ML20245C199

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Re Limiting Conditions for Operation & Surveillance Requirements for Control Element Assembly Drop Times
ML20245C199
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 06/15/1989
From:
ARKANSAS POWER & LIGHT CO.
To:
Shared Package
ML20245C191 List:
References
NUDOCS 8906260089
Download: ML20245C199 (54)


Text

_ _ -

k %

REACTIVITY CONTROL SYSTEMS CEA DROP TIME LIMITING CONDITION FOR OPERATION 3.1.3.4 The individual full length (chutdown and control) CEA drop time,

'from a fully withdrawn position, shall be 5 3.5 seconds and the arithmetic average of the CEA drop times of all full length CEAs, from a fully withdrawn position, shall be 5 3.2 seconds from when the e'ectrical power is interrupted to the CEA drive mechanisms until the CEAs reu-h their 90 percent insertion positions with; T,yg 2 525 F, and a.

b.

All reactor coolant pumps operating.

APPLICABILITY: MODES 1 and 2.

ACTION:

a.

With the CEA drop times determined to exceed either of the above limits, restore the CEA drop times to within the above limits prior to proceeding to MODE 1 or 2.

b.

With the CEA drop times within limits but determined at less than full reactor coolant flow, operation may proceed provided THERMAL POWER is restricted to less than or equal to the maximum THERMAL POWER level allowable for the reactor coolant pump combination operating at the time of CEA drop time determination.

l SURVEILLANCE REQUIREMENTS 4.1.3.4 The CEA drop time of full length CEAs shall be demonstrated through measurement prior to reactor criticality:

a.

For all CEAs following each removal of the reactor vessel

head, l

l b.

For specifically affected individuals CEAs following any maintenance on or modification to the CEA drive system which could affect the drop time of those specific CEAs, and c.

At least once per 18 months.

8906260089 890615

~

PDR ADOCK 05000368 P

PNV ARKANSAS - UNIT 2 3/4 1-23 Amendment No. 84 l

l

g 6.

r h

e e

I REACTIVITY' CONTROL' SYSTEMS

' BASES CEA positions and OPERABILITY.of the CEA position. indicators are required' to be' verified on a nominal basis of once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> with more frequent verifications required if an automatic monitoring channel is inoperable.

These_ verification frequencies are adequate for assuring that the-applicable LCO's are satisfied.

.The average CEA drop time restriction is consistent with the assumed CEA drop time used.in the~ accident analysis. The maximum CEA drop time restriction is used to limit the CEA drop time distribution about the average to-that used in the accident analysis.

Measurement with T h

525 F and with all reactor coolant pumps operating ensures that thSVMeasured drop. times will be representative of insertion times experienced during a reactor trip at operating-conditions.

The establishment of LSSS and LCOs' require that the expected long and short term behavior of the radial. peaking factors be determined. The long term behavior relates to the variation of the steady state radial. peaking factors with core burnup and is affected by the amount of CEA insertion assumed, the portion of a burnup cycle over which such insertion is assumed and the expected power level variation throughout the cycle.

The short term behavior relates to' transient perturbations to the steady-state radial peaks due to radial xenon redistribution.

The magnitudes of such perturbations depend upon the expected use of the CEAs during anticipated power reductions and load maneuvering.

Analyses are performed based on the expected mode of operation of the NSSS (base load, load following, etc.)

and from these analyses CEA insertions are determined and a consistent set of radial peaking factors are defined.

The Long Term Steady State and Short Term Insertion Limits are determined based upon the assumed mode of operation used in the analyses and provide a means of preserving the assumptions on CEA insertions used. The limits specified serve to limit the behavior of the radiai peaking factors within the bounds determined from analysis.

The actions specified serve to limit the extent of radial xenon redistribution effects to those accommodated in the analyses.

The-Long and Short Term Insertion Limits of Specifications 3.1.3.6 and-3.1.3.7 are specified for.the plant which has been designed for primarily base i

loaded operation but which has the ability to accommodate a limited amount of load maneuvering.

The Transient Insertion Limits of Specification 3.1.3.6 and the Shutdown CEA Insertion Limits of Specification 3.1.3.5 ensure that 1) the minimum SHUTDOWN MARGIN is maintained, and 2) the potential effects of a CEA ejection accident are limited to acceptable levels.

Long term operation at the Transient Insertion Limits is not permitted since such operation could have effects on the core power distribution which could invalidate assumptions used to determine the behavior of the radial peaking factors.

ARKANSAS - UNIT 2 B 3/4 1-5 Amendment No. 37 4

[)'

SUMMARY

%J During the AN0-2 Cycle 7 start-up testing, the maximum drop time for individual control Element Assemblies (CEA's) exceeded the Technical Specification (3/4.1.3.4) maximum CEA drop time value of 3.0 seconds.

This adverse change in the measured CEA drop times was revealed by new measurement methodology and was not caused by any type of mechanical degradation of the CEA's or assembly guide tubes. A revised analysis of all events was completed in support of a CEA drop time emergency Technical Specification change to 3.2 seconds.

In order to show acceptable results, with a minimum of COLSS and/or CPCS penalties, the revised analyses credited space-time kinetics.

When the final CEA drop time testing was completed, the margin between the slowest CEA and Technical Specification CEA drop time was comparable to expected cycle-to-cycle variations.

Since failure to pass the CEA drop time test precludes entering Mode 2, AP&L would like to increase the margin between the Technical Specification value and the measured times before the Cycle 8 start-up without any further loss of COLSS and/or CPCS thermal margins.

The analysis method for increasing the time between the measured CEA drop time and the CEA drop time Technical Specification of 3.2 seconds is to credit the measured spatial distribution of CEA's about an average position as opposed to the present safety analysis assumption that all CEA's are at

( }'

the same axial height as the slowest CEA.

The present safety analyses t

assuma that all CEA's drop into the core during a scram at the same time and at the same rate. The drop time is assumed to be that of the slowest CEA.

However, the worth of a CEA is a function of the power or neutron flux environment surrounding the CEA.

Therefore, the negative reactivity insertion for a distribution of CEA's is more directly correlated to, and can be represented by, the average CEA insertion rather than by the slowest CEA.

Based on the measured data, the CEA's do scram with a predictable spatial distribution about the average position.

The proposed method is based on the use of the average CEA position.

A set of 3D HERMITE space-time calculations were performed to confirm that the same negative reactivity will be inserted for the case of the CEA's distributed about an average CEA position (the " distributed" case) as the

" window shade" case for which all CEA's are assumed to be positioned at the same average CEA position. These 30 HERMITE cases were chosen to cover the range of operating conditions and the limits of the as-measured CEA distributions.

From the results of these cases, it is concluded that th t

" distributed" case will provide at least the sa" amount of negativt reactivity insertion as the " window shade' case.

~

refore, the Technical Specification can be changed from the maximum drop time of all CEA's to the average drop time of all the CEA's. To enst.re that the safety analyses remain valid for an average CEA drop time Technical Specification, a limit is placed on the distribution of the CEA's.

This limit is expressed as a maximum drop time for the slowest CEA in the revised Technical Specification to restrict the CEA drop time distribution to that covered by these analyses.

i

' TABLE OF CONTENTS I

1.0 BACXGROUND 2.0 PRESENT SAFETY ANALYSIS L

3.0 MEASURED DATA

-4.0 AVERAGE DROP TIME METHOD 5.0 HERMITE CODE 6.0 CASE SELECTION 7 0 HERMITE RESULTS 8.0 BASIS FOR AVERAGE CEA DROP TIME 9.0.' TECHNICAL SPECIFICATION CHANGE 10.0 FUTURE SAFETY ANALYSES

11.0 REFERENCES

APPENDIX A " Measured CEA Drop Time Test Data From May 18, 1988" ii i

i

'J 1

l 4

m I

1.0 BACKGROUND

.During the ANO-2 Cycle 7 start-up testing, the maximum drop time for i

individual Control Element Assemblies (CEA's) exceeded the Technical Specification (3/4.1.3.4) maximum CEA drop time value of 3.0 seconds.

This

)

adverse change in. the measured CEA drop times was revealed by new measurement methodology and was not caused by any type of mechanical 4

degradation of the CEA's or assembly guide tubes.

The testing method used previously for measuring CEA drop times involved interrupting the power to the Control Element Drive Mechanism (CEDM) from each individual CEDM breaker. The new test method, which is consistent with the actual CEA scram i

J sequence, involved interrupting the power to all the CEDM's simultaneously via the main trip breakers.

The additional time delay is associated with the difference between the electromagnetic decay time of multiple CEDM coils and the decay time of an individual coil.

i Low power events were reanalyzed for the longer CEA drop times in support of an emergency Technical Specification waiver for low power testing (Reference 1).

Later, a revised analysis of all events was completed in support of a CEA drop time Technical Specification change to 3.2 seconds (Reference 2).

.In order to show acceptable results with a minimum of COLSS and/or CPCS penalties, the revised analyses credited space-time kinetics, in conjunction with the new CEA drop time curve to calculate the time dependent reactivity scram insertion (References 1 and 2). The CPCS power uncertainty multiplier (BERRI) was increased 0.5% in support of the revised analyses.

However, no COLSS thermal margin penalties were required. This Technical Specification change was approved by the NRC in Reference 3.

When the final CEA drop time testing was completed, the margin between the slowest CEA and Technical Specification CEA drop time was 20 milliseconds:

(3.20 - 3.18 seconds). This CEA drop time margin is comparable to expected cycle-to-cycle variations.

Since failure to pass the CEA drop time test precludes entering Mode 2, AP&L would like to increase the margin between the Technical Specification value and the measured times before the Cycle 8 start-up without any further loss of CPCS margin to trip.

The analysis method for increasing the time between the measured CEA drop time and the CEA drop time Technical Specification of 3.2 seconds is to credit the measured spatial distribution of CEA's about an average position as opposed to the present safety analysis assumption that all CEA's are at the same axial height as the slowest CEA.

2.0 PRESENT SAFETY ANALYSIS Figure 2.1 shows the logic diagram of the pertinent safety analysis data used to support the revision of the CEA drop time Technical Specification from 3.0 to 3.2 seconds discussed in Reference 2 and approved by the NRC in Reference 3.

Of interest are the three " icons" of Figure 2.1 representing the scram curves, the CEA drop time curve and the time dependent reactivity insertion data.

Figure 2.2 illustrates a typical space-time scram curve generated using FIESTA or 10 HERMITE, References 4 and 5 respectively.

A family of scram curves was generated parametric in initial axial shape index 0~

(ASI), total scram worth and time in cycle to bound the range of operating conditions.

A CEA position versus time curve, Figure 2.3, was generated 1

i 0

f l

l (l

based on measured data from the May 1988 CEA drop time testing.

The V

Technical Specification basis is that the safety analysis curve bounds all l

CEA drop times at 90% insertion.

Any individual CEA drop time greater than 3.2 seconds is not considered acceptable. The scrat curves and the CEA drop time curve are combined to provide the time dependent normalized reactivity insertion during the transient of interest, Figure 2.4.

This curve is combined with the total static scram worth (All Rods In (ARI) minus Worst Rod Stuck Out (WRS0)) as calculated by ROCS, Reference 6.

Inherent in the ANO-2 safety analyses is the assumption that the time dependent negative reactivity insertion is governed by the slowest CEA.

Hence, the Technical Specification requirement that All CEA's fall within the 3.2 second drop time at 90% insertion.

This assumption will be modified to expand the margin between the measured and safety analysis CEA drop time.

3.0 MEASURED DATA Figure 3.1 shows the average (arithmetic) position of all the CEA's as well as the maximum and minimum envelopes based upon the detailed CEA drop time testing data from the May 18, 1988 test provided in Appendix A.

The envelopes are agi derived from the slowest and fastest CEA, but rather the maximum and minimum position of all the CEA's at each time point.

Individual CEA drop times relative to the average drop time of all the CEA's are presented in Figure 3.2 at several average CEA positions: 1%, 25%, 50%,

75% and 90% inserted.

As indicated in Figure 3.2 the scatter in the drop time about the average

(_')

increases with CEA insertion and varies with CEA number.

The low numbered v

CEA's fall into the core faster than the higher numbered CEA's. As shown in Figure 3.3, the CEA's are numbered starting at the center of the core and increasing in an outward spiral to the core periphery.

Therefore, the CEA drop times are the fastest at the core interior and get progressively slower towards the core periphery.

The spatial distribution of CEA's about an average is primarily due to the distribution of CEA extension shaft weights.

The weight of the extension shafts of the ANO-2 CEA's vary as a function of their position in the core.

The longer heavier extension shafts are located at the core interior and they get progressively shorter and lighter towards the core periphery.

Table 3.1 provides the total CEA drop weight for each CEA.

As shown in Figure 3.4 the CEA drop time can be approximated as a linear function of the CEA drop weight.

4.0 AVERAGE DROP TIME METHOD The present safety analyses assume that all CEA's drop into the core during a scram at the same time and at the same rate. The drop time is assumed to be governed by the slowest CEA.

However, the worth of a CEA is a direct function of the power or neutron flux environment surrounding the CEA.

Consequently, the worth of all the CEA's at any time during the scram depends on the average flux level seen by all the CEA's.

During the critical part of the scram the lead or faster CEA's will be in higher axial flux regions and will make a greater relative contribution to the net (mU) negative reactivity scram worth inserted than the slower or lagging CEA's.

Therefore, the negative reactivity insertion for any reasonable distribution 2

l I

of CEA's is more directly correlated to, and can be represented by, the average CEA insertion rather than by the slowest.

Based on the measured i

data the CEA's do not scram at the same time and at the same rate but have a

)

predictable spatial distribution about the average.

l The proposed metisod uses the average CEA drop time.

The appropriateness of the use of the average drop time was confirmed by performing a set of 3D

)

HERMITE space-time calculations.

These show that the same negative l

reactivity will be inserted for the case of the CEA's distributed about an average CEA position (the " distributed case") as for the case for which all CEA's are assumed to be positioned at the average CEA position (the " window l

shade case").

' Typically, 10 analysis methods are used to calculate the CEA reactivity insertion during a scram.

This is an acceptable simplification for " window

]

shade" modeling of the CEA insertion.

However, 3D methods are needed to model the CEA spatial distributions.

These calculations are performed using 3D HERMITE space time methods, as opposed to static methods using ROCS, because the ID scram curves used in j

the revised analyses to extend the CEA drop time from 3.0 to 3.2 seconds

]

were based on space-time calculations.

The differences between static and i

space-time calculations are illustrated in Figures 4.1 and 4.2.

Figure 4.1 l

shows prompt axial neutron distributions calculated by space-time methods during a scram.

These are the same response, shape and magnitude, as a static calculat. ion which assumes that the neutrons have reached equilibrium for each time point.

The delayed neutron distributions are presented in l

Figure 4.2.

The delayed neutron flux does not shift towards the bottom of J

the core in response to the CEA insertion as rapidly as the prompt 1

component.

In addition the magnitude does not drop off as quickly.

It is the accurate representation of the delayed neutron shape during a scram that i

results in a faster power reduction in the space-time calculations.

l I

These 3D HERMITE cases are a one time analysis to demonstrate that the use of the average CEA drop time is conservative with respect to the use of the measured CEA drop time distribution, and thus to support the redefinition of the CEA drop time Technical Specification to that based on the average CEA drop time.

I The 3D HERMITE analyses do not affect the safety analyses of Figure 2.1 which will continue to use the 10 space-time scram curves (assumes " window shade" distribution), the static ARI-WRSO scram worth (assumes a " window shade" distribution),

and the same CEA insertion versus time curve.

However, the definition of the CEA insertion curve and what the CEA drop test measures will change from " maximum" to " average".

j 5.0 HERMITE CODE I

The HERMITE code was developed at Combustion Engineering for the analysis of l

design and off-design transients in large PWR's by means of a finite element I

numerical solution to the multi-dimension, few-group time dependent

]

(space-time) neutron diffusion equation including CEA motion and the j

feedback effects of fuel temperature, moderator temperature, moderator density and xenon.

A topical report (Reference 5) describing the code, its 3

Revision 1 l

J

O)'

input and verification was submitted to the Nuclear Regulatory Commission V

(NRC) in March 1976. Submittal was made at the same time as a separate C-E topical report on the CEA ejection accident (Reference 7). NRC approval for both topical reports was obtained in July,1976.

Since the HERMITE Torical Report was approved, the code has undergone a number of incremental improvements and has been applied to a variety of analyses.

Key improvements include the addition of the Nodal Expansion Method (NEM) neutronics (Reference 6) and the inclusion of the TORC Thermal-Hydraulic calculation (Reference 8). NEM was used for this analysis but the TORC calculation was not.

HERMITE (including NEM and TORC) has been applied over the years in a variety of specific ' licensing analyses on specific dockets.

The major applications have included one-dimensional space-time calculations for the loss of flow accident (SONGS-2/3, Waterford-3 and Palo Verde-1/2/3),

three-dimensional calculations for the steam line break accident (SONGS-2/3, Waterford-3, Calvert Cliffs-1/2 and St.

Lucie-2),

and two-dimensional analysis of asymmetric steam generator events (SONGS-2/3, Waterford-3, Palo Verde-1/2/3).

6.0 CASE SELECTION Three sets of cases were chosen to demonstrate, for the range of operating conditions, that the " distributed" case provides essentially the same time dependent reactivity insertion as the " window shade" case.

U The first set of demonstration cases (" window shade" case and " distributed" case) was performed at nominal operating conditions; beginning of cycle (B0C), hot full power (HFP), equilibrium thermal hydraulic and xenon conditions (approximately 0 ASI).

ASI is defined as the following ratio:

the power in the bottom half of the core minus the power in the top half of the core divided by the sum of the two halves.

To simplify the HERMITE input data, the average CEA drop time for each weight group was used for all CEA's in that weight group.

The HERMITE CEA position data is shown in Figure 6.1 which is comparable in form and scale to Figure 3.2.

The core power reduction resulting from a given CEA scram pattern is influenced most by the initial axial power distribution, which can be characterized by its ASI. The first set of cases had a nominal power shape with an ASI near zero.

A second set of demonstration cases was r'm for a bottom axial power peaked shape (+.46 ASI) using the same CEA positien data i

as the first set of cases, Figure 6.1, and at the same operating conditions:

BOC, HFP, equilibrium thermal hydraulics.

A third set cases was run to show the sensitivity of the distributed case to the spatial distribution of the CEA's about the average. Narrowing the scatter of the distribution will only force the " distributed" case to look more like the " window shade" case. Therefore, the distribution was expanded to increase the time between the fastest and slowest CEA.

Again the as-measured CEA drop time data was used as a basis for expanding the distribution. The expanded distribution is presented in Figure 6.2 using a form and scale comparable with Figures 6.1 and 3.2.

The third set of cases

\\

used the same initial conditions as the first set of cases.

l 4

1 l

/G 7.0 HERMITE RESULTS

,l O The results from all three sets of cases discussed in the previous.section are presented in Figures 7.1, 7.2, and 7.3, respectively.

In each set, the

" distributed" case provides the same time dependent reactivity insertion as the " window shade" case to within the input modeling and code uncertainties.

The results are presented as core power versus time instead of the' usual' reactivity. versus time because the core power reduction is the effect of greatest interest in the safety analyses.

From the results of the three sets of cases, it is concluded that, for the l

family of CEA drop time distributions that bound the ANO-2 as-measured distribution, Figure 3.2, the " distributed" case will provide at least the

. same core power reduction (negative reactivity insertion) as the " window -

shade" case.

8.0 BASIS FOR AVERAGE CEA DROP TIME Figure 8.1 presents the basis for the average CEA drop time Technical Specification.

The safety analysis CEA drop time curve, schematically presented.in Figure 2.3, is shown as the solid line.

However, it is now the average drop time of all the CEA's rather than a curve that bounds the drop time of all the CEA's. The 3D HERMITE space-time analyses presented in this report show that the " distributed" case provides at least the same time dependent reactivity insertion as the " window shade" case. This is true for any reasonable family of CEA distributions similar to those measured at

/~N ANO-2.

However, if the distance between the fastest and slowest CEA's V

becomes too large or the distribution of CEA's deviates significantly from that modeled in this study, then the average CEA position (window shade) may not be representative of the time dependent reactivity insertion. To ensure that the safety analyses remain valid for an average CEA drop time Technical Specification, a limit is placed on the CEA drop time distribution.

This will be expressed as a maximum drop time limit on the slowest CEA in the revised Technical Specification.

The dashed line in Figure 8.1 is. the

" maximum" drop time curve and is based on the maximum envelope presented in Figure 3.1.

For comparison purposes the as-measured average CEA drop time curve is also shown in Figure 8.1.

9.0 TECHNICAL SPECIFICATION CHANGE The proposed Technical Specification, Exhibit 9.1, is of the same form as the current Technical Specification.

The Technical Specification ' as been expanded to include the average drop time of all full length CEA's.

The average CEA drop time must be less than or equal to 3.2 seconds.

The maximum CEA drop time for any individual full length CEA will be changed from 3.2 seconds to 3.5 seconds.

However as presented in Exhibit 9.2. the basis for the 3.5 seconds is changed from a limit on the slowest CEA for a

" window shade" scram to a limit on the CEA distribution about an average value.

The same action requirements, applicable for the current Technical Specification, will be applied to both the average drop time and the new maximum drop time.

The surveillance requirements and frequencies will remain the same as those of the current Technical Specification.

s 5

[')

110.0 FUTURE SAFETY ANALYSES I

For future reloads, the safety. analysis methodology will be unchanged from

'the present methods as discussed in Section 2.0 of this report except that the CEA drop time will be characterized by the average, consistent with the revised Technigal Specification.

Any thermal margin penaltics. applied to.

CPCS or COLSS - uill still be determined in future reloads based on the current safety ar.alysis curve shown in Figure 8.1.

I As shown in Figure 10.1, what will change for future reloads is the criteria for the CEA drop time test.

Instead of the present maximum CEA drop time of 3.2 seconds at 90% inserted, the new criteria will be a maximum drop time of 3.5 seconds at 90% inserted anu an average drop time of 3.2 seconds at 90%.

inserted. The new criteria are shown in Figure 10.2.

The 3D HERMITE methods were used to verify the average CEA drop time concept.

That is, the time dependent reactivity insertion of a " window shade" scram at the the average CEA drop time will provide the same reactivity insertion as the more realistic " distributed" case about the same i

average.

Cycle specific reverification is not required as long as the fuel management and CEA drop time characteristics are not significantly changcd.

Any fuel management change that significantly affects the core wide axial or.

radial power profiles, such as axial blankets or ultra-low leakage fuel management, may necessitate reverification of the average CEA drop time analysis.

Changes that would significantly affect the CEA drop time distribution, such as changes to the CEDM circuits large increases in the

[_

core flow pressure drop, changes in the total drop weight of the CEA's or changes in.the ' ocation of the CEA's, may al so require reverification.

Barring these type of changes or failure to meet the new Technical Specification limits, reverification of the average drop time analysis will not be required on a cycle-by-cycle basis.

1 l

6 a__________

[^)'l

11.0 REFERENCES

1.

T. Gene Campbell (AP&L) to Jose Calvo (NRC), " Arkansas Nuclear One -

Unit 2, Docket No. 50-368, License No. NPF-6, Request for Temporary Waiver of Compliance, Technical Specification 3/4.1.3.4 CEA Drop Time," 2CAN058801, May 5, 1988.

2.

T. Gene Campbell (AP&L) to Jose Calvo (NRC), " Arkansas Nuclear One -

Unit 2, Docket No. 50-368, License No. NPF-6, Request for Emergency License Amendment, Technical Specification 3/4.1.3.4 - CEA Drop Time,"

2CAN058802, May 9, 1988.

3.

C.

Craig Harbuck (NRC) to T.

Gene Campbell (AP&L), " Issuance of Amendment No. 84 to Facility Operating License No. NPF Arkansas Nuclear One, Unit 2 (TAC NO. 68005)," Cocket No. 50-368, May 16,1988.

4.

" FIESTA A One Dimensional, Two Group Space-Time Kinetics Code For Calculating PWR Scram Reactivities, "CEN-122(F), November, 1979.

5.

"HERMITE A

Multi-Dimensional Space-Time Kinetics Code for PWR Transients," CENPD-188-P-A, July 1976.

3 6.

"The ROCS & DIT Computer Codes For Nuclear Design," CENPD-266-P-A, April 1983.

7.

"CEA Ejection Analysis," CENPD-190-P-A, July, 1976.

~

kJ 8.

" TORC Code A Computer Code for Determining the Thermal Margin of a Reactor Core," CENPD-161-P-A, July 1975.

l

(~

()T l

7 l

i L________

.l l

l MFOCMm N.s 4

O H

T S

R I

O YS W

v TY EL M

FA A)

AN S

Rc SA Ci St I

S a

C1t S

O S

RN(

Y L

TA R N n'.

AA L

M.

k~

H C E

_ p m

M M

?

ee

_sL

(

i, WI y

_w

'1 fw OT 9

L F P O

-a ]"j=

i=gsl: 9

~

S R ID OS YA LE AC v

e D

ru N

c AT m

T rm a

N S

g c

E s

AT Y E ea T

n A

TR n r.

g DF T

DI E R e

g ES c

R a

F U p-g U

s SM AC AO g

t -

ER e

S k-MF r

y R

r O

_. "kj,"jl e

~.-

F ET I

M A

R T

E S

H O

EI rD FoI m!ll:ll

O r

gnims i

u e

tia u i

mrl ca USV i

C

o t

i m

)n i

e i

\\

i m

,0 i

2 T

a o

e s i

c e r

t u

ai i

pa s

Sv c

o

,0 )

3 S

P i

n i

w A

a E

r e

C

,0, 4d ms h

u t

s i

i r

i W

0 T

V s

e i5 y

O t

(

e i6 i

i v

0 n c

i o

i tc i

i a

a i

it e

i s

pR i70 o S

d i

P e

i z

i A

i i 0E l

la i8 a

i C

m i

c r

i i

o i

p (N

i09 y

T i 0 0

_i::z:T: b ;! T::: : : : - : '

1 8

7 6

3 2

0 0

0 0

0-0 0

0 0

1 t.>

  • o 0 E

AN= EEZ 5

O

I 4nCpF w.

oT 1

-6 c O

4 l

l I

I I

5 s e l

i v l

sr l

yu l

aC l3 l

l n

l I

e I

)

Am I

d I

s yi tT I

no I

c e

5 e

fp I

(

2 l

S O

a o Sr I

I e

D I

m I

l i

a l

I T

cA 5

i E l

pC l1 y

I T

l 5

I l

I I

I 5

0

_i 5 :: 3 : : ~

[

I: ~

,0 0

0 o

0 0

0 0

0 9

8 y

5 4

3 2

1 m C 3 O L O C t. 3M v C o D )U O -

4lLO t

O

~

O

O i

i i

n i

o i

i i

t r

i t ens en i

dI n

ey i

t pi ev i

i Dt O

c ea me T

iR i.

e ci i

am i

l i T i

ye p-Tc i

a i

p S

,5

.i:_:

b.: k: : :

~0 O

e.

o.

4 2

0 o

o O

0 0

ya9. 9od &

w w NeMd so

y:..

^

V TA8LE 3.1 ANO-2 CEA WEIGHT ASSIGNMENTS-WEIGHT (1bs)

CEDM NUMBER 232.6-2,3,4,5 6,7,8,9

10,11,12,13 14,16,18,20 15,17,19,21 225.6 1,

30,32,34,36-31,33,35,37 219.6 38,40,42,44 39,41,43,45 216.6 46,47,48,49 50,52,54,56 51,53,55,57 213.6

.58,59,60,61 62,64,66,68 63,65,67,69 206.6 70,73,76,79 71,74,77,80 72,75,78,81 0

,v 14 i

t i

4 t

3. d i

e 1 e 0

m.t)s f

i3r ed T

c T

sn no peic 1

op r

e DrSsS s

0 f

h9 e

Ac 2 E et F

CTA(3 m

r

=

t p3 T

r p

o

)

r s

D dn 2

o e

c A

e p p e

E o o l

,2 O

C l

S e e v v

(

yt n n e's N

d E E e

mm e

A r

u u m

e u

gmm i

ai T

S eai rxin a

vMM A

e a

f t

D A

a

,1 d

i er i

us i

a e

M

- ~ ~

l: :-
: _ ~ :

_- :::::~~0 0

o 0

0 0

0 o

0 0

0 0

1 g

s 8

7 6

5 g

8 2

1 1

C3O'T _u N M v C 9 s.- D0Q (wU

)C

+

(

O

o J.-

FIGURE 3.2 fx ANO-2

'v' CEA Drop Time Data As-Measured Data Versus Window Shade Assumption

- o. o -

~ oooo Distributed Dato


' Window Shade' Average Position o.5 - ^#

  1. m heo 0

-nm

-om

- co

- ^

g w

-v v-owo co-m r o-o(15 Inserted) v o

o o o o

e o

)

1. o -

~

o 0

o <$ coo o cb m,-c m a h oo-_o,n o n nn -

^^

^

o(25s Inserted)

~

~ "

mw vo o % 'o go W

o a

o o

0 0

o o

1.5 -

(]'%$

~

4 O

O o C.

o o

co o

o oop,

o g e ce cog. %o o

o

~

^

?

(50s inserted) l o"S v o %*o 00 P

v o o o

o o

1 2.o -

o,o g

~

o K

~

~

o

~ 0 0 o%

o o ccco o3 @ o o o o

2.5 -

0 o 0 o

0-6

?

(75s Inserted) o

  • u o-~~o o'oo'o

%ooo o

o o

o o o oo o

o o

o o

o oo o

o o j

0 o

000

% cP oo o

o

~

0 o

o

^ y,4/=g, w j, o, f o$ " '""**

l

'o^

=

o o

o

,o o

3. o -

o o o

\\

l e

o c

s.5 ununinonininonunnonunnoninuun.nononunionioun q

o to 20 so to so so 70 80 CEA Num6er l

l.-

L-__-.--_---__--__

L FIGURE 3.3

,,m.

j Y

lJ ASEANSAS BUCLEAS ONS UNIT 2 g

g FULL. CORE Cte LOCATICBS t

t EST TO NAP w<.

.. -.>g t-.-t

..l..

i 89 f ASSEMBLT LOCATION 1

t61 t C84 GROUP - C28N NUM388 f

i t

3 l-I A

8 C

D R

P G

S J

E L

M N

P Q

f

.t

....f

.t

.. t

....t I 01 1 02 1 03 I 04 I 03 !

1 1

t A.7S I t 4 76 l t

t t

t t

t I

t.. - t t....

t......t......t t

t - t - - t t 06 I 07 I 08 i 09 f 10 t 11 t 12 l 13 t 14 I 1

I I

i 3 65 t i S.60 t t 3 66 i f

I t

t t

t t

t I

t t

t t - t I -- t..

t.... t..

t..- f -- t..- t...- t -- t.

i 13 1 16 1 17 t 18 1 19 f 20 t 21 1 22 f 23 t 24 t 25 t 3

t 2 74 i f A.53 t i 1 41 t t 1 42 I t A.34 1 l 2 77 t t

I f

f t

t t

t t

I t

I.- t i..

t......t t...

t..

t..

t...

t I-t.-

t.. I f 26 t 27 I 28 t 29 t 30 t 31 t 32 t 33 1 34 t 33 ' f, 34 t 37 t 38 t 4

t i

! 6 47 I t 8 33 t

! P.24 I t 8 34 i

! 6 48 1 t

I t

t t

t t

t t

t t

I t

t t

(

t f l

t..

t....

1.

t..

t. - t.

t

-t

....t....

I t 39 I 40 1 41 1 42 t 43-f 44 I 45 1 46 t of f 48 t 49 ! So I S1 !

3 I

i 4 52 t i P.27 I t 8 17 I I S.18 I f P.28 i

! A.S$ t i

/T f

f f

1 f

I t

i I

t I

i i

- t t.. - t t..

t - t...- t...- i...

t

- t...... t..

t -

f

. t..

t.... t

';'\\

t $2 1 33 i Se i SS I $6 ! 37 1 $8 1 59 I 60 t 61 t 62 1 63 ' t 64 I 65 1 66 t 6

1 t 3 64 I t 8 32 i t 4 11 I t28 I I 4 12 I t 8 3S I i 3 67 I t

I t

t

.I I

t t

i f

I f

f f

f f

f t.--t t.-

t._

t..-

t..

t... - t..

l...

t......t._

t....

t.

t

- f- - t i 67 1 68 1 69 i 70 1 71 I 72 1 73 I 74 I 75 t 76 1 77 t 78 1 79 1 00 t 81 t 7

i A.73 1 1 1 40 t t 8 16 I t83 1 t84 1 t 8 19 t i 143 t i A.78 i 1

i f

f I

t t

t t

t t

t t

t I

t t...

t.

-t.-

t t....

t....

t....-t...

.t....-t.-...t.. - t...-f....-t t....~t i 82 l 83 1 Se f SS l 96 I 87 i 88 1 89 t 90 t 91 I 92 1 93 t 94 f 95 I 96 I 8

I I S.59 t

! P.23 1 127 I t61 l I 29 t t P.25 t i S.61 i f

I l

I I

t t

t I

t t

t t

t t

t t

4.

l.

t t

?.

t.

t.

t....

l

....t......t - - t....

t.

t-- - t......t

! 97 t 98 f 99 t 100 l 101 i 102 1 103 t 104 t 105 t 106 f 107 t 108 f 109 t 110 f lit t 9

t A.72 I i 1 39 i V 8 1$ I l32

.t

! 85 t t 8 20 t i 1 44 1 I A-79 t t

t t

i i

t i

I t

t t

t t

i t

t t..

l 1..

I p.

t..

l....

t..

1......t......l....

1....

l...

.t....

I--...I 1 112 l 113 f 114 1 115 t 116 1 117 1 114 t 119 f 120 t 121 ! 122 t 123 t 124 1 125 t 126 1 10 t

t 3 63 f I 8 31 I t 4 10 t t26 f I 4 13 I t 5 36 i t 3 68 1 t

i I

i t

1 I

i t

t t

t i

i t

t t

t....

t l

.t...

t

....t..

t. -

1...

1....

t..~..!..

..f......t..

t.

t......t t 127 1 128 t 129 1 130 t 131 i 132 1 133 t 134 f 135 t 136 1 137 1 138 t 139 1 11 1

! 4.$1 I t P.26 f I 8 14 t t 8 21 1 t P.29 t t 4 56 t t

t t

t I

t t

t I

t i

t t

t I.

t

..-t.

f..

t.

1- -t....

t.

...t-..

t....

t......f...

t.-

t

! 140 t 141 1 142 i 143 t 144 1 14S t 146 ! 147 1 148 f 149 1 130 1 151 t 152 1 12 l

i

! 6.a6 i

! 8 30 1 1 P.22 i

! 8 37 I t 6 49 t I

t t

t t

I I

f f

f i

1 t

I t

t..

t.- t...... t.... I.. t..

t..

l.... t...... f...... l...... t.... - !..~ t i 153 t 154 t 15$ 1 156 t 157 1 138 1 139 1 160 t 161 f 162 t 163 t 13 1 2 71 I t A.$0 t t 1 38 t 1 145 t

! A.57 !

t 2 60 t I

t I

f f

I f

t t

t t

t.... t.... l...... t.... t...-. t...

t.... t...... t...... t...... t...- I t 164 f 16S t 166 t 167 t 168 t 169 f 170 ! 171 l 172 f 14 t

t t 3 42 i f 5 58 f f 3 69 t t

t t

i t

i t

i 1

1 t

t.

...t....

t...

t......t......t......t....

l.....I i 173 t 174 t 175 t 176 1 177 1 IS t

1 A.70 t t 4 81 t I

f f

i t

t i

r t......t..

t..

..i..

f......

j

\\

PLR's are located at CEDM nurfters 22, 23, 24, 25, 26, 27, 28, and 29 l.

1

O t

)

h s

b g

(666666 i4 I

i t636952 e

h011123 g

W i222222 eW A

E aC

+

t a s Du i3 e r s

2 mV e

i o

+

T e

OO pm

S A

N rT oi d

De Et o

i r

e t

D Ne m

i2 a

A p

Is i D

Fn T

i Ao E

2 8.

r Ds y

888 o

E 0

889 D

S9 ec O

991 C

I D

N1 1

o Et i A

,8 A

Me lo l 1 l

21 TmC E

I 8+

A yyy.

C i

g f

T aaa n

Pi si oMMM.

Oo ud nl e

Rtoio DTMH n aaa e

ttt iI g

iLaaa.

DDD a

t r

iF222.

e oA t

v sOOO.

A BAAA.

eNNN oo+

oo+

oo +

oo +

oo +

E.___

g:

O 0

0 0

0 0

0 7

6 6

1 3

2 2

2 2

2 2

2 D 00*D" m

. :s

u a

Ca

(

r F

r

(

c

)0456753673 e c S

me T(0o0O 2223 iS 1

oe4 D

oe6M"D se*+*D*-

g

=

ee6 D

+

n ooAH"~O i

r u

D D

n i

s o

[9 i

t t

l u

u ei

)

i b

n nrn n

s s ht io t

si i

e Ti n

' i d

i o

n DC Rp n

P i

F n

onH i.

r o e.

i eDrX

'n t

W n

m EeAuE u

i q

'i n

- oi CNO:

n C

D o

Te n

t ta9 i

g pe i

amC=

nn so er oe o

e c

vP S n

rd a h

i

.[

aA e

w n

dd o

,f p

n ein i

z (W i

S

,u i

p l

a n.

m f

r o

p2 N

e n

v i

i

/

i t

/

n1 a

[i,0 l

i e

o 7

R T

=

} i:::i::E = E:1: EE

=E _ Ei!4 E E E

+u 0

"8 7

6 5

4 3

2 0

(

0 O

0 0

O 0

O 0

1 EOO COL 3eZ "OEo'i m* 5EE>Z

v n

r r

F(

a me

)

r e c0456753673 c

i S 0 o 0 0 01 2223 S

T(

soaS D ee*M"D~~-

e*

DD g

ee*H"@

se*

n iru i

D n

n o

.p i

s t

n t

u i

N l

b N

i u

r )s t n

.p esio s

t mi i d

Do n

e iT C

i R

.nP n

oH p

F pr.

n ot e

ruX e

Dea in nA NE%

i uq n

uh r

E d Ce n

O CeD n

T yt -

o e a u

ae p

gl e

aea i

s n

Ce rD i

e e

e d

vl a h

^

n c

AaS o

i a

xw n

i o

Ad

^

i p

d (W in

~

S e

.p z

o i

=

l n

a a

n n

T rr o

o n

N i

n e

v p1 i

n t

a i

l i

e n

R i

E i _ E E E _ E E:E 3 E:iE:E+E

!4E: j:

E-O 0

9 8

7 6

5 4

3 2

1 0

~,

0 0

0 0

0 0

0 0

0 0

1 b.Ea>O COL #g 7 mqXOsO 3 $ Euo

)

l

FIGURE 6.1

~

vU ANO-2 Average CEA Drop Time HERMITE Input 08-Window Shade Versus Distributed Case

- oooo Distributed Dato

' Window Shade' Average Position O,5 -,svirtererra uvrren

,,(1% Inserted).

1.,,,,

~

Weight Weiht Cose input Time Group

(

1

.6 As-meosured group overage 2

225.6 As-moosured group overage 3

219.6 As-moosured group overage f.o -

4 216.6 As-mecsured group overoge 5

213.6 As-measured group overoge 6

206.6 As-moosured group overoge

~

1.......

" ~~

~ ~

1 x,,

(255 Inserted)

N

~

f.5 -

GI

~

Q 1., x 1 1 1,,.

r1111 b

(50s inserted)

' ny

,1 en1, z,,<n 1, 1 1, 1 11

, 2. 0 -

~

y M

E I I,

I I I I, I I T Y Y

,'1

_. 1 X X 1 I I 1 I.

I (905 Inserted) s.o -

"~~~

15 1

n u nin o n n o n o nn u n n o ninio nio nin on o nn u n n o n un n u n o

o to 20 so to so so 70 80 CEA Number o_ _ _ -

o FIGURE 6.2 ANO-2 n

. U Average CEA Drop Time HERMITE Input Window ' Shade Versus Distributed Case 88-Expanded CEA Distribution

~

oooo-Distributed Doto

_ ----- Window Shode' Average Position N I IEYWX X XX YI I Y Y Y

l 0.5 -

(15 Inserted) c.

Weight Wei ht Case input Time Group

( )

i 2.6 As-measured group minimum 2

225.6 As-mecsured group minimum 3

219.6 As-mecsured group overoge 4

216.6 As-mecsured group mexi num f.0 -

5 213.6.

As-mecsured group moxi.num 6

206.6-As-mecsured group maximum i -- '

c rt" -

i i i, :,ii (255 Inserted) ri i. i. iirii, 4II1YTi, 1 1 T i 1

& 1.5 -

w

~

C C

cccc..

. cc,

\\z

~

i

~

~

(50s insertec)

2. 0 -

,, rce rec.ric, e

g iii i.. i, iisii

.g h

nr.rc r,rccrccccc, O

<inimisii 2 8 ~~

' ~

(75s Inserted) c.-

,.. cc.

_ O ti i ii. ii

~

iiin ; i i m (90s inserted)

3. 0 -

^

' ' ^ ' '

^^

l 1

34 in u s ui q in u i n i pi o in ni ni n iuipin u ni piu i n iiininiu i p i n u i u ti O

0 to 20 30 40 50 60 70 80 CEA Number

i

,Ij' 1ii l

l 1

y TmOCpm H

g 0

i O

4 es )I m

n o

aS i

t i)s eC A o

i n

Pw mdO a

0 r

Ad00997474i61 i.

i E

t i -

.3 Te h 0 0 9. 9 9 9 6 3 21.0 Ct e

t s W'1000000o00 t

e mesb n g c a a

~

ti o r r iTsri eF v

rtt A(

e si

)

pV id s

o Dn d

2 rr

)

o ec 3.456753673 n

me 000O012223 DetsC T (S o

i w1s c

AorP e

OE pef i. (S 0

C VH

.2 O N e ge m

e e

gade e

Aa raX s

a i

reh C

T l

e vSi t n

vA t

o A

oq i

t etroe u

bi e od rs CnC t a s

iO iC D

0 W(B e

i.

dd 1

e a rh uS s

aw e o ml u

-sb A Y

=

o.e o+

oa os oo 0

lE Ej 4:

!+ E 5iE:

E E.E::

1E:E. [ =

E~

0 O

0 9

8 7

6 6

4 3

y 0

0' 0

0 0

0 g

0 g'

0 1

b%3o, ebOO

  • etZ6 8<

Q d

1 l

1

no C

d e

t u

b i

n r

o et i

t i) s)

s miI n

oPw IDS a

r Ad009974741*

T A

Eh00999963.2.a e

d W '10 0 0 o 0 0 0 8 Cti mseG eg ur4 rm e

a iTsu0 eF rs A(

v ea+

2 pV e

)

or r M s, ecc34567536.E me -

iS*0000o122 De-n T(

so wAi OEAo t

i Psd NC un e s o e grC gae

,uA a rV re P

e eveF sa v AdH C

A a

n eh r

C o

oS O i

t u

C w (D bie rs o

a t

d sC i

n D e i

d d W

a erh uS s

aw e o n

rd

- n si W

A on

_~

oe oe oe ow

.i E l:: Ei:E+EEi ; E = 2 E : =

E :ii: = E E E = _ E : ~

U 8

7 6

5 4

3 2

1 0

O 9

0 0

0 0

0 0

o 0

0 0

beho,eboU %OtZg O%

1 Q

yV

-7 sa C

n )I n

oiS io t

i) t s

n o

euA Pw a

miO w

b Ad*09974741f r

E ir Cth*09999632.j Tt W'10000000g i

e s s, gc

~0 a

esi a

i muDn r

r eF v

o A(

s i

irdt Teei Vd d m.

)

ec 34567536 3

2or n n me -OO0001221 p

iS T(

o a

re C

Dwp xP OAPoE F i

E sH i

NC e u,

i gs e

e ar V A a eVgreX i

3g l

i rv i

eAeu v

dq s

e AeaE a

rh C

oS, n

C C

o O

ie wB lt s t a b

o(

iC d

r i

n sd i

t e i

i Da W

h dS edw no ad pn xi EW on

_~

ee on sn oa

_[ i 4:::5:: E+E::?[: =IE:: 7 E:j E : = 5 E :;E :.

1gL 0

9 8

7 6

5 4

3 2

1 0

I 0

0 0

0 0

0 0

O 0

0 b% h o 4 ek oD % Ot g* gaN [ b g 1

rL i'

3.,V de i4 w

s o d en r

HAmo c

iTe i

ms up N-o5 mD3 r

i i

ed

r. A p\\

s mn aEf i

io MCo s <.

e Tc i

e N

m pS

, o i

gr aD2 r

i r 3 s

eA T

vEf s

ACO s

i i3 pn i

N oo N

i ri s

t

~

i Da i

)

2 s

c s

Ai s

d E~

s n

Cc4 i

o Gep.e3 a

i c

t a

s e

D i2 c/_

Nr gS 1 s

S o

de i

l (3 v

(

s e r

\\

r i

e Av a u

usCa i

e Ac s

t a

a i

Ms i

m i

s e iD n

r i

s ye i

T oh mlag i

c s

a Fe un r mAe T

v s

~

i yA i

xt is n

Mf ae iI d

a e i

a r

n Su B

ot s n a de e i

erM sr a u s-BCA i

i O

?:

._:5_:-

5:-

_Z::z - ::b 2:

o 0

0 o

0 0

0 O

0 0

0 o,

9 8

7 6

S 4

S 2

1 c 5 o'C C t3 v

CO-

) O1 U

f(

gv

~

l;

EXHIBIT 9.1 PROPOSED CHANGES TO ANO-2 TECHNICAL SPECIFICATIONS

()

FOR AVERAGE'CEA DROP TIME REACTIVITY CONTROL SYSTEMS l

'CEA DROP TIME-l LIMITING CONDITION FOR OPERATION 3.1.3.4 The individual full length (shutdown and control) fEA drop time, from a fully withdrawn position, shall be 5 3.Xfseconds 4 rom when the electrical power is interrupted to the CEA drive mechanismsuntil the CEA$

reachpr g 90 percent insertion position 5with: Q ge agmA cenp.f we en T,yg 2 525aF, and drop %s &.tl All InsM cua,4r m a.

,. g

, gjj b.

All reactor coolant pumps operating.

bc k M su-nds APPLICABILITY: MODES 1 and 2.

ACTION:

can a.

With theVdrop timesa' ry full leugen LtA determined to exceed eihr of the above limit.1 restore the CEA drop time $ to within the above limitsprior to proceeding to MODE 1 or 2.

b.

With the CEA drop times within limits but determined at less than full reactor coolant flow, operation may proceed provided THERMAL

[_')

POWER is restricted to less than or equal to the maximum THERMAL

'L J POWER level allowable for the reactor coolant pump combination operating at the time of CEA drop time determination.

SURVEILLANCE REQUIREMENTS 4.1.3.4 The CEA drop time of full length CEAs shall be demonstrated through measurement prior to reactor criticality:

a.

For all CEAs following each removal of the reactor vessel

head, b.

For specifically affected individuals CEAs following any maintenance on or modification to the CEA drive system which could affect the drop time of those specific CEAs, and c.

At least once per 18 months.

mU l

ARKANSAS - UNIT 2 3/4 1-23 Amendment No. 84

EXHIBIT 9.2 PROPOSED CHANGES TO ANO-2 TECHNICAL SPECIFICATIONS BASES FOR AVERAGE CEA DROP TIME q}g REACTIVITY CONTROL SYSTEMS BASES CEA positions and OPERABILITY of the CEA position indicators are required to be verified on a nominal basis of once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> with more frequent verifications required if an automatic monitoring channel is inoperable.

1 These verification frequencies are adequate for assuring that the applicable LCO's are satisfied.

DEL ETE maximum CEA drop time restriction is consistent with the a CEA drop time e accident analysis.

Meas +

1 525*F ensures that the me$5Ere:d drop and with all reactor coolan times will be r e of insertion 1.

need during a

_csac 1p at operating conditions.

The establishment of LSSS and LCOs require that the expected long and short term behavior of the radial peaking factors be determined. The long term behavior relates to the variation of the steady state radial peaking factors with core burnup and is affected by the amount of CEA insertion assumed, the portion of a burnup cycle over which such insertion is assumed and the expected power level variation throughout the cycle. The short term behavior relates to transient perturbations to the steady-state radial peaks due to radial xenon redistribution. The magnitudes of such perturbations depend upon the expected use of the CEAs during anticipated power reductions and load maneuvering.

Analyses are performed basec on the l fs'}

expected mode of operation of the NSSS (base load, load following, etc.)

L./

and from these analyses CEA insertions are determined and a consistent set of radial peaking factors are defined.

The Long Term Steady State and l

operation used in the analyses and provide a means of preserving the Short Term Insertion Limits are determined based upon the assumed mode of assumptions on CEA insertions used. The limits specified serve to limit l

the behavior of the radial peaking factors within the bounds determined from analysis. The actions specified serve to limit the extent of radial xenon redistribution effects to those accommodated in the analyses.

The l

Long and Short Term Insertion Limits of Specifications 3.1.3.6 and 3.1.3.7 are specified for the plant which has been designed for primarily base loaded operation but which has the ability to accomodate a limited amount l

of load maneuvering.

The Transient Insertion Limits of Specification 3.1.3.6 and the Shutdown CEA Insertion Limits of Specification 3.1.3.5 ensure that 1) the minimum SHUTDOWN MARGIN is maintained, and 2) the potential effects of a CEA ejection accident are limited to acceptable levels.

Long term operation at the Transient Insertion Limits is not permitted since such operation could have effects on the core power distribution which could l

invalidate assumptions used to determine the behavior of the radial peaking factors.

O ARKANSAS - UNIT 2 B 3/4 1-5 Amendment No. 37

O l

EXHIBIT 9.2 (CONTINUED)

PROPOSED CHANGES TO ANO-2 TECHNICAL SPECIFICATIONS BASES FOR AVERAGE CEA DROP TIME REPLACEMENT The average CEA drop time restriction is consistent with the

(^s assumed CEA drop time used in the accident analysis.

The maximum CEA

\\

drop time restriction is used to limit the CEA drop time distribution about the average to that used in the accident analysis.

Measurement 0

with T 1525 F and with all reactor coolant pumps operating ensures avg that the measured drop times will be representative of insertion times experienced during a reactor trip at operating conditions.

K O

- O H

T S

R I

YS S

W u

TY EL I

M FA A)

AN S

Rc SA Ci St Y

S a

3 C1t L

O - S RN(

A TN RA A

m- (-

H E M.

C M s

I N'

WT O

P

-~.

g g

M, L P F O R

5 S D h

1l s g: h

~.-

I

~

,' 4W9 SA OYE LC A

e o

v N E r

u c

A G

=

r~

T A

=

e S

Y R s=

T E

AT T E m

A n-DE E V T

.~

DI FA c

ES R

p A

s U

~

SM AO S E ER p

MF R

r U

,, [3 I{ u..

. - "~-

T u

F E

T I

M A

R T

E O

S H

EI rD FoI

O e

s v

dfs.

4 eo3 r

w u

lAi lo em T

C Mp s

d Uo n

Mr2 D-o I

e XAo ce

+

S AEi m

MCn 2

3 i

fo T

e m

iT p

Ep 3

Co o

r A 2 RD-r EAO VEN D

ACA

)

A s

lE d

aC n

c o

i c

peg e

y 2 S a

e Tr O

v

(

r e

u v

C e

e A

m smT m

e s

i i

i s

yiTm T

l i

a s

neu y

A gm ai l

yrx a

e t

a ev 1

n fAM a

A Scc ee pp tnSS y

erhh t

r cc e

uee f

CTT 0

a S

=E

_::::::z::'

_: f:: :_

~

0 0

O 0

0 0

0 0

g 0

o 1

0 S

8 7

6 5

4 g

2 t

1 l

m C $ O'O C_a N V C O D.

(fO_

O

)

Q

^

O

l" l

APPENDIX A

I ANO-2 Measured CEA Drop Time Test Data May 18, 1988 O

l

o F

'A j

iPiii sssssssssssssssssReassassannaeanssacasssa iP? i!a li! g g g g g e s is ti t iini gia n nin g s s i t i s s igi n.

u 1

scam assessssssseR2:sassassaastessesssssssssaa M),-

L(

N650 $!!!!!!gggggestisigiastiWanngicssisssagis s#si sanssansaaman2sRasasaqqassemassassassssas g]gs assassssssssastsassassaginnRicinitsinisis.

an sd as sssssssssssesResassarasssssssanessRsts.

Nf6 gggigggggisgassaisssantsWikizcisingisinds_

a 83C stessssssssssssssRasassessegasssssastassa Ni > 's !!!8!!!!!ggggsatsassassassRtResstasssasts I

s ": si sanassaaaaasseresasasssegassesseaassanass gOns istissssasiatistisigidigsRtRidniisissisdi so.su sassassassese2esRssassa:Sasseas2asassaena

g. fir iistassssaisinisiassitigiReginnitigistisi s? s4 asassassaaaamssassssanaRsea:RssseassasRas (Ji] stitittitissaisingisassgiinRicisingissig2 s ? l si assassaaaaaaaRaasassas22 Rases 22assesRass2 j

g};i4 sassasssaiistisingiisinginkiiddiisisisids' e

a 31 sassassassssassesssssssRseassanassassasts ghtf sistasassassiinisdisatiisRtRecsassssssss t

sh +s?RRRRRRRRRRR*2sResassanassseasss2esasanssa 3:

c sittingssigstasitistiissiRtinistiisdiciis A

sesa sasssssssssssssss2sasanassanassssangs2 sq

(_j WCH !aitife!!!ggsignagiittistitiRnistisssisgs 1

as sa sassassassssa:Rasasassasseassesssssamaaga gf;i; satisasssisissitissiissginntnistisssaids

[

s :)

22:222222222eSass2sa: Rsstasassstaassaa2ss Hv* iiiiiiiiiiiiiiisitiists2sintZiRiistissisi 6

avsT sasassassassasRs2RsRassassas2:2sagassassa I

g gps sitiisssssssasitissistitiRnRinneisWissasi E

g an 3 : agassaagassaassResessagassassamaassRssssa

(( H sattssssssssssagissssastsinginniisisssssa 1

I g

s<.s d assassassssssesas2s* Rana:Ranaa222asss222a a

[? *4 assaissssiassisisisitti$ssRRiddisissidigd j

2 sX si sassassassass2:s222:382asssaSassanzasassR j

gF * ' sasassassassanssisin32sssRERiERaistidssii i

5 sW S sassassassanssRssa SaasssRssPRassansassas 8

B C ggg!!gg!!ggsinissisissiiRd22d83sassingssi sW sf si assassRsRssnesRessssas2assanassassaRasaan gf assassinstatistississitiRdRCinsisitsisisi i

a:

- 222222222eesaassagessa2s2assansasssag2aka H: i C. !!!$e$$$!!!stsiisitisistsidde:iinassaagst O

k EJ s a s s a s s a s $ s a s a s s'a s.s s s s s s s s s s s s S a s s s s s s s s s 6a?-aafnannusuaranssig!!!!!!!!!!!agggggggg lill i

b

gn..

y

. ~ -.

sMs5 saasasas2asaseaaassasaassa8aaaaasaasaaaaa gp*

tssinanssaningdi'**'*d***a==========*

p r sftsj asassassasssesssssst.sasssamasasazassanaas o i gg s; s stusanananganamen:***d-*******===******

,, I ittsaninnnannitst'=="-'''''''gannasa sasssesseassssassassassanssasassan sgs; gys?

s{ sO sssenesssssasassssesesgasasssssstassaamas g;. 3ff sittinansanssiff=***d-=**---*=******=****

shs4 sasesassWsassanssasssssssssssssssssssssss gytf tttttitaiananttite*-'**'*'**'

adar sat 2a8s22:2s22a22s2222222 222222222222222 gl '.'% settiaanssaansiits"*-*'***'''

si s c 4sessassessseasssaseasasamaaaaaaaaaaaaaaa gne; es4saaaaaaaaansc:==aa-*******************

N I.

istttinanazzanistde-dd**'**$$aQM825 S$sseess2sssssnessas222samassaaaa g]; ef a===***=

sUsf sagsassasesasseess8'22ssassassasassaansana gp sy sistsaWasiaanitin*~

da**'*=**''**

g sO sl assessssssasassssassassaassamaassaagassas gL lE stessassannnniect=**a-'a'*'*'*==*=*a' sZsc stessasenessessssssessesssasangsmassasses gnd; tinianantnadtt*'~'-**====='''''

.f

~

se ss sassassssaeassessassesssaas&assaagassasas i<

g gEt? sssssasanamandisid="'d-*'aa'*''

s si:sk esaassassessasassassesaassaaaaaaaaaaaaaan s

g ;; su. ttttaansamans6in="'"-*''''''''''''=

i

{

sa si assssssssassassessazanazassa9a2a882222222 gf * > tittanansaanistid=~-**=***'=

s/ 'si esassessesatasasssas2eessssanssassanassas g[ ". tittanantntnnttit~"'=**''*=

sb sa222ssasssaRaesassassaasssaassaansanassa ggs-33stinanxasxgette

    • -d'*

I g

sT s 22ssassassassesas$322aaa22ss22228422a2882 gn*t sitstanwagaangese:-*

a-'

E 2

30 YL sanssS sssasseasssses2assassassssssssssss g?: > ssssaxanahaningueddad----**='a'***'--='

5,

_ ;s;.. assses2ssssssssssssksa2ss*2assaaesssssssa 5

s?

3 g; "' sesanaNanaaazede-'*--'e*--a=*a'

-w s. : st. Eassaasaaaae28sss282aeaaassaaaaaaaaaaaaaa gr +

ttiansnazange:re "******'*****

I sn:E i s t i a u x t a n s e s t. a e. e s s a a r e s e s s e s s. a. s s s s s s s s s.

assssnessas.n..

~ ' -

g g,--

h E,

38888888888888888888888888ss88 8888888888 I.y I!!stilisi!It!!iiliti!!illilittii!!Illi!!:

lnpill

j

,~ -

li l

l" j

L 8R,52!!!!!!!!!"!!!!!!!!

,s Eq 1.~

'. i(

edh4 s.. a a..m a.n a a g a s s..a s t a.m.a o

g

7m-

<,,..,.>o ta s o. aaaaaaaaaaaaaaaaaa d**********d***d**

g a..

sy : ss. a a..a a a a a a a.a.a a. a..a a a.a.a

u. e.

s.:

8 3 5 3 8 8 8 8 8 8. 3 8 8 8 8 8 8 8 g y.E?

6 afd4(

. a a $ $ a a a a a a a.a.a a a a. $

a...........

gy gp.ji a.a a. a a a a.a.a a a q a.a a a..a g

sifs, sa an. a s..a s a a a..a a. a a. 2 2. a a a a a.

g ;; e;.;

I a.e... 6.. g a s a a a s s a..s a a n s. a.a.a 81-.s7 gg

.66 sis". z. a a.q R a s a s a a s a a a a.a a

gjeg 8l8l a a S..a s. a. g a.a a. a.a n a..s a a a g e7 m

so s. a.a a. a a a a. a a. a a a a a a a.a a e

g; 666..

6 sks? 66.222a2a2a2222222 222.

6 6....

6.

gg e ;,

6 i jdl !!!!!!!!!!!!!!!!!!

1.

t a

s. agasangsassessaans gy s - ga aasaaaaaaaaaaaaa.aa 5

s q.o 6

6.

66 6

666..

64 1

sj s1: 8 ::, 8aa.aaaaa$a.$$aaa8aa y y :...

I L

3.:.'R: 3332323333333.33333 6.

g p +.

I.

5 sh ST S S S S..S S S. S S S S S. S S S. S. S. S.

g g76-6..

s

.s y

w? 8 '-

8 a 2. a. 6. 2 2 2 2 2 2 2 2 2 2 a 2 a 22...

6 a-i i

s L 8i S S S S S S S. S.S S S.S S S S S S S.

st l 6.....

.6 6.

V(

0 e

LS, 88'EE88888888888888 4

[.):[t- $N.N.I..Nh8ilN.N.lN.E.l8lI.

33 3

4

.;. g J

C

?

a

.i l

-_,sUsa 222222222222sesas2sasaRs2gasss*82Rassesse gysi ggggggggggggatiisiistiisisetencessssssssu si s? 222sesss28222sssssseEsssRasassassas22s:22

/'

i

(

i:f 0 taisiistigniistitisiittistenticisitingssi i

ss/

1

"~

siM 222222222R222sa2s28aea2sassea222saa!2Rsss.

ggit gisititidigitistissaisistingentisssinisin arDs? RRRRRRRRRRRRRRS2ss22s2ss2Rs2ss2R2WasRRRga jpC iiiisitiittiganissiassisistietecississist s3:ss sassassassssssssRas2 ass 2esRas2sResRasases (D if sissisississisisitiisissigninittigsWinist am se asaasasaasaasa2228s2eass2assRRsssa28ssaaa gi di sassssssssssssssssssssssinizinigensidiiss se s" eeeeeeeeeeemsssaRas2Rs22ss2RessssaaRsassa gLn aassasssssssssssssssssssaitticiisisitists i

s9F 22222:ses222esssssastsees2ssesess2sssas2s nytr jgigggggagigasssisisisissineizeisinisisis gEi 222:22ss222222 sssRess2ssssRessssssss2sasa 2 144 g i. f t. i. f, i. i t. t i s. t i s i s s i s s i t a s s e k e e n e s s s s s s s s a 8 db sassassassssa222 2s23*R2ss2Rssass2RRR222s 2fi s siassaias:saasiississitzisiticissitiisisi sM8a sassassasssRRass2sRsRRsR2Rae222ss2RRR2ssa (fiJ sisistisassassitinstissidentinessisisisin

/"%

(

8 av s/ 22R0222222222ss28ss827 93822a 2223:s8a222 i

%/

if t si siisistintingssisisti-lJiniffinnisasssing so sJ 22222:2222 2ssesas2satas s2aRasssRRsassa2 gERf taisinitiittisisidisinizingenccesistissis i

j 84-s/ sassassasssas22a222s22sss22ssasssaatstese (Ki< sassassassasitisisisidissieticissitiisisi 6

s; M sassassassssassassessRRasasesR22 2ss2:228-

)

g(:i1 isissiinsassissisidississinfectiissisitis E

sc's-itifisisiiissatisisis"**-****gisassisissi s

ReeeeeeeeetesssRasass22sssaRsResssssseseR g

$3l t s

\\

sj sU s2 2RR2222222222ssRassssRRas2sssssssssssssas gi s? sitassanssisassisissisiittiincessssssssii t

I SI-st asssssassassasss2s2RRsR2e222s222Rssa2ssaR

~

3 '1 :2: assissanassassisisisisssidetainnisseissis I.

A s " ~ s i-sassassassasRR2822RRssR2Rs2RRSRasasseasss 8

$ ;. > in, assstassassaississisistiisiticisisissists W

O s Es! R228R22R22RRsR228R23:22 Ras 22282RRasR*2:22 a

gpig gggaggggggggassistissias=sidecissasginiti

. s; ssggagsagagag2:2Se2 sass 2Rs2Rasss2Rssssssa 5

s:

$ l ' R -; sassas32stasisitisissisisieteCani$ississa s

0 9. sassasssssssssssEssssssssssssssssssssssss-

[

- ' 8 N N N N N N I g N $ $ $ $'!I $ $ I N $ N E IIIIIIIIIIIIIIII f gps iil

4 lljiiI

. ~

0.Q,. _ $ m 0

0 0 0 0 0 0 0 0 0o3 e0 0 003 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 s8 0 2 6

t. 0 8 4 3 4 2 4 3 3 2 3 2 2 2 3 2 2 mJ2 22 2 2 2 0 0 0 0 00

. 0 7 7 0 4 3 4 3 4 t 8sv 0:

0 0 0 4 2 0 8 0 4 2 s7 6 4 0 o8 4 2 0 F 63 2 9 0 00 0 0 6 0 0 e0 0 0 0 8 0 0 2

,83 1

6 4 4 4 4 4 3 3 3 3a22 2 2 t 1 1 1 1 b

. 4f 0 ;.. 0z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 e0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4.

9. ; 9 2 2 3 1 2 3 6 6 4 2 2 1 3 2 0 6 2 t 2 8 cF 612 0 4 0 0 2 1 1 1 0 1 3 1 0 3 0 1 1 1 0 1 1 g

8 11 8 7 6 3 1 03 6 3 8 2 2 2 2 2 1 t 4 1 97 610 8 e4 1 e0 00 0 00 0 0 0 00 0 0 0;:

1. 4M 6 6 4 4 4 4 4 3 33 33 2a g

r e

0 0 0s0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s n + 0. m.

e 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 e33 8 7 e 1 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2m. 0a 1 4 4 4 4 13 2 3 2 9 8 7 7 6 3 9 7 4 3 1 4;y 8 86 3 0 7 L2 0 8 6 4 2 97 6 11 S 4 4 2 1 c0 0*

0 0 0 8 0 0e0 0eee 4

6 4 3 33 3 3 2 2 2 2 1 1 1 1 1 1. -

s 0,

1 00 0 0 0 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 4.9,09.

0 6 0 2 3 3 2 2 2 4 4 3 8 7 6 6 4 3 0 6 3 4 0 4 2 2 9 8 4 3 3 8 7 3 3 3 3 3 3 3 3 3 8

F 4 3 1 0 F E3 1 0F 6 2 0 0 6 4 2 0 7 6 3 8 0 4 4 2 1 4 e0 0 0 0 0 0 0 e0 00 0

?

6 6 6 4 4 4 4 4 3 3 3 33 2 2 2 2 1 1 1 1 1 "4.1;[

1 2,

0 y,. 8 :8 n.

e.

0 0 0 0 0 0 0 0 e0 0 0 8 e0 00 D0 0 7 0 0 2 1 1 1 1 3 4 4 t.

0 0 1 0 0 1 0 1 1 0 0 0 0 0 00 0 90 0 0e0 0 0 0 0 e0 0 0 0

0 -

t 9 7 6 18 0 T 0 3 1 0 F E3 0 0 e6 8 eF 6 3 2 1 0 0 00 0 8 e0 0 0 0 0e0 8 1 2 2 0 3 0 F.

1 4 2

t. 2 t 3 0 4 4

1 1

.4c S 4 4 4 4 4 3 3 333 2 2 2 22 1 1 3 1 2a

,:a 0-

. 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 o0 0 M. 4 6 2 t.

1 1 1 1 1 1 1 1 0 0 0 o0 0 0 0 0 0 0 0 e.

0. n 3 3 3 2 2 2 4 4 4 1 1 0 0 0 4 1 0 4 4 0 6 0 0 0
t. F.

1 1

oy, 5 4 2 0 0 6 4 2 0 0 3 4 2 0 F 6 11 0 6 41 2 0F 4 3 2 00 0 08 0 ee0 00 0900 2,4u 1.

6 6 6 4 4 4 4 4 3 33 3 3 2 2 2 2 1 1

1

.y m.,0 0 0 0 0 0 0 4 9 e0 e0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 *. 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 00 0 0 0.:.

0 0 F 0 0 7

  • 4 t 0 0 0 0 3 3 0 e0 e3 0 0 6 6 2 0 2 0 4 1

8 0 &4 2 1*

9 h32 e7 6 15 1 0 4 2 0 F 6 3 2-e,,4 0

0 e0 0 0 0 0 d0 e0 0 0 0 0 0 0 S

.4' 6 4 4 4 4 4 ? 3 2 2 2 2 2 1 1 1 1 i

0' 0 0 0 ",

  • W 's.

0 0:.

0 0 00 9 0 0 0 0 00 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8,

e. 7 6 4 4 8 8 7 3 9 4 9 7 2 7 0 F.

5 9 3 6 6 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 t

01 34 4 8 4 2 0 0 3 t 8 0 4 1 0 8 4 2 eF 4 S 24 0 0 8 0 eee3 0 9 e0 0 ee08 e 4

4 4 4 4 4 3 '3 3 S 2 2 22 1 1 1 1 2

e. -.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e00 0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 2 9 9 0 0 0 F.

3 1 0 7 4 e6 1 0 6 0 4 3 0 7 6 2 4 e0 6 2 3 3 3 3 3 3 3 3 3 3 e

2s t e7 4 2 0 0 0 4 2 0 7 6 3 0 8 6 4 1 9 e4 2 1 8 0 0 S0 0 00 8 e0 0 60 0 0 9 21

,'4 S 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 4 L

o.0-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 e.

0 4 4 2 2 1 3 3 2 9 6 3 4 3 3 0 0 3 3 1 F 2 1 3 3 3 3 3 2 2 3 3 3 3 2 3 2 2 3 2 3 3 0 4 6 4 2 0 9 3 3 1 9 F 6 3 0 0 8 4 2 t

4 6 4 4 4 4 4 3 3 33 2 2 2 2 2 1 1 1 1

S F 6 3 2 1 0 00 0 0 0 00 0 0 9 0 0 0 0 0 a:.

4u

.t s-0 0 3 0 0 0 0 00 0 e0 0 0 0 0 0 0 0 0 0 0 0 0 0 e0 0 0 0 0 0 R2 2 2 R02 2 2 2 2 0 0 0 0 0 0 0 e.

0. i.

1 2 1 1 1 3 2 1 8 F.

4 4 3 3 8 4 1 3 0 4 1 3 1 2 e 3 2 2 0 4 2 2

_4 6 4 4 4 4 4 3 3 3 3 2 2 2 2 2 1 84 1 eF 6 12 se0 0 0 e0 S0 0 eO 0 0 e0 0 4. 0 8 6 4 4 2 6 0 8 3 1 9 7 6 3 09 1

1 4 1

. i 5

0.;.

0. R0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0t 0 0 0 0 0 0 0 0 0 0 e0 8 0 0 0 ft t

o'0

e. p 0 0 0 0 0 4 2 1 6 8 a 2 9 7 4 2 06 E12 0 0 O0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 A

1 9 0 3 1 4 1 0 3 2 0 0 1 2 0 2 t 2 6 2 2 2 2 2 1 2 2 2 2 1 2 1 4 r

>e e^

0 4 4 1 0 7 6 3 n

1

. D:

4 4 4 4 3 3 3 3 3 2 2 22 1 1 1 1 1 2

w N

A 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 =. 0 0 o8 0 0 0 0 00e0 0 00 0 0 0 o0 0 0 0

0. s 0

E 0

2 2 2 0 1 0 2 2 2 0 0 8 0 4 2 0 7 8 e. 1 3 t 1 9 6 3 1 1 1 1 1 1 1 1 1 1 1 t.

1 1 1 C

4 30.,

8 F 6 3 1 0 7 6 3 1 6 0 4 2 0 7 6 2 1 0 e4 2 1 e0 0 0000 00 0 0 S 0 00 0 1

s c

2q 6 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 u

1 e

ov

'-,y

)

0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 n

0: _

e 0.

0. ;

0 6 1 0 F F.

0 4 0 6 6 2 F. 3 8 4 2 0 0 6 6 3 0 3 2 6 0 4 2 2 2 2 2 32 2 2 2 2 2 2 r

6,.7

. 0 7 6 3 0 0 0 4 5 2 2 2 2 2 1 1 1 1 07 6 2 07 6 10 0 63 2 1 0 00 0 0 00 0 0 0 00 0 000 e0 a

2 3>.

4 4 4 4 4 3 3 33 dh 2

hN I

0-,

0 '-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.E 4 4 2 2 1 2 3 &3 1 e7 6 2 0 0 6 3 1 0 8 4 2 1 00 0 0 0 00 09 00 0 0 0 8 0 0 0

1 7 6 3 4 2 0 4 2 8 6 4 0 3 2 7 0 3 2 2 0 0 3 2 2 2 2 2 2 2 2 2 2 2

(

0 0 6 4 2 0 0 6

no 2.

3~.

l 2

6 4 4 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 heo P

A o

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e

0 7 0 0 0 0 7 4 0 7 3 1 7 0 6 0 7 1 3 0 8 3 1 0 3 3 3 0 0 2 1 2 2 2 2 2 2 2 2 2 2 2 E

4 4 4 4 4 33 3 3 2 2 2 2 1 1 1 1 C

L 6.

7 6 4 2 0 7 6 3 0 0 &11 8 6 3 1 0 6 3 2 1 0 0 0 1 1 00 0 0 0 00 0 0 0 00 0 0 2

3-d 2

e rus 0 0 0 0 0 0 o0 0 0 0 0 0 0 e0 e0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

6-0-

8e e-0 9 0 4 2 3 2 s6 2 0 7 4 9 3 v F.

2 0 9 8 0 0 6 3 6 7 9 6 3 4 4 4 4 4 4 4 4 4 4 4 4 4

6 4

e0 4 2 0 0 E3 1 2 2 2 21 01 e4 2 6 6 4 3 1 0 0 0 00 00 0 0 0 0 0 c0 0 0 0 0 0 9 6 4 2

3-d 4 4 4 4 3 3 33 t 1 1 2

s 00 1,

0 0;

0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

e.

._0.'

3 3 3 1 1 1 3 3 3 0 8 6 4 3 2 7 3 1 9 4 1 7 0 3 3 2 2 2 0 0 2 2 2 2 2 2 2 2 2 2 2 1

6 3:

1 9 F 6 3 0 7 6 3 0 3 6 4 2 9 7 6 2 9 Y

2 3 :- 6 4 4 4 4 9 3 3 3 3 3 2 2 2 2 1 1 1 1 1 0 6 4 2 1 8 8 0 0 0 9 0 0 0 0 0 0 0 0 0 0 4

A 2,

4 0

6 A

e.,0:

0 0 0 3 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c

~

4 3 1 e7 4 4 1 0 2 3 7 4 0 3 7 0 4 4 2 2 3 0 3 3 e0 8 3 3 3 3 3 3 3 3 3 3 3,

3 3 T

_2 9 F 6 2 0 0 6 4 1 2 2 2 2 2 1 1 1 1 A

s 9 7 4 2 0 7 6 2 0 F 6 32 0 0 0 G 0 0 0 0 3 0 0 0 0 00 0 0 00 D

2

.,3.

4 4 4 4 4 3 3 3 3 2

T S

E T

0

. 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 3 0 0 0 0 e0 0 0 0 0 0 0 0 0 0 E

e

0. i 0 6 3 2 3 2 0 4 2 0 0 4 0 3 0 6 2 6 0 7 9
e. 3 3 3 0 0 3 3 2 3 2 m2 3 2 2 2 2 2 R 0 0 0 0 0 0 0 A

E 1.

0 8 4 2 0 0 0 3 1 9 6 4 2 0 7 4 2 9 0 4 3 1 0 0 0 0 0 0 0 0 0 0 e0 0 0 e0 0 0 O e

2 T

2. 3:

4 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 P

O R

.._ 0 ::

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D

e..

0 9 0 7 0 0 F. 8 F 6 2 2 1 7 6 2 0 4 4 0 6 1 0

A 6

0 :

0 4 8 4 2 0 0 &4 2 0 6 6 3 1 9 8 4 2

- 0 3 2 2 2 3 3 2 2 2 2 3 2 1 1 7 2 3 6 Y

E 2 _.,,3 6 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 1 eF 6 32 00 0 0 0 0 0 00 00 0 0 0 0 0 0 C

2 2

O

n e

00 0 0000 00 0 000 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M

.n-

- 0 0 0 0 0 0 0 0 0 0 0 0 0 -

0 e

- 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)

p 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s._ >)

6 0 5 0 5 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 5 0 6 0 6 0 1 1

2 2 1 3 4 4 6 6 9 0 7 7 0 0 9 0 0 0 1

1 2 2 3 3 4 4 5 5 6 6 F 7 8 4 0 9 0 d

(

e m

2 2222 2 222 2 T

o

- 2 2 2 2 22 2 2 2 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 2 3 3 4 4 H.,

tmy s

G fle s

IE w NI rai 3l{l,I(l!l

y

-. n.,

a *: s;.: aaaaaaaaaaaaaaaaaa N

(Ms?

D s?h eeasea.aaeaaaaasaaa e..

6s

.sas...e..e

\\

e n.:. g;

,p#+

..a a s a.s.R 4 8. a s a g a s a a s s -b s ?

a g:-.a gg m.~

shsn a. a. a. a. a. a a. a a a a a. a a a. a. a a

. we64 44 e4 N g.: gg g

{q?Yi e.s s s.s.s s s s s s.s.s s.s s s a.

g; e..

.asa.

e 6.

.s a

s. i s; 6

4 4. s.s e n s e s e s s e e. s.

eense d

4 66odded a

g:';g;;

n..,,

s :/s'i s s.a a a a a.a a a a a a a.a a a s I

~

66 6

.6.s.a 46 g;:] g a :is :

4. a a a a a a.a.a a a a..a a a.a a aa 4 4

44 6.

.w u g-.

e as s :. a s.s a n s.s a a. n s a.s s a.a n a ea aae....

.e e.?;g; w..<.

af gr. a a a a a a.a a a a a a a a a a. a a 6...s.

4.....ss gg p

~

1

.. -sCsE e 6 s. a a a a a.s a a s. s a a a a assa 66464 46 s.s..

33 : g; 7

e

. (-

ss :.s :-. e a s e.e a s a s s e. a s a s s a s e. : g( a..e

.e.a.

.s.a.

6 N:

o m

s g; senseeeeeeeeeeeees s_ g seses**sessasseeds i

I su?.a s. a n.e s s. e s s e. n. e..s e s e :

s g.:;gg

. a s s a a a a a a a. a a. a a a a.a f.

s ist g.s..

s.6.

s

..so g

g g;

'l g

si s - a s s a g a.s s a. s s a m a. a s s a.

g g :.

s?lsi s.s s.s a s.a.a a s. a a a a a a a a

.s....

4 g aq I

D s4 a. s. s a. a a. a. a a. a. a. s. s a. a. n s. a.

4 gg 5

l 5

sAs: s..a a a a a a a a a a a.a a a. a a a g

g;;g mw asagae s. a. a a a a a a a a a. a a. a. a s ' 8:

l g3 s.asssss.

s sl: R L a a a a a. a a.a a. a a.a a. a a a a. a

..s.

6.

  • 6 g
g..,

s EE a a $ s a a a a a s-a a a s a a a a k I..NI.lllllI.lll$N.lI.N.I.

[4 1dl

sug, aaaaaaaaaaaaaas8aaeaaaaaeeseaaaeesesaaaae g;lfcf signii8isi8ii8iaiagsaitsidsittidisinsWiai j7-si fsi aaasaaaaaaaaaaeaasaaa eaasaagaas32aasagea

-(v) g{fn? saisiittististisidigsssiz iR i:RcatisWais s?sn aaangsamagamaasseaaa3eseaasaeasasaaeaaaaa g[Lia insistaissasittiisististicitteidnitiastii 85Lah 2aaaaaaaagaaa822aaasaaaa22a2as:F#a33ssa2a gf ic initisaiaaianingisWisig:Winsiddisis3adied sE! s L sasasa8saaaaaaaa2sssassassReaRsaaa3ss2ses NT T $$see!!ee8!efsaisissisisisitinicisi3sisis s: 1' e e e e e e e e e e a e e 3 3 a s a 2 2 2 2 g a a a g S. e s a a s s a e g 2 2 a s e n. ~ i s, iiiiiiiiaiiaai3issWsaa a s222222saa#saisd q

sMai aaaaaaaaaaaaaSsaeaeeasaeeaaaasaazaeaaaaaa gpia aaaaaaaaaaaaaas asWssa adaR eecsasasasms2 s h sr eaeeeae eeaes asaasaaaaee3ss3a$22a2sa2s8s

$V s:1 !!!!$$$$8$IIIsassasWissi228228:228888s838 s? :s?: agaassassanaameResssaagasssasassssasmsesa gu s' saistisasitsigingsginsti:iinittissistissa 4

sS f, aaas8aa8888eeaaeaeeaae8a222a3saaeaaa2e2aa gj ju1 ss!![ggggggii2siadiaiiz$sei22iaiis#$iiss3 s7isi 2aaaaaa2saaaCaaseaaas8a3seaSe:S:s223saaea

((;if iIaai8aiaaiaaaaiisiiiia:a2i2iin2iiiaaiiii

/N s

f so s.

Reasaa28aassass2sassR8esSR3asasSss22saasS d

k g?[i!

sianiiaaasaaissisasginiditinideasidissids s?lsf eeeaeeeeeseeeesaeaesaas8aaeeae2aaaasRsa88

$ksi infinianiiiiiiiiii2Winnss22ti2ciaitadsits i

sdse eeeeeeeseeeeeasawsssa3 eeaeas282s2aaasses j

gj if diii3inatitisasais#insis22intiniitiCitis2 E

saaaaaaaaa6aaasaaaasSeaass:eaSs32asaeaaaa E

stt j

p a:, aaaaaaaaaaaaaaaa aasasus:#i=ticcziss2saas 2

s; s ' 2e2222222222288ss2sRS2 ass 23 28as 222a3882 g

y ys; isstinaisfietssaaiWistisasetR dits$$s33s2 iI si' si ae2aeea22aaa2s2aa3e2e3s8a3aaa332s2aasaaae g l { si siistitigantistisagitiss#s:stcisiss#iinsd I

i 5

a ; ? g' 22aaaaaaaaaaaeaeaaaSsgsaeeaeaaasaae3eseaa g;cs? aiaaaagisaaaa itsiiisaisdigitaissisWisisd 1

S a: s - aaaaaaaaaaaaaasseeaaaaaaseseaeaeessaaeaes 8

g;fi:liiisitissaisisatiiWinsis:stinidditissssss s.

O s. ' s -- aaaaaaaaaaaeasaseeaaaeaaseaaaaaeaeassaese a

g;:sc siis istaissisissaWinifiniatridissidising

~s 787 aaasaaaaaaaaaeee8ese8aaaee38aaa*2eaaae2ea g

g m i-3aitsisaaaa:anisagWisis:Wini:dcanisitiisi p) 7

{

AOI?

1;[3 ~'s88.RER$$$$$$$He!!$l$.$.8ee.N.I.$.39.I.$.$..$gss8888E. E. I. !. I. $ [

s888gs8asss88888s8888888ss8ss88888 y

c--__-_____-__

e.

c.p.,

(y s!

S 8223S8882822222 RRReSRSSS2eRRRa22222822222 fst init#SS#inixWR222d2222: adada-a*******dddd

('%.

8(IS k! R22228222822288832223822283R8824222222222

, i% J-lf21 3siSYSidRnN#innEddis":****-**************

1 84 'M 2888223SPSSR68322223R23R2R222RRRRRRR2R22R "Di: sittidSWANEnkiddiffidddd'***************d j

I S IS SSSSSSRSSSSSSSSESSSSSS282R28222222222$222 g p S3 distSiRnRRa2:n24222did**d-daad***dae*****

s Sv8x 32222288SS2123222222882882882882222228222

$pO siissC#ShnRsandansitidd*a"-*****dd**d***d

.. s S 'i 8i 8R8393833822888348882838282R222SSS$8RERRR

$?is di4###Rn2#sim222222:**""-=***************

8x TSJ 333338288 RSSSSSg 2222222223R22382222222 gKfti i t t i S i R n i d s t a n # s t s i d 2 - *

  • d - d * * * * *
  • d * * * * *8 2 2 d*

ylCsl.

S 2222223323222832828232RRSR222R222R2222R22 sb siSt34tinR$2ntnRis"2~*""=ddddd**ddddddedd SMg sSSSS;22daRita#22in!"da"-dd***dd**ga22222 SSSSRaRR282R2a28g22R28822222332222 E: !s:

f D 8i $32828228822222*S2283288828388838 gggggggg g,

  1. 2 SSS;32WaK22A22222Wa*ad-***-*******dd*****

S$ISh 2932S3222222223222222R2822232282222228222 gy sg diSSti#inianRRannRietid**d-d***-dddd**ddd

('

m' t

SES 33R388332232888822383%S2323RS2RRRRRR22222 gJ;i Sits #Rnnninnsdntidi**~~~*=dd*ddeddddddd'd SJ s; RRR322gSSR2888232832882R8SSq2232See222222 gi:Si isSSSC;nnRes22nd2222:***a-***************

{

8525 3332283382288222282S28SS22222222222222222 g

gf S:

i #SC;nnWWitningi2dia-*aa*dd**d*dda**dd*d i

6 8 8? S22222R22232R88222RSRSSRSSSRRSSRRERRRRRRR s

.S u n ? dittSSiRnWasimamgisai"*""-ddd***dd**ddd*d g

5 8;'8-2282R2888822888RSS23222222222222222222222 g

.! in' diSS$$22ANRs22E'222***d-********d'******d

?.

g I

SH 8[ R22882222222228288232R2822S332R222822 jrS- $#$3;Rntai22ndSid2i"*aa** dad ******d'*82RR g

      • d I

3 Si 8 ' RSSSSSRSSR 882823282SS882R@RSSRSSSR28RR8RR a Oi( iSYSiinRANE2n2d22*2:***""-***************

~

T 2,

222R22@SSSRRRSRR8SRS2R22RRRRRRRRRRRRRRRRR 5

S.' 8 J 8

l(Ed? diSWiS;RnnsitsNNESied****d-*d************

O s..

O S ? ? S -' 88288228SSERS2232283322233 RESRRRRRRRR8828

)

ji s' S$384;iR2RE2nnNN*t2i"*""-******dd'*******

l f

~ R288RRBS2228RS28RRS228R222222222222222222 I.I S?'S'

(~h b

  • Y G: $i33stknR$Rninn2222***d****d*************

l 1

O h

b' l

88888888s888888ss888888888888888888888888 EO i.'esi$388$Alle.'i*lliN88Hillillili.ael!!!I.I.

)

4 lill

L-

.. ~ _

s6:44 a. a n..a q a. a.a 4 a n g a s..s a..a a gg f'4 sF]h s.a a. a a g a. s.a.m a n a g a s. s. a

)

,J.

gg j s.v a" a R R a. R R R R.R.a R a a R R a.R R

3. cg;

.46 46..

4444 4

4 i

s+;s; a a n a a.a.a.a s. a s a a s.a s a. a 4 :rgg 66...

44.

6 s<

s d. gi a..a a a. a a.a a. a.a a. a.4 a.a a a a.

g7 g.:.

si *3

.R a s a R R.R a a a R R 8.a a R s R g

664 4s..

4 6.

gg ;

s# f-a a 4 a a a a a. a a a. a..a a.a a a a 8

3,. g ;>

sJ8

.s a. a a R s R a a a.a R a 2.a a R t<

..... 4s 44 ggg4 s dg ). 8 2.a a. a 8 2 2 8.a 2 2 2 2 2 2 2 8 g

.4

.m:

s;US[ 888888888888888888 3.cg2 a a.a a a a a a. a a a. a s a a a.a a sirs,'-..............

ey: g7 M

g.,

sdsp a s R s R r. ?.R a. a R. R R R a n. R R

.:k n.,g7 2.

.,. :g.

si f - e s s s s s s s s.s s s s. s s e s e,g

.4..w6 4..

w.

64 5

N

i

{

s J; s =:

8 2aa22222228a222228 ef

==***=a-a==*******

j p.

f, s ' :4j 2 2 2. 2 2 2 2 2 a 2 2 2 R.8 2. 2 8 2

g n.

s '. I. 8la a 8 $ a a a. 8. a a.a a. a a a. a a. a j

a:. g g

Ig s) 8i R R R R.E M.R R. R.R R..R.R R $. R R.8 e 3 7

=

I i

s ' ;$a R R R R R R R R R R R. R R. R R R R R

  • :gr sseo......

a

.sa..

3 i

5 8 iRJ R. 4 R 8 a R R 2 2 8 2 8 a 2.R.2 2 8 g

g : gl:

ac - -

S R R R R R. R R R R.R R R R R R R R R O

8. : i-8.

g

.. g.

assa

.sds dadosa..

N :;;

a 's.' a....b k a k. 2 a.k.{ k.k a a k a. a.

g; s d

u.

\\

k-v' A-Ls.an.p.gis'8888888888 88888888 i

4l:

8g.asgae.p.s.e.

bl

p

,b sess2easesssssssssssassaRasseesssss2RRssRe3RR niistissistissississsitiesRacisisisssaistisas ky 3

g..

a-l w :.

L qaaagagasaaassssessatssagassss2828sassasseasa dp 8888gasggagsjsassssssssssssidentic:stasWassss O

IEII s a..n n a s. s a n s a t. a. m.a t s s. 2 2 2 2 7. :a. 3. s. s e s s 2 3 : 2 8 3 2.s 2 s.R a s.-

2

.. eeses aa.a

.a....aa.

a

.a r

!!N sasssssssssasRas:ssatstasR2:22:ss22:222222:33 sasssstaatssississatssaziankeddasssaisssastis p

li f IE C 88888888888888E888888888888888888888888888888 8iT 8 8 $ 8 $ $ $ $ $ $ 3 3 3 E E e!$!! jl!!!!! R j !!!!Ij!* l j ll[

s r 4:

aassaaamassamasessasseseSassasssassstaegaAss;

("'s; siistiissiassitiissaastisist:Rczessasismigi;W

./

.g s..s reRResR2eeeRRassegsssssasssssseRessassassassR

)

g. : s~

sasassassaassassstsassastasssenganzstssiissis o

-i g

I

?

s ' E. 2222222222222eas28222238232a382282R228RRS2saR i

1: R satisatisssssssssss2sas:s:sse 2 Rasssssassig ig s?' 8; assassassassaistsSas2?s8RSSRs22s82RSSSstsassa gJi:.

sasssissaassassiasssisisisinRciaissiisssssets 1

s s? R222222222222222222R22s28322Rs2Rs2s2888222228 8

g,f e' dissaisisittsisstadianitatin*ARfaYscissss2sti i

I s98. mRaaaaaaaaaRaa2?2828s2ssassRs 234282: SeaaSssas 3

g.i sassinisistiisisisissiassisemi:nRassgWasssait I

2 s'8 asssasasassasaasRa822822assesaRs8saRSaaRasss8 g; R sassaassasassa3stssssssssssit: ERE:essssssssas i,

i 8 8 sasssaasassssassseeR2s8332:2828822 sesRasseses 8

37:

Iassasasasassasssisisasissis EtR:Raissisassis aw s

s-RamaaaaaaaaaaessassRsassAsesssaRasaR ssesasaR I

(f t:

s i s s i s t i n s s i s t s,s i s s i i t t i s i s t a n d d e s i z i g s s s 2 s t :

e2222222s28:222882882722R8222aR222R?ssseease5 se

a. n. - s 3:

invassessaissa=882=sanssitte2:ense$sissid=

e:

h L g:

8'88888888888888888888888888888888888888888888 2.!!aanassassiassiass.i.aa.n.is.a.s.i.na.s.s.n.a.n.n.ia.gi. sin s

t

.a liil I

1 47

,1

'g e

828R22822388833*22888888888888888888888888888 l - ggggggggggou me==anooooosoooooooa6aoeo6andoos gt 2R8R8 Ras 8282R3R288s38222888828s8333333s2ssss3

.- iSS$0WWRnaWR22zd2222:**daa--*****************

l

[1:..

El

  • * *. 2.s s : n R S s. 8. c. R.. 2 R.S 2 3 2..S s.s 2 2 2 : 2 2 2 2 2 2 2 2 2 : : e 2 2 2 ents

.w ws o

6.**.

.s44 6

666.

[h{

I 2StRasaa22quqstaas828-Smx222 Enan4a24gangang-

  1. SARzs2 tag 2222:*a*aa--**=*a====**--******===*

i t:

888888888888888888888888888888888888888888888 Sinaegn% 282828282s:s*8282828 eseisB 28252828sgR

&&2NENA22222222222RREE22RRA42RRR348RRRSV ES.S Tk.

SEl81 22828292228R28838R222822222222222R22222282222 gyt. StinnxnR22nitsid="""a-******'*d*ded*d**dcd' g

SV'Si 22828233822R2922883982RR88888RRR8888888888888 g n 81 stSSSSSRaxWR22xn2222:=*=aa--*****************

I 4

7 8".8 R22R2882222R8RR282RSR222282222822222222222222 Sts#SnBa#R2ma425:di"d*d"*****d--**dd-****6-d*

1 g; it 1g 8. 81 SSSR8828328228228S22328SRR2R2RRRRRRRR28RRRRRR g ' t; ttRnisansR2 sis:'**a-****************'****d'**

8-8' RRSSS282882882RP832328823SS222222222222222222 t-

#$2RXant2disit22"daa-***-
    • =*************d*

S 8

888888SSR228RRs822223R223S3333333333 SSSSSSSSR g -. 8 -

2-33gSARgg222g&=22d2 Adaa-==********************

u a

i) 8-8' 222*2222 RSRSRSS222R228R2222822222222222222222

[ R SSSSUR24Wn22AN*5d22'*aa-************dd*******

f 1

,)

5 8

-8' 288223SS2223?R222228sR822222R8RRRRRRRRRRRRRRR 4

8 l'

- 3SitdRnAn5annniedid2****d"*******d*ddd***ddd*

g W-O 8 8 222RRR22883328SSR8228322222222222222222222222 g 'g W#innWgi22nz2222:-**a-**===*=****ddeed-****d*

8'8 R888222228328%R2R28R@222222222222222222222222 g

(7 #

    1. 8heniadan22ndid**d-******d********* dad =****

N

[

2.'A+ 88.8888888888888888888888888888888888888888888 11 $ - B$ll!!sil!!iiill!!!ssiisilsil!!!!ilis!!$!!!!!

liil l

l e

b

,g

^f'

{

L+.

l I

a.

.- ( ):

v 88888 6666.88888

.6

_ - _ 7 -:.. _7

~

666.888333 8838

+ ll 6666 y

Yb _.

22g2*qq22 2......

66 I6 x1

a. q q a q u a. g ; g 7.'

l E%

- 8888888888 h.

assggesyge a

333.,33.,3 ti,l Si?81 a n a. a a a a.a a a n

g p.)-g 6.

666.

a!

.?.....

8888888888

$1 S d_z 8':

gg g '

m.

I

~

t 4

y-s.+ 8 a-==gagasaaa an gg.cg

===*

.h a m a s s a s s..a.s 8:38" t

g c g.:;

8 F [:

. s a s t a s s. a.a -

I a......

g g;,.

1

.)

898:

3 S a a a a a a a S.

gg 666666666 I

L sit E l

a. s..s a.a g a n a..a g;;n; 1

4

.S 8:d 8 '. a..a a a. a a a a. a a

.6 6

g g gz; h

._ (< h l

8 "; :: 8 x - a a a a a.a a a. 4 6 aa g.;-( c.,

  • 6 66 c St aggqqqqaqa g

g, g 6.........

~

l l

2 g-8888888888 l

n, j

_m:..y -

u.. g g i, n. 8..sn

? !:

l 5

1 ll..

L__-

illl iQ: g 9

3 2

0 2

6

.m ~.

p t

1 e.

0 7

1 0

0 7

8 3

8 1

4 3

2[t 2

2 1

1 0

0 2

r 0'fe.

0 6

e 4

3 F

\\

/

0 s.

9 6

J 7

t 2

tN 8

6 e

2 6

4 23 I' 2

2 2

t 3

0 0

S

/ -

3 4

8 6

0hm 0 [.

4 2

4 3

6 0

0 6

2

.. e 7

4 e.

2 3'l. 2 n 2

2 8

8 5

4 0

e 2'#

'e..

0 [' o.

e

. 3 4

7 8

0 e

4 7

6

e. '

c F.

4 8

1 2

3 2

6 4

2[e -

2 l

2 2

1 1

e 0

-+

f; s~~.e a.

. e 7

6 s

0 0

4 4

4 e

0 1

4 3

..e.:

7 4

e 2

6 4

2 2

2 f

1 0

e 2~'i s

0 '

8 '

0_

2 F

8 6

4 6

0 F

4 7

3 0

6 2 ['. 7 F.

4 8

2e 0

0 5

4 3

1 2[

2 2

4 7

.s 4e.

0 3

6 6

6 3

00 o.

2 2

0 3

7 1

2" s ;.

7 4

8 2

4 4

3 v

2 2

1 1

0 e

2^

l 0'

0.

3

0. '., 8 2 4

3 3

8 0

1 8

1 6

4 7

8 4

9 2

6 4

2 6:

3W1 2

2

. 2 1

1 e

8 gze e

4 e

0 2

8 e'

s. L. o,:

F 4

e 2

6 4

S 4

F 3

3 0

2 4

3 ; 1 2

2 t

1 0

e 2"

9 8'. e 0

1 e.

2 4

3 4

6 e

0 3

8.

s.

7 4

2 4

2 7

7 2

3 i

2' 2

1 1

1 0

0 3

1; 0$ 6-0 e

0 ' e 0

1 3

0 3

9 e

8 F

7 2

J' 2

0 3

F.

1 4

3 32. 1 2

2 t

1 0

0 3

0[e.s 1

e 0

4 8

3 m

4

. s. s te e

0 4

8 2

3 2

4 4

s.

4 8

1 t

A 2 '~ in 2

2 1

9 0

0

~

0 o::

0 F

t 0

3 0

0

. o. ;

0 0

s 2

8 6

2 ~'. 0; 7

3 e

2 8

4 3

. 1 :.,

2 I' 2

2 t

1 e

0 eT e.

8 e

0 2

0 0

e s.

3 3

0 3

1 6

E' e :.

7 4

0 2

6 4

3~

2 2

1 6

0 0

2

?

A

,~

E 8

o-.

F 4

C 9 'I.

c.,

I 4

0 2

S.

4 s

2 e.

F.

1 6

e e

1 6

3 t

2 u

3 2

2 1

1 0

0 o.

2' evee e

e-8 3

2 2

3 2

m 8

e..

4 4

7 4

4 F

3{F:

7 4

8 2

6 4

1 i

T p

2~~

2 2

1 1

S e

o rD I

A 8 ] o '.

0 3

0 6

0 4

2 E

a3 8

0 1

9 6

8 C

2 ~'

e.

7 4

9 2

6 4

3 2

2 1

1 0

0 2'

8 89 l

1, 0

0 4

3 e

4 8

O, 1

1 6

3 2

1 0

0' o

1 6

F.

4 9

2 5

4 1

Y 3

2 2

1 9

0 0

A 2

dG A

e'

. 0 F

8 0

0 0

4 T

8

. 0.,

F 6

0 8

6 6

A 2

'4.

e 3

7 1

4 3

D 3

2 2

1 0

8 L

2 T

SE T

0 0

s l

6 3

2 7

0 0

0 e

6 8

7 e

E 1 '. s y.

7 3

0 1

4 3

ee 3

2 2

1 1

0 0

T 2

POH 8 ': oc 3

4 3

8 1

0 0

o-2 1

4 1

4 0

D A

2 ~ z.

7 4

e.

2 6

4 E

3 2

2 1

1 e

e C

2 2

ON A

)

. n '.

sf t(

e..

y y

m.

n

'd n o

e e - a a

a 1I o

d n

r n i n t

n tm %'.

t n

d d

d c

f

' s r

r n tK s

te te e

e bta %e >>

e e

%st n n

d r

e s

E 'e

%e n t

t 6

em.%e i

e o

o.

e e

e e

- 0 e >

mp m

m m

e mn io0 bu ig2 b u t

t M >

c 6

6 o

Wr e e

9 b >

eg F m>

e

Ii

1 y

I 5

5 4'

5 B.

ay W

a n s::

3 e

g g

g.

g s

i g Jsil sysi i

I 5

2 5

I q

3.

j 1:

E E

i I

. x =; :. :-

s? %

g g

g g

gas w

st is

.I

'5 5

I s

.i 59 8.:;

.y.-

8:-

.I.

E.

E.

E.

9 5

0 a... 31 -

!l :. 84 I.

i 2

a i

a f...

g;-

se:: n::

g 3

g g

3 g

ga s.x s'c " s:!

E 5

2 5

5 w

gr.f tc s:, a e

e e

E 4

3

=

. p :. s.g a:

e E.

5

=.

s.. si s

s x-

. g. n.

a s;:'s -

g g

g g

g g

4 i

g, nc 8L: 8 E

i I.

5 5

gr.n; w

w a.

U b

s Is1 g

i g

i g

g.:3-w w

s e

f s; ' R -

E 2

e I

5 2

se:

6 w

w

&6 5

s E

'3 s

3 a.

U g.

K.

u e

I5 g_ ; g 3

3 s

3 e.

a a

.I

.Rv

~

e e

6 5

5 s>l8.

3 8

M

'2' 2

g,.:-.

w to S

2 a.

"I

. E s.

I a:

M g.. a -

.c w

a s

s ' ' s. :

s i

5 e

i N

e d

E i N 2'"'.

I k

A ' :-

'-4~

< 1 A.

A.

. A.-:'

g

.g.

.g p

p 4

'.g

.g; g-3a.

2.

e a

- a n.

4 9

A

- 2 4

~I 9

O' i

a

. d S'

.4

,3

..a, sm 87 g

3 g

g i

3. ;

gp s; s

y]

sl : s ;.

I I

5-

-X 5

3 y

I..:. e4 s

E

! 187

.I I.

I.

5 I

5 a.se 8!s 8?

E.

I I

I I

! 28]

i

.a-a I..

5.

i s;

l

!: 18:

I I

E.

i-5

.i s-ac L

818L

.I s

I.

R.

5

.I

a.. v.

1 1

!:J a z::

E I

I.

E.

E

.f 8

az

! - 8::

I i

I.

i I

I.

a.

.!.L 8 :

s-H.

1

.I 5

I.

s 81 E

I 5

5 5

.:r.5 :

'r 5

.\\-

!? 89 3

5 5

E.

I 4

yr.- s

!t j.i-

.E

.a f.

a.

S.

I as..

81 8' I

E.

i.

X.

I

.I J

,.!/

5

.I I

E.

I 8

,!l

!!:)8

.I 5

I i

i.

5 a.s o

..j-8
3-i

.i.

5 3

i h

!. f '.'

E E

5 0

I y

3 s

a 's.

g I.

E 5

2 s

3 2:

2Wj sg s g

g g

g 3

g u.

g

.!cr s

a a.

a.

i

.i

_t g3 ul.

y-w

-. y

.i I,s,s s{ 2 -g.I,s,12.

  • ig'

-v

. g.-

.g g.

-.g

,t' l2 it In,itit I's,: s tj.I,.12 II; lg t

e s

s l

l

w 4

.j a

~

I.

.-e CO m

'E

.l '

i E

I

'O 8

~

w s

e s.

1 A-II1 B

E' I

i I

I y

w a

s I

s.[

11 I

.I 5

.I I.

I y

Ehi, a-i 5

E i

~

~

s s

s l

li) r!

I 4

8 8 g

g g

g 2

g E

~

~

8 8 5

E i

i 5

S ga o

w w

s 8

-8 E

i I

E I

S.

g e e

~

w 8 8 I

E I

E I.

E U

l t u

a s

s a

E 8 8 2

2 2

g g

2 j

g =

s

&6 8 8 g

g g

g g

y 5.

g E a

a u

e 6

I i

8 8

.i E

E R

S.

5 g

g e

~

w s

5 8 8 E

E E

R 5

i.

s g

w w

s Ya 8 8 E

E E

I s.

i 3

g c w

s s

8 8 g

g g

g y

g g

[ R w

w s

s 3

a1 :^

L I 2

iA

!!!! !,1l!los!!I,5l!!Ini!!,'l2l it!

I

,s e

\\

l I

)

/

esB 2222g2g22g8asas828Esv822:2s38SSR2882382RS Igg gggggggggggasamasasssus:::: sema:c:stasds 6

m-SE

  • 22*2222222222222E28S23282282322E22388222 S a-ggggggg8.ggggganggagsgg=t==seggene gsaussi gg

.m-S EL 22222222222*E22222222242*R2238*R*28222222

,r.e a - ggg8.gggggggg:agggsgggasag ggetgegigasgass 5.y_

s E*E S

22222222222222222822RRSS22382223282288838 s

s. i. n. g g s. 8. s. g i s. s. 8 s t i s i s i s S i 2 d : s R d 2 2 d 2 B $ 3 2 E s s s gog 3

2 Ef 22222222222282222228223882228222222828882 5 N g. 8 8 8. 8 8. 8. 8. $. $. 8 8 s.s.Risii2sgt : st:E dRs3sBEsas2 E ;aa JSl. 2222222222228RSSB28222RRSRERRE232RS383S88 E.gg88.s.s.e.sg88.s.tais32Ws35: 2sRfA:ndass%8 sis 3

,g y en-2 22222222222e2229328223ESR22RSRRESERSSSSSB

~ g 3 '.-ingigsingistississi8t :::22:22:3383888832

}gg

& a 8B 222222282*22282282222282322R3:28222222222 ggg gassisassassa: isis:sts:$2dec:saisissisdS a

a-E E' 2228228228222888283*2282RSRSS28R7282222*R N

,3

/

)

Jgg-283RRt3881siiss2sEsitEs:sSEREC:s3$sdssisd 7

i V

g 83 22222222222288822R2222S8222222222333222RR Egg finitisti353Esass958tisad22I:dIses:ssss: S 8-. x

[

SE 2222222222223282822288ESS22RR28RSSR*88222 j g g. sanssasssssssssssass:::ss==:casisisissdgi a

L 3 f

E-2222222222228ss2sESS28222R2.12es88882RR$ss

=

tisistigginiassigst: 0:ssenecisess:ididsvi a

V 3

8 8

s 8

es" sassssssssssx22x2:s22m:sasssteReas:Russa2

! g f' itsasssasisistanissinanssudengtzessias:ss L <

[

sg 20002;; 000 RRasts2:n=ts 233z?qs==2s:sss2 1

as-as assassasatasass s===s:st:::cRamssss:s2 gaW 2

N 22g' amanaganzzaEstesRas23s22 En:22ns:s22:32ss s

a

$8s38828888 BisssEEgighis:SREEidEsstEssss3 1

4 3

Tog m

sy

c::c:eeers2:sessses:sacesasSssa:22222ss
BE8888R:3838Bs3Easis2 3:#$2ndCdsais:832s:

E E 2e y

I"#

l g

a

==== :::::::=::s2: 2c:Ss 8sse:8s822:7Rm22 i

13

ssisississsta==:ime:cesitss:ss:4 l

a 9

I

\\

,,)

as sesaastanstsassnautneas:2:c:asta!22es s:

I

(_/

g gg

stis:ss::::ign= tssts:sissdB 44aco6dasoosaoseoacoooo.3:2QMEReissEs;REE 2: 8sS: 2&RzRetssEEE s:sts..---------------

1:

l

-_____-__w

i

.o;*'

lW i

4 I

i i

l

.;~%

'i A--

Ts 28822EsasassseRRRsRassssasensasssssssssss 13 asesistit sansWisazueesat***ad"**********

1 6...

i

s assessseersaR8sRSRResesseessssssssRRRRRRR pg { siissii#RRxinanzantedid**d"****-***** deed Ed-

's { asaRaamassaanss:Rasasssassassests22222222 g

saisiitiRnnWinixdedidi-**d-a*dadadd****de a

eRRRasassseessssesssssssseesssssssssssRes 3

suists sRRxWRnandatedad-ad****=**********

's RRReesR2282332a2Re23:282RRasssssssssssses jg isiinianananazntstred**~---**=******d-d**

1-

's I '

seasssagasssessessassRessResssssesssssssa g3

-*--a RainRaisanneet-**d-"--=*******==d=*

t-s-

es H-assssssRasessasseseasssesesassessasgasssa 1g; ssesus22asemanasen:---a--***=**===**a****

6 is]

RasseseasseReeseseassesssgasssssssssssssa y

siestRWasatade5eWid*ad-==***************=

30 RasseessnesssesRssasaResaaresemesssssesse m

(

ggi s:VsianRasaastedeze~~ad==*d**d=de=**=d=dd T

8 -. ! L

's assassagessRasseatsteesnesssensasssssssas is vis;RWWnsanznergea=*dd-6d==d****d=*******

I"

[

s sassRassesessesRassRsassassRasanassansana j

5

:tanRagnancesed*-

a---d**--**

  • dd*-6e=ed k

[3 8.

escassseRes32s2s:3s2228888883888888888888 l

lgg isanaWandnadWWa"-a-dd***=***************--

l g

t.

8 l

I ig 22888322:22ssRazasRasaRusstarangaan4angaq l

I 13 L sus ssveRRx2Raamsteees-**a--*************

L g..f,

[

E ss2:22222:zessassssRse44sssaRasanmamamaas

      • a--a=*==**==******

=e stesssanansatamassa:

[a.

l=

n 1

  • * [p s

s sesss:s;2 Rat:xessansassammasannanantan z

seizesanRamancatened***a--**=****=*******

4 i=

g s

assss;ans:ssasssssRessessenaanassentereen Pe s:ssutanasattamencia*'ad-****d*******dddd g

4

's

&Nssets2sestsisen 322 sasssana&cm222222Kn

[

13

ssiinaanananastee-*-a-=**
  • -6
    • = -***--

lo<

i~

88 tessR&ssRessee2;ss 2s3 3s3 ga222224a4222 1

\\

g gg' ticisaxaRinnsete:---a 4:

a

=******************

ssst:esasa-*ssssResssssareEasR-ssssacetas

--unannuananasuunnennnnennennnnenennnnnne lC__________.______.______.

  1. e-

+

+

(e 8 8 8 8. 8 8 8.R T S R.R 2.R R R R E 6:,

s 2 2 R R R. R R R R R. A R R R R R R R g

s.

.s.s s+...sd.

,is j

..R R.R R. R R R.R R. R. 2 R. R. R. 2 2..R R

y R..R R R.R R R R R R R R R R R..R R R.

i i

t e6

..es..e..

e

{jl s'gl

s. a. s s a s. s s.s s s. s s. s..s s. a s

..s I

l

  • s 888388888888888888 l

lg s.

6/

is s a s.s a. 3 8. 8 8 8 8 8 8 8 8 8 8 8 3

.s e s. s..s s s s s s s..s s.s.s s s.s.a r

l

},

w 4l a s s. s. s.s s s. s. s. s s. s. s. s s. a s.

1 l

..e e. e e..e.e e. e e e. e e e e. e. e e g

p a,

8 2 8 8 8 s. 8 3 8 3 8 8 8 8 8 8 8 8 L

9 t

b

g. s
t. u m m a n.m.s u. m. m m a g s m..; n 6

g s

s & m a. n. z a c a s. s. a n s. a. m. m. s.

a

-s

'4 I.

s 4 t. g a n n a. n. n. y m s s m. a. n. a m.

8 Eg x.s e r z e e.e e e e g r.e s s.e r..e s

...s

.e j

s

.. a. n a n. a. n. a n. a m m a m. a.s a y

a c-)

g

,l

....,g...m........

4 o

R E.,s e &,R E R ; T E R E s m.* m 4,+

.s.w.

s 4

I J

e l

/- '

e8 ~

2 2

i B

2 l

es a

a 6

& y;

s 5F 5

s a

a

.a a

3 n

a n

l

'S 3

8 E-R E

3 i 8 I, 2

3 2

2 S

O.

wye a

n a

e e

O l -:.

8 I I g 3.i.

2 3

3 2

3 4

.i 5

1; I~

2 2

I 2

3 a

e e

s s

8 ' : y'.

n SS 2

E 2

3 A

gg a

n e

6 a

s

'S 2

3 2

2 3

2

'e a

e s

s N

u.

?: 8 2

2 2

2 a

=

gg 5>

c e

x

=

)

2.

~

u e

'S 3

2 T

2 l;y I

O.

'85 2

3 2

gg g

- I a

b' e

a SE 1

3 1

A 2

llf.

~

~

~

6 t;N

'8 2

s t

n 1

E. y j ;

e u

u

+

"t s

T f

g a

2 3

r.8

~

1

[,.":

i 5

r a

a a

re n

J g

g h e"

=

?

8 g

gj b

L.<

[g:[y -.

s.

a.

s g

a a

p

'd

  • e i

^

I 7'jh.

4 i!L i 31,.1 ;

I!

!,11311,11l3-1.il! I,ill:ifff g !!:

113-r!

_ _ _ _ _