-15567 r............

§i@= 1/4-E-63..,. 1/4' 2C0-52-l DRAIN 21/2' ~ENSATE TO UNIT 1, SEE OWG. NF-39220 ~6-2C0-12 .....l 2C0-72-t 2-1"~ COOL WTR. RETURN SEE NF-39217-1 D LDC. A-6 ?---,--7 4-2C0-42--........._, ........ ~ 2C0-70-1 TO mu TO AFWP NF-39222 G-2 TO "2] MO AFWP NF-39223 H*3 TO *12 MD tlFWP NF-39222 H*6 GLAND SEAL TO CONDENSATE PUMPS.SEE DWG.NF-39240 21/2* _ 11-- l-2DE-9 TO *22 TD AFWP NF-39223 H*7 l2-2DE SEE DWG.NF-39242 ~.,,.' 2C0-39-7 r ~ 72CD-39-10I r 21/2-2E-9 ----121/2. --- 2-2C0-11 TE-15560 - -~ 16-2CD-6-i---"" -(,~~;\\ ~ I 2C0-39-6 L ~ l!B , ~- - ~ TE-15561 I ~* .........____, 2CD-9 IlB ~ J 2CD-39-9 I s_T_'"_T_co_,_o_,_,s_*_T_,_,_-_-_-_-_~_- _ ~ _G'\\_ -------- PUMP 1 ~ 12' ~-------------t-,~-*t13/4* 16" 2'

1122A F.W. HEATER (III/3l IL3/4-2CD-23

- ----------------~- "'21A F.W. HEATER (III/3l 16' 3/4*r---~---t--------------~ 3/4-2C-26.i

1122B F.W. HEATER CIII/3)

I-2CD-67-1 I STEAM GEN. BLDWOOWN NF-39250 <E-8> ,......,.-c NDENSATE MAKE-UP 12* "218 F.W. HEATER CIII/3) /5-2CD-40 ~--, f;: + I T l\\ 3-2CD-40 7 J 2CD-60-2 I ~ I 21/2" I 4* '----------------+-~ ~'-+1;-;;-::.-::,;~-=-;-;;-::.-::,;?*!.;~-:;-:i-::.-::.-::.-::.-::.-::.-::.-::.-::.-::.-::.'::'_T'----t></:i--*0,- I 2CD-66-2 =-zs- '-'-c3-,,2C'0'-4"0c--zs-<I----=-t--+-_,,-~~1'---'T~---\\c--+---:=-------------.c---+---{->fC-,

  • '.]-"-

,--1 H 1- _ _ I., / _______=J_ - @U \\_-@ 5-2c-40 !: J- ~ =v*,,11_-ExCSHG:NtE~~:2 "Y 7 , ---if 3/4 9 ~--, m / (1]1/3) ,- 21/2" TO BACKWASH WATER / MAKE-UP PUMP "11, SEE DWG. NF-39253 C! LDC. A-lt r 3/4* RECIRC. LINE FROM -I I BACKWASH WTR. MAKE-UP PMP. I TE-lSS59 ~VENT 2CD-6iH ~ LJ,.,.____ LJ ~ 2CD-65-2 I 16" -..i,: ...J2c-39-l2 2CD-65-3 8 D l"2~Cr0=*=66,*~1'::: 13/4~*=2:C~0:*3~6--0-;:::._:==:-~ ~ .,.... ]6-2CD-35 Z \\....16-2CD-36 J I I ~ /'") TE-15559 "'-6_. ---+---------<r--'i__'6_-_2_co_-_* __ --t--+----------..---,e-------~--*---~* 16" ~ ,,/ r16-2C0-5 ~ 16" 12' ~16" 16-2C-4-, TE~ST FLOW r'I ~ 3/4-2CD-21 ~12-2CD-4 IIB 1121A DRAIN IlB ~ -~C0-39-5 3/4-t,-: 3/4-2CD-34 t6-2co-, ~ :::1 CDLER llll/31 f'l--1><1-~'-1--,1'1 16'... \\ is* 8" r8-2CD-4 12' 12~ 1 16 -~,/ 1 ~~ v16*- 111 \\ ,1 / 18-2CD-4 I 2co-12-1 f---'2_2co_11 __,,. 10* DIGITAL S/CV ,I "fr=~~=;,~~~~c:---..-=-----r~~~~~~Jtr~~ COUNTER 48517 7 12c 3 2* I 1 ~ , 1 2co-26-1 2 co_ 24_5 1 I CV \\rl 2CD-26-2 I PI f I~ I TE-155571- - 31125 /\\ L 18701 .._ 18' 2' DRAIN ~ TE~ST FLOW ~ "° 11218 DRAIN / 18-2CD-4~--- ) J,7 & I&> ~7 1118 COOLER (!IJ/3) l2CM9-15l /

  • -~ I y

~ "\\ ~ 18' 16'~ 1'11----'-~:J,--, 3/4* INSTR. TEST LINE '\\._: /( 1 I 1 /16;- "---; TI TO "IA &. 8 18 MOIST. SEPS. 11 I '--~-~---~-' 12217 & REHEATER DRAIN TANKS - CONTROL 2C0-65-1 LJ 3/4' 8" CV 7 2C 1 SEE DWG. NF-39227~--~ 3Hi18S ~3/4*VENT 12cD-39-16f.. 3/4-2c-J1-...__ It--.. cc=-c=-cc, 3/4" INSTR. TEST LINE

~

~ 2CD-tt-1 I "f 'I ZC-3 9 -2 I 16* / !5-ZCD-H!I TD *25A &. *25B HP HTR"S. 3/4" '\\_ 6" SEE DWG. NF-39225 B-2c -4'-+" 8' 8' 16' -~ Pl IIB 11456 V 2CO-B 21!1-2CD-l0 ____, r 6-2CD-40 12c 1_/---n,,-3/4* VENT 20-2C0-10 v3/4-2co-32 \\ 20* I 255-4-7 r--.... 3/4-2C0-39 14' i..,.,,- 20-2CD-l0 20' 20' 20' f. 2-2CD-12 4",i, 2-ZCD-42-, f1 11-J_J /2' 11~ © ~ CONDENSATE 12' ,+..:;-,~ ~48614 ~ fj><B',-.c:I +:,6:.::8:':J-J/:*, ~\\~~1~;.=C=O=N=T=RO=L-::::_~:_ __,I-r_j~_:~~11<~':t_c_u_L_AT~ING I ~ EMERG.SUPPLY ~ 62CD4-f-I' '9'~ ~ ~.~/ & NF-39227 / '\\ 6' 7 7 4-2co-4 ..-5.~ - t - I 16* 2c-9-t I L 6 _2co-4 I 2c 2 1-6* 18* ~----~---------; 8-2CD--'I 6" ~---,--~ 4' ~--- J-1-J><(J-~I 11/2"><2" RELIEF VALVE---~ 'i 2CD-9-2 -3/4* SAMPLE CONN. SS-214 SEE DWG. X-HIAW-248-1 /r=--'-,--BREAKDDWN Lj 2CD-71-1 ORJFICE 42c--1s-4 FE 2701!14 TO GLAND SEAL I POLISHING SYS. ~ -'l-2DE-7 /4~;~ CONTROL;,, "0 IIB PIPING SEE .!IJ:! --iCONTRDL SEE DWG. NF-39253 ~--~-_/1 ____ ~4:* -...':~~~f==:;;;;;;~i"'"j~~tl~e)~~~-z,-~hp F ABANoN wG. NF-i9z40 866 i--7 TE-155561 I 12-2E-1--.... i1r i2* 4* ---z.:4* "r--- 2co-30-21 ~ - '-/ - ~ 6-2CD-101 1/2[r ~ ~ZCD-10-L 6 _ 2c _ 4 ~ ~ SET AT 550 P.S.I.G. 1r2~c~0~*~27*~17ry -~~ w TD HEATER ORAIN TANK PUMP SUB COOLING SEE DWG.NF-39227 2CD-25-2 I /TO & FROM COND./ & MAKE-UP-8 - /\\ 60 l"l) r 2co_ 28_1 4 SPRAY PIPES 2311108 IN PLACE F *~ I I LcND MAKE UP -SEE CONDENSER LEVEL ~--~ l 2c-3I-I I 23010 FE r--3/4" CONN. FOR CHEM. 2CD-39-4 V r:, ri"~l--__clB~*~2~co~--4_,~,._ ______ !~8~'-


'f' g3*.........._

2c-3E1-3 @~ CONTROL & ALARM PIPING l\\ l2CD-39-13 l2CD-36-1~--, 271!114 I FEED INJECTION, 20,ET: - -L_2_C_D-~3-5-*l_'_Fesl _________ ~-~ L_'_T"_'~S-OW_G_._, _________ ~-~ /2~~~CDNTROL 2c-:"'"""' / I"° 18" - -~ ~='-', 10-2CD-2~~ lip,* ~ \\6-2c-12 \\ :: 12co-1'.-~ G3/4. 4' ta* ~~-c1rn H><J-~ / 12* = t ~ CONTROL f- - -,- 1 I Pl 111!151 PS 16012 I K2C0-25*1 I ~ CONTROL 5- - -:- 11/2-2C -10 I --\\---;::o1~6~*2~C~Oc-,t,0 I 2CD-24-2 I I \\ 6" ~* \\ 6".J

  • r

~ 1 '--- FLOW NOZZLE l" I 4' ~ l -~ 255-4-26 L,2-t~A-,R~E-J_E_C_T_R-,~11~1/3) PT I 2cD 2 ~ "'21 GLAND STEAM ~ l" 2A 3/4-2CD-33 TT \\1-2CD-l4 Tl 17028 18-2C0-3 CONDENSER {II]/3l 2CD-4-1 ~ .l -i 6 _2C0-2 3/4" SAMPLE CONN. SS-234 118 CONDENSER (III/3) 2CD-1\\-4 3/4" -'l-2CD-2 SEE DWG.X-HIAW-248-1 7314 I' ~1-2CD-15 12215 [DISCHARGE VENT\\, ,6-2CD-13 ---- f,";;\\1------ 2MD-9-l I w 4-2CD-12\\,-~CC, 18" -~3/4~-~2~C~O~-J~B:_ _________ _::_ _ _:=._ _ _,_.l.J~-----='-----------/'-------+-'---------_J 6' ~ r;c;;""';cc 7 2CD-53-1 ~ / ~ '-j2CD-19-1 I" \\ / I' r 121!132 = 3, --.., _______ L_ ______ _._3~.-----------1-µ 3/4" 2CD-56-1 I 2B CONDENSER CIII/3l r'B2' PS 16945 ~~ 2" DRAIN CTYP.> I_ l '---A-2-2CD-29 D 2co-73-11 TI fl8-2CD-2 1-2CD-l6 / 3' 3' 3' ~,-. -~~ 1 2c 1 r--- t6' 1=;..,2.. .,,~~--2 _--2-C-Dr,_,-.--1,

  • 2-l'CRDSS OVER Pl 2 2CD ',1 3'

\\ \\ 3' I 0)

3)
3)

I i0) ~ - 3/4*- I ~ I,\\ 41g?6 ---~9-r1:25 24"MANWAY /,---1 2M-9-4 \\ \\ 3* ~ 3/4* 130* l3"" ~- 3/4"4~ ~-+-" 3/4* -~*~*1 12c-s3-2I... CDNTROLl:- - GAGE I I 2C0-24-4 I- \\_ ~ 4' 3/4* ~-t,<~~---1:J~2~Co~-~2~2;*2~'J---~====='-+-J---\\r--2~----\\,-.:'~-~2£C0~-~1~3.:::::~_:::::::..'s~u~c~TI~o~Nl_l'l"~"~T~s;_ __ -,----+-+-+_.j-+-+-+J, I. ", ~ 1r\\ r\\ '\\IB / 24* I 2c-47-1 I 1~~81---J GLAss ---..[ /. Lf 2' 48' 1s-2co-2, 4B' 2-2co-11J ~ .~* 11B, 11B \\ "2* \\ \\ \\ \\ ~,\\ N* 2co-,n I 1121 FEEDWATER PUMP (III/3l Pl 18899 I 2CD-6l-B__r-....._, 6-2CD-t0_.,,. 16' PSN ~ 16013 L

  • REMOVABLE Pl i,,--11/2-2CD-10 11052 PS 16946

[ r--..1------16-2CD-10 ~2CD-2*HI ~ '----2~2CD-30

  • 22 FEEDWATER PUMP

{III/3) SPOOL PIECE (TYPICAL) & ~ 2C0*61*9 I 12 REVISIONS ~ FOR CONSTRUCTION DELETED CONTROL SW[TCH -16565 & 46781 OWN: LFP CHK'D: OPP PROJ": 90L22l REV': APP' & CERT: WJJ 10-13-92 PE" 20013 AS BUILT-lNCORPORATEO A/E'S REV. 'AV' PER ORR Pl-94-160 CERTJFIED REV. 'AV' TRANSFERRED TO RECORD TRACING OWN: WHS CHK'O; PAS tl-3-94 11/11/94 MOD": 90L221 FILME01 11/23/94 ~ AS BUILT REVISED DWG. TO REFLECT AS FOUND CON. ADDED REF. DWG. NUMBER. PER ORR: Pl-94-196 OWN: M.R.H. 01/16/95 CHK'D: MOD:,,....,,_. FILMED: ~ AS BUILT-REV'. DWG. CONT. TO READ NF-39217-1 PER ORR Pl-95-123 OWN: DB CHK'D: MOD":__,__ FILMED1 ~ AS BUil T-ADDEO COLOR CODED HEAT TRACINGS. PER ORR PI-97-120 OWN: JDS 11-5-97 CHK'D: peis \\/2'V98 MOD":.-..- FILMED: 2/98 ~ AS BUILT-SHOW NORMAL POSlllON OF VALVE 2C0-72-1 AS CLOSED. PER ORR Pl-00-220 OWN: BMS 2-15-01 CHK'O: CMR 3/8/01 MOD*:,,....,,_. FILMEO 3/01 lZ§J AS BUILT-ADO DWG CONTS & GRID COORDINATES, NEW BORDER DEL REF MOTOR VALVES 04NS15 PER ORR PI-08-080 OWN: JK 10-20-08 CHK'D: DB 8-21-09 MOD11: EC-13291 FILMEO 9-09 l.ZZ] AS BUil T-REVISED TYP NOTE Al GRID F-11 PERTAINING TO REMOVABLE SPOOL PIECES. PER ORR Pl-10-175 OWN: KJF 11-4-10 CHK'O: JLK 11-ll-10 MOD"1 EC-16990 APP' : CMR 11-17-10 ~ AS BUil T-ADDEO [SOLATION VALVE FOR PS-16897 & RELOCATED VALVE 2C0-6!-2. PER ORR PI-12-128 OWN: JEK 6-28-12 CHK'01 RTC 7-2-12 MOD"1 EC-20022 APP' : CMR 7-9-12 ~ AS BUil T-DELETEO DUPLICATE LINE NO. l8-2CD-2 D LOC F-3. PER ORR Pl-13-010 OWN: OB CHK'D1 SF 1-11!1-13 1-10-13 MOD": EC-1961!15 APP'D: CMR 1-14-13 ~ AS BUILT-AOO'O NITROGEN BLANKETJN ELIM.BELL ALARM ANO ASSOCIATED WIRING. PER ORR PI-15-134 OWN1 MEA 10-2l-15 CHK'O: RLM 10-23-15 MOD": EC-2-1671 APP' : KJW 10-28-15 ~ AS BUil T-ADDEO PRESSURE SWITCHES 169-15 AND 16946. PER ORR PI-17-161 OWN: JEK 11-22-17 CHK'O: MJL 11-27-17 MOD":6MOD0002741!19 APP'O: DB 11-27-17 ~ AS BUILT-CONDENSER 2B HOTWELL DRAIN VALVE INCORRECTLY CALLED OUT AS 2CD-33-2. REVISED ID TO 2CD-53-2. PER ORR PI-19-275 OWN: LAB 1-6-20 CHK'01 JK 1-6-20 MOD": 61!11000001676 APP' : DB I-G-20 A f-- B C D E F N N (J"' Pfv'~~, ) 1*2CD*19l 2C0*22*1 1;:o:*-14T_-T_3_*_2_CO;*"',"~:-_r-r-3/4-I __ :~;~1',-,-ft-/,-;"F',~c~~~~~~.~2Cl-;~l-:-0-;.;::.~-~--ci-.--131'-\\'-,_+,-1 t1 2C0+3 'l 4B*2C0-1,- 30-2C0-1

  • ~

~K.- 4-2CD-1 30-:~~~:' \\ ~v ~~t~' \\ L i;;;:;o;~:~: ;;:J;:} / r;;.o::.:.i.-'4--"**j ; 2CD-75-1 ,1 2-2CD-36--~ 2CD-l-2 II r~2~2~C~0~35;jr-ll, H ZCD-1-3 "° I 40 DRAIN 4S-ZCD-l \\ SAMPLE CONN. SS-212 3/4-2CD--'li!i-6" ~-~-~--,,L°SJ:=i;:.ij~===:----,------~-----~ f------------1 [YJ I 2MD-8-4 f/ ~--, Ir I TE-15571 I, 255-4-5 \\ \\_ ~ SAMPLE CONN. SS-251 SEE I zc 1 I 4-1_ 30_2co-1-- _t/, ....I 2M-8-s I v ~ zc-75-2 I ....I 2M 6 I ~ 2c-75-3 30, 1 - \\ - SAMPLE CONN. ss-245 I 2co-1s-3 ~ TT 2Mo-H 1*; t' II' / A 2Mo+o I 1**' 1* ll'r'/ A 2Mo-,-6 I TE-15572 I ~ 200-1"' '),-5 /CC:::::'.:::::;:::;z:'.::::==-\\ \\ ~~~~~~ g~~~- ~~-~:~ DWG.NF - 39235 2C0-40 I 2C0-2-t0V +}- H ~ 3r*--~30* t '-,._~... _*c,,,L'.i'3* 30" t - r~-~ 3' 22~50:4.:42 I- /1/ / / 16PBS97 ~==~ 18" J L-2C0-14-1 I J-, ~ 1 L-I 2CD-14-2 I 18" / / / I 2co+1 YF- -IF rn FLR. Hr 2ss+3 18_2C0 _2 ~ ~ ~ ~ ~ \\' _ ~ ~T~A/7- ~ c,-l2CD-14-3I 7./72CD-6t-18I ~ c:::::J--11-<iiilf-

--::J Ir-12ss+1 DETAILS 2CD-St-3 I Pl 18898

/1 ZC0-59-1 I 2CD-61-7 I rl2c 10I L,,,--,Ji~-~H'-""' """'Ht" 'a L2~S~S*~**~2tt===--,/_/ ~~~[TlDNAL V 11B 18-2C0-2...J 118 118 ..___ 2M0-';1-3 / OMITTE~,,. +---- t---- t---- REMOVABLE SPOOL PIECE WITH 3/4" 255-4-36 r- / r "'4-TEMPORARY STRAINER tHP.l 2MD-7-3 255_4 _35 r fl 2CD-58-l /6-2CD-40 I 2CD-57-2_J\\ 1 zc-47-3V L_....'.::==::::'..-"['-;;c:;::;;;--,,,,..L._ l_., _____ L_-;--()../ ____..i.. ____ _l_-1><1---L----,---1 F7'-----CI< 1)--J EXPANSION JOINT (TYP.l 2MD-7-2 CONDENSATE PUMP ~ \\._,J I 2C-s 7-l~ PUMP PUMP I 2CD-64-2 L. 2C0-61-1 CHEM. INJECTION SEE NF-39240-1 2' 2CD-6~-1 I~3/4" '21 CONDENSATE (III/3) '22 CONDENSATE CIII/3) "i 2CD--47-2 k--12CD--'IB-2 I 12c --18-J i---- "23 2MD-7-l 1"-2C0-40 ~-L_J~ ) / 3/4-2C-4j ,_--,-,,.-~ CIII/3) I 2C0-45-3 h /12CD-74-l 2MD-8-3 7 2CD 6! 2 - '\\\\r=~~ .J / "21 CONDENSER I 2CD-61-4 l 2CD-49-1 I ._= 2MD-8-2 SPRAY PUMP 2MD 8 I 2-2c-OR~ 2C0*6B*l I 2' 1 2 3 4 5 6 j

  • 7 8

9 10 2CD-61-6 l--2-2CD-40 /12C0-6l-5 I CHECIED PRCIJECTND APP'O&CERT. Fl.MEO n,;,, mOIJ I document is a 1ool to......templayee:i in the perform'""' <rllheir JWII. Yoor pe,soro,I oalety "'Pr<Nldoo b ti!,' Lnlg smrrv pra,:ljO!III, pro(l8du.,.; 111d OGLipmorttM dl!oalbed In~ training prngramo. rnanllM! and SPAA'o. Slt!NIFICNITNO. NORTHERN STATES POWER COMPANY (}x-lEne,gr 8631!1 I -1°0 I 2 ~ l I 741!10 I I 2 I s I 4 I o I CL I FLOW DIAGRAM CONDENSATE SYSTEM UNIT 2 NONE I REV 82 PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF 39221 AEDWINll, MINNESOTA J z ~ f-- H $$USERNAME$$ NF-39221.0G"-J I NSP (ifNFRATIQN CAD I $$$$$$SY T I ~ $$$$$S$$$$$S YDA TE$$$$$$ $$$$$$$$$0ES IGNF IL$$$$$$$$$ 12 FIGURE 11. 1-4 REV. 37 CAD FILE: U11104.DGN N II) 0 0 0 0 0 0 ~ 0 co

A B C D E F G H 1 I 2 3 4 SHIELD BUILDING WALL 5 PLANE A <I ,-~-~--~~-A~ T'Y~~ !FE 6 1 r PLANE B ~---~----,----~--, !FT Aa !FT 504J ~? 04 7 r-------------------7 , - - - - - - - - -c-_~; ~1~4~:1- -: ~- ~£ :i 1466/467/495 1 ICONT I

I 1' I

I I I ~ dr\\ ritr\\ £ 50 ~ !FT ritr\\ dn !FT r-------i

~=-

8 XH-248-1 SS-38 A-4 9 + ISS-3-11 10 16-FW-B 14-FW-8 I F-3-2 11 14-FW-8 12 REVISIONS ~ AS BUILT-AOOED FE-27616 & ASSOC. lNSTRUMENTAll N TO l\\ AFWP L/0 COOLER PIPING. A PER ORR PI-11-109 OWN: LAB 6-6-ll CHK'D: PMB 6-8-11 MOD", EC-17465 APP' = CMR 6-8-11 ~ AS BUil T-REV' MISC LINE SIZES, car ~ ~ ~ ~ ~ ~--: 4 __ ~-~-~:~,_J ~~OM? 1~1 :: l !FW-125-9~ :l I F-3-1 "

~

IFCV-4L~:c~~---~-:O-N~~---~-l ~ = i-======~-- IHI IL;= - ~ CONT "91'0 Jt_ ABANDON IN PLACE ITE-14039e-- !TE-14071 e---- LINE NOS.&. SAFETY CLASS 1--- DESIGNATIDNS, ADDED GOV 31369 I I N LO V --~TE-15255! 16' IIA IIA iESl I -r-i F-s-2I 1\\£;:i I F 1 I I I OWN; DB 7-23-12 A ~ IIFW-145-71--g IF,CV-4~46FcWv 9 ~*cONT 4-FW-8 ~- --------@}=l_!~!~c~-- - t FW-125-21 r., ,:;:===========2r0~*7--+ ';-:::============2r0~"7-+- ~~~~~,E~\\'1908~18-12 1-Fw-23----. I F-~-t I ~ Az~~~ : I ITE~498 I 3/4* ~, IFw-125-tH. 1 ~ 1~i !"'IIF~-~2~2~_~ 81 15A ~~I:3E)ATER ---i F-4_11 \\. 15B ~~I/H3~ATER F-4_21 APP'= cMR 9_11-t2 16-FW-13 \\::_; C,:,,. I 31127 $ I F-5-1 I

i' FLOW t

t ~ AS BUILT-I !6-FW-13 4' 16-FW-12 "-. "i"_ 16-FW-11 16-FW-9 I !'I I !6-FW NOZZLE 2.Zfill.Z 16".,j 136-017 20_FW-3,~ 136-018 IF _20_41 I F-s-2 I 1 1 i------ C""l, c 1-FW-3 AED F1-1a01?,FE-2?s1?, ~ I 12' ,.!. ~~~, V ,i ROOT VLVS AF-143-3, 4, V !F-20-3I-LOC II LOCATION G-2,3. PER RR PI-12-13L B vc_.,,,1.....,1_,-F_,W c_-_,l"-6-,-----j,'-,,'~.,_ __ --... !-Fw-21-- C2 NSR I F-5-2 ! 1-FW-8 3/4*r CF-1-3 I I --~"" DC t-FW-3 IIA ~,

'I, 1'\\_
IIA AF-282-4,5,6,CAPPED IF-20 ~

IF-20-6t-F-22-71-+


cc;,s-;ci~./

IF 6 CONN &. SAFETY CLASS BRK ,.6' 18 IIA IFC 476 !FE --16-FW-8 '"-'F_,-2='2'--_--5,V=~=~ --jF-23-5! ITE-13149 I-20-FW-3 u ~ v-C ~CONT NF-39240-1 I 476 co B PER ORR PI-13-01113 0 D ~ --~ V UD F-1 I @ITE-13148 f-- ~ IF 11 2~ r-:: r-F-11-1 3/4* 14-FW-3 OWN: LAB 1-10-13 I' --2,, '6' 4" I F-5-41 31128 ! F-5-3 ! !j' 2.Z0fill Fl -v-16-FW-3 ~ : -~- CHK'D, PMB 1-11-13 i----::------ 16-FW-15 16-FW-14 \\16-FW-10 I l'I 16-FW-8 ~ 41231-r -----(zt-c_-;:,<1--'l'---.--,---t_-_L_ __ "'-.'-'!--"----.---,--t_--_J Fl MOD":EC-!B349 ~ 01 I 48097 41231 =-- 1-FW I 3/4" 12" l-FW-B FLOW l F 11 02 APP'D1 CMR 1-11-13 !SG-2-1 I- - !SG-2-3 ~ - ! CF-1-5 f-'i/ 1 !FW-125-8l-h NOZZLE r_JFW-!25_6 1 23112\\ lool ~~==: 7 MV I ~FW-145-BI CONTf-#- ~--~ 9" I I\\ 7 1 ~ AS BUILT-lsG-2-2 ~ - lsG-2-4 ~ - 2024 I ITE~499 I P

11.

IF-20-51,..}' 3/4'1, le_F_,,w_,-tce2c,5_-7CJ'i-;\\: : 7~Fw-125_5 1 ~~- FI I VALVE F-24-11NcoRREcTLY 1-SG I---+ I~ 1-SG ----- I D C""l ~ SHOWN AS A GLOBE VALVE. i--- ll1\\-------1 ~ ia* +/- ~1-------, ~ l I F-20-1 r~ ~ 21032 i F-6~~Fw-1~Fcv 48ts:w-8 F-6-3,' NF ~si401 i ~ 1~7; H~30! 1j1 \\a / l;~ \\_ -- -,coNT 4c8~:: 2:i0L0--i-~-~L"1XJ~ /4 FLow NozzLE ~\\----L--~ 26601 Y ~;~::~~::~~i~~f g1;,~ ~c!, I TEST ~ c!, \\------t TEST /21;~~ I ~ ~ \\;.;,,,/ FW-145-11 ( ~ ~ ~ ( FW-145-12 CONT CHK'D: CMR 10-1-13 ISG-3-1 I CONN CONN 1/2' FEEDWATER CONT I 7 '----,-'- (1Fii ~ /1 ]',_ MOD*,Ec-22144 Fii*¥i~ AF-12-2r TE~T L ___ A_u_X-FEii:iWATER___________________________ I PLANE A ~ ___ J PLANE B I cONT 47~97 HI

/

~ ~t;,__,,.::H=I~~~-~ ~'D~sc::,L~~-l-t3 12 Pt'.:.::_.., 1/2' AF-16-2>-:t I~~~~A~-:~~~1~~:~ T"" - -~~~5~ --~

~ - -~
1,IFE A-~-i;:--;;;--~

~T - - 6" RECIRC LINE FW-145-10 I ~I--Co(J;IF~W=-=1=45=-=1:--3--------, ~~~~~:~;;~L~L~-f°~~ C ! AF-12-1 f- - TEST 4' Q y_ _y 6" RECIRC LINE 2-FW-3 IF-22-2 n' n c_ __ _,___3,_-_,,A,_F_,-lce2c'__-e--__J_-n

,;""';1/

t PER ORR Pl-16-014 I AF-16-1 f-- --5L:t __ _,__-1 __ -'...,-A"'~'-~-"!0,_F-_,-~"-! _____ _:l~3,_--"A"-F_-1,.,1_,_l _-_____...,:ml~1*.,~ =6=s----------------,~ @~FT ~FT ~FT 50:@FT ~FT lFT @" ~ ~ ~ :;':;',, \\ C" "" ~ '""' ~";:\\:1:':,*,. 'C'.o/ [Esl 05F 05G 05 ~~ 05 505R 05 505 ll'F--2-3--~9>- ~ IF-22-11 """""'"'3-'-..1 ~--== ~~ ~7 ~ '~ g; ~ AS BUILT- ~~M tit:1J CONTt- __ -~ 'IF-23-l~L DELET'D BLIND FLNG CONN ~ 2 M 2 v 4 1-~-~: __ ~--------~---" 2 >-----~6~~-w~;-~------ 3/4-FW-7... -3/4-FW-6 3/4-FW-t73 l , 3/4-FW-18 4 I ~~~t:~~FR"3_';:-,-_4,7-i

  • TD CON M-U STG TNK 'II NF-39220 B-4 *

! AF-33-1 f-t1/2-AF-7~ I I 11 STEAM GENERATOR (]/1) 134-011 12 STEAM GENERATOR (1/1) 134-012 REACTOR BUILDING UNIT 1 FROM FROM CHEM FD SYS NF-39240-1 H-4 CHEM FD SYS NF-39240-1 G-4

  • I AF-31-2 >--

3/4-AF-24~ ! AF-31-1 I- ~ 3/4-AF-23__. ~ I AF-,2-21 DC !-AF-24 DE !-AF-23 1 JK:t8-3 MV kM?~\\ PI is-Fw-1---- --~ 'f 'i"'IF-23-21 I F-1-2 I ~----,11~~4 PER RR PI-1s-1s1 224 51 er 11103 f-----, t ~ F-1-1 I D D t 1/ WN= MEA 5-7-16 NSR C2 ~~', 1 6-FW-7 ITE-13069 f _ _ _ --l~T~E~-!~3~07~6~, CHK'D: MP 6-7-16 u.. LL C2 NSR ', I F-9-1 I F-9-21 p B MOD":EC-16823 ~ ZiE **s fm.. '-- - -" 1-FW-20 6

~;;_~9

~ 21~29}-L--t><,f-----'3/4'"-,...,' 6-FW-1 \\ / 6-FW-2 f-3/4"- 0 ----l><l,-Y21030 5 0~s 0:UIL~:7-I6 7145 IIA 118 7 FW-145-11 IFW-145-2 !fl AOOED BLINO FLNG CONN 41~ka 'A~F~-712=3~-~7'1 /r7A~F-~1723~-~5~1 41~k7 l----iF-22-91 IF-22-101- ~ !;11A 3 lNCLUDING VLV AF-47-1 & 02 ~I 1\\ 1/2 1/2" / r ~@02 3/4' D co,NT fc1 3/4' CO~l~rN3~ER ~lU~~ [ liutt J=[~D= ~

~~~::~:;~163~::-1 3j27) 1/2' --

1/2';;;,.,*, @(;,_3122 48,.,,---127 f[ D=[ (IIl/3) D ())1/3) OWN, JEK 10-11-16 CONT ~ 31874 IFW-26-11 145-261


SEE -----

145-262 CHK'D, MP 10-11-16 -*@1 AF-123-8 I '1 6' 10-FW-6 I ~ ~-i----1,--' NF-39222-1 L~,---~J MOD":EC-23531,27594 FI ~ ~ Ld I 'G PERFORATED PIPE APP': DB 10-11-16 18038 S,!, 6' 10-FW-7 j_Q ~ WITHIN CDSR 3/4-FW-4-o, --3/4-FW-5 ~ AS BUILT- - I I v_.::) CORRECTED LINE NUMBER ~ IFW-26-21 ~~-------~~ '1----;::::".~:::;-_J L~l~"::"1::::j',',',f---------< FROM 6-FW-2 TO 6-FW-l & 111 VLVNOS,F-26-1&.F-26-2 31875 I I 3/4" IF-22-31 IF-22-41 3/4" TO FW-26-1 & FW-26-2. + AUX BLOG PER ORR PI-19-079 ~.~.. --+ u IIA [IA u "TURB BLDG FEEDWATER D IF-23-31 ~. IF-23-41 D OWN, JEK 4-9-19 T CHK'D: ERN 4-10-19 f------_J ~ 3-AF -10 !-AF -1:F - !8-15\\ '--- ------ - -- ---~~:~ --;iu_x _FE-EDWA-TER-----------------------------------------------------------

~
~
::~;?~:

I -AF -10 f-----'--"'--cc-'--_.f '---~;;;;;~::_:~f- *-_-} CHE" FD SYS ~ I 1* 1 ADDED EQUIPMENT [D C2 ~ ~ o"'<:,---';>~ M ~ 3238 ~ CONTROL C3 IC [ .§._ J C3 NSR ~~~:o:i~N 41~1-t19 !-AF-9 ~ 1:-;;~~ A m -AA ~ F-18-4~ ~ "::!'j,;, I,,~,,

c:*,:""*"'".,

IAF-1s-12 ~ 46314 1 1,1,~,/2=fia=l\\'-.,J, _ _I~~ 1 J:~ C2 NSR r-- PER aRR PI-19-0a1 I AF-123-1 III IC C3 t '-iAF-15-tl t 7 t 7 t I AF-282-6 I - APP'D, 08 4-15-19 NSR C3 ?-* -- - ~ ITYP 41 18 III ~'r==~~ - IC III LEGEND Moo*,6ooc"021s67 11 AFWP

?v,il,

/ MV I IAF-123-31 c2 I CJ CLASS BREAK ~ As auiu-

i.

REMOVED 3/4* REOUCERS 118 D E c3 L/D SYS ~ 3223 IAF-15-21 223 ~F-15-31 AF-15-4 3-AF-6 r.~~ I AF-282-4 ~'al 'a}, AF-282-5 ~ 1/2" V F0) is 1c' QA TYPE IC NF-39222-2 1/2" 3-AF-3 -@ I [- t-J 1c:::=~ =1::l~=~I. DOWNSTREAM OF DRAINS ~ Fl ' ~- FE IAF-\\3-1 L....:;_ T 18034 Cl - SAFETY-RELATED; ISi CLASS I 11 AFWP c-4 c-5 NSoEfE 03~ '\\j 1/2" 27100 ~L:....::...._ I AF-143-3 OJ O)-_.[ AF-143-4 1/2" 1............... '-._ C2 - SAFETY-RELATED; ISI CLASS 2 ~~!~~io& L~~:0~fzt~o,. I AF-28-1 I L/0 CLRcs.~

  • t:!

8 RECIRC LINE t1/2-AF-7 NF-39223 -~ <I-3-AF-6 7 IAF-123-41 CJ - SAFETY-RELATED; ISi CLASS 3 AT GRID 8-5. 1-A; -5

~ - ~ ~ _ ; l~AF :.3@E.,-RECIR~~ENH-w V-332851 r - --ITE-13077 I 1410~11271 I AF-33-2 (

F-6 ~Sb c~ 12 ~~':"f9}£~-lYS ~SV-33286 =~=* '-;,,.,,

1

- - - 41iksl SR - ~~~~ciD~E~t1~~ FLUID BOUNDARY:

~:= ::PI;~:~~~:

!-AF-7-- ! AF-32-3 f- _J u N l ~ 27616 ht~~:i\\.p ~ A/S rlA~F~-~!8~-~11 AF 2 11B IC 12 AFWP G-4 G-5 '~c-~ IAF-47-tll3-AF-7 I 01 'I NSR - NON-SAFETY-RELATED CHK'D, PMB 7-31-19 ~ IC C3 <f \\ I A 9 r--- L/0 CLR ! 1" l j I MOD":601000001541 III f NSR ;i, -.... --, ;,;,: AF-!4a-l ~ j, I 1-AF-3 4 CJ t NS~ p @I FE , -;; !-AF-8 ~ 1 ----<: '~ 31154 ,AF-18-2 --jTE-13079 I.e@ IA, 1B IC, IIA, JIB, III DENOTES PIPING QA TYPES APP'* as 7-31-19 III NSR ------ '\\ ~ 1AF 143 21 IAF-17-tl AF-145-11_ IC III 21034 11334 27194 AF-27-2 r, _____ J IAF-17-2 !-AF-6 IAF-145-21, 11j~6 ~ AS BUILT-2* TEST,.._I [ lO O) J 2-AF-4: +I 2-AF-3 ~AF-32-41 2" TESTI NOTE 8 2-AF-7 1 2-AF-6 3/4" NOTES~ REVISED DRAWING PER I 7 1 FW-AMSAC PROCESS CONTROi F FE 27193 n 18278 IAF-25-11 IAF-27_1 I AF-282-tt-10 o)-tAF-282-21 Nj'\\SR CJ,. D 3/4-AF-19 3/4" PT I .L I~ 0E"\\ I 3/4* 17P0T60

1.

FOR VALVE POSITIONS SEE PS REPLACEMENT PROJECT. -, AF-26-5 I. AF-282-31--; ;£ J) AF-36-2 I I B !Cr," "~A~F~-!~9~-5~1 ' -I AF-13-3 I AF-145-3 C3 t NSR 17058 !-AF-4 IAF-25-ZI Ill tNSR ~ ~ ~SR + C3.. 3/4-AF-20 -I AF-13-4 I..J;~ R ~ L_____________________ MANUAL C PROCEDURE CHECKLIST. PER ORR PI-2'-06B ,~-~,~FIi~ AF-3s-3 III NSR c:>t 7~AF-15-9 I A! J ~F-26-6 ~ l[B IC

2. UNLESS OTHERWISE SHOWN, CLASS BOUNDARIES OWN: LAB 11-16-20 1/2*

8616 11 IC III IAF-19-6 1 I 1AF-15-10I CHK'D, LAS 12-8-20 ~ l,AF 195 Ill r STOP AT VENT ANO DRAIN VALVES WITH 1/2* I s:f" TD AFWP M'f 1/2' - PS 11:,IAF-281-31 CJ NSR MOD":6MOD001!126652 l~~~~~~f:====~@!5~!J~!1, I 14 Fl IAF-195-21 ~ JC Ill t DOWNSTREAM ITEMS le.g., PIPE, CAPS, ETC.I APP'D, 08 12_8_20 ~ 11/ll 17700 C3 NSR PS 1/2" --3-AF-6 CLASSED AS NON-SAFETY-RELATED, f",',.:::-.::::___::....::_:::__--1 Ji!* IAF 7 3/4"' 'AF-36-t ' ~ 1 145-201 i1/2* ,. CJ~ SR., AF-18-13'

  • IC t us*

1/4* I t8279 t7777 f----s-R--l+"'1cJ-* 3-~~ 1-1/2--1., rc IIB ~ As su1L T- ~ 1/2. IC IC I AF 54 IAF-281-41 1-AF-22 3 +- DENOTES CATEGORY I ADDED ROOT VALVE NSR~ CJ \\ PI ~ v ~--~ 1 AF 21 -f - Fw-12s-9 AT GRrn A-a. 4 3/4-AF-2 ~ o\\ a*

  • IC IC * ~~ f VENTILATIDN ZONE II IC 11355 III NSR 3/4'

~ ' r-NFG3-121B --2° v + NS: '--BASE PLATE DRAIN t1/2*l 1 12 3' f~~~~~~~.;~~~~-~ _ __.:.11~1/2'--"---__.:l=A=F=-1=8=-1=4*1-. --t-AF-55


" IAF-34-1

'f,._ 1/2-AF-3 C3 t SR y y MD AFWP 1.,/~ NS~ l I PER ORR Pl-2'-073 \\ "0~, 1/2" IC IC PS 145-331 Ill D CHK'D, WJS 12-16-20

>112 -

3/4 AF 13

5. I/1 DENOTES EQUIPMENT QA TYPE/

MOD": 601000002528 N C: '() \\ 1/2" IAF-133-ll a 1 1/2" PS ~-----------< N \\ IC CJ III 4 D D (l/l) BASE PLATE DRAIN y

4. FOR SYMBOLS SEE XH-1-105, NF-39214, OWN, JEK 12_9_20 Y

15it.!91 3/4-AF-2 7

,i- ~2-I 4 ' 17704 NSR +

C3 IAF-133-21 5 DESIGN CLASS. APP': OB 12-16-20 N !-AF-53 vi, ICL-113-5! IAF-21 C~NSR y7.AF-133-5I @III IC 1/2 17776 ~ FROM CDNOl ~ TI ~

  • £..j

.. ~ + C3 NSR 6, 0 DENOTES CONTAINMENT PENTETRATIDN NUMBERS, STG TNKS O =A=F=-3=5:::-.,.,1--1,~~o ~s 12046 f-------, I-AF-I IC' :is PT IC C3 !AF-t3'3-6! 3/4-AF-16

  • C3 SR.
  • t..

~ NF-39220 46420 INTERNALS 17057 Ill NSR IC IC !-AF-2 IC_ 118 CJ NSR

7. tg-. DENOTES CONDENSER CONNECTION NUMBER.

E-3


[§J

!AF-28-5! !AF-133-3! 7r'\\ ~ t 'Cl z 2M3V33 r,;;;i 4~EAMF~IVED 1/2" I I PT !ES] !AF-2!-2 I-~ @I fsl ~INTERNALS IAF: ZIB ' ~61

  • IC Ill..

8, SHELL SIDE CLASS BOUNDARY SR, ~ 118; -_1:QE-5~ ."i" ~ ,t7166) 2335 ~$ 0 12047 L,e.J REMOVED 1/2' PT _._._ ______,;----t1/2-OE-56 !~ =-~~ AF-29 _1 1 1-AF-15 ~ '-._./ M f-------_cc_- --,--=-;,;--------.... -----( 17167 9, C3/NSR BOUNDARY FOR TI-!2046/12047 IS AT ITS THERMOWELL,

  • ~I~

NSR CJ !AF-14-tl =~~-1,,,,.tli;l-.,__,_.._, ,.c3 NSR., 4-AF-2 ,~A=F~-2=9~-2~, "' *1-AF-17 AF-1~3-4 ~ III IAF-37-1 3/4-AF-14 Ii,, I IC III 3/4 "f ~Eo~P~4 ~ 2~~5 IIB IC 4-AF-t

  • CJ t NS~ b

~ ~SR~ C3., IAF-t4-3 ,-AF-t7 c; t NSR ~ REFERENCE DWGS: ~::~:.:;*,:::::::::::.::~=~::::::.:::,::~:,:;,:::::::::!:::." ~ IAF-25-51 NF-39216-2 --, r---~-------------~ --~ IC+ III ~ 11B IC ~~~7 4-AF-2

  • IC+ 111*

D ~MAW 1~~5-4-07 8630 I I I I I NI 8-4 I ICL-115-41 NF-39222 AF L/0 SYSTEM FLOW DIA. UNIT 1 & 2 Slc:tllRMfTNO. 400 I 144101 I 7400 I 2-CL-111 "i1/2~-DE-56 [IB TD WST 1 3/4-CL-140 '"~= f------t-:J---f:1---------------E--------------=-=....:..:.:_ ____________________________ _J NF-3G9_22t 7-1 --l> ~ -<>------------1 ~ NF-39223 - AF SYSTEM FLOW DIA, UNIT 2 TO U2 AFW PMPS PROJECTNO I ,._ 3/4-CL-139 2-CL-111 RECIRC RTRN LN MV NF-39240 CF SYSTEM FLOW DIA UNIT I & 2 m,oce~ I ---;==::=:::;'1------------'"-'..._=-----------t----------"-=-_!1"',t~- 11----Cjj------ NF-~~1223 L.:.J II ~SRC3*,-----{@- ~ 202 NF-39216 CL SYSTEM FLOW DIA.UNIT 1 Fl.MED I I 2 I s I 4 I ICLI 1 FLOW D[AGRAM FEEDWATER & AUX FEEDWATER UNIT 1 H f TD WST !CL-l15-J! !AF-25-7! I !AF-25-6! I D Ill JC mJs NF-39217 CL SYSTEM FLOW DIA, UNIT 2 NF-39216-2,._ - - -t,1<1--- A TD UJF~~9~if~2 HOR B-4 NSR + C3 FROM 21 AFWP RECIRC LN FROM CON STG TNKS 46434 FROM U2 CL SPLY NF-39220 - CD SYSTEM FLOW DIA. UNIT I C-1

  • III -

IC* NF-~'.31223 NF-f-~220 NF-rl~t 7-t NF-39218 - MS SYSTEM FLOW DIA, UNIT I NORTHERN STATES POWER COMPANY 11-*- PRAIRIE ISLAND NUCLEAR GENERATING PLANT RED WING, MINNESOTA SCALE NONE I REV 91 NF-39222 1 I 2 I 3 I 4 I 5 I 6 t 7 I 8 I 9 I 10 I NF-39222,DG" INSRP rLIIERIJ/OJI CJilj 12 FIGURE 11. 1-5 REV. 37 CAD FILE: U11105.DGN N an ti,. 0 0 0 0 0 0 ~ 0 co

A B C D E F G H 'x3" FLUE I FITTINGS (TYP 21 1 AF-12-4 !AF-16-4 1--, j V 2FW-20-3 rn I-2FW-27 16-2FW-13 C2 1B NSR III l-ZFW-29 2FW-20-4 ~ ~--MC TEST 2SG-3-l CONN 3-2AF-12 3-2AF-II u 21 STEAM GENERATOR 11/ll 234-011 2AF-30-2 1/2-2AF-II 2 SHIELD BLDG WALL !2FW-8-l! I 16-2FW-13 !AF-12-3!

------ :!AF-16-3!

( ' )I. ! 2AF-30-!f-1/2-2AF -12 I 22 STEAM GENERATOR {l/1) 234-012 3 MV 2248 iESl ~ __ I 4 , _,...--.,_c~NT "93'!...- ~ 0 I- - -2 CONT I I 2TE-498 I MV 2249 ~ Fl 41692 02 3-2AF-10 3-2AF-9 ZAF-123-8 CONT 4-2FW-8 2FW-6-I 5 2FW-125-2 HI 2FW-125-I LO ZFW-22-8 1-ZFW-30 "93" LO HI 27011 6 co N <D 7 PLANE A 8 PLANE B r- - - -T - - 7 I I I I I 1r---- 1 I I I I I I I I I


7


~I L _______________

IZFMl_ __ _ PLANE A r--T--7---,- I I I cl, CONT "93" 3/4-ZFW-7 10-ZFW-7 TD ERCS 2-~ 7 ZFW-23-9 10" RECIRC LINE I I I I I ~ 2- _J 82-7 ____ _J I I 16-2FW-8 16-2FW-8 AUX TURB 9 XH-248-1-2 3/4' SAMPLE CONN SS-238 A-6 + ZSS-3-2 I-, 3/4-ZFW-8 10 11 I ZCF-1-1 f--- 3/4' 16-ZFW-8 ZFW-3-1 ABANDON 16' [N PLACE ITE-14056I- - - .,._14-ZFW-8 - ~TE-15311 IIA 20"__.. j ,;==========:r-"7 7 2FW-4-l 25A FW HEATER 1111/3) 236-017 22-ZFW-8 20-ZFW-3 ITE-13150 ~ - --- - !ZFW-22-51----- l' 1' DRAIN L.;.J tTYPl D Fl ZFW-11-1 417331-T-r-= ---7 01 I 4859 ~ ~ CONT 16-2FW-3 2FW-I45-II LO HI ! ZFW-145 1-10 ! V ZFW-3-2 1---c ITE-140721-20' 25B FW HEATER 1111/3) 236-018 -j ZFW-23-5 ! 3/4-ZFW-19 16-2FW-3 FLOW NOZZLE 20-ZFW-3 ITE-13151 I------ 1-ZFW-20 !ZFW-22-6f-w D LO ! ZFW-145-12 ! HI ! ZF~-145-13 ! 10-ZFW-7 16-2FW-3 ! ZFW-22-2 ! 14-ZFW-8 1--, Fl I 41733 : 02 I ~i 10" REC!RC LINE 10-2FW-6 I l-2FW-5 CONT 1-2FW-22 1-ZFW-23 ZFW-22-9 l" DRAIN ~ ITYP) D FE'.,._~B---2+~-IS_t '**, ' ::* ' *, '** 27146 41691 CONT <TYPJ ! ZAF-123-5 ! I 02 FROM CHEM FD SYS NF-39240-1 H-9 G-9 - 1/2" IIA 11B ZFW-26-1 3/4-ZFW-21 '-"-=-"-'=-'--j-J V ! ZFW-23-8 ! ZA CONDENSER 1111/3) N l-ZFW-3 ! ZFW-22-1 ! l' WARM UP LINE ITYP) CONT ' 3 ! 2FW-24-l ! y 2-ZFW-3 r"', ", 16-2FW-2 D 3 3 2FW-25-1 ~ ~ I 2FW-25-2 I i(i 10-ZFW-l I 10-ZFW-2 L...j><J-"'---"'-------"---j Pl PI ITE-13087 ~ - 1 I 11130 >--~ I I I L I ! ZFW-23-1 ! I ! ZFW-23-2 ! I 3/4-2FW-17 y y , - - ~TE-13094 I I I I 11," I I I 41693 - - 01 D D __ J 3/4" ZFW-145-1 21 FW PUMP 1111/3) 245-261 ZFW-1-1 2FW-l-2 22 FW PUMP 1111/3) 245-262 ZFW-145-2 l" WARM UP LINE (TY Pl 12 REVISIONS 85 AS BUil T-ADDEO Pl-18618, FE-27618. ROOT YLVS 2AF-143-1, 2, ZAF-282-1, 2, 3, CAPPED CONN.~ SAFETY CLASS BRK PER ORR Pl-13-197 OWN: DB IEl-25-13 CHK'D: PMB HIJ-30-13 MOD", EC-18350 APP' : CMR 10-30-13 86 AS BUILT-ADDEO NEW RECIRCULATIDN LINES 3-2SG-1 & 3-2SG-2 AND ASSOCIATED VALVES 2SG-l-1 & ZSG-1-2. PER ORR Pl-14-036 OWN: LAB 2-5-14 CHK'D: TLL 2-5-14 MOD": EC-16807 APP' : CMR 2-5-14 87 AS BUILT-ADDEO PERFORMANCE TEST lNSTR LINES l-2SG-l & 2 AND ASSOC VLVS 2SG-2-1, 2SG-3-I, 2S0-2-2,3, SC BRK. PER ORR Pl-14-065 OWN: OB 4-25-14 CHK'D: RWR 4-25-14 MOD": EC-16812 APP'D1 CMR 4-25-14 88 AS BUil T-ADDEO VALVE AF-47-2 AND BLINO FLANGE FOR FLEX EQUIPMENT TIE-IN. PER ORR Pl-15-151 OWN: JEK 10-29-15 CHK'D: MP ll-3-15 MD ": EC-23532 APP' : KJW 11-4-15 89 AS BUil T-REV' VLV AF-35-2 FROM A NC GLOBE VLV TO A NC BALL VLV Cl LOC G-8. PER ORR Pl-15-175 OWN: DB tl-12-15 CHK'D: JS 11-16-15 MDD111 EC-16830 APP' : KJW 11-16-15 90 AS BUILT-ADDEO LINE ND. 1-2AF-55 AT LDC G-10, PER ORR Pl-16-229 OWN: JEK 10-2(11-16 CHK'D: BJS 10-21-16 MOD": EC-17065 APP' : DB 10-21-t6 91 AS BUil T-CHANGED LINE NO. 20-FW-8 TO SHOW JUST 20' LINE AT LDC B-10 &. B-11. PER ORR Pl-19-079 OWN: JEK 4-9-19 CHK'D: ERN 4-10-19 MOD": 6DOC0002l909 APP' : DB 4-11-19 92 AS BUil T-REACTOR BUILDING UNIT 2 AUX BLDG i TURB BLOG+------ T T ___ '**................. !ZAF-31-21-----


j ZAF-31-1 !

ZFW-22-3 3/4-ZFW-4 2FW-22-4 ADDEO EQUIPMENT ID 258-091 TO STRAINER AT LDC G-8, !2AF-33-If-l1/2-2AF-24 !ZAF-32-3f-N N AF-25-3 ~ u " 1/4" l1/2-2AF-24 CNTRL 'Y ZAF-282-1 o o ZAF-282-2 y ~ !ZAF-282-3! D C3 IC [ 0 NSR 111 2-2AF-7 AF-27-3 TEST LINE IC I 1/2" A/S 1/2" 21 MD AFWP (I/1) 245-331 NSRt C3 IIE II Ill IC ! ZAF-133-5 ! 3/4-ZAF-18 l-ZAF-9 3-ZAF-10 I 3-ZAF-6 AF 7 3/4-ZAF-27 AF-18-8 AF-18-9 3/4-2AF-26 1-ZAF-27 I :ID !ZAF-32-2 ! l-2AF-10 l-ZAF-26 I :ID 7 !ZAF-32-1! M, ~ ~ 1B Ill I 3-2AF-6 -1TE-13095 I 1 =r-- NF-39222 r.1 Z~A~F~-1~3~-c,1 I I AF-13-1 I F-5 ~~- ZAF-33-2 -jAF-13-5! 1--1 AF-15-11 ! C3tNSR "1c 111* ! 2AF-145-l f-/" 2AF-145-3 PI 41691 01 l1/2-2AF-25 ZAF-32-4 l-ZAF-25 3-2AF-6 1-ZAF-21 rZ_A_F_-1_8_-l<<,l-ZAF-54 3' ~NS~ Ill BASE PLATE ORN (TYP Zl l1/2" C3 SR r2~A~F~-~13~3--l, C 1/2" PS r----~ ~ -----------C-:J-------,-i 17779 y D 2-CL-112 !AF-21-3f--- l1/2-E-56 w D l-2AF-2 f-----------,j,/1-] INTERNALS REMOVED ---lfil AF-14-5 AF-28-7 4-2AF-2 ! ZCL-115-3] 3/4 I !ZAF-133-3! 2AF-29-l 1-ZAF-22 ' 1/2)----'---------, w D 4-DE-56 NSRl C3 11B IC ___ - -l> -2CL-139 [Esl I l L-~

NSRC3

~.!'.11 3/4-ZAF-19 ----:-JI **-- ~ y FROM

  • 111 ICI i

MV CON STG TNKS TD WST FROM Ul CL SPL Y z 0z IC Ill D NF-39220 T u1 AFw PMPs !AF-;2~5;:_ 7':'l_l ____ _'.:l*:::'F=i-tz~5-:::'6"'.l _____ _'.E:_-_::2__,---igc:_l__l£.__N_F_-_ll39':.Z~1-6_-z _____ NF_-_3§.9:_:z~16_-_z __


_J RECIRC RTRN LN 1

2-CL-112 B-3 B-3 2FW-23-3

    • , ** '**, ** '**,. *, **...... D 3/4*

II A FEED WATER - ----- - ------ ----- - ------ -- - ------ --- **7 ZAF-281-3 1/4" 3/4-2AF-29

-1 AF-26-8 ! r:l 1/4" FI 18281 N

3/4" ZAF-281-4 !AF-26-101----- NSRt C3 "111 Ic* l-ZAF-53 r.A=F~-3~4-_2= AUX FEEDWATER AF-36-6 AF-36-5 1/2" AF-36-4 PI ~ 11356

C 2CL-113-3 NSRJi!ij c3Vc N
ie

,n Cl ~~ 3/4' ,/,-2AF-l AF-35-2 NF-39219 G-4 22 TD AFWP (1/ll 245-201 y ! AF-21-4 f- ~ D D 4-0E-56 l!Bt l1/2-DE-56 III --jAF-37-4I u FROM CON STG TNKS NF-39220 E-2 D !AF-14-7! TO WST NF-39217-1 -7 G-4 I 4-2AF-l NSR~II: C3 IC " --IZCL-115-4! NF-39222 -- H-5 TO UZ CL RTRN HOR FROM U2 CL SPL Y NF-39217-1 J'/r - -- 3/4-2CL-140 1 2 3 4 5 6 NF-39217-1 B-1 7 G-3 8 9 REFERENCE DWGS AF-13-6 AF-15-12 3-ZAF-3 C3 IC l1/2" !ZAF-18-14! l-ZAF-17 I 3" *1 NSR C3 SR ~. t. III 1/2* IC IC CJ~ NSRTm NSR 11B I' IIA ZAF-145-4 I ZFW-23-4

  • BREAK DOWN 3/4" ORIFICE (TYPl PER ORR Pl-19-087 DWN1 JEK 4-12-1<;1 CHK'D: LJN 4-15-19 MOD":6DOC00027867 CZ C3 is I 1c'

~ D 3/4" DRAIN ITYPl LEGEND CLASS BREAK DA TYPE APP' : DB 4-15-19 93 AS BUil T-DELETED INSTR NUMBERS 4173402, 4173403, 4173702, 4173703, 4250401 &. 4251001 PER FW/AMSAC PROCESS CONT REPL PROJECT. PER ORR Pl-20-03 DWN: JEK 5-7-20 CHK'D: EC 5-26-20 MOD1116MOD00026652 APP' : DB 5-27-20 Cl - SAFETY-RELATED; ISi CLASS CZ - SAFETY-RELATED; !SI CLASS 2 C3 - SAFETY-RELATED; ISI CLASS 3 SR - SAFETY-RELATED FLUID BOUNDARY; NON-CODE CLASS NSR - NON-SAFETY-RELATED IA, IB, IC, IIA, 11B, III DENOTES PIPING DA TYPES NOTES:

1.

FOR VALVE POSITIONS SEE OPS MANUAL C PROCEDURE CHECKLIST.

2. UNLESS OTHERWISE SHDWN,CLASS BOUNDARIES STOP AT VENT AND DRAIN VALVES WITH DOWNSTREAM ITEMS le,g., PIPE, CAPS, ETC,l CLASSED AS NON-SAFETY-RELATED.

+- DENOTES CATEGORY I

3.

VENTILATION ZONE 4, 1/1 DENOTES EQUIPMENT DA TYPE/ DESIGN CLASS. 5, 0 DENOTES CONTAINMENT PEN* (:§]-- INTERNALS REMOVED !ZAF-133-4! 1/2* I

6. DENOTES CONDENSER CONNECTION NUMBER.

l-ZAF-19 2AF-29-2 3/4-ZAF-15 4-ZAF-l 10 y D DWN MAW CHECl<ED PROJECT NO APP' il,CERT Fl.ME DAlE 5-8-07

7.

SHELL SIDE CLASS BOUNDARY SR.

8. FOR SYMBOLS SEE XH-1-105, NF-39214.
9. C3/NSR BOUNDARY FDR TI-12045/12050 IS AT ITS THERMDWELL.

111~ mop /doc,mom Is

  • tool to asslSI empl"I"'"" ~ lhe pe,lorrram>> Ol'tllelr )ll::s. YoJr peroonal salet'I I* pra.lded br tr)o" usr,;i sar,cy pr!Mrtlae>. pr.:,oe,ues and e!JJlpmeot as dOSCllb<:d i,.aer, trrlrl'{l prograr,s, manuai. md SPN!'s 81c:tllRCNITNO.

8630 2 4410 FLOW DIAGRAM FEEDWATER & AUX FEEDWATER UNIT 2 7400 NORTHERN STATES POWER COMPANY 1} """1Ene,gr SCALE NONE REV 93 PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF---39223 RED WING, MINNESOTA NF-3<;1223, G"" j NSP GENERATION CNJ j 12 A B C D E F ("] N N CJ' ("] J_ z H FIGURE 11. 1-6 REV. 37 CAD FILE: U11105.DGN N an ti,. 0 0 0 0 0 0 ~ 0 co

1 A B C D E F \\ G H 1 [ LA~ L A-Z - Z 2 CO"'-/ TR.OL J 2 3 4 OP E RAT I NG VEN T (TYP I TO ATMOS- ~ "" ~S-SB-38 ~ i,,-. ~o~ FROM S.G.B. FLASH TANK STEAM LINE H' NF-B8740 (A-7> [ 3 - H-76 ) f 3-HD-77 > 'T'O 5UM? TYPICAL V-e-'lt,,,),.- 4 ~R.Alt-.J PI Fl'ltrJ~ FOR HA j ll~F.W, H F:.A,.,__"'-!:, 3 4 5 S,-!liL L OUTLET 11 B DRAIN COOLe.R (m/ ~ l 5 JHY-4 -'2 I HV-1*58J ~ ~---,:t,4\\J 7 1 ' 1-<\\!-"' -41 ~---1: µv-6-3 I 6 7 TO ATMOS. I I ~-*................... I 16~2 I 1 TB I 2 I REFE. R E IJC'e. -PIPJ*j"'. Dv-JG,.\\..JO'S. C::>'r'STE.M : BLE.a.O P l PIJJ (!J. aJF"-~":!12rog-1 ~F"-3'3'2:69-'2. ,e,v'&TE.M; HEATER V E >-IT "1r*'39279-I >,IF'- :.':3'2."1'9-'2. Ucve.c:r.. o..., ALAQ.., ~..,Al:al= ~\\...ASS PIP\\N~ NF* 39ao 2- -2. 6 7 8 GLAND SEAL STEAM~ SEE OWG. NF - 3~218 9 10 TO ATMOS. TB-t-3 TB-1-4 I 2A +- REHE.ATER '[ A CRAIN,-+ TANK (11!/3) 11 I" .I -F-OR c.o'~"T '=,'i:-'i:- DW~ N'F- ~.:fl.\\'o 12 REVISIONS V AS BU[LT-AOOED IIIEW MSR TUBE Bl..NCl_E:S PER ~R PJ-9 4-86 DWN1 JDS 07-(q. q,1 CMl('D: JPO 07*27-1:14 M00*1 e.qvqq0 FILMED: 08-12-94 W OS BUILT* ADD MSR RELIEF SEALHtlG STEAM VALVES PER ORR PI 52 WN1 ASJ 06*02*'!'1 CHK'D1 PAS 07106/qq M00* 1.,....--/J--/ FILMED 7 /'19 X AS BUILT-REV, WORDING FROM SUCTION TO CASING AT COOR. c-e. PER ORR Pl-04-052 OWN: DB 6-30-04 CHIC'D, CMR 7 0'1 MOO*,,,....___ FILMED 8- 041 ]S AS BlJIL T* CHANGEO HV-6-8 FROM ul...OBE TO GATE VALVE. PER ORR PJ-08-101 WN: JLB 11-10-06 CHK'01 MC l l-17-08 M00*1 EC-12'528 FILMEOt 12/08 77 AS BUIL T-REMOVE GADE OLASS SHOWN AT E-4 PER ORR Pl-0'!-04 1 WN1 JLB 5 0'! CHK'D1 N',IM 5*l8*0'l MOO*: EC-13412 FILHEO: 6/ 0 '9 78 AS &JILT-1'\\00ED LINE NO.', PER EC-13861. WN: LAB 3-12-10 CHK'D1 BCS 5-6-10 AS BUILT- ~ORRECTEO FOR CONT.REF. DRAWING NO, PER EC-ll667. PER ORR PJ-0q-105 OWN: LAB 3-12-10 CHl('01 JMC 4*2<J-10 MOO*t EC-116,87 APP': CMR 5-6-10 FROM S6B /:'/.,4.SH ... ---~1~J1*--._ Ti'ANI( #/J Ntc* 88740 (A* 7) 79 AS 81.JILT-MOYED LINE 6-S8-38 TO VENT LINE FRIJ-1 14A &. 14B Fw HEATERS FRO~ VENT LINE FROM lSA a. 158 FW HEATERS. i I 1-n e, LEGEND DEN OT£ S TIE-IN TO E.,VSTIN6 SYSTEM @ T't+Ru@ t':)£1',.,)0Y~.S... -n..JR.P-:d...,~,..f!-R M l~Al-CO~t,.)15,C.,...I CNS, ~~"T!!.Et--:,or~!) -F-U~NISt+Cb P!)Y Wi::ST'l t,,.JC=-t+OUS~ C.CR.P.

  • - t:>e.-NOT'P-S FUFtNl:>H-11-l:lo w1r+ t;Q..UIPM~Nl';

V @TH'i:.I.J@ Oa.NO""TC..~ C..ONQE:.N~i;.~ "'TE:.CZ.N1 1Nt:I.\\.... <:,..ON.N~<..TI0~~ - - OENOTE.S L I MIT.S 01=" QA TYPE..S I[A 1Jl:i!> J\\MD l!I-D'E.NOTE.S THE PIPIN G, QA TYPE5 I~) (lll/3 ) *DE.N0r= Tl1E E.q u1PMENT Q.A. TYPE / bESl(,N <L... SS ... ~ I T DENOTES CA.Te:G ORY I VENT\\LA.TION ZONE, 8 9 I... - ~4 ~A..M PLL C.ONN. '5$-'l~ ~E..f-OW 4 ).- k lAW

  • Z48*1

"°J IA DRAl \\.l COOLER . \\_ i H D-4-8 ! CIIl/3) ~ : --====r~=-=-=-=-=....:-. --jj}H~0~-:'.4!:-i'-JI 1>N -6 *71 -j HV-1*621 SH!e:L L OUTLET PER ORR Pl-18-073 OWN1 JEK 8-2-18 CHK'Di AS 8-2-18 MOD*, 60100000081"1 /'\\PP'O, 08 8-2-18 80 AS 8UIL T-ADDEO LIi'£ NI...M:IERS 3-HO-74, 3-H - 75, 3-H-76 ANO 3-M0-77. PER ORR Pl-1'9-07'9 OWN: JEX 4-'9-1'9 CHK'D, ERN 4-10-1 '9 MOO*, 600C00021':l0'9 N'P'Ot 08 INTERLOCK LOGIC DRAWING

  • NF-40316 n,,_/- *-1D-~ ln""' ~lll-jm,. Y<o--_,- p,awka!l,r

.... LMICl~pc-, pr,:,codu.vnloq.....,cM_tl,..._~,,_,.,.,_andSPM'1. 10 ....,,.tu,c:srr. FLOW DIAGRAM UNIT

  • BLEED STEAM & HEATER VENTS NORTHERN STATES POWER COMP.-.NY fJ,11DM""'W

-.., NONE ~ 80 PRAIRJE ISLAND NUCLEAR GENERATING PLANT NF--39224 Rfl) Wlr<<l MINIE:SOT/\\ H USERNAl£U 'UtUSSTT(IE.IUU 1USISTDA T ESUHI $HU1,$$$0ES. IGNF IL$$$$$$$$$ t-..F-3'9224.DCl,,J I W itiit@,jw@ I 12 A B C D E F -sj-N N CJ' C') J z H FIGURE 11. 1-7 REV.37 CAD FILE: Ul 1107.DGN N II) 0 0 0 0 0 0 ~ 0 co

A f-- B C f-- D E F G H 1 11E.LIE(F Vf':LVE T'/P l IZMD-Z0-7 "'*2. *A 1 ZMD-22* 1 " 1.1 9 I 2MP*'l2*2 \\ ~ZIA 1'2.HV-I* 37

,1!216-l'Z f-111* 1*.3&

\\ \\ Ji[ I" ,....,c_ .l[B "z, A I 2Ho-zo-14*I "'21 B 121-1~-z.-,sl 1 2 3 4 I 2 I 3 I 4 I 5 6 7 8 9 10 2MS-43-'4 I 2MS-'4J-J t-2MS--43*2 I T~----- GLAt,,O SE.AL STEAM SEE DWG. NF-3'J2tq ____ ~ I 2MS-l I 2MS- *U -4 I ) [ ZMS-44*5 I lr,2M"'Sc-_c-,.c-_c-,-r-11-----\\ f-"'1::,_,j.-\\t4--l----'1r-------'l'-- I 2MS - "1

  • 2 I 21/2-2HD-B1----

+2-eE!L-18 ---,. L..__ _ __ _ J Ol'<F/Ct:: CO N TROL, 5t:CTION ~LE.E.O PIP11'..)C:j~ NF-,,'9'2.70 -1 "--IF"* ':.'3'2"70*-Z HE.A,T <c.-R Y!ic."-IT PI PH-..\\q_ WF"- :. *'9 -c60

  • 1

>-!F,- '3'3 '260--Z Le VEL1'~o,_, ALARM ~,s.t,..c..E ~CA..55 P1P1NC:l NF'" *3~3. t 3-"Z. 5 I 6 Li::GEND Df:N01E.S EXISTING SYSTEM T1E*tN Tl.11':CU @) D1=WOTl=S TUli:e>l tJE-Te-i: M lt-J A.L COtJ<JE-<'.-T lO'-.\\.a,. D E-..,JOTE-':::i l= LJR'"),.Jl~~E-D OY \\NE=----.:-T 1}..J6 1-tou*':'.i-& C::.O~P-DEc WOTE-"5 FUl'tNISl-lf.-D W IT '-I &G/UIP M&NT T Ll i?::U oe::-N~rs---=:. <-Df..-,I DE-i,...J.~E-- 1<'" TE-~v.1i,-..lt>,._L c.,c;,t-,Jt-.Jr:-.::..T1c;,N"';,, + OEN0T2--5 " Lli-'1 1T5 O'F'"" Q.A T YPE-0 1IA,lIB,fil OEN o-* :: '.:) T*.~f' P i P! t¥-l q ti., T'( PE..S _ 11/s DE~OJE:; T HE EQUlPM [ NT Q,,._, TYP'f/Db'=>t~~ C(...A~S. ~£!,i.l. ~ENOTES CATEGORY I VENTILATION ZONE t 7 I 8 I 9 12 HO "'1 l HO - Y*6 1 I 10 _L" 2., 11 l 21/2*2H0- B4 12 REVISIONS [§_j AS BUILT-ADD MSR RELIEF SEALING STEAM VALv£.S. PER ORR PMn,- 1-47 WN; MPP 8/31/00 CHlot'D: MOO*: t-1::-0*20 FILMED [I_J AS BUILT-CHANCED WDRD!r<<.: FROM SUCTION TO CASING AT COORO. C-8 PER DRR Pl-04*0!52 OWN= DB 7-2-04 CHK'D1 CMR 7-7-011 MOO*:,__ FILMED 8* 041 lZfil AS BUil T-REMOVE GAUE ULASS SHOWN AT E-4. PER ORR P1* 0'H1MI OWN; JLB 5-6-89 CHK'Dt NWM 5* 19* 09 MOO*: EC-13412 FILMED, 6/ 09 [z.?J AS BUILT-CORRECTED & AOOED LINE ~-*s PER EC-13861. OWN: LAS J-JZ-JB CHK'01 acs S ]0 AS 8UILT-CORRECTED FOR CONT.REF. OOtl!l"ING NO, PER EC* llG87. PER OOR Pl 105 OWN1 LAB 3*12-l0 CHK'D1 JMC 4-Z"J-10 M00*1 EC-ll687 AIPP'O: CMR 5*6* 10 [Z_8J AS BUILT-CORRECTED Lll'E CONTINUATION AT URID C-4. PER OOR PH5-163 DWN1 JEK 11-"M5 CHK'D: KB 11* 9* 15 M00*1 EC-26020 N'P'01 KJW 11-'H5 12!1 llS 8UILT- .-.00ED LINE Nl..t'l6EAS 3-21--0-81, 3-2t-Cl-82, J

  • 2fil
  • 83 At>O 3
  • 2H *8...

PER OAR PH'l-07"1 OWN: JEK 4-9-Jq CHK'D1 ERN 4* UH ':I M00*1 60OC000WJ0q APP'O, 00 IHT~RLOCK l.OGIC. OR r\\'WIN~ \\\\,) 0. N,'i="- 401'1 ~ ACCOUN T MO. 45--(;,('.)-2 ~1"2. {BLE.U' !:>1' c.>\\M ) <I-~..,O -,' --<0 1t te'..,,_TE.i;;! \\'e,...-rs.1 Tll"'"l' /- *-1D-~ln""'~lll-jm,. Y<o--_,- p,awka!l,r .,,.LMICl~pc-,pr,:,codu.vnloq.....,cM_tl,.._~,,_~andSPM'1. ....,,.tu,c:srr. E,U, CLl"IESON 5-27-71 PE *8626 NORTHERN STATES POWER COMP.-.NY '(J11DM""'W 8630 I I I I ~ I 4 I ~ la.I e BLEED STEAM & HEATER VENTS FLOW DIAGRAM -.., NONE I~ 79 PRAIRJE ISLAND NUCLEAR GENERATING PLANT NF-39225 RfOWli'l. MINIE:SOT/\\ A f-- B ~ C f-- D E F lD N N CJ' C') J ~ H 'UtUSSTT(IE.IUU 1USISTOA T ESUH1 ,unnnoES-IGNF] L $$$$$S$S$ I H USERNAl£U I t-..F-Jq22s.oct,J I W itiit@.OV@ I 12 FIGURE 11. 1-8 REV.37 CAD FILE: Ul1108.DGN N II) 0 0 0 0 0 0 ~ 0 co

1 2 3 4 A B 1,,,.----__,,,~ I C D i-------14. MO* 2-1' E F G 4 *1... H 1 I 2 I 3 I 4 I 5 6 1 r 7 5 I 6 t 7 I 8 8-HD-I_/ REFEENCE PIPING OWG. No'S 9 LA 16716 10 S-H 6' SYSTEMi FEEOWATER HTR.. MOISTURE SEPMATOR ~ REHEATER DRAIN PIPIMl _ Nr-3qz75-1, lf* 3CIZ75*2, NF-3qz75.3 SYSTEM1 LEVEL TRCM... & 1'11...ARM*GIIUOE GLASS PIPING ______ NF-3"'1312*1, NF-3"'1312*2, NF-39312*3 8 I 9 I 10 \\ FE 27176 11 r.. I ~-I 1-H0-71 H0-27-3 ,- TO DPS 17948 (II' CO-ORD A-II - F 2316CJ 48102 12 REVISIONS lZfil AS BUILT-CORRECTE:D REF. DRAW ING NO. FDR INSTRL.t-ENT TEST CONNECTIONS. PER ORR Pl-0'H05 OWN= LAB 3-12-1111 CHK'D: JMC 4-29-10 MOO*, EC-11687 ~P'O1 CMR 4-2'H0 ~ AS BUIL T-REMOVED I/LY'S Cl REHEATER A DRAIN TANKS IA,2A,IB.2B &. l!IOOED NOTE 2 FOR YAL.VE TL'S & owe;. CONTINUATION. PER ORR PJ-10-141 OWN1 11:JF 9-20-10 CHK'D: DC 10*7* 1111 MQ0* 1 EC-148'1"! M'P'O: CMR 10-11-10 IA~ I ISSUED FOR i-=,.:::J CONSTRUCTION REPLACE/ ADO LEVEL XMITTRS &. ASSOC PIPINCi II HOT AND REMOVE SIGHT IJUE TO AS-FOUl'll CCHJTTJ OWN: ICNB 5-22-15 CHK'D: RL lH6-15 M00*1 EC-11760 REVIEWED: RLW ll-16-15 PE CEFH1 PE' APllO: JN 11-17-15 AS BlJIL T* l~CORPORATEO M E's REV. 80 PEFt [)RR Pl-]8*085 CERTIF IEO REV. 80, TRANSFERRED TO RECORD TIMCINC. OWN, MEA 11-13-18 CHK'Di SLR 11-20-18 MOO*: 6M0D00011780 B l"IPP'Ot 06 ll-20-18 C b.-r------; ~ AS 8UILT-AOOED LINE NL.MIER l0 *HO*2"l TO TOP Cf" l B FW HEATER. PER ORR Pl-l<l-07q OWN: JEK 4.q.1q CHK'D1 ERM -4*10* 1~ M00*1 60OCH0W~0q L.,_P'_O_, _OB __ -_l_ l -_ 19 __ __,- t---6-1-£1-6 6' LEGEND THAU@ DENOTES CONOENSER TERMINAL CCt-lNECTIONS DENOTES LIMITS OF O.A. TYPES. [IA, [18 DENOTES THE PIPING ti.A. TYPES. 11/3 DENOTES THE EOUIPMEt,iT O.A. TYPES/OESIGN CLASS.

  • DENOTES FURNISHED WITH EOU!f>MENT.
NOTES, L, E/P 01SC0Nt£CTEO & {\\SANOONDEO IN PLACE.

CV-31027 MANUALLY OPERATED ONLY.

2. PIPING I. VALVE DETAILS NIJT INCLUDED.

REFER TO NF-39312-2 FOR VALVE & PIPING DETAILS. NORTHERN STATES POWER COMP.-.NY '(J11DM""'W PRAIRJE ISLAND NUCLEAR GENERATING PLANT RfOWlr<<l MINIE:SOT/\\ 'UtUSSTT(IE.IUU 1USISTDATESUH1 ,unnnoES-I GNF] L $$$$$S$S$ I, HUSERNAl£U -.., NONE I ~ 81 NF-39226 ~-3q22s.oct,J I W itiit@,jw@ I I 12 D E F (D N N CJ' C') J z H FIGURE 11. 1-9 REV.37 CAD FILE: Ul 1109.DGN N II) 0 0 0 0 0 0 ~ 0 co

A B C D E G H (J' 1 1 2 3 2 3 4 I 5 I 6 7 8 9 I 10 4 I 5 I 6 7 8 9 I 10 I APP'O&CERT. Fl.MED 11 I FLOW DIAGRAM FEEOWATER HEATER,MO[STURE & REHEATER DRAIN SYSTEM NORTHERN STATES POWER COMPANY 1)_,Ene,gy-SCALE NONE 12 SEPARATOR - UNIT 2 I REV 79 A f-- B C E F r---- N N (J"' C'1 J_ z ~ H PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF-39227 REDWll>IG, MINNESOTA I $$USERNAWE$$ $$$$$$SY T I IE $$$$$S$$$$$S YDA TE$$$$$$ $$$$$$$$$DES IGNF IL$$$$$$$$$ I NF-39227,DG~j NSP GE.NcRATION CNJ j 12 FIGURE 11. 1-10 REV. 35 CAO F[LE: U11110.DGN Cf) Cf) 0 0 0 0 0 Cf) 0 co

A B C D E F G H 1 PT 21072 I AR-115-3 I SEE PT 21273 lA CONDENSER PT 21275 2 PT 21073 I AR-115-4 I AR-115-5 I PT 21274 l 1B CONDENSER 3 PT 21276 AR-115-6 TO ATMOSPHERE t-r4 -AR-16 I Ill 21/2"

  • 11 AIR EJECTOR I" STAGE
  • f11i;ir.r __.._ ___ ~ 4!:_"...;~P~l~TC~fj~;.._--

SUCTION RELIEF VALVES £,.>1I, ~ SEE 0\\/G. NF - 39218 ~ -°i"- _ l -_'::-'j - ~ 4' ',-l ~ 21/2-AR-16* -**" / ?,~ FLEXIBLE 3-AR-16 _..,/-+~ 3* ¥~ t 4' CONNECTOR 4* 4 EXHAUST SILENCER\\ 5 FROM AIR EJECTOR 1st STAGE SUCTION RELIEF VALVES 1r <TYPI CAL) 1 1 I I r~T-1 -- 3/4" DRAIN Ill 12* ~ ROOF\\ - --l*--1----1--------~- ,s-AR-16 6 1 r 7 VENT LO OP SEALS FROM HOGGI NG JET 1/2' DRAIN 1/2" FROM HOGGING JET 1/2" DRAIN FROM 8' & 12'VENT STACK DRAI NS I' 8 ~ SCREWED CAP WITH 1/4,* ri DRILLED HOLE --,., '\\" SCREWED CAP WITH n 1/a" RILLED HOLE TO ATMOSPHERE A 4' 4' 1~,~* y,RAIN TO TURBINE BUJLDING SUMP AT EL. 712'-0' PT 21075 I 2AR-115-3 I ) 9 PT 21283 ZA CONDENSER PT 21285 PT 21076 2AR-115-4 2AR-115-5 I 10 PT 21284 l - 2B CONDENSER EXHAUST SILENCE PT 21286 2AR-115-6 I I ' /f7 3/4" DRAIN --- III _ROOF 7 III 1 r4 - 2AR-16 l.'7 L.:: ' 4' 4' 12' 11 a* B'

  • FLEXIBLE CONNEC TOR \\.

\\;~III

  • ~ :-t
    t~-t~

2 ~-fs:=~~~----~.:...---~/;Q~~--....:.:._.

  • 21 AIR EJECTOR 1sr STAGE

- ~~ I 2'J K._. PITCH

  • 4, SUCTION RELIEF VALVES i

~ 2 2AR-16 12-2AR-7 I; / __ 4-AR-4 4 ' 8" 12' .. ~ ...... 4'

t:

..i-4' ~ i 11 _ J __ m.Jl- / SEE DWG. NF-39219


':I L..: 2* K

  • ~- L..:

~7 FL EXIBLE CONNECTOR 1/2* > 3/4" 3* 4* 4*.. 4' 12 REVISIONS 177 1 ISSUED FOR ~ CONSTRUCTION INCORPORATE VENDOR WU,208 6496,SHT,J CHANuES.AOO VACUUM TRANSMITTERS. DWN:AAH/AHF 5-4 -07 CHK'D: JSM 5-4-07 MOO*: EC-346 REVIEWED, NIA APP' & CERT1 RICHARD C. LINDBERG S 07 PE

  • 44886 I SSUEO FOR CONSTRL.X:TTON AODED UNIT 2 \\IACUUM TRANSMITTERS, OWN: LAB 5-<l-08 CHK'D: PH 7* 23-08 MOD*, EC-8647 RE\\IIEWE : JM 7 08 APPU & CERT1 RICHARD C. L[NOBERG 7-23-08 PE* 4686 AS BUILT-INCORPORATED A/E'5 RE:V. 77 PER RR Pl-0<1*013 CERTIFIED REV. 77, TRANSFERRED TO RECORD TRACING.

OWN: MN J-2-0'1 CHK'D1 PH 4-29-0'1 MOO*: EC-8647 F'ILMED1 5-0Cj ~ AS BUILT-AOOED MOISTURE SEP ARA TOR REPLACED AIR EJECTOR FLOW KMTR Fl-18224 ANO REMOVE S/CV 35132. PEA ORR Pl-lil'l-061 OWN: LAB 7-22-09 CHK'D, 1-13W 7-24-09 MOO": EC-13122 FILMED, B-lil9 ~ AS BUIL T- "11 EJECTOR STEAM SUPPLY ---+ u-r RELIEF VALVE SEE DWG 39218 1/2* 3/4' _ _J.__ 1/2 " DRAIN TO TURBINE :______,/ ROOM SUMP (TYPI

  • 21 AIR EJECTOR STEAM SUPPLY RELJEF VALVE SEE OWG. NF-39219

,----1-------------::'.IP.-=- ..... '1'- l\\'--'J'~... DRAIN TO TURBINE BLOG ~ REV CD-36013. 14. 15 &. 16 TO BE OOHED, ADD GRID REF'S TD NF-39600. 04NSI~ NG-39218 ____..1---~...... -.:::i --s ~";_"': 3/4' -..._......1..:;;_-1 1/2' DRAIN TO TUB.I.N.::E'--~~ BL DG SUMP - ~ Pl - - 41219 ~ 3/4:~~~ l A PS Pl Pl 47008 16045 11085 2nm 050'j I" DRAIN TO~~--~-~ PS TURB. ~LDG \\ 8-AR-16 ""'/ _ 9* 16165 SUM B' PITCH * \\ r-'-'.... --.Jlr-,..._Jf'-J 1 , ~-Afi:'.16 6'6-AR-16 ii,- 1/2-AR-16 i,.;;\\.___,,,~~-~ IAR-14-3I

  • 1/2' SAMPL~li'. < J

-~IG_o/ Ill ---...__, Ill I AR 11*3 1'~1-I AR 3 I I l AR-14-4 6" . *. I 130-011@ ~ @. 130- 01-2,.! 11-'--<>!+-,+-+t+.Y\\ G-r- -P'cs"1 t* DRAIN TO -' ,'-.._,/ '-.._,/ I 3/4" ~ TURB. BLDG. CONDENSATE SYS i:\\.: SUMP SEE DWG NF-39220 AR, /~,, AR-12-1 <TYPE A[R EJECTOR) I AR-14-11 AR-12-2

  • 11 GLAND STEAM CONDENSER 1/2" SAMPLE IJIJ/3)

I AR-11-2 , - 5 CONTROL 1/2*AR*lB~@)

  • RE 29024 /

1/2 - AR-18 IFI7_ I 15 SAFETY HEAD@ Al~~c.t) / r4-AR-4 4* LEAl(ACE 4* 7 DRAIN TO TURBJNE BLDG SUMP (SEE VENT L OOP SEAL DETAIL! THIS OWG. 12-AR-7 DRAIN TO TB SUMP 6' LOOP SEAL Ill l l TURBINE CYLINDER HEATING STEAM RELIEF VALVES, FOR UNIT I SEE DWG *X-HIAW-2-16A UNIT 2 SEE OWG "X-HIAW .: :::-l TO 121 AUX BLDG SPECIAL EXH NF-39600 co 0-8 36014 v ~'~3 / VFD-63 TO II AUX BLDG. GENERAL EXH FAN NF-39600 D-8 SEE NF-39219 ----~-----,+--j ~l2e:A,::Rc_-""2~0_-1=1----;~ ~ I SUMP 4

  • 3*

.1 SEE OWG NF-39605-1 r--,;;: :::-:;-.. TO 122 AUX BLDG. 1, 7~0*~S ~I $-Pl '0505 16046 11091 2107 41~f9 1/2' DRAIN TO TURBINE- ~ 8' BLOG. SUMP r--, 6" _ 8' /-'ITCH B-2AR-16....! 1-E SPECIAL EXH NF-39600 ~ C-9 6

--, ;;: :::-~

TO 21 AUX BLDG. GENERAL EXH FAN NF-39600 C-9 YvFD-64 I" DRAIN TO TURB. ~ j-i-PS\\ '-s-2AR*l6 6_2AR-IG- .,_'- 8-2AR-16_< 7 !" DRAIN TO BLOG. SUMP 4 750E~ - 16168 L r----... ,.._ 1/2,-2AR-16 / TURB BLDG 0504 'CJ 6' 1/2* SAMPLE SUMP 12AR-14-3f... III Ill

  • w '-12AR 31

~ °; ~ 2AR I ~-~, ~ 6' 230-012@ 230- 011 ~..)f-J..,.. 1....,.,1:--.il+-'-{\\_~ -3/4rg.~ ,:-..~"'<~~:;}------ TURB BLDG WALL i,,; "G' LINE __,.__ ""'-' ""'I 2AR-l4 -! 1 .,..... **\\ ~-- - -~-, \\._ 12AR-12 11 L CONDENSATE SYS SEE OWG.NF-39221 3/4* D ITYP o AIR EJ ECTOR) ROOF"\\,, r, __ ~\\ ___ -tn \\VENTS TO ATMOSPHERE I l DRAIN TD TB SUMP G"LDOP SEAL \\_.,.........-.,.,.. 12AR-14-21 ~~--- ~

  • 21 GLANDSTEAM CONDENSER

] 1111/31==~ 12AR-ll-21 '1o.~~~ coN;,..RCl. c:* SAMPLE

  • 2AR -1 2-2 I

I m 1/2-2AR-15 1 - 2AR-4~ AIR FI 1 ~ / 1/2-2AR:l8 4' J 4* LEAl(AGE LBZZ-4 ~ METER- '1 2AR II 51 . e* 'l:'"8'-2AR*& 8" 2-RE ~, _ - \\ PITCH - STEAM SUPPLY SEE CN*LINE ~c5 '1-DWG NF - 39219 <TVP)\\ MOlSTuRE 1/2~ ....t2AR-ll-6*

10*,: 10-2AA-7 PITCH~ 12' SEPARATOR 2q025-

/11r~=~!....,~::,,:..,..--c:1-..:.;.:.:;::::;~;....~-J 1 I I 1z4q.0u1 1 FLEXCBLE / / i 1' LJ ,/ 1 --...._.-- CONNECTOR 12' a* 4

  • I 12' 8'

4* / 4' 4*

  • PER ORR PH/18-0B1 D\\IN1 JEK 12-16-08 CHK'D1 DB 11*'9*09 APP'O1 CMR 11-<J-0'!

~ AS 8\\JILT* ADDED MOISTuRE SEPARATCft REPLACED AIR EJECTOR FLOW KMTR FI-18223 AND REMOVE S/C\\I 35131. PER OAR PT-09~219 OWN: LAB 3-8-10 CHICO: l-l:IW 4-8-10 M00*1 EC-1463!S APP': CMR 4-8-10 lfil_J AS BUILT-l"IODED CATEGORY I VENTILATION SYMBOL TO LEGEt-0. 11[R ORR PJ-01H05 OWN, LAB 3 10 I 2AR-8-2 I CHK'D1 JMC 2"1-10 MOO*: EC-ll6e7 , I e.fP'01 CMR 2'H0 I 2AR-8-L I ~ AS BUILT-CHAN[,£0 ANO/OR ADDED AfH-4-1 Tl-flU AR-14-6 & 2AR-l4-1 THRU 2AR-l4-6 TO BUTTERFLY VALVES. CORRECTED PRESS. SWITCH CONFIGURATION AT llA, 118 CDSR A[R EXH~TER. REV' A B C D STEAM SUPPLY SEE DWG NF-39218 <TYPI METER,'-- -4'_,,.,_ R-11-51 PITCH___ S' '\\ 8-AR-6 IN-LINE ~ 6 0 ""\\ ~T,C~H~~~~.~J0:*~~~*~l-0.-.A~R~-t+~l~2~*--4~-~

  • 11 & 21 LGENERATOR OIL LOOP SEAL TANK /G, CIIl/3)

'El 1,l ~*lJ'rZAR-2 12AR-U5- 't1 ~ $!1Cs~~~~y@

  • j t t; j t

, t 1~r :::~~:::t T r- ~..- t ~ STEAM SEAL i,-B-2AR-6 C:ONTROL SW DESIGNATJ N E FROM ES TO CS. AIXlEO 1l & I '1 $~~~:J,~R il;;i"<-'7--._ s,.i.. _l I ' LJ '-'- >'Ill FLEXIBLE / / -B-AR-6 l t AR-2 I AR-115*2 '\\I Ill , ;,j CONNECTOR l J 1 -- 8-AR-7 1* RAIN.:r,*1 1 ;1 1ii:111 ~ i.!

  • lhl,f_ STEAM SEAL 8*

8*

1. /ISEE VENT LOOP 21/2*

p)TCH AR-10-2 I,!. \\ii+~' 1 'ii<'~ D-0*, 1/2'DR!IN~~. RELIE F VALVE y SEAL DRAl-~N~l =-------:-~~~~~-:----~-.,,,.=='--' ' 4' DEMISTER l IIIII ~>-*I f* I *j~lI"*.a ~ 17 - r 8- ; 1/2" ORN i e* RELIEFVALVE ,-t-1-- ',;~--;!::~~~F 7 ~ 2AR-n- _." __.1.TiJRB1NELsTfAM@_) s* a*l-fir a-zAR-7 ORAk1 TG~ sruuMRfINE I /,,,..,__, 12AR-12-IV '";'I 4' w,... SEAL SUPPLY _._ __ - _.J '-. j<* VENT,,- ~ _.}'- 7 ~~I-:* "L2I HOGGING JET 1111/31 7~ HOGGJNG JET 1111/31 I 1 ~ \\!',.I 1116 * "*ZAR* ~ *--J:-.-_ STM suPPLY SEE ,1* 21 Tl.fm!NE OlL RESERVOIR EXTRACTOR SUCTION LINE ANO INSTRUMENTATION. PER rnR Pl-11-055 OWN1 LAB 4-26-11 CHK'D1 SRB

  • 28-11 1

4 I l" --*-------L- _ ~ ' / L TURBINE STEAM SEAL SUPPLY III DRAIN TO TURBINE UNIT 2 UNIT I 1 /'. 1 AR-12-31 SEE DWG X-HIAW 16 r III BLDG SUMP @~ * - / 3/4* VENT I I 18504 18503 4' -- ~t--- - to- - / 1- -- _,.. .--~-t-' --1/2* I AR-11-4

  • u HOGGING JET
  • 12 HOGGING JET CIJI/3) 4' au AIR EJECTOR'-.

/ ~I i' 111 lffi 4 ' L OOP SEAL SEE (111/3)___.I ll UNIT l I.NIT 2 uJI, 3> ~;i.,ci,;.;;t'""' 1..,-H ~ ~ 1 x-HIAw-S-34 .-. + \\__-- ~ * @s PS

  • l *:f *"

_,,1 1* ~ t1/2;,---...11/2-AR-19 ~I-,,--,'1/2";--,.., ~i-~S TM SUPPLY SEE 47007 17507, -16098 16097 (UNIT I) 118 .,,,. II~ nsV-33341 ) 11088

r DRAINJ~

DWG NF-39218 AR-14-5 I 3 l f i (. 1"'12..,. m ; =r isr ' <SEE VENT =- ITYPI 8r,:l===:::;;:;;!::-~~'° l -1 , JJBt*..X .T. r M s

  • LOOPSEA~a* t.!:!_r, PI L...._ __ __ ___ _.

2AR 5 1 ~ 1/ -+= * -"'i'o !{ 0' *. -

  • 3/4: \\

iTcs'l Pcs"llej 118 DRAIN! lIBij A 'P'cs"1 11155

  • 11 GENER7TOR 6' 1 CUNll 21 1 )

/ 0*+ 18* P,.. ~ 1.!!J,,,.* "."; ~ ~ 12, 12-AR-91'12, i:,~~ (111/31 \\ ~ 1111 -~ / 2-AA-3../1 1 I_ \\ i( 8~712* 1/2-AR-20 230 ~ 12".... \\ "-.: ~ i:,:. l[B '/ t-i:R-3 ----11Luer, -,-. I ..: I 12' 12* A ~ 6 ~ l.j AR-5-1 I 8°j~'cs'~~if:f9~ ? 12-AR-8 \\-AR-ti ~s 6'. :*v *

  • Q v

I AR-5-2 4639 ~R-9-3 r - -,- - 4639 20, 21/2*,:Cp¢":"-'- ,r-.;_ v V 8-AR-8 2' ~ 'I:,

  • 11 & 2 L )

--t-- 8 R 9 - ---1 1/2*,, J 2* .,. I 8-AR-8 234 234 -A - M M GENERATOR ., 1/4* 8-AR-9 2-AR-19--..: Ill BEARING III 4* AR-11-1


, lIB IIB PIPING 21/2' HOLE FOR -----

EXTRACTOR 6'. 6 6' I' I' 3* 1/2* LOCAL SAMPLE CONN ~1/2-AR-t 9 ~ C)_ / 1 12* "' 4-AR-!0 J -=-- 4* VACUUM BREAKER FILL CAP 1111/o' 51\\.~~oi1L 12' VENT <TYPI J\\IIl/31 2* TRAP WITH GAGE ! AR-9-trl4S -, 2* 2* ~ r OJ~ I ' 1 *,.. ' ' 1' 3-AR -t~ GAGE - GL ASS GLASS* -..__ T IIB /- AR 3 I 1/2" ORIFICE -..___ V (TYP) 2-AR _-= c..,/ ' 2* -- JIB I 171 !~ ~

j~

TO TURB BLDG SUMP , AR-9 2==£ / - _ :~ I ~ ~ I 1 :r ~-f

1
. 1...

~ - 7-V lA 1B @L,- - '\\ \\~: ~ I * (]ll/3) (111/3) ~ AR-1-4 ~ UNIT I I ' I* ~ ./ CONDENSER CONDENSER ~~~, \\ y 3* 8-AR-8 3 1 AR-1-5.J ') ~~---------,1-------~------0 "<-:l--+l @ 8-AR-9 4-AR-1 ~ \\ / (IB IIL_~----r-' L~----~-' 4' CONN FOR I M-1-1 I I 2M0 1 I UNIT 2 z l:

  • 3'-INTERCONOENSER LOOP SEAL PIPING

~ --,/ I AR 1 r ~-, "8G'!....,,TEMP HOG_G~R REFERENCE PIPING DWG NO'S ';.,:1-3/4' 3/4' 3/4' '-' 1. l' 1' '-" TO EMERGENCY TURBINE OIL SUMP CONT'D ON DWG NF-39231 I' ' I' -=- I - AR-I ___.--r; 1 AR 1I SYSTEM AIR REMOVAL PIPING UNIT I NF-39307-1 VALVE LOCKED OPEN-- DURING NORMAL OPERATION CLOSE WHEN PURGING I' DRAIN UNIT I AIR REMOVAL SYSTEM 1 I 2 I NF-39307-2 SYSTEM AIR REMOVAL PIPING UNIT 2 NF-39308-1 NF-39308-2 SYSTEM HYO. VENTS & MISC. EXHAUST PIPING UNIT I NF-39285-1 SYSTEM HYO. VEN TS & MISC. EXHAUST PIPING UNIT 2 NF-39286-1 3 I 4 HYDROGEN & TURBINE OIL VENTS <TYPICAL FOR UNIT 1 ANO UNI T 2l I 5 I 6 t p[TCH 4,.. ? ~ I ~I

  • 21 AIR EJECTOR ' y II Cl/31

/ IIBIII ~,

  • * ~()~tAl1~1i~l~E _,...,.--,-, ---. I,.... fi1.,* ~DWG NF-39219 e:if'P'01 CMR 4-28-ll
  • I' I'.,. T 7

- ?2* 11092 11093 1 1

  • t
  • 5( *" *)i1 1 ll~

~ c1/2* ~ lul_l ~t-- L, Pl ITYP) 6' ---2 rm \\I~ ~-'t \\ 4(1 1101 '" PI v r,;;i...: 80 - s - YlR-B 1°*,~ - 1 11156 ---*/-- -l-0 ~ -10 t=) CIB I.:11 -~3/4"' ~1094., cs~ ~ I ./. =t - I ,..__,, 4679 l I B

/4IB I 1

":""::---;::::===J,-- ---.,;-11 ti

1 0"9,*~ ' UM~\\_ 12" 1/2 " DRAINS M I hlfilS FLEXIBLE I 2AR 2 I r B' 1 ,r 1-2Aif-l *I 2AR-I - {SV-33342 ) 32312 12, 32313 - 46791 ~CD~~~~iOR t* DRAIN rm 8-2~R-~.,( 1 ~i~2AR~ :- 8-2AR-9 12* _ ~ AS 8\\JILT* CORRECTED TYPO' S ON VAL'l'E ID'S, AFl 1 TO AR 2 &. 2 -2AR-11-I TO 2AR-JJ-L, 11ER ORR PJ-11-218 OWN, JEK 11-16-11 CHK'01 SMF 12-7-11 MOO*: EC-18795 APP'01 CMR 12-12-1]

  • I.
  • 11 & 21 118 8"

/ 8 '/ 1 r J 1/2:2AR-20 '- t2-2AR-9 ~ TURBINE OIL ti! RESERVOIR VAPOR 8-2AR-e_j £~ ~. ; 12' '- t2-2AR-B,----r~ EXTRACTOR 8-2AR-9 CS CS L ~S M (111/3) / 4679 46795 680 205 CUNIT D 1 0 AR-14*6 I I2AR-5-1 I2AR-5-2I 2-2AR-I"-- 2" M M M L2AR-14-6 235 235 --12-2AR - 8 235 <UNIT 21 14=~4* VACUUM BREAKER 12' ** 1' ~~ ~~ 3" 2AR-ll-l I"::... 12* I 2AR-9-3 I 4-2AR-10 lIB irn"2:=P=l=P=IN=G=-4_4-2AR-11 1/2' LOCAL SAMPLE CONN~ ....:.~ / r 7 ~ l/2-2AR-19 ___J * / ~ Cll4w I 2AR-9-1 I ~ r:~:.q 2' TRAP WITH GAGE GLASS*------- ~{ I 2AR-9-2 20 2-2AR-19 1 TO TURB. BLDG. SUMP ------.., ~-

  • B' 8'

t--{)<lr'f~ I~ ~><8.:ttT'i\\.V ZA CONDENSER (Ill/3) s* If~~-;. *~...,.--- ©=-n1-w----t-..~I r.\\8' -,:'\\! 2B ~ / CONDENSER s* ( I I 1/ 3 ) lf=2""'AR=-_.,.., _..,.4-, l§ij AS BUILT* CHANG£ 2" Lit.ES FROM " IL AIR EJCTR 1ST STO SUCT RLF VLVS TO 21/2:" & LINE NO. TO 21/2-AR-16. PER OAR PH3-029 OWN: JEK 2-6*13 CHI(' : ATC 2-12-13 M00*1 EC-2007"1 APP': CMR 2 13 ~ AS BUlLT-PRESSIJRE SWI TCH NO. CHANGED FROM 16174 TD 16177 !UNIT 2), F I' 1 1' 1' (UNIT 1l (UNIT 2)

  • 3'-INTERCONDENSER 7 I~2A~R~-~l-~t~, 8_2AR*B
  • LOOP SEAL PIPING I 2AR 2 3*

h-l\\ IZAR 3 PER ORR Pl-l5~133 DWN1 MEA 10-21-15 ~ CMK'D1 ALM UMJ-I!5 r 11 &. 21 TURBINE OIL RESERVOIR INF - 39231 - 1) (NF-Jq2Jl -2l I ~ I 2AR-6-I GAG£./ GLASS I ,I 4-2AR-1 I 4' CONN FOR -.TEMP HOGGER I ZAR-I-5 "86" i".OQ*, EC-25881 .,_"'-"~*o_,_K_J_w_c_*-_2_a-_1s __ _, CSI l.§__§j AS BUILT-(Y) AOOED Llt.E NOS. 4-AR-l AND - 2AR -I, VLVS AR 5, 2AR-1-5 ANO FLANGES PER HOGGER PROJECT. PER ORR Pl-20-062 N CJ' C') J I -2AR-l - ---.1,---,l,;2;:;A"'R;::-1;;;0;::-l,il -t* RAIN UNIT 2 AIR REMOVAL SYSTEM z OWN: JEK 12 20 8 LEGEND DENOTES FURNISHED WITH EaU[PMENT DENOT ES FURNISHED BY WESTINGHOUSE CORP, 0 THAU @ DENOTES CONDENSER TERMINAL CONNECTIONS --+- DENOTES LIMITS OF O A TYPES 11B &. III DENOTES THE PIPING O A TYPES CIJ/3l&(IU/3l DENOTES THE EQUIPMENT O Ao TYPE/OESJGN CLASS + I DENOTES CA TEGORY [ VENTI L ATION ZONE 9 I 10 CHK'D1 TPS 12-l!S-2'11 MOO*: 60100000118-J APP'01 00 12-15-20 Thlrnp/- -1D-~ ln ""'~lll-jm,. Y<o--_,- p,awka!l,r ...-LM111~pc-,pr,:,codu.vn1oq.....,c--t1""'-~-,.,.,_ ndSPM '. lMN ASJ I DATE 2/1V00 400 I 100 ~ I I 7330 I 1 I I ~ I 4 I ~ la.I e FLOW DIAGRAM AIR REMOVAL SYSTEM NORTHERN STATES POWER COMP.-.NY rJ-,,..,.,, PRAIRJE ISLAND NUCLEAR GENERATING PLANT RfOWlr<<l MINIE:SOT/\\ 'UtUSSTT(IE.IUU 1USISYDATESUH1 n1nnnoEs.10NF I Ltnssnn I, HUSERNAl£U -.., NONE NF-39230 I NF-39230.DCt.J I.f? iti/t@,jw@ I 12 H FIGURE 11. 1-11 REV. 37 CAD FILE: Ulllll.DGN N II) 0 0 0 0 0 0 ~ 0 co

A B C D E F G H 1 2 4' AUX STEAM FOR DEAERATOR - STEAM TO CONDENSER SEE NF-39218 F-7 3/4" FROM HTG SYS CALTERNATE LY TO HOGGING JETS SEE NF-39218 0-7 I 0-8 11 HOGGING JET -----, 12 HOGGING JET ----, AUX STEAM TO HOGGING JET - SEE NF-39218 BLEED STEAM TO H.P. HEATERS SEE NF -39224 TD 15A~15B ~ 14A & 14B I D-4 E-~ ~I ~ 16' 24' ,I J:C- _.~ _,-.Js. s*I 1*1 s*I 1-I / i9 J: <,~ -~m,-- 3/4" \\--. 3/4" - t1/2" = 1/2", / ~*.--'!'--+11...., I' 1' ~ I' 3 4 5 6 7 STEAM LEAKOFF FROM PILOT VALVE~--~ DEAERATOR STEAM TO CONDENSER SEE NF -39218 H-9 MAIN STEAM DRAINS SEE NF-39218 H-6 AUXILIARY STEAM SEE NF-39218 E-6 ON STOP VALVE SEE XH-2-15 GLAND STEAM PRESS-REGULATING STATION SEE NF-39218 I" t1/2-MS 1 30' 12' 11/2-MS ' E-6 11/2' TURB STOP 75 SLOP DRAIN (WASTE OIL & WATERI - CAPPED '\\*_j\\ t'"<~1;~:, I ~11fl11/2' /HP TURBINE I I I = II~.,,,- {III/3) "'45 I, LH 1 I I 2' 2' I 2' 2' I /{~O~ a~~ ~~'--L-P_T_U_R_B_IN_E_ll,,-1:~ LT::B GLD STM SUPPLY C-7 IIA1 I / ~ STRAINERS SEE XH-2-16A V 2'

  • 37 r'i V

I ~ *75 11B

  • 75~

2" "37 '-------------'~---*.----"'--'I B-4 B-6 STEAM DRAIN & GLAND ASSY SEE XH-2-15 -{ SV-33026) _T~ 118 2' 0 34 I I I'

  1. ( SV-33021) 2'
  • 34

-//(sv-33023) 2'

1134 E

!1/2" TURBINE GLAND STEAM E

l'"-
  1. ( SV-3302-4) 2'

"'34 / SUPPLY STRAINERS SEE\\ OWG. XH-2-16 \\, u f_ 11 (sv-3311125) 2'

  • 34 I

I I 8-4 B-6 I L-,-~ r-7-~ 11 (sv-33022) 2'

1134

>\\~* ~/ J-] 0 3B J-] 0 3B 0 3B E

  • 3s E 8

38

  1. 75 L..:.J B-4 i----- TURBINE SLOP DRAINS --.a SEE XH-2-16 CTYP.J J

11/2" J TURBINE GLAND STEAM / SUPPLY STRAINERS SEE\\ DWG. XH-2-16 \\ l' I 8-2 8-4 I 1--,.--°"t ("""-7-~ 0 9 10 TURBINE GLAND STEAM - SPILL OVER REGULATING STATION SEE XH-2-16 C-5 11 12 AUX STEAM TO CONDENSER WATER BOX EJECTOR SEE NF-3921B F-8 SEE NF-39218 I MAIN STEAM BYCASS I

  • 11 AIR EJECTOR, STEAM AUX STEAM TO 0 11 AFWP F-3 SEE NF-39218

~EE NF-39218 STEAM RING E-ll 'f ? H-~ 2 CV A,E~::~~OR +-- -- --~ 1-1>:..,!-I)'::_l--l>::_I-- 31998 31059 l JI l' I I r-7 I !fl I I-I IMI I W

=

~. I --- c-,,. y 1 3, ? !TD-13-6f-- I /---- Jl' 1 r--T~:J::)----~ ~,-----l ;J ::)----l~ ~- T(

' I 3/4" r.!. -,

I I I 1' f-'- I" 32 3/4" I" .a: 1**25

1170 ~

,..L..L 7 :t/ 1' ,--J~ __ J TD-6-40I TD-6-44I -J I TD-13-4 I" I' 6' 1' w ~ 'f'

_ ___ 7 SEE ~;39218

',7-:t I I ~* IC tcJ IIA~ 1" TD-13-1 -HD-6-32I TD-10-13 --ITD-10-12! -jrD-10*14I REVISIONS 81 AS BUil T-CORRECTED OUPLICATE VALVE IO AT GRIO 0-10 FROM TD-6-35 TO T0-6-33 PER ORR Pl-10-156 OWN; MN 9-2'H111 CHK'D: MC 'l-30-10 MOD"= EC-16067 APP'01 CMR 9-30-10 82 AS BUILT-CORRECTED P]PING AT DRAWING LOCATION B-9, PER ORR PI-0<=J-163 OWN; KJF 4-2'H0 CHK'D= JBS 10-12-10 MOD"= EC-14472 APP' = CMR 10-18-10 83 AS BUil T-CORRECTEO VALVE IO FROM 10-12-1 TO TD-21-1 AT LOCATION G/9. PER ORR PI-11-157 OWN: LAB 8-19-ll CHK'D: CMR B-23-11 MOD"1 EC-18206 APP' ; CMR 8-23-11 84 AS BUil T-CORRECTED PlPING AT DRAWING LOCATION F-1 3/4" &I' CHANGED TO 1.5". REROUTE PIPE TO CAP. PER ORR Pl-15-108 OWN: MEA 9-8-15 CHK'D: RLM 9-30-15 MOD": EC-24467 APP' ; KJW 10-28-15 85 AS BUil T-CHANGEO VALVES TO-ll-7, 10-1111-2, T0-10-28 ANO TD-11-43 TO CLOSED. ADDEO LN NOS. t1/2-MS-1,2,3,4 & 27. PER ORR Pl-19-079 OWN: JEK 4-9-19 CHK'D: ERN 19 MOD": 600C00021909 APP'01 DB ]9 86 AS BUil T-CORRECTED STEAM TRAPS ]BA, 188, 19A, 19B & !'IC TD BE IN PARALLEL NOT SERIES. A B C (}-' ..., '7 ~11(sv-33020) ~ r ~ ~--1:--1--~ ~ 2'7 ~----.. _1-~ '= PER ORR Pl-19-261 OWN: JEK 11-12-19 CHK'D: RLM 11-13-19 M0D":6DOC00023048 APP'Di DB lt-13-19 "86'0 7 MOIST SEP REEHEATER SUPPLY LINE SEE NF-39218 F-6 . T---1 10' ":-i l1/2" ~ i.J, ~ 30 !1/2" I 1.5' 3' 11.5* I 2' 3" ~ 1 5" 2' ~ 1

  • 7 Z'H:<<J-'27*

9 2" r 7 , w 2'

  • 34 R(sv-33027) 2'
  • 34 1'

"27 11/2' *35 1

  • r 1"
  • 42 11/2" 11/2' *41 I I1/2"
  • J 1'

1

J ~

1' 1* ... I - 1"

11431 f~~~ ~!',ATER ORN MOISTURE SEPARATOR RELIEF

' I. J SEE NF-39224 '\\"~~LVE HEADER SEE NF-3922~7 IIA-+-!IB TURBINE CYLINDER HEATING SYSTEM B-7 \\ __ "',.3~ -.B-l ~--~-!0 11B DRAINS SEE XH-2-16A l L - 4 TO HEATER ORN B-3 TANK :1111 ~ 8-4 B-4 I TD-5-10 ~ et SEE NF-39224 e 1-"f I 1* - ~~- B-10

  • 36 3/4*et 3/4" *36 z*

SIGHT GAGE 2' ---~ I T0-7-30 I I 55-6-1 I r 1/2* -:~- 1* TD-7-23 11 l" ~ D- / ~ I V 1/ 3/4" 3/4" 3/4" 3/4" 0 3B TD-7-29 I 37A 1 3/4" I' <J-- 1' 0 43 I TD-7-27 1' 1' 1' I 3" 8015 2' L(TURBINE AUX CONTROLLER) I1/2" CONTROL VALVES (TYPJ 1B CONDENSER (]11/31 FROM SAMPLE RECOVERY SYSTEM SEE LEEDS-NORTHRUP XH-24B-1 2" 2" 2" 2" 1 r TO TURBINE BLDG SUMP 0 41 1' tW I lle-t-llA 11B ~

u. '

z"' 1' I' 7 1' 1/2" ---illIJ-. I' 11/2' I1/2" !1/2" 3' 3/4" 1' 1" '----'---=~-------------------1:.-----------------------'"--'-----------'-"'--, SEE NF-39605-1 E-3 \\ UNIT 2 BLEED STEAM TO HEATING SYSTEM ~-3/4_---------~-~~~---/ ~ ! TD-7-14 f-~ uet 11-----~ I BL-10-1 I uei I rn ITl-7-BI 11if"" f---~1----, ~ III ' \\ ITD-7 T0-7-5 26 Im-1-sf- ~ TD-27-1 I 1 y D NF-39605-1 D-5 AS-4-9 ITD-7 27 T0-7-9 -I TD-27-2 ! 3/4" I1/2" 2 l NIT I BLEED STEAM TO HEATING SYSTEM SEE NF-39605-1 E-2 ~ -------/ ~ TD-7-15 I 11B~, ! TD-7-11 ! I III TD-7-10 r 28 I TD-7-12 ~ ~ T 3 I 3 TO OEAERATOR MANIFOLD SEE NF-39605-1 F-9 4 REFERENCE DWGS: NF-39218 MS STM SYS FLOW IA UNIT NF-39224 BL STM & HTR VNTS SYS FLOW DIA Ul NF-39226 FW HTR, MOIS SEP & RHTR DRNS SYS FLOW DIA LIi NF-39605-1 HTG STM SYS FLOW DIA UNIT 1 &2 NF-88740 XH-2-15 XH-2-16 XH-2-!6A SGB SYS FLOW DIA UNIT I &2 STM DRN & GLAND SYS FLOW DIA Ul STM ORN & GLAND SYS FLOW IA LIi STM ORN & GLAND SYS FLOW IA LIi XH-248-1 HOT LAB GRAB SMPL PNL, SURVEY PNL FLOW IA LIi 5 6 NOTES:

1.

FOR VAL VE POSITIONS SEE OPS MANUAL C PROCEDURE CHECKLIST.

2.

UNLESS OTHERWISE SHOWN, CLASS BOUNDARIES STOP AT VENT AND DRAIN VALVES WITH DOWNSTREAM ITEMS Ce,g., PIPE, CAPS, ETC.I CLASSED AS NON-SAFETY-RELATED.

3.

~ DENOTES CATEGORY I T VENTILATION ZONE 7 I 1" IA CONDENSER 1111/31 FROM WATER HEATER *121 SEE NF-39605-1 E-5 TRAP

  • 35 13 1/2"

~IB Lli1A 1/2" 14 M f--' '=

~,

_Ai 1* L~ I TD-18-1 I

  • ~

HEATER ORN TNK VNT _:r:_~1/2" ORIFICE I OLD TRAP :1112 --jTD-6-34! --jTD-lB-3I 1' 8 I1/2 -jrD-10-lej IR I II SEE NF-39226 l~I H-8 FROM

1111 AUX STEAM I'

1' TO AUX FW PUMP TURBINE j_39

  • 6" SEE NF-3921B G-1 T 11B 2"

~----1-----~----------~--s, i, FROM 0 12 AUX. STEAM TO L :3' _ I_ 1~~,--~ A,F,W. PUMP TURBINE ____ ~ :.. I ! RS-[5-1 ! SEE NF ~~j218 TD-15-4 -,rn-1s-7I f{rn-15-5 1ctcJ CJ~C MAIN STEAM DRAINS NSR CZ NSR IIA SEE NF-3921B ~ 1/2. ~SRr2* IIA'NSR !IA IB l.:..:'.J M FROM "'11 STEAM oo TD-15-6I IIA 1B RS-19-~MV [ FROM *12 STEAM GEN. 310~8 GEN. SE6-~F] -39218 N r 7 1099 SEE NF-39218 ~--- ~ 77 ~ 3/4' IT 7 F-5 7 T '<t' 30' 31' 30 1..-, 31' ~~ /..,.._...,-------:,...(~,...}<f ----- --S 11/2-MS-1 --iz,1----1...-'( 1...-f..s--- --5 w l,, / N, 12*11 TD LOW SIDE r'r..,i1/2-r'rtl1/2" 11/2" 1 r1 rt w =~~ I TD LOW SIDE°"'\\."-.<"- J 'r en ~ l Pl-!? 652 7 ITD-24-4I DPI-17651 '\\ I* 1 a; ' , SEE NF-~921d l 1 1/ 1 SEE NF-3921B 1.,_,~a=s~-2=2~-~1I '<t' ~ i;:-; E-3 1 I ITD-24-3I I T :T. ~"'-'aa."4 (/) l..'..I 11 I ~~-~ E-2 l'i l..'.l l---iTD-24-2I TD-4-1 'f r.~,____,, J Rs-22-2 1e c2 i------';::~==~ lrn-10-26~ H rn-24-1I ,I'~, / /_* 1-M5-56A 01' IIA.LIIISR - ~...:-~ I-MS-53A ~ 1--/__..~~~~ """'"C-,C,C'7 ~~== ' 1-MS-54A ' 3*.. - L--i...-...-1---? I 3/4" 1 !RS-15-2! -.l _ TD-15-2 1/2' TD-15-3 ~C2 lii"fNSR ~ ~TD-6-501

  • 2

!MS-132-1!!~1-37! ~~~= , TD-6-54 !TD-10-28f--" !TD-r43! r--;~~:::::-7 ,.=- 'TD-10-221 TD-10-27 TD-11-49 ~~ ~~~~ ~ \\

  • c__-1.--C,,(1------'1_' --j

! TD-9*3 ! 2* I TO TURBINE SUMP-=---~1----, 2' (SI 11/2' 11/2" I' ]' 11/2' I1/2" D l1/2" - TO SAFETY 11/2' 11/2' I' 1' -jT 44I D 6 1 \\~====== "~~~~ r1 RELIEF VENTS ~;2-15 ITD-10-18~ 1/2"~4J !_T 36 2*1 3 SEE r:~39218 t

- ]1/2" i _"

TD-11-381 _: TD-10-23 ---tJ:: i ~ 1' ~ '.,::'.'.::::'.'='.'.'.:: I 1 11/2' TD-17-4 l1/2"

"~==~~

j 3/4* :---1 rn-7-33 I I rn-u-39I 3/4* ~-no-1-32I ~ ~~::'.::'.'.:::'"°~ TD-10-24 l!J r r:--jT~-17-11 r --jTD-11-401 TD-10-25 D l' TO SAFETY RELIEF VENTS SEE NF-39218 B-1 1 -,TD-18*6! I' -jTD-11-47I 3/4' _jllB fl IA i.,drn-1s-*I j -n 2I j 1* -,rn-11-,sl I' --j TD-28-1 I 2-MS-62 I 2" I1/2" '7---------,~L-t~:::')-: -'--I---~ j-;;~ j '-----4---------'3/4LJ' ~r1/2-MS*62A r I' I' 21/2' 3/4" I TD-G-39 f- --..... I TD-10-16 I TD-9-1 ~ '7--1 TD-21-1 I '-. ~

  • 39

"'L J" 6' ~:: e+I 1-'----l--'----"----------'-flv

4. FOR SYMBOLS SEE XH-1-105, NF-39214.
5. 1/1 DENOTES EQUIPMENT QA TYPE/

DESIGN CLASS.

6. ~

DENOTES STEAM TRAP

7.

DENOTES TIE-IN TD EXISTING SYSTEM 8 l"iie C2 NSR is I ni LEGEND CLASS BREAK QA TYPE Cl - SAFETY-RELATED; ISI CLASS 1 CZ SAFETY-RELATED; ISi CLASS 2 C3 SAFETY-RELATED; ISi CLASS 3 SR SAFETY-RELATED FLUID BOUNDARY; NON-CODE CLASS NSR - NON-SAFETY-RELATED IA,IB,IC,IIA,IIB & III DENOTES PIPING QA TYPES. 9 10 This map /document is a tool to assist employees in tl'le performance of their jobs. Your personal safety is provided for by using safety practices, procedures and equipment as described in safety training programs, manuals and SPAR's. D<EC~ED PRDJEtT NO. lll'P"D I CERT, FILl'ED SIOl\\llr1c111,n r,o, 8630 1/2 FLOW DIAGRAM TURBINE BUILDING TRAPS AND DRAINS UNIT 1 NORTHERN STATES POWER COMPANY SCIILE NONE IIEY 86 PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF-39233 RED WING, ~INNESOTA NF-39233.0GN INSP GE/If.RAT/OIi CAt::H 11 12 D E F G (Y) (Y) N (I' (Y) I IL z H FIGURE 11. 1-12 REV. 37 CAD FILE: U11112.DGN N an " 0 0 0 0 0 0 ~ 0 co

A B C D E F G H 1 2 3 4 5 CY-31363 ~ - 6 SfE~M L EAKOFF FROM PIL OT VALVE ON STOP VALVE SEE DWG -----~ l1/2" TURB STOP XH-112102-43 \\ tllA VALVE QRjlJNS SEE NF

  • 3q21q 4'AUX STEAM FOR DEAERATOR STEAM TO CDN~ENSER SEE' DWG NF-392I9 F-7

'3/4" FROM !'fTG SY,ST CAL TERNATE. SUPPLY TO HOGGING J ETSJ CONT SEE NF-39219 D-7

  • 21 HOGGING JE TS -
  • 22 HOGGING JETS -

AUX STEAM TO HOGGING JETS SEE DWG NF-3921q -7 BLEE:D STEAM TO I DEAERATOR STEAM TO CONDENSER SEE DIIG NF-39219 H-9 MAIN STEAM RAINS SEE OWG NF-39219 H-6 AUXILIARY STEAM SEE OWG NF-39219 E-6 CV-31362 A-5 E-7 GLAND STEAM PRESS REGULATING STATION SEE DWG N/. F-39219 - HP HEATERS T ~ ~ SEE OWG NF-39225 E-* 12:' I B' 3"

kJ-l~><kl TO "25A &~*258 TO *2*~*

l *2*B1.--1:I c;;* __., ~ ~ I ~I-~ 117:i;:,.I 7[/ \\c1.'.... *+i~i'. - 3~1,~*3, r11/4---<1-~J I e-ra~ 4 " 1'2" ,2..

  • 1c:"

~ + -"IIA-rY~--'7 r *Yil J*zs - *.,. IIA IZ.TO*ll*W,l I" IIA 118 l" 1~ ~ ~F-7 1*~4 / ~-~rh;,.c----}, 24 / \\ I 'ii< It'1/2" ,/HP TURBINE 1-¥ _.- Uil/3>

  • ..;_O-ri,v

___ _/LH ~ t' ""'r' 1zro-s(1 I no*s*AI 'f ? Z.' I I I I_ +-,, ~. -< \\--'t -,, _ I J "26 I I ~,z.*z.r~ TO TURBINE BUI LDING TURB GLD STM S~::PLY STRAINER~ SEE WG XH-1002-45 B-3 /- 12'.'10*~11 1 12TD-lc,*l'Zl I IZ..TD*IO-!> l I" IZrtH.. -2.)----~ 1*1 I"' 12TD*C.-1 )- L-------..... I" I" I" O~w~D I' r zre o 7 " f' r l" I, lZTD-11-'!11 2TD*2:2*11 IZTD*22*4I -~2-21

  • 21 GL~NO STEAM CONDENSER:

(111/31 t-t- - MOISTURE SEPARATOR REHEATER SUPPL 'f LINE SEE 0)/G NF-39219 F-6 10" (-..J f' T r-2T0~4-2 / IIA / /'-l,_ 1.5' T1.5* /r,.... 1,..~* 1,5* ,,,,- - CAP FOR FILL t!e ___

  • _30

__ / 1-MEZZ FLO OR f-- l1/2-2MS-27 / - TELL TALE , ~ I { TO FLOOR o r i

  • DRAIN

-~ 3' "3"' >----- r 2' FLOAT TRAP t 2 " 21 I' _9 -GAGE GLASS 11/2*2MS- - I' 118 ' ;1..... I" I' TRAP <TYP) ' lt::1D*?*21 I" t C I" I" ~r-Z." IZT0'-5---9 /

3 *
3" I2.1 D*S-I

/ L--C}-----.,_:!.,_ ________________________

=---------, I 2TD-4 -5 1 1 REFERENCE OWGS; NF-39219 NF-39225 NF-39227 NF-39250 NF-39605-1 XH-1002-43 XH-1002-44 XH-1002-45 2 MS SYSTEM FLOW OIA UNIT 2 BLO STM & HTA VENTS SYSTEM FLOW DIA UNIT 2 FW H1R, MOIS SEP &. RHTR DANS SYSTEM FL OW DIA UNIT 2 SGB SYSTEM FLOW DIA UNIT 1&2 HTG STM SYSTEM FLOW DIA UNIT \\&2 STM DRN & GLAN SYS FLOW STM RN & GLAND 'SYS FLOW DIA UNIT Z OJA UNIT 2 STM ORN & GLAND SYS FLOW DIA UNIT 2 3 4 HEATING SYSTEM SEE OWG NF-39605-1 ~ F-10 ~;.* ~ \\I~ 11~;5*56* 1 '*~ \\ IIBy ,'f I I I 6'/ ~; ~ 2T0-6* &JTLl);-:_:2~-}1:J--_I 5 i"UR'."h lN E Co "-.).t,.). ~ i: 2..1 .z z. .23

2. s
2. 7 30 44 4 ':,

75 6 7 8 L EG,f; lvt:> FOR 5TE AM F' IP Liv<?, DRAllv COIJNe.cnoivs c:,i;, =, c. R.," n "'t-J DR'.Ao.11,.l ~ROM S,EAM 1~i..:E, Plf'E S D R/.lrrr..\\t-..) FR.OM F l°R5,... 51A.~F-GONt::iE""35E~ CDl't.)N. tu.2

>'4 DR. AIN OWT'E R CY\\.. 1 N1::> ER.

D R All'-> FR.OM "-1-Ah,)1':> 5T'f=A.M 5lJPPl,-Y VALVE C)RAll'--l FROM GROSS, µt,.Jt)E-f<'.. F'IPE r.:>RAIN Fi>.OSY\\ Gi l..,.._,_,~ CC>>JDl=:1-.)SE R. 5TEAM l,.EAKOFF FROM Pli-OT VAI..VE Olv 5TOP VAi-VE (~,H) .$T' EcA !Y< 1...eAKOFF FROM PILOT VAi-Ve Ol-1 STOP VA... VE ( \\,..rt) 5PAR.l'a'i:, 5,- EAM 1"RAP !:>l"'.AIN AIR e uE CT'OR S>EAM Tia:.AP t:>RA \\ lv MAI...-, ST'EAM STE AM Tl'< AP P'RA\\1-) AUX. STE.O..M STE 4M,-RAP 1::>RAI\\-) l:=>\\...E ED 5,EAlv\\ HEATER ORAJN' 1.l!!NK VENT OR1'1"1,ROM CR0'$$\\..INDER PIPE:, 0 M01$,URI:. $EPARA.,or>. RCiOI< (ol..ANO S1Ei'N1 SEAi.. SPILLOVER DR:.AIN FRON\\_ C.~ L\\NOE."-. HEA"1'1N", ';l'EA,:,('\\ SUPP'-.~ L:>R:.A IN !CR.OM C.H. \\Nl:le:i,:. \\\\E A1'N(a S1E/'I"" SUl"l"L..~ LP TURBINE \\Illt3J LP TURBINE (111/J) TURBINE GLAND STEAM SUPPLY STRAINERS SEE '!>4 34 3'$ 34 3; ~1 3~ 40 41 "42. 4 "3 44 7 0 9 TURBINE GLAND STEAM SP ILLOVER REGULATING STATI ON SEE WG XH-1002-44 C-4 AUX STEAM TO CONDENSER WATER BOX EJECTOR SEE OWG NF="-39219 E-8 0 21 AIR EJECTOR STEAM SEE' OWG NF-39219 E-11 12 T *S-41 \\'

fl"'~*=:*,

1/2! 29 2

  • I 12T0-5-71 12T0-5-81 I

Lid1~;~ 2' ~, .---"-i-.t-_--_j i." z.* TO TURBINE BU (LDING SUMP ,1=2=ro=-='*=-='"='.-l ~)2=ro=-2=*=-1:'.)_~ 6' HEATER DRAJN l-

::><) TANK VENT
  • 44 1~

8 Ill OWG NF-39227 H-8 \\' - 118 IIA s*_ ,-,;70~+-*------cxi---------'0"-41------' 10 11 AUX STEAM f

  • 22. AF\\i,I PUMP SEE DWG, NF-39219 H-2 MAIN S TEAM BYPASS SEE DWG. NF -39219 G-1; r-- FOR CONT SEE DWG. NF*Jq2l9 H-3

\\ bTEAM RING i-- - 71! 2 ':'~ 31060 ORA(N] 'l c°\\ ?/ iJ"'i 1,,,. I" ~ I - - -- -1 )~- r ~- I ,1, L1_ I ~ 12f0-\\3-61 l _l "..I. II;; ti,* IC C3 * -12rn-tJ-1 I ItA.,,, UA NSR 210-ii,-121 6' I" 12T[]-6-32J ,, (2T0-10-1'4 j 12'T *6*3J}- I" 11/2* - _:::r:'--- !/4° ORIFICE

C OLD TRAP *tz I 8 12T0-6-341

')2rn-HH6 [ 6' \\" l2TO*l8*3H 12 REVISIONS 7 6 AS eurL T* CO~~ECTED PENET NUMBERS TO 28 COSR PER ORR PI-07-017 DWN1 WU 2*28*'1!17 CJ.IK'D: JM 2*28*07 M00*1 EC-100<13 FILMEi J-l!l7 7] AS BUILT-CORRECTED OESC ~ D~O REF FAOM COt,f[J RETURN FROM HEATING STEAM TO 1-EATE.R DR'AlN TANK YENT AT CfJSR CONN ND, .:.NO D*"I PER OAR P!-08*035 WN, OMH 5 - 2"-00 CHl('O, BS 6 1:'18 M00*1 !;:C-1079;2 FILMEOt 6-1:'18 78 ISSUED FOR CONSTRL.cTlOlif REPL.OCEO CONTROi.. SW[TCH ES-,46804 WITH TURBINE CONTROLLER,48515 ANO DELETf LOW VAC TRlP LINE, CONN. 28 & CAPPE: CONN.', 38, OwN, LA8 6* 16-08 Cttl<'D: PH 7-ZJ-08 M00*1 EC* 867 REVIEWED, JM APP', crnr 1 RICHARD C. LINDBERG 7-24-08 PE" 4886 AS BUIL T-INCDRPORATEO ME', REV.76 PEA IJRR PJ-M-034 C[Rf!FJEO REV. 7B, TRANSFERRED TO RECbRO TRACING. OWNi OMN 4-\\5 - 0"1 CHK'O:PM M00*1 EC-B647 FIL.MEO. S-0't 79 AS BU[L.T-REMOvE GAGE CLASS 5HO\\ll"l'l AT C~l. PER OR~ Pl-1!1'3.-041 OWN1 JLB S-J;M!l"3 CH!C"D1 NW~ 0-]*t-ri,'9 MOO*! EC-1341:t; FILMED: 6/"" 80 ASBUILT-ADO SAFETY CLASS FL AeS LECENO &. NOTES, FIEF O\\o/GS & GRID REFS TO DWG CONT & MlSC LN NOS. 0.. NSi5 PER ORR Pl-0'9-060 WN: JE]C 7-20*1!'! CHK'D1 DB ~-23-0"1 MOO'"i EC-1,4376 APP'01 CMR 1-12-10

8)

AS BU~LT-REVISE LINE DIMENSIONS TO REFLEC T PI..A~T CONFJCiURATION PER ORR Pl-10-075 QWNi DMN

  • 2'H0 CHIC"Or BWK 5-UH0 M00*1 EC-1~<,q M'P'Oi CMR 5-10*10 82 AS B(JJL T-A B

C D 1.:T0-1&*

  • 41-l l

- I - 11e... ____ l=2::r::,-:':,-::'2:'.1 _____________________,~*-,. _ _l_~**1--c I

J CORRECTED PlPIND AT DRAWING lOCATIDJII B*IE!.

ADDE.D TUR8[NE Sl(f' v1,,V, DRAINS,'- CONTINUATJON. 2B CONDENSER (111/3) jZTD*!u-351 / 1zm-~ 2A CONDENSER ((11/31 / I" 25- ~ NOTES: FOR VALVE POS1110NS S.EE OPS MANUAL C PROCEDURE CHECKLIST. I"

2. UNLESS OTHERWISE SHOWN.CLASS BOUNDARIES STOP AT VENT ANO DRA I N VALVES WI TH DOWNSTREAM ITEMS (e.g., PIPE, CAPS, ETC,i CLASSED AS NON.. SAFETY-REL ATED.

3, + DENOTES CATEGORY. I VENHLATION ZONE 6 / I"

4.

FOR SYMBOLS SEE XH-J-105, NF-392J4.. 5, J/I DENOTES EQUIPMENT QA TYPE/ DESIGN CL ASS.

s. I 25 I DENOTES STEAM TRAP
7.

DENOTES EXISTING SYSTEM TIE-I N 7 8 2' l2ro-cs-JI I C2 NSR is Im' V LEGEND CLASS BREAK OA TYPE Cl - SAFETY - RELATED: IS! CLASS C2 SAFETY -RELATED: ISi CLASS 2 CJ SAFETY - RELATED: 151 CLASS 3 SR SAFETY-RELATED FLUID BOUNDARY: NON -COOE CLASS NSR - NON-SAFETY-RELATED I A. IB,JC.l!A.118,& Ill DENOTES PIPING DA TYPES 9 10 PER ORR P1~09-JS3 WNt l(JF l B*'4*10 CHK'D: JBS 10* 12-UJ M00*4 EC-14'472 i=if'P'Oi ct,4R 10-18~1111 83 AS' BUil T-CORRECTED PlPlNG llT DRAWING LOCATION F*l. 3/4* 6 l" CHANGED TD, 1.5' DltO-it:TER. F'ER OOR* Pl-15-108 OWNt MEA 9-H-15 CHK' D1 RLM "1:-~*l '!i J<iOO* J EC-24 67" APP'Oi KJ'W U!l-28-15' 84 AS 8UTL.T - SWAPPED VALVES FROM liATE TO DLOBE & CHANGED GATE TO GLOBE PER.;>AR PI-16

  • 270 WNt MEA 12*8-16 CHK' D1 TEO 12-8-16 MOO*t EC-254"11 M'P'O, DB 12-8-16 85 AS BUILT-CHANCE:0 VALVES TO-ll-3.,

TD-U

  • 4\\. 2TO* l0 -22' tr.JIICI 2TD- ]0-28 TO o..osrn.. ADO LN NOS. t1/2-2t-1S-J, ' I 2.7.

PER ()FIR PJ-11:1*07'1 WN: JEii'. 4-9-t, CH1<* 1 ER'1 '4 -1111-lq M00*1 6DO[;H0ii!'l.,ilq i'.WPOt OB

  • HH 9 86 (IS BUILT-COARECTEO STEAM TA~PS 18A, IBB, l"JA. l"'IB l l~C TO BE IN PARALLEL NOT SERIES.

E F PER OAR PI-IC!-261 V OWN: J.EJ( 11-12-111 C"') CHl("O: ALM 11-13* 1'9 N MOO*t EOO~i!02J04S O""' ~AP_P_'0_,_OB __ l_l-_1'_-t_s __ ..., M

d. z n_,,,.,.,_,_.,,1D<"IO-IIP""'fMlhN.,.._......,... YIUpor-. -f!Jl)'"-

tc,o tr,1AJ"G ~--~- and e,p.fpMrlM - h mffWWf'G ~....._. a:I -SFIIR1. 8630 2 "418 5343 FLOW DIAGRAM TURB!NE BUILDING TflAPS AND DRAINS UNIT 2 H NORTt18,N STATES POtYEA COMPANY -.., NONE ..,... 86 ti-'""'1r PRAIA(E ISIAND NUCLEAR GENERATING PLANT NF-39234 11:D.....,ICllollN~l A stuS£RNAM£U us n,s TT 1111:.IUU SHUSTOA TE'"" t ,,,n,ntoES I GNF l l n,n,n, NF-3"1234.DG'" j.f? &!iflW,rw CAI) j 12 FIGURE 11. 1-13 REV. 37 CAD FILE: U11113.DGN N II) r,.. 0 0 0 0 0 0 ~ 0 co

1 A B C D E F G H 1 2 3 4 5 6 \\ ~ "

  • 1

.-1----{ 1--..... ----1 1

  • /

'J l) c o... o e~sP..Tf: P1..a,4Fi r-Li1 Oi~CHARO.£ 'SI!:~ t~*, CW(1/4. IJF*=>'3'Z'l.0 4-7~'-------,------L------o--------,----....:~::,-"------,.----*..:"'::'---""':;;:::;::::"~"'::""':;;;:'-:... ______. ___ -,-,,... ____ '?. .:-;,i"*------. 13/4:* ~* l 1/4" G,')-9-~ I 1* ~-~ 1>.l'l>TR. TE.'a>"\\' L.11.JEc:5 TO \\...P. , r IM!aTR - TE$T LIi.iE. TO l>-l'=>TR. 1' E-'ST \\..II-IE. To"' 11 H \\R'"=- ~""......,, e, *1 "2.A.s:t1"2. B MOl'eo"TUR E SEP.Ao.R/1\\"TO~ S HE..A.'"T E.R c~~I\\..Ji "T~~..:...

    • ~~ "*r~e. -4.aE.. ~ F -eii:i~-:a-
  • -z.A..**2.e ~ 1iii1:~I-\\EA1'E.R

<::,e.e.. 1:)'N,~. N.'F- :af:;1'2.'>>Co CR"-\\"1 'TJJ,,,.,\\.lK~ ~".2A :a!.*'2.e. Q' I I ~. 4 "12 ,/~ ~ - I' 5-9-Jl r.t.:iLOW ~Pl2ESS L- ,_11 S'E.E. 0'14~, 'NF-~~"'2"2.Co Q_.!. u ** - I' * ~ r*)I,~- ~ E LIEF VALV E- (TYP.) "':=:iE-T Pe'i;.~2:F E' 3~ P"::tL

  • ~

I A CONOEN::.EI< (ill/3) 11JSTR. T ic.ST 1-1>-IE., O I...!'> Hia:.A.i 'aR 14.0..._,

  • 14e.

~'=.~ OVII.~- WF-~~ "'2. "2.'0 2 1/,(~ WATER IHJECTION I' CON OE.N5A~E. PUMPS (m/ 3) P l 11") 0 I 7 PS ' I 8 9 I °*:r.


' 1 GS-113-3 1

_ _ ~ Si.b..~T/ s -roP F,W. P ~ M? C::C \\..lTRol...r-~

OP! 1150v ... 1 ~*

  • I" I*

l!X.-Z-Rt.\\...1 £.~ VALVE. "'::,ET P~E~U~E:: e '?,I 5 ?IE,I CrS-2*1,l HEAT~R DRAIN PUM?S, (= I !>) (*11 HOP) IGS-173-51 {*t2 HOP) IGS-173-61 (* 13 HOP) IGS-173-71 SYST EM, <!tL.A.l.lD 'a!>e:A.\\..,! r'. W. F>UMP t-J F - 3'?>3\\4-1 i.J F *:.":>;!.\\4- '2 l>-IJ"E C T OR -PIPIN c;;,. 1/2* c.s. 1-J F - "=>~14* ~ 1*11 HOP> I GS-173-10 I ("12 HPl I GS-173-11 I c (*13 HOP) I GS-173-12 I 1/2' TUB[NG DETAIL A "77 =-'-., 2 3 4 5 6 7 8 9 10 Pl-\\137C:, C*tl HDPl Pl-t1380 c*t2 HOPJ Pl-l1381 <*13 HOPI 10 11 12 REVISIONS AK AS BUILT-ADOSD VALVE NO'S. 4 UPD,t,.TED E LEC. DEVICE NO 'S. PER A DRR*PI-~2 - 47 ., ~

  • ~

~ N -;,. 'fl. ~ I* l ,. Z X 4, ~E1-1E f-Y/JU/C- ~E-T ?£'!-~U&::E-@ ~ P?!C,, ( Tv'P.) LE GE:ND ---t-- OE;.t,.,iOI~~ LIMrr-:, 0 ~ a, A.,i"r'l'e':> DWN :.,JI-IM 3-10-92' CI-IK'D, 74 $//~It~ Moo.* :.,......_,, "£. FI LM'£Q : / ;?°a.,? AL AS &JILT-OELE TED CHEMICAL FEED PIPING t11m REF. OWG. PER ORR PJ-q4-1qs OWN: MRH 01/18/<15 CHK'D: MOO*: FILMED AM AS BUTL T- ~ED FLANGES AND REDUCERS AS SHOWN PER ORR Pl-"17-IB2 OWN: JMM 2-l e-qe CHI<' : PAS 2-26-'IB MOO*, <13'127<! FILMED 3-~ AN AS BUILT-DELET£0 ~ATNS GS-8-15 & 16 FRc:+1 II a. 12 FEEO WATER PUMPS. MXIEO EOUJP. NOS. TO TRAPS tlS SHOWN. PER ORR PHU-02!5 OWN: TF 3*14-01 CHl<' D1 CMR 3-29-01 MOO*: 00GS01 FILMED ol- 01 AP AS BUILT-ADDED VALVE GS-14 -1 PER ORR Pl-05-013 OWN: WLI l-12-05 CHK'D: CMR l-[2-05 MOD*: FILMED 2-05 76 AS BUILT-CHANGED PI-11500 TO DPl-11500. ADDED VLVS GS-113-2 & GS-UJ-3 & LN BETWEEN OPI-11500 &. Pl-11'501. PER ORR PI-13-11187 WN1 JEK 5-8-13 CHK'D1 RTC ~-14-13 MOO*: E:C-21-qg7 IV'P'O: CMR ~- l 1!'!-13 77 AS BUILT-ADOE [5Cl.. VALVE'S GS-173-10, GS-173-ll AN US-173-12 & ROOT VALVES CiS-173-5, -6 i:IND - 7. ~DE:D DETA[L A. PER DRR Pl-21 -033 OWN: JEK 7-1!1

  • 21 CHK', RSA 7-16-21 M00*1 6011110111002615 IV'P'D, DB 7-16-21 Al.L.PIPUJG TO e,i;;, GI.A 'lYPb. '!It i..Ji,,il-E~*_,, 0T~6~w1-§6.. w.OTE..0.

(ill/ ~) L.O i;>I!."" " ~!, c>e,.,,cTe.s. !:> SNOH,S. T.._I ~q"UIPMeNT Q. t... T./r-'&4:;;,/ P e71C,N LOC,l(, E. " O P!,t,.t vv/ Ta<::, '!IE:"'-L -, 1-"..n.rr ;;1..c,w 01:NOie -=a S::UQ.N l?Lol~O WIT~ E.Q:,HPMi;N,-* CAT. I + ~DENOTE'~ CATEGORY I VENTILATION Z ONE. ....,,.tu,c:srr. TllilRWj>,-... lo alOOl _, _ ..,_,,,_h.., po,fmr_,,.dlwj:D..Yt>..-pmlDllll~ lo p<-.Jb" tr, Ol'.ng ~ pn,ct.... llQ<eO,.._llnd ~IS - t, llftlt1nlr"G -llllnJIII Sl<I !PNl'L 8630 FLOW DIAGRAM UNIT l FEED WA TER PUMP INJECT ION & GLAND SEAL PIPING NORTHERN STATES POWER COMP,J,NY "(}. 11DM""'W -..., NONE ir. 77 PRAIRJE ISLAND NUCLEAR GENERATING PLANT NF-39239 RfOWlr<<l MINIE:SOT,\\ H USERNAl£U -UtUSS TT(IE.IUU 1USISTDA TE SUHt $UU1,$U0ES-IGNF IL $$$$$US$ NF-Jq23q,oct,J I W itiit@.OV@ I 12 B C D E F CJ' (Y] N CJ' (Y] J z H FIGURE 11. 1-14 REV. 37 CAD FILE: Ul1114.DGN N II) 0 0 0 0 0 0 ~ 0 co

1 A B C D E 1,::'G5*9 -2P F G H 1 I" ( I Pa 1<o211 4~9LOvl 01.to-4 Pl<:£:~~- 2 I I f-1-,~ LJ ?3 2 3 12.Glii!-2.1-2.I 1.i::G::>*9-61 2G.'::1*2-~ I .:;c,:;,, 7. 3 I . I,ta,5. 9.z3 I?(;,~* ** ~ I I' ,~fro 47~9 LO'v/ - O"I0-, PJ:? E.:>!:i, ~2 C.ONDElsl$ATE PUMPS (ur/ "') 3 4 P l 11::>82 JNSTRUt-ENT TEST LIi£ TO LP HEATERS *24A AND

  • 2 8 SEE 0',(G. ~-3~227 5

6 2A CONDEN$ER (m/<1) CONDEN!:)CR -5TANDPIP£ ,;f.!)T A't-OPlPE \\ \\_ IN$T Q, TEST U N E OW(:,, ~592',?I REFERE.IJCE: PIPING, 1::>WG,. \\.lO' $ _ 5EE '=>Y'::IT'=.M: (:iiL.... NO ~e..At.. ~ F.W. PUM'P it-J J£C."TOQ. ~tP l ~Qi. 4 NF*~~ a!d ':.-1 J,.JF-~~'=-' S. ~"2, 1-J F ~ a:,'!) ~ I '<o - ~ 5 6 4*_ ,:?;6,,!>* l(,,,-1 I t.6~-8,-1.?> 0 P l 11522 7 8 ~ - - ST"-RT/sTOP F.W.P\\lMP CO>ITROL.,- - 2.1-'i '&EA.~ WA..TER INJ"eC.TIOM 2.~S-9-1~1 k", 3* I 2GS*20*31

  • I 9

"TR"-P (T'I P,) 1t~'!i*'9*\\'3 I"

  • r l~c,,~.n-11/

1,e.:::.~**10 -11 I LEGEND, SE:AttR DQAIN P UMPS (llI/S) --+-- DE~OTE':I L..lMIT5 0~ 0.A. ;"'YP£$ 7 ALL Pl~l t.lG. TO BE GA TY~t. III: U~LESS OlHE'RW tSE:. ~CTE.D. (m/&) DENOTE~ "THE EQUl~NT Q.A. TYPE5jDESIO,>J CLA,,e, LO_ DEN OTE:5 LOCKED OPEN V/TAG ~ EAL -{)-- DENOTE::, ~ IC.HT FLOW DENOTl:5 F Ul<Nl~~ED "W/ E QU;PMENT ~ ce..l.'I. DENOTES CATEBORY l VENTILATION ZONE.. 8 9 (TI\\ ::::f ~ 10 11 2GS*%-I C.. I 12 REVISIONS AB A.;. BUI I..T-A.DDED VALVE NO'S. U~DATED El.EC.. DE.VICE NO'S. PER 0RR""'PI*IJ2* 4/ DWN:.JHM 3-10-~'2. CI-IK ' D, ';iJ'/.:y!N/,z MOD.** Fl LME., AC *s eu1, r DELETED CHE MICAL FEED PIPING ANO REFERENCE DRAWI NG. PER ORR: Pl-94-196 OWN: M.R.H. 01/18/95 CHK'01 MOO:,__ FILME01 A D AS BUIL T-REv*o 2¥,i* SUPPL Y L INE TO FEED WATER PUMP SEAL WATER FILTERS TO FEED OFF

  • 23 COti.OENSATE PUMP INSTEAD OF THE *21 CONDENSATE PUMP.PER ASBUIL T WAL KOOWN.

RE LOC A TE Cl-ECK VA. 2GS-7-l. 21/2" X 2 " REDUCER ADDED 21/2" X z* REIXJCER FLANGES. PER ORR PJ-~7-182 FILMED,.,. AE AS BUil T-DELETED DRAINS-ZGS-8-15 &. 16 FROM 21 & 22 FEED WATER PUMP l'IODED EQUIP. t.05. TO TR AS SHOWN. DWN1 OB S-8-02 C:HK'O: !:IC !:i* LIIHi!l2 PROJ*: 00GS01 REV'Dt APP'O & CERT: PE* AS BUIL T-INCORPORATED A/P S R!=:V. AE PER RR PHll2- 06q CERT!Fli:::D R!=:V. AE TRANSFERRED TO RECORD TRACING OWN1 TBN S/22102 CHK'D, CMR 05-2q-02 MOO*: 01!1GS01 FILM£ 0S-02 76 &IS BUlLT-REMOVED TEMP CAP FROM LINE AT E-7 PER ORR Pl-08-035 WN: MN 5 08 CHK'D, BS 6-2-lil8 MOO*! !=:C-107q2 FILMED. 6-08 77 AS BUILT-ADDED VAi.YE 2GS-J5-2 AT GRID CDDRDlNATE E-7. PER ORR Pl-10-143 DWN: KJF 9-21M0 CHK'01 M[;.C 'hlt-10 MOO*: EC-16541 APP'01 CMR q-21-10

  • -i'c. Fi:ee.t>'N.._'TE.~ ~I,),-\\'? ('lll I ?>)

78 AS BUIL T- ,~.. S-'l*lOI 10 ....,,.tu,c:srr. RELOCATED 'VALVE 2GS* l0-2 & INSTR TEST UNE TO L P HEATERS 2A & 2 B. AOOEO DASHED VALVES 2LA*3*2, ZLA-3*3, 2LA-J-J7. ZLA*J*J ANO 2LA*3* 34 ANO SHOW 3/4 LN TD 2LA-3* 34 AS DASHED PER ORR Pl-20-014 WN1 JEK 2-10*20 CHK'D1 DC 2*17-20 MOO*: 60100000!q03 APP'01 OB 2 20 Tlln,ap/- *-1D-~ ln ""'~lll-jm,. Y<o--_,- p,awka!l,r ....LMICl~pc-,pr,:,codu.vnl......,CM_tl,.._~,,_,.,.,_andSPM'a 8630 2 UNIT 2 FEED WATER PUMP INJECTION AND GLAND SEAL PIPING NORTHERN STATES POWER COMP.-.NY rJ-,,.,,.,, -.., NONE ir. 78 PRAIRJE ISLAND NUCLEAR GENERATING PLANT NF-392 40 RfOWlr<<l MINIE:SOT/\\ U USERNAMEH 'UtUSS TT I IE.I UU 1USISYDA T ESUII I $1$$$$1$IOES I GNF IL,nnnn t-..F-3qz40,oct,,J I W itiit@.OV@ I 12 A B C D E F ISl '1' N CJ' C') J z H FIGURE 11. 1-15 REV. 37 CAD FILE: Ul 1115.DGN N II) 0 0 0 0 0 0 ~ 0 co

A B C D E F G H 1 2! CLG WTR PlJMP TR.1.:- 3~ RE.,Clli C ULA,.T'll,l~ l-1"'1-E. i i~ 1 I p 21010 2 HIGH [l]FF A 47501 e*eJ I I I ~--- -*~--~, 3 4 HIGH ~~, ._,~___, '-~~I UN\\l.,_ I I l}I VAlVE.5ll*IE.0t/D!: REFER~\\.JCI::, PIPI\\JG, O'Nia. '1--l'=S. ~,...S'TE;.Ma C11.'CIJLA.'Tll..la. ~"'-"f,i;_R P tPl~"I Ul.,I\\T 1 t-lr"-~9'2~4-1 N~*::"21Z64-2. ),.)FC"-:!,';;>"i:E.4* =- Sv'ST!?M: C1Qc1.1LA..Tl'-IG W...,_,-~~ PIP*>-1~ U-.i1T '?, I..IF* :!:-, Z.'- 'S - I 1Ji:=--3e2E.S*'Z ... ~-~<£7.a <;,,-~ SY~IE M; C(h.JO~\\J'!.',E.~ TUBE. C:..l,,Et.,\\.,lh..l:a, ?!?1"-IC{ \\.h-llT l -.IF"- ~~'Z.'i;}~- 1 '5-,,S.T!::"1: C.01,JCF'.I-J"a.E.R. TU6E. CL~,1,,,1.)l;,\\C:,, P\\F'H,l~ '..h.llT 2 -.JF-::!.~Zo;;,4-1 SY",;,TC'i.1: 1/IJ'.':>C. U'-!....,*'-l I', V(c.oJT 'F'n:>11..1~ Ll\\..11T I 1-JF"*~'='~O:::!i-I IJi='*'!,~30::!. * 'Z. 1-JF* 3~~0~ - "?. j.JF -~~'!i.0"'.!.-4 S'f'5TEl-11 Ml">C 'Ct:.""'lloJ i_ \\/E'I.IT P IPII.IG. l..\\"-IIT '2 ~ ~-~<::i:>o4-I '-JF'* 3'::le.-o4*'Z. t..lF-~~~o.:1-~ s..-sLS:M, C'1~C V"-Y:.. 11 C:OOLli..lG,-ov-.E=~ p1ao1ue:i...,.. 1r,- 1 ~, f..lF - ~~ZG6

  • 1

!-JF* ~~-z.,:;<Q -'2 1 2

4--<141----1*~ 1 41--- U2 U4lVE jCHCO<A.£ 2A IA'NeR PAS$ TAP*/ 2.A(C,.,93-2 ~.! 2.,+(1)-3.3-.3 I ....3ZMO~;!-',/

  • 1h/,ZM.0*.33 *5'

/5t:t'.,. V.AlVE,?A,1D-~J-/ ,?,4 OUTt9?FJt1.5S T,4P#/ Z'M0 7 ( j 1 2 2M/0-3-' *8 ~$ -2M.0-.33-9 µy 2M.0-.3;;1"-/0 ,(Sr),!, ~1-£;?,MCJ-.3,3-6 i::IBANDON ~=~ - - 6 11 IN PLACf j,E \\547 3 f--/ I~ ~5~ ti (SPARE l 0 _. DISCH~RGE BA.SHJ 5EE DWCi. H~-~91.l S-'Z. ~~ 3 4 I I IB coµ DE!J"aEQ (fil/o) I ,oz I I I rJ I w"' I z~j I ~n: I I I I I 5 EID IO'L"... I I I I I I 1,,_ CONO'ENSEA: l roI/r) 1 I I I I I 6 - -I ~ I\\ U.(,,;, TR. PUMP T~1F' 102" 102" p 21008 3' I" VENT 3' 7 8 9 10 4"- 2AR*12 4"* :ZAR-13 ,.,..--1 ZMD-10*51 I-Z.MD-10-{.I-... .,,,,,...--,,.. ~ IZMO*S-<,f / r--,_..----;=::::;-::;:::::-VE~T TO ATMOS. ROOF EL. 732'*2" _ _ -:\\,ll"f ~--.. _c;_ ~:~j4:."--. :::~~IRAIN TO ROOF ITYP.J

  • us RECJRC
  • PL.J,tP 1-45*013

/ ~, r' / ~ STEAM SL.PPL Y l/CZNTROL r SEE OWG. ff'-JCJ21CJ 8*21'lR*l'4 - A --1 6*2AR*I' 7 ~ a - , 4" _ 1 6 " I - - 4~-, --,-=.<,:J--L-."'-1 t... 4-ZAl<!* lf 4-2A~~14-~ jll 'I;; J

  • 21 CONDENSER Wl'lTER BOX

'z_ \\" EJ ECTOR 1111/Jl ?t 1 21 Vi::.c::UUM TANK 1111/31 \\ i'!M0-12-1.! [<i:M0* ~-7 l 111' ~ "" 1-:----------4_.,_ __,_,.. _____ ~ jl }VOVl;;'rlFLCN'J

  • y I

__. B-AR -1 4 8'"~

  • ~

G," \\" i y VACUUM DRAIN TANK 10 TURBtNE RM SUMF .. 1, ~ACUUM DRAIN T AN!( CONOENSER WA,ER BO')( VENT ~ D\\'\\AIN. S'l<;:iiEM fl r a~.~-~,-~,~, ' t------

I W-89*21

,{, TJE*IN TO EXISTING DOMESTIC Wl'lTER (NF-39241-ll CF-7l I ' DW-130-1 OW-127-1 Bl'lCKFLOW PREVENTER W-1 30-2 f'IPIN<=, "tQ BE. QP., "NPE. 1ll 't:Q.UW"1'1\\i;;.N,- "TO \\3E. QA iYP'S. m./ OE..'=>\\G"J C:~O...S'=i 3 1 128 RECIRC. PUMP 145-01'4 3' 3' 3' I ' VENT

  • 12 !W..l CATCHING UNJT 11 I

T ~ A M0*3*L7 1MD-3-2 r, = 7 ~ L/ \\ fil

  • ~ IX' A" J (TYP)

I A CO;f.o£N5E R(mj3) 12 REVISIONS 7 8 AS BUILT-CORRECTED CONF'IGJ..RATID~ OF' TRVLG SCRN BUBBLE:R TUBES PER ORR PI-0B-002 OWN1 OMN 1-22-08 CMl('D: EJI-I '4-2q*0'l M00*1 EC-12103 FILMED: 5-0C, 79 AS BUILT-CORRECTED VALVE NUMBER FROM 2CW-41M TO 2CW-~ PER ORR Pl-12-208 I, , t WN, JEK 11-q-12 ( /J. CHK'D1 SMF 12* 1'!*12 M00*1 EC *l 'l 'l l APP'Oi CMR 12-\\q-12 80 AS 8UILT-REMOvEO & PLUG TT -17366 8i TT-17367 Cl LDC 0-'4, PER ORR Pl-l3-01q WN1 DB 2*6*13 CHK'D1 SLW 6-l'l-13 APP'Oi CMR 6-lq-13 8] AS BUILT-CORRECTED VAL VE NUMBER FROM CTC-2* 7 TO 2TC* 2

  • 7, PER ORR Pl-14-0B6 WN1 JEK 5-2~*14 CHK'D1 BAW 5-2<1-t MOO*: EC-23535

~P-1 CHR 5-2.. H'4 82 AS BUILT* INSTl'lLLED OIFF. PRESSURE IN0JCATOff$ DP 18666 &. OP 18667 PER OAR Pl-lG

  • tl2 OWNi MEA 4-20 -IG CHK'D: DC 20-16, MOO*: EC-24001 AF'P'O, 00 4 IG

~----~ 83 AS BUILT-

  • n..-ACUUM Tl'lNK 1111/3)

J.---, 1 ) NID*4 *"T I 2" rc-IJe-m (I/,Xn/3'fpr./al M0*4*6 ! 4" 4" LEC.EI-JD REMOVED C t>IJENSER ORA(N TAIL PIECE PIPING AS SHOWN FROM IA, IB, 2A & 28 CCJ,IQENSER BOXES. PER DRR Pl-19 -076 OWN1 LAB 4-!l-lq CHK'D: TED 5-19 M00*16ECR00008606 APP'Oi DB 4-5-lq DE>,.JOTES. Lllv11T-S OF' Q.,6... TYPES DE"'OTE5 THE PJPl"'"i QA T'(PES CENOTI:;-~ T HE' E'..QUlPl-.l'\\Elo.Jj QA. TYPi=:~ /DE":>1.:iJJ CLA":.S A B C D E F 1 11A RECIRC. PUMP l-45-011 1 12A RECIRC. PUMP 145-012 155*8~12:A+...,---*~*----------' ~ I' VENT TE 1~52+/-.JJ TE 15505 I 3' ABAtCION IN Pli=tCE TIE-IN TO E)(ISTING DOMESTIC WATER OiF*3~2'4l*U IC-7! I TC-3*1 j I' DRAIN

  • 22B RECIRC.

PIJMP 245-514 !8~ 12,c-,-~ 3* r\\ 1,:c-2-~css. REG. ~ ClJTLET PRESS. D\\*H30-5 D\\*H30<1 DW-127*2 BACl<FLOW PREVENTER DW-130-4 -12~-2 122 TR~ SET TO 15 PSJ um 2A OW-128-2 I 255-e22 3" CON~NSElt OOTER PASS 0SV*372-48 TEST co,,,___~~- ]

  • Z2A RECIRC.

PUMP 245-512 3-n,r.. S - - 1 1/2' I I I' 3/4',- - 1 1/2" I

  • 21B RECIRC, PUMP 245-013 3'
  • 2)A RECIRC, PUMP 2'45* 011 1' VENT l2TC-6-tj 21/2*
  • 20 21/2*

~-~--1---fCCONENSER>\\--f--~-~ INNER PASS INLET LOOKING SOUTH C!l3:2] !'DRAIN CONDENSER TUBE CLEANING PIPING I' ORAJN ____ _l __________ ~1~*~-~i26.'.".::-81'.'__!!;!~~~--~::!!~~g::::'.::".:_ _________....1:,*c._':':"~'":G_T~O'....".BE'.....'O~-A.'.:..'.T:YP:E~IJ~l,~E:o~u1:*:*~E*:....'.'O"_'B~E~O~A~T:Y:PE'.....'U~IJ~>~O:'ES~\\~ON"....':C:L:AS=S'....:3 _____ _J 5 6 7 8 9 10 INTER LOC: K LQqlC: LE"=tENO F"C'2. C.Ot-JQE:.N~R. TUP-;PE. C.LE.P..NllJ~ DeNoTE:.~ 'F"lJl2N l?HE.D e;,y Eq>Ut?ME..NT M,::.,.J,.JUF"""-CTWR.~i<. 0 DENOT~"=> O l ':li'T l2\\e,.,WT 0'2.. NOTES !. lO COAAOSION MON!TOA:lt<<:i EOUlf>MfNT. DRAW ING IJO. NF'-40319 Tll"'"l'/- *-'ID-~ ln""' ~lll-jm,. Y<o--_,- p,awka!l,r .... LMICl~pc-,pr,:,codu.vnl...-,CM-tl~~-,.,.,_andSPM'1. lMN SAS DATE 8*18*q5 ....,,.tu,c:srr. NORTHERN STATES POWER COMP.-.NY rJ.-,,..,.,, CIRCULATING WATER UNlT I & 2 FLOW DIAGRAM -.., NONE ~ 83 PRAIRJE ISLAND NUCLEAR GENERATING PLANT NF-39215-1 RfOWlr<<l MINIE:SOT,\\ 7700 HUSERNAl£U usnss TT I IE.I UU 1USIS'TOA T ESUH 1 ,nnnnoES-IGNF]LSUSIUU NF*Jq2J5*!.DCl,J j W iti/t@,jw@ I 12 ~ I LD ~ N CJ' C') J z H FIGURE 11. 1-16 REV. 37 CAD FILE: Ul 1116.DGN N II) 0 0 0 0 0 0 ~ 0 co

A B CONTROL c$ D E F G H 1 2 A I I L.cREENHOUSE, SEE awe. NF -3')215-1 3 CIRCULATl~G W"TER IN.TAKE CANAL CIRCULATING WATER DtSCHARG~ L INES 5 EE DWG. NF-392.15-1 T I0-z.* I I I I I r!;:. /I ,\\ ~ 4 5 0A l 36" -f---- Fi.OW---- AIR CHAMBER ITYP.l-------,..- SERVICE i,fATER HOSE CONN, ITYP,> 6 1 ' __J I I lfr t-++ 0 --tt-" LJ PMI ]8427 PMl 18426 7 _J PMI 18"'2'5 8 OR I .-------*I 9 SCREENHOUSE - - - - - - - - -7 I __..,..L-Cll--.J-- 10 CIRCULATING WATER APPROACH CANAL I Et-'ERGENCY coour,.; WATER INTAKE 11 STURGEON LAKE F.I..O W 12 REVISIONS ~ AS BUILT- !" WAS 'h" PER OOR PI-02-12-4 WN1 AJG 10-02-02 CMI(' : CMR 10/ Cj/02 M00* 1 __,__ FILMED 10/02 l7h l ISSUED FOR ~ CONSTRUCTION i:iDOEO NEW EIJUIPMENT PER RIVER TEMPERATURE MONITORING SYS fEM REPlACEMENT. U-17-11 CHK'D1 ELH lHB-11 M00* 1 EC-177CJq REVIEWED1 SLW JI-ICJ-11 PE CERT: .D. Hct..LHANN 11-ICJ*Ll PE

  • 4CJ267 l"IPP'01 Jl"II...

11*22-11 AS BUILT-INCORPORATED A/E'* REV. 76 PER CONTROL Pl Ll82'1 DISCHARGE BASIN CONTROL '-=---=---=-~-=---7 PRESS, REDUCING VALVE (TYP,.1----1 I II ' L..a ~-- DISCHARGE BYPASS I L --- COOTROL GA TES

  • 124 r

PM! ( m / 3 ) I I _..,__, 18 423 PMI 16431

  • 12,.! -

r RE 2'1018 i DRR Pl-12-163 CERTIFIED REV. 76

  • TRANSFEAREO TO RECORD TRACING.

OWN: OB q-6-12 T I I I LA 16818 CT;l I r7 CT-39-4 I r1 CT-10-'4 I T

~I FS FS FS FS FS

]6884 16883 16882 I I II I

  • ,23 I I ir.L:;1:.:_=:..

_,i r~ '"' I I - 91111---i 19422 I 1 1,__ __ ,.~

  • 01srn18Ul'JDN BASIN I

....!!LlL -=-7 I I 12* DISCHARGE CANAL FLOW ---.... i!IPP'01 CMR q-18-12 ~ tiS 8UIL T-LR 16817 LA 16707 1 CT-38-" r 1-1 CT-37-4 I- - f- ! CT 4 I CT-10-8 , -ic.T-40-J,.,, CT*:15*:>,.*L I C.T-fOl**v--- i CT-106- 'Z 1- .-------!CT-41*1 ___JCT~ 40* 1 I CT 5 I-I !

  • 122 I' ~ ---

1-i PMI 18-421

~ I ' 1~-----------*---------- ---~ .=-I I ~ 1/2" ~1, 1 I ADDED BRAl'ilCH CONNECTIONS A~D FLOW TAP VALYES CT-67*5 THRIJ CT-67-20. PER ORR PJ-16-271 I CT-104-1 ~ ~ I CT-7-1 CT 4 I CT 4 ~ Cl-100- 1 l-----"' CT 79 I * ' I 84" 2* MANHOLE,M., -------**:~,- 24' MANWAY (TYP.I ------* 1-MANHOLE SUMP PUMPS ----,- llll/3) 84, 123 C. T. Pl.NP LUBE CO (X__J N WATER PUMP

  • 124 (SUBMERSJBLE WELL PUMPI CT*3~;)r 10-2*

54* 54' ~ tr3 I CT-67*17 I El8,t- ~~ I CT-67-ICJ I ti" I CT-67-l'!i 1 c,-.,-,. r-- ~a"' i-ro1-J I CT-67-16 r i::ro 1 CT-67-IJ I CT-67-1 4 I CT L CT-10-1 jc:T-1"2.-1 I I

  • tZI L- "\\--

PMI cr-se-1 I ~~\\~~!t!t::;-11a*20 . \\,; CT -103-1 I"" \\ I""\\, 1/4* VENT I.

  • 121
  • L2l I,:~

I CT 1 t ~ .... "- L-ci!~uEi~~~~c'f~E COOLINU WATER r--.... I I CT-6'J-1 I \\, -- ~ 1 r-- CT-71M ~lJI \\" '- C OOL.ING, TOWE:..!: PUHP HOUSE l ] CT-55-4 r-7 "'!:~+..::STR.A-'E"" I t_fT-55-3 1-r--\\_ _...-- /3*

  • 2* -***

I s* 2' / AIR RELEASE VALVE CLOW F-3066 MODEL 143C CTYP,l I l~c-,--,-,--,-1--~*- -To F REN CH DRAtAI ( T YP, ) FLOW CO[l._ING TOWER ______., RETURN CANAL 9**

  • m 84" ~

1~.,2, S* 5' Ero"f.. w3 ~-~ Et:_o~ "'o 3 ~--*~"?"~, " ~ c T-67 c, I

,,1

/~ r . ~ CT-67-'!i I I CT-67-ll I I CT-67-11!1 I I CT-67-7 I CT-67*6 I 1 CT-*1-,, r-- 1 CT-67-8 r _...,1_. 1 """

  • co

-.9,o-J EJQ.t- ~ FLOW. I"'---- CONTROL WEIR Pl 11681 CT-71-2 I t FL OW I 32365 7 1 I I ! I J----jJ-l-,ftt-f't-1/4------------- l i I I I I ~ - - ---- 7 I l.!:L: ___ 7 I r- - 7 I I I I I I I PM 11eMI PM I I 28108 2010i:i I 20110 I I I I I I I I I I I I I I I I I PM 28lll I I I L~ Li,::i~J L~ 19~~1J I JTsl l~ FROM WELL WATER OVERFLOW e* SEE DWG. NF-3"1241 12* ** FROM OEMINERALIZER HEAD TANK S" 8' SEE DWG. NF-3q2-1-1 -....::.----0..a.----1 FROM AUX.BLDG. STANO PIPE SEE DWG.NF-Jq249 OWN1 HEA 1 2-1 -lli CHK'D: WDG 12-1':i-16 M00*1 EC-23750 l"IPP'CI: OB 12-21-16 _ _____________ 7 ~ AS BUILT-I I e\\ODED CO[l._(fr!G WMEA I I ISOLATION VALVES CT* 41-5, r--- -------------------------- +- ----------, I CT - t -6. CT - 4 1-7 t.. CT -t-8 II (c) 11 II /cl) II TO 121. 122. 123. 12"' Y 'y COOLING TOWER PUMPS, ~*7 ~-~ TE -qJSIJ f-- - - -- - - 7 - 4 TE -*U'51 r~ ....-y'7 PER ORR PI-ICJ-118 I Y I \\_ I ~----, I I WN, Ll"IB 5-8-1"1 I ~T t- - -l TE-ql5l2 ~ - -1 I- - - -- - - --i TE-91515 r ~~""' T I CHK'D1 RSA 5 - q-19 I j I -'~-\\.J M00*1 600C0i:l02769!:ii CJ\\721 '\\ ~ ~==-~I J \\ql722/ Af'P'O: OB 5.q.1q SEE owe t--- -1TE-'115II ~- ---- - ~ I--- - ---l TE-q1s16 r- '7"i',:c, NF - 92764 - 31 I l \\. I ~=== -, : I 1SEE DWU ~ AS BUILT-

I L...-1TE-ql!il0 r------7 r- - - --7 TE-CJL5l7 t-J : I NF*9ZlS -J l"IOOEO L21, l22, 123,l24, I L _ - -

- - -t- - - - - - - - - - - - - - l I I CODLING TOWER El"IST RlSER L L+- _J I DRAIN VALVES CT-50-1, -,--jTE-9l51'1CJ ,t-- ---, I ,- - - 7 TE-'11518 1 1 1 cr -sm-2,cr -s0-:i.c r-s0 - RIVER FLOW ~ I I I ,-cc-=-cc--, I PER AS FOUND CONDITION, r - ~ TE -'M50a ~ - I I 1- - - -1 TE-ci151q t--J I PER ORR p1-1q_166 I I I i 1 '1 I J WN: LAB 6 JCJ 1---j TE-91507 ~ J I 1- - - -~ TE- "11520 t- -i CHK'D: BA 6 Jq I ~---~ I I i I ~~=~ -. I I M00*1 6010000003719 j----1 TE-~1506 ~ - - *1 ] j-- - --1 TE*ql521 rJ : i!IPP'O, 08 G-1"1-l"I L _ - DISCHAROE STRU::Tl,JlE -:---i- - - r-. - -- - - - - - - - - - _ I SLUICE GATES~.~ r-rr-ir-rr--r-~ ,....... 1 - r-I I L-7 ES-4~ 61 72'. t FLOW TO RJVER LO C.K 'i' D AM NO..3 I I I ' 91732 SEE OWG NF - 92764 - 14 I

  • I i I TE-11532

, '7 y I I ..,. ________ I - -1 ~- @) ~-(5) 'C 7 UNIT l Y 'C 7 Y UNIT 2 91733 ERCS CMPR ROOM NF-92764-28-l LOCK~ DAM INS iRUMENTATIOt--.1 =fQ.l- [ ~ -ICT-S7- ]8 ~ T msCH


i~;,~~~-~~~~--------7 J,,.,""~r;:,-,;:1/2~*==;;;;;;~T-~--Jw;~,;\\;1/2s!"* -.:;;;;;;;;:;;:;;;;;:-------'-'----------------'

TO mscH i 1-< TO OJSCH ) ~ -,,~-~ -~ -.- :::.. 4 cc::;,.~.::N*,.**L774 m~,- I : I'\\.. !NOTE II I L - ....i TE-1541q I_ - -, TE-15420 TO DISCH J.

  • - 4 CANAL DIKE J

-.-. CT-50*3 i : '\\_, !NOTE II./ _ o 79' I L - -, TE 15"'16 I - - ri TE -15417 ~ ~L-'*,,._*~~-.......,'- :"[~ c;:mA-~ ~1~ _ ---.-1_1=* :*l c~::, ~/11<E} I : I'\\.. <NOTE,,, I : INOTE 11 _, 7 9' I L 1--1 TE-15413 I I L - -1 TE 15411 L - ~ TE-]5414 I I _ - .--i TE-15410 I

  • 123,... ----- ~

~i

- ~ CFORWl"IAO-REVERSEl t-- -...

  • -- i- --- --

_J FAN 1 L---- ---- - -- -4 -~ - - -~ _J ISTOP*START> L_ __ ----1---..--1-- -e FAN ._ _ ~- -T--@--7--- -- t- - - r- - ...J U2 POINT L-. - SELECTOR> FAN


*i--- --- -- - -,--{;}-

,_ __ J ( POINT T __,_ _ L 1-- - SELECTOR) TOWER COOLING TOWER$ (.IZI /.3) REFERENCE PIPING DWG, No'5 SY-:>TE;:M : CIR.C. WATER P UMP HOUSE P IPING NF'- ~eG14-1 1-'2 4-4 'oY5TE M: D1$TRIBUTiOt,,.J P IPING NF-38<oo; -;, -4 SEE NF-92764-2B - FOR OVERALL BLOCK DIAGRAM OF RIVER TEMPERATURE MONJTORING SYSTEM. -+- DENOTES L IMITS 0> QA TYPES

  • IZr l:JENO/ £.S P IPING Q.A. Tf-PES.-

(Jir/3) DENOTE.S EQUIPMENT Q-A, TYPE/ DE:SIGN CLASS. NOTES: I, THIS VALVE IS 2, ALL PIPING TD ~ C>ENOT'ES MOSE. C ONNECTION W t T.l'f VA L.VE j COIJPL. INf::. ~DENOTE..S GUTTER DRAIN. DENOTE.S FLOOR DRAIN. J:lTD NUMBEF'llNG SEQUENCE I. RTO NUMBER 1t,J G 5µcw...i I S "LJlP TO BO,. iOtll IN. At.L. C,.0. '$ ES, NORMALLY OPEN BETWEEN OCTOBER 15 ANO APRIL BE O,A, TYPE 111, UNLESS OTHERWISE NOTEO, 11-JTERl.DCK LOG IC DRAWING No NF-40"'2.B

15.

A C.COUNT Ng$ 45-27 3 UNIT * ! 5 2-43 UNIT*Z TllilRWj>,-... loalOOl _, _..,_,,,_h.., po,lmr_,,.d lwj:o.. Yt>Jpm-ll~ llp<-.Jb" tr, 00:ng ~pn,ct...,IIQ<eO,.._ llnd ~ t, llftlt1nlr"G -ffllnllllSl<I !PNl'L ....,,.tu,c:srr. 8630 I I 100 ~ 1 17700 EXTERNAL CIRCULATING WATER FLOW DIAGRAM NORTHERN STATES POWER COMP.-.NY -..., NONE I ir. 79 rJ-,,..,.,, PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF-39215-2 Rfl)Wlr<<l MINIE:SOT/\\ A B C D E F N I LD - N CJ' C') J z r-H I I I I I t I I I 'USUSSTT(IE.IUU 1USISTDA TE SUH1 ,nnnnoES-IGNF ]LSUSIUU I HUSERNAl£U I NF-JCJ215-2.DCl,J I.f? iti/t@,jw@ I 1 2 3 4 5 6 7 8 9 10 12 FIGURE 11. 1-17 REV. 37 CAD FILE: Ullll 7.DGN N II) 0 0 0 0 0 0 ~ 0 co

8 7 H G F E D A 8 7 6 I seo ~~"'" ~>~'\\.)- 6 If --- 5 4 4 3


6'0 --

3 2 NSPClo Pll0IVTT UC Ull AAI.JIOAO JUCI AOAOS IIIPIIOY&D ~- EXIST*

=;,

.......,..,iD - N1W

a=: a:aa,;=:

rt:IICII SUI 9TATOlrl UICLUSION J;._-£- ~....... MlC> IAME'.R-A1DJXAflo _ _._...,.~ ,_!lLIJIH 0-' l'IPEm ..,...rf'dll.,._,_,,., .......... IIIGIAll:tlJC.ft.MT f'l.DT ~ .. r,,d' -w NF*92702 F N 0... N en

u.

z FIGURE 11.1-18 REV. 18

A B C D E F G H 1 2 3 4


~f---------------*----,:

I I C!=l-17-5 I ,,. /2¥ Sl"ATIW A lt'? .,t?t=( C IVC/'? '-""""~-"'__.. L...--..=;;;,~-=-=--- IFROM 1et DeCO'i ) :7 .AR£A 5UMP A.IMP SEE Nf*392.30 @LO( kt.J

  • 12s srA1'itJAI

.4JR,{'IEC&1'1:R J---:--, $EE. NF"-3 9253-3 SE;; NF*3925'3 -.:3 ~ 2 .2, TOWA.'iaTE HOL0-1.P TA>l< 8,lr,.C'.o:WA'eM W,t,.. 'T& IHf;cs.-1i-iG T.i.WK ('Z./ 9) ~:4'1-i::o<:)-1.... 7 }\\-+/-:z:s:=="1::5"/JC::::'OS:q:::'*= '=~:,,::*=;i2::L 1 I I ~/4-CP-?t.

....
,_ _ - - - - - - - - - *- - - -* -- - - ~...- -

2 3 4 5 6 ,e-z.co-2. 5 6 FROM Ut,Jlf Z C.O~OE~ ATE PVM~ 0 1'!.CHARr.f. ~ COJ.T-S,£.i.NF-092.21 0 \\.0C, ~-z. 7 11/2-zcP-9 7 7 .A CV 8 VEITT 9 .it ?.: I BAC.1(,-+,AS,~ W,t,TU

  • !t1'0RACiE. TAWK (l:!t./ 3) 15,000 ~

la,AC.~WA'lti W.t.TIA; S.TORME TANK (m/S) 15,0 00 G.A.L-, ~J CP-45*2 i CP-19-7 '1i-1 -Z.I Fl\\JSrl WATE A SUPP-LY TANK (Jrr/ ;f 1700 GM.. 10 ZC.P-:Z.1/4--~ ~-~,w - 2 e p. r,.'F-~~ Zt-P-§2-l VSITT CP-2!,-8 ~4*aw1.1 -3/4-* C.P - 20 4 -C.P-2. 0 CP-11:!* 5 CP*l8*6 31/+- CP-Z 3 / ~--1CIC~P*~ZOC::1/2U la:L, C.97 : 0~ 1-IO~E ~TA.T1~(i LCC,, To\\- lO EL.72 1 '-g~ .- - ~ CONT-3*CP - 2 AIR \\IPC:UIJM. 'vA §* oo**I 11 ,{cP.z,.71 ~'IE.N.T 3/+*2 C P - 2.0 4-ZCP -2 0 & *OE *$'- z h~.- CFl'- 1 t ...,.., =

  • =

2 -n~:.4,o FROr.4 DEMINEFtALIZED W,t,,TER HE ADER D FOR CONT. SU u rr.g<;z42 ~ LOC- &* 2. CP.'27-10 ,0-22 CV/Jr/It,..

2,11/2::*C~P~-~*~ok,_~-----~'-:~~;/..Jc.;4::.;.*,:c;P~-!*~0;_ __ _::.:~~7;::::;_~J;JEj~:r~

2 ~ 4 * ~ - *l l!Of,.IT

2.

!-~2'- c !,.!i * -- ~CON"J" CV 2tc,, ~ Z~

  • 2 -C.P-41 J-,~--,---o=-: ___ -.::"--L-:==~-~

8 - ~~~ AIR VJ!C..l.it.'I VA. ro- ~c~~ '--S eotrrr C'-. --- -- TO e. cv<e = 4,. ,- ~CONI. Y:i:-2 CF!- e!iG~~~~E Pl?\\\\Jl3 t-,.u=-~34G.-l *n,"u 17 NOTE$: .. Dlt"'40Tf;~ PUFl:MISI-IEn WL:r!1 EGIUIPMI.HT. 0 llilDICATE P Oll'tt'!. OF IWTl!.~FACE. ...... DE.NOTE.S M"-IN P ROC.E.~S F L O W P A"iHS ~ Dt-..0-TE!'. ~~CONO..,f'l:Y FLOW PA'TH!io ~**--, DEHO TEfi. F'IPIW<!li F Ul'IIN18H,1,0 Wl'TH 'TH._ EQUIPMiMT P A.CkA.Gli. r,-;:J IHOICAT E.'S, A.RM~TRO t.&G prL0.6.T T"l"'PE ~ LIQUIC DFIA.INER f=vl DE.NOTES '10'&1:: CON.... WITH VA.L VE. ANO ~ COUP U N~ 1

  • i&.L1-IN";,Tf'l:UMl!.NT V ALV E~ T O &!. ~

UNLESS OTHERWl ~E NOi ll!.D (m/ ! ) O!.NOT~~ T HI!. E.QUIPMl!NT q.A. TYPE./ CIE !,lc!jli C L.lo,S,!i, _1__ Df.NOTE:5 eATE;GOl'o:V [ lt'f".MTtL.i-'.f'IOl<il Zot,IC. ~, O - INDICATE!:r l.0C.AL CRAIN. 12 REVISIONS N A S BUILT - IN STAL LED 00.AIN LINE B~TWEEN CLAM S.rfl:1..1 *.5 Ai.JO SWST JI PER VRR Pl-87*~2. p OWN ' ET K 11 - -2.3 -8 7 CH~'D: y/';l ;,'H*,I'? Moo, 87L'l69 i= ILMfO ;.,S'- (,-'67 AS BUILT-CORREC TE D C:RIO LOCArJON CROSS REFERENCE FROM U-2 TO C-7 PER ORR Pl-03*66 WN, L CW 5 -"l-03 CHK'O; CMR 5-28-03 MO*z..,_.. F(LM£D 6* 7* 03 76 AS BUILT-REVISE DWG TO MtlTCM PI._ANT CONFIGLFIATION PER ORR PJ*0'H 07 WN 1 MN 7*20* 0~ CHl('O: BA'W 7-28 -09 MOO*1 EC*l24'l6 F'[LM£D, 8-0q 8630 <100 100 4'4-10 t 710 -e-8 9 10 ....,,.tu,c:srr. CONDENSATE POL ISHI NG SYSTEM FLOW DIAGRAM - UNITS I & 2 NORTHERN STATES POWE.A COMP.-.NY -..., NOHE ~ 76 rJ.-,,..,.,, PRAIRIE ISLAND NUCLEAR GENERATING PLANT NF-39253-1 Rfl) Wlr<<l MINIE:SOT/\\ H USERNAl£U USUSSTT(IE.IUU 1USISTDATE SUH 1 ,nnnnoES. IGNF ]LSUSIUU HF-3~53-1.DCl,J j.f? iti/t@,jw@ I 12 A B C D E F I (") lD N CJ' (") J z H FIGURE 11. 1-19 REV. 35 CAD FILE: Ul lll 9.DGN 'I"' (f) (f) 'I"' 0 0 0 0 0 (f) 0 U)

A B C D E F G H 1 TO CON 0, l-4DR. FOQ CON 'T. :::f"E NF-39221 f NF -3'12S3 CP-135-4 OPA -5B90I -0107 p,t,.._.,...1 ~ !c-P.32 TU-58~03, RIP / p - PDIC ~ 5890015~ 'R /P S/CV-f'OY 35040 i,~--~ CP-135-5 1's- @-~

O,,~

C - 3 'lo..J.o I CP-135-8 CE-I 2s02* SEE NF - j 2 I 39253-2 Sf, DETAIL 'A' e To D RAIN 1 l - -~- -* t,,,11/- 14A POT-5878001,o CP-135-3 ,_, *,w l. 3/4 l't\\'i" IA ~ ' ~2.-,;,;-, - F~Ot.'\\ COND i::~SATE ~OR.-

oR CO NT, ~EE NF--Y-(2?-e, 4 N ~-=
:q -"221
  • 480 GF'M TO SAMPLE:.

5rNY. .JCc.- tY;"-.J72:S3:Z,e.,:/A/L )I " r-- 1 I t ~ &. @+-8] C V-31=1012. CP-135-14 3 " -TO PD* P OT-587500~ Pl R PI-~8i5001 CP-135-9 2 z FE *2TZ~~ CP-24-30 11 I I CONDeNS'J,,T l=JLT.ER/ Oi;h1tNE'<At.lZ RP-14 *ifu -!.50 111/3 CP 31 LlJ ll c v. 3qo, 1 CP-135-13 4 CP-135-2 AND L&N DWG 11 C-PID-3700-224 <X-HIAW-2000-Bll lTYP.l CV 5 70 OR.Alfll CP-24-3 SSOOC:..PM 14 JI YW-JB 2 " 8 '" 14" 6 Ill/ 3 .w 2 F/D I-IOi.D!~1 t'.O 39? UMP 750 <!riPM Zlt!!T. T" OM,10... ~, ?OT-I wov:i.3""..i),;,.ol-'~ sc,lbOCX., .C"::, *18100 F':let-'t 'F~Ot-1 pQ""l**U. '='0\\*1:.::. CP-135-15 7 '¥rl2COr-JC Ef-&;T_ Fl'_T=R/ 0 !: M1 Ni:R'1L!Z ~~ CP-24-33 © HTI cv-3qo2 1 ~.q. 1'coNOENSAiE HDR. PRECOAT SUPP~Y 8'" FILTER DRAIN /-/DR., 8 CP-135-17 ( CE ": E-2502~ '(!5,1 $,CE NFJ:J.?53*.? .OET#/~ A " TO OKA!N 111/3 r i ~ F iD 1-/01,..0, *.JG PUM p )$0 C, PN\\ 3,o~TD,-t, IO " P' 1 i4'. 0 V, JP>1, ~Do.fl. CP-24-24 9 I I P1-,~~0.. I ~ i 1 Cl/*.:fl0 3 3 CV*3'f0,3" Q',,__~' \\cP-9 *3 I 5500C.PM ,j Wl*7C. --1 l?cs-31 CV-39035 cv

( - ---jC.P-L:S*1 '2.[

14* 10 P1*5a71001 CP-24-34 ""l~CONO:NS,aT; Flt... T :E R./ 0:-1,1 1N:.t:.:A'...!z=.;;. l<P* :4.*70* 1=£0 111/3 CP-24-35 11 12 A CP-24-25 B C D E TYP, FCV-4 VALVE 75 T O 100 PS I G F O R. COt-JT, ~;,*:o NF -"<>9'25:, © r--v~_*=~,_J-----<,L-""°l FI

  • 58;aoo3 tj~~ ---- --- --------- - --- ---------- ------------

cv-3qo42 "m zW w> z ~J 0 J. 1ii ' ~ !z ~ J s zw -~ 0: m d J ~

  • ow I'! "

u.. ~ NOTE, ON.£l..- CC..TKI C AL.. oe. Ao2. FA ILU.E Pf)CV 30) C V-S/ F A11_ OPEN.. C.V* ), CV4 FAIL A$ IS ~ f'IP l NG IN D1f.ECl10N O F A.ee ows er OTHE.f<.'S R/1' fi' EA R OF PANCL £.. 12:.ACtc... MOUHTFD P P A~E"L.. /Vl<'l U N TE" O El} AL L. T"!AN S M 1fT C R!;. HAY~ 5 VALVE" MP.N I F OL D 5 0 INOIC4TES F'OINT OF IN7~R!=ACC WITH DwG:NF -3q253 JII/~ C::-E./..JO T C::; QLJAL l"TY A'??Uf<",_'>.r,.., C..E;- D E:C..,1:3"-J CL&~ ~ ALL PIPl>-JG TO e,ec Q />-., TYPE m N m ~

  • w *
  • ~

m ~~i' J

i :if8~ ~

w m

  • d~in;~ m N

~ J ~ N - z i..., IS:I ~ ~~ M "w l!l W er IT u z> ~~ ~ m ~ ~ c;,,i.!.~.:. ' WJ J zo11YN~ - ~ J o > s 0 OS:, '51 a:

  • S!
  • s s.
  • m W N a'..._,

,a. '

I:

m OM t;-: ::8 :;! ~

  • dU U W*

~

  • ..JO~ d

~

  • w:::== C
  • c*

C ~cc:~1£1~

  • i~8 ~ "

I'!. 8~ff:~f8 w II Ii' w

  • au ::1: ([ "

1 2 J s m ~

  • a, BACK'NASH WATER,§' 50PSIG G,-0° F, 25 G.P. M.

VALVE L EGEND: 0 PLUG VALVE 1..-1 BUTTERFLY VALVE ~ EDUCT R -~ 'ii ",rl z~* ow - -> ~ ~~ "JM !! ~ ~.!. u>> I~ m * ~ ~ @i 0 o,M ~ I-z N.. w** ~ t~~L., 85~

  • ct;l;:::
  • ..J ~ ~ ~

0 ~a::'( * ~ ~ 8 CL .. 0 > w "m

  • aux~

3 4 5 ICP* /C,I! MV*~ t.l'i l cP-7-1 I CK-8 "' I I S LURRY "'t"ANt<.. M ll<cR I 1 H-P. MP J< R. MOT o,o, 4 (pQY.,3PI-IASE-1 w0 I-IZ -

1. "

!Y\\V * /3 ICP-2-fl TO DRAJN ~ 0 1:2: CON T. SE E Ni= - 392 53 6 C =-----=.)

  • 11 S I_U ~£.Y TAN~

5!. 0 - DI A

a. 4 1- 0.-

~l G I-I 500 !;AL S ITI/ 3 MV-"l is?..:./: LI 7 CP-24-27 C V3901/4 p 11/2-CP-76 LA.5aqo1

  • 0309 f-.ci:,,,_-(7,;;

P:I..-18772 8 ~I\\ RE.CtR.CULAT\\ON T A N. ic:'.- M! ')(.~R. 2 H.P. M f){ER MOTO~ ~OV: 1 3.C.LIA S E-, G:-01-IZ. M\\1

  • 11 icP-10:Jj.---'---"-~-'----'-~

PI*/8105 p MV* 2"1 2 MV*lo ~ii C. f'.. *... -,,:/, J:o \\\\ PRE..c.OAi PUMP ~--~ 6 PM 4<'l"TDl-l 30 ~p CP-24-29 9 P I

  • l8io7 CP-24-28 10 N'll't>,,r;srr
  • 4" TO Df<.0 11\\J DELAVAL TURBINE INC. DWG*,FD-1000 OW TllillJWj>,_... loalOOl_,_..,_,,,_h..,po,fmr_,,.dlwj:D..Yt>..-pmlDllll~lop<-.Jb" tr, Ol'.ng ~

pn,ct.... llQ<eO,.._llnd ~IS - t, llftlt1nlr"G -ffllnJIII SI<! !PNl'L 8630 1/2 M"130 l 9070 71 0 PIPING & INS TRUMENTATION DIAGRAM CONDENSATE FIL TER DEMINERALIZER UNIT "l NORTHERN STATES POWER COMP.-.NY rJ-,,.,,.,, -..., NONE ~ 78 PRAIRIE ISLAND NUCLEAR GENERATING PLANT XH-2000-9 RfO Wli<<I. MINIE:SOT,\\ H USERNAl£U -UtUSS TT I IE.I UU 1USISTDA T ESUH 1 ,unnnoES-IGNF] L $$$$$US$ XH-2000-q,oct,J I W itiit@.OV @ I 12 F C, I IS) IS) IS) N I I X H FIGURE 11. 1-20 REV. 37 CAO FILE: Ul 1120.DGN N II) 0 0 0 0 0 0 ~ 0 co

86$56(&7,21 ),*85( 5HYLVLRQ  ),*85( '(/(7(' 

l 0 0 8 G 750 0 1200 6 7776836 8 510 8 9200 4176 Not Guranteed 7500 "2006 7770972 510 8 405 0 1162 S 624606 3 445 8 Water 4283 10007 6 446 5 3931 115(]9 634613 9 442 9 0 727 4 12006 72.33033 3 507 4 3570 lbm/11 c)...-----1 C D ,E ,E E.§ ,Q.... II < 0 920 0 341 4 444 7 3384 7784574 B 367 6 7784574 8 365 4 Heater#S Della h = 3 0 BtcL'lbm Waler 1351 3 1172452 9 7182 120 6 537839 500 0 131 341!lm/h r----~,u Scavenging Steam TTD=210 ' F 176 0 11106 6 r- -- --1-68 6_1_1_1-95 9-- - 5'"'59= 20~25-'!-~3""71~2~- --,,,=-"-'=t-'-'-=,-~- - 5~3~,7~1""12'-'7~B't~36~7=c-6~- H 62769001b~ 3421 Btu/lbm E 10686 194 7 1067 2 166 4 Water 222427 11/otor 27952 0 Wat~r 349586 Reheater#1 7088 5105 537839 0 504 5 191 4 223 1$48 1967 1362 1682 Waler 1996 389861 x=0OOO-4447 3376 5391824 0 364 7 0 0 I: H _ 1663111066 - 592607 8 3E6 7 444 7 2507 5391824 0 280 8 flealerl/4 Wal.er I 339 3 1765060 8 366 6 -,,_--- ----©-----*-*- - --,,_----© 2392750 8 10m/h 627690 0 lbm/n 340 1 Btu/lbm 342 1 Btullbm 5389 11606 3754753 2953 y 0 Q ~ 4447 1814 5391824 0 212 3 Heat81#3 Wortcr 1906 3n56o 3 222 3 Heat Rale = (7776836 8 * (1200 6-417 6) + 7738 0 * (503 1

  • 417 6)) /(629 958
  • 1000) "9667 Btu/kWh 12650 485 0 1586 12650 2585863 9 484 3 11806 2967 10886 1947-16 30 978 9 316829 8 217 3 0

Waler 137 2 694390 1 169 2 -~_§_ 12850 5371727 8 484 3 191 4 2Zl1 Water 164 8 27952 0 196 7 0786 996 2076085 3 93 6 I C .li i ~ ii! i'.i 629 958 MW ~ ,eoo 11mm G 1 :,S966 1 lbmlh @ P = 1 GO,n HG 3 796 0 423162 8 164 2 ~--~--,*© Worter 1321 1117552 9 164 1 0~ ! ~ I g -5=39=1:W=--2'--'4~~+"~'?~-=~-- Condensate Cooler w,_er 255 o 56530 285 7 Water 717 1117552 9 103 7 lbmfl1 'F (X) ps1a I Btu/Ibrn all pressures o-e abso:ute pressure psIa temperature 'F entnalpy BtuJlbm ma~ flow lbmlh atmospheric hum.t,ty % fuel sen.,b!e heat,nctuded First Stage Pressure = 586 4 ps 1a Mechanical Loss= 1 982 MW Etectncal Loss= 6 711 MW MSR Effeci1veness = 99 4 % TEP m 996 0 Btu/lbm PF =0956 Heal Ra!e = 9667 Btu/kWh 0786 618 5391824 93 8 444 7 61 8 5391824 0 92 6 SJAE 112&743 3 lbmlh,@) Waler/Steam Property Functions H2O32Btt(2012-05-25)-~ IFC67 Prairie Island #2 Existing HP Turbine, MUIR upgrade, VWO Heat Flow Diagram No - WB-12784 O~andQ, 201:i-f<eb-15 SIEMENS AG Recommended p ioh,g lormat 11x17 FIGURE 11.2-2 REV. 33 CAO FILEr Ul1202.OGN ~ II) CD co 0 ~ 0

86$56(&7,21 ),*85( 5HYLVLRQ  ),*85( '(/(7(' 

0 0 § G 865 I 1197 4 3611227 71527 3 ~r;L-"}....,_7_7_3_: -l:-,: -,own -/h- ~N ~ 920013435 3618\\ES 71369 6 Not Guranteed ~ II Cl I= 865 ol *, 191 4 9602503 =\\J,527 3 1678111433 1~2148913766 Waler I 350 5 7393 Bl 377 1 1822 l 11{)L1 149542713741 376565 4 lbrwn 5296,,llltJ/lt:rn 83891 1197 4 3225937 g I 523 1 357 0 lbm/h c,_,....-----t 86 'Kll 1093 o 3onon4J_.3174 r-- ~__,85 = 59~ t-""1093=~0-2838224 Ql,316 7 I 234853 4 11::m/h I MS 2859236bm~ 284 9 B!u/lbm E 8W311197 4 376565 "\\l, 522 2 91953 lbmAi 1----+lU Sca\\'e~1ng Steam TTD =210 "F ~ 55lm3 s-- - - I 78 2s I 1282 o 1s n '1282 o 2552300 '\\J,313 5 2s_s_23_00 '\\l,so _ 1 _2 __________ 2s_s_23_oo~ w_s_o_o_s _ Reheater#1 ~

_J

-- --- --- -~ - 817 sl 5296 i-----cu 376565 41 520 7 7672112820 1276150:1,1,5009 /?) icJ Ec!J ili fiJ i!c~ ~ ~

ii 8 ;;;

gl l:'j 8 [g 296 614 MW ~ := ~ L,.------' ~ ~ ~ <:' r---,_........-j ~ ~

' ~ ~

~ ~ ;:' 1000 1/m -=-'=~HP ~br bme l======================::::c===J LP TTu{ne#1 1===========2=7=14=j=1=19=3=8=======~='==l LP<< lbmett2 r==========1 G 271411193 8 I 724992,I 308 4 11 R)+ ____ _._ __________ -t-1-+,I+~ p*;.o-----"-----------:----t+t+t..__J Waler l1555 60571 11174 W@te,- I 1555 72499 2J. 308 4 5:,51111174 63109.1, 1875 55114 7,J, 1849 63109~ 1875 s'\\+- ---...ll.------- -,1-1.4-L- -1 o'\\+---- -"--------...ll..---4-1+4-L-....J 55114 7,I, 11)4 9 5044110958 Walor I 1322 8566 7,1, 162 6 9624 SJ, 164 3 l 2773 110733 320428,J, 138 4 Waler I 107 9 13_1_46 __ 7J,.. 1_4_0_0 ___.... ___ _, 1 126110.1!!..Q_ - 8091 3 1057 Wator I 76 7 159804J, 1CS7 ©------>'---------"------I--'------' 0 78611026 8 1057565 41 93 8 5044110958 Water 1132 2 6566 1,1, 152 s** -

  • °7624 5J, 164 3 I

2 7731 1073 3 Waler I 107 9 t 32042 a.), 138 4 13146 7,1, 140 0 A.}'=--'---~-------"-- --tt-"'---...J 1120I 10480 Water I 767 8091 3J, 105 7 159&l 4J, 108 7


"-----~~---f------

0 786 110268 1057585 41 93 8 15000 4 lbm/h 07861618 1081672 !ll,93 8 --<W P-1GO,nKG~40975061bm,,, M 1/4ondensar#2 H 23,q8534l 313s -+- 25 761 1193 8 144900 4I 307 a - ©---i--© 7947 110186 122851 111826 26:141 7332 126761 41136 4 0 ~ ~ \\l-o o O O O ~ ~ K 53548 lbmlg 210 28tu/1bm o N ~ II 7724 4 lbm/n I 1197 "1,Btu/lbm First Stage, Pressure= 264 2 ps1a Meehan ical Loss = 1 982 MW Electrical Loss = 3 697 MW MSR Effe<:loveness = 99 0 % TEP = 10264B1ullbm PF= 0 900 Heat Rate= 10400 BlulkWh ,E E a N 0.,, 0786 161 6 2572080 ~ 93 8 4441l s1 a 2512000 01 s2 s 54017.,~~ 10000 bm 1165 2 Bhi,bin 1197 4 Btu/I 11 S:10012857 444712627 444712822 ~ 444712060 ~ r 'l-"'"'---o-G1_996S _ -_1..__ ,1, 31_4_o_ -+=&-36_1_a.ces ~1..,~:;-1_2 _CJ __ .---_2_s1_2_00_0_6J,..__a1_1_s __......_~ 2s12000 ~2::,, 1 C /:l 44471641 444 71641 4447,62 1

i0 2s12oso9;1,94 s I r:::::1 2512oso 5J,s49 i::::::

2512oso~92 s I I'..,_ ____ _ II II ~ II II ~ <l 444711.;ao I= ~ 44471 100s ~ 44471690 rr:J-~l 2S7208D 6J, 177 6 ~ 2572080 6J, 131 4 I N 2572080 6J, 99 8 H<anlcrl/5 Delta h-,, 2 9 Btulil>rn r-j Heater#4 I _ w~1e, I 283 6 L_--------~--------+----------' 760061 SI 313 4 Walerf 294 7 526108 1, 324 0 '---....-----<-lC+- " ----'<'-----,r----i E 104688'51 lbm,h 235923'5 bmlh 283 9 Stu/ibm 284 9 Bhilbm NL__*_ 1::!.J"~ , Haaler#3 Haater#2 N JHeal<><#1 1

.__' -~--~ '--------,---~1~~-r

~ ~ ~ y 238321bm 1161:261u/fbm \\IVQler 11556 Weter 11094 Water 11043 1,,73a16I 1a1s 210232 1 141 4 396994 1 1364 5354 8 lbrnlh 21 o 2Jl1Unbm K Fla*hTenk lr Condensale Cooler ~ I ti_, Gland Cc,;densor '~ SJAE Water,2102_ k 1 """'e.-11798 _I Wata,, 5209 5354 s 241 1 5401 11 211 6 I 1000 0 527 2 4oa1so 6 f.>mlh __,_ ______ ~-----"{.!M'I Water'f'-29 30099411 104 9 psia lbm/h I Btu/lbm all presscreo are absolute pressure pS1a tern perature *f wa1ar/Steam Propeny Funct,on.s H2O32Bot(2012-05-25) -> IFC67 Prame Island #2 Existing HP Turbine, MUR upgrade, 50% Load Heat Rate = (3611227 7 "(1197 4 -343 5) + 7738 0 * (503 1 - 343 5)) I (296 614

  • 1000) = 10400 Btu/kWh n~obm 5031 B1u/lbm enthalpy Btu!lt>m N

mas, flov,* lt>m/h .,,mosphsnc hun'11d1ly % fuel s0ns1ble Mat included Heat Flow Diagram No - WB-12785 Ortando, 2013-Fe~ 15 SIEMENS AG Reoommenoed pmbng 1ormat 11x11 FIGURE 1 1.2 -4 REV. 33 CAO FILE, Ul1204.OGN ~ II) CD co 0 ~ 0

A B C D FIGURE 11.2-5 UNIT 1 -TURBINE GENERATOR HEAT BALANCE - 100% POWER -VALVES WIDE OPEN AT 1.60 IN HGA CONDENSER VACUUM .EP.

  • 1Cl',l)J H flfe_ l(li&;..

2 11MlW l.OIS*1* lllW CCl!flMl.'WIIL't!ISIP'* "'" lltlTSl--* 5ao.5 l'aA I I I I I I -., II I I <IIIM,DI,....................... ---~ ~H .... H

  • ~~

-.-.OW

11,11 Ill
  • -*H

,. ** H ti.rJIH I I I I I I I I I I I I I ' I I I l l I 1 tltl KI 3 11tU N .H

  • l

-w: \\1,l!a HI J I l NET HEAT

  • RA~

'1147A7$ f 1199.196 *.C11.496 ) 583722 4 r **-----.. ---B) j 5 HP TURBINE RE-;IEA--llc-R _______..,F MOISTURE SEPAAATOR DRAJNTANK .-szsw ~ ti 9645.11111 -...W, WIIII! W-1\\0W' H-entW." T-Tll-1\\R OKf 6 ~*-w I -.ON I ia,w I,,.z,. /" ,,u r DICK* <v<MIOA -I/fl

  • no~,-

1C,lf',frlla -- l,.111205, 8 A B C SIEMENS WESTINGHOUSE POWER CORPORATION 583722 kW NET LOAD Prn'-'dl.til1*fot'ERrnilql'\\ai-esO!i, * (IJIM~Prq,edld()Fe,raioft............ ) ENG:*WSM OATE:2004.02.20 WB-09662-1 I............ ,.. ~............,......,....,.,..,_,..... ~D j.::::: 1 2 3 4 5 6 -.. :**.*u. ~ , *.. -; ~ : * ;* -~. ~';t.l.£ <.J. *;:or;; *~ !. i--*.:.: \\(.::~_.i_*v: f ~.,. ~,..... IW11-M:*-** .!-',\\.~ *-!~5r ~ r~.ii l r _*;,:,. *,;11tl ;,.*.~,-s::~ ':if~ ~~ <-~* --.t t li.'! i1' 7-~(1,:1,1:;t'~.~~~:~:Ft \\f1~i *...!_;:,.1 t==-----.."""';,t.\\;.., "'* ;ri-==---~i;-;:::-:::... ::JG-~1.-i~§'.* :*::j i~ --!<JQ-~"""l'J"IA"T jlQ;l!lllllliWt~ 7 nO'.IRB11a.5.RBV.~ 0 T'" co co 0 T"" 0 U? C"! T'" T'" w 0:::

)

(!) LL

A B C D FIGURE 11.2-6 UNIT 1 - TURBINE GENERATOR HEAT BALANCE-MAXIMUM STEAM FLOW WITH VALVES WIDE OPEN AT 1.60 IN HGA CONDENSER VACUUM 2 El.EC. 1.0SS * ..... H ""6.1 H llWIM CONIROl. VM.\\l'ES ~ 6.1 % FIASf.stAGEPRESSUAIE* SUI PSlA I I I I I 4111JNS w I r--------' I ...,H I I 11042..1 H 1024.1 H u,p I I I I I I t I I I 771N w I Ma HI 32084WI --~ -~J SEMENS~ PIIOPll!lnAfr.11 .... 111111 Dnanwf:...,.... Pt,,pcal Ghlm.Danol~AiapmlliJm~t,l-. ~\\Wloul.,.....ec.-.d 1Dl1'.* H 111D.4.., ... p 11Q11_8 H 11117.,e H* 10.Z P 3151MW 1oa.e tt 3 um.7 M 1C8.I H p ._,w 1111.7 H ZT.lOtllW 1101,7 H 11.t5 P 1180.Z N 55.11 P L---, I 374151 W: 1180..2 Ho l 1.1* p ~ I I I I 4 ,.,.* p 5'3m712 W f12e1Ttq ! 'V@ RSV<$> I I I I sm11zwl 182..41 P J 1287.te Ht TD* 21.1 F 5 6 r*-------------@B) i REGULATOR oomo~ 74'.1 P I 1181..2 H I _____ J CV 1V HPnJRBINE U ll.4 H 11180.l H 41 :Y P I I 110t.3.. 17UP I I I I + ___ J+~---------*-'+~------j I I I **-**--** - -**-.l I I I I _R_E_H_EA_TE_R_,__ _______., F I I I ' I I 118.4P I

tt*.o H MOISTURE

~--.!!.'Y.L ___ ~ _,._!)',,_ ____________ _,-f-, ______.J SEPARATOR HOU HI I I , _____ _,_ ____ 7 DRAIN TANK "'7422W 3<2.5H 112..5 P I I r------J i sm,, wl ,om w: 1104..3 H I -4Z7.e H I 1a1P1 aSQ:12WI I 1181.4 H I I <<lll.4 P I Wila!II W - FI.OW Ull206 ~1 .. 1w _,, H I "'°' w 11*.2 H / / / "2.J T J\\llllte - GENERATOA NET HEAT AATE 7893714 ( 1199.196 - 422.341 ) PSI/\\ 9646.865 Btu/kWh 635675 0E8F 720P5'A 1180..83M2J'.IOINHgA. 1C4F -41h _,,,.KVA SIEMENS \\NESTINGHOUSE POWER CORPORATION

  • 635675 kW NET LOAD Prairie Island Unit 1 - Fer Estimating Purposes Only -

(Uses E!ltimMm Pllljeded Operation Panlrlleten,) ENG: WSM DATE:2004.03.01 WB-09927 8 lfl0Y. POWER HAXlt-U-1 CiUARMlEeD A B C ~----,-----------.,._--.* ------.---.....


.----~ ~.*:_~-;_D


~,_.,...-...-.~.... -........... ---

~.::: 1 2 3 4 5 6 =i UNH I - TURBINE GENERATOR HEAT BllLANCE - ~- MAXIHUM STEAM FLOW WITH VAL VES 'W10E =~ OPEN Al J.160 IN HGA Cl)',,IO(NSER V~CUUM FIGURE 11.Z.; ;EV. 30,~

E

,t,JD,v,IIUl00ll"JiM' PRAIFIIE l$lAND CIEAA(;ENERATIN(l FIANT 7 l'l lM .OOt,;1~2 @ Alc.il'@j 0..... lo co 0..... 0 (0 I N..... w 0::: => C) u::

86$56HFWLRQ 5HYLVLRQ )LJXUH35$,5,(,6/$1'81,7+%'085   ),*85(  FILE: pi.1.curr.rtr.2007.03.12 T.E.P.c ELEP. = 997.6 H 990.9 H ELEC. LOSS= BFPPOWER = 8196 WI 6489 1,!,/v MECH. LOSS= 1982 >!N CONTROL VALVES jJ> = 5.5 % FIRST STAGE PRESSURE= 546.S PSIA 1042.9 H 1026.0 H 106B.1 H 1054.3 H 2.19 P 5.19 P I I I I I 3917093 W I r 997.8 H I I I I I I I I I I I I 71927 W: 97.4 H I 30100 w I ~--!_04_~~_J SIEMENS PROPRIETARY INFORMATION Uss this Docurnont solely for the Purpose Given. Do not Disclose, Reproduce, or Use 10B9.6 H 1078.9 H 9.7 P NOT GUARANTEED FOR INFORMATION ONLY 11D8.8 H 1100.9 H 1182.2 H 53.2. p I 150.4 P 5D31749 W ,------7 I 1267.1 H I ! IV@ Rsv@ I I I I I I HP TURBINE 1160.4 H 1159.3 H 378.5 P 1104.7 H 165.4 P I I I I I I I I I I I I I I I I I I I I I I I I I I I I 5031749 W: 151.9 PI 486.7 T I 1267.1 HI 527759~

  • --~+,_________.+ ------ t I

I I I I I I _________________ ~ 7735 W 503.1 H

  • ----7 I

345132 w l 11822 H I 50.5 p I I I I I I t TO= 21 F 729.7 P I 1200.3 H I _____ _j I I I I STEAM GENERATOR SLOWDOWN FLASH TANK REHEATER 15B.3 P 1194.9 H MOISTURE SEPARATOR DRAIN TANK 591179W 336.7 H 161.3 P I I I I I I F I I I I I I I I 5645 w I 2092 W I 254.0 Ht 11752 Ht @)@ I I I I I I ___ 1s3.8 P ___ 5622928 w-.-------------_,~.._ ______ j 1104.7 H I J I I I

  • ------------7 I

I ,------l s4sr1s w i 9757 w } 1104.7 H I 4182 H I 158.3 P I 555033 W I 1160.4 H l I .Vi 3.0 BTU/LB 367*3 P I t T 359.7 T 351'.l.3 T 333.1 H 345.9 H / ~14872W I 495.4 H I ;~:~ ~ / / / 431.8 T 410A H 7281149 W TURBINE-GENERATOR Otherwise Without Written Consent of Siemens Power Generation NET HEAT RATE 7273408 ( 1200.3 - 410.4 } + 7738 ( 503.1 410.4 } 9691.2 Btu/kWh ll!,lillQ W-FLOW P-PRESSURE H-ENTHALPY LBM/H PSIA BTU/LBM 578935 WI/ no PSIA 1199.63 H2.D0 IN HgA TC4F-47in 592917 SIEMENS POWER GENERATION, Inc. 592917 kW NET LOAD T - TEMPERATURE M-MOISTURE Prairie Island Unit 1 - For Information Only - Existing HP Turbine - MUR Uprate DEGF ENG:WSM DATE:2007.03.12 659000 KVA WB-10995

G 762 0 1200 3 7274037 4 5126 CD "' si 9200 4105 7281775 4 431 9 Not Guranteed 762 0 12003 7'267723 5126 378 7 11601 ~559100 439 3 Water 4190 98184 4399 3675 11472 565728 4 436 4 527 57 4 8 lbmln 5126 1u/lbm 1.--- ll:...--{F i/- 0 ;: 739 0 1200 3 67401488 5092 357 0 l>m/h CJ+-----t 3331 3603 Waler 3459 1093;J03 1 372 6 5051 158 545993 8 lbmlh i/- 0 II H 5913:10 5 lbm~ 336 7 Blu11b11(§) 1562 1104 7 545993 8 361 7 _____}fj_aler 334 0 1639296 361 6 ~- ~-------------~---,E 2230617 4 lbmhl 334 7 BIUl1l)m 591320 5 lbmlh 336 7 Blu/lbm Heat Rate = (7274037 4 * (1200 3 - 4l0 5} + TT38 0 * (503 1 - 410 5}} / (593 228

  • 1000) ~ 9686 Blu/kWh 7297 200 3 527574 507 7 12882 7 ibm,h t-----Jo{U Scavenging Steam TTD
  • 210'F 151 9 12671 5031072 7 488 7 Reheater#1 no 2I s12 s 527574 8[ 506 3 LP Tu bme#1 0786 9979 1957453 3 936 5050 1182 2 344846 5 296 6 Water 167 4 346960 3 219 1 1267 1 486 1 0786 618 2008583 7 93 8 531 9617 291544 S 214 1 Water 1346 638504 7 166 6 1489 112671 5031072 7 486 1 0786 9979 19574533 938 4 930 7929 383344 5 161 6

'------,,-------.{T Water 129'6 1021849 2 161 6 a ] fl) 0 0 r-- 0, 593 228 MW r C ~ ~ -,soo,,m, G 36072 0 lbmlh @ 50511580 938 Condensa.ie Cool.er Water 251)8 5624 3 2816 Waler 71 8 1021849 2 103 8 mna lbmln I Blu'lbm 'F (X) all pressures 8'"e absollte pressure psf.a tcmpcr-etura l>F enlhalpy Btunbm mass llow I1:lm/h atmospheric humtdity % fuel sensobte heat "1Cloded First Stage PresstJre = 546 9 ps1a Mecha111cal Loss = 1 982 W/-1'.J Electncal Loss = 8 204 MW MSR Effechveness = 99 4 % TEP = 997 7 Btu/lbm PF=0900 H,;at Rate ~ 9686 Btu/kWh 15!llbm/h Seal Stearn Header_ r ~ ~ ~ 1 £!

S
S
Q q;
i f,&I (Q

(t) m o-, en a, fi;l;:;C;io ~ ~ ~ ~ D D O D 0 7BE;j 61_8 __ _ 505 158 93 8 553301bm1 1151 0 Btu/I 444 7, 630 6051 1580 93 8 Water 1796 55330 2116 44411 s1 a I -5~05-11_5_8 _0,_9_2_6 __ G 1D000Ibm/J 1200 3 Blu'lbm SJAE 1034(Xll 5 lbmlh Water/Steam Property Funchons H2O32Brt(2012-05-25}-> IFC67 Prame Island #2 Ex,stmg HP Turbine, MUR upgrade, 1684Mwt Heat Flow Diagram No - WB--12783 Orlando, 2013-Feb-15 SIEMENS AG Recommended pnrit1ng rormat 11 x1 7 FIGURE 11.2-8 REV. 33 CAO FILE, Ul1208.OGN ~ II) CD co 0 ~ 0

Hi~ -~Hi ,,,,.?1,, OWN L, BORCHMOT ot:CKEO DATE CAO ni E 6-23-89 UU90UlGN AUXILIARY FEEDWATER PUMP CHARACTERISTIC CURVES HORTI£RN STATES POWER Cot.f'ANY PRAIRIE ISLAND NUCLEAR GENERATING PLANT l'IEDIIINGINESOTA SCALE1 NONE l FIGURE 11.9*1 REV. 18

a: IAJ * ~ ~ ~ lL C ~ - t- ~ 1.0 8 6 4 2 0.1 8 6 4 2 .01 L-__ ......__..a....._._...&...........iL..L.L.L.-----L-.....L..--L----'---'-...L..lu.JL.,__ __ J...__L_.J._..L.l...JJ...JU 1.0 2 4 DATE 6-23-99 CAO FILE U11904A.DGN 6 8 10 2 4 6 8 100 TIME (SECONDS> DECAY HEAT CURVE I TO 1000 SECONDS NORTHERN STATES POWER COMPANY PRAIRIE ISLAND NUCLEAR GENERA TING PLANT RED BG MNESOT A 2 4 6 8 1000 SCALE, NONE FIGURE 11.9*4A REV. 18

ffi

  • 0 Q.

...J 2 IL 0 ~ (.J ~ 0.1 8 6 4 2 .01 8 6 2 ~-------------- .001.__ __.....__...___,__...._......... l,...L...L..1----J----'-----L---I-J--&..JL..L.-L..---...__-..___..£--__.__..I..-II-L-l.,.j l.000 2 1.000,000 DATE 6-23-99 ~ U1190-4B.CX.N 6 8 10,000 2 6 8 100.000 2 6 8 1.000.000 10.000.000 TIME (SECONDS> DECAY HEAT CURVE GREATER THAN 1000 SECONDS NORTHERN STATES POWER COMPANY PRAIRIE ISLAND NUCLEAR GENERATING PLANT IIED WNl MNESOTA SCALE, NOOE FIGURE 11.9-4B REV. 18}}