ML20247K188

From kanterella
Jump to navigation Jump to search
Rev 0 to Cycle 16 COLR, for May 1998
ML20247K188
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 05/08/1998
From:
IES UTILITIES INC., (FORMERLY IOWA ELECTRIC LIGHT
To:
Shared Package
ML20247K165 List:
References
NUDOCS 9805220037
Download: ML20247K188 (22)


Text

.

IES UTILITIES, INC.

Duane Arnold Energy Center Cycle 16 CORE OPERATING LIMITS REPORT Rev. O May 1998 Prepared by: /

.5/7/9A O/4Fb/96 Verified by: I,t/ 4M'am '

S/B/12 3

Concurred by: foaldt Ch Principal Engineer, Nuclear Fuels 5-Y-97 '

47T blow t i AE/5 8'78 Supervisor, Operations Su rt i Manager, Quanty Assurance n 0 $ZZ Tb?/9A d <~///7$

Manager, Wegulatory Performafice '

/M/ /b oMJ~-f-7P Man r, Eng' ee //

~

Reviewed by: W oc 78 -Jo S/F/eg

'Chairm , Operations C mmittee Approved by: . e/ og/ ,~,/ #8 >8 I Plahtfa6ager,' Mudear V I l

9805220037 980513 DR ADOCK 0500 1 L .. _

1.0 Core Operating Limits Report This Core Operating Limits Report for Cycle 16 has been prepared in accordance with the requirements of Technical Specification 6.11.2 (ITS 5.6.5) The core operating limits have been developed using NRC-approved methodology (Ref.1) and are documented in References 2, 3, 7, and 8. The Cycle 16 values for the core operating limits are provided in Section 3.0 of this report. -

2.0 References

1. General Electric Standard Acolication for Reactor Fuel (GESTAR-II).

NEDE-24011-P-A* a

2. Duane Amold Enerav Center SAFER /GESTR-LOCA Loss-of-Coolant Accident Analysis, NEDC-31310P, Supp.1, August 1993*
3. Sucolemental Reload Licensina Submittal for Duane Arnold Enerav Center. Reload 15. Cycle 16. 24A5410, Rev 0, March 1998
4. Duane Arnold Enerav Center Sinale Looo Operation. NEDO-24272, July 1980
5. Averaae Power Ranoe Monitor. Rod Block Monitor and Technical Specification Improvement (ARTS) Proaram for the Duane Arnold Eneroy Center. NEDC-30813, December 1984
6. GE Fuel Bundle Desians. NEDE-31152P*
7. Aoolication of the "Reaional Exclusion with Flow-Biasad APRM Neutron Flux Scram" Stability Solution (Oction I-D) to the Duane Arnold Enerav Center. GENE-A00-04021-01, September 1995
8. Impact of EOC RPT and TBV OOS on ARTS Limits for Duane Arnold Enerav Center. GE-NE-A0005785-21, October 1996 Approved revision number at time reload fuel analyses are performed. ,

Page 2 Preparer initials:

Verifier Initials:

L___________ _ _ - - -

\

l

)

3.0 Core Operating Limits

1. Maximum Averaoe Planar Linear Heat Generation Rate (MAPLHGR)-

TS 3.12.A (ITS 3.2.1).

a. The MAPLHGR for each fuel type as a function of planar average exposure (PAE) shall not exceed the limiting value shown in Figures 1,2,3, and 4 multiplied by the smaller of the two MAPFAC factors determined fro' m Figures 5 and 6.
b. During SLO, the actual MAPLHGR for each type of fuel as a function of average planar exposere shall not exceed the limiting value shown in Figures 1,'2, 3, and 4; multiplied by the smaller of the two MAPFAC factors determined from Figures 6 and 7.
c. Tables 1 and 2 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) used in the SAFER /GESTR-LOCA analysis. These tables are applicable to the re-insert fuel for Cycle 16.

Tables 3 and 4 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) conservatively bounded by the SAFER /GESTR-LOCA analysis (see reference 3). These tables are applicable to the fresh fuel for Cycle-16. l Tables 1,2,3, and 4 correspond to Figures 1,2,3, and 4, respectively.

2. Linear Heat Generation Rate (LHGR) - TS 3.12.B (TRM: 3.2).
a. The LHGR of any rod in any fuel assembly shall not exceed 14.4 KW/ft.
3. Minimum Critical Power Ratio (MCPR)-TS 3.12.C (ITS 3.2.2).
a. The MCPR shall be equal to or greater than the Operating Limit MCPR, which is a function of core thermal power, core flow, fuel type *, and scram time (Tau). For core thermal power greater than or equal to 25% of rated and less than 30% of rated (25% < P <

30%), the Operating Limit MCPR is given by Figure 8. For core thermal power greater than or equal to 30% of rated (P > 30%),

the Operating Limit MCPR is the greater of either:

i) The applicable flow-dependent MCPR determined from Figure 9, or Page 3 Preparerintials:

Venfier intials:

ii) The appropriate RATED POWER MCPR from Figure 10 (Figure 11 for Turbine Bypass Valves (TBVs) out-of-service; Figure 12 for the End-of-Cycle Recirculation Pump Trip (EOCRPT) out-of-service; or, Figure 13 for a combination of TBVs and EOCRPT out-of-service), multiplied by the applicable power-dependent MCPR multiplier determined from Figure 8.

b. During SLO with core thermal power greater than or equal to 25%

of rated, the SLO Operating Limit MCPR is determined by adding 0.03 to the Operating Limit MCPR determined above.

Cycle 16 MCPR limits are applicable to all DAEC fuel types.

4.0 Reload Fuel Bundles FUEL TYPE CYCLE LOADED NUMBER GE10-P8DXB327-8GZ2-100M-150-T 14 40 GE10-P8DXB327-10GZ1-100M-150-T 14 88 GE10-P8DXB327-8GZ2-100M-150-T 15 40 GE10-P8DXB327-10GZ1-100M-150-T 15 80 GE10-P8DXB342-12GZ-100T-150-T 16 40 GE10-P8DXB341-9GZ-100T-150-T 16 80 5.0 Thermal-Hydraulic Stability - TS 3.3.F 3 (ITS 3.4.1),

a. Continued reactor operation within the " Exclusion Zone" on the power / flow map, as defined on Figure 14, is not permitted.
b. Continued reactor operation within the " Buffer Zone" on the power / flow map, as defined on Figure 14, is not permitted when the thermal-hydraulic stability monitor (SOLOMON) is not operational.

Page 4 Preparer Initials:

Verifier initials: ,

l \

1 TABLE 1 Linear Heat Generation Rate l as a function of Planar Average Exposure

  • l Fuel type: GE10-P8DXB327-8GZ2-100M-150-T

\

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft) 0.0 11.72 0.2 11.77 1.0 11.88 2.0 11.96 3.0 12.04 4.0 12.10 5.0 12.17 6.0 12.24 7.0 12.31 8.0 12.39 9.0 12.47 10.0 12.56 12.5 12.57 15.0 12.33 20.0 11.81 25.0 11.29 35.0 10.20 45.0 8.48 l 50.1 5.90 i l

These are nominal values to be used for manual calculations. The actual  ;

lattice-type dependent values are modeled in the process computer.

Page5 Preparer initials: [

Verifier Initials: B/e

1 -

TABLE 2 l Linear Heat Generation Rate as a function of l .

Planar Average Exposure

  • I i

, Fuel type: GE10-P8DXB327-10GZ1-100M-150-T Planar -

Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft) 0.0 11.49 0.2 11.56 1.0 11.71 2.0 11.68 3.0 12.05 4.0 12.23 5.0 12.42 6.0 12.57 7.0 12.70 8.0 12.82 9.0 12.95 10.0 13.09 12.5 13.17 15.0 12.90 l 20.0 12.16 25.0 11.38 35.0 9.92 45.0 8.51 50.7 5.77 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 6 Preparer initials: [

Verifier Initials: -2gg

TABLE 3 Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fuel type: GE10-P8DXB342-12GZ-100T-150-T Planar -

Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft) 0.00 11.27 0.20 11.32 1.00 11.42 2.00 11.63 3.00 11.87 4.00 12.01 5.00 12.15 6.00 12.29 7.00 12.44 8.00 12.61 9.00 12.81 10.00 13.02 I 12.50 13.15 15.00 13.09 20.00 12.27 25.00 11.47 35.00 9.90 45.00 8.53 50.98 5.64 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 7 Preparer Initials:

Verifier initials:

L

I r

l .

TABLE 4 1

Linear Heat Generation Rate

, as a function of Planar Average Exposure

  • Fuel type: GE10-P8DXB341-9GZ-100T-150-T Planar -

Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft) 0.00 11.87 0.20 11.89 1.00 11.94 2.00 12.08 3.00 12.26 4.00 12.44 5.00 12.55 6.00 12.66 7.00 12.76 8.00 12.86 9.00 12.99 10.00 13.12 12.50 13.35 15.00 12.89 20.00 12.02 25.00 11.20 35.00 9.73 45.00 8.54 51.02 5.65 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 8 Preparer Initials:

Verifier Initials:

-___-___-_-___0

S

/

W s' .

. 0 la 0 i

- d

~ _

- 0 6 i n

_ r

~ _ le f

ir e

V

-- _ p

- 0 L 0 0

5

- 0 0

4 T

E- 0 - )

T A5 1 S

I D

PM0 W

G

(

S1 0 -

E R

V2Z U S

O 1

E R8G7-0 0 P R 0 X 3 E U G 23  % E G

G I

F HBX A R

L D E V

P0 P A R

A0 1 A

N ME- G-A L

P 0

0 0

- 2

_ - 0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 g 0 0

0 0

0 0

0 0

4 3 2 1 0 g 8 7 6 5 1 1 1 1 1 pE5EO5 g25n. gW<2h

O e

f.

d f

ss laia i

~

i NI d d nn r r ee I

-- - r 6 at pe r eV r

- P

} N M

M T-E0 - )

T S

/

A5 -

1 D PM-0 0

W G(

E S1 -

R U -

VZG1 0P S

O r

R10 0X o G2 7 H3 B s 0E 3E G

A R

E e

r a

c -

LX D- V A

PS P - R A

A0 1 N

A MEG _ _

L P

0 0

. 0

- 2

. 0 0

' 0 1

_ 0 0

o 0 0 0 0 0 0 0 0 a

4 0

3

., 0 0

0 8

0 8

0 7

0 6

0 i 1 , 1 5

[i g25 OgW< 3$

M 4

- ss

.A :

0 i

. 0 lam i i t t

_ _ _ 0 nn

_ 6 iI

- r r ee r 5 at r pe eV r

P k\ 0 0

0

_ 5

~ -

_. 0 0

0 4

T )

E- 0 T S

A6

/

D 1 W P T-0 G

(

0 E R

S1 Z- U V 2G S O

0 XP 3

E R1 - 0.

0 E R U

G43 2 3E G

A G

I HBX R E

F LD 8 V A

PP -

R A

A10 N A

MEG L P

0 0

- 0 2

- 0 0

0 1

- 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2 1 0 9 8 7 6 5 1 1 1 1 1 85 gz5e. u a s<2h

E /

C d

I ls aa

's l

M ta ih i

M (nni r r ee r 1

- ai r pe 1

eV r

P

\

W M

- Y M

- - M

- )

E T_ T S

A6 0 /

D W -.

P1T-0 G

(

E S0 1 R

U V Z-G R9 1 N MX MEG S

O P

E 4

E R

U G3 N

4 G

- A I HB-X- - R E

F LD-S - V A

PP -

R A _

A1E-0 N A

MG- -

L P -

M E

M -

- J 0 1

7 M

0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 4 3 2 1 0 9 8 7 6 5 1 1 1 1 1 _

gsg3b Y<2$

lllll [

_ 1Ii R

E e

I 1 d e

_ L ~ 6 8 t a

P 4 R

_ 0 f

+ o I

_ T F 8  %

L 7 6

0 i

n U - 0 0

0 1 lo w

M -

f C

=

f C

= F e

N A8 A r

o RO 8 F5 F 5 P7 P C

=

GT I 7 A=

F< M>F M A F e

HA r e

LR F r

o r

o F

h W

P EP AO MP T OO NL EO DW NT

[

E P

E D

W O

L F -

0 0 0 0 0 0 0 1 0 9 8 7 6 5 1 1 0 0 o 0 0 E<I  ! d E5 a

_ e 0 0 a e

~

_ R 3 3 P( Rt a s - - 4

~ _ 2 f o R

{i t i

P( P( 2 f 0 im L

0 4 5 1 01 4 5 0 %o 9 in%

l = 0 5 0 0

~

a <0 > 0 0 r n

~ m F + F + + ei

~

r e d 9

n 5 d n5 -

0 0 0

0 0 ww o o h

PF l

~

~

T a0 = a0 =

1

=

1

=

~ o 0 p 0 p

6 p p e re r

N 3 C 3 C 9 C C o o 0 R ~~ < A < A < A A CC 8 PF PF

P =P PF 6F =

E 5 = P 9P PF 2 < A < A < A = A fF I ~

P 5

2 M52 M 0 3 M> PM e

L '

- r e

P r

- r r r r

~

o o o o o h I

~

~

F F F F W T ~

0 7

L ~

U ~

M ~ .

~ _

R ~

~

0 6

G H

L P

A 0 5

M T ' W O

N ~ L F

E

~

- E T R 0 D > O C

4 N  %

0 E 5 P

Y]I E - -

0 D -

3 R ~

E -

W -

0 O 2 P

- W

- O L

- F

- E 0 R 1

- O C

0

- 5

=

0 0

0 0 0 0 1 0 9 8 0 0 0 7 6 1 1 0 0 S. 4 0 0 0 O EIh~g8hmI2$pg

1 d 6 t e

8 a 4

0 R

f F

+ o 8

7 6 i n

0 7 R _

0 0 8 0 lo w

E I

f C

t C

F e

r L _. A6 A o 6 F 6F C P 6P5 P

_ =

F I

5

< A >= A F M M .

T _

F e r

e L _

r o

F r

o F

h W

U MN -

RI O T

GA HR .

LE P P O A P

/

MO _

TO L _

N E .

EL _

DG _

NIN .

ES P _. -

E _

D _

W _

O _

L _

F _

0 0 0

0 0 o 0 9 e 0

"a 5

_ 1 1 1 0 0 n 0 i 0o2 ! l 5A5

- g' i

u r

. t e

_ a r

h

- e ip

- p t d u

- e r

O M t

i u n R d q e

- e )

P

)

P d

n P Ct aed e R - -

e

- s 0 3

3 3 - p MRt a R

0

(

2 2( )

P-

)

P D e tno Rf S

) f im o

- 5 5 5 P-0 0 L r I +

5 0 0 0 4 e

ei n%

=

T 5 6( 0 l

a < 0 > 0 4 w m F + F + ( 7 1

( o pr n I _ r 0 1 4 6 5 P eei e d 1 d 6 3 8 7 =

P R D r wm M -

h T

n2 n2 a = a =,

1 0

0 0

3 0

0 RC P wePF ok R,03 R I o 0 5 0 0 0+ P e e N 3 4 8+ 0 Mor r L

<P < P <

6

< 5 + C t P oo 5

PCPC P= 2 P 11 6 01 0 M i=CC L imp ==

=M = M 1 R

=

2 c < L < L < p= < p=== > O LKPF  ! 1 '  ! r 3 K 54 K P K, 5 0 P 2 O 25 O :e P _. r o

r o

r o

r r r e A

r C F F F F o o F F o

V .-

M t .

n

,! ' i  !  ; '  ! a I e -

d l n W e

p -

F O

L e -

t , '

E

,

  • i j R

- O D -

C r

0 e -

- 5 w-l o

I P -

~

- Y

'_ 0

! t . . , 1

ty '
  • t 3 n c eP s =

i I l

e<

r W p5 e2

- O

- L F

Rsf ro0 3

- E eP =>

r R -

bmPR P

- O uC o r

C

~

i NMf sL P

- 0 5

ix O K

=

a)-

- l

< Y (a b) (

- e

- to N

2 0 6 A 2 0 8 6 4 2, 3 3 2 2 2 2 1 1 s j gd a* .

EI

)

)

F-0 I

4

(  ; ,

2 3

0 0

0

+

1

(

)

x '

S 5 5

)

5 5

d T 6 e '

i 6 t I

1 1

a

+ + R M

I F

1 7

F 1

7 f

o 5  %

L G O

5 0

0 i n

R 0-(

=

0-( l w

o '

P f 7 =f R9 7 R 0 F

e -

C P C<C9 F P7 2 1

= C r

o M 0M=M7 4<

L < L = PR f

F

=

T F O0O>C4 F M

e r

e N r r

?

r h i  ;

i t  !

o o oL F F F O W E

D N

E P

' i i ,

E D

W O

l '

I L -

F -

i i ' ' - 4 E ,

i i i

8 7- 6 5 4 3 2 1 1 1 1 1 1 1 Eo.N O

. i y

1 ss M

A N

la t

r ih u ru la t 1 O - r r I

T ee r if P a i O_ per 9 eV r

0 P 8

_ 0

'/ 7 0

6 0

U _

A -

T -

5 U 0 s 0 A T E 1

v -

R U

R G I

Pb F C -

4 M -

0 3

- 0 2

- 0 1

- 0 B -

N -

O I

T P

O - 0 7 6 5 4 3 2 2 -

2 2 2 2 2 -

1 1 1 1 1 1 EW

l)j M_

1 1

[T lss

.A ia d d la i

N nn ii O r r I

T r fe e

ai r i

P pe

-- O 9 r eV

- 0 P

- 8

- 0 f '

7 0

6 0

U A

T s 5- UA 11 0

v -

T E R

U R

- G P -

I F

C - 4 M -

0

/

-g 3 0

2 0

/

- 1

. 0 B

N-O.

I -

T -

P O- 0 3 9 8 7 6 5 4 1 2 -

2 2 ^

2 2 2 1 1 1 1 1 1 ES

. i

~

~ '4 li f /b'5 ls 'S A. _ -

- . ta '*

i N. _

tur *" '

O I

_ e" r

T r P a p

O e V' r

9.

0 P 8

0 e ^

7 0

6

_[

0 U

A TS 5 U sO A 12 i

0 vOT T E R

U RP G I

PR F C 4 -

M f 0

3 0

2

- 0 f 1 0

B N

O I

T P

O -

4 3 2 1 3 9 8 7 6 5 4 3 3 3 3 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

- . 4 4'

1 [44 ss 1

leia l

d t nn iI

_ r mife ai pe eV r

A, 9R 0

N O

I T

P O

8 0

7 0

, 6 _

0 S ._ _

U O O

A T T P -

sR 5 U A 13 v&

0 T E R

U RS G PO I F

CO MVB 4

0 T

/

3 0 -_

e 2 0

, 1 0

B N

O I

T P .

O -

0 7 6 5 4 3 2 1 3 9 8 7 3 -

3 3 3 3 3 3 1 2 2 2 1 1 1 1 1 1 1 1 1 1 r

s

I i

M

=

C $ $ $$

CO O O T)

"U O C3 00 b-ti p v~ r i

oJ s k%

,,p

.s . .

C mm il .-a CD C _ m 4

-wC.m g .C

. ... .\ ... .,O 1

Q GW 4 g gg g, i ~

i o

w WQ. c.c:

m

.r-- . ~ . . . . . . . .. . _-_ . _ . - . . _ . . _ - . . _ . _ . _ . , . . . . _ .. _ Q,. ._

g3 L

_o v

.T , .. . - . . . .

. . . - .. . .- . . _ . . . u.. 3

. . . - . .... o

+-.. . . . . . - ., .- . . . .. -.. . . . . . . . . . . . . . . . ....

t e

M c.

u, m _ _ . .

g . . . . . - . .. .

.- _ . . . . - . . . . . - - . .- -.. u) .-. . - . . . - _ - . - .

G-N ---T E o

m O + .

- - - - + - - - -

2 --~ . --

g _ . _ . ._.. _ .

-.,- .- _ . a. __ - . . . . _ . . . . _

u t . . . _ . _ _ . . _ . . . _ . - . . . _. .. _ ._

E .__ ..._ _ . . . _ .e e . - -. . . . - . . ._. . .. .. -.. -. . . - . .

2 . . - .- . . _ . -

.4 v

-E m- ,

...\ C s

O .. . . ._, . ., .. .. . . .

3 _.

N 3: m Q,, . . - . . _.... . .

o (r A u . 3 C

_. . . . - . . . - _ .. ... .. . . ~ . . . , _ ,. . . . . . . .

o (e) g L.g.

D .

. ~- g eQ

$ , . . . . . . . . . . . . ..\

N\._ x . . . _ . . , . -... . .. ..

W , . - . .

_.. ._ r .1E O

\.. _ N. . -

LU -- N m 4 -..

C . . c--A -

O

.O_ . . - _ . .. . . . . . _.. _...JL _ ..,. -

w 'g . . - _- . . . . . . . . .. . . . . . . ... . . . - - .

gC 3 g __ _ _ . _ .. .. . . . _ . . _ . . . . . . _ . . . _ - _ .

me mN C o

__ _ . _ . _ . _ . . . . _ . _ . - - . . . . - _ . . , . . _ _ . -O _.

2E _$ g -

G . . _

_ __ _ .._ . . . . . . . . . . ._. . m a _ - . _

. . _ ... . . . _ . . _ . _ - _ _ .___ -- z- . . - _ .

O c

o o o o e o e o ,e o e o o o os - e- e m M n -

GDMW 8991 Jo %) Joed 0203

- _ _ _ _ _ _ ____-_ ___ _