ML20246K844

From kanterella
Jump to navigation Jump to search
Summary of 890407 Meeting W/B&W Owners Group in Rockville,Md Re NRC Bulletin 88-011, Pressurizer Surge Line Thermal Stratification. Owners Group Estimated That Activities Associated W/Bulletin Should Be Completed by End of 1990
ML20246K844
Person / Time
Issue date: 05/10/1989
From: Chan T
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
IEB-88-011, IEB-88-11, NUDOCS 8905180160
Download: ML20246K844 (38)


Text

. _____

May 10,1989 1

' ORGANIZATION:

BABC0CK AND WILCOX OWNERS GROUP (B&WOG)

{

l FACILITIES:

ASSOCIATED FACILITIES

SUBJECT:

MEETING

SUMMARY

- NRC BULLETIN 88-11

" PRESSURIZER SURGE LINE THERMAL STRATIFICATION", APRIL 7, 1989 On April 7, 1989, the staff ruet with representatives of the B&WOG at NRC Headquarters, One White Flint North, Rockville, Maryland. The B&WOG had requested this meeting to provide the staff with information on their efforts related to NRC Bulletin 88-11.

A list of attendees is provided in Ecclosure 1.

The meeting handouts are presented in Enclosure 2.

The B&WOG described the data acquisition efforts at Oconee 1, and the supporting analyses which estimates the potential impact of thermal stratification. Regarding the bounding analyses requirement of Item 1.b of the Bulletin, the B&WOGs stated that their efforts to date have not included the effects of thermal striping when performing bounding analyses to estimate fatigue usage. However, the B&W0G plans to include qualitative estimates of thermal striping effects in a report to the staff at the end of May 1989. The detailed quantitative analysis for thermal striping will be submitted by October 1989.

The licensees in the B&WOG plan to meet the reporting requirements of NRC Bulletin 88-11 through submittals of bounding analyses and, as necessary, he Justifications for Continued Operation (JC0s). The staff requested that t bounding analyses and JCOs should included therical striping effects, even if the discussion can only be qualitative in nature.

In addition, the staff requested additional information with respect to the surge line structural analyses for verifying Code compliance.

The B&WOG estimated that activities related to this Bulletin would be completed by the end of 1990, which is in conformance with the schedule requested by the Bulletin.

/s/

Terence L. Chan, Senior Project Manager Project Directorate V Division of Reactor Projects III, IV, Y and Special Projects

Enclosures:

as stated cc: Danial F. Spond R:I11A 1 EM'El CEIM_.13 1700 Rockville Pike, Suite 525 o

og Rockville, MD 20852 mQ DISTRIBUTION cow Central file OGC MJohnson(17019) s o n.

NRC PDR EJordan HSilver eb

$f PD5 Reading BGrimes TWambach o/

oo MVirgilio NRC Participants HPastis d

P TChan ACRS(10)

CHarbuck gfo3

/

  • See previous concurrence

/[

h DRSP/PDS*

DRSP/PD5*

EMEB:s DR

, D5 AI JLee TChan PKuo i

GKMy con

,jV 5/01/89 5/01/89 5/;O/89 5/g/89 y'

e f nnicog#

d*

UNITED STATES g

[.

  • g NUCLEAR REGULATORY COMMISSION "g

j WASHINGTON, D. C. 20555 N**.+/

May 10, 1989 ORGANIZATION:

BABCOCK AND WILC0X OKhERS GROUP (B&WOG)

FACIL11IES:

ASSOCIATED FACILITIES

SUBJECT:

-MEETING

SUMMARY

- NRC BULLETIN 88-11, " PRESSURIZER SURGE LINE THERMAL STRATIFICATION", APRIL 7, 1989 On April 7, 1989, the staff met with representatives of the B&WOG at HRC Headquarters, One White Flint North, Rockville, Maryland. The B&WOG haa requested this meeting to provide the staff with information on their efforts related to HRC Bulletin 88-11. A list of attendees is provided in Enclosure 1.

The meeting handouts are presented in Enclosure 2.

The B&WOG described the data accLisition e1 forts at Oconee 1, ano the supporting analyses which estimates the potential impact of thermal stratification. Regarcing the bounding analyses requirement of item 1.b of the Bulletin, the B&WOGs stated that their efforts to date have not incluoed the effects of thermal striping when performing bounding analyses to estinate fatigue usage. However, the B&WOG plans to include qualitative estimates of thermal striping effects in a repcrt to the staff at the end of May 1989. The detailed quantitative analysis fer thermal striping will be submitted by Octcber 1989.

The licensees in the B&WOG plan to neet the reporting requirements of NRC Bulletir. 68-11 through submitte.ls of bouncinc analyses and, as necessary, JustificationsforContinuedOperation(JCOs). The stdff requested thet the bcunding analyses and JCOs should included thern;al striping effects, even if the discussion can only be qualitative in nature.

In addit 1cn, the staff requestec additional information with respect to the surge line. Structurel analyses for verifying Code compliance.

The B&WOG estimated that activities related to this Bulletin would be completeo by the end of 1990, which is in conforrrarce with the schedule requested by the Bulletin.

y W

Te ence L. Chan, Senior Project Manager Froject Directorate V Divisien of Reactor Projects .,

IV, V and Special Projects

Enclosures:

as stated cc: Der.1al F. Spond 1700 Rockyine Pike, Suite 525 Rockville, hb 20852 i

1 1

l i

ENCLOSURE 1 List of Attendees NRC/B&WOG Meeting NRC Bulletin'88-11 l

l April 7, 1989 NRC B&WOG N. Kadambi J. Tunstill, Florida Power & Light T. Kenyon D. Miskiewicz, Florida Power & Light T. Su D. Whitaker, Duke Power Co.

P. Kuo M. Haghi, Duke Power Co.

S. Hou P. Straube. Toledo Edison S. Lee H. Cordle, Toledo Ed' son R. Gradomski, Toledo Edison D. Spond, Arkansas Power & Light C. Tally, Babcock & Wilcox M. 01esnavich, Babcock & Wilcox R. Borsum, Babcock & Wilcox W. Maxham, Babcock & Wilcox a

~

ENCLOSURE 2 t

B&WOG/NRC PRESSURIZER SURGE LINE

~

MEETING APRIL 7, 1989

4 NRC/B&WOG PSL MEETING AGENDA TOPIC PRESENTER INTRODUCTION AND BACKGROUND.... RICK GRAD 0MSKI-TE OCONEE MEASURMENT PROGRAM...... DAVE WHITAKER-DPC0 0

THERM 0 COUPLE LOCATIONS 0

DISPLACEMENT MONITORS 0

PLANT SIGNALS LOGGED 0

DATA ACQUISITION SYSTEM 0

INSTALLATION PRELIMINARY RESULTS OF OCONEE.. CHARLES TALLY-B&W DATA EVALUATION 0

TEMPERATURES OBSERVED HEATUP STEADY STATE C00LDOWN GENERAL APPROACH TO STRIPING... CHARLES TALLY-B&W STRUCTURAL ANALYSIS OF SURGE... DAVE MAXHAM-B&W LINE 0

B0UNDING ANALYSIS CONFIGURATION SELECTED ANALYIS ASSUMPTIONS i

CONSERVATISM i

RESULTS 0

FUTURE PROGRAM ELEMENTS

SUMMARY

........................ DAN SPOND-AP&L

9 9

9 4.

8 MEETING OBJECTIVE TO DESCRIBE THE GENERAL B&WOG APPROACH TO THE PRESSURIZER SURGE LINE ISSUE AND THEIR SCHEDULE FOR RESPONDING TO BULLETIN 88-11 l

l

.f i

l 4

/

3 9

6

/

7 2

/

2 9

8/0 2

/

2 Y

7 R

8 O

I 4

S 8

I E

M H_

C K

A E

R I

N T

M G

I O

O N

F R

L_

O P

E N

G O

D R

R D

I E

E E

E R

U T

M S

S I

F S_

A C:

M O

O O

I R

R F

P P

D E

O N

N N

O Z

F I

I I

G M

I N

R I

G T

L R

G R

U O

F A

O S

C W

A N

C W

S R

R I

R E

N B

D F

N B

RE 8

48 6

7 7

8 8

/

8 8

8 8

/

2

/

/

/

/

0 1

1 4

9 9

1 l;

DS N I S

A Y S L S A M 'S EN OG RA RO T

Y F

E S

R U

A T

1 E

LG U H 1

AI T

P T N

I A 8

N FF 8

I O S

BN CO W

RIT E

N C S

I N

V O

LA LS i

I A

AY R

T 1

- A N

ML E

C U R A I

V OL F

EN Y

A HA A

L O

A V T G N E I

LN AI E

FA P

N T

NI I R A

F T I

D L

S E

G R

U S

IS R

S YY E

RL Z

A A N N I

A R

M M *S I

G Y

U L

OG I

E N RO S

I RP F R S

PI A

T R

E U H E

T 1

S 1

P T R

S I O N

  1. N 8

P 8O I

BT CC RA 1

N

-CA OTA L

Y D A

M M

L Y_

A RA N A A

ET MI M HA R

T D ILE EH K

RT M

P l

+

+

x<

xz f'C

-j (,

f3

  1. }

C M

j Y

1 E

3 ti I

{

3 e

e Y

P.

y4 E

n

/-

K m

/

fj

/

C

/N N

WK u

3 O

I T

A T

T A

N T.

CM N.

p 1

E O

S

)

I I

(

11 R

E g

(

=

O n

i 3

s m

e n

C L

I

/

e F

E T

r t

B

/

m o

r O

N H,

T E f D

\\

E I

Cu OI

,)

Y1 n a

H 0

s 1 ?

o re i vimP E

i -

es r e -

o g

moo

}

mh i

,h u

/

t R

j O'

T

)L MA A

N A R T

E E O

l T

O T N l

4 I

SE 5

i T

G

(

w 0

A S

N I

+

14 T

NO T

E AC M

O

_k

)

L U

1 E

(

R L

)

T P

U

' s S

I C

T O

IN N

O j

E U

M R

)

N E

EH L

E I

T TN E

AO Q

1 G

1 R

C

(

E P

U O

S e

W N

s O

E S

O R

O' S

t s

E s

E Z

C ss g

w P

O IR e

E

,e N

D E

m U

o R

S I

n gI s,to T

S E

s 7 $

Z o

4 m$

N E

R a

R U

m$

P S

w n/ x c

s S

q E

P

/i, e, }4' R

5 l

.s 8

g e

4 e

7'd 3

q n

a s

-\\

4 u-

\\

b I

81

(

d!

l F

e 1

i

/

g jI r'i

=x x

G O'

=

(

  1. \\!

V c

g w

/*

{

2 O

5 s2

$8 n'

~

=

55 et s

mm

~

g!

$v s

z es E

9 d#

N

< 8'

~

s 8a1 zw1 m -

0 as k

e He e

2 2

e2 i

D$

@g g

m E s< s

+

f E

l6 r

a z

w o

==

g g

D W

Ui E

e

@l 5

C O

8 f

c

/

C O

D N

j

/

?

l ^

fwl J N.,. x, /

r e m

SIGNAL LOGGING 1.

TEMPERATURE MONITORS - SURGE LINE 54 TCs 0 9 LOCATIONS

- REFERENCE TEMPS 0 5 LOCATIONS 2.

DISPLACEMENT MONITORS 17 POSITION INDICATORS (STRING POTS) 10 LVDT's 3.

PLANT PROCESS SIGNALS (FROM TRANSIENT MONITOR) o 21 ANALOG, INCLUDING

/

R LEVEL RC TEMP l

RC-PRESSURE STEAM PRESSURE REACTORPOWER/

RC FLOW

/

ws s

~

. SIGNAL LOGGING (CONT'D) e 7 DIGITAL, INCLUDING PZR SPRAY ON/0FF FW PUMP TRIP TURBINE TRIP REACTOR TRIP 4.

PLANT COMPUTER S

30 ANALOG SIGNALS, INCLUDING RC PUMP STATUS PZR TEMP PZR SURGE LINE TEMP

-w_________________

p ro U

m=l

\\

t n s Jm I

ooo P

or t

8" a

i m

l r

nr l

m S

P n'

b Ci l

M

' =

l M "

gm o

O Q

e sEM t

u nr 2

r 0 oM A

roI

{

la C

eo4 P

=

CM Iwf

~

p T

h CS o

S

-lf Ot S i,

I n

O sn 7

go t

i 3

n, o

g inito r

2 e-< n s

r l

o n

Q\\

tac is in.

i t

ep pp o o i.

OA lo to r ni 1

e o

M p

d n 02 ig ig O

ls o n

/

t R

u D S g

op

/

M o

n ul M

I e

Sd A it ls o o R

ig ol gt A

si t3 a

s n v

o r

ig o 0 lo g p /

ior n

/

D o

n n

2 ni fe ig A S u

A ler c

o d

ig s

r c

l f

o s

a

/ s f

2 t

a 0

0 s l

n e2 i i

v a

i c

d u

n

e ot 0 n.

M

-h )(.,_

1 h

d 2

e iw2 a.n p

r P

g

}

n i

fL n

{

i p,4s io

,n i

)

~

r

< p, P

y,,'"

e

)

r

)

_ (,

o i'w v

k 0

d

+

2 e

f is t

m 1

e w

t l

i I

l i l

,,i3

,I l

g 1 l I I I

,l l

I 3

(

t iN le I

t i

-s HA t

A l'

o ic len(P C

N n

I s

l 3..

eo otR is E

Rl hI >

s N

t 4,

W-s

(

e ie, e2O a

A o.

Cn I

n lo l

C

(

h W -

t n x

l n

e n.

To /

l n

n t

t D

o i

t i

u li i

i n r

)

t NDA ig S'

e A i 4

P ONc s

Od l

3 x

N I

n

~,

l t

I CAs la M u

Gte N-E T c

()

At u

N a l

SRt o

t x

l a

E I

f u

l L

t l

Un M s l

DA S n 0 D

t N AA

/

N

[ IGE c 0 A I

z s )

l SMS A

1 T a.

j.

I N i i

j O

C O

.o.

(

s

,. i, u'

N a n x3 o i e, 's t

9 n. 0 I

4 o. o r t.

,n Ii, n

L i v He un m n, n.

A C-n a.ni n n. o, o

,w l n ao.

Pn u, n tW I

1 T

o v

',u o

e4t

,, i 3';,iI I

l

, iI I I i,

l g 3

'i'g I

l iI i'

l OCONEE SURGE LINE MAXIMUM PRESSURIZER SURGE LINE TEMPERATURE DIFFERENTIALS i

OBSERVED DURING INITIAL PRESSURIZER HEATUP PLANT CONDITIONS:

RCS 0 90 F RC PRESSURE ~ 100 PSIG PZR LEVEL ~ 102 INCHES NO RCPs RUNNING EVOLUTIONS COMPLETED:

PRESSURIZATION TO 100 PSIG INITIAL CRDM VENTING DECREASE IN PZR LEVEL MISCELLANE0US ROUTINE TESTS COMPLETED 1

OBSERVATIONS APPROXIMATE MAXIMUM TOP TO BOTTOM DIFFERENTIAL WAS 280 F OCCURRED DURING SLOW, BUT OBVIOUS, CHANGES IN PRESSURIZER LEVEL THAT APPEAR RANDOM REPEATED SEVERAL TIMES AFTER PZR HEATERS ENERGIZED, SPANNED SEVERAL HOURS.

NOTL'O AT ALL HORIZONTAL LOCATIONS.

ONLY UPPER HALF 0F SURGE LINE RESPONDED TO OUTSURGE; BOTTOM 0F LINE RELATIVELY UNAFFECTED THROUGHOUT THE CYCLING.

]l)1l' j)lli l

.1 5

0 3

1 r

a n A

e d.

d io c

T r

f*0 i

0 4:

1 E

1A 1

R P

CR U

.W1 0

5 0

i 4 m

T

-0 9

1 e

Ai r

0 t

u R

n ta U

r

)

E e

e e

p M

n m

M P

o p

e MO m

T H

c H

e C

i

(

T ta R

e

~

E R

m 9

. T 8

Z iT P __

/

C/

0 1

2 R

n e

k n

D O

i 1

a 5

t d

e a

'!I N

n 6

t r

a u

0 T

AD m,

  • _

1 A

1p R

muP "

Z C "

R P

i w

en i

g n

i k

sem=

5 P

5

~

2 0

0 0

0 0

0 0

O 0 0

O 5

5 0

5 0

5 0

5 4

3 3

2 2

1 1

- E bmIzmEI4t n gc$

a a

ig ll1'Il llll l

o' 9

['

S 4

e e

e A%

I e

w e4 4

6 i

' y=

  • t

' W*)

es =

g F

Emmuumut 6

y

.y*

%.4

  • )

.~, p " --

D Bummune

- =

e

==

en-

== amma i

l m

h 6

r,,,-t t

i F'

must enummu$

^

6

=

=

I A

7.

'N-2 O

,'% 1 1,

w S.'

O m

~

Duemunut er O

f q

'e

==

Q m

)

~

  • a p~,.,.-n.

mw 4

5

,_ w **. ',

7.

  • y".

6 F, 'R

~m

".s7[-4*-

(

-r -

M l

Af I

/

__n__n--

e_.

-:.R M-on.

g - =__w. -_ _

-mas M

A)

,,v..

W ~',,-,

1 0

A a.u' V

w ear

==me guy e

A e

e A

e e,e

%se A

war

  • =

har b*a b.*

Le e

a m

a e

a ka ke

  • ms' d

ter

==mr w

='a M. e

6. 1 S. s3

[d

].l.13HN38HV3 5338D3G

i rz L

p E

- L 5

V1 4:

9 Ei 0

t n

U L

M

)

e I

M e

R no H:

E O

H c

(

Z t

i e

a m

I 9

i R/

T 8

0 U/

1 2

S n

Sk 5

e s

a i

1 E

t a

!I,1 6

Rt j

0 aD P

,.l!!il I

j\\

, l)I;}

i!i!.

I,I e.'

\\'

i l*1l1l18 I

i}

I f

\\

1 ii'!ii 1

-/

5

,ll!l 5

2:

2 0 8 6 4

2 0 8 6 4 2 0 8 6 4

2

  1. 0 3 3 2 2 2 2 2 1

1 1

1 1

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

l c.

a.m>m8 EME3$m[

f ll' 1

.J.

I 1

  • e me J

s l

i

[*

me p

une m

i

.f. '

I e - -

/s

.E. E E

.E s

e,,,,

c.

0

/.

t m

w y

i

.x

=,

CI 4

l

-)

+

Q s

9I v

a s i

i W i O

^

=

I

-l y

a j

g

,s L.

4 w O:

c m O i V

C g

v ;-

j u

V

=

~

..e.

g

/

===i m

~N

,9 Q

, (

~

g N!.

V O

j

=

Ct:

ty Y

7' Q

l i=

N y 5

/

~

  • t p

2 T

=

O W,_ _ _ _ :-

O O

s 2

n

~

a_.

5.,

h' W

-.aP V

c-w I

=

2 e

M ~M ___

S C _ _ _-9.,_.

'A.

L 1

I i

$2 C

C O

O C

O C

O O

O

~

C C

c O

d O

C O

C j

4 9

C C

N N

~

~

[d

] JJ3HN3HHV3 533803G 1

I

'<E$

no s ~

m~

50 3

1 S

G N

IDA i

7 s

I

[

, n n n

E

,, i ta ta o

io io

)'

ta R

, c c c

o o o o

t L

L L

E L1 5

Pi i 4 t

n 9:

UU 0

e One

)

o Cc MM O

Ot H

a H

M8 9

i

(

e

/

R0 im 1

T

/

E2 n He k Tt a a

MD 5

ta i

1:

\\

O 6

,l l 0

TT O

i B

i L

s.

S r

5 5

2 0

0 0

0 0

0 0

0 0

0 0

5 0

5 0

5 0

5 0

5 4

4 3

3 2

2 1

1 D$Z cI4* $E@o c

.-n--_,_.._

h#

4 e

A L,

e.

W s=4 e

9e

. e O

Y S w

M "M

=

W i

+**=

e,=

memesse

======,eum nem amme name g

<^

j

'/

7 I

-c;p w

b i-F :-

/

i r~

^/

) 's k

=

3 3 ;- : 3 3 r,

v m

m

= t Immimme j,

I L.n.

s i

tummed

==

=

  • f.

m

/

=

m ns..

//

e r-9

=='

//

w Y'

    • '(~~

f' h

w W

e y

4 p*

r=

,e

-s~

m EF Wuun M

~

i %

~

t w

w

/

// /

I,

L.

.m 888

'd f

aumg mas w.

}

[

v r

4

,"Ns I

I

.a y.

9

%A C

9 s[

~

.g r

g

=

es m

-f W

__& =c-:== %".

~/

r,,

~

F-

_A_.:. _..,

e 5%

~

n=j

]..

w

~

}

f.

==--=_

g g _ - W ~..'m,

- __ g ~.. %.

m) y GIA:l-e

.mmm Lb u

n py e

e A

R M

e e

m m,

W

&C C"""'

C'

C C

ansa emme iner er w

C C

C C

7 C

C N

N

[d

] II3HN38HYd 5338D30

-- - - - - - - - - - - - - - - - - - - - - - ' - - - - ~ - ' " ~ - - - ' - ' ' ' " ~ " - - ' ' - - ~ - - ' ' - ~ - ' ' *

~

l c

1 -

.-p l

s

-e G

A 4.

W.

en

,o

's e

P,N t'

1 M

  1. M r

g e.,

e,=

j j

6

/.,

l 3

-c

~

a -*

a h

r=,9

    • "L*.

m M

.m.

g*

'"a.

\\

g i

e-

.f q

W w.

w M'

s w

==-

asuung

==

  • =..,,-~~...._%

s

,a e

i L.

J 1

am.

/

O

' mum..

=

4 g

.. ~

s n.

P 9

g,,mg

\\

w f

M t

==

M.

M

~-y g

men I

D-me

.,_..-.-a---=-=~~~.***,

f

_~

-L e,m

==

?~~~--C_.

(

,,,,, y M_9,*

sa 44 se W

A)

....., * ~.

~ ~

)

em.

=.

- - -:. w

=. - - -.

j

=,.. w.

O

~...

,..+,,7*--

f d

am-m 4

~

n n

n n

n

~

n n

n den L.

L, L.

L, L

N N

N N

[d

) 1.13HN3' HYd 533' D3G d

d

l l

SURGE LINE LOC.11 TEMPERATURE PROFILE Data taken 2/10/09 et Occmse Unit 1 Profile w/ Peak Stratification at 4:49 11 TCt 10,

.w 9-i TCs e-7-

g 6-h 5-20 4

C O

~

TCs 2-1-

TCs TC7 g

120 160 200 240 200 320 360 400 DEGREES FARENHEIT [ *F ]

Profile w/ decreased stratif at 5:07 TC1 10 -

TCs 9-y TC 7-g h

5 -1 4

c O

3*

e TC6 2 -t 1-TCs 7E' 0

120 160 200 240 280 320 360 400 DEGREES FARENHEIT [ *F ]

i 8

1 i 2

g e

7 t

Ni e

p 1]

n l

l OU p

s u

M e

u e

I o

l e

Te p

o c

M u

c An oh o

o m%

m2 Ro c

H 1

Ec r

1 o

r e

i H

O P

N m

et h

[

hk Tm#

t O

r Oa T

E e

IT 9

A h

e M

R8 C

T l

o g

d E1 O

p

/

I t

T d

t L-o 2

o W/

TW M w i 0 i

8 B

2 On

4 Pe m

1 k

W La Lt a

Ut 4

y F aD r

a e

W M

_ m_

8 c

7

^+

^

4

~

0 0

0 0

0 0

0 0

0 01 0

4 2

0 8

6 4

2 0

8 6

6 6

5 5

5 5

5 m

hWyWEI4 WWE0W I

L l

!f' i'

.i;j

l l

l1 l

ll\\

ll3 8

4

02 m.

i W

S-3T-4

s 8

1 2

t Ni i :

n 7

OU 1]

I M

Te n

e o

Ae S.

p i

M n

t Ro u.

a ir v

4 e

Ec 4

v H

l P O N

o e

., N t.

m i

H e

t O

a Oa

[

IT a

o s

9 A

R8 C

1 E

e M

E/

O h

t 1

L I

t W/2 a

T 2

e 8

O ra 0

n Pe s

, 4 e

k l

La p

1 Lt m

uo Uta Ms i

co F a m

D re h

t ee rh t

l lA b;

84

~

~

~

0 0

0 0

0 0

0 0

0 01 6

4 2

0 8

6 4

2 0

6 6

6 6

5 5

5 5

5 tmIZWc ju.WWE OWO u.

o

B%' OWNERS GROUP PROGRAM FOR THERMAL STRIPING THERMAL STRIPING AS AN ISSUE 8

UNABLE TO SHOW THAT IT IS NON-EXISTENT IN B&W PLANT SURGE LINES S

BASIC UNDERSTANDING 0F CONTRIBUTING FACTORS NOT

)

SUFFICIENTLY KNOWN TO RULE OUT POSSIBILITY I

3 FUNDAMENTAL INFORMATION NEEDED TO ADDRESS POTENTIAL IMPACT 4

LOCALIZED TEMPERATURE AMPLITUDE AT WALL SURFACE 9

FREQUENCY OF TEMPERATURE OSCILLATION 0

DEFINITION OF PLANT OPERATING CONDITIONS WHEN THERMAL STRIPING MAY BE SIGNIFICANT n

~

THERMAL STRIPING BASIC PROGRAM ELEMENTS i

MULTIDIMENSIONAL HYDRAULICS MODEL OF OCONEE AND DAVIS-BESSE SURGE LINES i

0 BETTER UNDERSTANDING OF LOCALIZED TEMPERATURE AND j

VELOCITY FIELDS j

0 DEVELOPMENT OF PHYSICAL MODEL FOR PHENOMENON i

DETAILED DYNAMIC HEAT TRANSFER EVALUATION OF SURGE LINE WALL 0

USEFUL IN ASSESSMENT OF FIELD DATA 8

DETERMINATION OF WHAT CAN BE OBSERVED i

EVALUATION OF OCONEE FIELD DATA 0

MAP RANGE OF PLANT MODES TO SURGE LINE CONDITIONS S

CORRELATION OF DATA: ONE PARAMETER TO ANOTHER FILTERING NOISE e

DETERMINE STRIPING FREQUENCY IF POSSIBLE j

G 6

e ASSESSMENT OF INDUSTRY STRATIFICATION / MIXING DATA

)

e IDENTIFICATION OF DEFINITIVE PARAMETERS IMPORTANT TO STRIPING G

ASSESS NEED FOR SCALING EVALUATIONS S

DEVELOP RANGE OF POSSIBLE FREQUENCIES FOR STRIPING STRUCTURAL ANALYSIS OF STRIPING EFFECTS 9

CRACK INITIATION 8

CRACK PROPAGATION i

l l

l 1

l 1

l l

l l

l

I SURGE LINE COMPARISONS CLOSE SIMILARITIES 0

MATERIALS, DIAMETERS, THICKNESSES 8

ALL PRESSURIZER 8

ALL RCS HOT HOT LEG DIAMETERS AND FLOW VELOCITIES 0

ALL PSLs CONNECT HORIZONTALLY TO RCS. HOT LEGS 8

ALL HAVE LOOP SEAL CONFIGURATIONS DIFFERENCES 8

ROUTINGS SIMILAR EXCEPT DAVIS BESSE 9

PIPE LENGHTS SIMILAR (ALL APPROXIMATELY 50 FT DAVIS BESSE APPR0XIMATELY 54 FT) 4 FLEXIBILITY GREATEST ON DAVIS BESSE I

i}

I 1 e*a "6

w 4

t1 r

^s

^

~

~.

3i

,1 1

N-

)),/

S l

l 4

M-W_

E z

N f

I a

~

\\

/

L

~(\\

yA l

1 1 EO 9

1 G

R X

USE Ol,-

m 4

a I

/

R oN l

m/.

2R gl IH II 4'6"-

1 1 3

R 0

i 95 i

L h

t E

I l

/3 3

9i' t

E

ASSUMPTIONS i

OCONEE:

1 e

5 MAJOR STRATIFICATIONS /HEATUP AND C00LD0WN CYCLES tT STRATIFICATION CONDITION 3

3300F PRE-HEATUP 1

4220F HEATUP 1

3060F C00LDOWN o

TOTAL HORIZONTAL RUN STRATIFIED e

STRATIFICATION ASSUMED LINEAR TOP TO BOTTOM e

THROUGH WALL RADIAL GRADIENTS ASSUMED WITH FLUSHING o

EXISTING STRESS REPORT FATIGUE COMBINED WITH STRATIFICATION l

e SMALLER STRATIFICATION IGNORED FOR SHORT TERM EVALUATION e

CYCLIC STRAIN HARDENED ALLOWABLES UTILIZED

I l

l RESULTS HEATUP &

C00LDOWN 0CONEE CONFIGURATION - B0UNDING ANALYSIS CYCLES HOT LEG N0ZZLE (CARBON STEEL) 270

)

HOT LEG N0ZZLE (STAINLESS STEEL) 162 SURGE LINE (STRAIGHT OR ELB0W) 153

)

SURGE LINE DRAIN N0ZZLE 135 I

PRESSURIZER N0ZZLE (STAINLESS STEEL) 341 i

PRESSURIZER N0ZZLE (CARBON STEEL) 396 0CONEE 1 HAS EXPERIENCED ~ 90 HEATUP - C00LDOWN CYCLES

- 45 CYCLES REMAINING - HEATUP - C00LDOWN -

I l

ASSUMPTIONS DAVIS BESSE:

o 6 MAJOR STRATIFICATION /HEATUP AND C00LDOWN CYCLES aT LOWER RUN CONDITION 3

3090F PRE-HEATUP 1

3860F MID-HEATUP 1

3010F END HEATUP 1

3090F C00LDOWN o

TOTAL LOWER HORIZONTAL RUN STRATIFIED o

STRATIFICATION ASSUMED LINEAR TOP TO BOTTOM 4

o THROUGH WALL RADIAL GRADIENTS ASSUMED WITH FLUSHING o

EXISTING STRESS REPORT FATIGUE COMBINED WITH STRATIFICATION

)

o SMALL STRATIFICATIONS IGNORED FOR SHORT TERM l

EVALUATION o

CODE ALLOWABLES USED

RESULTS USAGE FACTORS BASED ON 40 CYCLES HEATUP DAVIS BESSE - BOUNDING ANALYSIS

- C00LDOWN HOT LEG N0ZZLE (CARBON STEEL BRANCH)-

.619 HOT LEG N0ZZLt (CARBON STEEL)

.704 HOT LEG N0ZZLE (STAINLESS STEEL.)

.343 SURGE LINE (STRAIGHT OR ELBOW)

.063 PRESSURIZER -N0ZZLE (STAINLESS STEEL)

.297 PRESSURIZER N0ZZLE (CARBON STEEL)

.634 DAVIS BESSE HAS EXPERIENCED - 36 HEATUP - C00LDOWN CYCLES THUS 4 MORE HEATUP - C00LDOWN CYCLES YIELD.704 USAGE FACTOR EXTRAPOLATING - 21 HEATUP - C00LDOWN CYCLES REMAINING 4

.1

5.-

i S

BOUNDING ANALYSIS CONSERVATISM M0MENTS:

(THERMAL STRATIFICATION) 1.

AT - STRATIFICATION HIGH 2.

TOTAL LENGTH OF LOWER HORIZONTAL PIPE USING CONSTANT STRATIFICATION GENERAL FATIGUE 1.

HIGH MOMENTS FROM ABOVE 2.

CONSERVATIVE BREAK DOWN OF FATIGUE OTHER THAN STRATIFICATION 3.

NOT DIFFERENTIATED BETWEEN TOP AND BOTTOM 0F PIPE FOR THROUGH WALL GRADIENTS 4.

NOT DIFFERENTIATED INSIDE AND OUTSIDE OF PIPE FOR PEAK STRESS 5.

PRESSURIZER N0ZZLE STRATIFICATION ASSUMED LIKE MAJOR SURGES I

i FINAL STRUCTURAL SURGE LINE ANALYSIS TO INCLUDE:

0 DEFINITION OF TRANSIENTS (BASED ON OCONEE) 0 LOADING ANALYSIS ANALYSIS OF ACTUAL CONDITIONS O

STRATIFICATION PROFILES 0

CORRESPONDING RCS TEMPERATURES 0

COMPARIS0N OF ANALYZED DISPLACEMENTS VS.

ACTUALS 0

STRESS & FATIGUE ANALYSIS (ASME SECTION III)

LOADINGS (DW, THERMAL & STRATIFICATION,

OBE, ECT)

RADIAL GRADIENT STRESSES STRIPING PRESSURE

e

.4 ~I e'

a N

m N

g>

a st 5

om NO I

om N

5>

m el C

W!

(

r OH e

m, m

N W;

Jj Ng Cm N

Wi N

Zl Mi m

-.J CD W;

=

6 LD, I

=\\

E

=

m; s

~

=,

av Wi m

N e

M k

=

m D

M e

M co Wl N.

gi C.

$Y e

w CC E

N 5

b D

e 1

Eh m

m N

N W

I M

(E HQ W

sEC A l

.,J g

C ^W

==J l

anC H

N l

M N

e=4 M l

2 M

o e

1 M

I sr-e U

M EWWE E

E at M

DCM m

M E

>=

e5 e ma p 6,4 J

MEMM

,4 W ag g

sic JHHEN H

wa H

E M4MC I L W 3 bd h l

af EW N

4 H

4 3

=

ee w

weMu M co o

e z

H M 4 co gy y

z N

WMM U

Mg H ac M

A

-.J M >=.J cd gg g

H M

WJ4E w

M W

cc OC 4 E

s W

H HEMC o =R E

M UW4WH ag o f

aH q

l

Y-

-Q.; ;,.

SUMMARY

BOUNDING ANALYSIS 0

THE BOUNDING ANALYSIS PERFORMED ASSUMED THERMAL GRADIENTS OF 4250F.

ACTUAL RECORDED THERMAL GRADIENTS DURING HEATUP AT OCONEE NEVER EXCEEDED 2800F 0

MEASURED TEMPERATURES WERE CONSISTENT STRIPING ANALYSIS 0

STRIPING (ANY FREQUENCY) SHOWN TO REMAIN BELOW PSL ENDURANCE LIMIT FOR AN AMPLITUDE LESS THAN 900F.

DATA FROM OCONEE REVEALED THERMAL GRADIENT AT FULL POWER OPERATION WAS APPROXIMATELY 40-500F.

_ _ _ _ _ _ - - _ _ _ _. _ _ _ _ _ _ _ - _ - _ - _