ML20236Q885
| ML20236Q885 | |
| Person / Time | |
|---|---|
| Site: | 07109860 |
| Issue date: | 01/13/1984 |
| From: | Renee Taylor MARTIN MARIETTA ENERGY SYSTEMS, INC. |
| To: | |
| Shared Package | |
| ML20236Q843 | List: |
| References | |
| Y-DD-326, Y-DD-326-R01, Y-DD-326-R1, NUDOCS 8711200343 | |
| Download: ML20236Q885 (39) | |
Text
{{#Wiki_filter:_ Y-12 Rev. I t OAK RIDGE Y PLANT Mrm naamarrra SAFETY ANALYSIS REPORT FOR PACKAGING j (Oak Ridge Y-12 Plant Model DT 14A Package for Enriched Uranium) R. G. Taylor ohh 9 PDR OPERATEDBY-MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNRED STATES . DEPARTMENT OF ENERGY 'I
j 1 l I 4 .) 1 l 2' ? e l OlSCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency - thereof, nor any of their employees, makes any watranty, expre s or implied / or assumes any legal liability or responsibility for the accuracy, completeness, or use-fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu- ~2* facturer, or otherwise,' does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States' Government or any agency . thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. l l i e 1 1 .) = l: '. 3 5 g. s o ._4 , _ _......... -..., ; i. _j
E] 1 1ji I Date of Issue: January 13, 1984 Y/DD-326 - Distribution Category: UC Rev. 1 i
- )
. SAFETY: ANALYSIS REPORT FOR PACKAGING l (Oak Ridge Y-12 Plant Model DT-14A- ~ Package. for Enriched Uranium) .a I r j l p ~R. G.' Taylor-
- j i
Radiation Safety Department Health, Safety, and Environmental Aff airs Division ) l 1 i 4 ,..+ !t -l i h j .i Oak Ridge %12 Plant P.O. Box Y, Oak Ridge, Tennessee 37830 ' Preoared for the U.S. Department of Energy under Contract No. W 74054ng 26 b _.___...___.________m__.m
6 i 6 2 l lg t $g g CONTENTS h g SdhqARY. 3 INTRdgUCTION 5 SAFETY $NALYSIS OF THE DT-14A PACKAGE. 7 5L Descript'.jtnofPackage 7 Intr. duction 7 i Perm \\rted Contents 7 Prima'y Containment Vessel Requirements. 7 Requitfi Inner Containment Vessel..... 11 Requiroj Thermal Insulation and Structural Support 11 Required Outer Containment 12 Addition ti Package Considerations 12 Evaluation of l'ormal Conditions of Transport 13 Evaluation of H pothetical Accident Conditions 14 f Explanations of hypothetical Accident Condition Tests and Resulty 15 Additional T.ests of Inner Containment Vessel Integrity 15 Nuclear Criticality Safety Analysis 19 Single-Package Analysis 19 Array Analysis 19 Quality Assurance. 24 s Fabrication and Assembly of Packages 24 Reprocessing Specifications 25 ... 1 Conclusions 27 REFERENCES 29 4 I 1 1 i 6 A
3 4
SUMMARY
1 An evaluation was made. of the Oak Ridge.Y-12 Plant Model DT-14A shipping ' container to demonstrate' its compliance with federal l regulations as a Type B(U)-package for. the interstate transportationjof fissile radioactive materials. Destructive testing and engineniag'- evaluations were made to demonstrate the, structural - integrity and-thermal resistance of the package.. Data from earlier evaluations are included herein. l 'l It is concluded.that the package meets the requirements for Fissile Class I, II, and III shipments of - uranium of any 2350 enrich-lj ment.. Depending' on the
- type, form,. and contained hydrogenous materials, limits are placed on1 the -: contained masses of 235U.in each "l
package'. 4 1 1 e 4 [ E i i i l 2 i l b f
-,------,,,--_-----.---n,---------__n-----, a$ 5 O O T$AN< e O 9 Y l l l 1 6 ) ke = 4 e O
5 INTRODUCTION .j 'f l A safetysanalysis.of the Oak Ridge Y-12 Plant Model DT-14 shipping Oj container was documented in Safety Analysis ' Report for Packaging. (Oak: Ridge. Y-12 ' Plant - Nodel :DT-14 Package for Enriched Uranium).' Additional tests'related to structural and containment integrity'of the i inner containment vessel were ' documented.in Additional. Testing of DT-14 Shipping Container.8 This document' includes the applicable data from those reports and provides the. nuclear criticality safety.. demonstration of a modification to. the inner containment vessel. This- ' modification changes the - identification of the container from DT-14' to I DT-14A. A package used for the off-site shipment of fissile radioactive ' I materials is subject. to evaluations under various regulations which j ensure the safety of personnel and fissile radioactive ' materials while l in' transit. These regulations govern.- structural integrity,- thermal j resistance, radiation shielding, nuclear. criticality safety, and quality i assurance for Type B(U) packages. The criteria are set forth in United States.-Department of Energy (USDOE) Order 54 80.1A, - Chapter III; 4 Title 10, Code of Federal Regulations (CFR), Part 71, Appendix A; and j International Atomic Energy Agency (IAEA) Safety Series 6, :1973 edition j as amended. ~ To ensure safety and secure approval.for the use of a package for, shipment it must: be shown by physical testing, engineering. evaluation. and/or validated computational methods that the'. package complies with ; these regulations. The Oak Ridge Y-12 Plac.t Model DT-14A package was evaluated in -accordance with the Type B(U) package requirements..The methods and results of the analyses are presented in this report. l J t i i J .e i e 6
e 4 e e O t I i I I s 1 l i e O % e e 4 l l l i l l l l l l l l l ( l l G W aO 9 9 9 e e. 6 s.
.I -7 SAFETY ANALYSIS OF Tile DT-14A PACKAGE .? = -DESCRIPTION OF PACKAGE. + .t i' Introduction { l fabri-j' The Oak Ridge Y-12 s Plant Model DT-14A shipping package.. is l cated from commercially available materials. These ' materials provide the inner containment vessel, insulation,' structural support, and, outer-containment.' Engineering' drawings (Figs. 1, 2'and 3) depict the typical use of these materials andl specific methods of. fabrication. The follow-ing_ discussion provides the s pec ific ' ' de sc ri pt ions of 'the' package as required for. use 'as a fissile radioactive material package for shipment' 235U enrichment. t of enriched uranium of any Permitted Contents' [.i' 235 The DT-14A package will be used ' for the shipment'of' uranium'at any i' U enrichment.. Total mass of the contents shall not exceed 30 kg'(66- [at 82*h5 decomposition pressure lb), that will have a 2 exceed 152 kPa (22 psia), and limited.in'.the mass of U given~in Table-l 1. The mass of. Total Uranium is limited to'less than A2 quantity per; [ package. Other isotopes of uranium are permitted, providing.- the. 2 radioactive thermal decay energy does not exceed i10W an'd all applicable regulations are observed with regard to the radiation measureme'nts. ): l Table 1. Permitted 2350 mass loadinse for the CT 34A container Metal or Mistures. compounds 'and colutionsh Alloys 8 j 'I 2350 density (g/cm3) <13.8 eg.33 ca.55 <2.05 <l.15 418.g N/235U atos ratio 0.00 <0.4) c3.22 410.7 <21.4 Unlimited 2350 mese/packase (kg) 18.0. .21.0 16.0 8.5 5.5 .l.0 Min'inus Transport Inden FC-le FC-IC 0.1 0.1 0.2 FC-l' Note The total material contents within the inner
- eont a inment vessel are not to enceed ' 30 kg.
3 peryllium and deuterium are not permitted. Acy amount of low-density Ql.0 g/cm ) packaging material, providing it le not intermingled within the loading, may be used to cushion the loading within the inner containment vessel. g 8pp to 120 g of packaging asterial may be interstitially used for sets! piecess however, greater packaging-material masses require that the lloits on sistures, compounds, and solutions be observed. Alloys with 235U densittee cs.33 g/cm3 may be packaged under the limits for mistures, compounds, and solutione. ~ j b ranium hydridea with deneities greater than 4.55 g/cm3 U are not. permitted. A screw-top a 1 -sen minieve well thlekness. ehall be used to contain solutions or dry - polyethylene bottle with compounds. cFiselle Class 1. l -i -l Primary Containment Vessel Requirements ij -. 1 Chemically stable solutions or corrosive materials are contained (- ; within a screw-top polyethylene primary containment vessel, such 'as a F-bottle with a nominal wall, thickness of 1.0 mm (40 mils), or greater. 1 '.{-l ?
~.-. W W-$ h ( t M a i 5 j r t i / / g i t F 6 i g Ii t j.- i .. 2, .u ....~. q,01. O* ~ 4* 5 0* UW w rat o, I%'5) - E Phwtt uP' T1 i \\M : I t'b' *.,'Y~ N i -g-a NwooD - Q f w - n, y .,,p.mm-e I t.no w.nvr. ad* N-sts um s 3 I 4 ne.u eum. i w, spmto J 4 N aOM s', si 's-s ~, s w.s ,w,, w. sts. wnn ,~ s N e [4 ,\\, " A' f %.1 O* g. 4
- u e
mwcoe. x. s N s, s. m..,, .= n. .t..x / yi / 1 t p. (@p,es c. 8 j j ~ 6 .o.Ti..o n... m. u. w,, t _, i j r S t n O *. t ( l mw. .im te j i l I Ff. 1. DT-34A i 3 Fisc!1o IStl. ontal.ncr CZ- -( lesolcti;a '- ~. ~ - w;:.::..y ~~ L'."".T::7.~ '.'.* ::. :::**:?.2:*. A ?[T*1("~h O*".:::.7. :::'".*.* ;*::.T.":7.*l.7:"'.*/;;*: ~~'
- ~:":::..r.r.;::.:=:::::;7.-
t V " u n E [.e' A
- 7"* * ".7;;". ':l? 7 ;"O 7;*:2T.
i :: ":.::r -- - -~ ~ a
l M,, T... 8 a f g-w a cs s , i, - g a .m . p=.n > i I a s .i. w. l w-x a, /...d. I T a a. t $,(,.u3(og ut t,, L,% s p, I.,_,,,j,.._. W O.E.{h . m, w. t...ms. m,. - m p+iu. ev.a u,. ses) l J&J vo _ b m e,.. TI q.
- p. e=,.p m
- APERTUR --
, n..-. z._._. t. 7_9/:.gG,.....9:.j's,C;6 ig,; CARD- 'f hQ W.. ,. /,/. * / s, /., ' -..[/ ) / nm u ~ c:wr.z:.c,.. ,2 t m c,i m *.
- N' Also AvaMahle o.
^- Q... y< / ,,/ teno. sows / / / p ' pmm cua "'~ 4 ~' 9 4 I \\-M'l M DO 8 l .a.tt owns. tuo. )*, w tsk. .... i 3,,, c toe t. ts.* Lt.P. te.t> W M . pl@3 3-O l-
- b h M.futt.% y t*/@t W On " *
' ' ~ " ' 7l?u't* Liu F .T ' 1st r,. hstts ,g l-p.-) "1 OP.W..%..RT.._. . M.%M. g m u.,n .,%s, w ,,,a,,,. g,,m., os. n m. .J Y i +uu mst >>vs.. uv um ut, w s. o,e m ,m %.,u.u.,o it..u,$ au.s,,,ase,it.. n. i ium e t,, t.wt. mi s,- na o si g %n4L tt Cl>1th wt*Th % n
- AC fW,ht lat%% wtAfktt (AdTil %.
l . w wst-w.wsco m /ts**wtcte. w w mt.w.s. ).p $ - At.s tw ooo tw>ss ut.Lte to wu E 4 oms or 'tPC." i getttntt tut.5 swt ve n.vu T vew1 a.s. 7. 4 lius,v.s.t% D* skw%6tibS*t9hChAb'. b Ats t. t %%%'s A'P%t 98%* (I Adf. in w24 ' t'. i ( ...,,, N c me te'*c** w to wn m t ouw.s c' ** nor
- tm m. iw I
@J' N , u n,,, %,.tc Tut Uts o. w,wsmcw f a wh ** t wn D4.% 9oA e.t itt'W.,g. [ \\ 0-o4 vte can tw ooo 5 ,, t - ,,. 'g 1 > cts et sow em.a.co,o..w-t.r,. 2e wo 'orwowws. A w c. etetmtt vio. e g, g g tw. toitt * %.
- m w,twtn.eit m_irte t sig.u.L.i,tL01 s smw - u tr t+ Wu's 30 tw o
m,. t
- a....
m.ww% wt,o nwiom tw ss. c a e g g,,.>te gg ('), t t*pi,t. MW wttit*4, o n t.ve r.t n**. sue.e.tu r w s. u%e mrunw e, uAv oc Ae A.Co i" tD M f'RC.VCI 4 7 M**. (%*) CLD AAJ 4(C CN TPE tadb6f>C .,,.o n,,, we.ocq m,' lie 7 m (3') Cr INStJL A.7tOH(f r.w t%C+ 8&D CF T E CEuM. D.C.,T E t it ee wiwre.mtr ov M.a. s. cr l r t ov.Tiss m t.t.e mtve.'es o e e.. l c.. h.c. w.v. m
- ,c s.'e. ts.
o.c.,o.., 3. u ot. + '. m mwmo e% l _. . o tt :. ions .e s y. ato e w. eg..m nusm,m s.. nu,,,,% a. r 6 ., cy % ,, i s. t.m,e sutw),tmts m e _ %, iwo<.a, em s 'tts msotne'm. y t W r. w tr ic., rem g I- '._4---- W. - gc g g.g i;r h. g- ~ t, 3 ~
- g. p te.S uto is
- c, t,p~o y~, gn.n s.es.m stat.,
.M t.m.F.A.C..T.UPa_NG . C,,, s.,w' i,. .Mu. w mir, ' tt c .. sc n t s,e el.1M,.DM)k.%9 'O' ~~~~. ,g, n. u.. IMET lC M:1, it $ w citytts.u s t m.u.ia u s _ni '.*w...k. i:in,y,y,i,' a. n.[.n'. W- -~' E..,, Wu T lem %
- Lis. 91 f..,mW C
- inwst4%
y ~~ s --.-J-*~-----'...,.g.....,7;l*, y,7 7.'. I ..,,,2;;;;;,,,..., m..._ i i gg,:; r..l1.. _.~ ~...~..... t.y.a sw{, t. ... ~.. ..,,{.,,,, m_. , ma:rJ =n. a. :* J.- ta ftL1;c.4n. E af'...,4';n) + ~, ~*;" ';. i. '. t) + % 6 F ) *M.J. a s ..m., _ ~_ s f.f.; p u% M mtA 54 D E Wi.~ C 6 ~ '.2,.,'.ijini ~ '._1 . '. ' "C ~~' ~~~ !.Z * ~. Z Ft W tt %..' 944.LC'.rt N. ~ .tv. 4.. -:,,,,, L en uom w. 2. e ).a, 3.
- ,d 's,;
met $.8 gd,
- 2.08
- , j,,,
_7 ..,.; 7.,,, L T I!
- 117.O..E..B,,.
'd ag ..t....., R .7.-,.,.. .,a_,_,,,,,;,..,,,__,m._._ _...:,.2.,.,,.a,.
- ans=
==n o f n 'I / Nm)' / i t l s h k (T.e, DN tb 740 dg Husts 8 as "F,.s\\ow u. \\ = 7 "Eu 40,7 bt b 0 -- e ir ).4wBu 40,.7). s s A* N j'* i.. " l ("x. au "~ Q*/~ ~ Q~ I (, tb a a *, % a %.nl a t..% (6 sig g33g, g m. s.c 3.c 3 p m,.. m,_. e gr. p 7*me11.g 'f*l Oh* RU s F Tip a. wos L*3 Q ($")3e j to* atewT,= ut -* $ 4 0 Meha (10) b'CT L "' 'O /- ~..-.-.e I--- ,p:~. y- ~ r m?... m f.) e :t? i h' /2/ / p-j / i e l.. , _.. ~. ,. + /wr---~e-e r ~ -l- -.-r~. [ /" )3 .._ i / 1; _. . g 2.. h ,/ I p.:s.;93 gm e i i .4. s. s. i h \\ \\'\\ s ., MI.- l I I I . c, i I s s. i t s. I ;,q# th s l l N s t r.c s i l
- l. #
- O l
N l s i N g 0 g f9 I N, * ,NN s N $.f: .jE ( N'N (N'N -...)' s N, A. \\. s ,sy, '\\g. N,\\ [ N s N. s i .f '+' H.* S f S E [rW/Q ^Y. U ,/f,/+/ / /;h,g// f 5 ./'/ ; \\ ga / --. ~.~. ..k .p.,,.,,.. p JJ) L I) 4 e, 'e n e s, As A j ~~' tr(~cn.;Th h*7 E ~ (i) g- _A w t.v.m,3.. W7a = /#, l Wo 16 sm /sF l i ? L G D *. ) 1 M1 L '.
- tt 11%% WT
% DAt *. 5/i' g" Fig. 2. L'T-l!.'. Fict.11.2 0.,.*,.1. C.ntaine a %' %==23 { tsesa.:.,*;* ; '. ~ ). y ~(.v,, a, W~;~ '. ::::.:::...:.=: :::::.r:=..~.::*.: i@p ..:- L = :::';.= :. ::.=r;. :s e E 3. !~. _'i.:~.!I.i..l....I.s.c.IEE. F..j e, -3 'hG ~~ [,j ?.~@[i ~~.*E':!DIi+1 X.. 'k.C. % - .~ ~ c +
f. 7 o. _ SI. E.rm..... p. -
- 9 -
e dh j h VftfW" ld' bh*,.9,;* K Y/ }2W/jd (fo*fifff,0f! W'tiffMfA (CW(1,L/tt" vitTd* 2 ? fil / 4Mit(plS er4f)*4*M /JD /(!ff[et ((> Nte[(Mff fMtitGntds, L / 4 l A .) t TI L APERTURE' . l . CARD-l
- lso AvaMahle on A
. Aperture Card 1 (3 1 e twit l A I Ishil - N H L21. ~ g,d2 +
- 1. wct.s.mts vinoeu escamn estt emow co.
abLL H(iG164 !? '4 l M**ssts#fa. h, C. (,0% %Quhb)., lie 6tCC U*a 43, ai
- s. amt, epio utMss.m 9mn ws,wwoon tne.ase no. tes a..wu u.na.G, tct.L,
4 c.t. l-. to . o +u e. sei,se,ow tt m atti i w tau w.o dmm. Mvi4 wm ver.wt (.vn),. I A ste FM40 tut 4M."tWL t'h7.L C0hTMMR . s.tw tre w.u, (e. I., e '" ho.t A t1i$d mca A, U%g&O/T1PL B(u),(Oct,Ci,b tvh. <3,s 4, toggt pgw, g,, ,,ge,, met. c gwgtg g, g%g, n,,, mom. o,m,.,os mt ,,,.m, Unt cm) 3 co,,,,,,,,, (n. g.u, u um ( ym.stg MART)t4 MhRit7% C.Ct\\P. e sit a 5.etm.,Wciriuriou. 8.- I (*f,,, '1* d f \\,.hbl, 04 E\\DWL, %. j ~ (,, %g,c.,4 5. Au BC isa ACwit<aa,Ct with ini d al st**4440 ,g ',, la. 1 t'u Gh0% Vt. 7.\\0 Wo. """ " "* *"** '".m er ccesnaion - 1 tutetw tt ttw. wits sw ts. F 3 Mobs L D1 - % A e ung s not,ntu > % t ts uwus
- vititv. mica.
l M.Ribb t\\0. DT64.l2 45o4 [ ] 6 N4 2 0 Ptr.:mn OLL P A NJtm. M a.T im.:. 9 - [l / 4.8WACC =., or rs.,g. J.sttut:,ug. g pe,,t', g, ltg To $4 6/mLC I 'JLEMA.MillT.C16 L f p g n,jn. g 4
- h. h,.,
10 f'.a A *.sWLE T F 4.if4Ni* ot t utt164 17 44 CM4,n64 (t*Eh4 Q ' P,,t ww g V.d_.I hf1M d..L1 crT cw.. I I. Of ML6J 'J 60id t 00 01. ebv () pek 5, nea s.igp3C f 6034 C m. pgg,g. g M> t v. *a*it, t.t. b.b 4 m ***15 n' s eu meu m s.n.o,o n. a4o %s,m v_ r e.~s.....,m.,,..,,,..m. A..AL1M httcMt FCe Pate#vtuG" a i I ),, il tt L ' *z *D t1 h0. 1/hD.'s3 &(6, FDP. PRak/e s h Cs, D L M, b.40 ' t i .1,.1.lGW 4gg*) 1%ie41 t HP HCL IHN: # 47ntas. i au ttw., u. st 6 ss c,. 6.u,,.s,.nto u Peitt %Y
- f' # i t y.L *. i.B % t'.t%',
p g 1 St*tkV %#%. 09 u m%iwt* ** 10 tt %vutwit, g . w I g8 M *AbutV t.. (1 s is*' e st t n%+4 H oh. '16.*u 14.8.Q ge,, a l i OI'r.n\\ -- U.GE.t t .E***41 s* b*t*' j 4 D % Yth uttRh % Pit;\\flC Mnou%, .) g Meu on. a.. 4 .j b M i e g g bat, w.tm nw, stt. g 4"e. I'011 't o msen Ass 5.sts g s g r*; %E } - t04%mte. F.sstiatet %st m ) EM I 4 g
- J -
"O 1. ).).. 1 .N.*I 3d.E* 1-V V'- I. ..o. m',.,,_n,m wuw m. th a u-SI rL.1nmi niu 1 3 ew 4 c,,.m, 3
- s.,
.t I "s'c*.*m. toJ"s.O Cth u.'.,t,,."m'. ** [.l. vf.m;rr;.;.rrimer.~ i S'T'm' ' l . mu z a@wEj r.:. O -- S E M IL% 1 y _,a.=.._, e.m 1o .......::- ;o..... r,;;;;. - qq- -pt.nettu.. b 4 p .... -{ ~.. . l.141dna .~ w_.... is w -ar"~r tea. .j "9'5dt $1k.f. d.f,"LS %. 4H. ,,, Alt _,M
- 86
_~ ke eet".(*632 _ g'.?.. v?.I' "I t l ,,,,,, '".w****.).'....... t "Mg kg' bein "I n UL M- "ut, a A - y swt.t. W R5 wsye.. C. ".^ % ton W "t" l ~ 4 S r ~ > v.c. s. y m a $ _._ au- _ ysw auny tim.n.,,_ 3. g p,mu. -~ 4 .I.,} h.- r. . Q.. j)...]UI:* h o t.tp t t. s. r._5 - k g. .f-- 2 M.7.* F 1,f,h '. .:Ti.
- .l'"'" J." Z -{ }** 'll" *;*- 77
...u-- p art:.: _ _, m ra =::- unu. ' a,. =
q w. (W/) 04/5) r u Curia Jut /AU
- o. //sME no twrir a
suunn ),,w. t. coan ot *m s covMA(.* - Rt. 'Xiu.s. cssio Alt tb. h 9. CasCMICAL JJrto.L r a t
- TJ C C (Ve'WIA4st4 4 ce... -.....-.....
d. ,i, ;.gi; w...in......i. a n. e ns. n C. m =. o. a..n.=..n.u. - o.. a ='a.s e. a ra."a"e 'is'". n eu w..iu a 4 i.e. i..
- ,g j
I Q, s e tek. euw wtw wo, AF + tuo a g $. 4a. n. (s. ./ ..} [4im. t] n {v, l-b Ma c, haw. SVt ,O J,i ~v .c. y eg t I \\\\ ,s 8 \\ . '. x'. i s e 's e --o j k.2 CLtM f Lk.tGt. tow < bum th 4,ainence et stii. rma.is L a. Lu*te, ss w.Taust. se .tyr g yy19,,,, stmuur, wwe. wwL.im ,_,I .inm e ge.t,t ne.tsstu w totxa ut SArtshociu g1 e.s# o w ma m us.. c nw. u.m H tm w out, usue<Also% p ev os n s.uovm. W e nosij i r 4 Ah) ~ r 4 3 m: 1 s WB i.j l 4 t.) li 3[ P I Q'.W. .#/. >/.).// .y7. fi(d L j.n m i i J. i A t4 us. nse l. ~ ~ 'gy(4.ij)'(j1 **O f V9-h,g E 12 t ,[ l Sa Ms/.El i E' 8 o.br ~ o nJ 'tro
- a.,/
S N,N J 4 f; J'.i g _.. p> e c . -. ~ < * .A..m. .o.. u t. gpM Y'6 b f,,, ' (e c, e.ts t o,T o ost b e _ tu.tt, i: i e
- C. h tas aril dl O A.9 %Et h:1t Et%
4 J ^ f f.-to,1L, i n s. i M. * *) >~ t 5 4 a s.i. n. u, a u. . u, l $m t t %...n ..e b.e..... s., x, m,Q *e,k u.2 n u...i m.. I* "'"'b '"*. '.845"*) 0 bs l 9t' ( on t i..J u ts a u.( s }m u .w.* F., ~ r - ~ - \\ x 1. I g g* ~ S i t'.L 6[,.. ST rm P Mt.. u a gn, Tb t * *'t m St r.s a.L 5.Wt,ta, i CP CoTt8 CD.uws, 61b i (4 , u.-.. n.,...t.o.m.. _ an.. v m.. W kW. D'.s D.W."#.
- lt y
Stktt-. W'. y
- a. 8 5 3 l
i I 1f4 siOtb is%N,.%t1.t. u.. n. t 4. 1 i l $3.%I(; I VfdCJK TD/hM/1d ((/ftAldf[ Vf/of/M4 t'orvir.s*ki 6 HQ3 L ; ssy.ow.j 70.4 4 fff' ate'titk/f} 9/'IJ/.%4./.m r[f[o 6/syy S'h ***Q^&k ( se n.d 4 ~ fo'.fffMis. /bl.!( al,WrZhltf pf gia/4/pft snt( ff % *10 Vg 8.nu. 6/bf /ff0* ifo'/o' 7fs fj'r(/ abri /)]/ (sf pfft) n,1,,gf,t,/,
- n. stt vahus s s
-... _ q 4 F w _..qw- --+b.-['d ';t.;. 'IntGe y f-+;4 N. ..c'%FiM& '. 3 8. x ,},s, n ~, u..*p",.:,.",,4. "',1 i.i y % 4/"%,, .r.:=f r n=.t.:=.:::.: I. 7.-.T s s
- .. ::... =.. =. _:. =. :.:=.. =..:_-n i
n a, &A 1x L m a f.;I f ? Fi.F F.:.75 5.s u Zi ,q X . Q1.i.,_'A i
- o >-
- m. tar.M6 da X !."..
.ta,p.r. h.'.2u,0. ;* - %.r _g A.. t -.. :...=: :. : -.: :.=. :.:. : ."..".,4 g .g
- 4....
ao n,,a - r i,i (. a f )
- c.,
y ei ,e -. :1
~ SlMEFM TI ., o,,, C*d'W ts'e A r L.,,_,. APERTURE t- .. q(.tN3 .m, E. nest, t r.1, te. CARD -\\ ~ " .t. "o m diso Anbhle Oc y ~~~~3'- I. Moerture. Card I / /o \\j. m y:, g c,, ?.r ' % g. Q - -.. ~ \\ ] W \\ J N y< r,y A: r;, at g 3. O
- t...
1 ._n. g . _L ' d. O ! I 4 e.( i. l'.....-~^- ' )) . \\ rut, mss w (%. wG M(SQ.o.? l m. l s/ ,i i w w o..s s e ..s-s,- 7 e % us tm sr wt a.. i b M t ts us s,Q. l. oa o a. w.c. m ._, 1. { W h,,. 1~~g ,3 t M t'm?. M1 _.-. g. s.., y p-qy-{v 6 MP3"" t 4 '-3 M -(- i tu.3 1 r,n gt, .c.> n% - w. i 'w...: \\,%.? h t**'. l' . h. * ~ ~.. n . - 1. @r r ' s w La '.. \\ g, f ]' [T,.)) ~ ] ,,.{ no 6 / ..nt 1 @O p'.'? i ' ("4 s' r. nos M.g.. ;. g@,4) _ sw} "I }' ,,/ 4 t. 4H W j (% ,[F p up te. 7 I -, e,..f, s i,-, r i rp et,c o ,s n n.. w o n. L >.m,.ns u.4) em 6,t a..s / -.- vMr. 4;3T ?:, 4 ,, s.. (~ll r i m. wu <..o ,a. v. m m. E i F 9 5.M %t k ' L C gIwo.Mcin,%1 944 ~.. u m.e s,oi.e. t n. - m. t.u.. w e. o 3 su onn...u. w.c..ou u im m.s..s n s __ q u.m,-i. .u ws. :s,...e ts. n,c, i n u,., s v.i tm, t - r 4 e uc sm. t.t u w.., n s n<,t ) ( 's 0. P.4 L memne, %,rsr a c,t as,t psts,,, ss A C. a t.,.1.,.e w* w a a c; 11ti u u s.so u,,,,.nc te se,m t. mst. e g (o A 64ne r%H CP t o u s i. e'S"n..O. L.h. CP *f t,p,,mt, Wu ggsg g agg,ggg g s .. sm.m. ,s 7
- a.>t. emm..ut u u :.4 cc. nsn.ns (n a n u. e en n
t e.n:, a m....u.s s,wu,mn n u ,g uit. %' uc u.u n ui a n a r., u.n u, m ;n, ,mw,. i.n y,, u m ,d)
- N
',! / J, a., i.. :,,e.... a 4..,, t. .,. r,., 4 n.,.,... n,.,., q .c.,, sv ,,,,,,,..,,s.,u,.,,3m',,., -y l- , s.,..i.....r,.n,
- i w,>.1 r..,,c l
.m.:,si e, u,n a.,,. i; a :.a \\ ~' l ~ ~ ' f j {
- b. n~*,floUfn?!,C t M(' A*4/ /*([+(s, i.e j g li,e* f t if fra,,3 yQ g f
_\\ ' ' ~ ' ~ ' ~ 'cL n.. or w.n s.s., s,... c...,, t,, w w,g ( r n t,.c,yr r., ker. A,Q)g n,y ag ms,p to sq q.g.,,,,,g y g,, no e m v.r
- n. : ~.m. n.r >
.. e,.- r
- w. i e ',
t- _ _. u s '"," A u ,,w #.. re.,,s r,a y t
- r. _.
(Q (d F.t g. .,$. W-14A i A. - - - m,., n i.6 Fi.wl".e iu :.", '. d tainer neem - ne se too. a n e o.. .c, 8,
- n 94t %
I b. >.11 P A*.
- 4 441 P t ra o.._..k -
( Inau.: be.. itx at: '/catel ) e n.yl.ef ',;.'l 4*ls o' b. tt -.Lp _ 4
- d.,
,-. a . r t on r, 4, .a n.4 .m. i... c %8Sst 4g g.,, g,, g. g gg. Ms O o. M /L len. Q.t t a s,, i..., t,..<. ) .i, i '.,u., ',,o,o,3 n. ne m o. i g ow.. u,3 ,6c i b.n.. A.n, et., s % o o.
- W i n...
, u,,og, (.htunsi %tti g1 at,i sn.A u. w.,i.Va.o c. * % ins
- v., r-r. --- - c-a'.t at a 6 4 f.L. Aasi.C,% t.63 *L E 5016. TWC 'f eb
(@)ls l
- "i ' imG".eamo La.a. 3rwi-
.g.mi I $ 1 t. ) n%u o so inw. t:,s s.m.s iuv. noun thtwiu.s,o \\i r untui r on owns c.. u,w vn ? 4 g' ~~ (P tT e A h. i ehu
- A M N
DhH%.% %f t %"J k. b M n.D 1*t y,Teknt .r.. j--~ -
- 7. ; 7; ;.; -- -- -
- q..r,,
.v.- .I.. JI C T D ..n... o.m.,u, c. c. .<.( Ji-slc V3 L i si y i
- 1. vin ^^J'._..
....:..='%.... ~4Dw.u.: dTusu J s'r, m W.. a. ?V.1. ~~~ ~ n." n ~~ .2.2 M a Ih .t. -("d,q/' um-. r ;;~.,W.. "- 7D- - " - - - ". - - - - ~ ~ ~ - - ... L. _ ..mf, _ &. ~.. f.m mm[e J oot. a_ as...i h... < >- t un nfra e.9 i i k r (',ig..'.._9. 8. g'J, [. 6 ...b ~ 4_.. _ :Z".7;,) e -~ uu. a. a I_ o m m. 1,...o til 'A A i \\ %%.t a o.-... -. g y'r/.7 -..,3 e,% s;;c m, m? bu. alt -.. " -.p . ~. _ nssu.-,. onw'- .,2. -.. g-t'.> T 13 s n. (Os n Muua, 3 .8 -S4 w .u._. re. h....c i~. = i r t.. e u... ,-mmu + w-" . _===. =a - -==== m .: a.- 'a a.": a., g g g;y lT.c.g. g g ; o.y, g y ~~ ......,n.a. y 87//2hoM3-DS
===8* =~ o %bO. 2 0L'1, '/g Os h, W - "l O N ' M %ntb.br.1%,. h.gW. 49D. 4. EtQO. A I MP. utts.o MoMt
- 0L O*f 4.O n4
..o %% it ". c ...g .<s ..'Q- ,' / i 4 / s g, 0.? h. G e 14 \\' \\ o 1 s dr ,s i \\s v r ' i f @ jtu a .As){ = f < 'i. v i, e \\ n o * \\% //,:. i s .s is / % \\ e -.f ' Cgn( ) :.- - J:..' r ~ &d'/ M-d$.d titbou1. %m.b 44PL, L.. g y g, Dh. %..it.mt u W1.LG. E I I f l 4 M.QO. t4Q3_"T n*it, I g l t w tgoqv,Amt *Wto tog,
- t. %0 pj AT1 M.su ed w.6,. *t 6 g....
.7.h 1,9.GilhiN.AM.D.dkh9. 70 j a uitj ten utTie, .l l %tt btT. IhY.(j [,@'E l IN . - -.w,9 . c.;x ., + F .. s,a i s L'N s w A. s \\ s I l i-p,hte.ett. \\ \\ 1 x c l I i l j I 1 3 1 s l ) I E liEl .~ 4 '. m v J uuta vev t "I
- e. o we.. ewr.' p ti E-ris 9
d AA,.1m.At (*A a e
- u.. w o-t ll i.
i r. i X l w s s i g s ..i h,. ssk\\ if stC btT. l C l I; l. s.' N y v i I gs\\ i s f
- i 1
e j T,~? Fir <. 4 '. I ?'.' /d s-s y . l. ,'.'s ' 1. :, .N.s, ', Fi:'Eih da,i :i s s., s i i ( In:g.: Va r.d ei(, ' '. g.\\'[x ') I '. j t I L I.. r. I l n i t i I g .-..O,\\ n.k).%, \\ %\\,.,h to (l uY. k990CfAltO)1 Of --[ e...., 1,' HQl">:Pt TO *iub\\D4~ I ^ i;:.'.;r.'.::* nts. wwt.L
- up6tt.s').
~ s chst. : - V.% e E 6' M 77 *.!*:T;*fd'.C'J:l.".*' "P"II;";! k
- ?.*'.
- :;;.22llT.*:.'7:7.%':.,
t1 l4 s 6 7:r=llrM l O:".". ::*/l.l.*J.T.J k I 'r**"'.l*..r."l* "l.0l'.".'".17.:"J' h_L 0 LT. ::.r;r ' : 27.*..**'.*l.""l* -4M.,pr.my'4 ] 4 ( C_._____..__
10 a .V , ) Da. "T"L'g,t.9, Ru 4t )' - 11'.* f.R. m '/z.-nwC *T AP F. ) S.g t,P. /
- yg tR. 8 "/)t CP.
( %.uvt txP. 1 a PLC.. OH 4in) ., * ~ D a LAntL 'Tutm, 8 (, 4 1%C 'lAf'.i. VL D P. % tsg. s )V6 b P. 'ist t-koLLS %C* APP ET 04 G 3*a Dih. EC. M Snod'*. fy, uwc,mp y g, b/n DP.
- %*MP & 4
/ l 6 ,.o me.s 2o.sP. w \\ D4. Q,.C. ._ j/ . oc clA.,m,.n,, .s brAPet ow s.ooo A.uc,s.i s to, se. go* .(J. j j A P A %t OH P 600 .g ). s, j e m.,C.,AS.%uown, qx t i m, t. m w g(. ht.4) t g. "T M.uem.ctou a 4..la. ...h,h -,s l 3 I %.t t,P. sse <. 96t. N w g3 'A q;er. v.N \\ .,. -- a h--.. t. .,..Q Q to ,e,o s,,,, e uw en.n e>. Ij s' r. . osa.%. 9, 6.1 % om. t.c. '..I g l I AS
- .no.as.
i, - 3, __.. i, ,.. e, 3 t g g .i.. 4, w y' s,cr. m i s. y @hl sN s ./ h '.y h.. / m. t .e '.? \\ .x s \\
- w. t' gg O*- d~
.'s'-
- -~~ * * ' -"- -'"'** 'ge '
"d'. "I D ' ' ~ - x. S H tem
q e>- o' s>
j
- w..-.. s om 'Jc...j h, j
.s l i r N
- s.
li. .%p.m.T c.r na l y .s-g g ,,.m LlL'M Il.....l..,,...,,,,, .l 1a 3 ( W e4 &l dk' Ml .I 1 i ~ Ml.... i Y. i.. c,.._.s...........l e i am ,s: L i 3 l j r [* ha* W b '/ b t \\0\\.t2 %o n-u wtan, s . w'e.. e( \\' N os. vt') j ht..i ti g a 1%*1 L *. t wet : V g m.> N l r ll ,, 4 - g- _ t..y _.. W) 1.KD ', '/ -- s ~ 'n 2 APERTURE T ~ J , u.,7:. ! m,.. d-f W .y. __,. u - 6 p.., p)s,, - CARD u I -.. =... ~ A ht'*) g { cq.,t t e be.ss *,c e r ' ~ 3 t., e, c g, c m ciner c m.s ~ n. unt - , no.. Xperture Cara .- ) . u 4 mahanc nou.m) ( ummuA '7A)a s..to now. ~ hth. twoa ~ .it Mo a sus o, s hk , k$knh hhk q) h ru,' t. : 4 "*-. ". v '. u $' 2 0. coas.,c st. z
- Y~F su.u.-10.r Wlli2DD3&OY t
[M{.....M.,..,_...... =. =....... ~ ,"l,'.',. ..., J' p_J !. P.'..n.f ,,,,,,7" L tg una.a.. u, s. "'g.., .2.r---- !LO _.~ .u -m ,W,g.. *?",l',,,'. m n -- a y ~- ~~ ,Ql% 'g,t DT.1 % A f \\%gg(t. swtev.wu cowamrs a wy.: wn, n.m:tw-'y' ~ ~ ' 7'j 'b db ~ "'~ ~ ~ ^~ ~ ^~*** F % *> Si LE %%W P ub. cwt 9 t6 '"'2-~ "2 p$.-~it '.i.2 t. A C ., tt. d .W~ ~ 3 .d d;i $k,f.$dsh -' db k $ 5'db 5h5 h b bbbb 5h DII 5 Ih2:r ;MQM( '" l' .e.y. _.
_
= = = y;.. ;y.=.= ;= f ~ qu p s, g m = - _ = _ = - - _-..,., .=
p a 11-Uranium me tal. 'or alloy pieces must be' contained ~ within a ' screw-top bottle or a' crimp-sealed metal-. can.with, a c nominal wall thickness; of 0.254 mm (10 ' mils ). Compounds, of uranium are to be - contained c in a screw-top polyethylene bottle as described above.- The-1-mm minimum-wall-thickness polyethylene plastic bottles specified for. uranium ' containment ' are 1 to ' be visually inspected for defects that would interfere. with proper function. . Bottles ' used for solutions must be inverted for at least five minutes and no' leakage' of contents observed. Bottles used for powders 'and ' dry compounds are to be hand shaken and no leakage observed. Alpha smears are to.be performed around the closure of the bottle af ter inversion or. shaking.co-ensure" nonleakage. If neither. test shows leakage, pressure sensitive tape is-to be used to seal the lid for subsequent packaging. Required inner Containment Vessel The body of. the inner containment vessel is l constructed of ASTM ' '(R). A519 or A513 steel tubing with a maximum inside radius of 82.6 mm (3.25 in.) and a minimum wall thickness'of 6.35 mm (0.25 in.'). The bottom of the vessel is constructed from no less than 9.53-mm - (0.375-in. ) thick circular ASTM A-36 steel plate welded within the tubing. A 12. 7-mm-(0.5-in.) thick ASTM A-36 steel flange. with an 0-ring groove and :eight equally spaced 9.53-mm- (0 375-in.) dia. threaded holes-is welded to the Cadmium is applied to ti e inside lateral surf ace l open top of the body. l of the inner containment vessel. body from the c6p of the' circular bottom plate to the top of the steel tubing. The. minimum specification is 0.1524-mm- (0.006-in.) thick full density cadmium or its areal density equivalent. High-density (90-(4D DUO.) polyurethane is applied over the - .] top of the bottom plate and the ' cadmium-covered lateral inside surf aces up to the top of the flange. The average thickness of the polyurethane is 5 59 mm (0.220 in.). The top of the inner containment ve ssel - is constructed from no. (R) less than 12.7-mm- (0.5-in. ) thick circular ASTM A-36 steel place which I l has an outside diameter of 247 mm (9.75 in.). 'The top is fastened to the body by eight 9 53-mm- (0 375-in.) dia. 304 stainless steel bolts which thread into the flange on the inner containment; vessel body. 'A 6.35-mm- (0.25-in.) gland-d ia. neoprene' 0-ring with an inside diameter of 190 mm (7.5 in.) is used as a gasket at the top / body interface.. The operating temperature range of this specific 'chloroprene (neoprene) 'is -54 to 149' C (-65 to 300'F). A minimum of 3.39 h (30 in'.-lb) torque per bolt is suggested to seal-the vessel assembly. The useful inside length of the inner containment vessel is 395 mm (15.5 in.). The engineering drawing of the inner containment vessel is-presented in Fig. 3. Required Thermal Insulation and Structural Support ..t Cane fiberboard insulation (typical, Celotex) with a minimum den-sity of 224 kg/m3 (14 lb/ft3) is used to insulate and centrally l !E _-__1
5 12. i j 1 1 support the inner containment ' vessel-within th e' outer containment. j vessel. The minimum permissible thickness of insulation surrounding the-J inner containment vessel is-76.2 mm (3.0 in.).. Construction grade plywood of 6.35-mm. (0. 25-in. ) thickness, is used for ' additional axial: l j and lateral. structural. support of the inner containment vessel, as noted in. Figs.' 1 and 2. The fiberboard may be cut from available' smaller thicknesses and-layered to form the required dimensions of. insulation..For removal of the lid,' nylon rope handles as shown in Fig. ~ 1. are used. ' Optionally, ~ finger holds may be provided in the, cop section of the fiberboard, provided no less than the' minimum thickness 'of insulation is; maintained. A general purpose, fast-setting, waterproof, self-bonding cement shall be 'used for gluing the layers together. EAll exposed surfaces of fiberboard shall be coated with a weatherproofing mastic. Required Outer Containment The outer containment. conforms to Department of ' Transportation i (DOT)' specifications for a 30 gal, 17H steel drum, as defined' in Para-graph 178.118 of the document Hazardous Ma terials Regulations of the' Department of Transportation Tariff No. B05-6000-C.* A - drum equal to or exceeding the performance specifications-may be substituted, provided the equivalence is verified under. applicable DOT regulations. The drum shall have at least four 9.53-mm- (0.375-in.) diam vent. holes near the top. Each hole is covered with either a weatherproof i l tape or fusibic plug, cr ca equivaler.: devi::'. j Additional Package Considerations l Since the contents of the package' are either of a solid and chemi-l- cally stable form, or primarily contained' within a corucsion-resistant
- vessel, there is no significant reaction between-the
- contents, i
packaging, and/or container. As demonstrated in Fig. 2, positive i closure is provided by a locking jam nut on th e closing. ring bolt. In addition, the closing ring bolt is ' drilled at the end to re'ceive a security seal. There are no lifting or tie-down devices requiring l evaluation. l ~ Type B(U) package, a load-l To ensure structural adequacy as a l resistance test in accordance with USDOE order 5480.1A.' was performed on the container and demonstrated that the yield strength of the con-tainer was not exceeded until a. load of 66.7 kN (15,000 lbf) was applied. This load far exceeded the allowable ~ load of five times the gross weight of the package [4.67 kN (1050 lbf)]. In addition, the pressure test applied to the package ' for the evaluation of th : hype thetical accident conditions demonstrated a pressure resistance of the, package up to a 172-kPa (25 psig) external water pressure. 1 9 1 n
1 13 i EVALUATION OF NORMAL CONDITIONS OF TRANSPORT ~ For the original safety analysis,8 four DT-14 packages were tested or evaluated for compliance with the various regulations. Since three of the test packages had an inner containment vessel whose use has been discontinued, the evaluation of normal-conditions of transport i is confined to that package with a vessel similar to that described under the heading Required Inner Containment Vessel, above. The modification described herein does not affect the results of the original package tests and evaluations reported in reference 1. i As required by USDOE Order 5480.1A, Chapter III; 10 CFR part 71 Appendix A; and IAEA Safety Series 6, a package with maximum allowable material mass was evaluated or tested'to demonstrate that: 1. There is no release of radioactive material from the package. 1 2. Effectiveness of the packaging would not be substantially reduced. j l 3. There would be no mixture of gases or vapors in the package which could, through any credible increase of pressure or an explosion, significantly reduce the effectiveness of the package. Following is the list of separately applied tests or evaluations in which the DT-14 package demonstrated no loss in ef festiveness as a container: Heat. Though the package was not subjected to " direct sunlight at an ambient temperature of 54'C (130*F) in still air," the hypothetical accident test revealed that the contents of the inner containment vessel would not be altered. Cold. Though the package was not subjected to an " ambient temperature of -40*C (-40*F) in still air and shade," this temperature is within the normal operating range for the materials of construction. ( d Pressure. When subjected to an " atmospheric pressure of j 0.5 times standard atmospheric pressure," there was no loss in the d effectiveness of the container, as was demonstrated in the hypothetical accident testing. Vibration. Sictilar containers have withstood many years of " vibration normally incident to transportation" with no occurrences of significant damage or loss in the-effectiveness of the container. Water Spray. The container was not subjected to the 30-min water spray due to the specifications of Itak tightness for a 17H drum with weatherproof tape and a fusible plug, or equivalent devices. Free Drop of Four Feet and Corner Drops of One Foot. These tests were not conducted 'since the 9.14-m (30-ft) drop test for the hypothetical accident conditions caused only superficial damage to the edge of the container by denting the ring and ring clamp. Y
= i 14 q l 1 Penetration. As demonstrated in previous tests,s impact of the hemispherical end of a vertically dropped steel cylinder, 31.75 mm -(1.25 in.) in diam and weighing 5.9 kg (13 lb), dropped from a height of 1.7 m (67 in.), will not. puncture the outer drum. Compression. The compression test that was performe d j demonstrated that the outer drum would withstand a compressive load of I f 11.6 kN (2600 lbf) for a period of 24 h. This compressive load far- 'l exceeds the required load of five times the gross weight of the package- [4.67 kN (1050 lbf)]. ] ) 1 l EVALUATION OF HYPOTHETICAL ACCIDENT CONDITIONS l For the original safety analysis,8 four DT-14 packages were tested or evaluated for compliance with the various regulations. Since ] three of the test packages had an inner containment vessel whose use I has been discontinued, the evaluation of hypothetical accident conditions is confined to that package with a vessel similar to tha t described under the heading Required Inner Containment Vessel, above. The modification described herein does not affect the results of the original p.ackage tests and evaluations reported in reference 1. As required by USDOE Order 5480.1A, Chapter III; 10 CFR 71, Appendix B; and IAEA Safety Series No. 6, a package with maximum allowable material mass was evaluated or tested to demonstrate that there is no loss in the effectiveness of the container. J' l Following is a summary of the results of the sequentially applied l tests: l Free Drop. As loaded to a gross weight of 95.3 kg (210 lb), the package was dropped from a height of 9.14 m (30 ft) onto a flat, essentially unyielding, horizontal surface, striking in a position for which maximum damage was expected. The only damage was external, by deforming the edge of the container that struck the surface. Negligible reduction in the volume of the container occurred, and there was no loss of effectiveness in the container. Puncture. As loaded to a gross weight of 95.3 kg (210 lb), th e package was dropped from a height of 1.02 m (40 in.) onto a 152-mm-(6-in.) ' diam, vertical, mild-steel rod. Slight denting of the drum 1 occurred, but there was no loss of effectiveness in the container, J Thermal. As exposed within a furnace to 802*C (1475*F) for 30 min, the vent plugs and lid gasket to the outer drum were destroyed, and venting of flammable gases occurred. The Celotex insulation was i charred to approximately 38 mm (1.5 in.) deep. Water Immersion. After natural cooling of the package, th e inner containment vessel was removed and immersed in water pressurized to a gage pressure of 172 kpa (25 psig) and demonstrated no inleakage of water. ) l I l
15 EXPLANATIONS OF HYPOTHETICAL ACCIDENT CONDITION TESTS AND RESULTS Figures 4 and 5 clearly show typical damage to the tested package . caused by the hypothetical accident conditions. Damage caused by both the free-drop and penetration tests. is seen in Fig. 4. Slight puncturing of the drum occurred when the. closing-ring bolt was forced into the drum body. Figure 5 shows the disassembled condition of the package. after the thermal test. The temperature indicators on the sides of the inner containment vessel are graduated in five 28'C (50*F) increments, beginning at 38'c (100*F). Darkening of the two dots on the lef t indi-cates that the temperature indicator exceeded 66*C (150*F) but did not attain 93*C (200*F);. therefore, it.was demonstrated-that the inner containment vessel did not attain 93*C (200*F) at the bottom side and did not attain 121*C (250*F) at the top side. A temperature indicator on the lid of the vessel darkened to the 121*C (250*F) dot but did not reach 149'c (300*F). The polyethylene bottle used as a primary containment vessel was tested and demonstrated that it would withstand an internal gage l pressure of 48.3 kPa (7 psig) at 24*C (76*F), with no leakage of liquid. Figure 6 presents graphs of the certified thermocouple time / temperature recordings within the furnace during the thermal test. It should be noted that the temperature within the furnace drastically lowered upon opening the door to insert the package. Timing for the thermal test did not begin until the ambient air temperature within the furnace reached 802*C (1475*F). The thermal test.was thus much more severe than that required by regulations in that the package.for was subjected to ambient air temperatures in excess of 694*C (1280*F) 12 min before exposure to 802*C (1475'F) for 38 min. The inner containment vessel was water-immersion tested 24 h after the thermal test by submerging it in dye-colored water and externally pressurizing to a gage pressure of 172 kPa (25 psig). The seals of the vessels demonstrated the water tightness of the vessel for periods exceeding 8 h. l ADDITIONAL TESTS OF INNER CONTAINMENT VESSEL INTEGRITY Additional tests were performed to demonstrate the integrity of the DT-14 package inner containment vessel.8 In these ' tests,.the vessel contained a 30-kg simulated load. White blotter paper.was attached to the inside surface of the inner containment vessel lid before securing the lid closure bolts to 1.36 Nm (12 in.-lb) torque. The vessel was packaged in a DT-14 container which was then dropped 9.14 m (30 ft) onto its bottom end. 90 +
16 p_. ,,,,,,g.
- f h
p w a n sglh? E h-khhkh$g!$1MMn; ~ .w=. rew rxwgy b il - 4 4, = - - +4p
- p
. a " :9 gg l /h,. yMj 4 e. .M[i n.as.u@QWi/rf" ** pr . wa M Qdhs *n.aw.m - * 'h = :.4 w9. WM ~. .'7$:n 8 ' b, - <MiQMMWi C* d. s%+% ,9 a.T ' F-vpNahw-rftWMt@b'G.j k 'E "&%';dMWF7:9:' j&~ $ %NMBES? iiLS. A< W.EUN.T4(6 hhi%$%$W~ h.hWyg@%#inM %Q%2
- &C
- s; & hic 1 It? Q R f?$.
~ V-w t H &. M .... rr$ .c 1 Y.$bhh!,0h.Yh. h.b'.kk ~:.w$ $g-.YYhb?h..v$'hf.w2.8 hf.~ ~~ .c-. n --w?EGlhk?Mh&dLb?'$?$1r':? A. e~ W Un l ??D Gyj YWh&~iimE ?# ^ $ $?$A ~. az
- a.,. g N ME M.a. 9pxm o.
-E8 ~ wa v. ~ w
- j. ~ %..w h :: ::sn A! ;r.$.:x W.Ma.r. 2:-
9,&\\%f 6A i w 7 $f: u.
- e. <-
. "., g c.--
- ~
b W.,,:.- y,);,p r,vsy.4 72;1;.,,- ; j,.a. + 4 N, m yy,39%had y e-Gp ~.. :,., n.....W:i;xy
- .4
- s. g; 6 - Wc
- s w
..e . +. ike .?,,-
- ,:a.. 's n r-
'3
- ,. 9,,
y .:4,1%::Gt- &*Wlb ,, f...' / j%I N ..~- n:{. % %" Q.'4 ~w1cyly ;w.,;NW ~ '%.wav4%:ggM ?g@?'R'f.,$kQff t winrw n. .-l. Q W Yg 5: n' r e us.n-e s - =_,. -- -.a -mmen . n.w..+, .k [+*^ k F A'**i . nuy, ~ ur., e:. fks :.+ m. b:%.j Wg. m = 2> 2 Fig. 4. Damage caused by the free-drop and penetration tests. J
l 17 l l i 1 Y_. a ~. a f i ). f, y-1 l 0 ..= 1 l m
- -- ~...
[ _,,.gS') - { (*m,,, * * = - - ~. a*** ~~' %.2- ~ y. c:. ~ .. 4. ~C ~
3
-) 7 Qsy.,,
- a. a e.
ss ! f' I c9 ' ,fb ^ ' b- $'c /M$sh.gf ( us$ b I WA O'!R- " %sb?r.i$ow::9%MW@ r'h d J 5' i -A i.';. ttt J.u h d e f.c.2i'O.% N:td.A.= rup w = < - ~ 4MR.42*5 FWfEN/Y+W.yv -2 fmw u:w. s. y i iMt?w MNjd.S$d.p!!fdb&*Mfydy?eMW'WN r;f, 0hti?rt'.*w? o&4.JYR.W f y*"- ) dh($@h,M$nWS5sks$t@MS N$%Mf h@[fEbh.@Sf h.dh j ) IIS$75 M M Y 9' D: d*1 M@. ye.N.m 3M+). i @2.a,.lC.M... w IN..,. !$ ...~,.. sv $.$$ u. f5 ' ',y - f %?C W.er c D!.: u5. lSo~M's. L%ucy. y;...,., n. n-r. ~n U4dg~k&rMO)1h@kG+ -N M %,ff.g,iiW v'4 %. i u t f 4l'k - p D e^ t; f'. ,a f2. M. md k ? s,, w%..%,.::. g. g,. =% v .:.x, m.ay r.,. ;; e.. :s.. ~.. 7'...s. v.. m.,.... s. ~
- 5. -.
1 b.-Q, :.. p..- Ac w. - ~ ~ - - - ,$a..,J.fr....-&~"'OQX.t? ' E. l.S Y *LR Q... ._-.,. ;,i - .>u. L -~.- ? ~ k J. N NMi~f%g4Eqf;? g a-jj 3ll3fjpp y' n l .b $n@iM55M'6D,G6pS[# Mf).6.%. bk NYNM' "~E !p., ?M. N:/N ~g,d
- 9. E i
.p 1 =,C ,s "MM5: ^ AO [ i 6 t y..? T.:.'.y%e.:.: :i.GICM,w.:. n%,, =,:g? c. I' ';'. L' ~ a' 8 y;.:: .,x.q,.~ w a l-dt" - . - = ~ g .... f. ~ w} RMF _ > fG;ge.W 55# L , f,a 7 - y=a,.w_arg' + Mmn,. m%- Fig. 5. Disassembled condition of package after the thermal test. il 1 i I i
1
- 18 i
4 v.owo as aos End of 30-Minute Thermal Test 1 [> ){ j I a q l i i k'n Start of 30 Minute Time Period 1 Packages inserted into Oven 1 ) l d f I I l f I h I l l l 800, 1000 1200 1400 1600 1200 1400 1000 1200 1400 1600.1200 1400 1600 Temperature {'F) l I i Fig. 6. Certified thermocouple time / temperature recordings during the l thermal test. l + i l i The drop caused. slight damage to the bottom chime and lower roll l ring of the outer drum, with no breakthrough of the drum walls. The 1 drum lid closing ring and bolting mechanism ' received no ' damage and ) remained secure. J i Following the bottom end drop, the inner containment vessel was l removed from the package and internally pressurized to a gage pressure of 51.7 kPa (7.5 psig) in accordance with ANSI N14.5-1977.8 Neither i l coating of suspected leakage areas with liquid coap 15 min after pres-l surization nor immersion in water for 15. min revealed.any leakage. The next test, in accordance with reference 6, used spiked nitrogen (90% nitrogen /10% Refrigerant 12) to pressurize the container to a gage pressure of 103 kPa (15 psig). A halogen leak detector. gun was uged to probe for leaks in the range from 10-2 to 10~7 standard cm /sec. No leaks were observed. The final test was to immerse the vessel, internally at. atmospheric. pressure, in water colored with red dye pressurized to a gage pressure l of 172 kPa (25 psig) for 6.5 h. Following this test, the container was opened and inspected. The white blotter paper attached to the inside of i the lid revealed no evidence of inleakage. I 4 _____--____-___-O
4 19 NUCLEAR CRITICALITY SAFETY ANALYSIS ~ The single-package and array analyses are based upon results of the multi-group Monte Carlo criticality program, KENO ' utilizing 16-energy- $38U cross sections. group Hansen-Roach' and Knight' modified The program and cross sections are. considered well established : on th'e basis of their success in : calculating ca large variety of critical experiments, as validated by various authors.8'-18 Validation results show that a calcolated neutron multiplication factor plus two standard deviations equal to or greater than 0.970 must'be considered critical, and all lower values may.be considered safe. Single-Package Analysis The physics model for the, single package ' analysis is shown in Fig. 7 and assumes that ' the inner containment vessel was immersed in water at least 300 mm thick on all sides. Note that the cadmium layer on the inside radius was assumed to be 0.1524 mm (0.006 in.) thick and that the polyurethane rubber layer was not considered ' since calcula-tions showed that it had no significant ef fect on neutron multiplica-tion at the thicknesses used in the DT-14A inner containment vessel. 235U metal and UO2 with maximum The fissile material used was 3 235U densities of 18.8 and 9.506 g/cm, respectively. Maximum loadings of 18.0 kg 235U metal and 21.0 kg 235p e, 902 were dispersed with. water. within the inner containment vessel with the results shown in Fig. 8 ' and Table 2. In no case did the KENO-code-computed Kegg + 2e exceed 0.95, thus indicating that the single package will be. sub-critical even were the permitted contents dispersed in water within the inner containment vessel and the vessel water reflected. Calculations using the most reactive homogeneous U(100) metal / water mixture observed were done to examine the sensitivity of the system to cadmium thickness. Doubling the cadmium thickness to 0.3048 mm (0.012 in.) reduced Kegg by 0.02. Array Analysis The physics model for the array analysis assumed a thermally damaged container with the exception that the hoop rings -and closure ring were replaced with a straight wall. The actual diameter of the 30-gal drum was reduced by 7% to equate a triangular-pitched array to the square pitched array used in th3 calculations. The model is illustrated in Fig. 9. Since the shape of the DT-14A container does not permit ideal cubic arrangements of
- packages, calculations were performed on selected arrays which would have near-cubic overall array dimensions in order to represent the most reactive arrangement of packages.
? The minimum transport index (T1) was determined by dividing one-fif th the suberitical number of damaged containers into 50. Though this method of determining the minimum TI is conservative, the method' a .L
20 Qf 0 - ' Yewc $3.soe. a I I 41.43375 40.18375 Steet g 40.006 f', L. .J 30.290625
- 8.735 i-t s
Meterial Atomic Densities ?. - (stoms/b cm) Cadmium at 8.642 g/cm. ') 8 p - Cd 48100 4.8301 2 8 Steel at 7.82 g/cm C 6100 3.921 2 Fe 26100 8.3491 2 8 Water at 0.9982 g/cm H 1101 6.6)42-2 or 1102 .O 8100 3.3371 2' f I Water j f 1 U(100) MetalMeter or U(100)O Meter i 2 j at Various Heights, Masses, and Moderstions 0.0 0.9525 8' i 2.8575 I dl l 8 REE l $w" t as Fig. 7. DT-14A single package analysis physics model (all dimensions l in centimeters). I 9 l l l l l i e
21 Y.oWG salto 1.05 DT.14A Inner Containment Vessel. Water Flooded and Reflected 0.006 in. Thick Cd Liner - 100% U.235 Enrichment - f Homogeneous U MetalMeter < 18.0 Kg U-23'5 1.00 { Homogeneous UOsMeter < 21.0 Kg U.235 - 0.95 a 4 .p a z . a w 0.90 "f?f"~,m.. E ./o oN-0.s5 It s a 1 0.80 o. ' ' \\'.0 0.75 10 O.1 0.5 1.0 5.0 - 3 U-235 Concentration (gu 235/cm ) I Fig. 8. DT-14A single package analysis KENO code results. 1 1 i e sh s j 6 e .i !5 i,
22 Table 2. DT-14A single package analysis KENO code results 235U 235g Mass Density Height KENO code 3 (kg) (g/cm ) (mm) (K gg o) e U(100) Metal / Water Loadings 18 18.8 ~44.888 0.85322 1 0.00475 18 10.0 84.390 0.85989 0.00531 18 5.27 160.000 0.89816 1 0.00467 18 2.64 320.000 0.91147 0.00474 18 2.09 Full 0.93530 t 0.00520 15 1.74 Full 0.91575 0.00531 9 1.05 Full 0.89339 0.00546 6 0.697 Full 0.88783 0.00582 3 0.349 Full 0.84309 0.00523 U(100) 0 / Water Loadingo 2 21 9.51 103.572 0.77256 t 0.00403 21 3.08 320.000 0.86554 0.00463 21 2.44 Full 0.87462 0.00468 18 2.09 Full 0.88092 0.00517 15 1.74 Full 0.88848 t 0.00519 9 1.05 Full 0.87382 0.00515 6 0.697 Full 0.86446 0.00539 3 0.349 Full 0.84453 0.00590 simplifies the analysis and reduces the required number of calculations to justify smaller transport indices (i.e., one-fifth the suberitical number of undamaged packages divided into 50, or one-half the cuberitical number of damaged packages divided into 50, whichever results in the larger TI, for Class Il shipments; and one-half the suberitical number of undamaged packages or the suberitical number of ' damaged packages, whichever is smaller, for Class III shipments). The permitted loadings of Table 1 were taken to be present in the bottom of the inner containment vessel at the densities and moderations indicated. The KENO code results for the largest suberitical arrays of these materials are shown in Table 3. Effects of interstitial moderation between packages and within the cane fiberboard insulation were investigated.8 This study was accomplished by increasing the hydrogen atomic density of the unburned portion of the insulation within the calculational mockup. For all. arrays and material-type loadings considered, the readtivity of the arrays decreased with an ijeresse of hydrogen content in the insulation. l l }
23-i
- v. owc as sn
] 37.306 q p 34.340 34.231 8'"' Bumed Cane Fiberboard (Celotex) e f 31.691 l Colotex 26.194 Material Atomic Densities Void 16.193 (atoms /bam<m) Steet Cadmium at 8.642 g/cm8 i 15.558 Void yf Cd 48100 4.6301 2 j 3 ' Steel at 7.82 g/cm C 6100 3.921 3 Fe 26100 8.3491 2 f 3 Ceiotex at 0.2243 g/cm H 1101 8.3306 3 l or J 1102 j 0.0 C 6100 4.9986 3 O 8100 4.1654-3 Burned Cetotes 2 C 6100 4.9986-3 I \\ Material 4 adings j 23.971 1 24.e 32.861 35.401 I 1 35.510 37.3 @ J L II I il lh 2R R R 88 = o* 88
===g 48M RR e Fig. 9. DT-14A 'anay analysis physics model (all dimensions in centimeters). p 6 e e I F 1 l L.
f. 24 Table 3. DT-14A array analysis-selected KINO code results for permitted loadlngs Material type U(100) U(100)o2*H o compounds Metal 2 2350 density (g/cm ) 18.8 8.33 4.55 2.05 1.15 0.119 3 H/235U atom ratio 0.00 0.43 3.22 10.7 21.4 216.1 235U maestpackage (kg) 18.0 21.0 16.0 8.5 5.5 1.0 Array configuration (XxYxZ) arxex as e'xeox, 34 x34 x20 20x20x12 15x15x9. ex ex eo Number of packages as so 23,120 4,800 2.025 = Kegg 0.8/467 0.92444 0.94183 0.93769 0.95001 0.93612 to 0.00447 0.00470 0.00464 0.00558 0.00532 0.00459 I 1 An investigation was made of the effects of altering the shape and densities of all material-type loadings. The KENO-calculated results demonstrated a reduction in neutron multiplication in all cases. Effects of changing the 235 U enrichment for the dry uranium oxide (H/235 U atom ratio 0.43) and uranium metal were investigated and = demonstrated an acceptable margin of safety with all KENO-computed k gg + 2e less than 0.970.8 e To ensure that the analyses were complete for mixtures, alloyg, and compounds of other materials not considered, graphite (1.9 gC/cm ) was mixed in various combinations with permitted dry uranium oxide loadings to observe changes in the KENO-computed reactivities. Graphite 8 provides greater atomic densities than elements of other uranium com-pounds and provides less neutron absorption than other elements. These characteristics provide a conservative method for analyzing other undefined compounds. All KENO-computed values of Kegg + 2e were less than 0.970.1 It is concluded that the DT-14A package may be safely used for Fissile Class I, II, or III shipments when loaded in accordance with l the specifications outlined in this report. j l l QUALITY ASSURANCE j USDOE Order 54 80,.,1 A, Chapter III, establishes procedures to assure quality and compliance of specifications in the fabrication and l l assembly of each package. j l Fabrication and Assembly of Packages l i Fabrication of new containers may be performed in the shipper's facility or by an outside vendor. A detailed listing of sizing, mate-rials, and specifications has been prepared and is shown in Figs.1, 2, ,,. { and 3. The fabricator must meet these specifications and, in addition. { provide the consignee with a certified quality assurance verification j for the fabrication of each container. J
25 All new inner containment vessels will be tested after fabrication to verify the presence of cadmium. Neutrons from a source transmitted through the lateral surface of each new inner containment k vessel will be measured by e detector for comparison with measurements ms.de on at least two standard vessels. The standard vessels will be ~ DC-14A inner containment vessels, one without cadmium and one with cadmium at the minimum specification [0.1524-mm- (0.006-in.) thick full density cadmium or its areal density equivalent]. A new vessel will be accepted if its transmitted neutron ' measurement is equal to or lower t h at. that of the standard vessel with cadmium. After acceptance, no further cadmium presence tests are necessary over the life of the inner containment vessel so long as the polyurethane rubber applied to the inside wall is present. Reprocessing Specifications Upon receipt and prior to the first use of each new DT-14A pack-age, the inner containment vessel is leak tested to 1 x 10-7 atm-cm1/sec at standard test conditions of ANSI N14.5.' After the third usage, and within one year from the last inspection date thereafter, inner containment vessels are tested to the conditions noted above prior to use. Rejected vessels are either reworked and retested to conform to the same standards before they are used, or they are discarded. Prior to initial or subsequent uses, each container shall be visually inspected by packaging personnel to assure that each container l. meets the reprocessing requirement and specifications. Y The intent of reprocessing is to assure that the interchange-ability and functional requirements of the DT-14A are maintained with a minimum amount of rework. No attempts shall be made to restore the DT-14A to a new condition nor to restore conditions duplicating those required for current production acceptance. A visus 1 inspection shall be made for evidence of missing, functionally defective, or seriously damaged parts. Any such parts shall be repaired or replaced with like items. Local damage to the cane fiberboard is permitted. Scratches, scrapes, dents, and gouges less than 12.7 mm (0.5 in.) in depth are not cause for rejection, providing the damage does not reduce the required 76.2-mm (3.0-in.) thickness of insulation. Deformation exceeding 12.7 mm (0.5 in.) in depth shall be repaired or the part replaced. A UCN-10300 form which is to be employed when such inspections are made is shown in 3 Fig. 10. This form requires identification of the container being inspected along with nine actions that are to be taken by personnel preparing to load the -package to assure that all compo-nents are present and in functioning condition. 1 l The responsible supervisor inspects the containers and on accepted l containers completes the UCN-10300 inspection form and forwards it to the Y-12 Container Engineering Group. 0
P l 6 l 1 l 26 ? e o e 1 OPP SITI FIS$1LI MATERIAL CONTAINIR INSPICTION FORM .. e .,,,e.es. COMTAINER SERIAL Muss 0ERS j e \\ i e e twt AB0f t el8tt0 CONT Almt#fS) MAvt SttN CMtCKto PER TMS POLL 0mme OttCK LIST, AMO Mavt titN ACCEPTf D f 0e SNiaNENT, 50t ENGINEERING Ca AviNG FOR Of T AIL AND OsECM id TH AT EACM CDNT AdWtR MA$ STEN ONSP(CTip PCA THE , e Pon 0 WING [TEMS 4 C. ese m oed ice es ao be sh.,,,e. 3 De = eiese sw eeee: d e, eel .e.
- 3. Cease.ae. es feee el seee6, poseseees, ead easesheeeeed me se.
s 4 Cea**aw sie mere somse no enmelete sad owmeeble, easiodia, som awe. S. $sel.as ye mees se eve.seke. e laae. e ar. ease aa smed seae.e.ea. P. Old on.ee. e 6eseas e==esed. 8 Aoihas heees e e 6,ee sa fieneaed se eeeweed eeses.
- e. Co...aes e e f.ee es esae.,. vee e.ea,ae eash de.
ha4TRitufl0N. asseoesse64 sensevenem Cee,1 e Asse=eea.ed esaeeiam os on.ee.ae seee, eewa se Cease aw tagemeweae C eep (9720 3) fee ee - file. Cep,2 e Usee's file, e us e
- es tes e
es t el e e m.m m-.u.u..n....m _.1_ 1..,_m.,_. q 3 i 1J
1 27 .J j \\ If a container is rejected by the. inspection, it is removed from-use'and labeled to be defective. The UCN-10300 form shall be completed with reasons for rejection stated and. shall ' accompeny the rejected 3 - container.to the Container Engineering group for disposition. The j completed form shall.be maintained within the Contriner Engineering group permanent record file with an explanation of the container disposition attached to the form. All repairs. co the containers. shall i be in conformance with the manufacturing' specifications of Figs.1,. 2, J and 3. l 1 CONCLUSIONS Packages utili::ing st'andard steel' drums, manufactured to DOT specifications, and industrial cane., fiberboard J insulation have been widely used as the basic. building materials for containers for' fissile material. Packages similar to the Y-12 Model DT-14A1 have met similar 3 test requirements ' outlined in USDOE Order'5480.1A, Chapter III. Comparative data andL destructive-testing-methods were used to. demonstrate the structural; integrity and thermal protection of the Model DT-14A package with respect to the applicable standards for normal transport and hypothetical accident conditions. Results of the Y-12 Model DT-14A package analysis show that the i hypothetical accident conditions will not affect the capability of the package to maintain suberiticality and will prevent the loss of fissile radioactive materials. The criticality sa,fety analysis provides. the mgUimum transport indices for packages with various masses and forms.of 2 under Fissile Class I, Fissile Class II, or Fissile Class III + criteria, as shown in Table 1. l l l ) ) M e H
1 4 ) l, 4 0 4 O I ~ J 1 1 ) 3 ,j l, h l i ' 4 ? 4 I 1 a 1 I l 1 1 I - i l I i i l i l l \\ \\ l. l -.--------_---s---
29 REFERENCES- ? 1. C. M. Eopper, Safety ' Analysis.. Report for. Packaging ^ (Cak Ridge Y-12, Plant Model ' DT-14 Package for Enriched Uranium), ^ i/DD-244, 'Jnion Carbide Corp. Nuclear Div., Oak Ridge Y-12' Plant, January 1978 2. H. E. Crowder,n Additional Testing of DT-14 Shipping Con-tainer, Rev. 1. Y/LA-810, Union Carbide Corp. Nuclear Div... 0ak Ridge Y-12 Plant, June"1981. 3. T. A., Phemister, Hazardous ' Materials Regulations ' ' of. the Department of Transportation ' Tariff No. BOE-6000-C, T. 'A. Phemister, Agent, 1920 L Street.NW, Washington, D'.C., May 1983.- J 4. .U.S.. Department uot' Energy, Safety Requirements 'for th e -L \\' Packaging of' Fissile - and Other Radioactive. Ma terial s, USDOE-Order 5480.1A, Chapter III (1981).. 5. H. R.. Dyer,. Safety ' Analysis J Report for Packaging, J (Dak. 1 Ridge Y-12 P1 ant Model DT-5 Package for Entiched Urandum), Y-DD-153,: l Union Carbide Corp. Nuclear Div., Oak Ridge Y-12 Plant, July 1974. 6. American National Standard for Leakage Tests on Packages for Shipment of Radioactive Materials, ANSI ' N14.5-1977, American National Standards Institute, New York, 1977. i 7. L. M. Petrie and N. F. Cross, KENO IV - An ' Improved Monte -1 Carlo Criticality Program, ORNL-4938, Union Carbide : Corp. Nuclear. Div., Oak Ridge National Laboratory, November 1975. 8. G. E. Hansen and W. H. Roach, Sixand Sixteen-Group Cross l Sections for Fast and Intermediate critical Assemblies, LAMS-2543, 1 University of California, Los Alamos Scientific. Laboratory,1961. I 9. J. R. Knight, Normalization of the' Hansen-Roach. Cross l' Sections, K-1663 Appendix, Union, Carbide Corp. Nuclear Div., Oak Ridge Gaseous Diffusion Plant, May 1966. i l 10. G. R. Handley and 'C. M. Hopper, Validation Checks: of the ANISN and KENO Codes by Correlation with -Experimental " Data, Y-1858, Union Carbide Corp. Nuclear Div., Oak Ridge Y-12 Plant,.1972. 11. G. R. Handley and C a N. Hopper, Validation -of the
- KEN 0*'
Code for Nuclear Criticality ' Safety Calculations of Moderated, Low; i Enriched Uranium Systems, Y-1948, Union Carbide Corp. Nuclear Div., Oak Ridge Y-12 Plant 1974. 12. G. R. Handley et al., Validation of the Monte Carlo Criti-cality Program KENO IV and the Hansen-Foach Sixteen-Energy-Group-Cross Sections for High-Assay Uranium Systems, Y-2234, Union Carbide. Corp. Nuclear Div., Oak Ridge Y-12 Plant, 1981.
30 Distribution t Department of. Energy - Albuquerque Elliott, K. E. Department of Energy - Chicago Elder, R. I. Department of Energy - Idaho Farkas, S. W. Department of Energy - New Brunswick Laboratory Paller, J. Department of Energy - Oak Ridge Blalock, L. G. Hickman, H. D. Johnson, W. A. Pryor, W. A. (20) Travis, W. H. Department of Energy - Richland Hiegel, R. s, Department of Energy - Savannah River i 1 May, C. W. j l NLO Company Dolan, L. C. Oak Ridge Caseous Diffusion Plant l Culbert, H. J. Dyer, H. R. .l Ingram, J. C., TII Jordan, W. C. l Legeay, A. J. Vaughn, B. E. \\ Oak Ridge National Laboratory Austin, H. C. Burger, G. H. I Box, W. D. Schaich, R. W. i iJ
' 31. Oak Ridge Y-12 Plant Barkman, J. R. Bostock, D. J. Butler, H.. E.,.Jr. ' Cobham, G. N. Crowder, H. E. Googin, J. M. Guinn, G..R. Hopper, C. M.- (20) Johnson,' C. E. Jones, M. L. Kite, H. T. McAlister, R. J. McLendon, J. D. Mee,~W. T. Mills, J. M., Jr. i. Miner, C. W. Smith,.R. P. Snow, S. G. Strohecker, J. W. j Taylor, R. G. (20) White, J. C. f Williams, R. D. l Wilson, J. K. Yaggi, W. J. Y-12 Central Files (5) ^, Y-12 Central Files (master copy) ] Y-12 Central Files (route copy) j Y-12 Central Files (Y-12RC) 1 1 ( ~Paducah Gaseous Diffusion Plant Baker, R. C. Portsmouth Gaseous Diffusion Plant j Harbarger, W. D. .) Woltz, F. E. Feuerbacher, J. L. RM1 Company Van Loocke,'F. G. Savannah River Plant Honkonen, D. ll l .In addition, this report i$s distributed in accordance with the Category UC-71, Transportation of, Property and Nuclear: Materials, as given in 'a' the USERDA Standard Distribution Lists for Unclassified Scientific, and ~ Technical Reports, DOE-TIC-! $00. kO _ - _ -.. - - _ - _ - _ _ _ _ _ _ _}}