ML20248H058

From kanterella
Jump to navigation Jump to search
Application for Rev of Certificate of Compliance 9184, Authorizing Shipment of Radioactive Matl in Nupac PAS-1 Packaging
ML20248H058
Person / Time
Site: 07109184
Issue date: 03/31/1989
From:
NUCLEAR PACKAGING, INC.
To:
Shared Package
ML20248H034 List:
References
NUDOCS 8904140055
Download: ML20248H058 (179)


Text

{{#Wiki_filter:r NuPac PAS-1 Consolidated SAR, Rev. O !! arch 31,1989 ,m. .? Q,2. / APPLICATION FOR NRC CERTIFICATE OF COMPLIANCE AITIll0RIZING SHIPMENT OF RADI0 ACTIVE MATERIAL IN illE NUPAC PAS-1 PACKAGING March 1989 f l l Pr epa re d by : Nuclear Packaging, Inc. 1010 South 336th Street Federal Way, WA 98003 l 8904140055 890331 PDR ADOCK 0710 4 C

- ~ ~ '-~ ~ ~ ~ ~~ ~ ,- g 4 'NuPac' PAS-1;..Conso icdted SAR,.Rev.' 0 March 31, 1989. ~ <y-TABLE OF 00N11DirS . y. PAGE Ynl;Q 1.0 GENERE INFORMATION 1-1 1.1 Introduction 1-1 1.2 Package Description 1-1 1.2.1 Packa ging 1-1 '1.2.2 Opera tional Fea tures 1-5 1.2.3 Content s ' of Pa cka ging '1-6 1.3 Appendix 1-7 ..g 1.3.1 NuPac PAS-1 General Arrangement Drawings 1-7 - 2.0 STRUCIURAL EVEUATIONS 2-1 2.1 Structural Design 2-1 2.1.1 Discus sion 2-1 2.1.2 Design Criteria 2-1 2.2 ' 7eight s and Center of Gravity 2-2 2.3 Mechanical Properties of Materials 2-2 2.4 General Standards For All Packages 2-7 2,4.1 Mimimma Package Size 2-7 2.4.2 Tamperproof Fea ture 2-7 2.4.3 Positive Closure 2-7 2.4.4 Chemical and Galvanic Reactions 2-7 s 1-1 =--______.__-.________--.-_--_-_____--__-.:.-__-___-__----_-______________-_-___-_____-_-

l NnPac PAS-1 Consolidated SAR, Ray. O March 31, 1989 l ("N '(-) PAGE 2.5 Lif ting and Tiedown Standards for all Packages 2-3 2.5.1 Lif ting Devices 2~8 2.5.2 Tiedowns 2-12 l 2.6 Normal Conditions of Transport 2-12 2.6.1 Heat 2-13 2.6.2 Cold 2-14 2.6.3 Reduced Exte rnal Pressure 2-15 2.6.4 Increased External Pressure 2-18 2.6.5 Vibra t ion 2-19 2.6.6 Water Spray 2-20 2.6.7 Free Drop 2-20 2.6.8 Corner Drop 2-20 f 2.6.9 Compres sion 2-20 (y 2.6.10 Penetration 2-20 2.6.11 Conclu sion 2-20 2.7 Hypothetical Accident Conditions 2-21 2.7.1 Fre e Dro p 2-21 2.7.2 Puncture 2-56 2.7.3 Thermal Analysis 2-57 2.7.4 Immersion--Fissile Ma terial 2-57 2.7.5 Imme r s io n--All Pac ka ge s 2-57 2.7.6 Summary of Damage 2-58 2.3 Special Form 2-58 2.9 Fuel Rods 2-58 2.10 Appendix 2-59 2.10.1 Moved to Appendix 1.3.1 2-59 2.10.2 Analytic Methods 2-59 i-2

NuPac PAS-1 Consolidated SAR, Rev. O March 31,1989

(_\\) PAGE / 3.0 THERMAL EVALUATION 3-1 3.1 Discussion 3-1 3.2 Summary of Thermal Properties of hbterials 3-2 3.3 Technical Specifica tions of Component s 3-4 3.4 Thermal Evalua' tion for Normal Conditions of 3-5 Transport 3.4.1. Analytic Model 3-5 3.4.2 Maximum Tempera tures 3-18 3.4.3 Minimum Temperatures 3-18 3.4.4 Maximum Internal Pressures 3-18 3.4.5 Thermal Stres se s 3-20 3.5 Hypothe tical Accident Thermal Evalua tion 3-20 '3.5.1 Thermal Model 3-20 3.5.2 Package Conditions and Environment 3-24 3.5.3 Package Temperatures 3-25 3.5.4 Maximum Inte rnal Press ures 3-25 3.5.5 Maximum Thermal Stresses 3-29 3.5.6 Evaluation of Package Performance for the 3-29 Hypothetical Accident Thermal Condition 4.0 C0hTAINMERf 4-1 4, 1 Containment Boundarie s 4-1 4.1.1 Containment Vessels 4-1 4.1.2 Containment Pene trations 4-2 4.1.3 Se als and Welds 4-2 4.1.4 Closure 4-2 i-3

NuPac PAS-1 Consolidated S AR, Rev. 0-M2rch 31, 1989 L l i ,.m ( ) %/ PAGE i ] 4.2 Requirement s for Normal Conditions of Transport 4-3 4.2.1 Release of_ Radioactive Material 4-3 4.2.2 Pressurization of Containment Vessel 4-3 4.2.3 Containment Criterion 4-3 4.3 Containment Requirement s for the Hypo the tical 4-3 Accident Conditions 4.3.1 Fission Gas Products 4-4 4.3.2 Release of Contents 4-4 4.3.3 Containment Criterion 4-4 4.4 Special Requirement s 4-4 p 5.0 SHIELDING S-1 6.0 CRITICALIIT EVALUATION 6-1 7.0 OPERATING PROCEDURES 7-1 7.1 Procedures for Loading the Package 7-1 7.2 Procedures for Unioading the Package 7-2 7.3 Preparation of an Empty Package for Transport 7-2 7.4 Appe ndix 7-3 7.4.1 Storage Procedures 7-3 7.4.2 Assembly Verification Leak Tes t 7-6 / t*w 1-4

I ~ ^ NuPac PAS-1 Consolidated SAR, Rsv. 0 - March 31, 1989-e PAG 3. e4 .3.0 ACCEPTANCE TEST AND MAINTENANCE PROGRAM 8-l' 8.1 ' Acceptance Te st s. 8-1 3 8.2 Maintenance Program 8-1 8.3 Appeadix '8-3 8.3.1. Lead Shielding Integrity Testing 8-3 8.3.2-Fabrication and Maintenance Verification 5 IIelium Leak Test Procedure 9.0. QUALITY ASSURANCE 9-1 I 1' l O 1-5 l

. l l .)

no
NuPac PAS-1 Consolidated SAR, Rsv. O Knrch 31,1989 H

y.n pNj l ~ APPLICATION IOR 1 NRC CERTIFICATE OF COMPLIANCE AUT110RIZING SHIPMENT OF RADJ0 ACTIVE MATERIAL b IN THE o f' NUPAC P AS-1 PACKAGING ' Ii 1.0' GENERAL INFORMATION-1.1 Introduction The NuPac PAS-1 ' packaging has been developed by Nuclear Packaging, Inc. as a safe means-of 1 transporting Type B quantities of radioactive liquids from commercial reactor ' coolant systems to chemical analysis facilities offsite. These liquid coolant samples would be taken subsequent to a reactor accident, and would be :used to help determine the condition of the reactor core.

Thus, o

the. chemical' and isotopic breakdown of the sample s would.be somewhat varied. OO Authorization is sought for shipment by cargo vessel, motor vehicle, rail, and cargo aircraf t. 1.2 Packa ge Description 1.2.1 Packagina 1.2.1.1 General Description The NuPac PAS-1 packa ging consist s of a pr ima ry containment vessel enclo se d in side a se co nda ry con t a inme nt ves s el/e nvi ro nme nt al sh ield, thereby forming two degrees of containment as illustrated in Figure 1.2.1-1. The pr ima ry cont a inme n t vessel houses one of several pos sible sample casks containing a fif teen (15) milliliter water sample. Additionally, four iodine collection ca r trid ge s and four offgas vials are safely maintained inside foam shoring a above the sample cask. Loose vermic ul it e s urround s the pe rime t e r of the sample cask to absorb the water sample should leakage occur. 1-1

Ndac PAS-1 Consolidstad SAR, Rsv. O M rch 31,1989 N TEST PORT PLUG T ' N 'O-RING FACE SEAL I N LID O-RING

  • FACE SEAL L._ __

N TEST PORT CLOSURE SCREW AND STAT-O-SEAL Os ' i N i N -RING FACE SEAL f F, N 0 ['N N TEST PORT PLUG i I I NTEST PORT CLOSURE SCREW /, NEOPRENE WEATHER SEAL f% N N LID O-RING BORE SEAL N N PRIMARY CONTAINMENT VESSEL BOUNDARY N - SECONDARY CONTAINMENT VESSEL BOUNDARY N OVERPACK BOUNDARY SCHEMATIC, NUPAC PAS-1 PACKAGING Figure 1.2.1-1 Completely encapsulating the secondary containment vessel / environmental shield are steel shelled, foam f illed overpacks that provide ins ula t ing and shock absorbing capabilities. The overpack system is designed to protect it's content s from the ef fect s of Normal Transport and Hypothetical Accident Condi-tions. l 1.2.1.2. Methods of Construction. Dimensions, and Fabricating Methods General Arrangement Drawings of the NuPac PAS-1 packaging system are included in Appendix 1.3.1. They show dime n s ion s of the overpacks, primary, and sec-ondary containment vessels as well as typical pa -load assemblies. The ove rpac k sh ell s are fabricated of thin ductile, l ow ca rbon steel. The volume between is filled with thermal sud shock insulating, rigid polyurethane foam with a density of appror.imately twenty (2 0) pounds per cubic foo t. The overpack system is 48 inches in diameter and 66 inches in height. l 1-2 _______________a

l.. i NuPac PAS-1 Consolidated SAR, Rev. O Ma rch 31, 1989 . y'*x The polyurethane foam is poured into the cavity be tween the shells and allowed to expand, completely filling the void. Here it bonds to the steel shells creating a unitized construction for the packaging. Mechanical properties of these and all other materials used in the NuPac PAS-1 packaging are described in Section 2.3. The secondary containment vessel provides a redundant level of containment for the NuPac PAS-1 package. It is fabricated of ASTM A516, grade 70, steel which has excellent low temperature properties. The inner and outer side walls con s is t of.38 inch rolled plate with 5.1 inches of poured lead between. One inch steel pl at e s are welded across the inside and out side of the bottom to as s ur e s t ruc tur al int e gr i ty. As with the side wall, 5.1 inches of lead shield is between the steel shells. Similarly, the lid is fabricated of 1.5 inch and 2.0 inch steel plate an the inside and out side surface, respectively, with.38 inch rolled steel plate at the perimeter between. Inside the formed cavity is 4.8 inche s of shee t le ad. The out side of the secondary containment vessel is () 32.5 inches in daameter and 39.0 inches in height. The prima ry containment ves sel is fabricated entirely of 304 stainless steel plate per ASTM A-240 specification. The lid flat top and rolled side are 1.0 inch and 1.25 inch thick plate, respectively, and the base flat bo t t om and rolled side are.50 inch and.75 inch thick plate, respectively. The out side of the prima ry cont ainment vessel is 20.5 inches in diameter and 23.38 inches in height. 1.2.1.3 Containment Ve s sel All radioactive material is contained within the primary containment vessel. The water sample in a vial is held inside a sample ca sk which is, in turn, compl e t ely surrounded with loose-fill absorbant vermiculite. The sample vial contains approximately fifteen (15) milliliters of water. Each containment vessel is fitted with two cl o se fitting 0-ring se al s and testable test port s. As with the containment ves sel, each test port is fitted with redundnet seals for closure integrity. 1-3

NuPac PAS-1 Conso11deted SAR, Rev. O Msrch 31, 1989 cs i%J 1.2.1.4 Neutron Absorbers There are no sources of neutron emis si ons and therefore, there are no ma t-erials used as neutron absorbers or moderators in the NuPac PAS-1 packaging. I 1.2.1.5 Packane Weight I The weight of the NuPac PAS-1 package, including a maxinum sample cask weight of 1,375 pounds, is approximat ely 12,800 pounds. 1.2.1.6 Receptacles There are no receptacles on the outside of the NuPac PAS-1 packa ging. One ] (n) test port receptacle is located on each containment vessel. i v 1.2.1.7 Drain Port There are no drain ports provided in this package. 1.2.1.8 Tie d own s Tiedowns are not a structural part of this package.

1. 2.1. 9 Liftina Devices Ile overpacks have three lifting lugs for handling onl y the ov e rpa c ks.

The overpack lif ting lugs will be rendered inoperable during transit by two large ( ( ) washers bolted to each lug to act as a cover. Each co nta i nme nt vessel has j ~/ three tapped eyebolt holes for lif t ing eyes. Re fe r to Sect ion 2.5.1 for a detailed structural analysis of these lif ting devices. l 1 1-4 l 3 3

NuPac. PAS-1 Consolidated SAR, Rev. O Ila rch 31, 1989 .\\d .1.2.1.10 Pressure Relief System There are no pressure relief valves. ' 1. 2.1.11 ' Heat Dissipation There a2e no special devices used for the transfer or dissipation of heat. 1.2.1.12 Co 01 an t s There are no coolant s involved. / \\ ( ). 1.2.1.13 Protrusion xs There are no protrusions. 1.2.1.14 Shielding The contents will be limit ed such that the radiological shielding prov ide d will assure compliance with DOT and IAEA regulatory requirements. 1.2.2 Goerational Features Refer to the NuPac PAS-1 general a rrangeme nt dr aw ings in Appe ndix 1.3.1. There are no complex ope ra t io nal r equir em nt s connected with this packaging and none that have any transport significance. Operational procedures are delineated in Sec tion 7.0. OV i 1-5 1

_-----7__--- 1 'I NuPac : PAS Consolidat ed SAR, Rsv. O March 31,.1989' 1 b 1.2.3 -- Content s of Packm aine LV 3 i The NuPac PAS-1 system is designed to transport a 15 milliliter sample of reactor ' coolant t ake n from the post ac cident sampling system. Addit ionally, .i four lodine collection ca rtrid ge s, each containing less than 0.8 curies of halogens, and four of f ga s vials, each containing less than 0.8 c uries of gaseous and iodine fission products, are transported.within - the containment - vessel. Maximum ac tiv ity of ' the liquid contents is estimated to be 2.846 curies per milliliter, or ' 49.09 c urie s total. Relative conc e ntra tions of isotopes present are' given in Section 5.0. Optional contents may be: A. ~ Greater than Type A quantities of radioactive, material as neutron activated metal or metal oxide in solid f orm. B. Great'er than Type A quantities of byproduct material consisting of process solids-or resins, either dewatered, solid, or solidified in secondary containers. { 1-6

i 1 . NuPac PAS-1 Consolida ted SAR, Rev. 0 Ifarch 31, 1989 1.3 APPENDIX 1.3.1 NuPac PAS-1 General Arranarnent Drawings l f O 1-7 t.

--y 8- 'l 7 I 6 l '5 s/ .W_ l /0 .Il. THK n 1.0 m l.0 ROLLED A/VGLE ' (% v h .te V O 2y %) ses s *A CONTINU0US. LarT NEMPMENE GALKET.. nr, N k l r _ s t l c - i ,50 & s2 *2. RDLLCD ANGLE (2 PLACE 5) f' go.ggg,.. afa s is UN C s t.bo L. GRK REF. 'tL 13 MEs. NUT sl2 THM LA O FIO or HE1..Vit.Ltf. WASHC)%. MLLED A""E .BV rir.16 f*LACCS LOLAUV SPACCD. DETAll E ALTERNATE Mf 7NOO TVh s mu cc u C s'# ' f6de r* #9

  • 4~, Af*'

-f mmeetsrar [ "' ' 1 / %f, u.n^ wpm..;tV. "./[ -- na-ana ....e \\ i.i c p,. e.

. s yb

.\\ o ! l'. 'i'.* k bl *." ' UV ett mfited ArW ZEr ~ l ..; %. ' 'u,:.c l l&.~ v : e %.:./y.* "s w"acs'v)r* ','f.,; M.. " y cour t' f

  • 1rtret tro e,

eq.;; ~ ~ Q:,, ' d

9 7,

n NTE 5 \\ \\r;** rvpica sum-5 l' USA UV s o gm \\ Y \\ f vee meyesiv r } y :< N '.q l. t /.-- -ca B is ~m*-

  • -m"-

x (..... ;;. - m Wn-> \\\\ , \\.,. \\ N [N.r[I4 [ \\ t l -,, TYPICAL SHIPPING CONFIGURATIONS A 1 1 O

I-4 I 3 1 2 l 1 ro=a s time pe sc.eevion e o.ve e seveovao l t J f 362 OLN af1/h% l t a l set oca ,s.w &_ _ lC l CEf DCW ue re en Q _ 1 /vsa, so se/.cr' ~ 0 / cceseawer ein.ee L ,,/- A f DM / f.18 NM o f D E4st d' eJB DdCD } ) a mea

f. 6%

\\ ~ - j i .,., d d i~/OH O/ wea ?, Masect fr $*

20. $

J/* 26Y Vff Moteditif w L f / rom wcmv.cwn ___ i-\\ n., yA., 4: f / noe mc mecax:. c.n(4 p'A / / s. W-~ r:y:k:!. t \\ \\ l aware a awase ',i ' /.cer rherfr.m.s.r)av/ ser t... _. 7..,. n.m. / c,- - -e., ,y _/ co, --., s n

  • f..k.

.a / f,r,, ,..,- wea n zu.ne y unan sue s ~!,',\\ a $.Y$ f ,' s car >C 'p ~~,,a 3 M i s,.: a 77,p," . 7 * " ~ c ~ re .y N SIN / y a s-, - a, [ a,, - <sa, i d,, _ - - .,..,, m. _., y. N, }. N_ esrsec 4,sc / mise cr 4 _n - _. t., j g U -i. rs AyEC W" N.rs,,~~~as,nar: CABD 4 " "'""' ~ ~' ,j,g j\\yNDN , %,erture Card, ~ NO4i'0066-0i ,aa ,[! r al5/ .t.eis.o.,. a wise seicuo , NUCLEAR PA CKA GING, INC. wa y,p;gi ..... ~ -a . ;,=.;,y ,m...m,o ro. t .me t.a s tcedeciu.s { a$ jo a,6 3 P%.ca neesu.6E DECIM.Ls t ggpgg pgg] g j) at

    • 6 ts t IJ 00 # 01.C.4LE Tou. 044.t o

$HED TWSPGRTATION PACMGE i *t hs i ?Si ! " h e @ <e%'e.c s a m leic '" ; l i hr!h,*dl; 5h [d t'Ac i r4 9" " *" 4 8dI v53:@ k" " e i o X-20 -218D lii ...<.c... L---_ _ - - J- .2 1 9 i a

x__ [ r me +res + - - - - 9 .l 7 l, 6 l,. 6 8 7. TOROUE REQUIREMENTS: Al PRIMRY CCTAINMENT. 3/3-16 x 8.02 Et-18 FT-LB 81 SECC2ARY CONTAINMENT

  • 1-8 x 3.0; N50-500 FT-L5 C) DVEAPACK3
  • 3/4-10 x 1.25s,110-130 FT-LB.
8. LD%1TUDINAL SEAM WELDS FOR ALL 1."JERS SHALL BE FULL A,s NOTE 3 UNLESS OTHERWISE SPECIF[Q D

GR0ttiD OR f*CXINED 5. TOT;l.

1. MATEAIALt A) CONTAINMENT VEs:EL 304 $37 PER ASTM-A240 B) 3rl! ELD - CARBON STEEL PER ASTM-A$16, GA 70
  1. 8.4

. LEAD PER 00-L-1712, GR A DR C C) OVERPACK - CAASON STEEL PER ASTM-A 36 - 2 75 -== 2.3.6V = FOAM PEA NUPAC SPECIFICATIONS Typ DIA. .fs.L S

2., ALL WELDIN3, PROCDURES AND PERSONNEL SHALL BE QUALIFIED IN ACCOADENCE WITH,

Am3 DI.1 OA ASME C00E, EECTION IX. WELD PROCDURES $ Hall BE AVAILAst.E FOR AUDIT OR REV!EW.

3. ' Ai WELDS SHALL BE VISUALLY EXAMIND 'IN ACCORDANCE WITH AWS D1.1, SEC"'

D 1. [* g1/#V i 4. ALL EXPOSO CAABON STEEL SURFACES (IXCEPT 0-AING GLANDS AND ADJACENT SEATING SURFACES) SHALL 8E PAINTO PER NUPAC APPROVED PROCGtMES. Ny .s0 V e D iU i .i

5. LEA 2 POUA!NG SHALL BE PER huPAC APPA0VG PROCCURES.

6. CDCET FA8RICATION VERIFICAf!0N LEAK TEST IN ACCORDANCE WM11 g SECTION s.3.2.. ~ .io V v,, "#f h s$ .30 V y f % saw.ewin mo o m aks K I rs.e t a L I =,:: n = gj-

u., - <

es,o oc fT555 / "' = % 33.0 .n v m Y Y k h o es.7s ces xx

sov B

V n i O O i L,,,, ~ s / Cnv Y W TYP d-Tutc ts xe.coe N resr peer, su P90VISDN FOL L1PTINS Kvt 3 PLflCEs fa. 3Patt0 SECTION D-D v sJt o 22 Y I sa f o*& ~ (~TN s \\ 19.88 OtQ AEF \\ h e J _e/.t -Q- \\ 3 f u. e,.,, -9 l d i l Qsei /

  • 0'*

T} A i, p u. . s.rx f NA/ $[$ g . irs kj' 4

  • rs unc za. 7s op

, *f?} P90ws!ON fot. LIFTJN(, Evg y 2 Ptaus ca. soneto " SECTION E-E f* A ers ora a.c. d 4 %; W DctM C.* /t M 6d" C.E. port CkerprL

  • PI:t/d con a

O

~, I 4 l,.. . 3 i 2 l 1 ~ es visio.s '> se, 6Ta e 0 9C.89,40. , D.,0 e aepeOut0 ~ .5>*45' l L l s 4 e sts CcN res sA:;* *' 2 A !.A CE g. j j g i ;eg of.a --"/sT D n

  • C.

248 TXAr ,* s,ss: d=! YM %).tb CIA, [ DETAIL D T'f r. J PL.Alb i l Gorrowcx tu mswo Lys, 3 nez } Pr us Wsrx begr Nurf fruccs wArxer: Dves,vs l .wa.< ear rc sceaear we sz ra ve,~ -v <rs. AJHf 04tw&,V/TEW DE TAl L_D_,_ 77,7us,,,,w e,w, swe.csw sno.3/f o. ys" vs,v.sf v1rsr M r soeArrO cc

    • s.msvr otrMrtN rWo 4 =c 4

.YAr C =Jin, DC KGVM

  • *s rs.,

pyg g 7.,, f:puc,co,gW YYP: 3.0 'N # #

13. 75 Bostr CZWYr2. s 'e gdesat J McMJt 2renso tot'tW4rNce, 8 Mrs.

,4 p, [- f.0 V/rdN f # / 7 i , -DETAt A_ 0\\t ,/a . m rw \\ i ~ v-(p. f 'yl GV ./ torso sceu o see \\, 'V l A .t-9 w r r i . d9/1 ,y &j ,/~ ""

!.S l

r*eLoa> cme &,rMder- )i N'< .,,,,/g DETAL 8 ,/ e. '~ x \\" ~; 4 Mf 7 ' s L'_'N /~N. ~

nv resrm r f

l { .JB rn'c CLDEWff ~ Q p 7, 54tfW .38 Fw 1r 4 fs um*'ve'er' ~ ro a,o ogint A orec.sw.c. t r'../ -~ -- E a DeTAt c (w\\ 7,,,. _r ,,w_,_r _,,., ,,,,,m. I tc3 u m oss a. m C.;; .fu.=r nr <<osaar nn. rve-SI r i .so m. m., s y _ r r>.e v zwiA,,"I UIu,- ..,,.,,,._.,r-m. ,ny ,,,.,,,.<,ro- ,/.,, - o-a s,< ~ ~'-~~. /,.,,, CMW M '9 N - Ag panable On _t we-I ,,.,,,, ~ _. --'"pr<rv - Apcriare W, re r- ^X .ovQ f.,,y

<^'v u

,,.aan soc. risc. re a t. n r ~ =,r. ra n. 1 ,,,,,,_,,.,,oe,,,.,,,, s -y l Neoxcut c *:ur \\,f a DETAL B s _i s to ou emee.,cc -ee N

  • Nor wctC 2 Rio.

y, - = l,,, 4e.<a cwe r / s,or.s n / ^ s* wor see sig n es. 'Y') ;;iM ' **" J '* V " } W er' t. f.M. te. **'A: sit - l l u$ 0 -- -- y. ys resr o.<ngne -\\A J Anccs count t.7, ucca n I a neerr CCu*tu l \\.

  • ryp seoer e.<< eu.~ruewer.

s

sacco setour cie.

ror f co.rou cicz.*wer. -( /) cus crerwa. .~ ~ N..,e,M....,.,,~oxtLN '"'d: a"l"Pa?',' sao sxd41, 7YMcAt.,Mdesxovt Dew.c9904005 M SFE DE TAtt r SHT. 2 FOR AL"ERhATE METHOD ..i,,......',,o m le-- >/ p g3g ...c..... ....n..< g,,, d,v m...,,.oo....,,, ,g erar f.a s \\ l,t a /n.or et m.n,,s o.,ne.mse satciano as Q-M;f, NUCLEAR PACKAGING, INC. ,a... ,ma [ sr/ IS.g;gl.'."."'o**.' bj rA CON A, WASWWOTON rp g a etacr'eecmtes .m. A }g ia>8 o A. i=,M.. mci UEIN\\ $ f,,, "" "'d o 4 ##""- 8 "C P41 ru~ =<~~ z,, c

mets tarcacataticii racrect nuun race g

i 5 I Nees=" f re as g3 ji.It,[gs ' ',{ [,,',,,,,, g, ijfjii ...,..., \\,,..... '$~n bd b/es $2G-V"' W ** "' o<r"' - r==r rwrr ~r cu:"c' " *'""/*J !:m,{; ';k l...- l= "'- l D X-20-218D - ^ ...<,c.,,,,,

i l NuPac PAS-1 Consolidated SARI Rev. O, March 31,1989 { (-) -() _ 2.0 STRUCTURAL EVALUATIONS This Se c t ion ide n tif ie s and describes the principal s t ruc t ur al e ngine e ring design of the packaging, components, and systems imp or t an t to saf e ty and to compliance with the performance requirement s of 10 CFR 71. I,1 Structural Desian 2.1.1 Discu s s io n The principal structural elements of the NuPac PAS-1 packaging are: (1) the primary containment vessel, (2) the secondary containment ves sel/e nvironment al shield, and (3) the overpacks. The above components are identified on the drawing as noted in Appe ndix 1.3.1. They work toge ther to satisfy the package standards set forth in 10 CFR 71 A detailed discussion of the structural q. de sign and perf ormance of these component s is provided below. 2.1.2 Design Criteria The pr ima ry containment vessel is designed to house several types of lead encased sample casks. Due to the sen sitiv i ty of the water sample vial the sample casks are de signed to carry, this report does not consider any contri-buting structural or shielding aspect s of the. sample casks. No new stat e-of-the art approaches have been used for analytic evaluation. All analytic techniques used throughout this SAR are proven me thods that have used in past submittals. Details of these methods are given where used. The load c omb ina t ion s specified in 10 CFR 71 were used in eval ua t ing the NuPac PAS-1 pa c ka ge. Material properties used in this analysis can be found in Sec t ion 2.3. A 2-1

I NuPac' PAS-1 Consolidated SAR, Rev.-0, Ma rch ' 31, :19 89 1 2.2' We'inht s and Center of Gravity The weight of' the NuPac PAS-1 package, including a maximum sample ~ cask weight of 1,3 75 pounds, is' 12,800 pounds. The center of gr av ity for the 2 assembled ' package is at the approximate geome tric center of gravity. 2.3 Mechanical Properties of Materials The primary containment vessel is fabricated of Type 304 stainless stoel plate po r ASIM A240. The material properties are as follows: 75,000 psi F = tu 30,000 psi F = ty F,, 45,000 psi (.6 Ftu) = F,7 18,000 psi (.6 Fgy) = The. secondary containment v e s sel /e nv ironme nt shield is fabricated of steel plate conforming to ASIM. A516, Grade 70, spe cif ica t ion. The ma t e rial pro pe r-ties of the steel are as follows: F 70,000 p si = tu 38,000 psi F = ty 42,000 psi (.6 Ftu) F = su F,y 22,800 psi (.6 Fty) = i The overpack shells are fabricated of 12 gauge (.1046 inch) rolled steel sheet and rolled angles per ASIM A36 specification. The material properties. are as follows: F 58,000 psi = tu 36,000 psi F = ty F,, 34,800 psi (.6 Ftu) = F,y 21,600 psi (.6 Fty) = All welds are of compatibic ma t e r i al, exhibiting the same prope r tie s of the base material. 1 2-2

NuPac PAS-1 Consolida t ed SAR,.. Rev. ' 0,.- March'31, 1989 The closure bolts on the secondary containment vessel and overpack are Grade 5, minimum, possessing the following properties: F 115,000 p si = tu 81,000 psi F = ty '69,000 psi (.6 Ftu) F - = su 48,600 psi (.6 Fty) F,7 ' = The primary containment vessel closure bolts are Grade 2, minimum, possessing the following properties: 6 0,000 p si F = tu F'ty 36,000 psi = 36,000 psi (.6 Ftu) F = su F,y 21,6 00 p si (.6 Fgy) = Lead Shielding will exhibit the properties as spe cified in QQ-L-171e, Grade A or C, or ASTM B29, Chemical. Lead. Rigid polyurethane foam occupies the cavity t. twe e n the steel shells of the 3 density of approximately 20 lbs/f t per ove rpac k. This material will have a NuPac NPI.F6 Specification. 3 ' Figure 2.3-1 repre sent s the s tres s-s train c urve for the 20 lbs/ft foam used in this package. Foam specification NPI.F6 defines the detail foam testing proced ur e. It specifies that foam samples will be tested to verify that th ey are within i 10% of the curve at 10rb, 40%, and 80% strains. The foam compres-sive and shear strengths are 1,100 p si and 760 psi, respectively, per Figures 2.3-2 and 2.3-3. It l O 2-3 1 '

NuPac PAS-1 Consolidated SAR, Rev. O. March 31, 1989 Figure 2.3-1 O. \\ - ~ I r- - _i r s'-:u bfi_ _ _ s 9-=' 14 _ 2 : '__" 5 '_ U "'_'_i Eit ' =- T T "" l 7 s" "-TE,"."",, 2 . _ O s }M 2 - J- " Ffq1 4._ W 12

-.w+s"x"tw i

---- M -3

~= t 25 5) -T. i 2 3 m C T_ _E. 3. - T.._ _ S P..L. T. JW_ _... f.".TM.. ,J_. ; 1 ~ p M Q, Jf7u n _ :. p.} .-... ~. - a 10 O 2 v.itdtis;M.t.iw '- --+" O _. xx _._..; ; _ _. e4 ,s '.m .t-g ..SJl.,.1:4 AfMbal _.. i.-- ~ n... _, = e M me. y)

="

J e 8 ~ -4 m ...._.3._.._ I y n-+ ".l. H t/Jm. Eg h' %a . i Z = r u6 --.i_. _.. o' f ._-t = --t -- -4_.. .e._.=.n.._.._ m %-.4- '= 4 ~~"~~" 4 / _l ~-y A m "[.,"F. --t-- ~ M m ge.y. q .-..w - - m$- y^'N - g_ C.. a- {~:;. --** .g-s [:

~
  • ~

.- 48 5. + 4--- -3_ 0 E ,%p _ .ahh-10 20 30 40 50 60 70 80 % STRAIN 2-4

l 1 l NitPac PAS-1 Consolidated.SAR, Rev. 0,. Ma rc h 31, 19 89 ' i j i. Ag Figure 2.3-2 NuPac NPI.FXX Foam Properties M hF hF COMPRESSIVE STRENCTH AT 75'r f f i (u - 1 I. % ). 1 DENSITY 5 Direction of foam rise LB5./FT.8

STRENGTH, STRENCTH E

j; psi psi I i g I to stress to stress 53.0 $1.6 28.4 3 = am = 4.0 82.1 49.3 j 5.0 117.7 75.7 6.0 158.0 107.4 7.0 202.7 144.3 1' i 8.0 251.$ 186.4 g ,e 9.0 304.3 233.7 E p 10.0 360.7 286.0 =. f n. m 11.0 420.8 34 3.4 l D rn... .m =. '. ?://. _. -.. _.. W 12.0 484.2 405.7' E i _. 3=.__ ..=. I? , T::: E =

====

l/ f/?~- 13.0 551.1 473.0 5 U:1 -r/ 14.0 628.2 545.3 E ' *"# / 15.0 694.4 622.4 E e

s 16.0 710.7 704.4

[ E5k -24jgy -~7 >t '= 17.0 850.0 791.3 2 =::. f"g -- 18.0 932.2 882.9 5 3 d_ _ am 19.0 1.017.3 979.4 5 U / ",

  • ~~ 20.0 1.105.2 1.060.7 p" -

/ ~ 21.0 1.195.8 1.186.7 f.j / -/ " 22.0 1.289.2 1.297.4 23.0 1.385.1 1.412.8 E 24.0 1.483.7 1.533.0 = e ~ / 25.0 1.584.9 1,657.8 4 I 26.0 1.688.5 1.787.4 I -,,3 f ~' :ZiSI1_... .. _; : df _f d 27.0 1,794,7 8.921.5 l = e 28.0 1.903.3-2.060.3 3 29.0 2.014.3 2.203.7 3 i 1 71 %., , 30.0 2.127.7 2.351.8 i 'l . 'EdEMW i d iUWP

gzw-4

~ I DENSITY LBS./FT.' l Indicates stress is parallel to direction of fosa rise. Indicates stress is perpendicular to direction ot fosa rise 2-5 l

Nuhc PAS-1 Consolida ted SAR, Rev. O, March 31, 1989 7 !/ Figure 2.3-3 sw/ NuPac NPI.FXX Foam Properties A N i 4.-- N /\\M f i*f w U - 'V N... Pr.Mt TTPENCTH AT 75*F ]

==r F F Ei s E Direction of foam rise E ..~ rq-DDSITT 4: = 5 to stress to stress 6 1.BS./TT.8 STRENCTH STRENGTH U,,,5 ] (strongest direction) (weakestdirection)g psi psi g E E 30 41.1 52.6

== ~ T' 4.c 64.1 78.1 in 5.0 90.4 106.1 E 6.0 119.8 136.4 b j'd 7.0 152.0 168.6 'l i . //" 8.0 186.8 202.6 [: i E ?- 9.0 224.I 238.2 E 10.0 263.7 275.3 g !!.0 305.5 313.9 1 r + =3g gg=gt_py

_g =.=_=:f_..[7sjg L

12.0 349.4 353.8 y .i g_ 13.0 395.4 395.0 g as 'D 14.0 443.4 437.4 m / 15.0 493.2 480.9 I 16.0 544.9 525.5 O. = 3i ._ T '_TZl ---~ 75MiffirWJiEEME5tE 17.0 598.4 571.2 !E ( j} }: =: =.=:p ---- tyg-m2x:: 18.0 653.6 618.0 M 19.0 710.5 665.7 5

  • r g 4-

.'f. - 20.0 769.1 714. 3

2:

3 21.0 829.3 763.9 3 g l,'f 1 22.0 891.0 814.4 g 23.0 1954.4 865.7 5 f.j 24.0 1.019,2 917.9 { = 25.0 1.U85.5 970.9 1 , -/ y 26.0 1.153.3 1.024.7 l 2

-sEih==2=t =3 27.0

?,?'. 5 1.079.3 lN

  • -irp nitiif y.-W

~1 1..'~* ~ 28.0

1. I'f 3.1 1.134.7 E

e ..P : b'O~~ _~1: 7 -'~' ~~ 29.0 1.365.1 1.190.8 iE b~ 30.0 1.438.5 1.247.6 I " EM fi'i 7E ? INfIM5ihiME ~ "~"....u...-.. . ww..-- =.:. r w* ;T ... :4 4.m:__.. -142 = f

~p. ;z

_-.2-_, 4 7.:::: - zy l _n+. i. l

  • =.4, '

DENSITY L35./TT.' l l r 1 i a =

w

lndicates stress !s perpendicular to direction of foam rise Oandparalleltospecimenwidth, Ir.dicates stress is perpendicular to direction et foam rise. 1 l l l l f ( 2-6 L__ __ _

NuPac PAS-1 Consolidated SAR, Rsv. O, March 31,1989 l i,,). 2.4 General Standards For All Packages w This section demonstrate s tha t the ge ne r al st anda rd s for all packages per 10 CFR 71.4 3 a re me t. 2.4.1 Mimimum Pac kage SM The NuPac PAS-1 packa ging overall dime ns ions are all much l arge r than the minimum 10 cm specified in 10 CFR' 71.43(a). I 2.4.2 Temperproof Feature 1 The PAS-1 overpack is equipped with tamper-indicating se al s to prevent inadvert ant and undetected ~ ope ning. A ~ Y 2.4.3 Positive Closure Upon installation of the sample cask inside of the primary containment vessel, the top is secured with cight 3/3 inch bolt s. The primary containment vessel is secured inside of the shielded secondary containment vessel via eight, one inch bolts, which in turn, is secured inside a In11y enclosing overpack. Two 0-ring seal s are located at each bolted closure on the primary and second-i a ry cont ainment ves sels. An 0-ring face seal at each test port assure s clo s-ure integrity. 2.4.4 Chemical and_ Galvanic Reactions The materials from which this packa6 ng is fabricated (carbon steel, stainless 1 stcel, lead and polyurethane foam) will not cause si gnif ican t chemical, gal-O l ( ) vanic, or other reaction in air, ni t ro ge n, or water a tmosphere. The technical basis for this fact is that all materials are essentially of equal potential l in the Galvanic Serie s of Me tal s and Alloys. 2-7

l i 'NuPac PAS-1 Consolidated SAR,~'Rev.'0,- ' March 31,-1989

b i q.

2.5 -Lifting and Tiedown St anda rds f or all Packa:te s' h-2.5.1 Lif tina Device s The top overpack. is equipped with three ASTM A-36 steel lugs that a.te. a s t ruc tur al pa r t of the package. These lugs'are capable of lif ting only the weight of the overpacks (1,800 lbs) and'are rendered inoperable during transit by two fla t wa shers held. to the lug with a 1/4 inch' bolt to act as a cover. All three lugs are fully ef fective during a lift of three times the overpack utilizing the 40* she a rout equa-weight. The lug hole capacity is calculate s tion: P = 2F,y [ed - (d/2)cos 409 t 2,co Where: F,y 21,600 psi (Section 2.3) = .1046 THK .1046 in x 2 wrom 1.co ora. t = ed 1.00 in = d 1.00 in = [

~ ~: ~

~ The n, l ~.~; ~, 2.00 ~ P = 2(21,600).1046 [1.00 - (1.00/2)cos 40 ] l ' ~ ~ ~ 0 ~~ [ .1046 THK d OVERPACK SHELL = 2,788 lbs. } / The lug shonrout capacity Margin of Safety is: M.S, = (3P/3W) - 1 = [3(2,788)/3 (1,800)] - 1 = + 0.5 5 i Each lug is secured by a.10 inch fille t weld. Since the horizont al component of the load is carried in compression of.the overpack top sh el l, the only stress upon the weld is pure she a r. 2-8

l-NuPac PAS-l Consolida ted SAR, Rev. 0,. March 31, 1989 c). L..Q1 - The lug weld shear capacity is: P, = F,y, A Where: j k = t, L, t, =.10(.707) =.0707 in L, = 2(2. 00 + 2.00) = 8.00 in 2 A, =.0707(8.00) =.5656 in

Then, P, = 21,6 00(.5 656) = 12,217 lb s U.

The lug weld shear yield capacity Margin of Safety is: M. S. = (3P,/3w) - 1 = [3 (12,217) /3 (1,800)] - 1 = + 5.79 Shear capacity of the overpack shell is calculated as: P = F,y, A op %*here: A tL = 3 .1046 in t = 2(2.00 + 2.00) = 8.00 in L = 2 A, .1046(8.00) =. 837 in = 2-9

NuPac PAS-1 Consolida ted SAR, Rev. O, Ma rch 31, 1989 j l rm i ) The n, Y s P, 21,600(.837) = 18,079 Lbs = i The overpack shell shear yield Margin of Safety is: l M.S. = (3P,/3W)-1 = [3 (18,079) /3 (1,800)]-1 = +9.00 Failure of the overpack lugs or shell will have no de t r ime nt al effect on package containment or shielding properties. The primary containment vessel, secondary containment ves sel, and sample cask assembly (approximately 11,000 lbs) is lifted via three 1.25 inch, USA Stan-dard eyebolts located on the se conda ry containment vessel lid bolt c i rc l e. The eyebolt s, not a structural part of the package, are not considered in this analysis. D The necessary tapped hole depth to allow a screw to be fully effective is discussed in Section 16-8 of A.D. Deut shman, W.J.

Michels, C.E. Wilson, Machine Desian - Theory and Practice, Ma cm illan, 1975.

For steel of similar strengths, an engagement depth equal to one s cr ew di ame t er is the accepted design value to ensure a fully ef fective fastener. All engagement depths for lif ting devices used on the NuPac PAS-1 packaging exceeds this criteria. Eight 1-8 UNC, Gr. 5 bolts secure the lid to the cask. The tensile stress area of the bolt, A, is found in Table 6-2 of Shigley, Mechanical Engineering j g 2 l Design, 3rd Ed., as 0.606 in. The total lid bolt capacity is: 1 P = 8F A ty g Where: F = 81,000 psi (Section 2.3 ) gy 2 A = 0.606 in t 2-10

NuPac PAS-1 Consolidated SAR, Rev. O, th r ch 31, 1989 (3 i )

Then, P = 8(81,000).606 = 392,688 lb s.

The lid bolt yield Margin of Safe ty is: M. S. = (P/W) - 1 = (392,688/33,000) - 1 = + L gaa t Ac cording t o 10 CFR 71.4 5 ( a ), each lif ting device which is a s truc tur al pa r t of the pacrage shall be designed that f a ilure of the dev ic e und e r excessive load would not impair the cont a inme n t or shielding properties of the package. Although the eyebolt is not a structural part of the pa c ka ge, this fa ilure critereon will be addressed. The maximum, ultimate tensile strength, F I tu' a 1.25 inch USA Standard eyebolt is delineated in Sectica 6.3 of ASTM A 489 as 85,000 psi. Additionally, the tension stress area, A, it given in Table 2 as t A = 85,000(.969) = 82,365 lbs P,,, = Ftu g I \\ sl The secondary containment vessel lid bolt ultimate capacity is: A = 8(115,000).606 = 557,520 lbs P, = 8 Ftu t The lid bolt ultimate thrgin of Safe ty is: M. S. = [P,/3P,,x] - 1 = [557,5 20/ 3 (82,3 65 )] - 1 = + 1. 26 Similarly, the primary containment vessel and sample cask assembly (approxi-mately 1,950 lbs) is lifted via three.50 inch, USA Standard eyebolt s l oca t ed on the primary containment vessel lid bolt circle. Eight 3/8-16 UNC, Gr. 2., bolts sec ur e the lid to the prima ry cont a inmen t 2 vessel. The t e n s il e stress area of the bolt is.0775 in, pr ov iding a total bolt capacity of: ( ,f P = 8F A = 8(3 6,000).0775 = 22,3 20 lbs. ty g The lid bolt yield Margin of Safe ty is: 2-11

.i NuPac PAS-1 Consolidated SAR, Rev. O, March 31,1989 () G-M. S. = (P/3W) -1= [22,320/3(1,950)] - 1 = 1 2.82 2 The tension stress area, A, of a.50 inch, USA Standard eyebolt is 0.141 in g per Table 2 of ASTM A 489. Therefore, the maximum eyebolt breaking strength is: tu t = 85,000(.141) = 11,985 lbs P =F A max The primary-containment vessel lid bolt ultimate capacity is: P = 8Ftu^t = 8(60,000).07 75 = 3 7,200 lbs u The lid bolt ultimato !brgin of Safe ty is: M. S. = [P,/3P,,,] - 1 = [37,2 00/3 (11,9 85)] -1 = + 0.03 /"'~ (,N) Thus, it can be concluded that all the lifting devices on this pa cka ge are more than adequate to re sist loads in exces s of three times the de sign weight, and failure of said devices under excessive load would not impair the contain-ment or shielding proper ties of this package. 2.5.2 Tiedowns There are no tiedown device s which are a s tructural part of this package. 2.6 Normal Condit ions of Transpor t The NuPac PAS-1 Packaging has been designed and constructed, and the content s are so limit ed (as de s cr ibe d in Section 1.2.3 above) that the performance r equir eme nt s specified in 10 CFR 71.43 and 10 CFR 71.51 will be met when the package is subject ed to the normal conditions of transport specified in 10 CFR 71.71. The ab ili ty of the NuPac PAS-1 Packaging to sa ti sf a ct or ily w iths t and the normal conditions of transport has been assessed and described below. 2-12

(. fd NuPa c PAS-1 Cons ol ida t ed SAR, Rev. O, March 31;; 1989 .O ,e 2.6.1 Heat A detailed thermal. analysis can be found in Section 3.4 where the package was ~ exposed to normal thermal' conditions of transpcrt. The ' steady sta te analysis conservatively assumed a 24 hour day maximum solar heat load. Also,.embient 0

temperature was conservatively taken to be 130 F for that analysis.

1 0 The maximum '.- inne r ove rpac k t empera ture was found to be less than 144.3 F. Such temperatures will have no detrimental ef fect s on the package. 2.6.1.1 lumma ry of Pres sures and Tempera ture s ~ The highest tempera ture on the inside of the NnPac PAS-1 packagirg's overpack - L is 144.0 F. The maximum temperature anywhere inside of the primary contain-0 l ment boundary is 143.2. A complete listing of the maximum predicted tempera - l tures for'the NuPac PAS-1 can be found in Table 3.4.2-1. These tempera tures are for. nodes as shown in. Figure 3.4.1-1 The maximum. internal pressure for normal conditions is given in Section 3.4.4 as S.4 psig. 2.6.1.2 ' Dif ferential Thermal Expansion 1 Since the themal gradient through the containment structures are so low (less than 1 degree),- dif ferential thermal expansion stresses will be negligible. The 35 degree gradient through the' overpack also involves negligible expansion stresses, since the polyure thane foam is very flexible. 2.6.1.3 Stres s Calculations The only significant stresses arising from the normal condition thermal loads ( arise from the 8.4 p sig inte rnal pr e s s ur e. In Section 2.6.4 below, the maxi-2-13 li ____________s

NuPsc PAS-1 Consolidated. SAR, Rsv. O, March 31, 1989 ( mum stress from an int e rnal pressure of 7.3 p sig is calc ulat ed to be 2,385 psi. Therefore, an internal ps essure of 8.4 psig would be: (8.4/7.3)(2,385) = 2,744 p si 2.6.1.4 Comparison with Allowable Stres se s The margin of safety for the pres sure stress cal c ul at ed in 2.6.1.3 above is calculated as follows: M. S. = (38,000/2,744) - 1 = + large l 2.6.2 Col d The only concern relating to the structural pe rf ormance is brittle fracture. Brittle fracture is examined according to the recommendations of NUREG/CR-1615 V UCRL-5 3 013, Ca t a g ory II. Of the three maj or containment ~ components, onl y the se conda ry containment vessel is f abr ica t ed fran brit tle-fracture sensitive ferritic steel. The primary containment vessel is made from austenitic s ta inl e s s steel, and thus is of no concern for br it tle fracture at the t empera ture in que stion. The secondary containment ves sel is f abrica ted from ASTM A516 grade 70 which has a l l-nil-ductility transition a t -10 F, according to Table NC-2311(a)-1 of Section III, Division 1, Subsection NC of th e ASE Boiler and Pressure Vessel Code, i l Brit tle fracture, being a dynamically induced problem, is of concern at t emp-eratures not less than -2 0 F, since according to 10 CFR 71 the in tit ial l t empe ra t ur e of the cask during a ny of the n ormal loads is g ive n to be this j val ue. According to NUREG/CR-1815, the lowest allowable se rv ic e temperature l (LST) for a given steel is given by the equation: LST = TNDT + ^ l 2-14

NuPec PAS-1 Cons olidat ed SAR, Rev. O, Ma rch 31, 1989 ~s ( )' ilhere T is the nil duc t il ity transition temperature and A is found from NDT { v Figure _7 of the NUREG/CR-1815, show n here as Figure 2.6.2-1. Since the th ic ke s t plate in the design is the two inch thick Se co nda ry Cont a inme nt Vessel lid, A for the lid can be found from the Figure to be -16 F, allowing for the 70 shif t allowed for steels with yield stressess less than 60 ksi in impact limited situations. Therefore: LST = -10 + (-16) = -26 F Therefore, the NuPac PAS-1 packaging meets brittle fracture requirements over the range of t empera tures required by the applicable regulatory guides. 2.6.3 Reduce d Ext ernal Pres sure An internal pressure of' 3.5 psia will be reacted by the top, bottom, and side wall of the prima ry containment ves sel. The hoop stress in the side wall is: in 1 Fh = Pr/t Where: P = 14. 7 - 3. 5 = 11. 2 p s i g r = 9.875 in. t= .75 in (minimum wall thickness)

Then, i

Fh = 11.2(9.375) /.75 = 147 psi ) I The side wall hoop stress Margin of Safety is: gy/F ) - 1 = (30,000/147) + lam M. S. = (F h l 2-15

,U 5 e. E a ". * ' w d 4 6 y I lp 1 3 0 = p ) a p s n. e i ( lu s r se n i o l l l I l I 2 nk ,it ic ce h ,t l l ! T s n h I 1 I T 1 ') i N .s tne 5\\ \\\\ y n ,\\ s 0 o p m oc i la s d+ I 0 it k 0 ic l 0 v 1 r 0 8 c D_ 1 l e I r . V is 3 u F K t c

  • 0 a a

r 0 f l i I 8 l 0 is I 6 y k r o 0[ g Y e 6 t a a 0 C ro I 6 f ro F f a t 0 r a 7 hc 0 n 1 g I lI ) 4 F g is I + ( e A D 7 0 l I 2 G IF d l g I i y o / I 3,g I 0 Ki A -T B l ^ l i' Il c ) 0 I = 2 T g28 E $= o D N T - ( 0 4 5 0 5 0 5 0-2 2 1 1 , 0 I'y e yy*

p. -

d , NuPac PAS-1 Consolidat ed SAR, Rev.- 0, March 31, 1989 - r - It S/^i j y 1 Maximum bending stresses ~ occur at' ~ the center of the bottan plate. From t . Ca se 10, Table 24,' of Roa rk, the maximum bending s tres s !1s: 1-2- F,,,a 6M,/t -Where: 2 M, = qa (3 + ) /16 2

q. = 11;2 lb/in a = 10.25 in

'=.3 M = 11.2 (10.25) 2(3 + 3) /16 = 242.7 in-lb/in e t =.5 in The n, F,,, = 6 (242. 7)/ (.5)2 = 5,825 p si The plate bending stress Margin -of Safety is: M. S. = (Fty/F,,x) - 1 = (30,000/5,325) - 1 = + 4.15 Eight 3/8-16 UNC, Grade 2, bol t s must react the pressure load. The stress ' in the bolt s is: Fb = PA/8Ab Where: P = 11.2. psi A = n(9.625)2 = 291.04 in2 Ab =.0775 in2 (Shigley, Table 6-2) 2-17

NuPac PAS-1 Cons olida ted SAR, Rev. O, th r ch 31, 1989 ,\\ '( )

Thon, s_/

Fb = 11.2 (291.04) /8(.0775) = 5,257 p si The primary containment lid bolt Margin of Safety is: ty/F ) - 1 = (36,000/5,257) - 1 = + 5.85 M.S. = (F b Therefore, it can be concluded that the packa ge exceeds the requireme nt s se t forth in 10 CFR 71 pertaining to a reduced internal pressure of 3.5 p sia. 2.6.4 Increased External Pressure The requirement for external pressure is that the packaging shall be adequa t e 7-()) to assure that the cont a inme n t vessel will suffer no loss of contents whe n subj ected to an external pressure of 21 psia. As noted pr ev iou sly, the overpacks are not int e nde d for con t a i nme n t, but rather to reduce the severity of the ~ hypothetical Accident Conditions. Conservatively assuming no lead backing on the inside of the o ut e r shell, the hoop stress in the outer shell is: Fh = Pr/t Where: P = 21.0 - 14.7 = 6.3 psig r = 16.06. in t= .375 in The n, p,_ is,) Fh = 6.3 (16.06)/.3 75 = 270 psi 2-18

NuPac PAS-1 Conso11dsted SAR, Rev. O, Ma rch 31, 1989 e (nv) The outer shell f.krgin of Safe ty is: l y M.S. = (F gy/F ) - 1 = (38,000/270) 1 = + large h Again, conservatively assene the lack of lead backing on the bottom one-inch thick steel plate. The ma ximum plate be nding stress occ urs at the center, the solution for which is considered in Care 10, Table 24, of Roark for a simply supported plate with a uniform pressure load. The maximum plate bending stress is: F,,, = 6M /t c Vlhere : 2 M, = qa (3 + ) /16 2 q = 6.3 lb/in a = 16.25 in e(n) p =.3 v M = 6.3 (16.25)2 (3 +.3 ) /16 = 343 in-lb/in c t = 1.0 The n, F,,, = 6(343)/ (1.0)2 = 2,059 p si The bottom plate yield Margin of Safety is: M. S. = (Fty/F,,,) - 1 = (38,000/2,05 9) - 1 = + l arge Therefore, it can be concluded that this package exceeds the requirements set forth in 10 CFR 71 pertaining to a 21 psia external pressure. 2.6.5 Vibration () Shock and vibration normally inci de nt to transport are considered to have negligible ef fect s on the NuPac PAS-1 package. 2-19 _ - _ = _

NuPac PAS-1 Consolidated SAR, Rev. O, Lh rch 31, 1989 g 2.6.6 Water Sorav Since the package exterior is constructed of steel, this test is not required. 2.6.7 Fre e' Dron The NuPac PAS-1 packa ge, with overpacks, weighs 12,800 pounds. The required - free drop of three fe e t, per 10 CFR 71.71, is substantially less than the 30 foot drop requirements of Section 2.7.1 Since Section 2.7.1 demonstrates the pac ka ge s urv ivabili ty related to am t e ri al yield strength, at any angle of drop, a three foot free drop will have negligible effects on this package. 2.6.8 Corner Droo (~() This requirement is not applicable since the Nupac PAS-1 package is fabricated primarily of steel and lead, and exceeds 110 pounds gross weight. 2.6.9 Compression Compression is not applicable since this package exceeds 10,000 pounds. 2.6.10 Pe ne t ra t io n From pr ev iou s container tests, as well as engineering J ud gme nt, it can be concluded tha t a 13 pound rod would have a negligible effect on the heavy gauge steel shell overpack or ca sk. l 2.6.11 Concl u s io n l ('~ i.L As a result of the above asses sment, it is concluded that under normal co nd i-tions of transport: 1 2-20

.: c ' NuPac PAS-1 Cons olidated. SAR, Rev... O, Ma rch 31, 1989 . 1. There wil1~ be no release of radioactive material from the packago 2. The. ef fectivenes s of the ' packaging will not be substantially reduced 3 There will.be no mixture of gases or vapors in the packa ge which ' s . coul d, through any credible incre ase in pressure or an e xplo s ion, significantly reduce the effectiveness of the package. 2.7 Hvoothetical Accident Conditions The NuPac PAS-11 has be e n designed and it s content s are so -limit ed. that the performance requirements specified in 10 CFR 71.51 will be met if the package is subjected to the Hypothetical Ac cide n t Conditions specified in 10 CFR 71.73. To demonstrate the structural integrity of the pa cka ge and its ability to withstand the Hypo the tical Ac cident Condit ion s, a detailed computerized: ana-lysis was conducted. 4 -2.7.1 Free Droo 10 CFR 71 r eq uire s that the pa cka ge surv ive a 30 foot drop onto a flat, es sentially. unyielding surface. The analysis methods used to demonstrate this capability closely parallel the techniques used for past Type B packages. The high density foam contained within the overpack impact lim it e rs is de-signed to crush on impact thus absorbing and distributing the load. The mechanical pro per t ie s for the foam used in this package can be found in Figure 2.3-1 above. These properties are applicable for loading conditions in the direction parallel and perpendiculs t to the rise direction. High density foams, greater than 18 pcf, exhibit these isotropic properties for tw o rea-sons. First, because of their high de n s i ty, the amount of rise d ur ing the formation of the foam is small thus producing a cell structure that is ve ry j 2-21

NuPac PAS-1 Consolidated SAR, Rev. O, March 31, 1989 b\\ ( j' uniform and not elo nga t ed. Secondly, the size of the overpack allows the foam to expand laterally as well as vertically, aga in resulting in uniform grain s tructure and it s as socia ted isotropic properties. The curve shown in Figure 2.3.-1 r epr e s e nt s the statistical compressive properties of NPI.F6 foam for loading in either direction. Three drop conditions for the package have been evaluated, i.e., e nd, side and corner. For each, the failure mechanism has been reviewed that would produce maximmn load as well as ma xi mum deformation. In these evaluations, minimmn foam mechanical properties have been used because these properties produce the most c ons e rva tiv e estimates of both deformation and loads. The reason for this is clear - if two strain-harde ning load deflection relations must absorb eq ual amounts of energy, the minimum properties se t nust unde rgo gr e a t er de forma tion. At these greater de f orma t ion s, the peak f orce is also gre at e r due to the fact that the crush footprint area increase is larger than the dif fere nce in the str es s-strain r ela tions (which become rela tively smaller at high rates). ,_s / \\ \\v/ 2.7.1.1 Free Dron Impact End Drop Flat end drop produce s a symme t r ic crush of the foam energy absorber and high axial ac celera t ion s in the cask body. These ac c elera t ion s produ ce ra the r modest stresses in the lead f ill. This effact is analyzed by a s s um ing the f ull kinetic energy of the drop is absorted in cru sh in g of the foam energy absorber. To account for the strain hardening characteristics of this foam, an energy-balance compute r program, EYDROP, doc umented in Sec tion 2.10.2.1, is employed. Ile EYDROP analysis was run for two bounding cases: (1) the entire area defined by the out side diameter of the foam impact lim it e r, and (2) o nly th e backed area defined by the cask outside diameter. The output for each of f the se analy se s is shown in Tables 2.7.1-1 and 2.7.1-2, r espe c tively. Informa-i tion from the t ab l e s is e s se ntially sel f-expl ana tory - a s ol u t io n is de t e r-1 ((,,) mined when the kinetic energy of the drop is equal to the strain energy of the crushable foam impact limit er (SE/KE=1). 2-22

NnPac PAS-1 Consolidated SAR, Rsv. O, March 31, 1989 i f TABLE 2.7.1-1 / EYDRO'P( END) POST-ACCIDENT SAMPLE (PAS 1) CASK 20 PCF FOAM OVERPACKS PACKAGE HEIGHT = 12800. (LBS) PACKAGE DIAMETER = 48.00 (IN) 0.00 (IN) HDLE DIAMETER = DVERPACK DEPTH = 13.00 (IN) DROP HEIGHT = 30.00 (FT) ++++ IMPACT ++++ ++++++ ENERGY ++++++ CRUSH DEPTH STRAIN FORCE ACCEL. KINETIC STRAIN RATIO (IN) (LBS) (G) (IN-LB) (IN-LB) ( S E/KE) .10 .008 138211. 10.8 4609280. 6911. .001 .20 .015 300347. 23.5 4610560. 28838. .006 .30 .023 482059. 37.7 4611840. 67959. .015 .40 .031 678995. 53.0 4613120. 126011. .027 .50 .038 886807. 69.3 4614400. 204302. .044 .60 .046 1101143. 86.0 4615680. 303699. .066 .70 .054 1317656. 102.9 4616960. 424639. .092 .80 .062 1531994. 119.7 4618240. 567121. .123 .90 .069 1739807. 135.9 4619520. 730711. .158 1.00 .077

1936746, 151.3 4620800.

914539. .198 1.10 .085 2118461. 165.5 4622080. 1117299. .242 ~s 1.20 .092 2280601. 178.2 4623360. 1337253. .289 / ) 1.30 .100 2418817. 189.0 4624640. 1572223. .340 s_s/ 1.40 .108 2470689. 193.0

4625920, 1816699.

.393 1.50 .115 2498384. 195.2 4627200. 2065152. .446 1.60 .123 2505998. 195.8 4628480. 2315372. .500 1.70 .131 2497628. 195.1 4629760. 2565553. .554 1.80 .138 2477370. 193.5 4631040. 2814303. .608 1.90 .146 2449321. 191.4 4632320. 3060637. .661 2.00 .154 2429580. 189.8 4633600. 3304582. .713 2.10 .162 2420529. 189.1 4634880. 3547088. .765 2.20 .169

2410832, 188.3 4636160.

378E656. .817 2.30 .177 2401159. 187.6 4637440. 4029255. .869 2.40 .185 2392177. 186.9 4638720. 4268922. .920 2.50 .192 2384552. 186.3 4640000. 4507759. .971 g* gg jgg'j j,ooo 2.60 .200 2378953. 185.9 4641280. 4745934. 1.023 2.70 .208 2382058. 186.1 4642560.

4983984, 1.074 2.80

.215 2387649. 486.5 4643840. 5222470. 1.125 2.90 .223 2395520. 187.1 4645120. 5461628. 1.176 i 3.00 .231 2405464. 187.9 4646400. 5701677. 1.227 i j i l OO 2-23

'1 09 ( s k 1. L. NuPac-PAS-1 C'ons olidst ed SAR,' Rev. : 0, 3krch 31, 1989 l jfy. TABLE 2.7.1-2' 1 POST-ACCIDENT SAMPLE (PAS 1) CASK 20 PCF FOAM OVERPACKS-EYDROP(END) e ' PACKAGE HEIGHT = 12800. (LBS)- PACKAGE DIAMETER = 32.50 (IN) HOLE DIAMETER = 0.00 (IN) OVERPACK DEPTH = 13.00 (IN) DROP HEIGHT = 30.00 (FT) ++++ IMPACT ++++ ++++++ ENERGY ++++++- CRUSH DEPTH STRAIN FORCE' ACCEL. KINETIC STRAIN RATIO (IN) (LBS) (G)- (IN-LB) (IN-LB) "(SE/KE) .20 .015 137692. 10.8 4610560. 13769. .003- .40 .031 311280. .24.3 4613120. 58666. .013 .60 .046 504810. 39.4 4615680. 140275. .030 .80 .062

702330, 54.9 4618240.

260989. .057. 1.00 .077-887885. 69.4 4620800. 420011. .091 1.20 .092-1065523. 81.7 4623360. 613352. .133 1.40 .103 1132667. 88.5 4625920. 831171. .180 1.60 .123 1148854. 89.8

4628480, 1059323.

.229 1.80 .138 1135730. 88.7 4631040. 1287781. .278 LO 2.00. .154 1113821. 87.0 4633600. 1312736. .326 2.20 .169 1105226. 86.3 4636160.

1734641.

.374 2.40 .185 1096674. 85.7

4638720, 1954831.

.421 '2.60 .200

1090611, 85.2 4641280.

2173560. 468 '2.80 .215 1094598. 85.5 4643840. 2392081. .515 3.00 .231-1102765. 86.2 4646400. 2611817. .562 3.20 .246 1114354. -87.1 4648960. -2833529. .609 3.40 .262 1127653. 88.1

4651520, 3057730.

.657 3.60 .277 1143095. 89.3 4654080. 3284804. .706 3.80- .292 1161020. 90.7 4656640. 3515216. .755 4.00 .308 1180636. 92.2 4659200. 3749382. .805-4.20 .323-1202412. 93.9 4661760. 3987686. .855 4.40 .338. 1228074. 95.9-4664320. 4230735. .907 98.4 4666880. 4479448. .960 4.60 .354 1259052. joo,g 4.75 4.80 .369 1296922. 101.3 4669440. 4735045. 1.014 5.00 .335 1340037. 104.7 4672000. 4998741. 1.070 5.20 .400 1588181. 108.5 4674560. 5271563. 1.128 5.40 .415 1440224. 112.5 4677120. 5554403. 1.188 5.60 .431 1497441. 117.0 4679680. 5848170. 1.250 5.80 .446 1560191. 121.9 4682240. 6153933. 1.314 6.00 .462 1628092. 127.2 4684800. 6472761. 1.382 l -1 1 2-24

NuPac PAS-1 Consolids tad SAR,. Rev. O, Ma rc h 31, 1989 I

i. >%

l ( ) The overpack end crush area may be assumed f ully effective since the shea r capacity of the foam at the outer pe riphery of the se conda ry containment vessel is more than enough to react the crush forces applied to the canti-- levered annular foam disk beyond the secondary containment vessel outer dia-me t e r. This may be demonstrated as follows: l Total crush area is: l \\ (n/4)(48.0)2 = 1,810 in2 At= Crush area beyond secondary containmout vessel outer diameter is: l b = (n/4){(48.0)2 - (32.5)2] = 980 in A To t al cru sh f or ce is: P = 12,8 00(186.1 g's) = 2,3 82,080 lb s. g \\ Crush force applied over area A, is: b Pb = (A /A )P (980/1,810)2,382,080 = 1,289,745 lbs. = b g g Foam shear area is: 2 A, = nDh = n (3 3. 5 )3 3. 0 = 3,47 3 in f Foam shear capacity is: r = P,/A, f Vhere: r = 760 psi (per Section 2.3) iQ Q

Then, P, = rA, = 760(3,473) = 2,639,4 80 lb s.

f I 2-25

e 1 ' NuPab l'AS-1 Consolidat e d SAR, Rev. ' 0, . Ma r ch 31, 1989 e x'Q g The foam shear capacity Margin of Safety is: M. S. = (P,/P ) - 1 = (2,6 39,4 80/1,28 9,74 5) - 1 = + 1. 05 l t l-Uniform loading occurs between the outside end of the pr ima ry cont ainme nt ves sel. and the in side e nd. of the se conda ry containment ves sel during e nd ' impact...Due to the massive size of the e nd s of the -secondary cont ainme nt vessel, damage to either end of the primary containment ves sel would be negli-gible. . A bo t t om-e nd impact will load the inside bottom, two-inch. thick, s e conda ry containment ves sel lid plate in bending. The lead is secured inside the lid by two circ un fe re ntial 1/4-inch fille t welds on a 23.125 inch mean diameter. The - shear stres s in the welds is: r' .. ( F,, = P/A, i Where: P = W(186.1 g's) W = 990 lbs (lid without 2 inch thick outer plate) P = 990(186.1) = 184,239 lbs A, = t,L, t, =.25(.707) =.177 in L, = n(23.125) = 72.65 in 2 A, =.177( 72. 65 ) = 12.85 9 in ha i 2-26 )

NuP:c PAS-1 Consolidated SAR, Eiv. O, LSrch 31, 1989 -7m, y . _(

Then,

) l - F,, = 184,239/2(12. 859) = 7,164 p si q The weld shear yield Margin of Safety is: i M. S. = (F,y/F,,) - 1 = (22,800/ 7,164) - 1 = + 2.18 Conserva tively assume the entire weight of the se conda ry co ntainme nt vessel lid (1,460 lbs) is applied as a unif orm pr e s s ure load acros s the top of the two inch thick p1 *te in the lid with a fixe d ed ge at a radius of. 11. 875 a inches. The maximue plate bending s tr es s is found in Roa rk, Formulas for Stres s and Strain, 4th Ed, Table I, Case 6: 2 Fb = 3W/4nt Where: /, \\ W = 1,460(186.1 g's) = 271,706 lbs. t = 2.0 in

Then, b - 3(?71,706) /4n (2.0)2 F

= 16,2., n si Shear stres s in the plate is: W/2nRt F, = 271,706 /2n (11. 875 ) (2. 0) = l l r8 1,821 p si l = i l 2-27

NuPac PAS-1 Consolidated SAR, Rev. O, Ma rch 31, 1989 p Q,i The plate maximum combined stress is the vector sanmation of the bending and shear stres ses: ((16,216)2 + (1,821)2).5 = 16,318 p si F,,, = The plate maxi r:um combined stress, yield Margin of Safety is: M.S. = (Fty/F,,,) - 1 = (38,000/16,318) - 1 = + 1.3 3 An inverted end drop would load the bottom inside, one-inch thick, steel plate in bending similar to the pr ev iou s analysis, Assume a unif orm pressure load equal to a slab of lead 5.1 inch e s thick on a 10.375 inch radius, fixed edge plate, f ound in Case 6, Table X, of Roark. The maximum bending stres s is: 2 Fb = 3W/4nt r% Where: W = pV(186.1 g's) pg = 700 lb/ft3 (density of lead) 3 g = (5.1)n(10.3 75)2 (12)3 = 1.0 f t / V p, 490 lb/ft3 (Density of Steel) = 3 (1.0)n (10.3 75)2 (12)3 / .2 ft V = = 3 f 186.1[(700)(1.0) + (490)(.2)] = 148,510 lbs W = L The n, b = 3 (148,510)/4n(1. 0)2 F

q 1

NY = 35,454 psi 2-28

p., NuP:,o PAS-1 Consolidated SAR, Rsv. O. Ma r ch 31, 1989 i' -.

/

.i Shear stress in the plate'is: E W/2nRt- .: F, = 14 8,510/ 2n'(10. 3 75 ) (1.0) = = - 2,278 p si The plate maximum combined stress is the vector sunmation of the be nding .and shear stresses: F,,,. = [(35,45 4)2 +. (2,278)2].5 = 35,5 27 p si The, plate maximum combined stress, yield Margin of Safety is: J 'L{U N. S. = (Fey /F,,,) - 1 = (38,000/35,5 27) - 1 = + 0.07 Additionally, the plate.is secured to the inside shell of the secondary con- .tainment. vessel by a 3/8 incn fille t weld in shear. Stress in the weld may be calculated as ' follow,*: F, W/A, = Where: A, '= I,, t, L, 2nR = 2n(10.375) = 65.2 in = t, =.707(.375 ) =.265 in 2 17.28 in A, = F,. = 148,510/17.28 = 8,600 p si 2-29

NuPac PAS-1. Cons olidated SAR, 'Rev. O, - March 31,.1989 The weld ' shear yield Margin of. Safety is: M. S. = (F,y/F,) - 1 = (22,800/8,600) - 1 = + 1.65 For an end impact on the lid end, the se condary containment ves sel. lid will be reacting the end impact in direct c ompres sion. Thus, it can be concluded that End-Drop Impact for a Hypothetical Accident Condition would have no de trimen-tal ef fect on containment. 2.7.1.2 Free Dron Imoact Analysis. Side Droo The side drop analysis was performed utilizing the energy-balance computer program, SYDROP, doc umented in Sec tion 2.10.2.2. Two bounding cases were run, .the first considering the overhanging portion of the overpacks f ully ef fec-tive,. thus prov iding' the h ighe s t ac cele ra t ion s, and the second con side r ing only backed foam thus providing the highest displacements. In the first analysis for impact force, it was con se rva tiv ely assumed that the overhung f oam -in the ends of the package was fully effective (i.e., had the same behavior as the foam trapped be tween the impacted surface and the secondary containment vessel side). l From Table 2.7.1-3, the acceleration imparted to the package 197.2 g's. Con-se rva tiv ely as s ume th e package mid sec t io n is unsupp or t ed. This load would i f generate a bending moment in the secondary containment vessel. As stan ing the weight of the paciage is uniformly distributed along the length, and the se conda ry containment vessel acts as a sirap1y suppor t ed beam supported at each end, the bonding moment at the center of the package is: M = (197.2 g's)ifL/8 = (197.2) (12,800)(39) /8 = 12,3 05,280 in-lb s j 1 This moment produces a longitudinal bending stress in the outer shell of: i l 4 73 FB " MC/I 5 l ) l l l l-2-30 w____-__

h E p 7N d 7 0 / 2 0 / 4 8 ~ 9 4 6 5 3 1 S KC A P R E VO Y M A ~ R D ) F S)))) A BNNNT F LIIIF T C ((((( P E 0000 0 00050 S00000000000000000 I 2 0 S00000000000000000 86830 E R 26433 R08755717314382882 1-E T 6341410700284052 - P K L S 6333345692622903l S B 111111112234595 O A

=

A 1 C T ~ R' R ^ ) E S P 1 HT S S TE E A GM R G P NA _ S I00112233445566778 T N05050505050505050 ( EI N LD A E S R0 I L LLR V T P AAE S G M TNNT N A HRRE I A S GEEM A ITTAT R K T EXXIH T N HEEDG S C E I D EEEDE T A I GGGAH P12345678901234567 C AAAO 11111111 P C KKKLP A CCCYO AAAAR R T PPPPD S A O P E L C 'U N ) E D I S ( P O RDY S Y[ l

, O AT i RN00 00000000000000000 0 00000000 7 TO89 00000000000000000 0 SC 0 00000000 / T E. 0000000000O000000 2 FFGL 0 00000O00 0 OO / 4 NT00 00000000000000000 0 00000000 8 ON78 00000000000000000 0 00000000 IE TCTE 00000000000000000 0 00O00O00 URGL BE IP - 9 R 0 00000000000000000 0 00000000 4 T 7 00000000000000000 0 00000000 S 6 I .E 00000000000000000 0 00000000 D L 00000000000000000 0 00000000 5 11111111111111111 1 11111111 3 1 S K C ) 20753872153635377. ~ 0 52844041 A OE 01259384063086544 0 57938534 P IP 00000112334556789 0 01245791 R T/ E AE 1 11111112 V RS O + ( + Y M + A + R D + F + A ) 44123668071706813 6 51200791 F NB 42048543473447826 3 06353944 T C Y IL 54261730727427377 8 05689130 ) P G A-84449571517558866 2 26569604 d E R RN 4252362990408930 5 15488630 e 0 E TI 124681360370494 6 94063100 u I 2 N S( 1112223334 4 45667890 n E R 1 i t n P K + o S + L - C 0 A + A) 00000000000000000 7 00000000 ( O ) + N-03580358136813681 2 46914692 C + IB 62840628406284062 6 84062840 R + TL 51628394061728495 7 06273840 3 P I EN 11112222333344445 5 55566667 1 S TI 66666666666666666 6 66666666 . A O( 44444444444444444 4 44444444 G P P 7 ( 2 N E E I L L P 74094002457107311 2 68458752 B G M L A A E) 61105653197654570 7 40917864 T A S + CG 2467890112345679 9 02368150 + C( 1111111111 1 22222334 K T + A N + C E D T A I C C A P C P A M I E) 24151579666853865 7 66053658 R T CS 45282182885932938 0 32891564 S + RB 43494353668267394 8 96507953 A O + OL 53495051594259663 3 86473824 P + F( 87276012223457163 2 12648767 E + 2579123456789124 5 68036051 111111111222 2 22333445 L C U E) + M3 44246511632346890 0 97480969 N + UN 55830902506310G14 0 60507319 LI 1246702479258147 9 04714825 E O( 11111222333 3 44455566 N V A L P H S U 10919223710910755 6 87233185 R A) C E2 86314967365045305 6 80108505 RN 07010863062833382 4 61592603 O + AI 4578999122334as556 6 67778899 + ( 1111111l111 1 11111111 ) E D I S C HN) 00000000000000000 0 00000000 P STN 24680246802468024 5 68024680 O UPI R RE( 1111122222333 3 33444445 D CD YS 91p lL

g H h a p.37s1 7 0 /2 0 / 4 8 5 5 '8 3 3 1 SKC APR E V O Y M A R D ) F S)))) A BNNNT F LIIIF T C ((((( P E 0000 0 00050 S00000000000000000 S00000000000000000 I 2 0.. 89830 E R 23433 R08755717314382882 1 E T 6341410700284052 P K L S 6333345692622903 S B 111111112234595 0 A

===

A 1 C T O R R ) E S P I HT S S TE E A GM R G P NA T N05050505050505050 ( EI S I00112233445566778 N LD A E S R0 I L LLR V T P AAE S G M TNNT N A HRRE I A S GEEM A ITTAT R K T EXXIH T N HEEDG S C E I D EEEDE T A I GGGAH P12345678901234567 C AAAO 11111111 P C KKKLP A CCCYO AAAAR R T PPPPD S A O P E L ~ C U N O ) E D I S ( P O RD YS ,m sdu

AT ,( RN00 0000000000000000000000 0 000 7 TO89 0000000000000000000000 0 000 0 SC / TE 0000000000000000000000 0 000 2 FFGL 0 OO / 4 NT00 0000000000000000000000 0 000 8 ON78 0000000000000000000000 IE 0 000 TCTE 0000000000000000000000 0 000 URGL BE IP 5 R 0 0000000000000000000000 0 000 5 7 0000000000000000000000 0 000 T S 8 I E 0000000000000000000000 0 000 3 D L 0000000000000000000000 0 000 1111111111111111111111 1 111 3 1 S KC ) 1663511386694350042786 0 435 A OE 0013581471594940629643 0 346 P IP 0000001112223545566789 0 012 R T/ E AE 1 111 V RS O + ( + Y M + A + P. O + F + A ) 9020843251761694692807 7 069 F NB 4597072359845824943427 4 817 T C Y IL 0234665473395122953437 0 414 P G A-5630352249658576324216 6 561 ) E R RN 275571629889262002756 6 231 d 0 E TI 1235689135803692593 6 839 e I 2 N S( 111122223334 4 455 u E n R i t P K + n S + L o 0 A + A) 0000000000000000000000 0 000 C ) C + IB 6284062840628406284062 9 840 ( R + TL 5162839406172849506273 9 840 ) + N-0358035813681368146914 5 692 4 P 1 EN 1111222233334444555566 6 667 S TI 6666666666666666666666 6 666 1 A O( 4444444444444444444444 4 444 G P P 7 ( N 2 E I L E 9620681086547477395551 0 369 L P G M L B A E) 3246406150505174200140 2 808 A A S + CG 123455667788990123457 8 813 T + C( 1111111 1 122 K T + A N + C E D T A I C C A P C P A M I E) 8850661615101693839899 5 219 R T CS 8280780850541395657823 1 966 S + RB 4589413749055855952887 1 205 A O + OL 0190008023696909770076 9 067 P + F( 5606751840629653347177 2 195 E + 134567789900123456891 3 460 11111111112 2 223 L C U E) + M3 217680220699686)054982 4 03G N UN 3965579260518532100013 7 570 LI 12345780134680246802 3 469 E O( 1111112222233 3 533 N V A L P H S R A) 5 127 U 2403750131004539519893 C E2 1069440218367763060470 4 233 RN 4417383714814703681558 9 024 + AI 2344556677788899990000 0 111 ) + ( 1111 1 111 ,N. ) E D I S ( HH) 0000000000000000000000 3 000 O UPI 5 680 P STN 2463024680246802468024 R RE( 111112222233333444 4 445 D CD Y Yw* S

1, 'NuPac PAS-1 Consolidated SAR; Rsv. 0,. March 31,'1989 p .+, -l Where: c = D,,y/2 = 3 2.5 = 16.25 in. f + (E /E )Ig.+ I, I=.I g 3 g = (n/64) [(21.5)4 - '(20.75)4] = 1,389 in4 I g = (n/64)[(31.75)4 - (21.5)4] = 39,393 in4 I 3 = 29.5 (10)6 psi (Young's Modulus for Steel. E ref: ASME B/PVC, Sec III, Table I-6.0) n = 2.0(10)6 psi (Young's Modulus f or. lead, E ref: ORNL-NSIC-68, Table 2.4 ) O I* = (n/64)[(32.5)4 - (3.1. 75)4] = 4,883 in4 gJ I = 1,389 + (2.0/29.5)39,393 + 4,883 4 = 8,943 in 'FD = (12,3 05,230) (16.25) /8,943 = -22,3 60 p si The outer shell yield Margin of Safety is: M.S. = Fty/F3 - 1 = (38,000/22,360) - 1 = + 0.10 Thus, it can be concluded that the Side Drop Impact for a Hypothetical Acci-dent Condition vioul d have no de triment al ef fect on containment, i sp V 2-35

NuPac PAS-1 Consolidated SAR, Rev. O, bh r c h 31, 1989 1 V 2.7.1.3 Free Droo Impact Analysis - Corner Dron Analytic predictions of package performance for drop orientations impacting on the corner of the package employed two computer programs described in Section 2.10.2 - CYDROP and OBLIQUE. CYDROP use s an energy balance technique to de t e rmine loads and deforma tions of the overpack. Since CYDROP assume s all drop energy is absorbed in deformations of the overpack, it prov ide s valid result s when the impact orientation places the center of gravity directly over 1 the impacted corner, approximately 36 from the vertical for the NuPac PAS-1 Pac ka ge. CYDROP output for this orientation appears in Table 2.7.1-5. At other impact or ie nt a t ions, the force-deflection values generated by CYDROP are used in OBLIQUE, a dynamic analysis model that properly treat s rotational motion effects. Tabic 2.7.1-6 presents a s unma ry of ca sk internal forces as well as overpack def ormation characteristic s for various initial impact orien-tation angles. This data is presented graphically in Figures 2.7.1-1, 2.7.1- ?% ( ) 2, and 2.7.1-3. v From the table and graphs, the extreme loadings on the NuPac PAS-1 Packaging are determined. The maximum axial thrust occurs when the cask centerline is near vertical, approaching the end impact orientation considered earlier. From Table 2.7.1-6, this maximum thrus t load is equivalent to an acceleration of: 2,34 0,914/12,8 00 = 183 g 's 1 As might be expected, this is less than the acceleration experienced during ) i the end impact case previously investigated and therefere is less critical, j /~~x U 2-36

1 ijil1 l!! E !y " E}, gEo[ goo' " v p a ' 5' I 5 p' u*' hoe s s s*

o Y..

". a L d. g E %' ~ } 7 0 / 2 0 / 4 8 8 ) 5 L A 9 C 3 - SS I T II 3 R

XX 1

S E TAA K V A C EE A O ESS P T SPP R PII E T ILL V R LLL O H LEE E Y M S RR A E EOO R O E NNJ F ) R ) AIA A S)))))) )G I LMM S F BNNHNNN TE S P-E T C LIIIIII FD P II U P ((((((( (( ( HMM L E ) SEE A 0 000000 00 0N USS V S00000000000000000 I 2 0000050 0 0I R S00000000000000000

0. 0

.A COO S E 0 R 8680030 0. 0R TT S R08755717314382882 264 433 36 0T 2 E T 6341410700284052 P K 1 3 1S /LL R S 6333345692622903 S 1 1EE T 111111112234595 0 A T LL S 1 C

=

=C NLL R RA R P IAA ) EI E RR S P 1 HTDHT 0 DAA V S TE TE 1 EPP A GMEGM T N G P NALNA ST ASS I N05050505050505050 ( EIOEI SA UTT A I00112233445566778 N LDHLD E LNN R A E E RN AII T R0 I L LLLEE L TE VOO S T P AAAPPH G SK EPP S G M TNNNOOT N A L A HRRRLLG A HT N55 A A S GEEEEEN S I22 T ITTTVVE TN UT A N K T EXXXNNL HO RL R E N HEEEEE GI CU T M C E K IT A S I D EEEEDDC EA UF /== R T A I GGGGAAA HT AE S E P12345678901234567 C AAAAOOP N ED SXY P 11111111 P C KKKKLLR PE T( ENN X A CCCCYYE OI A R E AAAAAAV RR L T R T PPPPPPD DO P S S A O P E L C U N ) R E N R OC ( P ORD Y g b C !llI l!l

4 lill l1' ) 2 ~ 5 000000000000000000000000000000' Y 9 000000000000000000000000000002 B E S - T 000000000000000000000000000001 G G OA A IE P TR05 000000000000000000000000000008 AA99 000000000000000000000000000247 R.TTE 000000000000000000000000000 11 O NCGL IA AT RN00 000000000000000000000000037330 7 TO89 000000000000000000000000006272 0 SC / TE 000000000000000000000000013556 2 FFGL 0 O0 / 4 NT00 000000000000000000000096762101 8 ON78 000000000000000000000049543252 IE TCTE 000000000000000000000013676777 URGL BE IP-8 R 0 000000000000000000000014301572 5 T

7. -

000000000000000000000050450336 S 9 I E-000000000000000000000086310753 D 3 ~ L 000000000000000000000099999888 1111111111111111111111 3 1 SK C ) 012622535231441466669593653953 A OE 000012357037162853223607697010 P IK 000000000111223345678912469372 R T/ E AE 11111223 V RS O + ( + Y M + A + R O + F + A .) 023543423210147224190014142547 F NB 930998219065267358086644809615 T C Y IL 247294684639513572923579011850 . P G A-29651469440507991886200507896 ) E R RN 250644720040043537876892406 d 0 E TI 1123468025815949520904003 e I 2 N S( 111122233456689135 u E 111 n R i t P K + n S + o 0 A + ) 516162728383949405061617273838 C O C + CB 011223344556677899001122334455 ( R + IL 369258147036925814814703692581 ) + T-406395284173962851740639518407 5 P 1 EN 122334556778890012234455677899 S NI 666666666666667777777777777777 A I( 444444444444444444444444444444 1 G P K' 7 ( N 2 E I L e P 167596560782780819743033874096 l G M L b A E) 1358148150495073100264812297 a A S + CG 111223334556789013593830 T + C( 111112234 K T + A N + C E D T A I C C A P C P A M I E) 883934724035092413997993663213 R T CS 71052699058897348786479980947G S + RB 150324871817780754669274597307 A D + OL 172559660706386008785589234916 P + F( 247C483738407531125081357051 E + 1112233455678901347049632 11111222345 L C E) U M5 207547586255.417269234431602098 + e N + UN 12594199149655828779397681605 .LI 122356791358036936C483739 E O( 11112222334445566 N V A L P N SU 753668091738092990119451026956 R .A ) C E2 844731237173187544320975283793 RN 24692581582693715937048259293 O + AI 1112223334455566777888923 ) + ( 11 R E N R O C ( HH) 998766545321009877654432210998 P STN 494949494949493838383838383727 O UPI R RE( 1122334455667788990011223344 D CD 1111111111 Y 9e$ C ,( llll ll l l!

llIlli ii - 3 E G AP OTCIYO NTGI 012622535231441466669593653953 IERT 000012357037162853223607697010 7 ANEA 000000000111223345678912469372 0 RINR / TKE 0 11111223 2 S 0, / 4 8 N N IT 000000000000000000000000058873 +ODAG +IER 0 0000000000000000000000000 2617 +TKT 0 11 1 +UCS 8 0 BA YIBXT 000000000848259149493964274574 0 GR AL 4 RT M 000000000998876654433222219505 ES 000000000999999999999999998887 3 NI D 111111111 1 S ED E K K 000000000262851961617146888763 C NT NC A IC UA 000000000 1123345566777777777 P AP B R R E T V S ) O NY S 023543423210147224190014142547 S LIG B 930998219065267358086644809615 Y M N +AAR L 247294684639513572923579011850 A O +TRE 29651469440507991886200507896 R O I +OTN N 250644720040043537876892406 F T +TSE I 1123468025815949520904003 A P ( 111122233456689135 F M 111 T C UP S E S N ) 0 A N IT 000000000000000000000000031652 d I 2 +ODAG e N +IER 0 000000000000000000000000074432 u R I +TKT 0 2345 n A +UCS 8 i P K R BA t S T IBXT 000000007958888567870471691422 n 0 A S ER AL o mv C CT M 000000009875533111190001148802 C R F RS 000000009999999999989999986554 ( ) O OI D 11111111 P I FD E 5 S S K 000000003152222543230639488037 A I TT NC G P S CC UA 00000000 124466888800998877765 1 ( Y AP B 11 7 N L P E A M 2 I L N I P A 883934724035092413997993663213 e G M LE ) 710526990588973487864799809470 l A Y + AC S 150324871817780754669274597307 b A S T + TR B 172559660706386008785589234916 a I + OO L 2470483738407531125081357051 T K T V + TF ( 11122334$5678901347049632 N I 11111222345 C E T D I A I S C N N N P C E O IT 000000000000000000000000007412 A S IDAG +TER 0 000000000000000000000000013579 R T +UKT 0 S +BCS 3 A O +IA P RBXT 000000007957621208419693539502 E T AL AS M 000000009875533009965544315318 L EI 000000G09999999994888888887776 RD D 11111111 C A E T K 000003003153489802691417564086 U HC NC SP UA 00000000 124466900034455670112 N U B 11111111112222 R C ) 955955503210247162963209988877 + LA 2 24672592604826150494948383838 + AE N 1112233344556657738990011 + TR I 1111 + OA ( T ) HH 998766543321009877654432210998 494949494949493838383838383727 R ST ) E UP N N RE I 1122334455667788990011223344 R CD ( 1111111111 OC ~ ( P N1o O R DYC !l!l

NuP2c PAS-1 Consolidated SAR, Rev. O, March 31, 1959 ,x (v) Table 2.7.1-6 NUPAC OBLIQUE ANALYSIS-POST-ACCIDENT SAMPLE (PASI) CASK - OBLIQUE IMPACT PACKAGE GEOMETRY-LENGTH = 40.000 RADIUS = 16.750 OVERPACK LENGTH 33.000 = OVERPACK SIDE THICKNESS = 7.250 OVERPACK BOTTOM THICKNESS = 33.000 PACKAGE MASS PROPERTIES-HASS = 33.126 MASS MOMENT OF INERTIA = 6901.600 GRAVITATIONAL CONSTANT = 386.400 SOLUTION CHARACTERISTICS-IMPACT VELOCITY (YDOT) -527.450 = (XDOT) = 0.000 (THETADOT)= 0.000 FRICTION COEFFICIENT = 0.000 ESTIMATED CRUSH DEPTH = 3.000 THETA 0 FMAX SHEAR THRUST MOMENT DEFLECTION CLEAIUUTCE 88.0000 2341970. 79803. 2340914. 472905. 3.37 9.88 86.0000 2172731. 114811.. 2169713. 680361. 3.91 9.46 84.0000 2020889. 164014. 2014222. 971936. 4.63 8.92 82.0000 1812869. 183362. 1803964. 1086587. 5.16 8.49 80.0000 1588034. 206021. 1575422. 1220865. 5.76 8.04 78.0000 1493697. 238568. 1475617. 1413736. 6.33 7.64 76.0000 1436468. 278069. 1410330. 1647816. 6.89 7.24 74.0000 1361737. 310212. 1326880. 1838295. 7.48 6.81 t'~T 72.0000 1345969. 355474. 1299000.

2106511, 8.06 6.39

( 70.0000 1339709. 406068. 1277175. 2406331. 8.61 5.97 s' 68.0000 1353586. 466931. 1270500. 2766999. 9.10 5.61 ~ 66.0000 1371001. 532905. 1263192.

3157958, 9.51 5.29 64.00J0 1391907.

603678. 1254185. 3577352. 9.88 4.98 62.0000 1396182. 665467. 1227387. 3943508. 10.17 4.71 60.0000 1388683. 720771. 11C6984. 4271237. 10.41 4.47 58.0000 1379879. 778060. 1139601. 4610723. 10.63 4.19 56.0000 1343566. 810068. 1071896. 4800403. 10.75 3.99 54.0000 1296763. 830125. 996237. 4919260. 10.81 3.82 52.0000 1241480. 838657. 915383.

4959820, 10.79 3.69 50.0000 1179575.

836288. 832714. 4955781. 10.73 3.57 48.0000 1110810. 818913. 752126. 4852820. 10.64 3.49 46.0000 1042438. 794668. 676440. 4709141. 10.52 3.42 44.0000 979918. 774442. 606319. 4589286. 10.37 3.33 42.0000 920123. 751041. 543480. 4450614. 10.18 3.25 40.0000 868139. 724480. 488335. 4293212. 9.96 3.26 38.0000 823011. 703499. 440379. 4168884. 9.71 3.21 36.0000 784144. 683092.

398057, 4047950 9.44 3.23 34.0000
749073, 663906.

359731. 3934255. 9.18 3.18 32.0000

719402, 647653.

325445. 3837945. 8.91 3.17 30.0000 695009. 634486. 294903. 3759915. 8.64 3.16 28.0000

675700, 625406.

268211. 3706110. 8.35 3.21 26.0000 663608.

621033, 244853.

3680198. 8.05 3.21 24.0000 654827. 619732. 223572. 3672487. 7.73 3.26 22.0000 653344. 623791. 204971. 3696539. 7.42 3.24 20.0000 654890.

630601, 186808.

3736892. 7.09 3.28 18.0000 648226. 619957.. 164740. 3733079. 6.74 3.32 16.0C00 614514. 630675. 143801. 3737332. 6.38 3.33 14.0000 648172. 638038.

12G757, 3780966.

5.94 3.39 12.0000 674829. 6(7568. 108229. 3955957. 5.53 3.48_ 10.0000' 684775.

680325, 89104.

4c31557. 5.09 3.52 8.0000 704139. 101394. 73670. 4156412. 4.53 3.84 6.0000 596314. 594064. 51754. 3520381. 3.53 4.82 / 4.0000 18967. 18921. 1319. 112125. .43 7.71 (,h) 2.0000 32893. 32872. 1150. 194800. .19 7.51 2-40

n NuPac PAS-1 Consolidated SAR, Rev. O, krch 31,1989 ( (f Figure 2.7.1-1 IMPACT FORCES-(LBS) -30 FT DROP PCGT-ACCIDENT 8 AMPLE (PRS 11 CRSK - CBLIQUE IMPACT INIT!RL VELOCITY's -527.450 S o' [0-e a.o N" SYM VRRIR8LE DESCRIPTION MRX1 MUM MINIMUM j 5 MRX FORCE 2341970 18987 0 fMERR 830651 18921 A TNAU8T 2340914 1150 o \\ E. m Og 6 oe_ w~ cn _J "S wc; uj w. U~ cr j o u_ o c. /

  • s'WA 8

) [1 i 100.00 8'O.00 6'O.00 4'0.00 2'0.00 0'.00 ANGLE (THETA) WITH RESPECT TO HORIZON (DEGREES: 2-41

( ~ NuPac PAS-1' Consolidated SAR, Rzv. O, March 31,1989 /~T - (j Figure 2.7.1-2 DVERPRCK OEFLECTION RNO RESIOURL CLERRRNCE -30 FT OROP POST-ACCIDENT 6 AMPLE (PA611 CASK - DBLIQUE IMPACT INITIAL VELOCITY -527.450 0 e_ 6)M VARIR8LE DESCRIPTION MAXIMUM MINIMUM m DEFLECTION 10 810 190 o O-CLEARANCE 9 880 3 180 9 o A 9 S-(D ,q W L' 5 0 zo e -e t G Wu bS O H *. _ (n ~ O CD S \\ 19 Sy-15 15 O 9 100 00 8'O.00 6'O.00 4'0 00 2'0 00 0'.00 RNGLECTHETA) WITH RESPECT TO HORIZON (DEGREES 2-42

NuPac PAS-1 Cons olidat ed SAR, Rsv. O, krch 31,1989 ., ~. Fi.gure 2.7.1-3 CASK BENDING MOMENT (IN-LB) -30 FT DROP POST-RCCIDENT SAMPLE (PRS 11 CASK - 08LIQUE IMPACT INITIAL VELOCITY -527 450 8 a 8-o R 8_

  • o

-o 9 - 8. m* g. I- "o w8~ z uJ E o ao Eg f-z wa28 to. mg, ~ xw I: CC U a R r o_ m r i' fm a g V 9 100 00 8'0.00 6'0.00 4'O.00 2'0 00 0'.00 l ANGLE (THETA) WITH RESPECT TO HORIZON (DEGREES j. 2-43

~! [ ~ NuP2c PAS-1 Conselidsted SAR, Rsv. O, March 31,1989 i ( ) The ma ximum cask be nding moment oc c ur s t an or ie nta t ion of 52 from the x_- hor iz ontal, as show n in Figure 2.7.1-3. Conse rva tiv ely a s sum ing the outer shell on the secondary containment vessel carries all the load, the stress is: Fb " MC/I Where: M = 4,969,82 0 in-lbs (Table 2.7.1-6) l c = 32.5 0/2 = 16.25 in I = n/ 64[(32.5 0)4 - (31. 75)4] = 4,883 in4 Ihe n, Fb = 4,969,020(16.25) /4,883 ( ) = 16,5 39 p si x-The bending stress yield Margin of Safety is: M.S. = (F gy/F i - 1 = (38,000/16,539) -1 m + 1. 3 0 b From F'gure 2.7.1 2 and Table 2.7.1-6, the mini mum clearance be tw e e n the deflected overpack and the undeflected cask is given as 3.16 inches at an impact angle of 30 degrees from horizontal-Since the total deflection possi-ble at ' his impact angle i s 12.78 inches, the deflection Abrgin of Safety is: M. S. = [12. 7 8 / (12.7 8 - 3.16)] - 1 = + 0. 3 3 A more significant margin is the energy Ahrgin of Safe ty. To determine th i s, the output from the CYDROP analysis can be examined to de t e rmin e how much energy is required to deflect the overpack all the way to the cask and compare that with the energy absorbed af ter the actual deflection of 8.64 inches from i ) Table 2.7.1-7. No t e tha t CY DROP me as ur e s an gle s f r om th e vertical whe re a s s OBLIQUE measures angles from the horizontal. For example, the CYDROP output from 40 degrees corresponds to the OBLIQUE angle of 50 degrees. 2-44 h

_ O H$ Q N,a g. 8 0 / 2 0 / 4 8 2 ) 2 L A 5 C 4 I SS T II XX 7 R 1 S E TAA K V A C EE A O ESS P T SPP R PII E T ILL V R LLL O H LEE E Y M S RR A E E0O R O E ttl 1J F ) R ) AIA A S)))))) )G I LMM S F BNNl lIlN TE S P-E Il T C LIIIIII FD P II U P ((((((( (( ( . HMM L E ) SEE A 0 .000000 00 0t USS V S00000000000000000 i I 2 0000050 0 0l R S00000000000000000

0. 0

.A COO S E R' 0.. 8680030 0. 0R TT S R08755717314382882 264 433 30 0T 2 E T 6341410700284052 P K 1 6 1S /LL R S 6333345692622903 S 1 1EE T 111111112234595 O T LL S 0 A C

=

= C NLL R RA R P IAA ) EI E RR S P 1 HTDHT 0 DAA V S TE TE 1 EPP A GMEGM T N G P NALNA ST ASS I N05050505050505050 ( EIDEI SA UTT A I00112233445566778 N LDHLD E LNN R A.... E E RN AII T R0 I L LLLEE L TE VOO S T P AAAPPH G SK EPP S G M TNNNOOT N A L A HRRRLLG A HT N55 A A S GEEEEEl UT A N l S I22 T ITTTVVE TN K T EXXXlNL HO RL R E l N HEEEEE GI CU T M C E K IT A S I D EEEEDDC EA UF /== R T A I GGGGAAA HT AE S E P12345678901234567 C AAAAOOP N ED SXY P 11111111 P C KKKKLLR PE T( EtN X l A CCCCYYE OI A R E AAAAAAV RR L T R T PPPPPPD DO P S S A O P E L C U N O ) R E N R O C ( P O R D 1* (

8 TO89 00000000000000000888 0 SC / TE 00000000000000000 22 2 FFGL 0 OO / 4 HT00 00000000000000007697 8 DN78 00000000000000005008 IE TCTE 00000000000000001344 URGL BE IP 2 R 0 00000000000000003557 2 7 00000000000000004005 T S 5 I E 0O000000000000008630 D L 0C000000000000009999 4 1111111111111111 7 1 S K C ) 01388590198770981534 A OE 00001359373088517627 P IK 00000000112334578036 R T/ E AE 111 V RS O + ( + Y M + A + R O + F + A ) 83547254414638658648 F NB 97558958829419482587 T C Y IL 33757466358609581343 P G A-3385232116248805526 ) E R RN 138672141426803608 d 0 E TI 124681482741039 e I 2 N S( 1112234567 u E n R i t P K + n o S + 0 A + ) 98876544321009876654 C C + CB 75319753197530864208 ( R + IL 13578024679135680245 ) + T-64208753197642087531 7 P 1 EN 12344567889012334567 S NI 66666666666777777777 1 A I( 44444444444444444444 7 G P K ( N 2 E E I L 16924486586126432235 L P B G M L A A E) 147150506308818938 A S + CG 112233455689273 T + C( 112 K T + A N + C E D T A I C C A P C P A M I E) 57723530136184500158 R T CS 46294395644213964709 S + RB 20416449662334682285 A O + OL 18434523638120507472 P + F( 259406296545745515 E + 122334567802620 11123 L C U E) + M3 48754750358311547698 N + UN 1496572992992881882 LI 1235681360372617 E O( 1112223344 N V A L P H S U 66488091564604784506 R A) C E2 12905448309913605.061 RN 13592604948394950617 + AI 112223344555' r88 ) + R E N R O C ( HH) 48260371593715926048 P STN 62952841730639528517 O UPI R RE( 1123345567788900122 D CD 11111 Y s 91e

+. k I rO NTGI 01388590198770981534 IERT 00001359373088817627 8 ANEA 00000000112334578036 0 RINR / TKE 0 111 2 S 0 / 4 8 N N IT 00000000000000000906 +ODAG +IER 0 00000000000000000 49 +TKT 0 8 +UCS 8 2 BA YIBXT 00000000086272715392 5 GR AL RT M 00000000099988776516 4 ES 00000000099999999998 7 NI D 111111111 1 S ED E K K 00000000024838395813 C NT NC A IC UA 000000000 11223344 P AP B R R E T V S ) D NY S 83547254414638658648 S LIG B 97558958829419482587 Y M N +AAR L 33757466358609581343 A O +TRE 3385232116248805526 R O I +OTN N 138672141426803608 F T +TSE I 124681482741039 A P ( 1112234567 F M T C U P S E S N 0 A N IT 00000000000000000689 I 2 +ODAG N +IER 0 00000000000000000825 ) R I +TKT 0 23 d A +UCS 8 e P K R BA u S T IBXT 00000000835375001197 n 0 A S ER AL i m C CT M 00000000998765544619 t R F RS 00000000999999999875 n j ) O OI D 11111111 o P 1 FD E C S S K 00000000275735009344 A I TT NC ( G P S CC UA 00000000 1234565554 7 ( Y AP B N L P E A M 1 I L N I P A 57723530136184500158 7 G M LE ) 46294395644213964709 2 A Y + AC S 20416449662334682285 A S T + TR B 18434523638120507472 E I + OO L 259406296545745515 L K T V + TF ( 122334567802620 B N I 11123 A C E T T D I A I S C N N N P C E O IT 00000000000000000996 A S IDAG +TER 0 00000000000000000 24 R T +UKT 0 S +BCS 8 A O +IA P RBXT 00000000834036880397 E T AL AS M 00000000998764311942 L EI 00000000999999999888 RD D 11111111 C A E T K 00000000276074220938 U HC NC SP UA 00000000 1335689922 N U B 11 R C ) 23028705335952123605 + LA 2 13692615050517395184 + AE N 1122334455667889 + TR I + OA ( T ) HH 48260371593715926048 R ST ) 62952841730639528517 E UP N N RE I 1123345567788900122 R CD ( 11111 O C ( P 7 A O R D Y

NuPac PAS-1' Consolidated SAR, Rev. O, March 31, 1989 MmY The strain' energy ab orbed by the overpack after deflecting 8.64 inches can be interpol ated from the Table 2.7.1-7 as 1,639,288 in-lb. The strain energy required t o ' bot t om out' is 7,9 86,3 78 in-Ib. Therefore, the energy Margin of Saf ety is: M. S. = (7,986,3 78/1,639,288) - 1 = + 3.87 Shear of Overnack: The shear capability of.the overpack is the sum of the shear capability of the overpack shell and the shea r capability of the foam. They are se para t ely evaluated as: aea r of Ove rnack Shell: The shear flow in a thin tube is: q = (V/nR) sin (Perry, Aircraf t Structures, page 139)

and, q,,, = V/nR = tF,7 Where the yield shear strength of the 12 gauge (.1 046 in.) ASTM A36 steel shell is:

F,7 = 21,600 p si (from Section 2.3) 1 Considering the overpack outer radius (R, = 24.0 in.), the shear yield capa-bility of the overpack shell is: V = nR tF,7 = n(24. 0) (.1046) (21,600) = 170,35 2 lbs. o O 2-48

i.-'

.'t p I': L :: p

NuPso PAS-1 Consolidated SAR, Rsv.- 0, Ma r ch 31, - 1989

/ f (f - li Jhe,al of Overnack Foam: The shear, area is: t A = nR 2 = n (24 ; 0)2 = 1,810 in2 o s The allowa'ble shear stress of 20 ' pef foam, from Section 2.3, is 7 60 p si..- 'Thus, thel shear. capacity of the foam is: V. = Ar =. (1,810) (760) = 1,3 75.6 00 lb s ' Assuming the tot al maximum ' OBLIQUE shear load (838,657 lb s a t O ') = 5 2* fr om o Table 2.7.1-5 is transferred to the NuPac PAS-1 package via shear in the overpack, - the Margin of; Saf ety is: M. S. = [(170,352 + l1,3 75,600)/838,657] - 1 = +0.84 Overnack Atta chment Stresses: The maximum moment impossd upon the connection be tween the overpacks is given in Figure 2.7.1-4 as about 463,000 in-lbs. w (lb/in) y o e o <r i, u o ,r o O A 48.0

P b 24.0

<r ir /\\ /\\ a 33.0 66.0 r-2-49

L NuPac PAS-1 Consolidated SAR, Rav. - 0,' March 31, 1989 .r()- Figure 2.7.1-4 L = =~~ JR03 OV_R3ACd _0RJS -30 l r POST-ACCIDENT SRMPLE (PRS 13 CR6K - 08LIQUE IMPACT INITIAL VELOCITY = -527.450 8 8. m 8 a"- n M O -- -8 ao-m- J 8 ~ 8. m -g I-- 2Wo r9 Co Eg-zo-o HQ. ce tr e. C '* Q_ W to o 9o_ m 100 00 8'O.00 6'O.00 4'0 00 2'0 00 0'.00 ANGLE (THETR) WITH RESPECT TO HORIZON (DEGREES 2-50 e-_-_-__-______---_--_-_-___-_

NuPac PAS-1" Cons olidsted SAR,' Rev. O, March 31,1989 This inoment is ' resisted ~ by.eight 3/4 - 10.UNC, Grade 5,- bolts acting in shear.

Conservatively as suming only. four of the eight bol t s - are ef fective,. the bol', load is found as follows: From t he previous free-body diagram, the moment' on the bolt s is: M = P,D + 2P (D/2). b P3 =.P,/2 Substituting,, M ='P,D +'2(P,/2)(D/2) = (3 /2)P,D = (3 /2)P,(48.0) =. 463,000 in-lb s P, = 6,431 lb s. uf The maximum shear stress occurs in Bolt ' a': F, = P,/Ab Where: 2 .302 in (minor diameter area of a 3/4 -10 UNC bolt, A = b Mech. Ena. Desinn, Shigley, 3rd Ed, Table 6-2) l l F, = 6,431/.302 = 21,293 p si The overpack closure bolt shear yield Margin of Safety is: (F,y/F,) - 1 = (48,600/21,293) - 1 = + 1.28 M.S. = The bolt hole shearout capacity may be conservatively calculated utilizing 0 the 40 shearout equa tion: 0 2F,y [ed - (d/2)(cos 40 )] P t = 2-51

_--m--__ f NuPac PAS-1 Consolidated SAR, Rev. 0, Ma rch 31, 1989

n

/ i Where: ~ V F,7 21,600 p si, (Section 2.3) = l .25 in j t = ed 1.25 in = 1.00 in d = The ni 2(21,600).25[1.25 - (1.00/2) ( coa 40 )] P = 9,363 lbs = The bolt hole shearout Margin of Safe ty is: ' O M. S. (P/Pa) - 1 = (9,3 63/ 6,4 30) - 1 = + 0.4 6 = tO The opt ional overpack joint int e rf a ce assumes sixt e e n 1/2-13 UNC, Grade 5, bolts loaded in tension. Again assuming only half of the bolts are ef fective, the moment about point 0 on the fi ure on the next page is: 8 2f L11 + 2f L2 2 + 2f L33+fL44 M = o Where: 1 L 25.25 [1 - ( co s 4 5")] = 7.40 in 3 25.25 in L = 2 25.25[1 + (cos 4 5 )] = 43.10 in L = 3 2(25.25) = 50.50 in L = 4 y (Q/L )f4 i f = 4 (L /L )f f = 2 4 4 2 3 (L;/L )f,g f = 4 (% f f = ) 4 mar. c,, l l i I t I-2-52 A -_-_ -__- -

NuPac PAS-1 Consolidated SAR, Rev. O, Ma rch 31, 1989 1 1 b 4 o [ f 3 45 L 24.0 (typ) 4 U \\ 3' r f g A 2 2 25.25 U 1 b O The n, M, 2 ( 7.4 0/ 50.5 0) (7.4 0) f4 + 2(25.5 0/50.5 0) (25.5 0) f4 = + 2 (4 3.10/5 0. 5 0) (4 3.10) f4 + (50.5 0) f4 (151.50) f,,, = Rea rr anging, the maximum bolt load is: f,,, 463,000/151.50 = 3,056 lbs = l 2-53 L___--_------------

t - NuPac PAS-l Cons olida t ed - SAR, Rev. O, Ma rch 31, '1989 - l l The maximum bolt tensile stress, the-stress in bolt '4' is: Fg.= f,,,/Ab Where: 2 'n-(the ' tensile stres s. area of a 1/2-13 UNC, Ab=-.1419 i Bolt, Shigley) The n, Fg,' 3,056/.1419 = 21,5 37 p si = The bolt tensile yield Margin of' Safety. is: (F.cy/F ) - 1 = (81,000/21,53 7) - 1 = + 2.76 M. S. - = g For purposes of this analysis, conservatively as sane the bolt load acts as an axisymmetric ring load. Assuming the bolt load is evenly distributed along a .I length equivalent to the distance between bolt centers, the ring load is: P /b w = a Where: 19.83 in na/8 = n(50.5 0)/8 L = = The n, 3,056/19.83 = 1J4.1 lb/in w = Assume the ring act s like a flat circular plate with the inside edge fixed and the bolt circle guided, the formula for the maximum bending moment may be found in Car.e lj, Table 24 of Roark and Young, Formulas for Stres s and Straig, l 5th Edition. Since the load act s along the bolt circle which, in th is case, l 1s the guided edge, the moment equation reduce s to: O 2 - wa 0 /bC M = 6 3 2-54

t NuPic FAS-1 Cons olida t ed. SAR,. Rev. O, - Ma r c h 31, 1989 l~ 1 Where: a =' 25.25 in i 24.25 in b = .(b/4a)[(b/a)2 - 1 + 2 in(a/b)] C6. = .0007634 = =.5[1 .(b/a)23 -l C5 . 03882 =

Then,

- 154.1(25.25)2(.0007634)/24.25(.03882) M = - 79.68 in-lbs = O The bending stres s is: 6M/t2 = 6(-79.68)/ (.25)2 = -7,649 p si F = b The shear stress is: F, w/ t = = 154.1/.25 = 616 p si - =- The combined stress is the vector summation of the bending and shear stress, 1 .or: 1 F, [(-7,64 9)2 + (616)2) 5 = 7,6 74 p si = The shear yield Margin of Safety is: M. S. = (F,y/F ) - 1 = (21,600/ 7,6 74) - 1 = + 1,82 e Thus, it can be safely concluded that the oblique drops of any or ie nt ation would have no detrimental ef fect s on containment. 2-55

. NuPac PAS-1 Consolidated SAR, Rev 0,' Ma r ch 31, 1989

tG Q

j i 2.7.2 Puncture i For purposes of this analysis, conservatively as sane the puncture pin strikes an unprotected seconda ry containment ves sel. Using ORNL-NSIC-68 for the side wall evaluation, the required shell thickness for puncture integrity is given j by: i t' = (W/ S). 71 Rewriting in terms of the weight, W: 1/*71 W = St Where: S = F, = 70,000 p si (per Section 2.3) g t=. 3 75 in l .Then, the weight the side wall may withstand to resist puncture is: W = 70,000(.3 75)1/ *71 = 17,5 85 lb s The puncture Margin of Safe ty is: M. S. = (W/W ) - 1 = (17,5 85/12,8 00) - 1 = + 0.3 7 t The bottom and top of the secondary containment vessel exterior are one inch 1 and two inch thick steel plate, respectively, being capable of resisting l puncture to a much higher degree than the side wall. 1 2-56 l-

NuP c PAS-1 Consolidated SAR, Rev. O, M3rch 31,1989 l I' T Since it has be e n demonstrated that the unpro t e ct ed ca sk will s urv ive a 40 's / ~ inch drop onto the puncture pin per 10 CFR 71, damage to the overpacks will have no con s eque nce with respect to maintaining cask sealing and sh iel ding i ir t egr ity. I 2.7.3 Thermal Analysi s l Thermal stresses within the NuPac PAS-1 packaging are addres se d in Section 3.4.4. The only the rmal stress related occ urance of any si gnif ic ance occ ur s j with respect to the increase of pressure within the primaqr containment ves-sel. The pres sure, 12.4 psig (per Section 3.5.4) is less than twice the case evalua ted in Section 2.6.3 of.5 atmosphere. The significant safety margins presented in Section 2.6.3 insure tha t. this calc ula t ed the rmal pressure would have no de trimental ef fect on containment. l I l [/) 2.7.4 Imme r s io n--Fis s ile Ma t e ri al v This section is not applicable, since the NuPac PAS-1 package will not contain fis sile materials. 2.7.5 Imme r s ion-- Al l Pa cka ge s The stress due to an increased external pressure equivalent to 6.3 psig was calculated in Section 2.6.4 to be 270 psi in the hoop direction on the out e r shell, and 2,059 psi in plate bending on the bottom 1 inch plate. For a hy-drosta tic press ure of 21 p sig, the s tres se s would be a s f ollows. I i I ) In the hoop direction of outer shell: Fh = (21/6.3)(270) = 900 p si i s ( In the bottom plate: x i Fb = (21/ 6.3 ) (2,059) = 6,863 p si 2-57

= _ _ _. - - - - _ - - - _ - - - - - - - - _ y-NuPac PAS-1 Consolidated SAR, Rev. 0, March 31, 1989 (') : . A~,/ - ' The. margin of saf ety on the containment. boundary is then: M. S. = - (38,000/6,863) - 1 = + 4.5 4 2.7.6 Summa ry of Damage From the above analysis.. it can be seen that 'there : will be no significant damage to any of-the NuPac PAS-1 containment systems or radia tion shields from. the hypothetical accident event s eque nce set out in.10 CFR 71. Damage would, j in' fact, be limited to the o ut e r overpack,. and there. would be no reason-to require any rework or remanuf acture of any other part of the packaging' systems af ter such a event, should it actually occur, j 2.8 Soecial Form O No t' applicable, since no special form is claimed. I 2.9 Fuel Rods Not applicable. since no fuel rods would be packaged in the NuPac PAS-1. I i I O 2-58

Psc PAS-1 Consolidated SAR, Rsv. -0, Ma r ch 31, 198 9 ' U 2.10- Anoo ndi x 2.10.1 Move d ' t o An oe ndix 1. 3.1 2.10.2 Analytic Me thods ' This section briefly documents the methodology employed for computer programs used to demonstrate compliance of the package with applicable provisions of 10 CFR 71 for Normal and Hypothetical Accident Conditions. The firs t. two sub se c-tions de al with' the calculation of external and internal ~ forces imposed upon the packa ge, when subj ected to drop events.- These subsections de scribe tech-niques and. computer. progr ams developed by Nuclear. Packaging, Inc. of Federal ' Way, Washington as follows:

f.-

o 2.10.2.1: Describes derivation of energy absorbing overpack load-deflection rela tions. o 2.10.2.2: Describes the methods to evaluate the dynamic behavior of oblique impacts and the associated internal forces generated within the cast body. l 2.10.2.1 Overnack Deforma tion Behavior I The package is protected by foam filled energy absorbing end buf fers, called overpacks. For purposes of analysis, the overpacks are assumed to absorb, in plastic deformation of foam,. the potential energy of the drop event. That is, the analyses assume that none of the drop potential energy is transferred to kinetic or strain energy of the target (the unyielding surface as sumption of 10 CFR 71) nor strain energy in the package body itself. .( There are three orientations of the package where the potential energy of drop is assumed totally absorbed by plastic deformation of the overpacks. At other or ie nta tion s, where rotational ef fect s are important, the methods outlined in j i I-l 2-59 i - ~ ~ ~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

l !?> l' NuPac PAS-1 Consolidstad SAR, Rev. O, March 31, 1989 I r jK l Section 2.10.2.2 are employed. These three orientations where rotational (or qv. pitch) motions play no role in the evaluation of the impact event are: o End Dron - on the circular end surface of the overpack. o Side Drop - on the cylindrical side surface of the overpacks, o Corner Drop - with packa ge center of gravity ' directly above the j struck corner of.the overpack. i For these three or ie nt a t ion s, the pre dic t ion of overpack behavior can. be approached from straightforward energy balance principles: 6 E = W(h + 6) = f F dx (1) 3 o % i Where: W = Package weight - (/ h = Drop height 6 = Maximum overpack deformation F, = Force imposed upon target and package by the overpack at a deflection equal to z. The lef t-hand term represent s the potential e ne r gy of the drop. The right hand term represents the strain energy of the deformed overpack. Each u. there three orientations is treated by an individual computer program reflecting the differing ge ome t ry characteristics of. each event. All three empl oy c ommon e ne r gy balance techniques to as ses s maximum overpack def orma-tions. All three employ a common description of the crushable energy absorb-ing foam. 3 This foam typically exhibits a stress strain plateau of nearly constant stress { up to a total s t r a in of 40-6 0%. Above this strain value, pronounced strain I (-~) ( harde ning effects comme nce reflecting the collapse or consolida tion of the entrapped bubbles within the foam. Accordingly, a tabular definition of foam stress-strain relations is empl oye d in each of the three computer pr ogr am s. l 2-60

NuPac PAS-1 Consolidated. SAR, Rsv. O, March 31, 1989 [ This tabular definition is taken directly from measured properties and accu-U rately. reflect s the. strain hardening behavior of the foam up to strains of about 806. This discussion of these three computer programs proceeds from the geometric-ally simple (end drop) to the most complex (corner drop). 2.10.2.1.1 End Drop (EYDROP) EYDROP performs the. calculations outlined in Equations (1) to (3) for a trial range of descrma tion values, 6. For each trial value of total de f orma t ion, the energy balance of Equation (1) is monitored and reported. Sol ut ion for total overpack de f orma t ion is found by an interpolated balance of Equa tion i (1). EYIROP as sumes a constant foam strain across the crush area, neglecting the af fect s of any unbacked are as. A sample problem inp ut and output may be found in Section 2.10.2.3.1. \\s The force produced by the overpack is simply: F, = Aa, (2) the end area of the package. Where: A=ED, 4 D = ef fective diameter of package a, = 6(e], the foam crush stress at .2 strain of e (3 ) 6(el = the tabular definition of foam stress strain properties e = 1/xu x = deformation ia z = e nd th ic kne s s of ove rpac k u 2-61

NuPac PAS-1 Consolidated SAR, Rev. 0, Ma rch 31, - 1989 O 2.10.2.1.2. Side Droo (SYDROP) SYIROP differs from the end drop solution only in the fact that both deforma-tion and strain va ry from point to point and tot al force, at a, given c ru sh depth, must be found by geometric integration over these points. The de tails on this ge ome t ry a re - found in Figure 2.10.2.1-1. SYDROP assumes all foam is backed, exhibiting homogeneous properties along the package length. For each trial def orma tion value, the force.is found as:

  • max 6 = 2L f o,xdx

] F o Where: L = ef fective length of overpack

  • max = [r 2 - (r - 6)2).5 o

g o,x = 6(e ), tabular definition of foam stre ss-strain prope rtie s, x e = The foam strain at loca tion z. x The strain at a point x is found by reference to Figure 2.10.2.1-1 as: e = Cru sh Deoth =0 ~ #o(1-c s0) x Original Thick, r cose - rgcosy o Where: 0 = sin ~1(x/r ) g y = sin ~1(x/rg) A sample problem input and output may be found in Section 2.10.2.3.2. i 2-62

NuPac PAS-1 Consolidztsd SAR, Rev. O, March 31, 1989 -pp <XXF' ( jLys c X ~ max -Y -0 9 Y ,f-s N __, 2-63 \\ 1

NuP.c P AS-1 Co n s ol i da t e d SAR, Rev. O, Ma rch 31, 1989 C'\\ U 2.10.2.1.3 Corner Drop (CYDROP) CYIROP is like SYDROP excepting that a two dimensional geometric integration is required to assess the overpack crush force at each def ormation. A de-tailed explanation follows. CYIROP treats the corner impact of a cylindrical pa cka ge upon an uny ielding surface. The package it self con sist s of a cylindrical payload portion sur-rounded by a larger cylindrical column composed of a crushable media. So long as the de f orma t ion s of the cru shable media are modest, the problem may be l approximately solved by assuming a uniform crush stress exists over the ellip-tical surface of the cru sh plane (contact surface). CYDROP was developed specifically to address problems of large deformations of. this crushable media and to tre a t ge ome tr ie s where the cylindr ic al overpack e nv elope possesses axi symme tric cylindrical voids (e.g., does not completely cover the cylin-drical ends of the payload package). /~% The.large deformation be havior of the cru shabl e media is accommodated by determining the actual strain of the crushable media at a point. This strain is used to determine the corresponding stress from an implicit t ab ul a r de f ini-tion of media stres s-strain characteristics. The total crush force is found by a double integration over the contact area of the crush plane. Strain energy absorbed by the crushable media is determined by integrating the crush force and it s as socited def orma tion. The packa ge is assumed to be at rest when the computed strain energy value equals the applied drop energy. The geometric calculations for the contact surface and the associated strains are carried out using a moving (x, y, z) co ordina t e system in which the xy plane corresponds to the crush plane; see Figure 2.10.2.1-2. The crush plane l l it self represent s a se gme n t of an ellip se. The contact area is th is ellip se segment, provided no cylindrical end void exists. When a cylindrical end void exists, the contact area of the crush plane is reduced by the r emoval of a second elliptical region associated with the proj ection of this void into the contact plane, 2-64 j

-] l ] 1 fI NuPac' PAS-1 Consolidated SAR, Rev. O, March 31,1989 [

Figure :_ 2.10 '. 2.1'- 2 Corne; Impact Geometry.

g t L (CYDROP) 'R R g- / l p ..,/ / overpack envelope; c / ---payload envelope ( s/ N ~x / / impactsurface3 A '12 / ,_/ void p W a /M 6x7X' V. t/ / / j / 6' /- sin l X /; 1 / I Y I I Re cosa N m Re crush plane (nominal contact area) y u R sine y a r X 2-65

o NuPac PAS-1 Consolidated SAR, ' Rey,' 0,. Mtrch 31,1989 Calculation of strain, is somewhat more complex. In principle, the distance [, f rom, point - (x, y) '.~ in the cruah plane : to the payload is found and de noted, Z Simila rly, the distance.to the undeformed external overpack envelope is gop. f ound and ' de noted, Z The s strain represents ' deforma tion divided by ori-bo t. l', ginal thicknes s, or: f-Zbot 2bo t. + 2 top At any. point '- (x, y), ~ he calculation of Z may follow three' branches, t top according. to loca t ion. The - three pos sible branches relate to the payload surface intercepted.. They are : 1 The Circular Pottom of the Pavload The bottom of the payload cylinder describes an ellipse in the crush. plane. If (x, y) is inside this ellipse, the point is considered backed by the bottom of the payload. - An exception to this ge ne ral s ta t eme nt is noted in: the . discus sion ' of the unbacked re gion, below. The Cylindrical Surf ace 'of the Pavload l The cylindrical surface of the payload describes a rectangular region tangent to th e payload bottom ellip se at it s maj or axes. If (x, y) is out side the ~ bottom ellipse yet ' posses ses an x-coordinate less than the radius of the payload bott om, the point is considered backed by the payload cylinder. ) Unbacked Regions Unbacked regions are of two forms - those as sociated with the cylindrical end void and those near the external surface of the overpack. The unbacked region ( 1 associated with the end void is a point in the crush plane which lies within the ellip se defined by the void circle lying in the plane of the payload l bottom. The unbacked region associated with points near the overpack extrem- ) ities is defined by those point s (x, y) where the x-co ordina t e exceeds the radius of the payload volume. Point s which are unba cke d employ a nom inal crush stress for force int e gra t ion p urpo se s. J t 2-66 I I

NuPac PAS-1 Cons olidated SAR,- Rev. O, - March 31,1989 i

The calculation of Z,g, the distance to the undeformed overpack envelope, may.

3 follow two branches. These branches correspond to intercept s with either ' the. cylir.drical surface of-the. overpack or the circular end of.the overpack. The analytics describing the gecmetry discussed above, consists of the-sequen : tial applica t ion. of a ' series ; of ge ome tric transf ormations - of surfaces: de-scribed in the coordinates. of-the cylindrical. package -(X, Y, Z) to the coordi-nat e s of the contact plane (x, y, z). The s urf a ce s in package' coordinates are: Overnack Cylinder X2+Y2 = R,2 Overnack Bottom Circle 2 = R"2 2 X,y O Z = -l /2 e Pavloed Ovlinder X2+y2=R 2 p Pavload Bot t om Circle X2+y2=R 2 p Z = -L /2 ] p ) l Void Circle a t Pavload X2+Y2=R 2 g Z = -L /2 p Void Circle at Overnack Exterior .X2+Y2=R 2 f Z = -l I2 c 2-67

l i NuPr.c PAS-1 Cons olidat ed SAR, Rev. O, Ma rch 3 3, 1989 A 1 1 '%J 1 j CYIROP also perf orms a se nsit iv ity analysis to determine the amount of un-t backed foam at each incren:ent al cru sh depth. Ad dit ionally, th i s c alc ula t ion is carried over to the impact force and strain energy. The code automatically print s a warning message if the foam strain execeds 80% and the ratio of foam strain energy to kinetic energy is less than one (SE/KE < 1). 2.10.2.2 Ob11aue Impact Dvuamic Analysis Impa ct s at a rb itra ry or ie nt a t ion angles dif fer in two maj or respects from those that occur at angl e s correspond!ng to stable or neutral equilibr ium (e nd, side, and c.g. ove r s truck corner). In the neutral and stable equilib-rium conditions, the entire initial kinetic energy of drop is transf ormed into strain energy associated with plastic deformation of the overpack. At arbit-rary orientation angles, only a portion of this kinetic energy is transf ormed into strain energy at th e impacted end. The remainder of this kinetic energy f3 (%j) becomes rotational motion of the package. The solution approach must properly reflect the continually changing transformation of initial tr an sla t io nal kin-etic energy into ro ta tional kinetic e ne rgy and plastic deformation of the overpack energy absorber. The second maj or dif ference between neutral equilibr ium impact s and arbitrary angle impacts relates to the rather dif ferent load-deflection behavior of the overpacks at low angle (10-30 from hor iz ontal ) orientations. Under neutral equilibrium conditions a maj or portion of the crush footprint is backed by the cylindrical body of the package, allowing strain harde ning ef fect s to stiffen l the overpack load-deflection relation. At low angle orientations (10-30 from l l horizontal) much of the overpack crush footprint is unbacked. Thus, the low l angle load-deflection relations are initially quite sof t, then abruptly harden l l as portions of the crush footprint grow into backed regions. As these low angle or ie nt a t ion s approach hor iz ont al attitudes, th i s t e rminal s tif fe ning phenomena becomes more pronounced. l l l w.] There are two potential solution paths to problems of this nature - a momentum l t f ormula t ion or a direct s ol u t ion of the eq ua t ion s of motion. The mome n t um approach provides an easy and simpl e means to assess the transformation of l 1 2-68 l

l I L f NuPac PAS-1 Consolidated SAR, Rzy. O, March 31,1989 i ,m transnational initial velocities into rotary velocities; hence, total pl a s tic strain energy absorbed by the overpack energy absorber. Unf or tuna t ely, this mome ntum formulation does not produce intermediate values of crush force and crush de f orma t ion needed to assess overpack a t t a chme n t forces nor does it conveniently provide a means to incorporate the varying load-deflection rela-tionships of the overpack as a function of orientation angle. Thus, a direct solution of the equations of motion was selected. The model is illustrated on l l the f ollowing page. l The three key problem variables (crush force, F; crush depth, 6; and or ie n-l ta tion angle, 0) all vary with time for a given orientation angle, O, The g crush force is as s umed t o a c t at the centroid of the elliptical cru sh foo t-i print. For the model show n in the sketch, three indepe nde nt se co nd order l dif ferential equations of motion can be formed: Md X/dt2, p, 2 2 " F' - M 2 Md Y/dt 8 O Id 0/dt2, g( S (a-c) 2 + tB + L/2) sine] F, + sine c 5 (a-c) + [I - ( CB + L/2) cos0] F y sin 0 c Where: M = the package mass a pl. F = the cru sh f orce 2 g = the gravitational constant, = 386.4 in/sec I = the rotational mass moment of inertia (as input) r, = the radius of the body L = the length of the body t3 = overpack bot t om thit kncs s 0 = the instantaneous orientation angle of the package with respect to the horizon p = the mass per unit length 3, i are footprint geometry quantities defined in Section 2.10.2.2.1, a, c, t 2-69

- NuPac PAS-l' Cons olidated SAR, Rev. O. Ma r c h 31, 1989.

.g -

0blique Geometry.and Notation j Y h-cask body Y u O e = x o overpacks L/2 B s p / p* %j (/ 6 x 4, 2 l 5 l l 2-70 j = = _ _. _ _ _ _ J

l NuPac PAS-1 Consolidated SAR, Rsv. O, March 31,1989 i s V) These dif ferential equations are integrat ed subj ect to initial condit ion s, J l as sociated with the moment of impact, t = 0, of: I = 0, Y = 0, 0 = 0, dX/dt a V,,, dY/ dt = Vyo, de/dt = Veo O impact angle, varies = g (2 gh)

  • 3 V

= yo h = drop height Each of the above differential equations requires a continuously updated value of force, F, reflecting both cru sh depth and package orientation, or: F= {(6 ; 0) 7 V This continuously updated value of force, F, is supplied to the integration proces s by means of a two dimensional Lagrangian interpolation of crush depth, 6, and or ie ntation a n gl e, O. The t@ ular data used in this int e rpol a tion 7 consists of a series of complete force-deflection relations for separate or ie nt a t ion angles developed via the CYDROP c omput e r program, described in Section 2.10.2.1.3. The deflection, 6, is expressed in terms of problem 7 variable s as: 5 = (L/2) (sine sine ) + r, (cose - cose,) - Y 7 o The foregoing analysis process for evaluating impacts at oblique or ie nt a tions was cons olida t e d in a NuPac developed c omput er program, OBLIQUE. OBLIQUE integrates the equations of motion for each value of orientation angle versus time until maximum values are found for crush force, cru sh def orma tion, she a r and body be nding moment. At each incr eme nt al time step (inc r eme ntal crush de f orma t ion) overpack ct t a chme nt mome nt s are c omp ut e d, scanned for ma ximum (A values and output. By sw e eping through a s erie s of initial orientation an-l 's) gles, the maximum values of all int e rnal loads are found. At each specified init i al orientation angle, a solution is realized when all internal forces, l 2-71 l

f f l NuPac PAS-1 s consolidated SAR, Rev. O, March 31,1989 l 1 l j momats, and deflections have reached a maximum value. No t e tha t these int e r-l ( Q,/ nal forces, moment s and deflection do not nece s sa rily happe n at the same inst ant aneous angle, O. l 2.10.2.2.1 Overnack Force Analysis This section treats both external and internal forces imposed upon the pack-age. Key to the tre a tme nt of est e rnal force appli ca t ion l oca t ions is an understanding of crush footprint geometry. The cru sh footprint is a sector of the ellip se shown below. The loca tion of the ce ntroid, I, is calculated relative to the ellipse origin. From the ske tch on the f ollowing page, the ge ome tric proper tie s of the ellip-tical crush footprint are: m I a = r/ sin 6 b=r c = 6/(sin 0 cos 0) The area, A, and the centroidal of f se t, i, of the crush footprint are derived as: When c < = a: a A=2fydx; y = (b/a)(a2 _ x ),5 2 (a-c) a A = (2b/a) f )(a2 _ x ).5 dx 2 (a-c A = (b/a) [(na /2) - (a-c)(2ac - c2 ).5 _ 32 sin-1(a-c)] 2 a q s-Ai = ',2b/a ) f x ( a2 _,2 ). 5 dx (a-c) 2-72

l NuPae PAS-1 Consolidated SAR, Rey,' 0, March 31, 1989' ] { -;I ~. j cask body ) ) r r overpack 0 ,/ 6 \\ j' .f% Y F V a l $c i J b / -crush footprint area, A if-k 7-q - >x s N b center of pressure (centroid) v j -= = = 0 2-73 1 l

1 NuPac PAS-1. Consolidated SAR, Rsv. O, Ma rch 31, 1989 t-N 2 x= (2ac - c )1*5/A-l When a < c'< = 2a: 1. 1

A = nab'- A*

l :. i = A* - i* A' A* and I* are as defined for A and I, except tha t c* replaces c. c* =-2a - c Whe n c > 2a : A = nab i=0 2.10.2'.2 2 Overnack Attachment Forces t4 For most ' orientations 'and. crush depths, the overpack crush force - is trans-mitted t o the cask body in direct compres sion; h ence, the forces tran smit ted to the circunferential overpack attachments are near zero. This is not true for near vertical and near horizontal or ie nta tions of the pa cka ge, at ve ry modest crush deformations and crush f orces. In. these ve ry limited situations, the cer.ter of pressure of the crush force can lie beyond the outer extremities 'of the cask body and exert a resultant moment force upon the overpack attach-ments. Significantly, these moments exist only for very modest crush deforma-t ion s and cru sh f or ce s, r e ga rdl es s of or ie nta t ion angle. This is because ~1arger crush deforma tions move the center of pressure t ow ard the ca sk body. At maximum cru sh depth and maximum cru sh f orce, f or all angles of orientation, there are ao overpack attachment moments because the overpack interface forces are all direct compression. The near vertical and near horizontal or ie nt a-tions where attachment moments exist are ske tched below: At t a chment Mome n t = M = F* e, or F* e o 5 Where: e, = Moment Arm about adj acent corner e, = Moment Arm about opposite corner 2-74

l NuPac PAS-1 Consolidated SAR, Rsv. O, Ma rch 31, 1989. .O N o -l l i a a o y 'T 4 6 6 'NEAR VERTICAL NEAR HORIZONTAL F F ba The location of the crush force can be approximated as the centroid of the cru sh footprint area. This approximation is consistently conserva tive. Spe-cifically, for both near vertical and near horiz ontal or ie nt a tions, foam strain hardening ef fects tend to move the ce nt e r of force from the ge ome tr ic center of the crush footprint toward the cask body. In both instances, this tendency reduces the actual moment arm of the crush force to less than that prediced by the loca tion of the crush footprint centroid. The moment arm, as defined by cru sh foo tprint ge ometry, is found below. The location of the ce nter of pres sure r el a t iv e to the opposite and adj acent corners of the cask body can be obtained from the ge ome t ry of the ske tch shown below: Where: q=t sine o f = g cose ga tg + (a - C) eoS0 e=I-f 2-75

1, 1 I tiarch 31, 1989 l NuPac PAS-1 Consolidated SAR, Rev. 0,- \\ l 9 9 !lL l / I r r l l O Oc / t 9 l / c 1 l a 6 \\ / J L C 32 F f ~e a. 'b The l oca t ion of the cent e r of pr es s ur e me as ured fr om a normal to the crush s /- plane passed through the intercept of package center line and body baseplane (point c) is: e = i - [tB + (a-c) c s0 cos0 The mome nt arms, e, and e, repr e s e nting the distance from the center of pressure to the corners of the cask body, are thus given as: - (e + q); Moment Arm about opposite corner e = g e, = (e - q); ifoment Arm about adj acent corner Sign co nve n t ion for these arms is such that the momen t (F*e ) produce s a o cloc kwi se ( sepa ra t ion) moment about the oppo sit e corner and mome n t (F*e,) produ ce s a count e r-cl ockwis e ( s epa ra t ion) mome n t about the adj a ce nt corner. In other words, a positive moment must be resisted by overpack a t t a chme nt bolt s whereas a negative moment implies that the center of pressure is totally resisted by compressive interface forces and there are no a t t achme nt bolt loads. 2-76

f NuPac PAS-1 Consolidated SAR, Rev. O, March 31, 1989 L

j r) q n

In s umma ry, the a t tachme nt moment interface forces between the overpack and body have been derived in terms of package ge ome t ry and three problem vari-ables: orientation angle, crush force, and crush deformation. 2.10.2.2.3 Inte rnal Force s The cask is idealized as a beam impacting on the lower end. The equations of . mo t ion a re formed and used to define station-wise accelerations. These accel-erations, in conj unction with the unit mas s-of the package, form forces which vary along the length of the package. Whan integrated, these forces provide a complete definition of internal thrusts, shears and moments for the package as a function of total impact force ' and orienta tion angle. The derivation is as follows: r-A Y x / T s 6 a-L ny px \\ f F sin a / F cos a / I s 2-77

NuPac PAS-1 Consolidated SAR, Rsv. O. Ma rch 31, 19 89 ,/7 V For a planar rigid body system, the behavior is totally defined by a solution of the three equations of equilibrium written at the c.g. of the rigid body. In the above ske tch, local co ordina t e s are defined at the c.g. with 2xes parallel and normal to the beam. The end impact force is resolved into components pa r all el to these local axes. S umma t ion of forces at the c.g. leads to three rigid body equations of motion: Sum of Normal Force s - Md Y/dt2, p,ing, 2 Sum of Longitudinal Force s - Md X/dt2, p o g,, 2 Sum of Moment s - Id 0/dt2,- ,13, 2 Phere: M = pl, the mass of the body I = ML2,, [3; the mass moment of inertia of the body 12 12 p = the mas s pe r unit length of the body. a = the vertical orientation angle. Note that the mass moment of inertia term given above is valid only for inf init ely slender beams of mas s. A more acc urate mas s moment approxima t ion is provided by the equation: 2 I=ol (3R2+L) 12 Where R is the radius of a cylindrical cask. This increased moment of inertia demonstratably de cre a se s the inte rnal moment. Thas, all mome nt s calculated using the sl e nde r body approximation are co nse rva tive in proportion to the degree which the cask is not sle nde r. A ve ry squa t cask would have an inter-nal moment predicted by OBLIQUE considerably higher than reality. 4 2-78

NuPac PAS-liConsolidsted SAR, Rev. O, March 31,'1989 -O Substituting for the mass and-inertia terms: b-d Y/dt2 = (F/pl) sina 2 2 j' d X/dt2, (pjp[) co,, 2 2 d 0/dt2.= -(6F/pl ) ,gy, .The-normal and longitudinal accelerations _ at a point r are: d 3 /dt2 = d Y/dt2 + (r - l/2)d 0/dt2 2 2 2 n 2 = (2F/pl ) sina [L --6(r - l/2)] 2 = (2F/pl ) sina (-3r + 2L), (varies with r) d S,/dt2=X i(F/pl).cosa, (a constant) 2 The lateral inertial force acting on the body at the rth location is: dV 2 r = p(d 3 /dt } n dr ' O( 0 The corresponding expression for shear is found by integrating this' lateral force from the free end to the rth location: -2Fsina (-3r + 2l)dr = 2Fsina [ (72 _ [2) + 2L (r - L)] V = L2 t2 [ -2Fsina ,2 + [ 2.p 2[,_ 2[2] = ) V = Fsina (3 r2 _ 4[, # [2) j L2 l Similarly, the corresponding moment is found by integration of the shear expression: r=V, O M = Fsina-r' (3,2 - 4Lr + L ) dr 2 r 2 2-79 i

p NuPac PAS-1 Consolidated SAR, Rev. O, !!a r ch 31, 1989 .,~ \\ Fsina g(,3 _ [3) - 2L(r2 _ (2), [2(, _ [)) C/ _g _ r 2 2 3 3 - L -- 2Lr2 + 2L3+Lr-L] 3 Fsina [r L2 Fsina g,3 - 2Lr2, [2 ) M = 7 L2 q In order to verify these ' expressions for shear and moment, they are evalua ted at the boundaries, r = 0, l. r=l: Fsina (3,2 _ 4(, # [2) V = r 2 Fsina (3L2 _ 4(2, [2) = 0; p) = l2 r%J Fsina [,3 - 2Lr2,[2,j M = r [2 Fsina ((3 - 2L3 + L ] = 0; 3 L2 r = 0: [2) I Fsina (3,2 _ 4[ 7 V = r 2 Fsina ([2) = Fsina; = L2 M' = Fsina [,2 - 2Lr2 [2 ] = 0; r l2 j /\\ tiarimum moment occurs when the shear term, V,, equal s ero. For this to oc c ur; 2-80

NuPac PAS-1 Consolidated SAR, Rev. O, Ma rch 31, 1989 ,r 8 3 'J ~ 3r2 _ 4[, # (2 = 0, and the location 'of the moment minimum / maximum is found as; -r = 4l I( 16l 2 - 4(3) L 2).5, 4[ t 2l = l, l/3 6 6 Substituting r = L/3 into the moment expression: M = Fsina. [r3 - 2Lr2, [2,) r [2 3 - 2l 3 + l 3 Fsina I[3 yMax =. 3 2 9 3 = Flsina [(1 - 6 + 9)/27] M,,,= Flsina, at r = L/3 ~ _,] The location of minimum shear can be found where the lateral force expression equals zero: dVr = -2F s ina (_3, # 2[) dr L 1 1 r=fl The wgnitude of axial forces can be found as a function of location as: 2 2 E = -p(d S /dt ) (a constant) dr r 2 2 2 To p(d 5,/dt2) dr = p(d 3 /dt )(, _ [) r L ( T = F cosa (1 - r/l) 2-81 l d

I L NuPac PAS Consolidat ed' SAR, Rev. - 0, ' Ma r ch 31, 1989 [%! For convenience,. the package internal forces are summarized as: l l FORCE EXPRESSION MAXIMIM MINIMJM Thrust F cosa (1 - r/l) F cosa 0 (r = L)- (r=0) Moment F sina (,3 - 2Lr2 +.[2 ) ([,,[f3) r Fl sina 0 (r = 0, l) L2 F sina (3,2 _ 4[, + [2) F sina 'O (r = (1/3)l,l) Shear L2 (r = 0) These forces are graphically illustrated below: r a L 2L/3 L/3 L sina 1 2-82

i NuPac PAS-1 Consolida ted SAR; Rev. O, March 31, 1989 O This Page Intentionally Lef t Blank I t O 2-83

NuPac PAS-1 Cons olidat ed SAR,, Rev. O, Ma rch 31, 1989 ' i 2.10.2.3 Samole Pronrams This section contains sample input and output Tables for the computer codes' EYDROP, SYDROP, CYDROP and OBLIQUE. As a descriptive illus tra t ion, as sume a - package with the geometry described below in Figure 2.10.2.3-1. 60.0 t 40.0 10.0 +- +2 0. 0--+- i /A A /> / A y OVERPACK e' (1,000 lbs) 72.0 1 48.0 PAYLOAD (10,000.lbs) 24.0 / n /2 / h 2.0 FIGURE 2.10.2.3-1 Sample Problem Package Geometry 2.10.2.3.1 End Dron Samole Problem j Table 2.10.2.3-1 contains the da ta input to EYDROP f or the above geome try. 2-84

NuPac PAS-1 Consolida ted SAR, Rev. O, Msrch 31,1989 /~ m ( i TABLE 2.10.2.3-1 'w) EYDROP Input Table PROGRAM EYDROP, VERSION 2, DATE 5/11/81 12345678901234567890123456789012345678901234567890123456789012345678901234567890 V V V V V V V V EYDROP (END DROP) SAMPLE RUN, 20 PCF FOAM OVERPACKS 12000. 60. 20. 12. 30. .2 3. .2 '17 0.00 0.00 0.05 668.00 0.10 1337.00 0.15 1345.00 1 0.20 1315.00 1 0.25 1347.00 0.30 1411.00 0.35 1507.00 ,y 0.40 1673.00 0.45 1901.00 1 0.50 2204.00 0.55 2623.00 0.60 3288.00 0.65 4242.00 0.70 5908.00 0.75 9058.00 0.80 15322.00 V(~h A s umma ry of e a ch ca rd is a s f oll ow s : 1 Card 1 Problem Title Card 2 Pa c ka ge weight, pa cka ge diameter, overpack hol e di ame t e r, overpack e nd thicknes s, drop height. Card 3 Starting crush depth iteration, ending iteration, increment. Ca rd 4 Number of foam c urve data point s. Card 5-N Foam strain, foam crush stress. All the required input pa rame t e rs are straightforward. Table 2.10.2.3-2 contains the sample problem output. Inf orma tion from this Table is essen-i ti ally s el f-e xpl ana t ory; a s ol u t ion is determined when the kinetic energy of / i, the drop is equal to the strain energy (SE/KE = 1) f r om c ru sh ing the foam overpacks. 2-85

' NuPsc PAS-l' Cons olidathd SAR, 'Rev. ' 0, March 31 A 1989 t o O( TABLE 2.10.2.3-2 EYDROP Output 1 EYDROP(END) EYDROP (END DROP)1 SAMPLE RUN, 20 PCF FOAM OVERPACKS PACKAGE HEIGHT- = 12000. (LBS) PACKAGE DIAMETER = 60.00 (IH) HOLE DIAMETER = 20.00 (IN) DVERPACK DEPTH = 12.00 (IN) DROP HEIGHT- = 30.00 (FT) ++++ IMPACT ++++ ++++++ ENERGY ~ ++++++ CRUSH DEPTH ~ , STRAIN FORCE ACC EL ~. KINETIC ' STRAIN. . RATIO .(IN) (LBS) (G)" (IN-LB)' (IN-LB) (S E/KE) p.. \\~s .20 .017 456640. 38.1 4322400. 45664. .011 .40- .033 1036803. 86.4 4324800. 195008. .045- .60 .050 1678867. 139.9 4327200. 466575. .108 .80 .067 2321210. 193.4

4329600, 866583.

.200-1.00 .083 2902211. 241.9 4332000. 1388925. .321 1.20 .100 3360248. 280.0 4334400. 2015171. 463 1.40 .117 3474214. 289.5 4336800. 2698617. .622 -1.60 .133 3461535. 288.5 4339200. 3392197. .782 1.80 .150 3380354. 281.7 4341600. 4076391. .939 2.00 -.167 3353421. 279.5

4344000, 4749769.

1.093-2.20 .183 3325186. 277.1 4346400. 5417629. 1.246 2.40 .200 3304955. 275.4 4348800. 6080643. 1.398-2.60 .217 3318173. 276.5 4351200. 6742956. 1.550 2.80 .233 3345913. 278.8 4353600. 7409365. 1.702 2-86 1

NuPac PAS-1 Consolidated SAR, Rev. O, March 31,1989 In this case, a linear interpolation of the SE/KE ratio re sul t s in a crush ld' depth of approxima t ely 1.88 inches and an ac c elera t ion of almo s t 281 g's. Equations for EYDROP are discussed in Section 2.10.2.1.1. 1 2.10.2.3.2 Side Droo Sample Problem Table 2.10.2.3-3 contains the data input to SYDROP for the sample problem package ge ome t ry. PR00 RAM SYDROP, VERSION 2, DATE 5/11/81 12345678901234567890123456789012345678901234567890123456789012345678901234567890 V V V V V V V V SYDROP (SIDE DROP) SAMPLE RUN, 20 PCF FOAM OVERPACKS 12000. 72. 60. 40. 30. 17 0.00 0.00 0.05 668.00 0.10 1337.00 0.15 1345.00 0.20 1315.00 fm 0.25 1347.00 ( ) 0.30 1411.00 %_/ 0.35 1507.00 0.40 1673.00 0.45 1901.00 0.50 2204.00 0.55 2623.00 l 0.60 3288.00 0.65 4242.00 0.70 5908.00 0.75 9058.00 0.80 15322.00 150 .2 5. .2 TABLE 2.10.2.3-3 SYDROP Input Table A s umma ry o f e a ch ca rd i s a s f oll ow s : Card 1 Problem Title Card 2 Pa cka ge weight, pa cka ge length, p ac ka ge diameter, payload di a me t e r, drop height. ,.3 Card 3 Number of foam curve data points. (v) Card 4-N Foam strain, foam cru sh stress 2-87

NuPac PAS-1 Consolidated SAR, Rev. O, Ma r ch 31, 198 9 (, s~. Card N+1 Numbe r of integration points, starting crush depth itera-t io n, e nding itera t ion, incr e me n t. As with the End Drop problem, all r equired input parameters are straight f orwa rd. The cho se n n umbe r of integra tion point s (150) is based on a para-me ter study for the side drop geome try. Increasing the nunber will alter the end results o nly a ve ry small pe r ce nt a ge. As with EYDROP, a s ol ut ion is determined when the kinetic energy of the drop is equal to the s t ra in e ne rgy from cru shing the foam overpacks. Table 2.10.2.3-4 cont a ins the SYDROP out-put. Equations for SYDROP are discussed in Section 2.10.2.1.2. 0 1V m f-I LJ 2-38

uM lE @ ? *9' $ s [ 4 1 / 2 ~ 0 / 4 8 5

5..

0 3 9 0 S K C A P R Y E V R O ) S)))) 'A M BHNNT A LIIIF T O ((((( F E 0000 F 00000 S00000000000000000 S00000000000000000 I C 0... P 02000 E R 27643 R08755717314382882 0 1 E T 6341410700284052 P 2 L S 6333345692622903 B 111111112234595 0

===

A 1 ~ N T R U R R E S P HT S E TE E L GM R G P NA T N05050505050505050 M EI S I00112233445566778 N A LD A S S R0 LLR V T I AAE S ) G P TNNT N O HRRE I A R GEEM A D ITTAT R K EXX7H T E HEE 3G S C D I I EEEDE T A S GGGAH P12345678901234567 ( AAAD 11111111 P' KKKLP P CCCYO O AAAAR R R PPPPD D A Y S E L C U H ) E D I S ( P O R D YS i=*

AT RN00 0000000000000000 0 000000000 0 4 TO89 0000000000000000 000000000 1 SC / TE 0000000000000000 0 000000000 2 FFGL 0 OO / 4 NT00 0000000000000000 0 000000000 8 ON78 0 0 0 0 0 0 0 0 0 0.G.0 0 0 0 0 0 000000000 IE TCTE 0000000000000000 0 000000000 URGL BE IP 5 R 0 0000000000000000 0 000000000 5 T 0000000000000000 0 000000000 7 S 0 I E 0000000000000000 0 000000000 D L 0000000000000000 0 000000000 3 1111111111111111 1 111111111 9 0 ) 2941011921548697 0 193281184 OE 0025940642098889 0 125816163 S IP 0000012234556789 0 123467902 K T/ C AE 1 111111122 A RS P + ( R + Y E + V + R O ++ A M ) 2287295877398759 0 430355393 ) A NB 7725639780161033 6 496829264 T O Y IL 1190071306365862 4 081504266 d F G A-7741113669521137 8 315429935 eu E R RN 302917682989274 5 460779558 F E TI 12368148159483 3 839406307 n i I C N S( 111222334 4 455677899 P E t R n 0 o P 2 + C ( + L 0 + A) 0000000000000000 4 000000000 l N + IB 0000000000000000 5 000000000 4 N R U + TL 4826048260482604 4 826048260 R + N-2479246914681368 8 035802570 3 P EN 2222333344445555 5 666677778 2 E TI 3333333333333333 3 333333333 L O( 4444444444444444 4 444444444 G P P 0 M 1 N A S 2 I E 0043363048998889 1 316909991 ) G P L L O E) 6979216887654321 2 111257163 BA A R + CG 135801234567890 0 123456891 D + C( 11111111112 2 222222223 T K + A E + C D I T A S C ( A P P P M O I E) 7992403849382687 2 511160137 R R CS 1862251081417158 3 625836249 D + RB 7220078001968027 3 224760224 A Y + OL 1892885614207532 5 539495227 S + F( 7241819367899012 2 357151865 E + 247925567890234 4 567902357 11111112222 2 222233333 L C U E) + M3 6850023302017558 7 272840503 N + UN 6843472988037308 9 880261630 LI 135792470470481 1 594827161 E O( 1112223334 4 445566778 N V A L P H S U 0170163099812404 7 694253800 R A) C E2 8391694230339231 2 714542848 RH 9059000975295284 4 950505948 0 1 122222222 + AI 4789123345667889 9 901122233 + ( 111111111111 ) E D I S ( HH) 0000000000000000 0 000000000 P STN 2468024680246802 2 468024680 O UPI R RE( 111112222233 3 333444445 D CD Y ye c) S ii(

NnPac PAS-1; Consolidated SAR, Rsv. 0, March 31,1989 [ )- ' 2.10.2.3.3 ' Corner Droo Sample Problem j \\_ /c Table 2.10.2.3-5 contains the data input, to CYDROP f or 'the sample problem pac ka ge ge ome t ry. PROGRAM CYDROP, VERSION 3, DATE 2/07/84 12345678901234567890123456789012345678901234567890123456789012345678901234567890 V V V V V V V V CYDROP (CORNER DROP) SAMPLE RUN, 20 PCF FOAM OVERPACKS 12000. 72. 60. 48. 40. 20. 24. 30. 39.8 1100. 17 0.00 0.00 0.05 668.00 0.10 1337.00 0.15 1345.00 0.20 1315.00 0.25 1347.00 0.30 1411.00 0.35 1507.00 0.40 1673.00 OA5 1901.00 0.50-2204.00 0.55 2623.00 0.60 3288.00 r [ *I 0.65 4242.00 \\/ 0.70. 5908.00 0.75 9058.00 0.80 15322.00 25 25.512 15.37.512 TABLE 2.10.2.3-5 CYDROP Input Table A s umma ry of e a ch ca rd i s a s f oll ow s : Card 1 Problem Title Card 2 Pa cka ge weight, pa cka ge length, Pa cka ge diameter, payload length, payload diameter, overpack hole di ame t e r, overpack ' length. l l' t \\, i 1 Ca rd 3 Drop height, angle from vertical. 2-91 ) l

. - -. _ _ _ _ = _ _ ~ NuP.c PAS-1 Consolidated SAR, Rev. 0, March 31,1989 /. i a Card 4 Unbacked f oam cru sh stress, number of foam curve data ,Q. points. Card 5-N Foam strain, foam crush stress. Card N+1 Numbe r of int e gra t ion points along crush plane s emi-min or ellipse axis, ntsnber of integration points along crush plane s em i-maj or ellip se axis, starting cru sh depth it e ra t ion, ending iteration, increment. The angle from vertical to e xec ut e a center of gr av ity over struck corner impact is calculated as: 0 = TAN-1 (60.0/72.0) = 39.8 The unbacked foam crush stress is the foam compressive yield strength,. about 1,100 p ei f or the 20 pcf foam. Program default for this entry is t o as s ume b the foam crush stres s at 10% strain, a value usually close to'the compressive O strength. Similar. to SYDROP, the ntenbe r of integration points cho se n for CYDROP - (25) have be e n de t e rmine d from a pa r ame tr ic eval ua t ion. Additional points are unne ce s sa r ily time consuming and provide very li t tl e change in the e nd re-s uit s. Table 2.10.2.3-6 contains the CYDROP output for the sample problem. CYIROP also' calculates the percentage of foam in the crush area less than and greater than 80% foam strain in the backed and unbacked regions. The c urre nt foam data used in the drop analyses provide accurate empirical relationships to 80% strain. This calculation is carried into the force and strain energy resul ts f I to provide the program user with information on solution reliability. l Energy equilibrium for the sample problem may be linearly interpolated to a l a l cru sh depth of about 10.6 inches and an ac celera t ion of 106.5 g's. The . [V distribution of strain energy ratios for this problem indicate the foam stress l data interpolated from the input file never exceeded 70% strain. 2-92 L___________.__

NuPac PAS-1 Consolidated SAR,. Rev. O, Ma r ch 31, 1989 .,- T Linear interpolation of the sensitivity analysis shows approximately 24.5% of !'O. the total crush area was unbacked. Addit ionally, f ur the r interpolation shows the unbacked foam accounted for about 17.5% of the total force and 8.7% of the strain energy at SE/KE = 1. Eq ua t ions f or CYDROP are discussed in Sec tion 2.10.2.1.3. (V 1 i 'v 2-93

. \\ 4 1 /2 0 / 4 8 9 ) L 1 A 1 C 1 I SS T II XX 0 R 1 E TAA V A S EE K O ESS C T SPP A PII P T ILL R R LLL E H LEE V E 'Y O L RR E EOO R M E NNJ A ) R ) AIA A D S)))))) )G I LMM S F BNNNNNN TE S P-E T LIIIIII FD P II U F ((((((( (( ( HMM L E C ) SEE A P 000000 00 0N USS V S00000000000000000 0 0I R S00000000000000000 I 0000000

0. 8

.A COO S E 0 0.... 0R TT S R08755717314382882 R 2 0200804 0. 2762442 39 0T 2 E T 6341410700284052 P 1 3 1S /LL R S 6333345692622903 N 1 1EE T 111111112234595 f 0 U T LL S 1 R

=====

=C NLL R RA R P IAA E ~ EI E RR S P L HTDHT 0 DAA V P TE TE 1 EPP M GMEGM T N G A NALNA ST ASS I N05050505050505050 S EIOEI SA UTT A I00112233445566778 N LDHLD E LNN R A ) E RN AII T R0 I P LLLEE L TE VOO S T O AAAPPH G SK EPP S G R TNNNOOT N A L D HRRRLLG A HT N55 A A GEEEEEN S-I22 T R ITTTVVE TN UT A N K E EXXXNNL HO RL R E N WEEEEE GI CU T M C R K IT A S I G EEEEDDC EA UF /== R T A C GGGGAAA HT AE S E P12345678901234567 ( AAAAOOP N ED SXY P 11111111 P KKKKLLR PE T( ENN X P CCCCYYE OI A R E O AAAAAAV RR L T R R PPPPPPO DO P S D A Y C E L C U N ) R E N R O C ( P O R 1, D Y ,N C Yo* f

2 5 000000000000000000000000000007 Y 9 000000000000000000000000000008 B T 00000000000000000000000000000 E 3 G G OA A IE P TR05 000000000000000000000000000207 AA99 000000000000000000000000000230 R TTE 000000000000000000000000000 11 o)v NCGL IA AT ? RN00 000000000000000000000000402905 4 TO89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.c.0 0 4 3 8 0 7 1 1 SC / TE 000000000000000000000000 12446 2 FFGL 0 OO / 4 NT00 000000000000000000000719952262 8 ON78 000000000000000000000636471720 IE TCTE 000000000000000000000 13456666 URGL BE IP 0 R 0 00000000000000000000039175;748 000000000000000000000363090978 2 T 7 S 1 I E 000000000000000000000986521875 1 D L 000000000000000000000999999888 111111111111111111111 0 1 S ) 013757351428122212525559531283 K OE 000012469260629766704088203284 C IK 000000000112233456790235814828 A T/ P AE 1111122233 R RS E + ( V + Y O ++ R M + A + A O ) 568363247575661072705474794176 F NB 558668604260419119941651500290 ) T Y IL 396266498374126220376837476585 d F G A-21157929223789443889778596711 e E C R RN 1361889411412883304679610791 u P E TI 1123579147049406310149673 n I N S( 111222344567890247 i 0 E 1111 t R 2 no P + C N + ( 0 U + ) 482604826048260482604826048260 ,4,*V R + CB 483726059482716049382615048372 6 R + IL 124578012457801345780134678013 m E + T-628406395173962840629517395284 3 P L EN 233455667889901123344566778990 P NI 333333333333344444444444444445 2 M I( 444444444444444444444444444444 G A K 0 S N 1 ) 2 I P 171390400412931493242690219574 E O G R L L D E) 2460371505074187780390712345 B A + CG 1112233445667891236826174 A R + C( 1111122334 T K E + A N + C R O T A C C ( A P P P M O I E) 654174270556535617846573049667 R R CS 873353555085972110365077934983 D + RB 373129452342706231712463583292 A Y + OL 185139042412088667612380625265 C + F( 2581605062964322482372455694 E + 1122334456789013469261743 111111223345 L C U E) + M3 221390849496560895500449944993 N + UN 13607445942249546076717682879 LI 11234579135814815948384951 E O( 111122233344556678 N V A L P H S U 680996676114837982263234554020 R A) C E2 969435953346949520865432109864 i/ RN 24703604826059494838383837272 m&L + AI 11122233444556677889900112 ) + ( 11111 RE N R O C ( HH) 124567801234678902345689012456 P STN 505050516161616172727272838335 O UPI R RE( 11223344556677889900112233445 D CD 11111111131 Y yv* C !I! l

IYO ( NTGI 013757351428122212525559531283 IERT 000012469260629766704088203284 4 ANEA 000000000112233456790235814828 1 RINR / TKE 0 1111122233 2 S 0 / 4 8 N N IT 000000000000000000000000222454 +ODAG +IER 0 0000G0000000O00000000000 13605 +TKT 0 1 7 +UCS 8 2 BA YIBXT 000000000086268987629631949547 1 GR AL RT M 000000000099987654320987541849 1 ES 000000000099999999999888888776 0 NI D 1111111111 1 ED E K 000000000024842123481479859118 S NT NC K IC UA 0000000000 12345679012344554 C AP B 111111111 A R P T R S ) E NY S 568363247575661072705474794176 V S LIG B 558668604260419119941651500290 Y O N +AAR L 396266498374126220376837476585 O +TRE 21157929223789443889778596711 R M I +OTN N 1361889411412883304679610791 A T +TSE I 1123579147049406310149673 A O P ( 111222344567890247 F M 1111 T U F S E C S N P A N IT 000000000000000000000000337439 I +ODAG 0 N +IER 0 000000000000000000000000300098 R 2 I +TKT 0 12334 A +UCS 8 R BA P N T IBXT 000000000705306971432888260785 0 U S ER AL R CT M 000000000998753098532998712368 R F RS 000000000999999988888777776543 E O OI D 111111111 P L FD E P S K 000000000305704139678222413995 M I TT NC G A S CC UA 000000000 11256901467001987532 S Y AP B 11111222111111 N L P ) A M I P N I O A 654174270556535617846573049667 G R LE ) 873353555085972110365077934983 D Y + AC S 373129452342706231712463583292 A T + TR B 185139042412088667612380625265 R I + OO L 2581605062964322482872455694 K E V + TF ( 1122334456789013469261743 N I 111111223345 C R T O I A C S ( N N N P E O IT 000000000000000000000000438301 P S IDAG O +TER 0 000000000000000000000000 12468 R R +UKT 0 D +BCS 8 A Y +IA C RBXT 000000000705158463037786612895 E T AL AS M 000000000998742975174973205196 L EI 000000000999999888877666665544 RD D 111111111 C A E T K 000000000305952647073324060914 U HC NC SP UA 000000000 11257024925026782345 N U B 111122333334444 R C ) 079658310250754569384075413793 + LA 2 124703715938272727384051738384 + AE N 11122233445566778990011223 + TR I 1111111 + OA ( T ) HH 124567801234678902345689012456 R ST ) 505050516161616172727272838383 E UP N N RE I 11223344556677889900112233445 R CD ( 11111111111 O C ( P O R 7e* D YC

l-NnPac PAS-1 Consolida ted SAR, Rev. O, March 31, 1989 /- f-w 2.10.2.3.4 Obl ic ue Impact Sample Input Table 2.10.2.3-7 cont a in s the data inp ut to DBLIQUE for the sample problem pa c ka ge ge ome t ry. Equa tions for OBLIQUE are discussed in Section 2.10.2.2. PROGRAM DBLIQUE VERSION 7, DATE 9/15/83 12345678901234567890123456789012345678901234567890123456789012345678901234567890 V V V V V V V V OBLIQUE SAMPLE RUN, 20 PCF FOAM OVERPACKS l 48. 20. 24. 10. 12. 31.056 12574. 386.4' .25 12. .25 10. O. 5. 10. 20. 30. 40. 50. i 60. 70. 80. 85. -527.45 85. 5. -5. O. 3. ,7~ \\ TABLE 2.10.2.3-7 OBLIQUE Input Table A s umma ry of e a ch ca rd i s a s f oll ow s : Card 1 Problem Title Card 2 Payload length, payload radius, overpack length, overpack side thic kne s s, overpack end thicknes s. Card 3 Packa ge ma s s, radial mass moment of inertia about the center of gr av ity, gr av it a t ional ac celera t ion. O Card 4 Starting deflection, e nding deficction, deflection d incr e me n t, number of angles, print control. 2-97

" NuPcc. PAS-1 Cons ol! dat ed SAR, Rsv. O, Ma rch 31, 1989 Card 5-N Angles (Six per card; 24 maximum) Ca r d N+1 ~ Pac ka ge fre e-f all. velocity, output starting angle, output e nd i n g angle, a n gl e increment,. f r ic tion coef ficie nt, estimated deflection, ' package tran sla t ional velocity, package totational velocity. 2 The' package mass, assuming a gravitation acceleration of 386.4 in/ sec, 'is: 2 12,000/386.4 = 31.056 lb-sec fg, m = The radial mass moment of inertia of the system is calculated, knowing the ~ payload and overpack weights, using composite sections: For the Payload: 2., g 73)j4 2 I = m(R p

  • --2 0. 0 +

-+ 10.0 + 12.0 7 n: A A + / 7 + 30.0 / J. l 18.0 72.0 h 24.0 v V Y o A A 'l 2-98

J y,. t f ,s . NuPac ' PAS-1-: Cons ol' ids t e d SAR, ' Rev. O,- k r ch 31, - 19,8 9 ~ 1 Where:- 2 .m.= 10,00'0/386.4 = 25.88 lb-sec jg, l .R =. 4 0.0/2 =' 20.0 in l 48.0-in l L =

Thon, 25.85 -[(20.0)2 + (48.0)273)f4 I

= p 2 7,557'Ib-in sec = For the overpacks: m(R :# g /3)/4 - m (R 2+g /3)/4 2 2 I = np y 1 -2m2 (R2 2 /3)/4 - 2m2 2 - 2m3 1R +b I3)/4 +L d 3 2 2 -2m3 3 d Where: 2 EnR g m = E Wop / (386.4 Vgp) = W 1,000 lbs = ap V,p n[(30.0)2 - (20.0)2]24.0 + n[(20.0)2 - (10.0)2]12.0 = 3 49,009 in = 1,000/ [(386.4)49,009] = 5.28 (10)-5 '1b-sec f t,4 2 E = 30.0 in R = 72.0 in L = 2-99

NuPac PAS-1 Consolidated SAR, Rev. O, Ma rch 31, 1989 ,x 6 i LJ 5.28 (10)-5 n (30.0)2 72.0 = 10. 75 lb sec fi, 2 m = 2 my EnR b = 1 l 30.0-in R = 1 24.0 in L = 1 5.28 (10)-5 (30.0)2 24.0 = 3.5 83 lb sec ft, 2 n ml = EnR b = m2 2 2 20.0 in R = 2 12.0 in L = 2 () 5.28 (10)-5 (20.0)2 12.0 =.7962 lb sec /in 2 m2 n = \\_/ 2 E n 113 y,3 = m3 R = 10.0 in l 3 12.0 in L = 3 2 m3 5.28 (10)-5 n (10.0)2 12. 0 =.19 91 lb-sec f g, = 18.0 in d = 2 30.0 in d = 3

Then,
10. 75 [ (30. 0)2 + ( 72. 0)2/3]/4 - 3.583[(30.0)2 + (24.0)2/3]/4 I

= P ,x -2 (. 7962) [(20. 0)2 + (12.0)2/3]/4 - 2 (.7962) (18.0)2 2-100 ________._J

+ 3 sy - NuPac PAS-1 Cons olidated SAR, Rev. ' 0,- Ma r ch 31, 1989 -2 (.19 91) [ (10. 0) 2 ' + - (12. 0) 2/3]/4 (.1991) (30.0)2 -1 l 2 5,017 lb in sec = 2 I 7,557.+ 5,017 = 12,574 lb-in sec = The starting deflection, -' ending de fle ct ion, and deflection increme nt - are - values ' set to build a ' unif orm force / deflection table for use by- 0BLIQUE. Prior to use of' 0BLIQUE, a tape holding force / deflection data (Table 2.10.2.3-0

8) over. the. range of angles from 5-85 is created by CYDROP.

OBLIQUE,- in turn, ' reads. the tape and-converts the force / deflection data' to a uniform table for each specified angle. Note that the angles specified in OBLIQUE are with respect to horizontal whereas CYDROP references vertical. The magnitude of the ending deflection must be chosen such that it is greater than the maximum ' deflectiot. expectedsin OBLIQUE yet need not exce ed, the _ maximum possible de-flection in the corner drop. evaluation. The print control determines whether the output will be a tabular sunmary or a time history table. Package free-fall velocity is based on the drop height. From the equations of motlon: -(2gh).5 V = Where: 2 386.4 in/sec = g 30 f t. = 360 in h =-

Then, l~

b -[.5 (386.4) 360].5 = -5 27.4 5 in/ sec V = l O L 1 j 2-101 2_ J

l NuPac PAS-1 Cons olidat ed SAR, Rev. O, Ma rch 31, 1989 [] TABLE 2.10.2.3-8 '~ CYDROP Force / Deflection Data i 12345678905.234567890123456789012345678901234567890123456789012345678901234'47890 V V V V V V V V .55 11.01 .55

32367, 128991.

205207. 334008. 477903. 583552. 677442. 758737.

845422, 934841.

1038385. 1135477.

1268206, 1515395. 1751333. 2111306.

2821622. 3527691. 5437239. 8027229. .60 11.93 .60

18240, 67473.

121760. 173898. 258462. 368714. 504353. 634713. 743455. 842066. 941411. 1049548. 1178914. 1320453. 1509786. 1859217. 2337319. 3044434. 4269526. 6258679. .67 13.49 .67 12193. 56671. 91499. 113057. 156188.

229526, 313617.

404088. 501563. 609987. 733768. 880232. 1023819. 1173033. 1357047. 1585754. 1992534. 2555789. 3396621. 4655222. .73 14.65 .73 5028. 21986. 51813. 100182. 163505. 232741. 304621. 381703. 465956. 560855. 668431. 792142. 937642. 1114234. 1326595. 1593802. 1971609. 2595205. 3524784. 4638336. .77 15.39 .77 3109. 20093. 57039. 108821. 168429. 234305.

311057, 394634.

486876. 592357. 705257. 841422. 999463. 1197891. 1441110. 1764085. s [ ') 2248183. 2989067. 4003001. 5295208. 's~,/ .78 15.63 .78 4255. 26380. 68840. 123526.

187139, 259087.

340108. 434086. 543328. 667914. 804180. 958380. 1156760. 1371183. 1650632. 2040733. 2621016. 3413833. 4478667. 5815325. .77 15.39 .77 4057. 26494. 76869. 148989. 234326. 330652. 436820. 555823. 687002. 828086. 979995. 1150114. 1341620. 1566648. 1844710. 2230726. 2842792. 3730696. 4961650. 6537525. .73 14.69 .73 18772. 68814. 132583. 236890. 366604. 500474. 640691.

801924, 979105.
1151239, 1316710.

1487169. 1694789. 1946953. 2263342, 2722947. 1 3482689. 4608111. 6214733. 8341342. .68 13.55 .68 52820.

216804, 345960.

547724. 819178. 1093308. 1315683. 1515427. 1750771. 1988978. 2293295. 2677752. 3097958. 3572765. 4040177. 4728886. 6012544. 8077597. 10828178. 14261926. .64 12.83 .64 132903. 468917. 829010. 1274790. 1673088. 2085488.

2617955, 3024971.

3080822. 3176792. 3326468. 3552364. 3876190. 4362971. 5134758. 6525535. 9073079. 12696963. 17334716. 22804149. t \\ 2-102

NuPac PAS-1 Consolidated SAR, Esv. O, March 11, 1989 ,The outp ut - starting angle, e nding angl e, and, angle incr eme nt - specify the OBLIQUE analysis package angle s of impact with respect : to the hor iz o n.' The-0 0 sample problem specified solutions at ' angles of 5 to 85 in 5 increme nt s.. The friction coef ficient is usually set to zero. Packa ge transnational and rotational velocities are parameters specified to study the effects of second-a ry impa c t s.. The sample problem. output for OBLIQUE is found in Table 2.10.2.3-9. For each specified angle of impact the magnitude of FMAX is determined as the maximum value of the vector summation of the thrust and shear forces at some instant-aneous package an'gle during the analysis. Note that the maximum value of the pa cka ge internal force s, moment s, and deflections do not necessarily happen at the same instantaneous angle. When all pa rame te rs have achieved a maximum value, the problem terminates for that spe ci fie d angle of impact. OBLIQUE continues the analysis at each angle of impact. Additionally, OBLIQUE-utilizes - the methods delineated in Section 2.10.2.2.2 t o de t e rmine the maximum overpack sepa ra t ion mome nt s about the oppo s it e and adj ace nt corners in the overpack. As before, a sol ut ion oc c ur s when. the maximum value is found for each moment at some instantaneous angle, no t nece s- ' sarily the same instantaneous angle for each moment. A negative mome nt de-notes overpack compression and a positive moment overpack separation. l l 2-103

f NuPac PAS-1 Consolidated SAR, -Rev.~ 0,

bk r ch 31,.1989

) TABLE 2.10.2.3.9. g OBLIQUE 0UTPUT NUPAC-0BLIQUE ANALYSIS-0BLIQUE SAMPLE RUN, 20 PCF FOAM OVERPACKS PACKAGE GEOMETRY-LENGTH = 48.000 RADIUS = 20.000 OVERPACK LENGTH- = 24.000 = 10.000 OVERPACK SIDE THICKNESS OVERPACK BOTTOM THICKNESS = 12.000 PACKADE MASS PROPERTIES-MASS = 31.056 = 12574.000 -MASS MOMENT OF' INERTIA' = 386.400 GRAVITATIONAL CONSTANT . SOLUTION CHARACTERISTICS-IMPACT VELOCITY (YDOT) =. -527.450 (XDOT) = 0.000 (THETADOT): 0.000 = 0.000 FRICTION COEFFICIENT = 3.000 ESTIMATED CRUSH DEPTH } ) THETA 0 FMAX SHEAR THRUST MOMENT DEFLECTION CLEARAN 85.0000 1730212. 114405. 1727493. 813544. 3.30 9.23' 80.0000 1330952. 187846. 1319863. 1335795. 4.81 '8.36 75.0000-1240256.

266781, 1213409.
1897113, 6.56 7.23 70.0000

.1181825. 352957. 1130530. 2509913. 7.43 6.95 65.0000 1166252.

447885, 1078825, 3184961.

8.70 6.20 60.0000 1240948. 592237. 1091295. 4211462. 9.62 5.70 55.0000 1281835.

736041, 1049450.

5234069. 10.29 5.27 50.0000 1270208. 845096. 948282. 6009575. 10.57 5.04 45,0000 1180489. 879539. 789060. 6254501. 10.55 4.91. 40.0000 1054731. 854279. 622354.

6074872, 10.24 4.90 35.0000.

940457. 811764. 482942. 5772543. 9.73 4.96 '30.0000 847985. 766511. 372050. 5450742. 9.06 5.08 25.0000 795586. 745525. 288112. 5301510. 8.26 5.261 20.0000 723357. 693598. 209484. 4932252. 7.32 5.68 15.0000 641400. 628788. 136961. 4471379. 5.92 6.19 10.0000 810749. 805405. 109797. 5727323. 5.81 5.47 5.0000 579215. 577510. 44411.

4106735, 3.28 7.62.

I O i f 2-104 l

- NuPac PAS-1 Cons olidat ed - SAR, Rev. O, March 31,1989 ( 2.10.2.4 NuPac Comput er Code Quality Assurance NuPac. comput er analysis programs are maintained in accordance with a formal quality as surance progrtm approved by. the N. R. ' C. unde r cer tif ica t e number-0192 that comply with A.N.S.I. N4 5. 2. These prov isions are applied to both NuPac authored s of twa re and ve ndor ' FUpplied software. Ve ndors of C omput e r se rv ic e s, such as Boeing Comput er Se rv ice s, have demonstrated that their quality standards are in accordance with the provisions of ANSI N45.2. Doc u-mentation of such compliance is maintained in NuPac Quality Assurance f il e s. The requirement s of ANSI MS.2 are interpreted to impose the following stipu-lations upon computing sof tware: ANSI N45.2 Section-Rea ui reme nt 4.3 The suppl ie r shal l requi re the. ide ntifi-ca t ion and pe rf ormance of verification /- qualifica tion evaluations which demonstrate that c omp ut e r c ode s are capable of produc-ing information of suf ficient acc ur acy to sa tisfy de sign requirement s. All cal c ul a tion s and computer input data shall receive documented, indepe nden t, in-house verifica tion. 7.0 The supplier sh all establish re spon sibi-lities and procedures relating to computer code co nfi g ura t ion identification and con-figuration control. I 2-105 l

1 L-3 h<: ' a! L NuPac' PAS-1 Consolidated SAR,'Rsv. O, March 31, '1989 r(/~

ANSI N45.2 l

Section Requirement j L { NOL. - Configuration identification is':the. e s t ablishme nt and use ' of a unique ide nti-fier for a code. ve r s ion. Co nfigura tio n control includes the doc ume nt a tion ' and -- pre se rva t ion of a code version to assure its retrievability and incl ude s s imil a'r pre se rva t ion of - input for. computer runs to assure that output results can subsequently be reconstructed. A valid computer solution. requires that each: of the following test s be satis-fied: o-Does the' analytic method accurately represent the modeled physical t proces ses? o Does the computer code fully and accurately impl eme nt the analytic. method?- o Does the input problem data accurately reflect the physical proper-ties of the. situation being analyzed? o Can the. resul tant output data be uniquely identified as resulting f rom a par t ic ula r input dat a se t ? NuPac procedures assure that each of the above questions is answered in an af firma tive f a sh ion. These procedures include the f ollowing co nfigura tion control element s. I 1. Each saf e ty analysis report or design analysis summa ry prov ide s a complet e description of appropriate analysis methods impl eme nt e d in NuPac developed sof tware. 2-106

NuPac PAS-1 Consolidated SAR, Rev. O, Ma rch 31, - 198 9 . ~/m Version ide ntifica tion for ' each run of. the computer code i s ma in- / J 2. V tained by the automatic appearance of current code. revisions numbers and dates in both output headers and day file listings. 3. All superceded versions of codes are maintained on file. 4. All input data is aut omatically echoed on output for ve rifica tion and checking purposes. 5. All output data, including plots, is ' labeled with a machine gener-ated name, time and date corresponding to the run which generated ~ the repor ted engineering result s. Ve rifica tion of me thodology and code acc ura cy involve s one or more of the following steps: 1. End-to-end experiments. These expe rime nt s simul t aneou sl y t e e t (d the accuracy of both methodology and code implementation of me thod-ology. For example, a full scale series of 30' drop tests conducted in September, 1980 on the Chem-Nuclear Systems, Inc. CNSI-13C (II) package demonstrated that the ove r all predictive error of NuPac' impact dynamics sof tware is about 6%. (Reference page 2-91, Section 2.7.1.2 of CISI-13C (II) S.A.R.) 2. Comnarision with Alternative Methods The method of comparison varie s with the particular t e chnol o gy involved. Two examples are described below. a. Impact Anal y se s : Alternative energy balance and momentum me-thods are used to check point time history impact dynamic s s ol ut ion s. The se e nd-t o-e nd chec ks have be en pe rf ormed a t three orientations where the dynamic equations of motion become 1 simplified: e nd, side and c.g. ove r struck corner. At o the r i orientations, the impact dynamic solution me thod has been veri-fled by momentum techniques combined with ide alized perfectly plastic energy absorber as sunptions. 2-107 4

I. I -) NuP.c PAS-1 Consolidated SAR, Ray. 0, Ma rc h 31, 1989 - D' . a j t - b. Thermal Analyses: Steady state s olut ion s are checked by in-de pe nde nt iteration me thods and a caref ul check of model. heat I flow balan e s (equilibrium). Tran sie nt a'naly se s are. indepe n- ] deutly checked by Schmidt plot graphical analysis methods. _ 3. Hand Checks of Code Hand checks have been performed to assure that: o Equilibrium is alway s sa t i sf ied. Both thermal and all impact solutions have been so tested. o Force or heat tran sfer be tween point s, or nodes, obey the assumptions of the analysis model, o Analytic ge ome try calculations. obey the model as sumpt ions. A-r These features have been checked by both descriptive geometry constructions and mathematical checks of the algorithims. o In t e rpol ations of non-line ar tabul ar data are correctly pe r-formed. o Numerical integrations are properly perf ormed. 1 0 2-108

i NuPac PAS-1. Consolidated SAR, Rev. O March 31, 1989 3.0 TIIERMAL EVALUATION V I l 3.1 Discus sion l l The a xi symme tr ic design of the NuPac PAS-1 Cask le nds it sel f to a fairly 1 simpl e analysis. For additional simplicity, the model was con se rva tively j cho se n as th e top half of the cask, thus enabling the t empe ra ture at both sealing interf aces to be monitered. The air gaps between the sample cask and prima ry containment ves sel and the seconda ry containment ves sel and overpacks, j provide both radiation and conduction heat transf er pathways whereas the air gap be twe e n the pr ima ry and se co nda ry cont a inme nt vessel is con se rva tively ignored. Three analyses were run using the TIIAN thermal network analyzer: steady state analyses at amb ie nt t empe ra t ur e s of 100 F and 130 F, as well as a tr an sie nt analysis modeling a 1,475 F fire applied to the package for one hal f hour. f'\\ The 130 F steady state analysis a s sum e d an undeformed packa ge whereas the 100 F steady state and transient analysis assumed a very conservative axisym-me tr ic a11y c ru shed c o rne r. The heat contribution of the water sample was neglected due to the low curie loading. The f ollowing temperatures were determined by these analy se s, the de t a il s of which are pre sented in Sections 3.4 and 3.5 below: TEMPERATURE (OF) Loca tion (Nodel 100 F Steady 130 F Steady Maximum Transient Center of Sample Cask (9) 1 14.3 143.2 See below Sec. Containment Se al (18) 114.4 143.3 130.6 Inside Joint Interface (3 0) 114.2 143.1 183.1 f) Pr i. Cont a inme n t Se al (3 2) 114.2 143.2 160.2 V 3-1

NuPac PAS-1 Consolidated SAR, Rev. O March 31,1989 /} In the transient analysis, the temperature of the sample cask does not reach a mazienm during the eight hours following the fire. How ev e r, the temperature after eight hours rises less than.5 F per hour and the maximum t empe ra tur e tha t e ithe r the prima ry or se co nda ry cont a i nme n t vessels reach is 183.1 F, less then the boiling point of water. He nc e, it will be shown that the thermal requirements of 10 CFR 71 are met by this package. 3.2 Summa ry of Thermal Properties of Material s The NuPac PAS-1 primary containment vessel is fabricated entirely of stainless steel, the s e conda ry cont ainme n t vessel of ca rbon s t e el and lead, and the overpacks of carbon steel and foam. Additionally, the void spaces within the package are assumed to be filled with air. STAINLESS CARBON IROPERTY STEEL STEEL LEAD F0AM AIR f e Co nduc tiv ity, 9.4 26 19 .024 Varies K(BTU /hr-ft-F) (See below) De n s ity 3 p(Ib/ft ) 490 490 700 20 .071 Specific Heat, C (BTU /lb-F) .113 .113 .031 .30 .243 p Emissivity of a free surf ace, e .8 .8 Form factor for Internal Radiant Heat Transfer, F 1.0 1.0 ( lC 3-2

i NEPac. PAS-1 Consolidated SAR, Rev. 0 March 31,21989 -/ 'T The conductivity, K, of air varies significantly. with temperature, as shown in ~ Q~~'1 the following ' table taken from Kreith, Princioles of Heat Transfer, 3rd Ed., 1EP, Table'A-3: AIR TEMPERATURE AIR (X)NDOCTIVITY. K ( F) (BTU /hr-ft-F) 0. .0133 32 0140 100 .0154 '200 0174 300 .0193 400 .0212 500 .0231 600 .0250 700 .0268 800 .0286 900 .0303 ~ 1000 .0319 1500 .0400 Conduction is modeled in all three analyses considering heat transfer out th e - E top and side of a cylindrical sur f ac e as discussed in Holman, Heat Transf er, McGraw-Hill, Chapter 2. For heat out the top of the package (constant c ro s s-section in the direction of flow), the resistance, R, is: R = L/ KA Where L is the distance between nodes and A is the effective cross-sectional area. For radial hea t flow, the resistance is: R = In(r /rg)/2nEL l g Where rg and t are the inner and outer radii, respectively, and L is the o ) ( ef fective length of the cylindrical surf ace. 3-3 i i

NuPac PAS-1 Consolidated SAR, Rsv.' 0 Mr.rch-31, 1989 i t /]. Convection is modeled-in the steady state analysis and af ter the fire in ' the transient ev e nt. Convection heat. transf er is found in Table 7-4 of Holman,. - for turbulent. flow from a surface to air: 1 u SURFACE CONVECTION COEFFICIEKr 2 (BTU /hr-ft _op) Vertical Cylinder h =.19( AT)

  • 3 33 Horizontal Plate (Heated Plate Upward) h =.22(AT)'*333 3.3 Technical Specifications of Components -

'The 0-ring se al s constitute the only t emperat::r e sensitive components on the NuPac PAS-1 packaging. Se aling 0-rings on this package are Viton rubber with the.. following allowable temperature ranges as published by Parker Hannifin Corporation, a maj or manufacturer of 0-ring - seals: MATERIAL TEMPERATURE RANGE ( F) Viton -65 to +400 (+600 for short periods) All other ma t e rial s within.and including containme nt are of the following materials: OO 3-4

. NuPac' PAS-1 Consolida ted SAR' Rev. O M.nrch 31, 1989 [ Y. MATERI AL ' MELTING POINT (op) Lead 62 1 Carbon Steel 2,750 Stainles s Ste el 2,600 Ve rmiculit e 2,200 1 3.4 Th e rma l Ev al ua t io n f or Normal Co nd i t ion s of Tr an sp or t 3.4.1 Analytic Model A schematic of ' the thermal model is shown in Figure 3. 4.1-1. The model considered the dif ferent material properties as outlined in Section 3.2. Each of the 63 resistors and 32 capacitors used in this analysis are presented below in a manner compatible with input to the THAN thermal ne twork analyzing program. The resistors af fected in the crush zone for ' the 100 F steady state and transient, I! hypothetical Accident Thermal Analyses, are highlighted with.an asterisk (*). The reduced property values modeling the crush are included in pa re n the sis, bV L i 3-5 iL_-____-__.

NuPac PAS-1 Consolidated SAR, Rev. O March 31, 1989 (} FIGURE 3.4.1-1 N,_/ NI NI NI Al Ril R46 R47 / \\ T N!4 l R20,(NIO H2 R17 p23 ' Nil NIS RIB l R2iv R24 'N12 N4 N16 Rl9 R,50 R22 RSI R25 / \\l/ \\ N17 N57 NidlT R8[/\\ /R48 R6 I R32 RSS R7 s 34 i N6 ".fRS6 -R9 j] R38 RB8 R4 S N24 N N21 N19 f s 4N '/ g' s W ~W Ni N8 N25'/ R39 R41 / N22 / N2O \\ RIS R27 R26 -R60 R42d e c RS3 JR49 R61 / R57 R30 N28 /N27 f N32 I R63 R43 / p3l k R5 / PLANE _QF D 'R64 \\ N9 SYMMETRY N31 N29 N26 ./_ m. N30 Rl6 'RIO N R36 PRdARY SECONDARY OVEhACK CONTAINER CONTAINER j l I i A i i l 3-6 j i

NuPac PAS-1 Consolidated SAR, Rev. O' March 31,1989 ,,ch r Radiation Resistors b). Exte rnal Ra'dia t ion Re sistors: K = oAe; Where: 'o =.1713(10)-8 (Stef an-Boltzman Constant) A = external surface area e =.8 (emissivity per 10 CFR 71) Re si st or A(ft2) g(oF/ BTU-sec) 1 1 1.227 1.687 (10)-9 2 3.682 5.060 (10)-9 3 24.413 3.355 (10)-8 4 11.519 1.583 (10)-8 -AU 5 6.283 8.636 (10)-9 - Internal Radiation Resistors From Holman, H) 8-29: ij ) + ( A /A )[(1/ej) - 1]) K = oA /([(1/eg) - 1] + (1/F g j g Assuming: (surfaces are typically close together) Ag=Aj eg = ej =.8 ij = 1.0 (theoretical maximum for:n f actor) F Then, the above equation reduces to: K = oA/1.5 i 3-7

}l 1 ~ ' NuPac PAS-1 Consolidated SAR, Rsv. O M nch 31. 1989 ' Re sist'or~ A(ft2) K( F/ BTU sec) 6 1'.227-1.406 (10)~9 '7 3.'682- - 2.892 (10)~9 '8; 2.471 1.940 (10)~9 9- '7.919 6.219 (10)~9 10. 4.320 3.392 (10)~9 Convection Resistors ' Th e co nve c t ive h'e s t flow. is def ined a s : q = hAAT O Where: h =.19(AT).333 for a vertical cylinder h =.22(AT)'333 for a horizontal plate Resistor A (ft2) 11-1.2272 12 3.6816 13 7.6576 14 26.7552 15 11.5192 16 6.2832 3-8 'i

x.

n..

[NnPacPAS-1' Consolidated'SAR,Rev.'O March 31, '1989 ~ !T ~ Conduction Resistors -;d Resistance is given-as: R = L/KA-for axial heat flow (constant cross section) R = fin (r /rg)/2nKL for radial heat flow o Foam Resistors: (K = ' 024 BTU /hr-f t-F) Resistor L(in) A(ft2) R(hr-F/BTV) 17 3.25 1'.227 9.197 18 6.50 1.227 18.394 19-3.25 1.227 9.197 O

  • 20 3.25 3.682 3.065

' (1.2 5 ) (3.682) (1.886)

  • 21 6.50 3.682 6.130 (5.00)

(3.682) (4.715)

  • 22 3.25 3.682 3.065 (3.25)

(3.682) (3.065) 1

  • 23 3.72 37.413

.3452 i (1.05) (10.472) (.3482) l

  • 24 7.44 22.036 1.172 (2.09)

(7.876) (.9214)

  • 25 3.72 9.473 1.3 64

() (1.05) (4.82 1) (.7562) 3-9

I w NuPsc PAS-1 Consolidated SAR, Rev. O Ma rch - 31, 1989 l hl Resistor 'L(in). -In(#o/# i)/2n_ R(hr-F/ BTU) -V 26 11.00 .01250 .5681-t 27 111.00- .02839 1.240 28 11.00 .01635 .7433 l' t '29 6.00 .01250 1.041 30 -6.00 .02839 2.365 31 6.00 .01635 1.363 Air Resistors: (K varies with temperature) ( Resistor. J,(in) A_(ft 1 L/A(ft-1) 2 32 1.00 1.227 .06792 33. 1.00 3.682 .02263 34- .75 2.471 .02529 35 .50 7.919 .00526 1 36 .50 4.320 .00965 61 1.00 1.069 .07795 62 1.00 2.465 .03380 63 1.00 2.356 .03537 O 3-10

j NuPac PAS-1 Consol'ideted SAR, Rev. O' . March 31, 1989 i l -- l Le ad-Re'sistors : -(K =.19.0 BTU /hr-ft-F) Re s ist or - L(in). Mft2) .R(hr-F/ BTU) .i l 37 3.00 1.069 .19694 ]

38 3.00' 1.069

.19694 40 5.00 2.977 .04243 42 11.50 2.977 .01845 Resistor L(in) In(fo/ i)/2n_ R(hr-[t/ BTU) f 39 9.00 03475 .00244 41 9.00 .02851 .00200 43 6.00 .03475 .00366 44 6.00 .02851 .00300 45 4.80 05516 .00726 O l 3-11

y e p NuPac PAS-1 Consolidated SAR, Rev. O . Ma r ch '31, 1989 i -. Ca rbon St e el ' Re s iit or s : (K = 26.0 BTU /hr-f t *F) !., ~ -Resistor L(in) A(ft2) R(br-F/ BTU)- 48 21.50. .1025.' .6723 '49 11.50' .1025 .3596, ~ 5 2'. l 8.5 0 .0756 .3604 .53 11.50 .0756 .4816 56-7.20 .4464 .0517 '57 11.50 .2587 .1425 59 6.50 .4582 .0455 O Resistor L(in) In(fo/ i)/2n_ R(hr-F/ BTU) / l 46 .1046 .1403 .6190 47 .1046 .1206 .5321 50 .1046 .1403 .6190 51 .1046 .0610 .2690 54 .1046 .0494 .0504 55 2.00 .1403 .0324 l l 4 O 3-12

u ,i- ~..- ,j

, <o...

j NuPac, PAS-1 Consolidstad.SAR, : Rav.. 0' March 31, 1989- .j e. 7(f --Y - Stainles s Ste el Re sistors: - (K = 9.4 BTU /hr-f t OF) -{ Re'sistor -L(in) A(ft2) R(hr OF/ BTU) e 60 8.75 .9782- .0793 Resistor ,Idjp.1 In(#o/fi) / 2n_,. R_(hr-F/ BTU) 58 2.50 0966 .0187 Nodal Capacitance Nodal Capacitance is given as: I C = C pV p Where: C is the specific heat of the material p p is the material. density V is the materir.1' volume 3-13

6

~ T NuPa c PAS-1 Con s oli da t e d SAR,- Rev. 0 - . Ma r c h 31, 1989* b '... "i" d m; L) -jHost Jo V(1b)~ Caoac it ance (BTU / F)I I -j

j; 1

2; 605 .683: ' 3 13.29 3.988 4 13.2'9 3.988 4 5. 6.05 .683 . 6 190.43 21.518 7 '230.22 7.137 p H-8 100,72 11.381 9 687.50 21.313 10~ 18.15 2.050 1 l 39.88 -11.965. E11 11 2 39.88 11.965 13 18.15 2.05 0 i i L 14 104.27 11.783 15 138.52 41.557 16 59.62 17.886 17 12.20 1.379 3-14

NuPac PAS-1 Cons olidat ed SAR,' Rev. L O. . Ma rch 31; -- 196 9 - e. Node o'V(1b) Capacit ance (BTU / F)- 1 -18 5 87. 64 ~ 66.403. s .q ' 19 '- 53.09-6.000 ~ = 20 58.15 17.443 21: 49.8'4 14.951' 22 -39.15. 4.423 23' 103.60 11.708 24' 1,670.97-51.800 25 499.05 39.582 0 l 26 42.50 4.803 27 31.72 9.515 28 27.18 8.156 29 32.96 '3.725

3 0 '-

73.13 8.264 31 1,179.50 36.564 32 173.73 19.631 1 r Total weight 6,300.36 O ) Lo 3-15 4

__-. =_-______ __ NuPac PAS-1 Consolidated SAR, Rev. O March 31, 1989 /~8 l ) The total weight of the top half of the NuPac PAS-1 package, including the top overpack and one-half the sample cask weight, is: W = 6,370 lb s The dif ference is: AW = 6,370 - 6,300 = 70 lbs i indicating a realistic computation of the nodal capacitances. Heat Loadinn: f l l The heat loading on the out side of the NuPac PAS-1 package is found in Regula- { tory Guide 7.8, Table 1: Insolation for es ( ) Surface 12 hrs per day V i 2 Flat surfaces transported 2,950 BIV/f t o horizontally (package top): 'l 2 Curved surfaces: 1,475 BIU/ft (pa c ka ge side) l l 1 The solar load at each node on the top surface is: l l l q = 2,95 0(are a) /12 l l The solar load at each node on the side (curved) surface is: l l q = 1,475 (are a) /12 l 1 3 ' 'R.-) i 3-16 e

._ 7 /, NuPac' PAS-l' Cons 511dsted.SAR, Rev. 0 . March.31, 1989' jw NSde JAres(ft2) Hea t load _(UTU/hr) -1 1-2 1.2272 301.68-110 3.6816 903.05 i, 14 (top) 7.6576. 1,882.50 4 I 14-(side) 5.3333. 655.56 19 3.6667. 450.69 26 2.0000 245.83 The. int ernal heat loading due'to the. activity of the source may be caulculated by de t e rmining a co nve r sion factor for c ur ie s to watts. A composite conversion is calculated by utilizing the following equation: AU Q,=(1/FFI}(S(E +{E/3)]/{S y2 i 7 g i Where: E = gamma decay energy, MeV/ disintegration y p = beta decay energy, MeV/ disintegration E -(ref: CRC Handbood of Chemistry and Physics, 53th Ed, B247-541) Si = contributing activity per isotope, C1/gm (Section 5.0, SHIELDING) F1 = conversion f actor: 1.6(10)-13 wa t t-sec /Mev F2 = conversion factor: 3.7(10)10 dis int e gra t ion /Ci-se c The resulting conversion is: ) Q, = 420.6 Ci/ watt Therefore, the heat contribution due to the source is: q = (2.85 Ci/ gm) (15 gm) (3.412 BTU /wat t-hr) /420.6 C1/wat t = .35 BTU /hr 3-17

g NuPac' PAS Consolidated S'AR,- Rev. O Ma r ch 31, 1989. 1 I i; Therefore, the internal heat load is ' neglected in the thermal analyses.- Con-side r ing i.s olar insolation, it amount s. t o only -.01% of the total heat load

input, j

- 1 3.4.2 ~ )fazimum Temperatures Table 3. 4. 2-1 shows the steady state nodal temperature distribution for. the worst ' case normal conditions of transport. Ambient air. t empera ture is taken as 130 F, with the solar heat load taken as de scribe d above. The. highest nodal t empera ture occurs at Node 2,179.2 F. 3.4.3 Minimum Temperatures The minimum temperature the package will experience is -40 F, per the require- ~ meat of 10 CFR 71. O 3.4.4 Maximum Inte rnal Pres sures Neglecting the small. quantity of water in the ' sample cask, the maximum inter-nal. pres sure. may be calculated assuming a ~ constant volume ' of air heated to 143.24 *F a t Node 8 per Table 3. 4. 2-1. As suming an --initial temperature of 70 F, the internal pressure for an 1sentropic process is: P /P3 = (T /T ) M 2 2 g Where: Py = 14.7 psia 0 Ty = 70 F = 529.69 R T2 = 143.24 F = 602.93 R l' k = 1.4 (f or air) L -......... -

NuPac PAS Consolidated SAR, Rsv. O. Ma rch 31, 1989 t9-TABLE 3.4,2-1 o CLASS 2 --TEMPERATURE, T 'ID' ~ DEGREES F' ID DEGREES F ID DEGREES F ID DEGREES F l' 130.0000000 2 179.2259012 3 170.4274427 4-152.8305258-5 144.0320673. 6 143.3331152 7 143.3032776 8 143.2365052 9 143.2056550 10 177.8041637 11 169.3725489 12 152.5093192 13 144.0777044: 14 155.3134081 15~ 153.9621338 16-149.3743777 17 144.0350438 18 143.3046392 19 141.8739336 20 142.1601665 21 142.8101232-22 143,1846292 23 143.2285834 24 143.2274964 25 143.2302849 26 141.7418783 27 141.8193709 28 .141.9954227~ 1 29 142.0968851-30-143.1498358 . 31' 143;1628402 32 143.1658794 1 i j: O l l 3-19 'l ---m_.e._2-_u- _2___--_m.--.- s------ -A---- --u


+-----------e-------

. NuP,:c PAS-1 Consolidated SAR, Rsv. O March 31, 1989' f3 A

Then, 2 = 14.7(602.93/529.69)1.4/ (1.4 - 1)

P = 23.1. psia AP = 23.1 - 14.7 = 8.4 psig 3.4.5 Thermal Stres se s Because the heat load of the source is so low and the thermal conductivity of the steel and lead is so high rela tive to 'the foam overpacks, the rmal gra- . dients developed in the primary and secondary containment vessels are insig-nificant (less than 1 F). The maximum thermal gr adie nt occurs through the foam overpacks. The 35 F temperature gradient introduces negligible stresses. In the overpack due to the high flexibility of the foam. 3.5 Hvoothetical Accident Thermal Evaluation 3.5.1 Thermal Model For the most part, the thermal model used for analysis of the hypothetical the rmal ac cide nt is ide n tic al to the one used for the n ormal condit ion s of transport. The same solar insoleion is conservatively used during the initial t empe ra ture determination as well as throughout the fire transient. Ambient air

  • emperature is taken to be 100 F.

Additionally, the properties of the foam are altered at the overpack corner to model a corne r drop c ru sh. The c ru shed corner is co n se rva t iv ely modeled axi symme t ric ally, around the entire pa cka ge, thus minimiz ing insulation in that area. v 3-20

NuP2c PAS-1 Consolidated SAR, Rev. O Ma r c h 31, 1989 [ The regulatcry fire transient initially assumes the system has reached steady state conditions at 100 F ambient, with no solar radiation ef fe ct s before, dur ing or after the fire. The n, the system is subjected to a radiant heat load environment of 1475 F for 30 minutes with an emis sivity of 0.9. At the end of 30 minutes, the ambient temperature is again se t at 100 F. The analysis perf oremed on the NuPac PAS-1 packa ging differs from the current regnaltory event in two import ant ways. First, solar radiation ef fects have been included throughout the event. This result s in significantly higher ) initial t empera tures, and an overall increase in the amount of heat absorbed by the pa cka ging during the event. Thus, this is a conservative deviation from the event described in 10 CFR 71. The second deviation from the regulatory event involves the disabling of the convection hea t transfer mode during the 30 minute fire. This results in less heat being absorbed by the pa cka ging (since dur ing the fire, the ambient temperature is higher than the package temperature). However, the net ef fect (h f of these two deviations is to overpredict the amount of heat absorbed during the fire, and therefore, to con se rva tiv ely overestimate the t empe ra ture s rsached by the package. This can be shown by comparing the total of the exces s heat pre se n t in the package bef ore the fire plus the heat added during the fire by sol ar radiation with the amount of heat that would have been transferred to the package via free convection during the fire. The total heat ca pa c it ance of the model is 474.3 BW/ F. Since according to 10 CFR 71, prior to the fire there are no other external sources of thermal energy, and since the PAS-1's inte rnal hea t load is negligible, the dif ference be tween the package t empe ra tur e s predicted for the 100 F steady-state co ndi-tion and 100 F is all due to the solar radiation. Since the minina t empera-ture predicted f or thi s case can be seen to be 112.3 F ( se e Table 3.5.3-1), the initial heat content of the model is j (112.3-100)(474.3) = 5 834 BWs ) Ov i 3-21

d a - NuPsc PAS Consolidated SAR, Riv. O Ma rch 31, 1989 1 The solar radiation! heat influx can be calculated by adding the heat applied ) to nodes 2, 10, 14, 19, and 26: ) 1 ) I ~301.7-l 905.1 1882.5 65 5.6 450.7 245.8 4441.4 BTU /hr. Since this is the heat flux for each hour, during the ' 30 minute fire 'it self, the total flux is half of this value, or 2220.7 BTU. Therefore, by-the end of ' the 30 minute fire, the ' inclusion of solar radiation in the analysis' raises the total amount of heat to be dissipated-5 834 + 2221 = 8 054 BTUs' O over ' the amount of heat that would need.to be dissipated under regulatory condit ion s. The amount of heat which is not absorbed by the package because convection is-disabled during the fire for the analysis. can be calculated by estimating the convective heat flow which would have occured across resistors 11 through 16. The convective heat flow per' hour,- q, is given by the f ollowing equa tion: l l q = hAAT Where: h =.19(AT)*333 for a vertical cylinder h =.22(AT)*333-for a horizontal plate i The first definition of h applies to resistors 14 through 16, and the se cond definition applies to resistors 11 through 13. The total conv ec t ive surfaco area for resistors 11 through 13 is: 3-22 - - _ _ _ _ = _ _ _ _ - _

.NuPae PAS-1 Consolidated. SAR,. Rev. O Ma rch 31,' 198 9 i. 1.23-3.68 ' 7.6 6 - 2 12'.57 ft The total convective area for resistors 14 through 16 is: 26.76 11.52 6.28 2 44.56 ft Because the steel skin of the PAS-1 overpack has a very high co nduct ance relative to the foam backing,. and because the heat capacity of the skin is not great,.the surface of the package will very quickly reach the approxima te 0 temperature of the radiant heat source (1424 F after adjusting for emissivity, .see below).. O ' Conservatively as suming that the temperature differential between the. ambient 0 temperature (1475 F during the fire) 'and the surface of the pa c ka ge 0 0 (between 1369 and 1428 F) is 200 F throughout~ the period of the fire, the heat transferred via convection may be estimated for each node: For the top surface: q = 0.22AAT.333 1 where: A = 12.57'ft2 AT = 200*F Therefore, q = 0.22(12.57)(200)1'333 = 3229 BTU /hr. _ ( On the sides: 2 A = 44.56 f t 3-23

NuPac PAS-1 Consolidated 'SAR, Rev. O Ma rch 31, 1989 O So,- q = 0.19(44.56)(200)1*333 = 9885 BW/hr. The total convective heat flux under these conservative a s s ump t io n s is theref ore -3229. + 9885. = 13,114 BTU /hr. Since the co nve c t ion is disabled for only '30 minut es, the total heat transfer for the thirty minute period is 13,114/2 = 6557 BTU Since the solar flux.has been shown to impart 8054 BIU to the PAS-1 prior to the end of the fire, the assumptions used in the THAN computer analysis, where solar ef fect s are included before, during and after the fire, and where convection is ignored during the fire; cause the analysis to overpredict the total heat absorbed during the transient. event by at least 8054 - 6557 = 1497 BTU The radiant environment of 1475 F with a.9 emissivity was modelled by deter-mining an ' equivalent ambient temperature with an emis sivity of 1.0: T,q = L.9(Tf f y,)b 'D T,q = [(.9)(1475 + 459.69)4].25 - 459.69 T,q = 1424.71 F So the ambient temperature during the fire was taken as 1424.71 F. 3.5.2 Packare Conditions and Environment As de s cr ibe d earlier, reduced corner properties of the foam overpacks were . introduced for the Hypothe tical Fire Ac cident Condition to model the extreme temperature case at the secondary containment vessel boundary. 3-24

NuPac PAS-1 Consolidated SAR, Rev. O March 31, 1989 l l Damage from the 40-inch puncture drop is insignificant compared to the ' thermal - characteristics of the overall model. 3.5.3 Package Temperatures Initi al. t empe ra ture s in the package for a 100 F ambient temperature are given in Table 3.5.3-1. Temperatures 30 minutes af ter the beginning of the fire are shown in Table 3.5.3-2, and temperatures eight hours after the end of the fire are sh own in. Table 3.5.3-3. A graphical repr e se nta tion of the tran,ient I r e spon se is shown in Figure 3.5.3-1. In Figures 3.5.3-1 and 3.5.3-la, ' AM3IENf' pl o t s the ambient t empe ra tur e against time, ' SAMP CASK CNIR' corresponds to Node 9 of the model, (the center of the sample cask), ' SEC CONI SEAL' corresponds to Node 18 of the model (the se conda ry cont a inmen t se al), '0VERPACK JOINf' c orr espo nds to Node 30 of the model (the overpack joint interface), and 'PRI CONT SEAL' corresponds to Node 32 (the primary containment se al). Note that eight hours after the e nd of the fire, the temperature at the ce nt e r of the sample cask (Node 9) is s t ill increasing. However, it is increasing at a rate less than.5 F per hour and no temperature in the model is greater than 171 F at Node 11, which is declining in temperature faster than Node 9 is increasing. Therefore, the maximum t empera ture - attained by 0 Node 9 during the fire transient may be very conservatively taken as 171 F. 3.5.4 Maximum Internal Pres sures Refering to Section 3.4.4, the maximum internal pressure is: P = P (T /T }1*4f(1*4 - 1) 2 1 Where: O P1 = 14.7 p sia %.) 0 T2 = 171 F = 630.69 R T1 = 70 F = 529.69 R 3-25

1 l NuPso PAS-1 Consolidated SAR, Rev. O Ma rch 31, 1989 [} TABLE 3.5.3-1 ~' 100 Ambient Steady-State CLASS,2 - TEMPERATURE, T ID DEGREES F ID DEGREES F ID DEGREES F ID DEGREES F 1 100.0000000 2 150.6341132 3 141.8045385 4 124.1453893 5 115.3158147 6 114.4067408 7 114.3724191 8 114.2905432 9 114.2526152 10 149.1314603 11 142.5599588 12 126.1312049 13 115.4516438 14 126.1648056 15 124.3162851 16 119.4247667 17 115.4102603 18 114.3741721 19 112.3773699 20 112.7803480 21 113.6954013 22 114.2226564 23 114.2808498 24 114.2794932 25 114.2829114 26 112.2928309 27 112.3912868 28 112.6149643 29, 112.7438744 30 114.1839683 31 114.1999619 32 114.2036972 TABLE 3.5.3-2 30 Minutes Af ter Beginning of Fire CLASS 2 - TEMPERATURE, T ID DEGREES F ID DEGREES F ID DEGREES F ID DEGREES F 1 1424.7100000 2 1428.2562254 3 158.0595563 4 124.1980871 5 115.9554209 6 114.5122979 7 114.8920915 8 115.8645902 9 114.3691304 10 1426.4406821 11 168.8443552 12 126.2494609 13 118.5074742 14 1423.5092182 15 165.8839443 16 120.1875239 17 130.0726658 18 115.0805769 19 1420.2494388 20 173.0153369 21 115.7867515 22 182.9542025 23 121.4454350 24 120.4525283 25 118.5114114 26 1369.3544030 27 168.6345824 28 135.3047379 29 792.1046045 30 180.0670407 31 155.3258025 32 146.3193015 TABLE 3.5.3-3 8.5 Hours Af ter Begiaaing of Fire CLASS 2 - TEMPERATURE, T ID DEGREES F ID DEGREES F ID DEGREES F ID DEGREES F 1 100.0000000 2 150.8203893 3 154.8852211 4 127.9070360 5 130.2354769 6 13s.2824055 7 130.1753017 8 129.9319808 9 120.5005375 10 14).3801538 11 160.5530326 12 131.3408191 13 130.3066268 14 1 26.6693629 15 147.2648584 16 134.0617209 17 130.3126505 18 130.1695540 19 113.4818291 20 137.4331165 21 131,1979451 22 128.6254211 23 129.8659366 24 129.8759411 3 25 129.8950859 26 115.5557782 27 141.6008457 28 138.0549965 29 119.4087469 30 129.3567143 31 129.4690705 32 129.4912450 3-26

NuPac PAS-1 Consolidated SAR, Rev. O March 31, 1989 - [v j Figure 3.5.3-1 iY30~~HE~ CAL FIRE ACCIJE\\l~ NUPAC PAS-1

CASK, TRANSIENT ANALYSIS o

olf-3- r3 o 8_ r3 13 ha SYM VAR 1R8LE DESCRIPTION MAXIMUM NINIMUM C. ID RM81ENT 1424 100

  • -* o I3 0

SAMP CR6N CNTR 120.501 114 253 O-A SEC CONT SEAL 130 829 114.374 + DVERPRCK JOINT 183 044 114 184 X PRI CONT SERL 180 188 114.204 LL. /-, I (_)T WE tu - r3 go. C.b " LtJa [3 "o L1J9 [g z o. D* t-- CC E3 m: L1JO [3 ro_ LtJ T F-I3 a 0 I3 o_ " bC, = = = = = = = 3ggg i O 8 V i 3.00 2.00 4.00 6.00 8 00 10.00 ) TIME (HOURS) i 3-27

NuPac PAS-1 Consolidated SAR, Rev. O Ma r ch 31, 1989 Figure 3.5.3-1 (cont. ) F Y 3 0 ~~ - E ~.. C A F R E A C C D E \\F~ NUPAC PAS-1

CASK, TRANSIENT ANALYSIS O

O Cb O_ al, A Q A g A N_ JL A 1 g A SYM VARIABLE DESCRIPTION MAXIMUM MINIMUH (!) 6 AMP CASK CNTR 120.501 114.253 -]~ O SEC CONT SEAL 130 629 114 374 A DVERPACK JOINT 183 044 114 184 g g + PRI CONT 8EAL 160.*88 114 204 gw O B: +(. aO_ A F w $g A+ e-cce-as w Q_rwg as F-

  • O 4

.m-

== ag g as OS --El - a-I Oll o (V7 a ~ 1.00 2.00 4.00 6.00 8 00 l 'O. 00 TIME (HOURS 1 3-28

l NuPsc PAS-1 Consolidated SAR, Rsv. O March 31,1989 [~"'i

Then, V

2 = 14.7 (630.69/529.69)1.4 / (1.4 - 1) P = 27.1 psia AP = 27.1 - 14. 7 = 12.4 p sig 3.5.5 Maximum Thermal Stres ses Maximwn thermal stresses will occur at the ve ry e nd of the fire, when the outside of the package reaches it s maximum temperature and the inside of the j pa c ka ge has yet to increase more than a few degrees over it s initial state. l The se tempera tures are presented above in Table 3.5.3-2. 3.5.6 Evaluation of Packa ge Performance for the Ilvoothetical Accident Thermal Condition 3 '~# Conservative maximmn temperature estimates shmr the water sampl e t empe ra tur e to be well below the boiling point of water, thus the sample will alway s remain in liquid f orm. The secondary containment se al t emperature (Node 18) achieves a maximum t em p-0 erature of 130 F about five hours after the e nd of the fire, a temperature well below the maximum allowable as specified in Section 3.3. The prima ry containment se al (Node 32) achieves a maximum temperature of 160 F thirteen minutes af ter the end of the fire. As be fore, this is well below the maximum allowable f or the se al material s specif ied. ry x_/ 3-29 ---___-____-___m

[ l NuPac PAS-l' Consolidated SAR, Rev. 0 Ma rc h 31, 1989 c [] 4.0 CONTAINMENT V 4.1 Containment Boundaries 4.1.1 Cont ainmen t Ves sel s 1 There are two levels of containment in the NuPac PAS-1 packa ging. Prima ry cont a inme nt con s ist s of a cylindrical stainless st e el vessel in two par t s. The upper section is 1.00 inch flat plate welded to the cylindrically rolled and welded,1.25 inch thick side wall. A machined step at th e bo t t om of the side wall carries two 0-ring bore seals. The lower section is.50 inch flat plate welded to a cylindrically rolled and welded,.75 inch thick side wall. The 0-ring seal interface at the top of the side wall is machined to a 32 RMS Micro-Fini sh f or sealing reliability. 'h Se conda ry containment is provided by the secondary containment ve s sel/ e n-O' viro nme nt al sh i el d. Fabricated of carbon steel and lead, the seconda ry con-tainment vessel completely envelops the primary contair.;nent vessel. The inner and outer side shells are fabricated of.38 inch thick carbon steel plate with 5.1 inches of lead be tween. The inner and outer bottom shells are f abricat ed of 1.00 inch th ick ca rbon steel plate with 5.1 inches of lead be twe e n. The lid has inner and outer sh ell s of 1.50 and 2.00 inch thick ca rbon ste el plate, respectively, with 4.8 inches of lead be tween. Machined into the lid are two dovetail 0-ring grooves that ca rry 0-ring face se al s. The 0-ring se al grooves and mating flange are protected from corro sion by a high quality vacuum grease and the surfaces are inspected annually for signs of deterioration. Test ports are prov ide d in each vessel to check se al ef fe ct ivene s s. Addi-t ionally, each test p or t is so de signed that the integrity of the test por t closure seal may also be tested. -A U l 4-1 _1__________ _l

NuPac ' PAS-1 Consolidated SAR, Rsv. O M2 rc h 31, 1989 l [Y 4.1.2 Cont a i nme n t Pe ne t ra t ion s ?%) l The only penetrations into each containment vessel are the lids and test ports as described above. 4.1.3 Seals and Welds Seals af fecting containment are described above. A summary of seal testing is a s f ollows : 4.1.3.1 Upon completion of fabrication, both the primary -and seconda ry cont ainme nt vessels shall be individually tested pe r Fabrication Verification Leak Test, delineated in Section 8.3.2. This test is performed without the innermost 0-ring seal to verify weld and seal integrity. per Section 8.0 to a leak rate less than 10~7 s t anda rd cubic centime ters per second. 4.1.3.2 All containment seals are replaced yearly and the Maintenance Veri-f ica t io n Le ak Te s t, perf ormed as found in Section 8.3.2. This test is a repeat of the Fabrication Verifica tion Leak Tes t with the exception that both seals are installed during testing, thus testing se a t integrity to a leak rate less than 10-7 standard cubic ce n t i-meters per second. 4.1.3.3 Prior to shipment, the Assembly Verification Leak Test, delineated in Section 7.4.2, shall be perf ormed. Each containment ves sel shall be tested with both se al s in place t a leak rate less than 10-3 standard cubic centimeters per second. 4.1.4 Closure Clo sure - on the prima ry c ont ainme nt vessel is effected by eight 3/8-16 UNC, lb Grade 2, hex head bolt s, ti ght e ned to 18 ft-lbs torque. Clo s ure on the V secondary containment vessel is effected by eight 1-8 UNC, Grade 5, her head bolt s, tightened to 550 f t-lbs torque. 4-2

NuPac PAS-1 Consolidetsd SAR, Rev. O Ms rch 31, 19 89 i l t i G 4.2 Requirement s for Normal Conditions of Transport 4.2.1 Release of Radioactive 5bterial The results of the analyses perf ormed in Chapters 1 and 2 verify that there will be no release of radioactive materials under any of the normal conditions of transport. 4.2.2 Pres suriz ation of Containment Ves sel There are no vapors or ga s e s formed which could mix explosively within the containment boundaries. ) Q~J 4.2.3 Containment Criterion The leak tes t s de scribed in 4.1.3 above shall be used to verify containment integrity. These tests assure that the co nt a i nme n t boundaries may be considered ' leak tight'. 4.3 Containment Reanirement s for the Hvoothetical Accide nt Conditions Drop tests and thermal analyses presented in Chapters 2 and 3 indicate that the cont a inme nt bounda r ie s will suf fer no damage from the hypo the t ical acci-dent conditions. Therefore, all contents shall be completely contained throughout the entire hypothetical accident s ce na r io. i v 4-3

NuPac. PAS-1 Consolidated SAR, 'Rav. 0 March 31, 1989 4.3.1 Fis sion Gas Product s The. quantity of fission gases in ~ the ' primary' containment vessel available ~ for release is insignificant. i: -4.3.2 Release of Contents Because no damage. is incurred to the containment structures from the hypothe-tical accident scenario, there will be no release of radioactive materials to . the enviornment during or af ter this scenario. 4.3.3 Con t s'inmen t Cr it e r ion The leakitests specified in 4.1.3 above will assure that the NuPac PAS-1 will '_ remain le ak-tight throughout the hypothetical Accident Conditions. 4.4 Soecial Requirement s This section is not applicable since no significant quantity of plutonima is. to be shipped in the NuPac PAS-1. -'d 4-4 l

'NuPac PAS-1 Consolidstad SAR, Rsv. O March 31, 19895 5.0 SHIELDING. Th e.15 millilite r payload f or which '. the NuPac PAS-1. is de signed. is ' ' give n-below: TABLE 5.0-1 Nuclide Concentration (Ci/cc) Br-82 . 0015 B r-83 .0153 Br-84 .0103 Co-58 .002 Co-60 .000003 Cr-51 .004 Fe-55 .005 Fe-59 .002 I-13 0 . 0062 / 'I L 'I-131 .162 I-13 2 .236 I-133 .332 I-134 .262 I-135 .288 Kr-83M .03 7 Kr-85 .004 Kr-85 M .072 l. Kr-87 .093 Kr-88 . 17 6 Mn-54 .003 Ni-63 .00001 Xe-131M .002 Xe-133 ,680 Xe-133M .028 Xe-135 .127 Xe-135M .090 /"'\\ Xe-138 030 .Q Others .178 Total 2.846 5-1

NuPac PAS-1 Consolidated SAR, Ray. O R:rch 31,-1989 Th e se isotopes can be grouped according to gamma emis sion energy levels with all activities rounded upward f or conservatism. The resulting energy levels with their activities are given below: Energy Ac t iv ity 3 (MeV) (Photons /cm -sec) 0.3 2.098 (10)10 0.5 5.753 (10)9 0.8 2.272 (10)10 1.3 4.475 (10)10 1.7 (include s 'Othe rs') 1.759 (10)10 2.5 3.589 (10)9 3.5 1.258 (10)9 4.5 7.146 (10)8 I Q Conservatively consider the' payload a point isotropic source with no self-shielding. From Blizard, Re a ct or Ha nd bo ok, Second edition, Vol. III, Pa r t B, the photon flux through a multilayered shield is: 6 = Be (-ut)/4nR2 Where the buildup factor, B, is determined according to Broder's method, discus sed in DNA-1892-3. For example, for a three layered shield of materials t, respectively, the total i, J, and k, having thicknesses of t t, and i, k j buildup factor would be: g + t )) - B(p tg)] B = B(pi g) + [B(p (t t j j j [B(pk(t g + t) + tk)) - B(pk(tg+tj))] + i The mass attenuation coef ficient, p, for various materials may be found in ' Table 10.1 of B11za rd. The buildup factors for various materials may be found in Table 10.10 of Blizard. 5-2

NuPac PAS-1 Consolidated SAR, Rey, O Mr.rch 31,1989 y' 1 AJ ^ 'Ih e do se a t the package surface and at six fe e t from the package surface at the top, side, and bottom of the package is: Loca t io n Dose (mR/hr) at surface: top 10.8~ side 106.7 bottom 40.9 at 6 feet: top .5 side 2.7 bottom 1.3 These calculations were meant only to verify the adequacy. of the design. O Prior to any shipment, dose readings will be taken to verify that the package meets transport limits given in 49 CFR 173. The above analyses assume the source may lie anywhere within the boundaries of the primary containment vessel during Normal Conditions of Transport, thereby conservatively ignoring the shielding e f fe c t s of the sample cask. Since it has been demonstrated in Section 2.7 that the package survives the Hypo the t-ical Accident Conditions with no significant damage, the source will always be contained within the prima ry cont ainment ves sel. v 5-3

NuPac PAS-1 Consolidated SAR,- Rev. 0 March 31, 1989 j' 1.

6.0 CRITICALITY EVALUATION

The NuPac PAS-1. packaging will not contain significant quantities of-fissile material, therefore, this section is not applicable. i O 6-1

3 NuPac PAS-1 Consolidated SAR, Rev. O Msrch 31, 1989 ....,b 7.0 OPERATING PROCEDURES . %) : 7.1 Procedures f or Loading the Packane-Prior to. loading the package, it is as s umed the uppe r overpack, _ se conda ry . c ont a inme nt vessel lid, and primary containment vessel and lid are all re. moved, and all se als are in place. When not in. u se, the system shall be stored in accordance with Section 7.4.1 Prior to assembly, all sealing surf aces shall be wiped clean and new vacuum gre a se applied spa ringly. All threaded fasteners shall be coated with a suitable lubricant.to prevent galling. 7.1.1 Prior to installing the sample cask, place a foam. spacer block into the. bo t t om of the prima ry containment vessel, if required for the current configuration. Fill the pr ima ry conta inme nt vessel with vermiculite to a depth of not less than 1/2 inch nor greater than .3/4 inches. Install the loaded sample cask into the primary contain-ment vessel, centering it as much as possible, without inc urring damage to the vessel seal area. 7.1.2.1 If a foam spacer was utilized in the previous step, install a st a inl e s s steel sh ell into the groove in the top of the foam

spacer, If a foam spacer block was not ut iliz e d, proceed to step 7.1.2.2.

Fill the void around the sample cask with vermi-culite within four inches of the top of the shell. Install the loaded foam vial holder on top of the vermiculite followed by additional vermiculite to the top of the shell. Proceed to Step 7.1.3. 7.1.2.2 If a foam spacer block was not utilized, place the loaded foam vial 1.ol de r dire c tly on top of the sample ca sk. Fill the center void and the gaps around the eight cartridge s and vials with vermiculite. <I l

l \\ \\ l l NuPac PAS-1 Consolidated SAR, R v. O March 31, 1989 l l i I [] 7.1.3 Pe rf orm th e As s embly Ve r i f i ca t io n Le a k Te s t o n th e sys t em pe r Ap pe n-dix 7.4.2. 7.1.4 When se conda ry c ont ainme nt vessel closure integrity is verified, install the upper overpack f ollowed by eight 3/4 - 10 UNC, Grade 5, screws, tightening to 150-200 f t-lb s torque each. (The optional I overpack closure requires sixteen 1/2-13 UNC, Grade 5, bolts tight-ened to 5 0-65 f t-lbs torque each. ) i 7.1.5 Install a 1/4 - 20 UNC bolt, fla t wa she rs and nut into each of the three overpact lif ting lug holes to preclude their use as a tie-down d ev i ce. 7.1.6 Prior to shipment, radiation monitor the package per 49 CFR 173.441 [) r equir eme nt s a nd de t e rmine that surface cont amina t ion levels me e t a the requirements of 49 CFR 173.443, 7.2 Procedures for Unioading the Package Upon receipt of the package, radia tion monitor per the requirement s of 10 CFR 20.205. In ge neral, unloading the packa ge is the reverse seque nc e of loading the pac ka ge with the e xc ept io n of helium leak testing. Caution must be observed upon removal of the secondary containment ve s sel lid. An unusually high gamma do se indi ca t e s the water sample has leaked f r om the sample cask into the primary containment vessel. In the event of this, appropriate safety me as ur e s mu s t be t a ke n t o dispo se of th e con t am ina t e d sampl e. l 7.3 Preparation of an Empty Pa c ka ge for Transoort i i Pr ior to sh ipme nt, ensure the empty package meets the requirements delineated l -\\s l l in Sec t ion 7.1.6. O th e rwi s e, the NuPac PAS-1 packaging reqtires no s pe ci al l transport preparation when empty. 7-2

.j NuPac PAS-1 Consolidated SAR, Rsv. O March 31, 1989 ta A V 7.4 Anve ndix l 7.4.1 St orare Procedures I The following two sub sections delineate PAS-1 storage in either of two con-f i gura t ion s, disassembled or assembled. 7. 4.1.1 Storage Procedure in the Disassembled Condition

7. 4.1.1.1 The lower overpack shall be on a steel pallet with the upper overpack and overpack closure bolts set aside in a convenient location.

7.4.1.1.2 The secondary containment ves sel shall be po si-tioned inside of the lower overpack. The second- [) a ry containment vessel and lid, and eight 1-8 UNC closure bolt s shall be removed and set aside in a convenient location. 7. 4.1.1. 3 The primary containment vessel shall be located on a pallet out side the se conda ry containment vessel when not in use. 7.4.1.1.4 The prima ry cont ainme nt ve s sel lid and eight l 3/8-16 UNC closure bolts shall be removed and set aside in a conve nient loca tion. 7. 4.1.1. 5 The foam vial holde r and foam spacer (if re-quired) shall be located with the prima ry co n-tainment ves sel. 7. 4.1.1. 6 A quantity of vermiculit e not less than two b cubic feet sh all be stored in an airtight co n-l r.J tainer in a convenient location. I 7-3

t g ~ c;. NuPac PAS-1 Consolidated: SAR, Rev. O March 31,1989 c A Jj 7.4.1.1.7 A11 Lunpainted surfaces shall be kept Leoated with a high quality ' vacuum grease to prevent oxida - t io n a nd t o as s ure a tight se al when the system. f is in use. 7.4.1.2 ' Storaae Procedure in the As sembled Condition 7~4.1.2.1 If required for. the current: configuration, place a foam spacer block into the bo t t om - of ' the prima ry containment ves sel. l 7.4.1.2.2 Install a foam vial holder into the primary con-tainment ves sel. s 7.4.1. 2. 3 Obtain and secure a quantity af vermiculite not less than two cubic fee t inside of an airtight container. + . r~%

7. 4.1. 2. 4 Install the ve rmic ulit e into the pr ima ry c o n-tainment ves sel.

7. 4.1. 2. 5 Visually inspect the primary cont a inme nt vessel } lid se als and body sealing area f or contaminates (e.g., dirt, dust, etc). If ne c e s sa ry, clean these areas and apply a light coating of vacuum grease. j

7. 4.1. 2. 6 Install the primary containment vessel lid into the body, f ollowed by eight (8) 3/8-16UNC clo-l sure bolt s.

Tighten the clonure bolt s to 16-18 ft-lbs torque each. 7. 4.1. 2. 7 Install the assembled primary containment vessel into the cavity of the se ce nda ry co nt a i nme n t () r vessel. i t 7-4 i l

m-g ) NuPac PAS-1 Consolidated SAR, R v. :0 March 31,1989 3 ii ( '7.4.1.2.8 Visually ins pe c t the secondary containment ves-I sel lid seals and body sealing area for contam-inant s (e.g., dirt, dust, etc). If neces sa ry, clean these areas and apply a light coating of vacuum gre a se. i 7.4.1. 2. 9 Install the se condary containme nt vessel lid into the body, _ f ollowed by eight (8) 1-8UNC closure bolts.: Tighten the cl o sur e bolts to 450-500 f t-lbs torque each. I 7.4.1.2.10 Install the secondary containment vessel assem-bly inside the lower overpack, located on a shipping pallet. 7.4.1.2.11 Install the upper overpack onto the lower over-l pack and. sec ure ' with the eight (8) 3/4-10UNC (optionally sixteen (16) 1/2-13UNC) closure bolts. Ti ght e n the 3/4-10UNC closure bolts to 150-200 f t-lb s each (50-65 f t-lb s torque each for the optional 1/2-13UNC closure bolt s). 7.4.1.2.12 Perf orm the final as sembly of the shipping pal-let and store in a convenient l o ca t io n. / 7-5

I' ) f NuPac PAS-1 Consolidated SAR, Rev. O Msrch 31,1989 l (v) 7.4.2 As semb1v Verif ica tion Leak Test l l The Assembly Verification Leak Test is performed prior to use. Each contain-ment ves sel shall be as sembled with both 0-rings installed. 7.4.2.1 Requirements For Instruments 7.4.2.1.1 Pressure gauge capable of measuring at least 25 psig to an accuracy of i 1.0 psig shall be uti-11 zed. l

7. 4. 2.1. 2 Helium Probe-Type Leak Detector capable of de-tecting a helium leak rate of 10-4 sec/sec or smaller.

? 7.4.2.2 Leak Test Procedure (r) Upon as sembly of the primary containment ves sel: v 7.4.2.2.1 Verify that the prima ry containment vessel lid and closure bol t s have been properly installed f or shipment. Remove the test port closure plug and test port closure screw from the test port. 7.4.2.2.2 Using appropriate f it t in g s, attach a vacuum pum p, a source of hel ium gas, and a pressure gauge to the test port such that the vacuum pump and helium may be isolated from the system with-out is olating the guage. 7.4.2.2.3 Using the vacuum p um p, reduce the pressure in-side the sample shield to less than 1 p sia. Isolate the pump f rom the system. 7-7-6

l h 34 NuPac PAS-1 Consolidated SAR, 'Rev. O March 31, 1989 L 7.4'.2.2.4 Pr es s ur ize the sample shield.with ' helium to 15 V 1 psig. I s ol a t e the sy stem from. the - helium, source. 7.4. 2.2.5 ' Probe around the containment vessel lid inter-face according to the leak detector manufac-turer's recommenda tions. Record the worst pos-sible -leak detected..If leakage exceeds the ~ level indicated in Section 7.4.2.4, release the pr es sur e in, the. syst em and make adjustment s as necessary. Repeat Steps 7.4.2.2.1 through 7.4.2.2.5 until the system can pass the require-ments of Section 7.4.2.4 or it becomes apparent that the system cannot be make leak tight' to the indicated level. 7.4.2.2.6 After succe s sf ully completing St ep s 7. 4. 2. 2.1 I through. 7.4.2.2.5, r ele a se the helium pres sure, .N remove the fittings from the test port and in-stall the test port closure screw. NOTE: This step should be performed as r sickly as pos sible to avoid significant loss of helium from the containment vessel at atmospheric pres-sure. 7.4.2.2.7 Using appropriate fittings, attach a vacuum pump ] ] and the helium leak detector probe to the test port and evacuate the system to a level co n si s-tent with the leak detector manuf a c ture r's re-c omme nda tions. De t e rm ine the maximum leak rate past the test port closure screw and record it. O t I If the leak rate exceeds the level indicated in %)

t Sect ion 7.4.2.4, release the vacuum and repeat Steps 7.4.2.2.6 and 7.4.2.2.7 until the closure 7-7 J_-_--_--

h X NuPsc PAS-1. Consolidated SAR, Rsv. O March 31,.1 1989 / screw - passes the ~ test or. it becomes apparent ^ YM~ that. the closure screw cannot be made leak tight .to; the indicated level. - l - 7.4. 2. 2. 8 - Remov e all equipment and replace the test port closure plug. 7.4. 2. 3 ~ Upon assembly of the secondary containment ~ ve.ssel: 7.4.2.3.1 Verify that the secondary containmen't ves sel lid and. closure bolts have been properly.. Installed for shipment. Remove the test port closure plug-and test port closure screw from the test port. 7.4.2.3.2 Repe a t test - proceduro St ep s 7.4.2.2.1 through 7.4.2.2.8. 7.4.2'.4 Acceptance Criteria

7. 4 '. 2. 4.1 For each containment vessel to have an accept-

~ ably low leakage rate, the de t e c t io n equipment must be capable of detecting a leak rate of 10-4 standard cubic centimeters (sec) per second. 7.4.2.4.2 To be acceptable, the cont a inment vessels shall have a leakage rate of 10-7 sec/sec or less. t 7-8

i ) NuPac PAS-1 Consolidated SAR, Rsv. O Ma rch 31, 1989 I 8.0 ACCEPTANCE TEST AND MAINTENANCE PROGRAM V l 8.1 Acceot ance Test s Prior to the first use of the packaging, the t est s and evaluations called out on the General Arrangement Drawing (Section 1.3.1) shall be perf ormed. Shielding integrity shall be verified using the procedures described in Appen-diz 8.3.1. The Fabrication Verification Leak Test delineated in Appe ndix 8.3.2 shall be perf ormed upon comple tion of fabrication, prior to first use. i 1 8.2 Maintenance Proggam [)h General maintenance proce ndures are as f ollows: '\\, Painted Surfaces A. Painted surfaces may be wiped clean using standard chemical solutions and proced ur e s. B. Chipped or scratched surf aces shall be repainted as follows: 1. Remove rust or loose coatings and sand edges so they fair into sound coating. 2. Apply two coats Mobil Ch em '78 Series' or suitable equival e nt to bare surfaces, f ollowing manuf acturer's recomme ndations. Unpaint ed Surf aces [~'l A. Unpainted carbon steel surfaces shall be coated with a generous quantity I %,,) of high quality vacuum grease. The se areas include: 8-1 _-----_____w

t? NuPac PAS-1 ' Consolidated SAR, Rav. ; 0 - R2rch 31, 1989

M );

1, 0-ring gl' ands on the prima ry and se conda ry cont a inment vessel lid J'%) - and body. 2. Both test ports. B. Vecuum grease shall be removed and replaced ye arly. Grease may be removed using s olvent s reccamended by the manufac turer of the gre a se. All 0-rings shall be removed prior to the use of :any solvents. Fa s t e ne r s - ' All threaded parts shall-be inspected yearly and af ter each use for deformed or stripped. threads. Any damaged part s shall be replaced prior to f ur the r use. Se al s All 0-rings ' and gaskets shall be replaced annually except oc the overpack. Sealing surfaces and 0-ring glands shall be inspected for rust, ch ip s, burrs,. ' scratches, etc., at. the time of seal replacement. Immediately following seal. i replacement, the prima ry and secondary containment vessel shall each be leak tested to the requirements of Appendix 8.4 Maintenance Verification Leak Test. Vermiculite Fille r Vermiculite shall be replaced yearly and stored in an airtight container. j l Overnack l l A good sound industrial maintenance program should be followed to as sure the integrity of the overpack. The ga ske t and component s neces sary for the safe and easy operation of the. packa ging should be given regular inspection and repaired or replaced as necessary. As a minitaum, the overpack gasket shall be h replaced once a year (sooner if visible wear is detected). A 8-2 l

1 f NuPac' PAS-1 ' Consolidated SAR, Rev. ' O March 11,-1989 l 8.3 An ne ndir. %./ 1 8.3.1 Lead Shieldina Intearity Testian 1 8.3.1.1 Poured Lead M ielding Poured lead shielding integrity 'shall be confirmed v ia gamma. scanning. There are two gamma scan techniques utilized.. The ' main dif forence is in-the method r ilized to determine acceptance criteria. Both gamma scan techniques are exactly the same in all other respects and are conducted as follows. An Eberline E120 probe or equivalent is used to scan the outer surface of the cask while. an ' Iridium 192 or Cobalt 60 source of s ufficient ' _ strength is present in'the' center of the cask. The source is first placed on the bottom of the cask while the surface is -scanned around its' circumference parallel to the source.. The source is then moved up a. pre-determined distance and the circumference scanned again. This sequence :is repeated until the entire; cask surf ace is scanned. For these tests, the cask surface is gridded (in this case the grid consists of 4 inch squares) and a chart is made to reflect the Fridded cask surface. ' Read'ngs are taken from - each grid square by scanning every point in the grid and recording the maximum reading in the corresponding grid on the chart. This data then serves as the raw gamma scan results. All readings are in Milliroe n t gens (NR). The readings are evaluated by comparing them to predetermined !.!R values for l' nominal, or as designed, lead thicknes s and nominal -10% lead thickness. The two different methods utilized to de termine acceptance criteria are dis-cus sed below. 8-3

NuPac PAS-1 Consolidated SAR, Rsv. O Ma rc h 31, 1989 g) } The Lab ora t ory Calibri. t io n Method (NuPac Proced ure GS-001) utilizes test blocks of the ca sk wall made up of lead and steel sheets. The test blocks simula t e nominal or as designed and -10% lead th ic kne s se s. The source is placed behind *.he test block at a distance equal to the inside radius of the cask. The probe is then placed on the out side of the test block and readings a r e t ake n. This sequence is repeated on the nominal and -10% test blocks and the data is recorded. The resultant values are then averaged. A ratio of the values is al so de-veloped. The n th e average val ue is multiplied by the ratio. The value so derived is the marinum as septabic value for the shielding to be inspected. The Field Calibration Me thod (NuPac Proced ur e GS-002) utilizes a spe cially f abrica ted test lid which incorporates a holder for various lean and steel rheet "h ic kne s s e s. This fixture is installed onto the cask to be s c anne d. The test lid is then set up to simulate the nominal lead thickness, the source is placed below the test lid in the ca sk a t a distance equal to the in side /) t' radiuc of the cask. Readings are then taken. The test lid is then se t up to recreate the -10% lead thicknes s configuration, and readings are taken. O the r reading are then t ake n in 1/8 inch lead thic kne s s increments be tw e e n and beyond the two base readings until four to eight readings are obtained. The data is then plotted on a chart of readings versus lead thickness. The value for n cun inal lead -10% is the n utilized as the maximum ac c ept able reading during the actural gamma scan. 8.3.1.2 Shee t Lead Shielding l l All sheet lead, when utilized, shall be ultrasonically tested in accordance with ASME Seccion.V, Article 5. OO 8-4

NuPao PAS-1 Consolidated SAR, Rsv.: 0 March 31, 1989 [] 8.3.2 ' Fabr i ca t io n and Maintenance Ve ri f i ca t io n Helium Le ak ' Tes t Proced ure ^ 8.3.2.1 Requirement s For Instruments A Leak Detection System with capability of detecting a leak of 5 x 10-8 standard cubic centimeters per second or smaller. 8.3.2.2 Proced ure ' 8.3.2.2.1 Fabrica tion Verification Leak Test The Fabrication Verification Leak Test shall be pe r-formed af ter initial fabrication to verify cask con-figuration and performance to design criteria. 8.3.2.2.1.1 Calibrate leak detector according to rianuf ac t ure r's re c oreme nda t ion s, such that the leak detector se nsi t iv ity is 10-8 standard cubic centi-5 x meters /second (scc /sec) or better. 8.3.2.2.1.2 Install the upper 0-ring. on the lid of the Prima ry Cont a inmen t Vessel. Re-move the test port closure plug and outer test port closure screw. With a screwdriver, rotate the inner test p or t closure (vent) screw cl oc kwi s e such that the Stat-0-Seal does not se al. CAUTION: Rotating the vent screw more than tw o .O turns may cause it to drop inside the V containment ves sel. 8-5 j __________-______-_-_-__-____a

NuPac' PAS Consolidated SAR, Ray. O March 31, 1989 j] Ins t all the lid onto the body with eight 3/8 - 16 UNC, Grade 2, bolts tightened to 16-18 f t-lbs torque each. Tighten the vent screw to seat the Sta t-0-Se al. Repla ce the oute r te s t port closure screw.' 8.3.2.2.1.3 Install the test port sarpling tool in the test port on the lid. Attach to the leak detector using appropriate fittings. Using the sampling tool, adjust test port closure screw such that the Stat-O-Seal does not seal. -8.3.2.2.1.4 Evac uat e the system for one hour or until vacuum is suf ficie nt to operate (9 the leak detector as per manufac-V turer's r e comme nd a t ion s. Note any a dj u s tme nt s made to the connecting fittings required to achieve this.- 8.3.2.2.1.5 Provide a helium atmosphere about the exterior of the containment ves sel, taking care to purge all o ther gases from any pocke ts or cavities adj a ce nt to the vessel. Determine the leak rate of the system using the leak de t e ct or manufa c ture r's r e comme nda-tions and so note. 8.3.2.2.1.6 If the leak rate of the system is determined to be greater than 1 x 10~7 ccc/sec, inspect sy s t em for clean 11-l ness, tightness, and proper assembly. Return to Step 8.3.2.2.1.4 above, and continue testing until the vessel 8-6 1

n-NuPac PAS-1 Consolidated SAR, Rev. O March 31, 1989 passes the test or it is apparent that .( s ~ the sy s t an cannot be made leak-tight to the indicated level. ' Note the best leak tightness observed.. 8.3.2.2.1.7 Using the sampling tool handle, adjus t the test port closure screw such that the Sta t-O-Se al is properly seated. 8.3.2.2.1.8 Release the vacuum to the sampling t o ol. 8.3.2.2.1.9-Connect sampling t o ol to a helium source, taking care to adequately seal connecting fittings to prevent signi-ficant leakage of air into the. system. 8.3.2.2.1.10 Adj u s t test port closure screw to allow fre e pas sage of helium into the l containment ves sel. 8.3.2.2.1.11 When the int e rnal pressure of the system reaches one atmosphere, again adj u st the t est por t clos ure s cr ew so that the Stat-0-Seal is properly se al e d. 8.3.2.2.1.12 Disconnect from helium source and reconnect to the leak detector. 8.3.2.2.1.13 Repeat step 8.3.2.2.1.4 through 8.3.2.2.1.6. 1 8.3.2.2.1.14 Release vacuum and disassemble from leak detector. 8-7

i .z _; ' NuPac PAS-1 Consolidated SAR, Rev. O March 31,-'1989 h 8.3i2.2.1'.15 Install the outer 0-ring on the lid of. ' %') . the Secondary Containment Ves sel. 'In-stall the lid'onto the body with eight 1-8 UNC,' Grade 5, bolts tightened : to 450-500 ft-lbs torque each.' 8.3.2.2.1.16 Repeat stops 8.3.2.2'.1.3 to 8.3.2.2.1.4. 8.3.2.2.2 Maintenance Verification Leak Test . The Maintenance Verification Le ak Te s t shall be pe rf ormed annually during routine maintenance. 8.3.2.2.2.1. Follow steps 8.3.2.2.1.1 to 8.3.2.2.1.16 with the exc ep t ion that 'D kog 0-rings shall. be installed in each containment ve s sel' pr ior ; t o testing. 8.3.2.3 Acceptance Criteria To be acceptabic, the units shall exhibit a leak rate less than -7 1 x 10 sec/sec. O 8-8

o NuPa c PAS-l' Consolidat ed SAR, Rev..O' . March 31, 1989 M : 9.0 QUALITY ASSURANCE NuPac's quality assurance program used f or the design, f abr ica t ion, assembly, testing, use-and maintenance of the NuPac PAS-1 cask is designed and adminis-tered to meet the 18 criteria of 10 CFR 71, Appe ndix E. A description of this program has been submitted to the NRC under NuPac l e t t e r QA-78-1, Rev. 1, dated July 31,.1980, and has received Quality Assurance Program Approval No. 0192. O 1 1 i O 9-1 -_ -}}