ML20247E175

From kanterella
Jump to navigation Jump to search
Forwards Response to Request for Addl Info Re Reactor Recirculation Sys Piping Justification for Continued Operation.Subjs Discussed Include,Stress Intensity Factor (K) & Stress Corrosion Cracking Growth Calculations
ML20247E175
Person / Time
Site: Brunswick Duke Energy icon.png
Issue date: 05/17/1989
From: Loflin L
CAROLINA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NLS-89-154, NUDOCS 8905260151
Download: ML20247E175 (16)


Text

.

p.F s C N LLL Carolina Power & Light Company MAY 171989 SERIAL'
NLS-89-154 United States Nuclear Regulatory Commission-ATTENTION: Document Control Desk Washington, DC 20555 BRUNSWICK STEAM ELECTRIC PLANT, UNIT No. 2 DOCKET NO. 50-324/ LICENSE NO. DPR-62 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION REACTOR RECIRCULATION SYSTEM PIPING JC0 Gentlemen:

On March 27, 1989, the NRC requested additional information concerning the justification for continued operation submitted for the Brunswick Steam Electric Plant, Unit 2, on March 13, 1989. The original response to this request was submitted on May 5,1989.

However, the enclosure to that: letter was inadvertently missing several pages. Therefore, the information requested is hereby resubmitted in its entirety.

The Company regrets any inconvenience this may have caused you.

l Please refer any questions regarding this submittal to Mr. Stephen D.

j:

Floyd at (919) 546-6901.

Yours very truly, C

Leonard I. L flin Manage-Nualear Licensing Section

BAB/bab

(\\cor\\jco2)

Enclosure l

cc:

Mr. S. D. Ebneter

.Mr. W. H. Ruland Mr. E. G. Tourigny 0

01 I

\\

411 Fayettevitte Street

  • P. O. Box 1561
  • Raleigh, N C. 27602
9905260151 890517

~~

~~

DR

.p ADOCK 05000324

_ PDC. _ _ _. - _ _ _

l i

4

'J ENCLOSURE BRUNSWICK STEAM ELECTRIC PLANT, UNIT 2 NRC DOCKET 50-324~

OPERATING LICENSE DPR-62 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION REACTOR RECIRCULATION SYSTEM PIPINC JC0 NRC QUESTION Crack growth computations were performed only for a 360' part-throughwall flaw. However, because the crack growth predictions were to be correlated with service experience and because the maximum flaw depth is about 20% larger than the average flaw depth, the computations in Sections 2.4 and 4.2 may not cover the applicable crack growth range for the thermal sleeve attachment.

To ensure appropriate crack geometry and growth range are covered, the computations in Section 4.2 should be repeated to estimate a material crack growth relationship representative of service experience using a semi-elliptical flaw shape with less than a 360' length (e.g., flaw length / depth = 10 or 20). The resulting crack growth relationship should then be used to repeat the calculations in Section 2.4 (Case 2, page 17, Revision 1) and to update Table 2-3, using the shorter assumed part-throughwall flaw length and an initial flaw depth equal to 61% of wall thickness.

CP&L RESPONSE

Background

Recirculation inlet safe end cracking at the thermal sleeve attachment weld j

was found at BSEP-1 and verified by destructive examination [1].

Since BSEP-1

{

and BSEP-2 have identical N2 safe end designs and have been operating for j

approximately the same period of time (6.4 and 6.8 EFPYs, respectively), a worst case analysis was performed to justify the continued operation of

-)

BSEP-2. This analysis, documented in Reference 1, postulated that the worst case BSEP-1 flaw (average 360* depth of 49% of wall and maximum depth of 61%

of wall) also exists in the most highly stressed recirculation inlet safe end in BSEP-2.

The analysis in Reference 1 employed the average 360' crack depth of 49% of wall (a/t = 0.49) as the starting point for subsequent predicted SCC growth.

The SCC predictions in Reference 1 used several crack growth laws, the most relevant of which was empirically derived from the rate of crack growth experienced in the BSEP-1 and DAEC inconel safe ends at the thermal sleeve-to-safe end weld location.

In response to the NRC request, this letter addresses a postulated starting crack depth of a/t = 0.61, and also addresses the effects of cracks shorter than 360* for the experience-based crack growth law. No credit is taken for the potential SCC mitigation afforded by the mechanical stress improvement (MSIP) and hydrogen water chemistry (BWC) implemented at BSEP-2.

(316CRS/lah)

Allowable End-of-Evaluation Period Flaw Sizes Allowable end-of-evaluation period flaw sizes for the most highly stressed H2 nozzle safe end are documented in Reference 1.

These calculations are not affected by the present analysis. Riser C has the most highly stressed safe end with an operating pressure stress of 2.60 ksi, a deadweight stress of 0.67 ksi, and an OBE stress of 1.58 ksi.

It can be seen that these primary stresses are quite low, due to the large thickness (1.125 in.) of the safe end at this location and the low applied forces and moments {1]. The thermal expansion stress of 2.33 ksi and the shrinkage stress of 6.24 ksi (resulting from weld overlays on the recirculation piping) are not employed to compute allowable flaw size but are used in SCC growth analyses.

Due to the low primary stresses, the allowable flaw depth is at the maximum of a/t = 0.75 permitted by Appendix C of ASME Section XI.

Actually, the predicted allowable flaw depth for a 360* circumferential crack is a/t = 0.86, using the net section plastic collapse equations of Section XI, Appendix C with a safety factor on stress of 2.77 (1]. Thus, both a/t = 0.75 and a/t = 0.86 are considered in this evaluation as allowable end-of-evaluation period flaw sizes.

j l

Stress Intensity Factor (K) Calculations j

l In order to perform SCC growth calculations, K values must be computed as a function of crack depth for 360* cracks and for circumferential cracks with length-to-depth (1/a) ratios of 20 and 10, as requested by the NRC.

These results are used both for indexing field cracking experience to an appropriate crack growth rate law and for predicting crack growth in other safe ends.

t Computation methods for K exist in pc-CRACK, the SI fracture mechanics computer code, for nonlinear stress distributions through the pipe wall for 360* cracks but not for shorter circumferential cracks. There are numerous K solutions for finite length circumferential surface cracks for membrane and linear bending stress distributions, but these are not readily available for the nonlinear stress distribution exbibited by the as-welded residual stresses at the BSEP thermal sleeve-to-safe end weld location [1]. Therefore, the equations for K in Reference 2 were employed for circumferential cracks with 1/a = 20 and 1/a = 10 to calculate K for the applied membrane and bending stresses in the pipe, and the Ks computed by pc-CRACK for the 360* crack and the nonlinear residual stress distribution were conservatively added to the above-applied Ks for each crack depth.

In other words, the Ks computed for the as-welded residual stress distribution are for a 360* crack, regardless of actual crack length, whereas the applied stress and shrinkage stress Ks reflect the actual crack length. Reference 2 documents the basis for ASME Section XI flaw acceptance for carbon steel pipe, but the K calculation equations also apply to these inconel safe ends.

Results of the total K versus crack depth (a) calculations, using the above methods, are shown in Figure 1 for 360* 1/a = 20 and 1/a = 10 circumferential cracks. Calculation details for the 1/a = 20 and 1/a = 10 cases are shown in Tables 1 and 2.

The K calculation values for the 360* cracks are shown in the pc-CRACK output in Attachment 1.

Note in FigGia 1 that, within the expected accuracy range for different K solution methods, the K values for 1/a = 20 are approximately equal to those for the 360* solution. This is expected since a (316CRS/I eh )

N 1

crack with 1/a = 20 is about'40% of the safe end circumference for a/t = 0.80 (see Table 1, L/ circ values). On the other hand, the 1/a = 10 cracks show a significant decrease in K versus crack depth (a) from the 360* case in Figure 1.

SCC Growth Calculations SCC growth rate calculations were done with pc-CRACK, as shown in Attachments 1 and 2 using the K values computed as described above for the 360* and the 1/a = 10 case. The case for 1/a = 20 was not analyzed since the K values are approximately equivalent to those for the 360* crack as shown in Figure 1.

Thus, for a K-based crack growth law, the predicted crack growth for the 360* and 1/a = 20 cases would also be approximately equivalent.

The following SCC growth law was in Reference 1, based on empirical crack growth correlations with service experience for BSEP-1 and DAEC:

K.26 2

da/dt = 3.271 x 10 where da/dt is i'n in./hr. and K is in ksi in.

Since this law is based on experience, it also reflects the fact that the large majority of the K contribution in this thermal sleeve-to-safe end weld location is due to displacement-controlled residual stresses of a secondary stress nature.

It also reflects the actual material susceptibility to SCC and the'accual plant water chemistry conditions. This is in contrast to " faster" laws reported in Reference 1 based on laboratory tests with susceptible materials, extreme environments, and " live loads" or load-controlled tests.

The above law was verified in the present study to still be appropriate for 1/a = 10.

Using this law, the time to grow a circumferential crack with 1/a = 10 from a depth of 0.018 in. (corresponding to a threshold K of 15 kai in. in Reference 1) to a/t = 0.61 is 5.5 years versus 5.2 years for a 360*

crack. Output from pc-CRACK is shown in Attachments 1 and 2 and is plotted in Figure 2.

Both of the above crack growth lives are in substantial agreement with the actual field crack growth life of 5.4 years for the worst BSEP-1 crack, assuming an initiation time of 1 year out of the total life of 6.4 EFPYs [1]. The initiation time is based on laboratory test data [1].

Note in considering the crack growth law verification that for a given crack depth, a shorter crack length results in a lower K and a " faster" law to reach a final growth size in a given time period. However, in the above respect, the choice of crack model is somewhat self-regulating since a shorter crack would index to a slightly faster crack growth law from field experience, but would result in overall slower growth at large crack depths due to lower K values relative to a long crack case.

Figure 2 illustrates that the difference in predicted crack growth rate is greatest at large crack depths, consistent with the Figure 1 relative K values. The indexing of the crack growth law to field cracking is done by multiplying the ratio of actual life to predicted life times the coefficient of the growth law. This coefficient is directly proportional to the predicted growth rate or growth life.

(316CRS/)ah)

l l

.I i

In the current case, the growth law in this analysis predicts a growth life to go from a crack depth of 0.018 in, to a/t = 0.61 of 5.5 years for a crack with 1/a = 10 and 5.2 years for a 360* crack for a growth life or SCC law coefficient ratio of 5.5/5.2 = 1.06.

On the other hand, as summarized in Table 3, the predicted growth life ratio for 1/a = 10 to 360* cracks is 10.7/8.9 = 1.20 for an allowable a/t of 0.75 and is 18.0/14.9 = 1.21 for an allowable a/t of 0.86.

Thus, the K effect at large crack sizes more than makes up for the slightly faster crack growth law which would index to shorter l

cracks at smaller crack depths and results in an overall greater predicted l

life for shorter cracks when this approach is used. In any event, the effect of crack aspect ratio in the range of t/a = 10 to 360* does not produce a significant effect (about 6%) on the crack growth law coefficient and is not adjusted for further predictions with these crack shapes.

Finally, the resulting times predicted to grow 360* and 1/a = 10 circumferential cracks from a/t = 0.61 to a/t = 0.75 and a/t = 0.86 are summarized in Table 3.

These times range from 8.9 months for a 360* crack to reach a/t = 0.75 to 18.0 months for an 1/a = 10 crack to reach a/t = 0.86.

The a/t = 0.86 value is slightly beyond the range for K solutions (a/t = 0.80 maximum) and involved extrapolations of predicted SCC growth.

Conclusions The following conclusions are reached based on the analyses provided in this letter.

1.

The SCC growth law' based on field experience was verified as appropriate for circumferential crack shapes of t/a = 10 as well as for 360* surface Cracks.

2.

Conservative K solutions for 1/a = 20 and 10 show that the 360* and 1/a = 20 cases produce approximately the same results.

3.

Credit was not taken in this analysis for MSIP and HWC mitigation of SCC growth at BSEP-2.

The as-welded residual stress distribution and a growth law without HWC were conservatively used for SCC growth predictions.

4.

The minimum predicted life for a 360* crack to grow from a/t = 0.61 to a/t = 0.75 is 8.9 months. This time is in excess of the time for BSEP-2 to reach the scheduled outage (September 1989) for inspection of these welds and continued operation is justified.

References 1.

H. L. Gustin, et al., " Justification for Continued Operation at Carolina j

Power & Light Brunswick Steam Electric Plant Unit 2," SI Report No.

j SIR-89-008, Rev. O, March 8, 1989.

j j

2.

" Evaluation of Flaws in Ferritic Piping," EPRI Report No. NP-6045, Novetech, October, 1988.

1 (316CRS/Iah )

Table 1 K Calculations for Circumferential cracks with t/a = 20 CPL-020 CIRCUHFERENTIALIDCIACISINPIPE SEMI-!!.LIPTICALSC1FACECRACIS CONSTANT ASPECT RATIO 00(IN) 15

?(IN) 1.125 ID(IN) 12.75 IAC!US,XEAN(IN) 5.9375 I,/A 20 h,1000PSIG (IS!!

2.5 Pt(K3!)

0.67 Pe(IS')

3.57 A

Alf L

(IN)

(IM)

(IN)

!./CIBC, is Fh h

Ib Ires Et t 3.018 0.016 0.36 0.0^8 1.103 1.091 0.63 2.11 14.53 17.38 0.054 0.043 1.J8 0.025 1.109 1.100 1.19 4.19 23.458 2s.53 0.09 0.03

!.3 0.011 1.118

!.107

!.55 5.44 23.029

!!.31 0.126 ' O.!!!

2. t,2 0.055 1.131
1. M 3 1.35 6.!!

30.71 33.07 0.162 0.144 3.24

').074 1.149 1.137 2.1; 7.49 32.343 41 T' O.193 0.176 3.36

.)331 1.171 1.1i0 2.40 3.45 33.049 43.90 0.234 0.204 4.68 0. 1117 1.197 1.138 2.67 3.41 33.183 45.25

-0.27 0.24 5.4 0.124 1.!!9 1.221 2.94 10.39 33.23 46.56 036 0.272 6.12 J.14C

!.266 1.!!9 3.23 11.40 32.319 4?.45 0.342 0.301 6.54 0.!!7 1.305 1.301 3.!!

12.46 32.058 43.05

).373 o.333 7.5i 0 !73 1.35!

1.343 3.34 13.58 31.173 49.69 0,414 0.368 8.23 0.190 1.406 1.400 4.17 14.75 30.206 43.12 0.45 0.4 3

0.205 1.463 1 I!!

4.52 15.!!

28.393 49.12 0.4S6 0.432 9.72 0.222 1.524 1.516 4.30 17.30 17.311 43.51 0!!!

9.464 10.41 0.240 1.589

!.573 5.29 18.63 25.473 43.45 0.553 0.196 11.15 0.256 1.659 1.646 5.71 10.13 23.417 49.26 0.594 0.523 11.!3 0.273 1.733 1.716 6.16 21.66 21.763 49.58 0.63 0.56

!!.i 0.239 1.810 1.789 6.62 23.26 20.084 43.97 0.666 0.5i2 13.32 0.306 1.391 1.865 7.11 24.33 18.334 50.38 0.702 0.624 14.04 0.322 1.975 1.941 7.63 26.63 16.753 51.06 I

0.738 0.!!i 14.75 0.333 2.062 2.025 3.16 28.49 15.26 51.32 0.174 0.533 15.43 0.3!5 2.15!

2.109 8.72 30.38 13.816 52.32 0.81 0.72 16.2 0.372 2.143 2.194 9.30 32.33

!!.292

.3.93 0.346 0.752 16.92 0.388 2.336 1.231 3.30 34.35 10.71 54.95 0.382 0.734 17.64 0.405 2.430 2.363 10.52 36.43 9.205 56.li 0.3 0.3

3 0.413 2.477 2.413 10.33 37.50 8.436 56.!!

l INTEGRITY ASSOCIATESINC

Table 2 l

K Calculations for Circumferential Cracks with t/a = 10 l

CPL 02Q CIRCllXFERENTIAL ID CRACKS IN PIPE I

SEMI-2!,LIPTICAL 3HFACE C1101S l

CCNSTANT ASPECT RATIO OD (IN) 15 7(IN) 1.125 ID(IN) 12.75 RADIUS,HAN(IN) 5.3375 L/A 10 Ps.1000FSIGIISI) 2.3 Pb([SI) 0.67 Pe(ESI) 8.57 A

Alf L

IIN}

(IN)

(IN)

L/ CIRC.

F2 Fb la Ib tres It:t.

0.013 3.016 0.13 0.004 1.102 1.099 0.63 2.il 14.53 17.63 0.054 1.143 0.54 0.012

'.103 1.099

.D 1.!3

!!.4!!

!!.33 0.33

].03 0.3 U 2:

1.113 1.102 1.!4 5.12 23.023 34.39 0.126 0.112

!.2i o.029 1.126

!.110 1.54 S.45 J0.!!

33.30 0.162 0.144 1.E!

0.037 1.138 1.121 2.11 1.39 32.34:

41.34 0.133 0.176 1.38 0.045 1.!!3 1.135 2.37 3.28 33.049 43.69 0.234 0.203 2.34 0.054 1.!72 1.155 2.61 9.15 33.183 44.34 0.27 0.24 2.7 0.062 1.193 1.177 2.36 10.01 33.23 46.!!

0.306 0.272 3.05 0.070 1.!!3 1.204 3.11 10.30 32.31) ti.i' O 342 0.304 3.42 0.078 1.247 I.234 3.36 11.!!

32.05; 17.22 0.373 0.336 3.77 0.087 1.179 1.267 3.62

!!.74 31.273 47 e5 0.614 0.363 4.)

0.035 1.315 1.304 3.90 13.74

0.235 4~.34 0.45 0.4 4..

0.103

!. 54 1.344 4.13 14.77 28,339 47.:5 0.4f6

].432 4.36 0.111 1.337 1.033 4.43

!!.34 27.311 4*.!4 0.522 0.464 5.22 0.120 1.143 1.434 4.80

!$.37 25.473 47.25 0,553 0.196 5.58 0.123 1.493 1.184 5.14 13.16 23.4',7 46.71 0.534 0.!!!

5.94 0.136 1.546 1.!37 5.49 19.40 21.763 46.36 0.53 0,56 6.3 0.145 1.603 1.593 5.36 20.71 10.034 46.65 0.666 0.592 5.66 0.153 1.662 1.652 6.25 22.03 18.334 46.66 0.702 0.624 7.02 0.161 1.726

!.713 6.66 23.51 16.759 46.33 0.733 0.656 7.23 0.169 1.792 1.777 7.09 25.00 15.25 47.35 0.174 0.688 7.74 0.173 1.!61

!.343 7.54 26.56 13.316 47.!!

0.81 0.72 8.1 0.185 1.!!3 1.912 3.J2 23.18 12.292 43.13 0.346 0.752 3.46 0.194 2.008 1.933 8.51 29.87 10.71 49.'9 0.352 0.784 8.32 0.202 2.085 2.056 9.02 31.63 3.205 43.36 0.9 0.8 9

0.206 2.125 2.094 3.29 32.53 1.496 50.L STRUCTURAL DiTEGRITY ASSOCIATESINC

_--__-______a

I TABLE 3 Summary of Predicted Allowable Remaining Lives for the BSEP-2 Recirculation Inlet Thermal Sleeve-to-Safe End Locations (Time to Crow from 61% of Wall to Allowable Depth) 1.-

l Time to Crow from a/t = 0.51 to Allowable Depth (mo.)

Allowable Depth, Allosable Depth, l'

a/t = 0.75 a/t = 0.86 360* Crack 8.9 14.9 t/a'= 20 Crar.k 8.9 14.9 1/a = 10 Crack 10.7 18.0 (316CRS/lah)

la i

8 e

t 0

nr eo rf e

f O

m0 A

u1 1

=

c b

g A

r =

d

/

i C a g

t

/

g R

rR P

o g

E fd n 8

, 6

,a 8

0 T

s

  • A2 A

/0 h

t s ^

o=

i e*

t a g

  • a/

e*

RR s^

sh st s3 e p e6 ne kD

  • 6 c
  • A i o 9A

, 4 h t 0

0 T

96 T 2 h

l t 9A

/-

A l g pa A

r an ga

/

I W e L

b IR o

t 3

P E

h0 t 6 g

p3 e

+

D r N

o kf g

, 2 c

W 0

as rl s C ed s o uMt srk ecP V a 0

KCB 6

3K C

1 A

O R

e C

r 0

5 o

5 0

5 0

5 0

5 C

u P

g 6

5 S

4 4

3 3

2 2

1 i

F O

!o 9E i J68 ll J

06 2g T

/

Ah 0

op ier i

t a

R o ssh et ng k n a

ce g

i C

h 0

R E

4 I

Td C

l a 0

t d

6 a

f 3

W0 o3

)

6 s

t 6

d)+

n S h

4 a

t f sR 6

I uU p

g oO es hH Dl T((

kd E

co M

I at T

r Ck f a C

0 O

or 2

1

=

h t l A

w

/

oi L

rt G

Cr e

O C

e s

Sf m

d e

ec s

t ci e

i m

d e

e s

r e

Pf m

0 2

9 8

7 6

5 4

3 2

1, o

1 0

0 0

0 0

0 0

o 0

erug i

F

(<

l l

1 I '

K Calculations and SCC Growth Analysis for 360 Cracks t8 l

l cc-CRACK I-(C) COPYRISHT 1994,1987 STRUCTURAL INTEBRITY ASSOCIATES. INC.

SAN JOSE, CA (40S)978-5200

ER$10N 1.2 STRESS CCRRDSION CRACK SROWTH ANALYSIS l

CPL-020: 360 DEGREE CRACX (T/R=0.21,AS dELDED. FIELD LAW INITIAL CRACK S!?E= 0.0180 WALL THICKhESS= 1.1250 CAX CRAL.< SI E FOR SCCS= 0.9000

. STREES CORROSION CRACK SROWTH LAW (S)

LAW ID C

N Kthres K1C NEsthCO2 3.2710E-09 2.2600 0.0000 200.0000 STRESS COEFFICIENTS CASEJD-C0 C1 C2 C3 SUSTAIN 9.2400 0.0000 0.0000 0.0000 AusESS 57.7614'-217.5516 166.2299 -14.0500 DPPRESS 2.6000 0.0000 0.0000 0.0000 Kaax CASE ID-SCALE FACTOR OP?RESS 1.00 SUSTAIN 1.00 AWRESS 1.00 TIME FR!NT TIME INCREMENT INCREMENT 200000.0 1000.0 1000.0 CRACK K00EL:CIRCUMFERENTIAL CRACK IN CYLINDER (T/R=0.2)

CRACK -------------STRESS INTENSITY FACTOR--

DE?IH CASE CASE CASE SUSTA!N AWRESS OFFRESS 0.0180 2.427 14.520 0.633 0.0360 3.449 19.891 0.970 0.0540 4.241

~;.453 1.193 0.0720 4.918 26.071 1.;S4 0.0900 5.522 2S.029 1.554 0.1080 6.075 29.496 1.709 0.1260 6.618

!0.710 1.562 0.1440

.7.145 31.659 2.010 0.1620 7.652 32.343 2.153 0.1800 B.143 32.799 2.291 6

0.1980 8.623 33.049 2.426 w

g ASSOCIATES,INC

._-_______a

(-

i l

Attachment'l (continued)

I oc-CRACK VERS 10N 1.2 Pl,6E 2

0.2160 9.091 33.118 2.558 0.2340 ~

9.583 33.183 2.696 0.2520 10.102 33.269 2.943 0.2700 10.620 33.230 2.99B 0.2880' 11.137 33.077 3.134 0.3060 11.654 32.819 3.279 l.

0.3240 12.171 32.462 3.425

!~

0.3420 12.700 32.059 3.574 0.3600 13.266 31.703 3.733 0.!?80 13.835 31.273 3.893 0.3960 14.402 20.772 4.054 0.4140 14.925 30.20e 4.216 0.4320 15.565 29.580 4.320 0.4500 16.150 29.999 4.544

'0.4680 16.774 29.139 4.720 0.4260 17.405 27.311 4.897 0.5040 18.040 26.421 5.076 0.5220 18.631 25.473 5.257 0.5400 19.32S 24.470 5.439 0.5500-19.990 23.417 5.622 0.5760 20.s95 22.565 5.824 0.5940 21.443 21.763 6.034 0.6120 22.196 20.935 6.246 0.6300 22.957 20.'084 6.460 0.6480 23.725 19.215 6.676 0.6660 24.502 18.334 -

6.994 0.6340 25.319 17.515 7.124 0.7020 26.176 16.759 7.365 0.7200 27.043 16.006 7.609 0.7320 27.919

!$.260 7.856 0.7560 29.904 14.528 8.!05 0.7740 29.699 13.916 8.357 0.7920 30.625 13.096 8.617 0.B100 31.h31 12.292 B.901 0.8280 32.649 11.494 9.197 0,2460 33.67o 10.710 9.476 0.8640 34.715 9.945 9.762 0.s220 35.764 9.205 10.063 0.9000 36.823 8.496 10.341 I

TITcE KMAX DA/DT DA A A/ThK 1000.0 17.69 2.1606E-06 0.0022 0.0202 0.019 2000.0 13.48 2.385SE-06 0.v024 0.0225 0.020 3000.0 19.36 2.6490E-06 0.0026 0.0252 0.022 4000.0 20.33 2.9593E-06 0.0030 0.02B2 0.025 5000.0 21.42 3.3289E-06 0.0033 0.0!!5 0.028 6000,0 22.c4 3.7735E-06 0.0038 0.0353 0.031 7000.0 24.03 4.3156E-06 0.0043 0.0396 0.035 8000.0 25.21 4.3114E-06 0.0048 0.0444 0.039 ASSOCIATESINC l

- - -. _ _ _ _ _ _ _ - _ (concluded) l l

pc-CRACK VEES 10N 1.2 PAGE 3

9000.0

.26.44 5.3572E-06 0.0054 0.0497 0.044 10000.0 27.81.

6.0037E-06 0.0060 0.0557 0.050 11000.0 29.23 6.7212E-06 0.0067 0.0625 0.056 12000.0 30.53 7.4158E-06

0.0074 -

0.0699 0.062 13000.0 31.96 8.2265E-06 0.0082 0.0781 0.069 14000.0 33.30 9.0247E-06 0.0090 0.0871 0.077 l 15000.0 34.67 9.8855E-06 0.0099 0.0970 0.086 l 16000.0 35.95 1.07:2E-05 0.0107 0.1078 0.096 l 17000.0 37.25 1.1626E-05 0.0116 0.1194 0.106 l 18000.0 38.49 1.2517E-05 0.0125 0.1319 0.!!7 19000.0 39.72 1.;443E-05 0.0134 0.1453 0.129 20000.0 40.91 1.4371E-05 0.0144 0.1597 0.142 21000.0 41.98 1.5231E-05 0.0152 0.1749 0.156 22000,0 42.9; 1.6021E-05 0.0160 0.1910 0.170 23000.0 43.76 1.6731E-05 0.0167 0.2077 0.185 24000.0 44,46 1.7340E-05 0.0173 0.2250 0.200 25000.0 45.12 1.7925E-05 0.0179 0.24 0 0.216 26000.0 45.84 1.8579E-05 0.0186 0.2615 0.232 27000.0 46.55 1.9234E-05 0.0192 0.280B 0.250 28000.0 47.14 1.979BE-05 0.0198 0.0006 0.267 2?000.0 47.63-2.0263E-05 0.0203 0.32'.'8 0.285 30000,0 48.00 2.062!E-05

.0.020t

0. 415 0.304 31000.0 48.32 2.0935E-05' O.0209 0.3624 0.322 32000.0 48.74 2.!!47E-05 0.0213 0.3837 0.341 33000.0 49.08 2.1679E-05 0.0217 0.4054 0.360 34000.0 49.32 2.192BE-05 0.0219 0.427; 0.380 35000.0 49.49 2.2099E-05 0.0221 0.4494 0.400 36000.0 49.59 2.2197E-05 0.0222 0.4716 0.419 37000.0 49.63 2.22:52-05 0.0222 0.49;? 0.439 38000.0 49.58 2.2186E-05 0.0222 0.5161 0.459 39000.0 49.45 2.2058E-05 0.0221 0.5381 0.478 40000.0 49.26 2.1959E-05 0.0219 0.5600 0.498 41000.0 49.03 2.1630E-05 0.0216 0.5816 0.517 42000.0 49.1; 2.1738E-05 0.0217 0.6033 0.536 43000.0 49.31 2.1914E-05 0.0219 0.6253 0.556 44000.0 49.47 2.2072E-05 0.0221 0.6473 0.575 e5000.0 49.61 2.2218E-05 0.0222 0.6695 0.595 to100.0 49.78 2.2383E-05 0.0224 0.6919 0.615

'.0227 0.7147 0.6 5 47000.0 50.11 2.2724E-05 0

48000.0 50.55 2.3191E-05 0.0232 0.7;78 0.656 49000.0 51.f;3 2.:682E-05 0.0237 0.7615 0.677 50000.0 51.57 2.4250E-05 0.0242 0.7858 0.698 51000.0 52.18 2.4899E-05 0.0249 0.8107 0.721 52000.0 52.54 2.5623E-05 0.0256 0.8363 0.743 53000.0 53.58 2.6433E-05 0.0264 0.8627 0.767 54000.0 54.39 2.7347E-05 0.0273 0.8901 0.791

'55000.0 55.32 2.8421E-95 0.0284 0.9185 0.816 CRACK DEF7H EICEEDED 0.9000 AT Tir.E 5.5000E+04 END OF cc-CRACK ASSOCIATESINC

a K Input and SCC Growth Analysis for Circumferential Cracks With t/a = 10 ta c:-CRACK (C) CCPYRIGHT 1984. 1997 l

STRLCTURAL INTESRITY ASSOCIATES. INC.

SAN JOSE, CA (409)979-9200 VERSION 1.2 STRESS CORROS!DN CRACK SROWTH ANALYSIS l

l CPL-020: C0*tSTANT ASPECT RATIO CRACK (L/A-10). AS WELDED F! ELD LM IN!TIAL CPACK SI;E-6.0:30 MAX CRACA $12E F R SCCS: 0.9000 STRESS CORRCE!0N CRACK SRCWTH LM!S)

LAW ID C

N Kthres KlC NEWINCD2 3.2710E-09 2.2600 0.0000 200.0000 tan CASE ID SCALE FAC10R LA10 1.00

!!ME PR!hl TIME INCRE."ENT INCREMENT 200000.0 1000.0 1000.0 CRACK f:0 DEL:NO MCOEL SELECTE">/K VS A SATA INFui CF;AEK --------------Si?ESS INTENSITY F ACICR---

EE?TH CASE LA!0 0.0120 17.6e6 0.0360 24.246 0.0540 29.909 0.0729 32.260 0.0000 34.966 0.1090 37.119 0.1260

S.876 0.1440 40.5;7 0.1620 41.313 0.1900 42.942 0.1990 43.658 0.2160 44.295 0.2340 44.905 0.2500 45.547 0.2700 46.065 0.2S80 46.475 0.3060 46.7S3 0.2240 47.002 0.3420 47.193 0.2600 47.423 MM INTEGRITY ASSOCIAmiINC

. _ _ _ _ _ _ _ _ _. (continu d) oc-CRACK VERSION 1.2 PAGE 2

0.37P0 47.600 0.3960 47.718 0.4140 47.785 0.4320 47.807 0.4500 47.729 0.4t 90 47.706 0.4860 47.574 0.5040 47.396 0.5220 47.178 0.5400 46.924 0.5580 46.638 0.5760 46.57?

0.5940 46.575 0.6120 46.572 0.6300 46.567 0.64B0 46.563 0.6660 46.569 0.6240 46.655 0.7020 46.228 0.7200 47.023 0.7!30 47.247 0.750 47.506 0.7740 47.307 0.7920 48,121 0.8100 45.373 0.8259 48.6's3 0.2460 48.h7 0.S640 49.322 0.8820 49.723 0.9000 50.177 TIME KMAI DA/DT DA A

1000.0 17.c7 2.153BE-06 0.0022 0.0202 2%0.0 15.45 2.3769E-06 0.0024 0.0225 3000.0 19.32 2.6374E-06 0.0026 0.0252 4040.0 20,29 2.9442E-06 0.0029 0.0231 5000.0 21.36 3.3090E-06 0.0033 0.0314 6000.0 22.57 3.7476E-06 0.0037 0.0352 7000.0 23.94 4.2515E-06 0.0043 0.0395 j

8000.0 25.12 4.7725E-06 0.0048 0.0442 9000.0 26.33 5.3076E-06 0.0053 0.0495 20000.0 27.62 5.940!E-06 0.0059 0.0555 11000.0 2?.09 6.64SEE-06 0.0066 0.0621 12000.0 30.37 7.3256E-06 0.0073 0.0694 13000.0 31.77 2.1140E-06 0.0091 0.0776 14000.0 33.10 8.8994E-06 0.0029 0.0965 15000.0 34.43 9.73331-06 0.0097 0.0962 16000.0 35.71 1.0565E-05 0.0106 0.1069 17000.0 36.97 1.1429E-05 0.0114 0.1182 ASSOC'RESINC

Attachm:nt 2 (concluded) oc-CRACK VERSION 1.2 PAGE 3

18000.0 8.17 1.2285!-05 0.0123 0.1305 19000.0 39.!6 1.3170E-0*

0.0132 0.1436 20000.0 40.51 1.4050E-05 0.0140 0.1577 21000.0 41.51 1.4847E-05 0.0148 0.1725 22000.0 42.42 1.5591E-05 0.0156 0.1881 23000.0 43.21 1.6260E-05 0.0163 0.2044 24000.0 43.85 1.6B25E-05 0.0168 0.2212 25000.0 44.46 1.7346E-05 0.0173 0.2336 26000.0 45.07 1.7BB2E-05 0.0179 0.2565 27000,0 45.oS 1.9G1E-05 0.0124 0.2749 28000.0 46.18 1.8292E-05 0.0189 0.29:3 2?000.0 4o.57 1.9261E-05 0.0193 0.;1:0 30000.0 46.37 1.95~SE-05 0.0195 0.3326 31000.0 47.09 1.9745E-05 0.0197

0. 523 32000.0 47.32 1.956eE-05 0.0200 0.!723 33000,0 47.54 2.0180E-05 0.0202 0.3925 34000.0 47.69 2.032!E-05 0.0203 0.4129 35000.0 47.78 2.0407E-05 0.0204 0.4L2 36000.0 47.81 2.0432E-05 0.0204 0.4536 7000.0 47.77
2. 0!? 9E-5 0.0204 0.4740 38000.0 47.co 2.02o3E-95 U.0203 0.4943 39000.0 47.4?

2.01:0E-05 0,0201 0.5145 1.90 7E-05 0.0199 0.5:44 40000.0 47.27 1

41000.0 47.00 1.96dE-0" 0.0197 0'i540 42000.0 46.70 1.9!90E-05 0.0194 0.5734 43000,0 46.52 1.9268E-05 0.019 0.5927 44000.0 46.57 1.9262E-05 0.019; 0.3119 45000.0 46.27 1.9259E-05 0.0193 0.e:12 44000.0 46.57 1.9:54E-05 0.019]

0.6'05 47000.1 46.*e 1.9252E-05 0.019; 0.6e97 48000.0 46.59 1.927:E-05 0.019 0.6290 49000.0 46.70 1.9!82E-05 0.0194 0.7084 50000.0 46.90 1.9564E-05 0.0196 0.7279 51000.0 47.12 1.9777E-0*

0.0198 0.7477 52000.0 47.39 2.0029E-05 0.0200 0.7677 53000.0 47.70 2.0332E-0' O.0203 0.722!

54000.0 42.05 2.0671E-05 0.0207 0.8087 55000.0 49.!6 2.096sE-05 0.0210 0.9297

o000.0

.18. :S 2.1229E-05 0.0213 0.2510 57000.0 47.07 2.1669F-05 0.0217 0.3727

$5000.0 49.51 2.2120E-05 0.0221 0.5948 59000.0 50.05 2.2559E-05 0.0227 0.9174 i,

CRACK SEFTri EXCEE5ED v.9000 AT Tit'E " 9000E+04 END OF pc-GACK ERUN INTEGRITY ASSOCIATESINC I

- _ _. _ _ _ _ _.. _ _