ML21286A457

From kanterella
Jump to navigation Jump to search
Amendment 29 to Updated Final Safety Analysis Report, Chapter 12, Table 12.2, Reactor Building Concrete Structure Base Slab Design Data
ML21286A457
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 10/04/2021
From:
Tennessee Valley Authority
To:
Office of Nuclear Reactor Regulation
Shared Package
ML21286A574 List: ... further results
References
Download: ML21286A457 (50)


Text

BFN-27 Table 12.2-1 REACTOR BUILDING CONCRETE STRUCTURE BASE SLAB DESIGN DATA Principal Design Cases Allowable Stresses DL + External Water Load El.556.0 Normal concrete stresses

+ Differential Settlement + Operating Basis Earthquake fs = 0.5fy DL + External Water Load El. 556.0 fc = 0.85 fc'

+ Differential Settlement + Design Basis Earthquake fs = 0.90 fy Normal concrete stresses are as given for working stress design in ACI Code 318.63 Material Properties Concrete - fc' = 3000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi (ASTM A432)

Rock (elastic modulus) - 8,200,000 psi (Subsection 2.5)

Table 12.2-2 REACTOR BUILDING CONCRETE STRUCTURE STAGE I WALL DESIGN DATA (Construction Condition)

Principal Design Case Allowable Stresses DL + External Water Load El. 547.0 Normal concrete stresses

+ Earth Load El. 547.0 fs = 0.5 fy Normal concrete stresses are as given for working stress design in ACI Code 318.63.

Material Properties Concrete - fc = 3,000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi(ASTM A432)

Earth - w = 120 pcf

BFN-27 Table 12.2-3 REACTOR BUILDING CONCRETE STRUCTURE STAGE II SLAB OVER TORUS DESIGN DATA Principal Design Cases Allowable Stresses I DL + External Water Load El.547.0 Normal concrete stresses

+ Earth Load El.547.0 fs = 0.5 fy II Case I + LL fs = 0.5 fy III DL + LL fs = 0.5fy LL as given above is wet weight of concrete from El. 559.83 to El. 565.0 Normal concrete stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete - fc' = 3,000 psi (4,000 psi inside wall El.536.92-557.5) w = 145 pcf Reinforcing steel - fy = 60,000 psi (ASTM A432)

Earth - w = 120 pcf

BFN-27 Table 12.2-4 REACTOR BUILDING CONCRETE STRUCTURE EL. 565.0 SLAB OVER TORUS DESIGN DATA Principal Design Cases Allowable Stresses I DL + LL + Operating Basis Earthquake (0.1g) Normal concrete stresses fs = 0.5 fy II DL + LL + Column Load + Operating Basis Noral concrete stresses Earthquake (0.1g) fs = 0.5 fy III DL + Earth Load + Water Load + Operating Basis Normal concrete stresses Earthquake (0.1g) fs = 0.5fy IV DL + LL + Column Load + Earth Load Normal concrete stresses

+ Waterload + Operating Basis fs = 0.5 fy Earthquake (0.1g)

V DL + LL + Design Basis Earthquake (0.2g) fc = 0.85 fc' fs = 0.90 fy VI DL + LL + Column Load + Design Basis fc = 0.85 fc' Earthquake (0.2g) fs = 0.90 fy VII DL + Earth Load + Water Load + fc = 0.85 fc' Design Basis Earthquake (0.2g) fs = 0.90 fy VIII DL + LL + Column Load + Earth Load + Water fc = 0.85 fc' Load + Design Basis Earthquake (0.2g) fs = 0.90 fy LL as listed above includes uniform live load of 400 psf and machine loads where they exceed the uniform live load.

Normal concrete stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete - fc' = 3,000 psi(4,000 psi inside wall El. 536.92 - 557.5) w = 145 pcf Reinforcing steel - fy = 60,000 psi (ASTM A432)

Earth - w = 120 pcf

BFN-27 Table 12.2-5 REACTOR BUILDING CONCRETE STRUCTURE CORNER WALL DESIGN DATA Principal Design Cases Allowable Stresses I Earth Load + Water Load + Operating Basis Normal concrete stresses Earthquake (0.1g) fs = 0.5 fy II Earth Load + Water Load + Design Basis fc = 0.85 fc' Earthquake (0.2g) fs = 0.90 fy Normal concrete stresses are as given for working stress design in ACI Code 318.63.

Material Properties Concrete - fc' = 3,000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi (ASTM A432)

Earth - w = 120 pcf Table 12.2-6 REACTOR BUILDING CONCRETE STRUCTURE HPCI SYSTEM ROOMS DESIGN DATA Principal Design Cases Allowable Stresses DL + Earth Load + Water Load + Operating Basis Normal concrete stresses Earthquake (0.1g) fs = 0.5 fy DL + Earth Load + Water Load + Design Basis fc = 0.85 fc' Earthquake (0.2g) fs = 0.90 fy Normal concrete stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete - fc' = 3,000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi (ASTM A432)

Earth - w = 120 pcf

BFN-27 Table 12.2-7 REACTOR BUILDING CONCRETE STRUCTURE EXTERIOR WALLS Principal Design Cases Allowable Stresses I Earth Pressure* Normal stresses II Earth Pressure* + Operating Basis Earthquake (0.1g) Normal concrete stresses fs= 0.5 fy III Earth Pressure* + Design Basis Earthquake (0.2g) fc = 0.85 fc' fs = 0.90 fy IV Earth Pressure* + Internal Pressure of Ruptured fc = 0.85 fc' Pipe (36 lbs per sq ft) fs = 0.90 fy V Earth Pressure* + 100-mph Wind Normal Stresses increased 33-1/3%

VI Earth Pressure* + 300-mph Wind fc = 0.85 fc' fs = 0.90 fy VII Earth Pressure* + Rapid Tornado Depressurization fc = 0.85 fc' fs = 0.90 fy VIII Probable Maximum Flood** fc = 0.85 fc' (Water Level El.572.5) fs = 0.90 fy

  • or pressure from diesel-generator building or radwaste building
    • applicable only to wall adjacent to Turbine Building Normal stresses are as given for working stress design in ACI Code 318-63. Concrete shear stress is as described in this subsection.

Material Properties Concrete-fc' = 3000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi(ASTM A-432)

Earth-w=120 pcf

BFN-27 Table 12.2-8 REACTOR BUILDING CONCRETE STRUCTURE EXTERIOR WALLS AT ADJACENT UNITS Principal Design Cases Allowable Stresses I Expansion Joint Loads Normal stresses II Expansion Joint Loads + Operating Basis Earthquake Normal concrete stresses (0.1g) fs = 0.5 fy III Expansion Joint Loads + Design Basis Earthquake fc = 0.85 fc' (0.2g) fs = 0.90fy IV Expansion Joint Loads + Rapid Tornado fc = 0.85fc' Depressurization fy = 0.90 fy Normal stresses are as given for working stress design in ACI Code 318-63. Concrete shear stress is as described in this subsection.

Material Properties - As given in Table 12.2-7

BFN-27 Table 12.2-9 REACTOR BUILDING CONCRETE STRUCTURE FLOOR SLABS, BEAMS, AND COLUMNS Principal Design Cases Allowable Stresses I DL + LL Normal stresses II DL + LL + Operating Basis Earthquake (0.1g) Normal concrete stresses fs = 0.5 fy III DL + LL + Design Basis Earthquake (0.2g) fc = 0.85 fc' fs = 0.90 fy IV DL + LL + 300-mph Wind fc = 0.85 fc' fs = 0.90 fy Normal stresses are as given for working stress design in ACI Code 318-63.

Uniform Floor Live Loads Slab El. 593, 606, 617, 621.25 400 lbs per sq ft Slab El. 639 (exception noted below) 400 lbs per sq ft Slab El. 639 between columns R2, R5 and t, u; R10, R13, and t, u; and R17, R20, and t, u 250 lbs per sq ft Slab El. 664 1000 lbs per sq ft Roof El. 635 50 lbs per sq ft Main Properties Concrete Beams and slabs El. 593, 621.25 fc' = 3000 psi Beams and slabs El. 639, 664 fc' = 4000 psi Slabs El. 606, 617 fc' = 3000 psi Roof El. 635 fc' = 3000 psi Columns fc' = 4000 psi w - 145 pcf Reinforcing steel - fy = 60,000 psi(ASTM A432)

BFN-27 BFN-27 Table 12.2-11 REACTOR BUILDING CONCRETE STRUCTURE P-LINE WALL DESIGN DATA Principal Design Cases Allowable Stresses DL + LL Normal Stresses DL + LL + Operating Basis Earthquake (0.1g) Normal concrete stresses fs = 0.5fy DL + LL + Design Basis Earthquake (0.2g) fc = 0.85 fc' fs = 0.90 fy Normal stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete - fc' = 3000 psi (4000 psi at steam line compartment) w = 145 pcf Reinforcing steel - fy = 60,000 psi(ASTM A432)

Table 12.2-12 REACTOR BUILDING CONCRETE STRUCTURE FUEL STORAGE POOL AND DRYER AND SEPARATOR STORAGE POOL Principal Design Case Allowable Stresses I DL + LL + Water Load Normal stresses II DL + LL + Water Load + Operating Basis Normal concrete stresses Earthquake(0.1g) fs = 0.5 fy III DL + LL + Water Load + Operating Basis Earthquake Normal concrete stresses (0.1g) + Drywell thermal rise fs = 0.75fy IV DL + LL + Water Load + Design Basis Earthquake fc = 0.85 fc' (0.2g) + Drywell thermal rise fs = 0.90 fy LL as listed above includes uniform live load, equipment load, and fuel load.

Drywell thermal rise includes the effect of the upward movement of the pools due to thermal growth of the drywell shield wall at operating temperature.

Normal stresses are given for working stress design in ACI Code 318-63.

Material Properties Concrete - fc' = 3000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi(ASTM A432)

BFN-27 Table 12.2-13 (Deleted by Amendment 22)

BFN-27 Table 12.2-14 (Deleted by Amendment 21)

BFN-27 Table 12.2-15 (Deleted by Amendment 21)

BFN-27 Table 12.2-16 ALLOWABLE STRESSES FOR DRYWELL ACCESS PLATFORMS Tension on the Shear on Compression Loading Condition Net Section Gross Section on Gross Section Bending D.L. + L.L. + (1) (1) (1) (1)

Seismic Loads (0.1g) S S S-Varies with S Slenderness ratio D.L. + L.L. + Seismic (2) (2) (2) (2)

Loads(0.2g) + Jet 0.90 Fy 0.52 Fy 0.9 x Critical 0.9 FY or or Buckling Stress or 1.5 x S 1.5 x S 1.5 x S Varies with slenderness ratio or 1.5 x S

1. S = Allowable Stress Based on the AISC 8th Edition
2. Upper Limit on Allowable Stresses is the lesser of the two values computed

BFN-27 Table 12.2-16.1 (Deleted by Amendment 10)

BFN-27 Table 12.2-16.2 (Deleted by Amendment 10)

BFN-27 Table 12.2-16.3 (Deleted by Amendment 10)

BFN-27 Table 12.2-16.4 REACTOR BUILDING OUTSIDE DRYWELL CONTAINMENT MODAL MASS PROPERTIES N-S E-W VERTICAL MODE FREQUENCY MODAL MASS MODAL MASS MODAL MASS NO. CPS K-SEC2/FT K-SEC2/FT K-SEC2/FT 1 1.46 77.4 2 3.50 235.5 3 5.83 2198.4 4 6.01 2937.7 5 6.28 890.1 6 6.91 136.7 7 10.94 214.0 8 14.04 3221.6 9 16.90 1350.6 10 16.98 1349.0 11 20.08 7.2 12 36.24 1200.4 SUMMATION 4516.5 4526.3 4585.9 TOTAL MASS 5020.5 5020.5 5020.5

BFN-27 Table 12.2-17 DAMPING VALUES FOR THE RPV, RPV INTERNALS, INTERNAL STRUCTURES, AND REACTOR BUILDING Component/Structure Damping Ratio (%) of Critical Horizontal Vertical R/B Enclosure Structure 5 5 Drywell Steel 1 1 Shield Wall 5 5 Pedestal 5 5 Star Truss 2 -

Stabilizer 2 -

Refueling Bellows 2 -

Reactor Vessel 1 1 Vessel Support Skirt 1 1 Shroud and Supports 1 1 Fuel 7 7 CRD Guide Tubes 1 1 CRD Housings 3.5 1 Spring K1 2 -

Spring K2 2 -

Spring K3 1 -

Spring K4 1 -

BFN-27 Table 12.2-17.1A REACTOR BUILDING INSIDE DRYWELL CONTAINMENT MODAL PROPERTIES NS DIRECTION COMPOSITE MODAL MODE FREQUENCY MODAL MASS DAMPING RATIO NO. (CDS) (K-SEC2/FT) (% OF CRITICAL) 1 1.45 77.2 5.00 2 4.27 72.7 6.34 3 5.80 2002.0 4.95 4 6.22 968.5 4.95 5 7.37 36.7 1.83 6 9.85 0.3 2.13 7 11.68 0.6 2.83 8 14.35 115.9 2.76 9 17.16 1240.9 4.95 10 17.59 3.75 6.84 11 18.69 0.50 2.23 SUMMATION: 4519.1 TOTAL MASS: 5020.5

BFN-27 Table 12.2-17.1B REACTOR BUILDING INSIDE DRYWELL CONTAINMENT MODAL PROPERTIES EW DIRECTION COMPOSITE MODAL MODE FREQUENCY MODAL MASS DAMPING RATIO NO. (CDS) (K-SEC2/FT) (% OF CRITICAL) 1 3.43 224.1 5.00 2 4.27 64.0 6.34 3 5.99 2841.0 4.90 4 7.37 35.9 1.82 5 9.86 0.3 2.14 6 10.70 2.1 4.99 7 11.68 0.6 2.83 8 14.35 114.1 2.76 9 17.24 1238.8 4.96 10 17.59 5.9 6.84 11 18.69 0.6 2.23 SUMMATION: 4527.4 TOTAL MASS: 5020.5

BFN-27 Table 12.2-17.1C REACTOR BUILDING INSIDE DRYWELL CONTAINMENT MODAL PROPERTIES V DIRECTION COMPOSITE MODAL MODE FREQUENCY MODAL MASS DAMPING RATIO NO. (CDS) (K-SEC2/FT) (% OF CRITICAL) 1 7.73 156.3 5.00 2 14.56 3249.0 4.87 3 16.84 7.3 3.64 SUMMATION: 3412.6 4 22.31 5.7 5.00 5 27.21 0.3 3.65 6 36.73 39.0 1.41 7 37.42 1130.3 4.86 8 44.26 0.8 2.32 SUMMATION: 4588.7 TOTAL MASS: 5020.5

BFN-27 Table 12.2-18 (Deleted by Amendment 8)

BFN-27 Table 12.2-19 (Deleted by Amendment 8)

BFN-27 Table 12.2-20 (Deleted by Amendment 8)

BFN-27 Table 12.2-21 (Deleted by Amendment 8)

BFN-27 Table 12.2-22 (Deleted by Amendment 8)

BFN-27 Table 12.2-23 TURBINE BUILDING CONCRETE FRAME DESIGN DATA Principal Design Cases Allowable Stresses DL + LL + Earth Pressure Normal stresses DL + LL + Earth Pressure + Wind (100 mph) Normal stresses + 33-1/3%

DL + LL + Earth Pressure + Earthquake Normal stresses + 33-1/3%

(Area cols. m-j only)

LL as listed above includes uniform live load as shown in Figures 12.2-47, 12.2-48, and 12.2-49 and machine loads where they exceed the uniform live load.

Normal stresses are as given for working stress design in ACI Code 318.63.

Material Properties Concrete fc' = 4000 psi for columns fc' = 3000 psi for all other members including columns placed with walls (pilasters) w (conventional conc.) = 145 pcf w (heavy conc.) = 280 pcf Reinforcing Steel fy = 80,000 psi (ASTM A432)

BFN-29 Table 12.2-24 TURBINE FOUNDATION DESIGN DATA Principal Design Cases Allowable Stresses DL + LL f 'c = 400 psi fs = 10,000 psi DL + LL + Thermal f 'c = 1,350 psi fs = 24,000 psi Material Properties Concrete f 'c = 3,000 psi w = 145 pcf Reinforcing Steel fy = 60,000 psi (ASTM A432)

Table 12.2-25 REINFORCED CONCRETE CHIMNEY DESIGN DATA Allowable Stresses, psi Load Factor Design Case Concrete Steel Ultimate Strength

1. DL + 100-Mph Wind 1075 15,000*
2. DL + Tornado-Lower 280 feet 1.10

-Upper 320 feet 0.55

3. DL + Operating Basis Earthquake - 0.1g 1605 30,000 DL + Design Basis Earthquake - 0.2g 3655 54,000 DL + Design Basis Earthquake - 0.2g 1.25
4. Resonant Wind 1605 30,000
5. DL + 100-Mph Wind + 3655 54,000 Thermal
  • ACI 307-69 Material Properties Concrete Shell f 'c = 4,300 psi Foundation and Internal Structures f 'c = 3,000 psi Reinforcing Steel fy = 60,000 psi(ASTM A432)

BFN-27 Table 12.2-26 RADWASTE BUILDING DESIGN DATA Principal Design Cases Allowable Stresses

1. DL + Dry Earth Loads + Floor Live Loads or Normal stresses Equipment Loads II. DL + Earth Saturated to E1.556 + Floor Live Normal stresses Loads or Equipment Loads III. DL + Earth Saturated to E1.556 + Floor Live Normal stresses Loads or Equipment Loads + 100 MPH Wind increased 33-1/3%

(30#/ft2)

IV. DL + Floor Live Loads or Equipment fc = 0.85 fc' Loads + Probable Maximum Flood (Water fs = 0.90 fy Level E1.572.5) + Wave Forces Normal stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete f 'c = 3000 psi w = 145 pcf Reinforcing Steel fy = 60,000 psi (ASTM A432)

Bearing Piles fy = 36,000 psi (ASTM A36)

BFN-27 Table 12.2-27 INTAKE BUILDING - DESIGN DATA Calculated Safety Factors Principal Design Cases Allowable Stresses Overturning Floating Sliding Ia Reservoir level at Normal 3.7 3.4 1.3 elevation 556, two pump bays unwatered.

Operating loads including fill and surcharge.

Ib Same as Ia without surcharge Normal concrete 2.2 2.9 2.7 with 0.1g earthquake loads. fs = 0.5 fy II Reservoir level at Normal 2.1 2.3 6.7 elevation 562, one increased by 33%

pump bay unwatered.

Operating loads including fill and surcharde.

III Reservoir level at fc = 0.85 fc' 4.7 13.2 3.8 elevation 529, (breech fs = 0.90 fy at Wheeler Dam) two pump bays unwatered.

Operating dead loads including fill and 0.2g earthquake.

IV. Construction condition 15.3 - 4.1 (stability only).

No machinery.

Backfill in place - dry condition.

V. The high walls forming the four fc = 0.85fc' compartments around the RHRSW fs = 0.90fy pumps shall be designed to provide protection against natural phenomena such as DBE, tornadoes, and wind waves from 45 mph winds associated with PMF.

Normal stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete f 'c = 3000 psi w = 145 pcf Reinforcing Steel fy = 60,000 psi(ASTM A432)

BFN-27 Table 12.2-28 INTAKE AND DISCHARGE CONDUITS - DESIGN DATA Principal Design Cases Allowable Stresses I. Normal Operation - Conduit Full Normal stresses DL + Hydraulic Gradient El.597.0 + Earth Pressure (w = 105 pcf)

II. Exposed Condition - Conduit Full Normal stresses + 35%

DL + Hydraulic Gradient El.597.0 III. Shutoff Condition - Conduit Full Intake Conduit only Normal stresses + 65%

DL + Hydraulic Gradient El.622.0 + Earth Pressure (w = 105 pcf)

IV. External Pressure - Conduit Empty Normal stresses DL + External Water Pressure El.556.0 + Earth Pressure (w = 120 pcf) + Surcharge (300 psf)

V. Construction Condition - Conduit Empty Normal stresses + 50%

DL + External Water Pressure El.556.0 + Earth Pressure (w = 120 pcf) + Surcharge (100-Ton Crane)

Normal stresses are 20,000 psi for reinforcing steel and for concrete are as given for working stress design in ACI Code 318-63.

Material Properties Concrete - fc = 3000 psi w = 145 pcf Reinforcing steel - fy = 60,000 psi (ASTM A432)

BFN-27 Table 12.2-29 DIESEL GENERATOR BUILDING Principal Design Cases Allowable Stresses I. DL + Earth Loads + Expansion Joint Loads Normal stresses II. Case I + Floor Live Loads Normal stresses III. (10.067) DL + Expansion Joint Loads + Operating Normal concrete Basis Earthquake Loads(0.1g) fs = 0.5 fy IV. (10.133) DL + Expansion Joint Loads + Design fc = 0.85 f 'c Basis Earthquake (0.2g) fs = 0.90 fy V. Case I + Tornado Depressurization fc = 0.85 f 'c fs = 0.90 fy VI. Case I + 300 MPH Tornado Wind (230#/Sq. Ft.) fc = 0.85 f 'c fs = 0.90 fy VII. Case I + Probable Maximum Flood (Water fc = 0.85 f 'c Level El.572.5) + Wave Forces fs = 0.90 fy DL includes weight of diesel generators Normal stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete f 'c = 3000 psi w = 145 pcf Reinforcing Steel fy = 60,000 psi (ASTM A432)

Earth w = 120 pcf

BFN-27 Table 12.2-30 (Sheet 1)

DIESEL GENERATOR BUILDING ACCESS DOORS DESIGN DATA Door and Frame Assemblies of A36 Steel Allowable Stresses (psi)

No. Load Combination Tension & Compression Shear I Dead 18,000 12,000 Wind at 10 psf (0.50 Fy) (0.33 Fy)

II Dead 32,400 21,600 Wind at 300 mph (0.9 Fy) (0.6 Fy)

III Dead 32,400 21,600 Tornado differential pressure (0.9 Fy) (0.6 Fy) at 40 psf acting outward IV Dead 18,000 12,000 Earthquake at 0.1g (0.5 Fy) (0.33 Fy)

OBE (0.1g)

V Dead 32,400 21,600 Earthquake at 0.2g (0.9 Fy) (0.6 Fy)

OBE (0.2g)

VI Dead Plastic design - Doors deform but stop missle 300 mph wind with 100 mph impact from one of the following missiles

a. 100 pounds with circular impact area of 4-inch-diameter
b. 10-foot length of 2-inch std pipe impacting endwise
c. 10-foot length of 1/2-inch std pipe impacting endwise VII Dead 32,400 21,600 Static water head to elevation (0.9 Fy) (0.6 Fy) 578 VIII Dead 32,400 21,600 Wind (0.9 Fy) (0.6 Fy)

Static water head Broken waves to elevation 578.0 Wave height varies with flood level and wind from 10 feet maximum to 5 feet at probable maximum flood but does not exceed El. 578.0

BFN-27 Table 12.2-30 (Sheet 2)

DIESEL GENERATOR BUILDING ACCESS DOORS DESIGN DATA Other Parts Allowable Stresses (psi)

No. Load Combination Tension & Compression Shear I Dead ULT/5 2xULT/15 Wind at 10 psf II Dead 0.9 Fy 0.6 Fy Wind at 300 mph III Dead 0.9 Fy 0.6 Fy Tornado differential pressure at 40 psf acting outward IV Dead ULT/5 2xULT/15 OBE (0.1g)

V Dead 0.9 Fy 0.6 Fy DBE (0.2g)

VI Dead Plastic design - Doors deform but 300 mph wind with 100 mph impact stop missile from one of the following missiles

a. 100 pounds with circular impact area of 4-inch-diameter
b. 10-foot length of 2-inch std pipe impacting endwise
c. 10-foot length of 1/2-inch std pipe impacting endwise VII. Dead 0.9 Fy 0.6 Fy Static water head to elevation 578 VIII. Dead 0.9 Fy 0.6 Fy Wind Static water head Broken waves to elevation 578.0 Wave height varies with flood level and wind from 10 feet maximum to 5 feet at probable maximum flood but does not exceed El.578.0 Doors open or closed for combinations 1, IV, and V and closed for all other combinations.

BFN-27 Table 12.2-31 (Deleted by Amendment 8)

BFN-27 Table 12.2-32 (Deleted by Amendment 22)

BFN-27 Table 12.2-33 EQUIPMENT ACCESS LOCK DOORS DESIGN DATA Allowable Stresses (psi)

No. Load Combinations Tension & Compression Shear I Dead 14,000 9,300 II Dead 22,000 14,500 Wind (10 psf)

III Dead 32,400 21,600 Wind (30 psf)

IV Dead 14,000 9,300 OBE (0.1g)

V Dead 32,400 21,600 DBE (0.2g)

Table 12.2-34 STANDBY GAS TREATMENT BUILDING DESIGN DATA Principal Design Cases Allowable Stresses I DL + Earth Loads Normal stresses II DL + Earth Loads + Floor Live Loads Normal stresses III (1 0.067) DL + Earth Loads (w = 120 pcf) + Operating Normal concrete Basis Earthquake Loads (NC) fs = 0.5 fy IV (1 + 0.133) DL + Earth Loads (w = 120 pcf) + Design fc = 0.85 f 'c Basis Earthquake Loads (NC) fs = 0.90 fy Normal stresses are as given for working stress design in ACI Code 318-63.

Material Properties Concrete f 'c = 3000 psi w = 145 pcf Reinforcing steel fy = 60,000 psi (ASTM A432)

Earth w = 120 pcf

BFN-27 TABLE 12.2-35 VALUES USED IN DYNAMIC EARTHQUAKE ANALYSIS OF STANDBY GAS TREATMENT BUILDINGS ITEM N-S DIRECTION E-W DIRECTION VERTICAL DIRECTION Mass of Roof 150 K sec2/Ft 150 K sec2/Ft 150 k sec2/Ft Mass of Base 58.4 K sec2/Ft 58.4 K sec2/Ft 58.4 K sec2/Ft BUILDING NO. 1 KT 1.20 X 106 K/Ft 1.06 X 106 K/Ft --------

KR 5.49 X 108Ft-K/RAD 1.97 X 109Ft-K/RAD --------

KV -------- -------- 3.47 X 106 K/Ft BUILDING NO. 2 KT 1.25 X 106 K/Ft 1.10 X 106 K/Ft --------

KR 5.81 X 108 Ft-K/RAD 2.15 X 109Ft-K/RAD --------

KV -------- -------- 3.60 X 106 K/Ft Table 12.2-36 RESULTS OF DYNAMIC EARTHQUAKE ANALYSIS OF STANDBY GAS TREATMENT BUILDING FOR OPERATING BASIS EARTHQUAKE (0.10g)

N-S Direction Period = 0.0845 seconds Item Value Roof Acceleration 0.268g Base Acceleration 0.179g Roof Displacement 0.0163 in.

Base Displacement 0.0112 in.

E-W Direction Period = 0.071 seconds Item Value Roof Acceleration 0.216g Base Acceleration 0.176g Roof Displacement 0.0099 in.

Base Displacement 0.00844 in.

BFN-27 Table 12.2-37 INTAKE CHANNEL GATE STRUCTURE DESIGN LOADS Items and Design Cases 34/Gate Guide Cells Case 1. Wc + FH + PH20 PSOIL + PSOILA + PSOILP + FfA + Ffp (Initial Condition)

Case 2. Same as Case 1 + Wg + G + GH20 (Final Condition) 34/Closure Cells Case 1. Wc + FH + PH20 + PSOIL + PSOILA + PSOILP + FfA + Ffp Wc = Weight of cell minus vertical DBE seismic load Wg = Weight of gate minus vertical DBE seismic load G = Total weight of gate time horizontal DBE acceleration FH = Total weight of cell times horizontal DBE acceleration GH20 = Increased water pressure on gate due to DBE seismic loading*

PH20 = Increased water pressure on cell due to DBE seismic loading*

P = Increased earth pressure on cell due to DBE seismic loading SOIL PSOILA = Static active earth pressure on cell PSOILP = Static passive earth pressure on cell FfA = Active friction force between cell and earth Ffp = Passive friction force between cell and earth

  • (Design Maximum Water Level at Elevation 556.0)

BFN-27 Table 12.2-38 REACTOR BUILDING - PERSONNEL AND EQUIPMENT ACCESS LOCKS -

WATERTIGHT DOORS DESIGN DATA Door and Frame Assemblies Allowable Stresses (psi)

No. Load Combination Tension Compression Shear I Door Open or closed and dogged 0.5 Fy 0.48 Fy 0.33 Fy Dead + 0.1g earthquake (OBE)

II Door Open or closed and dogged 0.9 Fy 0.9 Fy 0.6 Fy Dead + 0.2g earthquake (DBE)

III Door closed and dogged 0.9 Fy 0.9 Fy 0.6 Fy Dead + 7.5 feet static head Other Parts I Door open or closed and dogged ULT/5 ULT/5 2xULT/l5 Dead + 0.1g earthquake (OBE)

II Door open or closed and dogged 0.9 Fy 0.9 Fy 0.6 Fy Dead + 0.2g earthquake (DBE)

III Door closed and dogged 0.9 Fy 0.9 Fy 0.6 Fy Dead + 7.5 feet static head A276-304 Stainless Steal A-36 Steel Fy = 30 ksi Fy = 36ksi

BFN-27 Table 12.2-39 (Sheet 1)

RADWASTE BUILDING - DOUBLE DOORS FOR EXTERIOR OPENINGS DESIGN DATA Door and Frame Assemblies of A36 Steel Allowable Stresses (psi)

No. Load Combination Tension Compression Shear I Door open or closed and not dogged Dead load + 0.1g earthquake (OBE) 18,000 17,000 12,000 (0.5 Fy) (0.48 Fy) (0.33 Fy)

II Door closed and dogged Dead + 100 mph wind 32,400 32,400 21,600 (0.9 Fy) (0.9 Fy) (0.6 Fy)

III Door open Dead + 30 mph wind 18,000 17,000 12,000 (0.5 Fy) (0.48 Fy) (0.33 Fy)

IV Door closed and dogged Dead + 10-foot wave with water level at elevation 561.0 +

60 mph wind +0.1g earthquake (OBE) 32,400 32,400 21,600 (0.9 Fy) (0.9 Fy) (0.6 Fy)

V Door open (door 183 only)

Dead load + 30 mph wind +

earthquake at 0.2g 32,400 32,400 21,600 (0.9 Fy) (0.9 Fy) (0.6 Fy)

VI Door open Dead + 30 mph wind + 0.1g earthquake 32,400 32,400 21,600 (0.9 Fy (0.9 Fy) (0.6 Fy)

VII Door closed and dogged Dead + 13 feet static head 32,400 32,400 21,600 (0.9 Fy) (0.9 Fy) (0.9 Fy)

Other Parts I Door open or closed and not dogged Dead + 0.1g earthquake (OBE) ULT/5 ULT/5 2xULT/15

BFN-27 Table 12.2-39 (Continued)

Sheet 2 RADWASTE BUILDING - DOUBLE DOORS FOR EXTERIOR OPENINGS DESIGN DATA Other Parts (Continued)

Allowable Stresses (psi)

No. Load Combination Tension Compression Shear II Door closed and dogged Dead + 100 mph wind 0.9 Fy 0.9 Fy 0.6 Fy III Door open Dead + 30 mph wind ULT/5 ULT/5 2xULT/15 IV Door closed and dogged Dead + 10-foot wave with water at elevation 561.0 + 60 mph wind

+ 0.1g earthquake (OBE) 0.9 Fy 0.9 Fy 0.6 Fy V Door open (door 183 only)

Dead + 30 mph wind + 0.2g earthquake (DBE) 0.9 Fy 0.9 Fy 0.6 Fy VI Door open Dead + 30 mph wind + 0.1g earthquake (OBE) 0.9 Fy 0.9 Fy 0.6 Fy VII Door closed and dogged Dead + 13 feet static head 0.9 Fy 0.9 Fy 0.6 Fy

BFN-27 Table 12.2-40 RADWASTE BUILDING - PERSONNEL ACCESS DOORS DESIGN DATA Door and Frame Assemblies of A36 Steel Allowable Stresses (psi)

No. Load Combination Tension Compression Shear I Door open or closed and dogged 18,000 17,000 12,000 Dead (0.5 Fy) (0.48 Fy) (0.33 Fy)

II Door closed and dogged Dead + 7.5 feet static head (18.3 feet static head for pipe and cable tunnel door) 32,400 32,400 21,600 (0.9 Fy) (0.9 Fy) (0.6 Fy)

Other Parts I Door open or closed and dogged Dead ULT/5 ULT/5 2xULT/15 II Door closed and dogged Dead + 7.5 static head (18.3 feet static head for pipe and cable tunnel door) 0.9 Fy 0.9 Fy 0.6 Fy

BFN-27 Table 12.2-41 INTAKE STRUCTURE AND EQUIPMENT ACCESS LOCK PERSONNEL ACCESS DOORS DESIGN DATA Door and Frame Assemblies Allowable Stresses (psi)

No. Load Combination Tension Compression Shear I Doors closed and dogged Dead + 300 mph wind (0.9 Fy) (0.9 Fy) (0.6 Fy)

  • II Door open or closed and dogged Dead + 0.1g earthquake (OBE) (0.5 Fy) (0.48 Fy) (0.33 Fy)
  • III Door open or closed and dogged Dead + 0.2g earthquake (DBE) (0.9 Fy) (0.9 Fy) (0.6 Fy)
  • IV Door closed and dogged Dead + 13 feet static head (0.9 Fy) (0.9 Fy) (0.6 Fy)
  • Other Parts I Doors open or closed and dogged Dead + 0.1g earthquake (OBE) ULT/5 ULT/5 2xULT/15 II Door open or closed and dogged Dead + 0.2g earthquake (DBE) 0.9 Fy 0.9 Fy 0.6 Fy III Door closed and dogged Dead + 300 mph wind 0.9 Fy 0.9 Fy 0.6 Fy IV Door closed and dogged Dead + 13 feet static head 0.9 Fy 0.9 Fy 0.6 Fy ASTM A276-304 Stainless Steel ASTM A-36 Steel
  • For new design, the Allowable Shear stress = 0.52 Fy ASTM A240-304 Stainless Steel Fy = 36 ksi Fy = 30 ksi

BFN-27 Table 12.2-42 DIESEL GENERATOR BUILDING PORTABLE BULKHEAD DESIGN DATA Bulkhead Bolted in Place Allowable Stresses (psi)

No. Load Combination Tension & Compression Shear I Dead 18,000 12,000 OBE (0.1g) (0.5 Fy) (0.33 Fy)

II Dead 32,400 21,600 Static water head to (0.9 Fy) (0.6 Fy) elevation 578

BFN-27 Table 12.2-43 EQUIPMENT ACCESS LOCK FLOOD GATE DESIGN DATA Gate Structural Members of A36 Steel Allowable Stresses (psi)

No. Load Combination Tension & Compression Shear I Dead 18,000 12,000 Wind at 10 psf (0.5 Fy) (0.33 Fy)

II Dead 32,400 21,600 Wind at 30 psf (0.9 Fy) (0.6 Fy)

III Dead 18,000 12,000 OBE (0.1g) (0.5 Fy) (0.33 Fy)

IV Dead 32,400 21,600 DBE (0.2g) (0.9 Fy) (0.6 Fy)

V Dead 32,400 21,600 Static water head to elevation (0.9 Fy) (0.6 Fy) 578 VI Dead 32,400 21,600 Wind (0.9 Fy) (0.6 Fy)

Static water head Broken waves to elevation 578.0 Wave height varies with flood level and wind from 10 feet maximum to 5 feet at probable maximum flood but does not exceed El.578.0 Gate in lowered or raised position for above combination numbers I through IV and in lowered position only for V and VI.

Other Parts I Dead ULT/5 2xULT/15 Wind at 10 psf II Dead 0.9 Fy 0.6 Fy Wind at 30 psf III Dead ULT/5 2xULT/15 OBE (0.1g)

IV Dead 0.9 Fy 0.6 FY DBE (0.2g)

Gate in raised position only for above combination numbers I through IV. No load on other parts in lowered position.

BFN-27 Table 12.2-44 OFFGAS TREATMENT BUILDING - DESIGN DATA Loads D = Dead load of structure.

HV= Vertical earth pressure, including 200-pound-per-squre-foot surcharge.

HL= Lateral earth pressure, including 200-pound-per-square-foot surcharge.

H'L= Lateral earth pressure, including worst effects of water at elevation 556, 561, or 568.75; 200-pound-per-square-foot surcharge.

E = Design basis earthquake, earth dry.

S = Earth pressures including 4,700-pound-per-square-foot surcharge along any one wall at a time. This surcharge is caused by chimney dropping outside of building boundary.

B = Effect on walls only of 13,000-pound-per-square-foot load on the roof.

This load represents approximately 3 times the load that would be required to collapse the roof.

V = Negative pressure of 240 pounds per square foot inside building due to tornado.

C = Earth pressure against the exterior walls acting as cantilever wall with an applied moment at the top equal to the moment capacity of the connection between the walls and roof. Structure is designed according to the ACI Building Code 318.71.

No. Load Combinations and Load Factor 1 U = 1.7HL+ 1.4 or 0.9 (D + HV) 2 U = 1.7HL+ 1.4 or 0.9 (D + H V) 3 U = 1.7E + 1.4 or 0.9 (D + H V) 4 U = 1.1S + 1.4 or 0.9 (D + H V) 5 U = 1.7HL + 1.1V + 1.4(D + HV) 6 U = 1.1 C 7 U + B + HL + D Material Properties - As given in Table 12.2-7

BFN-27 Table 12.2-45 RADWASTE EVAPORATOR BUILDING-DESIGN DATA Loads D = Dead load of structure L = Floor live loads (100 pounds per square foot or equipment loads, whichever was greater)

H = Maximum possible flood (water to elevation 572.5) plus wave forces W = Wind load (100 MPH)

1. D + L Normal stresses
2. D + L + W Normal stresses, increased by 1.33
3. D + H fc=0.85 fc fs=0.90 fy Normal stresses are given for working stress design in the ACI Code 318-71, alternate design method Section 8.10.

Material Properties - As given in Table 12.2-7.

BFN-27 Table 12.2-46 GATE STRUCTURE NO. 2 DESIGN DATA Sheet 1 Loads D = Dead load of the structure and equipment, plus a portion of the live load is added when it includes items such as piping, cable trays, etc.

S = Active soil pressure.

H = Hydrostatic pressure from the water surface elevations as shown below.

UH = Hydrostatic uplift from the water surface elevations as shown below.

L = Live load - 200 psf on the machinery deck and/or mobile crane loading on the cellular cofferdam.

C = Construction condition - cellular cofferdam in place with excavation for concrete gravity section completed.

E = Earthquake (DBE) - 0.20g horizontal and 0.13g vertical accelerations (at bedrock).

Load Case Load Combination Overturning Factor of Safety Sliding Pullout**

I D + S + H1 + UH1 1.5* 1.5 1.5 II D + S + H3 + UH3 1.05 1.05 1.05 III Construction Condition 1.25 1.25 1.25 IV D + S + H + UH + E 1.0 1.0 1.0

  • or 100% of base in compression for the concrete gravity section
    • applies only to steel sheet pile structures

BFN-27 Table 12.2-46 GATE STRUCTURE NO. 2 DESIGN DATA Sheet 2 Water Surface Elevations for Loads H and UH Upstream Downstream Corresponding Rainfall H & UH El. 562.67 El. 556.0 None H1 & UH1 El. 563.44 El. 556.01 4 / hour H3 & UH3 El. 564.93 El. 556.03 Max. Possible Required Ultimate Concrete Strength (U) for the Reinforced Concrete Components U = 1.4D + 1.7(S + H1 + UH1 + L)

U = 1.05(D + S + H3 + UH3)

U = 0.75[1.4D + 1.7(S + H + UH + L) + 1.87E]