ML20239A168
| ML20239A168 | |
| Person / Time | |
|---|---|
| Site: | 07109168 |
| Issue date: | 09/01/1998 |
| From: | CHEM-NUCLEAR SYSTEMS, INC. |
| To: | |
| Shared Package | |
| ML20239A162 | List: |
| References | |
| NUDOCS 9809080282 | |
| Download: ML20239A168 (20) | |
Text
..
I SAFETY ANALYSIS REPORT l
FOR CHEM-NUCLEAR SYSTEMS MODEL CNS 8-120B TYPE B RADWASTE SHIPPING CASK REVISION 2 SEPTEMBER 1998 CHEM-NUCLEAR SYSTEMS CORPORATE HEADQUARTERS j
140 STONERIDGE DRIVE l
COLUMBIA, SOUTH CAROLINA 29210 l
t 9909000282 990901 PDR ADOCK 07109168 t
C PDR i
l i
Revision 2 September 1998 Periodic Verification Leak Rate Determination Usin 4.5 R-12 Test Gas.....................................g 4-15 4.5.1 Introduction.................................. 4-15 4.5.2 Detector Sensitivity Calculation - Test Conditions.....................................
4-15 4.6 Periodic Verification Leak Rate Determination using R-134a Test Gas.......................................
4-20 4.6.1 Introduction................................... 4-21 4.6.2 Detector Sensitivity Calculation - Test Conditions..................................... 4-21 4.7 References.......................
................... 4-26 Appendix 4.1...................
...................... 4-27
)
SHIELDING EVALUATION 5.1 Discussion and Results 5-1 5.1.1 Operating Design.
5-1 5.1.2 Shielding Design Features 5-1 5.1.3 Maximum Dose Rate Calculations.
5-1 l
5.1.3.1 Normal Conditions.
5-2 i
5.1.3.2 Accident Conditions.
5-2 l
l 5.2 Source Specification.
5-3 5.2.1 Gamma Source.
5-3 5.2.2 Neutron Source.
5-3 5.3 Model Specification.
5-3
)
5.3.1 Description of Radial and Axial Shielding Configuration.
5-3 5.3.2 Shield Region Densities 5-5 5.4 Shielding Evaluation...................................
5-5 5.4.1 Radial Model.
5-5 5.4.2 Axial Model.
5-8 5.4.3 Accident Conditions 5-9
6.0 CRITICALITY EVALUATION
6-1 V
69 L
1 Revision 2 September 1998 LIST OF FIGURES (CONT' D)
FIGURE NO.
TITLE PAGE 3.5-2 thru Temperature Responses of Cask during Fire 3.5-21 Accident....................................... 3-26 3.5-22 thru Isotherm Plots for Fire Accident............... 3-46 3.5-22 Stress Distribution - Fire Accident............ 3-46 3.5-33 Deformed Shape - Fire Accident................. 3-59 4.1 Allowable R-12/ Air Mixture Test Leakage, cm3/sec, versus test temperature, deg.F................
4-18 3
4.2 Allowable R-12 test leakage, cm /sec versus test temperature, deg.F.......................
4-19 4.3 Allowable R-12 test leakage, oz/yr, versus test temperature, deg.F............................
4-20 4.4 Allowable R-12 test leakage sensitivity, oz/yr, versus test temperature, deg.F................
4-20 4.5 Allowable R-134a / Air Mixture Test Leakage, cm3/sec, versus test temperature, deg.F.......
4-23 4.6 Allowable R-134a test leakage, cm3/sec versus test temperature, deg.F.......................
4-24 4.7 Allowable R-134a test leakage, oz/yr, versus test temperature, deg.F............................
4-25 4.8 Allowable R-134a test leakage sensitivity, oz/yr, versus test temperature, deg.F................
4-25 5.3.1-1 Radial and Axial Models - Shielding...........
5-4 5.3 Dose Rate vs Source Strength-Side of Cask.....
5-6 5.(
Dose Rate Versus Point Source Strength-Top / Bottom of Cask..........................................
5-12 X
1 i
Revision 2 September 1998 4.5 Periodic Verification Leak Rate Determination Usina R-12 ipst Gas This section contains calculations to determine the periodic verification test measurement that is equivalent to the maximum permissible leak rate as determined primarily (explained below) using ANSI N14.5-1987 (Reference 4).
4.5.1 Introduction The purpose of this calculation is to determine the allowable leak' rate using the R-12 halogen gas that may be used to perform the annual verification leak tests on the CNS 8-120B cask.
The text of this document is prepared using Mathcad, Version 6.0, software.
Most conventions used in the text are the same as nor-mal practice.
A benefit of the Mathcad code is that it automati-cally carries all units with the variables used in the calcula-
- tions.
The code also allows output of variables in any form of the fundamental units -(length, mass, time, etc.), allowing for automatic conversions between unit systems without the need for conversion factors. All Mathcad calculations in this Section 4.5 have been verified by hand calculations.
This_ calculation uses formulas presented in ANSI N14.5 - 1987.
However, there is an important deviation from ANSI N14.5; based on'NUREG CR5403, all flow is assumed to be non-choked (laminar),
and only non-choked flow equations from ANSI N14.5 are used.
4.5.2 Detector Sensitivity Calculation - Test Conditions This section determines the sensitivity necessary for a leak test performed with R-12 halogen gas.
This test.is performed using a General Electric Model H-25 leak detector, along with a Yokogawa Model LS-20 leak standard containing R-12 halogen gas.
The leak standard is used to calibrate the leak detector to alarm at the maximum allowable test leak rate.
The test is performed by fill-ing the. region between the o-rings with 25 psig of R-12 halogen gas.
First, using the Standard Allowable Leak Rate from Section 4.3.2 of the SAR, determine the maximum possible diameter hole in the cask o-ring that would permit this leak rate at standard condi-tions.
Lstd.= 2.0910\\std **
Section 4.3.2 of 8-120B SAR see Where, for air at standard conditions:
T e 298 K Pu : lbatm Upstream test pressure l
4 - 15 I
f
{
Revision 2 li September 1998 Pd '=.01 atm Dcwnstream test pressure P, =.505 atm. Average, test pressure M,, m 29 E
- I' Molecular weight of air P air = 0.018ScP Viscosity of air The diameter of the o-rings on.the CNS 8-120B are 0.275 in.
As-sume a, which is the' length of the hole in the o-ring is 25% of the o-ring diameter; then:
2 275 in Oring Diameter of the o-ring.
a :25 %0 ring a= 0.175 cm From ANSI N145 - 1987:
- F (D) := 2.4910' D' cP std e
Eqn. B3 - ANSI N14.5 a p,;fsec atm
' 3.8110' D' f cmgm" '
qM-(s F (D):=
Eqn. B4 - ANSI N14.5 m
u aP K mole sec a
L std ( D) = F ( D), Fm(D) !Pu P )-
Eqn. B2 - ANSI N14.5 e
d
. Solve this equation'iteratively for D.
Therefore, the maximum
-possible diameter of hole in the 0-ring is that would permit a leakage rate of.L,t, is-D
= 1.94210icm max Next, determine the. equivalent air /R12 mixture (Lmix) that would leak.from Dmax during a leak test.
Assume the O-ring void-is pressurized to 25 psig (2.7 atm) with an air /R12 mixture.
Pmix =2.7.atm 4 - 16
Revision 2 September 1998 Pair = 1.0 atm l'R12 1.7 atm P mix + Pair p
P = 1.85 atm a
a 2
=>
MR12 :: 121 8_-
mole H R12 2 0.0124 cP ANSI N14.5 - 1987 MR12 PR12 r M airPair Mmix "
Eqn. B10 - ANSI N14.5 I, m.ix Mmix= 86.93r B*-
o mole E air Pair
- H R12 PRI l
Eqn. Bil - ANSI N14.5 9 mix '
p,
mix pmix= 0.015 cP Determine 14 nix as a function of temperature.
Assume the viscosi-ties of air'and R12.do not change significantly over the range of temperatures evaluated:
T - = 273 K,278 K. 318 K Temperature range for test: 320F to approx.
1130F Substitute these properties for the air /R12 mixture and the maxi-mum diameter hole (Dox) into equations Eqn. B2, B3, and B4 from ANSI N14.5:
2A910' D cP std F = 1.38310 +
em' max
~
Fc'=
e a p mixsec atm sec atm
.g_ _
- 3.8110' D f
cm gm" max ^M**
FJT) -
aP K mole" sec a
i 4 - 17
Revision 2 September 1998 mi/T)x[Fg+F m( T) p(P mix P,;
L r
1 Ty(T).= l(T F-273K) 9 + 32; L
5K 6
2.635 10
-6 26310 j __ __ _ _,
i 6
p _ _ _.
2.625 10
(
e idT) j 2.62 10
__ __ _l __j___ ___
-6 l
l l
-6 2.615 10
__a l
i__
i l
r l
-6 2.61 10 20 40 60 80 100 120 T 4T) y Fic.4.1 - Allowable R-12/ Air Mixture Test Leakace, cm3/sec, ver-sus test temperature, dea.F The R-12 component of this leak rate can be determined by multi-plying the leak rate of the mixture by the ratio of the R-12 par-tial pressure to the total pressure of the mix, as follows.
PR12 LRif T) :.Lm f T)- pmix 4 - 18
Revision 2 September 1998
-6 1.66 10 1
l e
j l
j e
j 6
1.655 10
_ _ _j_ _
l l
i i
s
)
I i
~LR12(T) 1.65 10 L
-6 l
l
-6 IM510
._. _. j_ q. _ _.. _..._ _ _j 4__._ _
i I
I i
l l
I i
i 6
20 40 60 80 100 120 32 T (T) 113 f
Fio.4.2 - Allowable R-12 test leakace, cm3/sec versus test tem-nerature, dea.F Determine the equivalent mass flow rate for LR12 in oz/yr:
P V'
R12 N(T) =
c Ideal Gas Law R1 o
- where, R" = 82.0$cm' atm moleK -
This data can then be used to convert the volumetric leak rate for R-12 calculated above to a mass leak rate.
By dividing N by V,
the number of moles per unit volume can be multiplied by the molecular weight of the gas and the maximum allowable volumetric leak rate to determine the maximum allowable mass leak rate, as a function of test temperature as shown in the graph below.
The conversion from grams per second to ounces per year is also shown below.
14T).: 1.Rif T)-
M R12 V
oz gm 6 oz
= 1.11310 Conversion of gm/sec to oz/yr sec yr 4 - 19
Revision 2 September 1998 0.017 l
l i
i 1
0.0165
-f- -
j i
0.016 u - - -
)
E i
I 0.0155 l-----
I--
i I
i i
l M-
[- ---
I-0.015 i
i
\\
0.0145 20 40 60 80 100 120 Tp(T)
E.ic. 4. 3 - Allowable R-12 test leakace, oz/vr, versus test tem-Derature, dec.F The graph above can be used to determine the allowable leak rate based on the temperature at the time of the test.
According to ANSI N14.5 methodology, the maximum allowable leak rate must be divided by 2 to determine the minimum sensitivity for the test. A graph of the required sensitivity in oz/yr is presented below:
0.00:5 I
I i
j---
j--
0.oos
~~
l
]
14 7 )
t 2
I i
0.0075 i
i 20 40 60 80 100 120 T p(T)
Fia.4.4 - Allowable R-12 test leakaoe sensitivity, oz/vr. versus test temperature, deo.F The values presented in Figure 4.4 should be used to determine the sensitivity to calibrate the leak detector prior to the test.
4.6 Periodic Verification Leak Rate Determination Usina R-134a Test-Gas This section contains calculations to determine the periodic verification test measurement that is equivalent to the maximum
(
4 - 20
)
J Revision 2 September 1998 l
l permissible leak rate as determined primarily (explained below) j using ANSI N14.5-1987 (Reference 4).
j 4.6.1
-Introduction The purpose of'this calculation is to determine the allowable leak rate using the R-134a-halogen gas that will be used as an alternative to perform the annual verification leak tests on the-CNS 8-120B cask.
This halogen gas is now in widespread use as a replacement gas for R-12 in many industrial applications.
Prop-erties-for R134a are attached in Appendix 4.1.
The text of this document is prepared using Mathcad, Version 6.0, software.
Most conventions used in the text are the same-as nor-mal practice.
A benefit of the Mathcad code'is-that is automati-
- cally carries all' units with the variables used in'the calcula-tions'..The code also allows output of variables in any form of the fundamental units (length, mass, time, etc.), allowing for automatic conversions between unit systems without the need for j
conversion factors. All Mathcad calculations in this Section 4.6
-have been verified by hand calculations.
This calculation uses formulas presented in ANSI N14.5 - 1987.
However, there is an important deviation from ANSI N14.5; based
)
on NUREG CR5403, all flow is assumed to be non-choked (laminar),
and only non-choked flow equations from ANSI N14.5 are used.
4.6.2 Detector Sensitivity Calculation - Test Conditions
]
The test is performed by filling.the region between the o-rings with 25 psig of R-134a halogen gas. In Section 4.5.2, it was de-l termined that the maximum possible diameter hole in the cask o -
]
ring ( D, that would permit the standard leak rate (L,w =
2.09x10'g)std cm'/sec)is:
D 1.942 10i cm max
.Next, determine the equivalent air /R134a mixture (Lmix) that would leak from Dmax during a leak test.
Assume the 0-ring void is pressurized to 25 psig (2.7 atm) with an air /R134a mixture.
'Pmix 2.7 atm Pair ' : 1.G atm PR134a 1.7 atm PmixePair p
p = 1.85 otm m
a 2
=,
l 4 - 21 l
Y_______-_____-__-_____-___-
T Revision 2 September 1998
)
l The properties of R134a are:
M Rl34a = 10'21*-
~
mole FRl34a 2 0.012 cP ANSI N14.5 I
M Mmix ~
R134gPR134a+ M P
aif air p,-
Eqn. B10 - ANSI N14.5 mix Em l
M mix"74 93 mole M ai(Pairt P P
R134d R134a P mix
- Eqn. B11'- ANSI N14.5 l
5, m,ix pmix= 0.014 cP Next, determine L ix as a function of temperature.
Assume the m
viscosities of air and R134a do not change significantly over the range of temperatures' evaluated:
i
. T :273-K.278 K. 318 K Temperature range for test: 320F to approx.
1130F
- Substitute these properties for the air /R134a mixture and the L-
.maximum diameter hole (Dm) into equations Eqn. B2, B3, and B4 from. ANSI N14.5:
2.4910' D
- cP std
)
max Fc.'
F = 1.40810, em
=
~
e a pmis ec atm sec atm s
3.81 Id D
-cm gm" max ! M**
- FyT)'-
a P K" mole" sec a
l Lmi/T)2 Fe+Fm(T)f(Pmix Pair 4 - 22
Revision 2 September 1998 T.(T) = (T F - 273K) 9- + 32!
y i
5K
-6 2.7+ 10
'3 l
, j _ _ _. _! _ __;__. __
-6 2.695 10 l
I 1
l 2.69 10
_ ____ __{ _ _2
-6 i
i i
l l
1 i
j Lmix(T D.68510' 0 - - d---- 4---- - -----,
j i
l
-6 2.68 10 1
2.675 10
___. ___[_
! _d 6
l I
i I
-6 2.67 10 20 40 60 80 100 120 Tg4T)
Fia.4.5 - Allowable R-134a/ Air Mixture Test Leakace, cm3/see, versus test temperature, dea.F l
The R-134a component of this leak rate can be determined by mul-tiplying the leak rate of the mixture by the ratio of the R-134a l
partial pressure to the total pressure of the mix, as follows.
PR134a LR134fT) = Lm f T)-
Pmix 4 - 23
)
Revision 2 September 1998
-6 1.7 10 i
1 i
I i
j l.695 10 f
6 I
I
.i i
i I
i l
LR134/T) 1,6910-6
(._,_ ____
I i
i l
i L
~6 __ __!
_ _ _; __ _.]
1.685 10 i
1 i
i
-6 I
I 1.68 10 20 40 60 80 100 120 T (T)
F Fic.4.6 - Allowable R-134a test leakaae, em3/see versus test tem-cerature, dea.F Determine the equivalent mass flow rate for LR134a in oz/yr, the measurement used by the leak detector:
PR134gV N(T) ~
Ideal Gas Law RT o
- where, 82.05cm' atm moleK This data can then be used to convert the volumetric leak rate for R-134a calculated above to a mass leak rate.
By dividing N by V, the number of moles per unit volume can be multiplied by the molecular weight of the gas and the maximum allowable volu-metric leak rate to determine the maximum allowable mass leak rate, as a function of test temperature as shown in the graph be-low.
The conversion from. grams per second to ounces per year is also shown below.
14 T) = LR134f T).E M R134a V
oz 6 oz gm =1.11310 Conversion of gm/sec to oz/yr sec yr 4 - 24
Revision 2 c
September 1998 l
1 0'015 l
I f
f 00145 I
[
i I
i f
0.014
---~~- -- !
4 I
i l
14 T) l l
8,
(
0.0135 4-------+-
+--
l 1
i l
l o.oi3 q
..__._p________i
_p ---
l l
0.0125 i
20 40 60 80 100 120 7 p(T)
Fic.4.7 - Allowable test leakace, oz/vr, versus test temperature, dec.F The graph above can be used to determine the allowable leak rate based on the temperature at the time of the test.
According to ANSI N14.5 methodology., the maximum allowable leak rate must be divided by 2 to determine the minimum sensitivity for the test. A graph of the required sensitivity in oz/yr is presented below:
0.0075 l
i I
i r
-- L-0007
--- - -r-l 14T) i
~-
l 2
i i
o.0063
__ _ L _. _
i I
l l
l i
i 1
0.006 20 40 -
60 80 100 120 T y(T)
Fic.4.8 - Allowable test leakace sensitivity, oz/vr, versus test
. temperature, dec.F The values presented in Figure 4.8 should be used to determine the sensitivity to calibrate the leak detector prior to the test.
4 - 25
Revision 2 September 1998 4.7 References Weast, Robert C.
and Astle, Melvin J.,
Handbook of Chemistry 1.
and Physics, 63'd Edition, CRC Press, 1982.
2.
Van Wylan, Gordon J.
and Sonntag, Richard E.,
Fundamentals of Classical Thermodynamics.
Second Edition, John Wiley and Sons, Inc., 1973.
3.
Thomas, Lindon C.,
Heat Transfer - Professional Version, Prentice-Hall, Inc., 1993.
4.
American National Standard for Leakace Tests on Packaces for Shinment of Radioactive Materials, American National Stan-dards Institute, Inc., New York, ANSI N14.5-1987, 1987.
I 4 - 26 t
l
Revision 2 August 1998
\\
Appendix 4.1 Properties of R-134a 4 - 27
P134a cre
'Snva refrigerants 4 ^
s.
hd@N l
m3 DuPont a
o HFC-134a Properties, Uses, Storage and Handling Suva 134a refrigerant Suva 134a (Auto) refrigerant Formacel' Z-4 foam expansion agent Dymel' 134a aerosol propellant Dymel 134a/P aerosol propellant O
Table 2 Physical Properties of HFC-134a Physical Properties Units HFC-134a Chemical Name Ethane,1,1,1,2-Totrafluoro Chemical Formula CH,FCF, Molecular Weight 102.03 Boiling Point at 1 atm (101.3 kPa or 1.013 bar)
- C
-26.1
- F
-14.9 Freezing Point
- C
-103.3
- F
-153.9 Critical Temperature
- C 101.1
- F 213.9 Critical Pressure kPa 4060 lb/in.' abs 588.9 Critical Volume m'/kg 1.94 x 10 8 ft /lb 0.031 2
Critical Density kg/m 515.3 2
lb/ft8 32.17 Density (Liquid) at 25'C (77*F) kg/m 1206 2
lb/ft' 75.28 Density (Saturated Vapor) '
kg/m 5.25 2
at Boiling Point Ib/ft8 0.328 Heat Capacity (Liquid) kJ/kg.K 1.44 at 25'C (77'F) or Stu/(Ib) (*F) 0.339 Heat Capacity (Vapor kJ/kg K 0.852 at Constant Pressure) or 8tu/(Ib) (*F) 0.204 at 25'C (77'F) and 1 atm (101.3 kPa or 1.013 bar)
Vapor Pressure at 25*C (77*F) kPa 666.1 g
bar 6.661 J
psia 96.61 Heat of Vaporization at Boiling Point kJ/kg 217.2 Btu /lb 93.4 Thermal Conductivity at 25'C (77'F)
Liquid W/m K 0.0824 Btu /hr.ft*F 0.0478 Vapor at 1 atm (101.3 kPa or 1.013 bar)
W/m.K 0.0145 Btu /hr.ft*F 0.00836 Viscosity at 25*C (77*F)
Liquid mPa S (cP) 0.202 Vapor at 1 atm (101.3 kPa or 1.013 bar) mPa S (cP) 0.012 Solubility of HFC-134a wt %
0.15 in Water at 25*C (77'F) and 1 atm (101.3 kPa or 1.013 bar)
Solubility of Water in HFC-134a wt %
0.11 at 25*C (77'F)
Flammability Limits in Air at 1 atm (101.3 kPa or 1.013 bar) vol %
None Autoignition Temperature
- C 770
- F 1418 Ozone Depletion Potential 0
Halocarbon Global Warming Potential (HGWP) 0.28 (For CFC-11, HGWP = 1)
Global Warming Potential (GWP) 1200 (100 yr. ITH. For CO,, GWP = 1)
TSCA inventory Status Reported / Included Toxicity AEL**(8-and 12.hr TWA) ppm (v/v) 1000
"'AEL (Acceptable Exposura Limn) is an airborne inhalation exposure limit established by DuPont that specifies time-weighted everage concentrations to which nearly all workers may be repeatedly exposed without adverse effects.
Note: kPa is absolute pressure.
E_ _ : -
f s(yg E
+
z M
y * ;5
[_z_
_ 2 Te_ w v.
, ;T
+7 -
f it:,
- t-
.4*,-
+ L 2
t y.
,i i,p, 4-T j_t i i j
2
- gt
~
.b:
it.tp;
- y
_ 2
_ 2 P
M-;+.!ivi;tp;.;
4_
_ 2 i,
4 4
1 i
t,
- _ z
_y
_ 2 r.
h s
ad M f,
P
' 4_
_ 2
- i4 l
.i T
i" m.
i
.p 2
2
. m*
w 7
T;l8_ __.
2
!i 2
2
_ _g T",
A l.
2 2
A, ;-
r f**h!,,gfi s T
i, 2
-p,,.
i f-i iti;,
2 2
i4-i 2
i> p gfi j
H, ir, 2
2 i
T }t ;gt +
+
,w!'
-g_ ;r i
1 i4
- T7
.i rLr i
+p,.;_
. a= -
t i!
i 2
d 7
T.
.{.
2
_.{
t.
Ti ty.
h
- it4t 44
_+
+,.
2
~r 9-
+4-
- g 4_ [
. ~
,i
- {tt-h t t+t 4[t
- t h t t4+
~
+
[
+
,b__
t t,4+7
+ tytrg4_[h v_
+
4
+
,:igt+pE.
t t" t+p
+ 4e,7
_p-L t b
+r ir19 4t J
4..
e4
/]1lh i
&j i9t tg,wi,
__-__ :I,
-.m
!7itp
+ Try ~+
_r__p_4 t
4; f;,
lh t
4 y
- y + p t
,t
+Y w4;4 h.,
,y,.i:p 4,
ti I
4_
t tr E
r p
, L m
Tim 4
r
} i i4 4;.
L h
t7r 7.
rt
- j. +pi9 y
i.i7, p
!i
~
pT,,4wp. r 1
r j<
rle+;
4+
++
_%g-ymgg Nx!
F
, t1, j 7
it tp. +
+
3r' Li tt t
.h m
4i r
ti p
'4j.
ti+7t
/
4
+y;+
r i
y[
9 2 j "pr_" yT1 "4J et 7rn.
y.
- +. ~+J-tytyt t
4 b-
.r -
- ~ - -
_ _ -44*
, r t+7 4
t
,]
+
,. g
-y E
'-m
,,ya 9
t u+4 tri t e
+7
.m, ' r c
r C ttt7
- ~;
5 -
Q p,,, y y,'4 l
i.
t 9,
.ly i r?ri om tyt y
_,4
{,
+-
g,
+
Ntt-
. u-e i: tt* 9*9to
,i v4 y
t
.; m i *+
,r 5
+i+
r p
f
- u**D a.
j
+
t
, y9.,
bU w
t '
{,
9t
. p ', 'yw.
.,p
- m#Jg+prty;~9 hy
,,_ /;+?_
r
- a F
,r-bM g.+,.NTwi.
y t
t +y 47 r,p.
-{
r.-i 4
- e r
c-
_w_1;;
'++
tet
[.
t I
y r
4
. m e.
3t.: m m !-+rr
__y o -
rD y.
j
}-
~
. I N', t" 7._((
rtMi it ei ;yd.re4 -. _
i +7 e.-
_t i +
li
- zl.
,1 if.i rT
~
- i
+4 7_ 4_
- ;r+"
t4yt
~
"t, d.
i r
y, y,
t e
'7i
+,
3i+[ _ E
_ y $__/wf.
t.-
+- ',ii
-~ 4.,74 4, i -
i'-
-i
_ ~
+
++.
4 +*e ~_-
41t t
E il
~
ti4 i tt,p i 2_
[
3;i
~
_%L rrt
~
I.
t tyi
' m_
L
~
___ _ gu h:,[__W.
F
- ti7 -
2 4
_a4 ',
- {
i e
~- -.
2.,.h.M$
+ i
~
t, 2
,i
,Arn
_ y p Diui rt t
-T ;ittg>. 4q - 1 umpy 1,_
+,
i,
- itt
-t
~
N2 _. _ -
,,;1
!i ri
_ _ ms t
tp.;
I it
.r nnbL_r i
t ii ?+
~~ tT7_ i
.7.
_T T.,.f. K c
,p, e
r
- - i Jf t
s 9 tt t
E t
7a_.
2_
2 __ _, 2'
- c e
h2 t
4
+
7 ii;t P
e r
4 3-.
~
r ex r
2 np 2
~
.t, t,1 4
}1 i
2 2
il
.$!i j
r
_I, +
2
~
2
+,1 T.
n;_
~
i, ti ;
2 f".
[
_?
2 w
, ;e,_
,T, i tty'-
t ;._-
2 I
~
_t
,4.,.4' 4_
1 i l7M i
I i ;mj 1
i ti. _
- ,,4
_4
_ rv_.b:i m.b_.l - ti i
- i. t;t;#,._t
~
i il:,
1t t1
+
- i L,,i_U e 4,,. h.
[j :,1 4,
_T Q ip:,,[(( y' g; f '
t t,;-
4 t,t
. - fy
{iP:i i Tt.
T', *]-
+
+
I fl T_
M.t dm4 tt s _.
+1.,
i t' ; -
- t i7 t.
. ;4 jt ;u ; -
y,j. g i_
>T F:i
~
4,
t:
4i
-r
..t eT r?ti jr?
.k 4ert
$_ :z:
i ti ; t
- F-I +tg es
,9.l5,g{'
- Fp.
4 t
} f.
7 '
+4+ 9 -
.i
>tyM 1
r v tM t 4T,t. - te
_ ~ n:
'y t,tl, +
tt i.t
_. U.
t t
+
f
+
.r;.
- j.
.._?y:. F-y.t r
++tr7~ n ; tv '
Ti
' tt i
i4,, t l
4 f
i 1t 4
y %5 t
- y. aT
-U
%h p,
- pc gA9
llI 1;
i
>mQCk 3mUoG x E g_EO*
Q C U L.c sgmgg m
o9 c 1
>3i ij!!
4 lii
+ i1H !i,-
- <ii n
lifwt.
-Qri!
i #t!
i
,7. i t
ii7_ i4l ii rii f
li il T_i
'i,i
- 7..
l!
!1 l;,
r m4_
i
,p:
l
'i
,j; c
'i o9 o i:g%;i!
- i_
!itT, i
i!
,4 1
[
l a
- i t-jiil pJ.-g
- l
,,l!II!
li i
T, 1
f l!yi I!ii7; 7_
iip
,l
$y oo r l!
!it mj iiqmi i
iji ii l1!
ril
- i,1
- 4_;!! i4l
!lv i
!i,!yi,
,p; lX 7
X
, :,giilh ii.
4!i; iiH I
P t t. ib
- i!
v,,j t.
r 4..l
!Yi, l
4
'i i b, i,
A is;i, tvy; p
oo o ij x
4t
-l i T' i
- ttii, 11 it{-
t~
lit tt,t
- +
i; it'
'i
+ r7,-
i J,..
7
- i,
,4 t
ei,,m i
4i
+.i!
!P4.$-
,i, rt.
f
- 1!
r {_:
[g__eC.M f.;
ti,r
+tr 1!
,_t,!
4, l
+
s b,iiirf!ii y
- ltiMpi,
' byfii.r+i4ij y'-
i!!
rd
+tr,:i!
i, j
e
~
!s c -
o l
,!!t ii t4 b
d
.r.
. t4' c
a oo o
~
1.
3
,t; 1
r!
u 1t,t4'h
!t.i.
!fi Tr l'
4i!!
i t +I,'t :;
piii. -
4 t
h 4_
'ii i tI
+
1
+
s t,y +Wh :.rti Il 1
+M.
I i4 t4 t1 A
oo e tt,ytM iM4!l g
+H lrftfiH o
i e p-t___
tt j & +
iIi tt'7yt +w w,,
,: h~
._ii?
t
(
W t t,t +I
_ M N2 i 4ht-'
s r
t"
- i p..
8
,p 1' +
t i.
t ',
j 4
7 4v i 1
+;
. :t 4
t +.
Nt"t71,;
o
,1i r7
!i f'
+ T 1 fE. 4, 7 > 4 4
1 a
ti 31t -
_4 l
4F1ltl-' Mtf.-
4+t*
!s tt 1
j t'
r~ tq.4
}
p,.
- t 4
.tt,t+M'
,i f, t 4!i i
~ml4 I4 t?. - ~-
< +r+{ii
- r i rt.
ii
+!
+
Ntrt4 J
- ?
ftttt
+,
Y h.i#
i 4
++
- rr1tH L
ti o
- L
[i t
c
!i 7_
t-d
~
e tt. '
N
,I, r7,
. f' i
i
- !tfHt'+o pi:>i
,. iH t
-4
- .1iii ITtThi A
tt,++4 tf ir
'm _
p i, tI; t
ti t t, d.
~ *. - rt
,!I, ii
- +
rt9 hi
!r,
't; f
b-
,Jti t 4,ir i gii;it&
}'1l rt
-. 4t i
. I,ttt
.rN 4t 7t
+t,tt+
't4_1! pi.iifSQ m - i + ++ 4 n1 oo c
!Trtt;'
st 4
,iit
,t+-
)
L t-tt,
b 7t tt!t t
tt t t it 4,tt
+
- 4.
- iiii, 1 !it-iV+Nr
,n4.nN t',tt e4_
4i e +ttt, tT
' +t i iig++4iig_.
b*',, r-r.
~
4 v
t;
.T
+f+1 +
' +
41
, yv[
ii tV,.
iii7;+ ;iT4iiii t1i
.ti t
i
,i7tt
. ~.
t ". - -
I
- p. 'iN-f+h
}1.
o9 c vt4
- :;i
,. +4 i+4_.4i i!i 4
Jfiii v
y iIi(qiiLih !tte1
_t tI
- iI x
? +
3i7t+
ii ii;i
?
4 t
t-t
_tt,tmq Og*"u 1 4!i;iR'!ra - t t
4 r
't tt i;74iii.
ii i1 r,;
1 4ii;ihl
,;-r.u $ oZ*
ii,ip C
r!, o
",g4,,;$1irl.
'iilki
- ,ti m+y.ie.
T:
+
iiif i
r
~
- iij 4i ii -
ij
~
iiI t +g*:4
,!i iia
!1 t+.'1-ii
++:i 7-i Ij i
e i
ii
, 4 7
.i v
r i
oo -
t 1-:
.e
^l ix
- , pii:N<l !+tttti
' tlii
,,t 4.
1 9yf_
i5irp;,
t-M l
v!iri
!t i
4
.t ",tt,i :k3
.ibli i 1siiN!!i
- ' ' 4-41^,
i 7 ++3i 1
+
+
r +,;
r tHt+-
Mt,;
i) i;i,t
- F li t + _r>lX Tir t&
it
-tir i3i]~ +
f t
fi;td_ tjt t14-t+H t+,iii,tr i!i ji
+
h}r.i -e,7t :r,,4!i ith t
!T' 1
- ~-
e *
.p 4!
!1
+
t t f
-t tE t;,7 t4 t
t1
- {
i 4iij:
- iirty,
>t
,i t'1 -
L!!,
ict;rtv t7}j oo o
- m,,4 it4. y t
4!jr t
( ttaM,.
mg!v!'
Jt-tq + >
c -
4r < * +
.t t,
tt,
- :gtH
+ +
+ 4e>
- T+r
+
+
, ' +
4-rt1tM%
Tr1
+ -
M*~*>e;-l + +
+ - - - 4
+
t+,t p ;fIjii
+rW 3
- ~- ;I;f
- it+
+p H,-
e
- i t:
irt i
i
+
tTtt J
t,.
- 7 3ii
' +tt y.
.4 tittt
+tp(4ita h
76;1
+
ii, T
{t,
.dt tt,t
.T"ttg4 t'ttn "i
4,'!
4+-
, +
r a
Mt++tw
,94 iti.
+
-, +.
. t ris 1
, tIrt 94.
4,}t;;
1t4
- i.
+
t
- ~
M"++t' -
4 tH++.t 4ty"m.
4 t
,e
+
e-tj+r+t, -.
trp,4itr:
+ +0 t _
- i i
t -
't y 4[- $tr
' ii'
+
t?e
?
.tt
~
o.8e tg
- o 8o N)aO eoo n,mo mg 3
Y oEaBU( 56 -
1
Rev. 2 lL 9/98 dichlorodifluoromethane (R-12) or 1,1,1,2 - tetrafluoro-ethane (R-134a).
The detector probe shall be moved along
~
the interior surface of the inner seals according to the specifications of ASTM E-427.
Sensitivity at the test conditions is equivalent to the prescribed procedure sensitivity for leak-tightness of 4
3 1 x 10 atm-cm /sec based on dry air at standard condi-tions as defined in ANSI N14.5-1987 (see Section 4.5 or 4.7 for the determination of the test conditions).
Any condition which results in leakage in excess of this value shall be corrected.
8.1.4 Component Tests Gasket and seals will be procured and examined in accor-dance with the CNS Quality Assurance Program.
8.1.5 Tests for Shielding Integrity Shielding integrity of the package will be verified by gamma scan or gamma probe methods to assure package is free of significant voids in the poured lead shield an-nulus.
All gamma scanning will be performed on a 4-inch square or less grid system.
The acceptance criteria will be.that voids resulting in shield loss in excess of 10% of the normal lead thickness in the direction meas-ured shall not be acceptable.
8.1.6 Thermal Acceptance Tests No thermal acceptance testing will be performed on the CNS 8-120B package.
Refer to the Thermal Evaluation, Section 3.0 of the report.
8.2 Maintenance Program CNSI is committed to an ongoing preventative maintenance pro-gram for all shipping packages.
The 8-120B package will be subjected to routine and periodic inspections and tests as outlined in this section and CNSI approved procedures.
8-2