ML20238A635
| ML20238A635 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 08/26/1987 |
| From: | Stewart W VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM) |
| References | |
| 87-376A, NUDOCS 8708310153 | |
| Download: ML20238A635 (14) | |
Text
Tech. Spec. 6.9.1.7 I
l vinauxis macruic xxn pow 1m comer It t cH MO N D, VI HO INI A 2006) 4 W.L.HTOWART VICE PHEMIDENT xene n on =&uo"*
August 26, 1987 U. S. Nuclear Regulatory Commission Serial No.
87-376A Attn: Document Control Desk E&C/JYR:cdk Washington, D.C.
20555 Docket No.
50-339 License No. NPF-7 Centlemen:
VIRGINIA ELECTRIC AND POWER COMPANY NORTH ANNA POWER STATION UNIT NO. 2 RELOAD INFORMATION FOR CYCLE 6 North Anna Unit No.
2 has completed its fifth cycle of operation and has entered into a refueling outage. Due to power supply requirements, Cycle 5 operation was extended beyond the previously scheduled shutdown date, creating the need to modify the design assumptions for Cycle 6.
The purpose of this letter is to advise you of our revised plans for the Cycle 6 reload core and to transmit to you the revised Core Surveillance Report containing specific power distribution limits applicable for Cycle 6 operation.
The Cycle 6 reload c_ ore was analyzed in_acc_o.rdance with the methodology documented in the approved topical report VEP-FRD-42, Revision 1-A,
" Reload Nuclear Design Methodology," using NRC approved codes as referenced in the topical. The information in the report was developed in accordance with our topical report VEP-NE-1-A,
" Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications".
These analyses were performed and reviewed by our technical staff.
The results of these analyses indicated that no key analysis parameters would become more limiting during Cycle 6 operation than the values assumed in the currently applicable safety analyses.
- Further, the analyses demonstrated that the current Technical Specifications, as approved through Operating License Amendment No. 81, are appropriate and require no additional changes.
A review has been performed by both the Station Nuclear Safety and Operating Committee and the Safety Evaluation and Control Staff.
It has been determined that no unreviewed safety question as defined in 10 CFR 50.59 will exist as a result of the Cycle 6 reload core. provides the revised Core Surveillance Report containing the specific Cycle 6 values for N(Z) and the Axial Flux Difference limits.
This repcrt is being provided as required by North Anna Unit No. 2 Technical Specification 6.9.1.7 and is based on the current total peaking factor (F )
limit of 2.15.
This Core Surveillance Report replaces the original Cycle 6 Core Surveillance Report which was previously transmitted by letter Serial No.87-376 dated July 17, 1987.
8708310153 870826
/(,
PDR ADOCK 05000339
.P f[l P
This letter.is provided for your information end planning. However, should you have questions, please contact us at your earliest convenience.
Very truly yours,
%)4g W. L. Stewart Attachment 1.
Core Surveillance Report For North Anna 2, Cycle 6 cc: U. S. Nuclear Regulatory Commission 101 Marietta Street, N.W.
Suite 2900 Atlanta, Georgia 30323 Mr. J. L. Caldwell l
NRC Senior Resident Inspector l
North Anna Power Station l
l i
l 1
J
NORTH ANNA UNIT 2 CYCLE 6 CORE SURVEILLANCE REPORT REVISION 1 This Core Surveillance Report is provided in accordance with Section 6.9.1.7 of the North Anna Unit 2 Technical Specifications.
The burnup-dependent Tycle_6 N(z) function for Technical Specification 4.2.2.2.G is shown in Figures 1-7.
N(z) was calculated according to the procedure of VEP-NE-1-A.
The N(z) function
- will be used to confirm that the heat flux hot channel factor, FQ(z), will be limited to the Technical Specifications values of 2.15 K(z)
FQ(z) s P > 0.5 and P
FQ(z) s 4.30 K(Z),
P s 0.5.
The Cycle 6 Axial Flux Difference (AFD) limits for Technical Specification 3.2.1 are shown in Figures 8-10.
These limits were calculated according to the methods of VEP-NE-1-A.
The limits in Figure 10 are identical to the Cycle 5 AFD limits; the limits in Figures 8 and 9 are more restric-tive.
The limits on Axial Flux Dif ference assure that the FQ(z) upper bound envelope is not exceeded during either normal operation or in the event of xenon redistribution following power changes.
1
~
- The N(z) function, when applied to a power distribution measured under equilibrium conditions, demonstrates that the initial conditions assumed in the LOCA analysis are mec, along with the ECCS acceptance criteria of 1
I 10CFR50.46.
l
FIGURE 1 - N(Z) FUNCTION FOR N2C6 AT 2893 MW FROM 0 to 500 MWD /MTU BURNUP TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G HEIGHT N(Z)-
(FEET)
H 1.8-1.112 0
2.0 1.108 N1.5j 2.2 1.104 2.4-1.100 e
L I
2.6.
1.096 0
2.8 1.092 30 1.088 lJ 3.2 1.086 11.4 3.4 1.082
[
3.6 1.083 i
3.8 1.087 I
4.0 1.094 0
4.2 1.099 44 03 R 1'3 l
l 4.6 1.105 l
1 1
4.8 1.106 lj l
1 5.0 1.107 y
I i
5.2 1.110 I
l 5.4 1.117 1.2 5.6 1.120
,N 5.8 1.124 y
i A
/
.'s/
6.0 1.129 j
i y
ll 6.2 1.135
/-
v j
i
[
j l
6.4 1.139
} j' j -
x
/l 6.6 1.144 N g 6.8 1.150 l
7.0 1.155 p
7.2 1.163 1
7.4 1.170 b
76 1.176
! l.0 7.8 1.182 e
i iiiiiiii
. ii. iii.iiiiiiiiiiiiiiiiiii
.,iij;iiiiiiiit 8.0 1.185 8.2-1.189 R
0 2
+
6 8
10 12 8.4 1.189
~
8.6 1.188 COREHEICHT(FEET) 8:8 1:!$
9.2 1.173 9.4 1.164 9.6' 1.161 9.8 1.163 10.0 1.169 10.2 1.175
.w FIGURE 2 - N(Z) FUNCTION FOR N2C6 AT 2893 MW FROM 500 to 1000 MWD /MTU BURNUP TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G j
HEIGHT N(Z) i (FEET)
N Q
1.8 1.204 u i K ll i
i i
i i
2.0 1.197
"'J i
2.2 1.191 I
[
2.4 1.183 n
2.6 1.174 1
y
)
'2.8 1.166'
]
v il n
3.0 1.155 4
f 1
l j,4 ]l 3.2 1.147 i
(
l 3.4 1.143 i
i l
I 3.6 1.142
)
3.8 1.140 0
1 4.0 1.139
$3 7j 4.2 1.137 n
i.s a i
i 4.4
'1.133 l
jj l
4.6 1.128 il 1!
l 4.8 1.120 l
h 5.0 1.112 M
j' 5.2 1.112 i
"3 1
- i 5.4 1.120
j
'g f %
5.6 1.127 y
5.8 1.133 i
N e'
s ~'
6.0 1.138
[!
]
1,._
,, A I
N 1
4 s,
<1 6.2 1.141 i
\\_/
6.4 1.142 I l.l )
6.6 1.144 1
4 6.8 l'.150 h
j 7.0 1.158 i
j 7.2 1.166 i
[
j 7.4 1.173 l
l 1A1 7.6 1.180
[ " '
ii,i siiiji ii
- sii, iii, ii.,
- iii, iii, iiii ii.,
7.8 1.186 q
,iiii 8.0 1.190 R
0 2
1 I;;
iB 10 12 8.2 1.193
)
8.4 1.192
)
8.6 1.192 COREHEICHI(FEET) 8.8 1.188 9.0 1.183 9.2 1.176 9.4 1.168 9.6 1.162 9.8 1.160 10.0 1.161 10.2 1.163 a
i
~
1 l
FIGURE 3 - N(Z) FUNCTION FOR N2C6 AT 2893 MW FROM 1000 to 3000 MWD /MTU BURNUP TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G HEIGHT N(Z)
.(FEET) 1.8 1.204 0
2.0 1.197 N ],5 2.2 1.191 2.4 1.183-l E
2.6 1.174 l
0 2.8 1.166 j
g 3.0 1.155 1
3.2 1.147 I l.4 3.4 1.143
[
3.6 1.142 3.8 1.140 J
4.0 1.139 1.2 1.137 R J,]
4.4 1.133 4.6 1.128 4.8 1.121 0
5.0 1.129
{
y 5.2 1.138 5.4 1.146 1.2 f
5.6 1.148 M
\\,
/
N 5.8 1.151 l
6.0 1.164 l
s l
g k
,.r' 6.2 1.179 j
s
[.
V 6.4 1.190 I 1'1 66 198 l
6.8 1.205 l
7.0 1.207 P
7.2 1.207 7.4 1.204 L
7.6 1.198 1
! l.0 7.8 1.193 g
iii,ii.iiiiiinii
.j...
...I 8.0 1.190
- iii, iiii ii.i iio 1,.
R 0
2 4
6 S
10 12 g jg 82
~
8.6 1.191 88 88
'3REHEICHI(FEET) 9.0 1.183 9.2 1.176 9.4 1.168 9.6 1.162 9.8 1.158 10.0 1.159 10.2 1.161
-wu-.uw_a_a_.uaA
<.9
- o. -
FIGURE 4 - N(Z) FUNCTION FOR N2C6 AT 2893 f41-FROM 3000 to 5000 MWD /MTU BURNUP.
TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G HEIGHT N(Z)
(FEET)
N
- 1. 8.
1.204 0
2.0 1.197 N 1. 5 !'
2.2 1.191 d
2.4 1.183 L
2.6 1.174 0
2.8 1.166-g 3.0 1.155 3.2 1.147:
! l.4 3.4 1.144
[
3.6 1.144 l
3.8 1.145 4.0 1.146 0
4.2 1.144 R 1'3 44 1 140 4.6 1.134 4.8 1.130 V
5.0 1.132 y
5.2 1.143 5.4 1.159 l.2 5.6 1.170 y
s\\
/
.\\
5.8 1.176 t,(
6.0 1.182
,N f'
jJ s/
6.2 1.184-j 6.4 1.190
} j'j 1 6.6 1.198 1
6.8 1.205 j
7.0 1.207 0
1 7.2 1.208 j
l' 7.4 1 205 b
i 7.6 1.199 I 1. 0 l i i.
7.8 1.190-8.0 1.180.
c i
,1 1,
0 2
4 6
3 l0 12 82 8.6 1.159 j
COREHEICHT(FEET)
U
}:!U j
9.2 1.'153 9.4 1.152 9.6 1.153 9.8 1.156 10.0 1 160 10.2 1.162
1 j
FIGURE 5 - N(Z) FUNCTION FOR N2C6 AT 2893 MW l
FROM 5000 to 7000 MWD /MTU BURNUP I'
TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G 1
)
- HEIGHT N(Z)
-l (FEET)-
]
N 1.8-1.164 Q
2.0 1.159 l
2.2 1.153 i
i N 1.5 2.4 1.148 1
[
2.6 1.141 28 36 0
3.0 1.133 0
3.2 1.139 l 1,4 3.4 1.143 3.6 1.145 b
3.8 1.147 l
l 4.0 1.146 l
l g
4.2 1.144 4.4 1.140 l
l R 1. 3 4.6 1.135 l
l 4.8 1.130 j
j 5.0 1.132 l
l 5.2 1.143 1
M 5.4 1.159 j ' ~')
5.6 1.170
/
N 5.8 1.176 N
/
\\
6.0 1.182 i
ll 1
.K
/
%-~
6.2 1.184 i
)
'f
/
6.4 1.190 l
L i
6.6 1.198 i
I l.l )
6.8 1.205 i
4 7.0 1.207 l
l j
7.2 1.208 j
j 7.4 1.205 i
l
[
j.
7.6 1.199 l
78 9
' 10',,;,,,,'
8.0 1.180 i
{
,1 8.2 1.171 R
0 2
4 6
8 10 12 84 1 166 8.6 1.159 8.8 1.154 l
COREHEICHI(FEET) 9.0 1.153 9.2 1.153
)
9.4 1.152 I
9.6 1.153 9.8 1.156 i
10.0 1.160 l
10.2 1.162 l
I I
1 1
C_________________..
_ _ __ J
64 FIGURE 6 - N(Z) FUNCTION FOR N2C6-AT 2893 MW.
FROM 7000 to 15000 MWD /MTU BURNUP TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G HEIGHT N(Z).
(FEET)-
N 1.8 1.186 0
2.0 1.178 N 1,5 '
2.2 1.169 p
2.4 1.160 2.6 1.148 0
2.8 1.139 lj 3.0-1.133 3.2 1~139
! l>4 3.4 1.143
[
3.6 1.-145 l
3.8 1.146 4.0 1.145 0
4.2 1.143 R 1.3 4.4 1.141 4.6 1.143 l
(
4.8 1.149 0
I 5.0 1.160 kj f~~N 5.2 1.171 r
N 5.4 1.180 qej 5.6 1.185 t
k{
[
'\\
5.8 1.190
' s il 1
i
- i i
'ss-i 6.0 1.205 v
1 i
NI.
A' 6.2 1.217 L
j l
6.4 1.227
] j, j 1' 6.6 1.233 6.8 1.238 I
3 i
7.0 1.238 P
l 7.2 1.237 7.4 1.232
[
l 7.6 1.226 l
1.0 7.8 1.219
{
,iii..ii.;;iii, iui iiii z i. iiii. '
8.0 1.209 e
n q
4 p'
O b,3 1
8.2 1.197 8.4 1.182 u
8.6 1.165 i
COREtiEICHT(FEET) 8.8 1.154 9.0 1.152 9.2 1.153 9.4 1.152 1
9.6 1.153 9.8 1.156 10.0 1.160 10.2 1.162 I
i
FIGURE ~7 - N(Z) FUNCTION FOR N2C6 AT 2893 MW FROM 15000 MWD /MTV BURNUP TO EOL TOP AND BOTTOM 15 PERCENT EXCLUDED AS PER TECH SPEC 4.2.2.2.G HEIGHT.
N(Z)
(FEET) l 1.8 1.186 0
2.0 1.178 2.2 1.169 q j'$ F l
i i
i i
24 1.160 t
1 l
2.6-1.149 i
-Q 2.8 1.139 3.0 1.130 0
3.2 1.124 l 1,4 3.4 1.120
[
3.6 1.117 j
i 3.8 1.110 l
4.0 1.111 8
4.2 1 115 4.4 1.125 R 1. 3 4.6 1.139 l
l 4.8 1.151 g
[
5.0 1.161 5.2 1.172 4
N
/
,' sl 5.4 1.181 f-1,7 A
5.6 1.186 y'
y
\\
5.8 1.190 6.0 1.205 l (N N
j 0
N'
/
6.2 1.217 l
/
3 6.4 1.227 N/
6.6 1.233
{4i. I 3 6.8 1.238 l
7.0 1.238 p
7.2 1.237 I
I 7.~ 4 1.232 L
I-7.6 1.226
'l 1'0 7.8 1.219
.,,l,i,,.crf"Trrr4Trrr7TrT vrrr' trrdnrr-rrrr nrrr 8.0 1.210 c
8.2 1.197 R
-0 2
4 0
8 10.
12 8.4 1.182 8.6 1.163 8.8 1.154 CORE 4E!CHT(FEET) 9. 'O 1.145 9.2 1.139 9.4 1.136 9.6 1.136 i
9.8 1.138
)
10.0 1.141 10.2 1.143 i
i
.e FIGURE 8 - AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER FROM 0 TO 500 MWD /MTU BURNUP FOR NORTH ANNA UNIT 2 CYCLE 6 3
120
(-6, 100)
(+4,1 00) e
/
\\
,0
/
\\
k Unceceptabl e
/
Accepteble 0
g Cperets on Opera tson I
(-26,50)
(+14:50) a 40 3 30 5 20 10 0
-50
-40
-30
-20
-10 0
10 20 30 40 50 FLUXDIFFERdNCE(DELTA-1) PERCENT l
O
O 74 FIGURE 9 - AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER FROM 500 TO 1000 MWD /MTU BURNUP FOR NORTH ANNA UNIT 2 CYCLE 6 I
i 120
(-12,100)
(+4,110)
,w100
"\\
!,0
/
e,,
/
\\
=
r 3
% 70 Accepteble k
Unocceptabl e 60 g
f Operati on Opera tion
(-27,'5 0 )
(+1450) 3 40 3 30
$ 20 10 i
-50
-40
-30
-20
-10 0
10 20 30 40 50 FLUX OlFFERENCE (DELTA-l) PERCENT l
O l
l l
l
1 l
a~
a fat l
l FIGURE 10 - AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER FROM 1000 MWD /MTU BURNUP to EOL
{
FOR NORTH ANNA UNIT 2 CYCLE 6 l
120
(-12,100)
(+4,1 00) i 5100 I
5 go
[
\\
l
/
\\
$,10
\\
,/
x
\\
[ go
/
Acceptable unacceptable e Opereti on Opera tion j
g
/
6 g 50
{
(_,g,3p)
(,,g,3,y e 40 3 30
$ 20 10 1
0
-50
-40
-30
-20
-10 0
10 20 30 40 50 FLUX OlffERENCE (DELTA-l) PERCENT l
1 I
l l
c_-_____
r.
I l
t I
i t
Y$
.l%f
?
o
%s a
4 e(
fe ppY t
1 t_____
... _ _. _