ML20216F196

From kanterella
Jump to navigation Jump to search
Rev 0 to Spent Fuel Pool Thermal-Hydraulic Calculations
ML20216F196
Person / Time
Site: Yankee Rowe, Maine Yankee
Issue date: 12/01/1997
From: Paul Bergeron, Palmer S, Michael Scott
DUKE ENGINEERING & SERVICES, Maine Yankee
To:
Shared Package
ML20216F193 List:
References
MYC-2004, MYC-2004-R00, NUDOCS 9909210210
Download: ML20216F196 (117)


Text

W .- 7

. . ,' n,4 taftlq, "1

M.kelades pySt ORIGINAL: PAGE 1 ofhPAGESy

( -

f g } 4 ,,, q p -

l .- Rev.1: FAGE l of  ? AGES l El A - 5t W Rev. 2: PAGE 1 of PAGES Rev. 3: PAGE 1 of PAGES

g. 4 g QA RECORD?

RECORD TYPE 13 C16.036.13.c09.001 X.Y"" 52Fe No gMb$\\)6 Safety Class /P.O. NO. (if applicable) 5377 / *)

t@ @d YANKEE NUCLEAR SERVICES DIVISION f CALCULATION / ANALYSIS FOR TITLE Spent Fuel Pool Thermal-Hydraulic Calculations PLANT Maine Yankee CYCLE NA ,

CALCULATION NUMBER MYC-2004 PREPARED BY REVIEWED BY APPROVED BY SUPERSEDES

./DATE /DATE m , /D)TE CALC /REV.NO.

ORIGINAL 4 Michael W. Scot gf Suzanne Palmer

[

Bergeron

.A\@

t@k$b KEYWORDS: Spent Fuel Pool. Boron. Decav Heat. Boil Off. QuatroPro _

COMPUTER CODES: EQQL EQUIP / RAG NOs. : NA l

l SYSTEMS: Soent Fuel Pool

~

l

REFERENCES:

MYC-481 R vs. 0 - 6. MYC-1755. MYC-1562 Revs. 0 - 2. MYC-1253 Revs. O.1.

MYC-1463 Rev. 0 FORM WE-103-1 Revision 3 I

9909210210 990826 PDR REVQP ERONUMRC

. PDR 1 \ 't i

  • a

s Spent Fuel Pool Thermal-Hydraulic Calculations' MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by bR Page _2.of _

10 INDEX Eage l '

3.0 Structure / System / Component Applicability . . . . . . . . . . . . . . . . . . . . . . . 3 4.0 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4.1 Background Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ,

4.2 Objectives ...............................................4 43 Intended Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.4 Pertinent Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.5 Acceptance Criteria and Design Criteria Applied ............. 5 5.0 Details of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' . . . . . . . . . . . . . . . . 5 5.1 Design Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 53 Calculation / Analysis ..................................... 5 53.1 POOL Code Runs to Determine Decay Heat Load in the SFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 53.2 Time to Boil for Loss of Two SFP Pumps . . . . . . . . . . . . . . 15 5.33 Boil Off Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 53.4 Operation with One SFP Cooling Pump . . . . . . . . . . . . . . . 30 53.4.1 Heat Exchanger Conditions for the Present Day Heat Load with Two Pumps Running . . . . . . . 30 53.4.2 Heat Exchanger Conditions for the Present Day Heat Load with One Pump Running . . . . . . . . 34 6.0 Results/ Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1 VS Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.0 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.0 Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; 49 8.1 Results Transmittal Memo . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2 Evaluation of Computer Code Use Form . . . . . . . . . . . . . . . . . . . . 52 83 Calculation / Analysis Review Form . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.4 NED WE-103 Review Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.5 NED Analysis Process Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.6 Selected References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 O_._L

c- m n a: ,

3

-+ ,  !

~

l Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 l November 25,1997 Prepared by MWS Reviewed by.3_ R Page _3_ of __ j l

i 3.0 Structure / System /Compcnent Applicability This calculation is applicable to the Maine Yankee Spent Fuel Pool (SFP).

I 4.0 Problem Description

'Ihis calculation provides a portion of the response to Maine Yankee Service Request M 27 (Reference 1). The first, second, and fourth TAG items in this service request asks the

. following: 1

1. " Spent Fuel Pool Heat Ioad: Calculate the heat load in the SFP as a function of time."

2.. " Loss of Two Spent Fuel Pool Cooling Pumps - Time to Boil: Calculate the -

time to boil in the spent fuel pool as a function of time and initial temperature."

4. " Operation with One Spent Fuel Pool Pump: Calculate the temperature in the SFP as a function of time with one spent fuel pool pump in operation."

- This calculation provides the heat load in the spent fuel pool as a function of time. The calculation also determines time to boil for a loss of two spent fuel pool cooling pumps.

The caladation is done as a function of time, initial spent fuel pool temperature and, as requested by W. Henries, an additional parametric is added on initial level. As requested by D. Boynton boil off rate as a function of heat load (time) and time to reach various levels in the pool as a function of heat load (time) are also calculated. Operation with one spent fuelpool cooling pump is =W.

4.1 Radrernund Data ,

Maine Yankee is permanently shutdown and has permanently defueled the reactor. This analysis was requested by Maine Yankee (Reference 1) to support the desired operation of the spent fuel pool in the post-shutdown condition.

i l

1 lI

o Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by 59 Page __4. of _

4.2 Obiectives The objectives of this calculation are:

1. To determine the heat load as a function of time in the SFP.
2. To determine time to boil for a loss of two SFP pumps as a function of time, initial temperature, and initial level.
3. To determine boil off rate as a function of heat load (time) and time to reach various levels in the pool as a function of heat load (time).
4. To determine if normal operation with one spent fuel pool cooling pump is acceptable from a pool temperature standpoint. ,

4.3 Intended Solution Method This calentation was done using the POOL computer code to determine decay heat levels in the SFP and QuatroPro spreadsheets and hand calculations to perform the other calculations.

I 4.4 Pertinent Literature Review The following were reviewed before and/or during the analysis presented in this calculation:

1. MY Service Request M-97-27, " Post Shutdown Safety Analysis," (Reference 1)
2. MYC'481, Revs. O thru 6, ' Pool Computer Code," (Reference 2) ,
3. MYC 1755, Rev. O, "End of Cycle 14 Allowable Fuel Removal Rate," (Reference 3)
4. MYC-1562, Revs. 0,1,2, " Spent Fuel Pool Reiack Analysis," (Reference 4)

[,,

i l Spent Fuel Fool Thermal-Hydraulic Calculations MYC-2004 Rev.0 1

1 November 25,1997 Prepared by MWS Reviewedby $ Page_1 of_ l 1

J 4.5 Acceptance Criteria and Design Criteria Applied l 1

, 'Ihe calculation of decay heat performed in the POOL code used Branch Technical Position j ASB 9-2 with an uncertainty factor of 0.1 for times greater than 10' seconds consistent with  !

the USNRC Standard Review Plan, Section 9.1.3, " Spent Fuel Pool Cooling and Cleanup System." This is a user option in the POOL code.

5.0 Details of Analysis 5.1 Desian Inputs Spent fuel pool heat exchanger design inputs were taken from MYC-1562 (Reference 4).

Table I from WE-100 Design Input Considerations was reviewed. It was found that none of the considerations were applicable to this calculation. There are no relevant SER ,

conditions / restrictions for this calculation.  !

5.2 Assumptions i Any assumptions made are included in the calculation / analysis writeups.  !

5.3 cmiculation/ Analysis 5.3.1 POOL Code Runs to Determine Decay Heat Load in the SFP The first calculation performed was heat load in the SFP as a function of time for the final SFP assembly loading. This calculation was performed using the POOL computer code.

The POOL code is documented in MYC-481 Revs. 0 - 6 (Reference 2). The method for performing calm 1=tions with the POOL computer code is well documented in MYC-1253, MYC-1463 (References 5 and 6, respectively), and other calculations. The POOL code's actual purpose was to calculate fuel unloading rate schedules for the refueling activity'. In order to determine the unloading rate, the code first calculates the existing decay heat load in the SFP.' This is the only portion of the calculations the POOL code performs that is necessary for this calculation. Dummy information was left as input for the section of the code that deals with the fuel to be off loaded into the SFP so that the code would run.

j

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by N Page _6. of An example input listing for one of the actual cases run for this calculation is included on the next page. A description for each input card follows:

Card 1 The title card indicates that this is a run to determine existing decay heat load. The date the heat load is being calculated on is included in the title.

Card 2 The first entry, Cycle number to be unloaded is 16. This value will place all of the actual fuel at Maine Yankee in the SFP. Cycle 16 isn't really being unloaded, but it doesn't matter, since that portion of the calculation is not being used.

The second, third, and fourth entry is the date unload is to start. This is .

important because it is the date that the POOL code will use to calculate the existing decay heat load. This date will be varied on each run to calculate decay heat load versus time.

The fifth entry is the calculation option chosen. This entry is set at 6 to usa Branch Technical Position 9-2," Residual Decay Energy for Light-Water Reactors for long-Term Cooling" (located in SRP Section 9.2.5). This entry is consistent with the guidance provided by the NRC in SRP 9.1.3," Spent Fuel Pool Cooling and Cleanup System."

The sixth entry burnup uncertainty multiplier for the old fuel is set at 1.00.

The seventh entry shutdown power uncertainty multiplier for the old fuel is set at 1.00.

1 The values for the sixth and seventh entries are acceptable, since the actual average power for the old fuel is over 2% less than the 2700 MW value input

  • in the eighth entry. y j The eighth entry core average power (MW) for the old fuel is set at 2700.0. j The ninth entry length of coastdown period in days is set at 0.001 to mimic a no-coast power profile, j

i

-s 4

( . PREPARED BY ' REVIEWED BY MYC 200Y'PAGE 7 NOV 10, 1997 l M 42.[l l@ . Sampte POOL Input Fi1e l- /A .g plisc92.oct30.97 Input File to Calculate Heat Load on October 30, 1997 l_

l

! Calculation of ExistinB SFP Neet Load DKB92 on oct 30 1997 $

l 16 10- 30 1997 6 1.00 1.00 2700.0 0.001 0.000 .04 .10 1 0.370 0.390623 32800. 37102.

2 0.382 0.389811 34761. 39074.

3 0.441 0.390623 31691. 37164.

4 0.941 0.391319 0. 12507.

5 1.110 0.381933 0. 14463.

l 6 1.152 0.373550 0. 14294.

7 0.768 0.382465 35639. 45018.

8 0.504 0.390417 '28492. 34577.

9 1.117 0.381933 0. 14378.

10 1."25~0.381292 15453. 30580.

11 1.163 0.389966 13075. 28776.

12 1.157 0.372285 18615, 33881.

13 1.367 0.382035 0. 17775.

15 1.119 0.373550 0. 13913.

16 1.112 0.372285 18472. 33040.

17 1.383 0.373550 0. 17918.

18 0.955 0.374061 36235. 48638.

19 1.358 0.373550' O. 17411, 20 0.945 0.374061 35366. 47528.

24 1.112 0.390455 15470. 30084.

25 0.951 0.374061 35428. 47693.

26 1.327 0.381933 0. 17352.

27 0.890 0.382465 35777. 47288.

28 1.024 0.381292 18521. 31960.

33 1.329 0.373550 0. 17006.

34 0.922 0.390623 31964. 44003.

35 1.058 0.391394 15409. 29650.

36 1.045 0.381292 18339. 32479.

42 1.058 0.372285' 18466. 32592.

43 1.098 0.381292 15073, 29896.

44 1.084 0.381292 18464 33162.

52 0.935 0.390623. 32339 44607.

53 1.352 0.373550 0. 17454.

62 0.922 0.361722 31507. 43590.

0.0 1.00 - 1.00 2 2 2700.0 2700.0 -2695.0 l

l e

I

.j, r

V

v. .

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by lA Page_S.of_

The tenth entry bias term on the spent fuel pool cooling limit is set at 0.000 (this entry doesn't matter for this calculation). /

The eleventh entry uncertainty factor to equation #13 of the ANS79 standard is set at .04 (this entry doesn't matter for this calculation). j The twelveth entry Branch Technical Position 9-2 long term uncertainty fraction for cooling times greater than 10' seconds is set at .10 as recommended in NRC SRP 9.1.3. j Card 3 Actinide correction factors is not used when option 6 is selected on Card 2.

Card 4 Thirty-four cards representing the 1/8 core for the fuel being discharged.

These cards are unimportant, since this portion of the calculation will be disregarded.'

Cards 5,6 These cards also deal with the fuel being discharged and are therefore unimportant.

Fuel Schedule Input Filen

'Ihe POOL code also requires two fuel schedule input files: fsxm042 and fsqm042. These files were provided by the Reactor Physics Group in Reference 7. A modified version of the isxm042 file was created and named fsxm042. mod. The documentation for the modified input is contained in Reference 3. 'Ihis version is in the format that the POOL code can read. It's the same 'as the original with the batch parameters removed. POOL doesn't need the batch parameters and will not execute if they are not deleted from the file.

The files fsqm042, and fsxm042. mod are listed on the pages that immediately follow. Also

< listed are the pool file.(driver file to run SCL POOL code and the pool. proc file (the procedure file to run the SCL POOL code).

Daemy Heat inad vs Time Results The decay heat load vs time results are presented in Table 53.1-1. The table includes the

  • ~

~

)

I PREPARED 8Y._,,,,,, REVIEWED BY M7C 200f PAGE 4 NOV 19,1997 Physics Input File fsguG42 to se Reed by POOL Code --'-

Fuel Schedule Input File PAGE 1 0F 2

.0100010 A0 12 393.887

  • 2.027
  • 1.117 .984 .378 1 - - - - 10611 - - - -

10611 0101010 816' 56 358.295

  • 2.407
  • 1.346 .982 .397 1 - - - - 11912 - - - -

11912 0102010 C0 2 395.219

  • 2.944
  • 2.271 .990 .261 1 - - - - 6522 - - - - 6522 0103010 C12 1 368.196
  • 2.957
  • 1.934 .985 .365 1 - - - - 10470 - - - -

10470 0104010 C16 1' 358.808

  • 2.957
  • 1.945 .985 .364 1 10359 - - - -

10359 0100011 A0 57 393.993

  • 2.023 * .830 .977 .456 1 1A - - - 11059 4636 - - -

15695 0101011 816 24 358.201

  • 2.410
  • 1.089 .977 .450 1 1A - - - 10846 '5148 - - -

15994 0102011 CO 22 394.659

  • 2.947
  • 2.090 .987 .317 1 1A - - - 6056 2509 - - -

8565 0103011 C12 35 367.985

  • 2.950
  • 1.716 .981 417 1 1A - - - 9289 4041 - - -

13330 0104011 C16 7 358.410

  • 2.953
  • 1.602 .979 .440 1 1A - - - 10359 4525 - - -

14884 0110011 RF0 2 395.455

  • 2.341
  • 1. 735 .995 .145 1A - - - - 2769 - - - -

2769 0111011 RF0 2 395.323

  • 1.938
  • 1.511 .993 .210 1A - - - - 4316 - - - - 4316 0112011 RF4 2 386.173
  • 1.930
  • 1.449 .992 .241 1A - - - -

5058 - - - -

5058 0113011 RF5 1 380.050

  • 2.006
  • 1.442 .992 .244 1A - - - - 5150 - - - -

$150 0110030 RF0 12 395.273

  • 1.938 * .789 .978 451 1A 3 - - -

5387 10463 - - -

15850 0191030 RF4 53 386.436

  • 1.935 * .776 .977 .454 1A 3 - - - 5079 11144 .

16223 0200020 00 69 389.669

  • 1.950 * .715 .976 .466 2 - - - - 18042 - - - -

18042 1 20434  !

0201020 E16 1 354.183

  • 2.515
  • 1.013 .973 .494 2 - - - - 20434 -

0200030 E16 12 353.782

  • 2.517 * .582 .962 .530 2 3 - - - 18697 10726 - - -

29423 0201030 F0 28 389.028

  • 2.887
  • 1.026 .968 .540 2 3 - - - 12368 12041 - - -

24409

)

0202030 F8 12 372.158

  • 2.884 * .810 .962 .554 2 3 - - - 17689 11153 - - - 28842 0203030 F12 16 363.271
  • 2.884 * .787 .962 .548 2 3 - - - 18124 11138 - - - 29262 0200040 E16 61 353.710
  • 2.517 * .575 .961 .530 24 - - - 19758 9938 - - - 29696 0201040 F0 12 389.409
  • 2.888 * .647 .957 .585 2 3 4 - - 11134 12226 9833 - -

33193 0200050 E16 1 351.636

  • 2.506 * .623 .963 .528 2 5 - - - 17697 10373 - - -

28070 0200060 E16 1 352.289

  • 2.524 * .617 .963 .528 26 - - - 17697 11115 - - - 28812 0200070 E16 1 354.361
  • 2.517 * .554 .961 .531 2 7 - - - 17697 12779 - - -

30476 0200080 E16 1 353.373

  • 2.530 * .522 .960 .532 2 8 - - - 20434 11431 - - - 31865 0200090 E16 1 354.368
  • 2.517
  • 469- .958 .533 29 - - - 20404 13415 - - - 33819 0200100 E16 1 353.516
  • 2.518 * .466 .958 .533 2to- -

20434 13242 - - -

33676 0300050 00 . 16 388.814

  • 2.741 * .595 .958 .576 3 4 5 - - 11956 10726 9262 - - 31944 0301050 041 4 379.997 * ' 2.744 * .552 .957 .568 34 5 - - 13294 10953 8788 - - 33035 0302050 042 12 380.382
  • 2.738 * .533 .956 .570 3 4 5 - - 13361 10492 9834 - - 33687 0303050 N0 40 387.765
  • 3.036 * .770 .959 .586 34 5 - - 8959 11901 10601 - - 31661 0600060 10 48 388.812
  • 3.035 * .775 .959 586 4 5 6 - - 8887 11782 11243 - -

31912

. 0401060 14 24 378.882

  • 3.032 * .633 .955 .585 4 5 6 - - 12823 11802 10780 - - 35405 0500070 JO 48 381.481
  • 3.003 * .713 .958 .577 5 6 7 - - 9178 12752 10796 - -

32726 0501070 J4 4 372.852

  • 3.003 * .520 .952 .579 5 6 7 - - 13293 12998 11944 - - 38235 0502070 J8 20 363.991
  • 3.003 * .619 .955 .566 56 7 - - 13325 12926 8622 - -

34873 0600000 KO 48 380.831

  • 3.002 *' .631 .955 .582 6 78 - - 9536 14039 11934 - - 35509 0601000 K4 4 371.499
  • 3.004 * .531 .952 .578 6 78 - - 13449 13845 11047 - -

38341 0602000 KS 20 363.157

  • 3.002 * .603 .955 .567 6 78 - - 13658 13615 8412 - -

35685 0700090 LO 8 379.564

  • 3.288 * .651 .951 .610 7 8 9 - - 11253 13808 14623 - - 39684 12 371.060
  • 3.288 * .573 .948 .606 78 9 - - 14123 13473 14121 - - 41717 0701090 L4 0702090 L8 40 362.447
  • 3.288 * .764 .955 .585 78 9 - - 13769 12718 9317 - -

35804 0703090 L12 4 354.176

  • 3.288 * .552 .948 .587 78 9 - - 15236 13924 12828 - - 41988 0700110 LO 8 379.415
  • 3.288 * .712 .953 606 7 8 91011 10315 7276 7831 5101 6013 36536 0800090 MS- 3 362.029
  • 3.303 * .960 .960 .577 8 9 - - - 15703 16515 - - - 32218 0801100 M4 28 370.051
  • 3.303 * .648 .951 .601 8 9 10 - - 12935 14282 11935 - - 39152 0802100 MB 28 361.453
  • 3.302 * .616 .950 .594 8 9 10 - - 15406 16215- 7922 - - 39543 362.537
  • 3.299 * .411 .M2 .593 8 9 11 - - 16373 16296 13376 - - 46045 0000110 MS 1 0000120 MB 1 362.544
  • 3.300 * .408 .M2 .593 '8 9 12 - - 16373 16296 14410 - - 47077 0800130 MB 1 361.651
  • 3.304
  • 487 .945 .594 8 9 13 - - 15234 15699 13324 - - 44257 361.722
  • 3.299 * .476 .945 .594 8 9 14 - - 15234 15699 12273 - - 43206 0800140 MB 1 8 378.931
  • 3.301 * .696 .952 .607 8 91015 - 11899 16843 5772 2204 - 36718 0800150 MO 0001150 MB 1 361.382
  • 3.302 * .638 .951 .592 8 9 15 - - 15234 15699 7204 - - 38137

'8 369.564

  • 3.301 * .M3 .959 .588 9 10 - - - 18420 13885 - - -

32305 0900100 N8 91011 14878 13079 12225 - - 401E2 0900110 NO 4 388.183

  • 3.307 * .602 .949 .627 - -

24 378.365

  • 3.303 * .550 .947 .618 91011 - - 14956 14026 12799 , - 41781 0901110 N4-36 370.192 *. 3.302 * .403 .949 .607 9 10 11 - - 17880 14035 7806 - - 39721 0902110 NS 20 389.140
  • 3.502 * .748 .950 .633 10 11 12 - - 12754 15445 11393 - - 39592 1000120 PO

'20 379.850

  • 3.501 * .559 .944 - .629 10 11 12 - - 15558 15360 14366 - - 45284

.1001120 P4

' 16 370.907

  • 3.500 * .621 .946 .619 10 11 12 - - 16819 15453 10667 - - 42939 1002120 PS 1000130 P8 8 371.834
  • 3.496 * .582 .945 .619 10 11 12 13 - 16790 153 % 6496 4951 - 43601 1000140 P0 8 389.811
  • 3.502 * .711 .949 .636 10 11 12 14 - 13718 15348 5626 4709 - 39401 4' 380.873
  • 3.694
  • 1.131 .957 .617 11 12 - - - 16172 18078 - - -

34250 1100120 e4 28 390.712

  • 3.690 * .751 .947 .650 11 12 13 - - 14347 17011 10997 - - 42355 1100130 00

.M5 11 12 13 17783 17139 9118 - - 44040

-1101130 04 ~ .32 380.545

  • 3.693
  • 681 .641 - -

372.789

  • 3.695 * .524 .939 .632 11 12 13 - - 18150 17861 13230 - - 49241 1102130 et 8 390.577
  • 3.684
  • 826 .949 .647 12 13 14 - 16223 15309 7680 - - 39212 1200140 R0 36 .

.M1 20215 14829 10984 - - 46328 1201140 84 12 382.465

  • 3.682 * '.581 .642 12 13 14 ,- -

i i PEIPARED BY REVIEWEDBYI MYC- 200ff PAGE /47 NOV 19, 1997 Physics Input File fsqd)42 to Be Read by POOL Code '

Fuel Schedule Input file PAGE 2 0F 2 1202140 A8 20 374.061

  • 3.681 * .520 .939 .632 12 13 14 - - 20098 15369 12456 - -

47923 1200150 R4 4 381.497

  • 3.681 * .782 .948 641 12 13 15 - - 20180 12661 7399 - -

40240 1300140 50 4 390.455

  • 3.702
  • 1.252 .960 .613 13 14 - - - 15341 14711 - - -

3c052 1300150 so 16 390.680

  • 3.702
  • 1.118 .957 .624 13 14 15 - - 14239 14992 3508 - -

32739 1301150 54- 28 381.292

  • 3.701 * .925 .952 .632 13 14 15 - - 16568 14618 5678 - - 3626'.

1302150 58 20 372.285

  • 3.702 * .769 .948 .632 13 14 15 - - 18404 14830 7301 - -

60535

, 1400150 70 8 391.319

  • 3.918
  • 1.969 .971 .535 14 15 - - - 12446 8776 - - -

21222 l 1401150 T4 28 381.947

  • 3.906
  • 1.719 .966 .573 14 15 - - - 15780 9058 - - -

24838

! 1602150 T8 36 373.550

  • 3.895
  • 1.666 .965 .578 14 15 - - - 16453 9190 - - -

25643 l 8 390.342

  • 3.742
  • 2.956 .989 .275 15 - - - - 7340 - - - - 7340 1500150 UO 32 389.643
  • 3.739
  • 2.771 .986 .333 15 - - - - 9340 - - - -

v340 1501150 U24 389.498

  • 3.740
  • 2.723 .985 .354 15 - - - - 9905 - - - - 9905 l 1502150 u48 28 9

e i PREPARED.'BY jf1 REVIEWED BY MYC--2009 PAGE //

NOV 10, 1997 Modified Physics Input File fsxm042. mod to Be Read by POOL Code Fuel Schedule Input File 1

FIGURE PAGE MAINE YANKEE FUEL SCHE 9ULE FOR t:ND OF CYCLE 15 CYCLES 1 THROUGH 24 (REVISED 08/11/97)

CYCLE PARAMETERS l DATES CYCLE LENGTH CYCLE LOADING (KGU) BASIS OF CYCLE LENGTH CYCLE IN OUT (MWD /MT) DESIGN AS BUILT AND BATCH BURNUPS i 11/08/72 06/29/74 10336 81549 81434 MEASURED

. 1A 10/12/74 05/02/75 4509 83119 83084 MEASURED 2 06/29/75 04/09/77 173 % 80953 81027 MEASURED 3 06/11/77 07/14/78 11076 83118 83130 MEASURED 4 08/28/78 01/11/80 10495 81908 81822 MEASURED 5 03/17/80 05/08/81 10795 83076 83006 MEASURED 6 07/20/81 09/24/82 11582 82264 82220 MEASURED 7 12/12/82 03/31/84 12465 80872 80905 MEASURED 8 06/20/84 08/17/85 12455 80257 80231 MEASURED 9 10/25/85 03/28/87 14361 80221 80120 MEASURED 10 06/18/87 10/15/88 12647 81362 81227 MEASURED 11 12/16/88 04/07/90 13798 82554 82389 MEASURED 12 06/30/90 02/14/92 15423 83135 83051 MEASURED 13 04/19/92 07/30/93 13668 83075 83028 MEASURED 14 10/14/93 01/14/95 13075 82700 82819 MEASURED 15 01/16/96 12/06/% 7859 83044 83062 MEASURED 16

  • 92/06/97 03/15/98 0 0 0 EST! MATED 17
  • 05/24/98 09/15/99 0 0 0 EST! MATED 18
  • 11/24/99 03/15/01 0 0 0 EST! MATED 19
  • 05/24/01 09/15/02 0 0 0 ESTIMATED 20
  • 11/24/02 03/15/04 0 0 0 ESTIMATED 21
  • 05/24/04 09/15/05 0 0 -

22

  • 11/24/05 03/15/07 0 0 -

1 23

  • 05/24/07 09/15/08 0 0 -

( 24

  • 11/24/08 03/15/10 0 0 -

l

  • CYCLE LENGTH AND BATCH BURNUPS ARE EST! MATED

(

    • !NCLUDING DESIGN LOADINGS, AS INDICATED BELOW l

l l

O'% 0

  • k3 Y10 \h, O gg so wt Ma hmt # cats pn v:*4 Cd caAdM-mhtall

% y & gr;,,1 bon Hit iS deletcl ?' U l g .yhd.5 m e cd M fofd 3 th P@' 4d6 -

a uw, l

> a o

PRCPARED BY REVIEWED BY plA1 MTC -2001 PACE lik

[00/ L

  • Driver File to Run SCL POOL Code NOU 10, S997 Used to Determine Decay Heat L0ed PAGE 1 0F 2
  1. 1 / bin /ksh 3h I h

echo ' TYPE STOP TO TERMINATE EXECUTION' Alle Og{, h [ fNAM 800 hk true j do' echo ' ENTER POOL USER INPUT FILE 7 (PLINxxx) \c'

  • reed INPT {(1 if gi

( "$1NPT" != "" 1 then if

( $!NPT = "stop" -o $1NPT = "STOP" ]

then echo ' TERMINATING POOL... PLEASE WAIT' exit fl if test -r $1NPT then IN1=SINPT break else echo 'poot user input fi1e not found' fI fI done 41Le true do echo ' ENTER POOL UNIT 8 INPUT FILE 7 (FSQMxxx) \c8 read INPT If

( "$1NPT" la "" 3 then if

( SINPT = "stoph o $1NPT = "STOP" ]

then echo 'TERNINATING P00L... PLEASE WAIT 8 exit ft if test *r $1NPT then IN2=$1NPT break else scho 'poot unit 8 input file not found' fI fi done whlto true do echo ' ENTER POOL UNIT 9 INPUT FILE 7 (FSXMxxx) \c8 reed INPT if

( "$1NPT" la "" )

then e if

[ SINPT = "stop" -o $1NPT = "STOP" 1 then echo ' TERMINATING POOL... PLEASE WAIT' exit ft if test -r SIMPT then IN3=SIMPT break else echo ' pool unit 9 input file not found*

, , .i 1 .

l PREPARED BY REVIEWED BY MYC~200/PAGE QS NOV $9, 199F Driver Flie to Run SCL POOL Code '

Used to Determine Decay Heat LOed PAGE 2 0F 2 fI fl i done l

  1. 1
  1. FILE 6 = LIST CUTPUT FILE l
  1. 1 ocho 8 ENTER LIST GUTMJT FILE 7 #C.a.6> \c' reed QU1 If '.

teet "$0U1" = ""

then GU1=P00L6 fl  ;

if

( $001 = "stop" -o Sout = "$ TOP" 3 then sche ' TERMINATING P00L... PLEASE WAIT' exit fl

  1. PLOT FILE W.

echo 8 ENTER PLOT FILE 7 <COMETA> \c' read 0U2 If teet "$0U2" = ""

then QU2=COMETA fI

.If

( $0u2 = "stop" o $0U2 = "sTOP" 3 then.

ocho ' TERMINATING P00L... PLEASE WAIT' exit ft

  1. EXECUTE POOL ocho 8dayfile name ist doypoet.'s$
  1. et now + 1 minute < 4 0F et now <40F poot. proc -I SIN 1 -j SIN 2 k SIN 3 o Sall *p $0U2 2>daypool.S$

cet doypoet.SS >> SOU1 Srep " TOTAL POW R IN" $0U1 > $0U1. sun EOF i

~ PREPARED SY REVIEWED BY MYC -300f PAGE H C.

NOV 19, 199F pool. proc

  • Procedure File to Run the SCL POOL Code PAGE 1 0F 2
  1. 1 / bin /ksh set x
  1. ++=.......................++.............................++

I

  • l
  1. SCRIPT NAME  : poot. proc YANKEE ATOMIC ELECTRIC COMPANY

{

  1. l
  1. SCRIPT VERSION : 1.00 EXECUTE pool.e
  1. SCRIPT DATE  : 09/30/91 0

g++.............................++...............................++

g..........................................................o PROCESS OPTIONS 0

IFL.0 JFL.0 KFL.0 0FL=0 PFL.0 EFL=1 Nhlte getopts 1:J:k:o:p OPTION do case SOPTION in

1) IN1 90PTARG IFL.1;;

j) IN2 80PTARG JFL.1;;

k) IN3=$0PTARG KFL.1;;

c) GU1 90PTARG OFL.1;;

p) ou2 80PTARG PFL.1;;

\T) EFL=0;;

esec done if

( SIFL -eq 1 -o $JFL eq 1 -e SKFL -eq 1 -e SOFL eq 1 e SPFL -eq 1 -e SEFL -eq 1 1 t.wn ERR =0 etse ERA.1 fI f

g..........................................................o OPTION ERRORS

  • (

lf ] '

[ SERR -ne 0 1 then cet cEOF USAGE: pool. proc ( l file -j file -k flte ao file -p file] .j OPTION DESCR!PTION 1/0 i

-l POOL USER INPUT FILE I

-J POOL UNIT 8 INPUT FILE I e

-k POOL UNIT 9 INPUT FILE 1

-o POOL QUTPUT FILE O p- . POOL PLOT FILE O E0F exit 64 j fl s I p..........................................................o FILE ENVIRONNENT l

.0

  1. SET UP TARGET DIR TO GET INPUT AND DEPOSIT GUTPUT ,

0 TOIR.' pud

  • l O __

J

.. . J PREPARED BY REVIEWED BY MYC 200f PAGE UD NOV 19, 1997 poot. proc Procedure FIte to Run the SCL POOL Code ~

PAGE 2 0F 2 0 \

  1. SET UP TEMPORARY DIR FOR EXECUTION ONLY i 0

RUND=/ tup / pool .S$ l mkdir SRUNO l 3

cd SRUND in s STDIR/ SIN 1 POOLS in s STDIR/ SIN 2 P00LB In as STDIR/ SIN 3 P00L9 i in s STDIR/$001 BANNER j in s $1DIR/SOU2 CGMETA g............. ...........................................o EXECUTE APPLICATION

  1. EXECUTE POOL ,
  1. l

. /SCL/scladnin/sctproc l setproc poet > BANNER Pool cat P00L6 >> BANNER STATUS =$7 8

g..........................................................o CLEAN UP ed STDIR rm -r SRUND exit SSTATUS l

l e

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by M Page _12. of __

input and output file names, date, time after shutdown, and decay heat load for each case run. This table is a QuatroPro spreadsheet. Time after shutdown in days assumes shutdown was December 6,1996. Time after shutdown in days is then calculated based on the unload date for each POOL code run, which as mentioned earlier is the date the POOL code calculates the existing decay heat on. The total power (in MW) in the spent fuel pool is also taken from each POOL code run. The spread sheet then calculates the power in BTU /hr as follows:

Power in MW from column E is multiplied by the conversion from MW to BTU /hr.

An example from the sheet is shown below:

1.74773 MW x (3.412 x 10' BTU /hr )/1MW = 5.96 x 10' BTU /hr y The results of decay heat load vs time are plotted in Figure 5.3.1-1. This plot is from the data in the QuatroPro spreadsheet.

0 l

I.

~.

W ANY c (3 TABLE 5.3.1-1 Deay Heat Load vs Time M '

QuMryf(0 hJim 6,0 gg]

foc lf idoA Y Input File Output File Date Days After Total Power Total Power Name Name Shutdown in SFP (MW) in SFP (BTU /hr) plimc92.oct15.97 plomc92.oct15.97 10/15/97 313 1.74773 / 5.96E +06 /

plimc92.oct30.97 plomc92.oct30.97 10/30/97 328 1.71064 / 5.84 E+06 plimc92.nov29.97 plomc92.nov29.97 11/29/97 358 1.64511 4 5.61E+06 /

plimc92.dec29.97 plomc92.dec29.97 12/29/97 388 1.58915 s 5.42E+06 plimc92.lan28.98 plomc92.jan28.98 01/28/98 418 1.5409 s 5.26E+06 /

plimc92.feb27.98 plomc92.feb27.96 02/27/98 448 1.49892 / 5.11 E+06 plimc92. mar 29.98 plomc92. mar 29.98 03/29/98 478 1.46207 / 4.99E+06 /

plimc92.apr28.98 plomc92.apr28.98 04/28/98 508 1.42946 J 4.88E+06 plimc92.may28.98 plomc92.may28.98 05/28/98 538 1.40037 / 4.78E+06 /

plimc92.iun27.98 plomc92.lun27.98 06/27/98 568 1.37425 / 4.69E+06 plimc92.lul27.98 plomc92.jul27.98 07/27/98 598 1.35065 4 4.61 E+06 v olimc92.aug26.98 plomc92.aug26.98 08/26/98 628 1.32921 J 4.54E+06 plimc92.sep25.98 plomc92.sep25.98 09/25/98 658 1.30962 / 4.47E+06 v piimc92.oct25.98 plomc92.oct25.98 10/25/98 688 1.29166 / 4.41 E+06 plimc92.nov24.98 plomc92.nov24.98 11/24/98 718 1.27513 / 4.35E+06 v piimc92.dec24.98 plomc92.dec24.98 12/24/98 748 1.25985 s 4.30E+0S plimc92.lun22.99 plomc92.lun22.99 06/22/99 928 1.18815 / 4.05E+06

  • piimc92.dec19.99 plomc92.dec19.99 12/19/99 1108 1.13931 / 3.89E+06 plimc92.lun16.00 plome92.lun16.00 06/16/00 1288 1.10412 4 3.77E+06 V plimc92.dec13.00 plomc92.dec13.00 12/13/00 1468 1.07743 / 3.68E+06 piimc92.dec13.01 plomc92.dec13.01 1833 1.03783 3.54E+06 #

12/13/01 /

plimc92.dec13.02 plomc92.dec13.02 12/13/02 2198 1.00773 / 3.44E+06 plimc92.dec13.07 plomc92.dec13,07 12/13/07 4024 0.89079 V 3.04E+06 #

e a.

hM 'h4 % h 0

0 0

5

" 0 0

0 4

N n

w o

N 0 0y 0a

)s d

t 3D(

u h n S w r

e o

t d t

1 f 1 - A u h

e S 3

5i m r E T t e

f Rs A Ur v 0e Ge 0 0m Fwo I

2i T

P P

F S

l t

a o

T N 0

0 0

/

7 f

\ 1 S f

/

lW [f L q' _

h  ;

M \ -

r # '

h 9

" 0 br #' 6 0

6 0

6 0

6 0

6 0

6 0

6 0

l1 + + + + + + +

E E E E E E E h 0 0

6 0

5 5

0 0

5 eEha 0

5 4

&ig 0

0 4

0 5

3 0

0 3

Spent Fuel Pool Thermal-Hydraulic Calculations _ MYC-2004 Rev.0 November 25,1997 Frepared by MWS Reviewed by 18 Page _15. of __.

5.3.2 Time to Boil for Loss of Two SFP Pumps The second calculation was performed to determine time to boil for a loss of two SFP pumps as a function of time, initial temperature, and initiallevel. 'Ihese calculations were performed with a QuatroPro spreadsheet. The decay heat loads calculated in the POOL code runs and converted to BTU /hr in the QuatroPro spreadsheet developed in 53.1 were entered in the new spreadsheet. Initial temperature range studied was from 80*F to 154*F. l Pool water level was run at three points 23.5,32.5, and 35.5 feet. The three levels are approximately as follows:

23.5 ft - minimum level for a pipe break on the discharge side of the heat exchanger 32.5 ft - minimum level for a pipe break on the suction side of the heat exchanger 35.5 ft - nominallevel Thirty-two and a half feet was used in a previous calculation of time to boilin the SFP in MYC-1562 (pages 85 - 87). A conservative mass of 2.48 x 10'lb, was calculated in MYC-1562 for this level at 154*F. Masses at the other levels were determined in the spreadsheet as follows:

A water volume was calculated for the difference in level for example at the 23.5 ft level:

Minimum pool dimensions from MYC-1562 are 41.4 ft by 36.89 ft and the water volume for the difference in level is given by:

41.4 ft x 36.89 ft x (32.5 ft - 235ft) = 13,742.2 8ft y The mass for this volume was calculated using the specific vohune of water at 32*F to maximize the reduction in mass since minimum mass will allow for shorter time to boil. The specific volume of water at 32*F is 0.01602 ft3 /lb. . The mass at the :i3.5 ftlevelwas then calculated as:

2.48 x 10' lb - ((41.4ft x 36.89 ft) x (32.5 ft - 23.5 ft))/0.01602 ft'/lb =

1.62 x 10'lb j

1 Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by M Page __1fi_ of _

[(SFP water mass) x (T% - Tm )/(SFP decay heat load)] x specific heat of water with a SFP water mass of 1.62 x 10'lb , an initial SFP temperature of 80*F, and an initial heat load of 5.84 x 106 BTU /hr (the heat load is taken from the POOL code calculations for October 30,1997), time to boil is then:

[1.62 x 10' lb, x (212'F - 80*F)/5.84 x 10' BTU /hr] x 1 BTU /lb,*F = 36.7 hr j Time to boil for a loss of two SFP pumps as a function of time, initial temperature, and initial level results are provided in Table 5.3.2-1 and Figures 5.3.2-1 through 5.3.2-3.

Mass at the 35.5 ft level was determined in the spreadsheet as follows:

The mass for this volume was calculated using the specific volume of water at 32"F.

The specific volume of water at 32*F is 0.01602 ft'/lb . The mass at the 35.5 ft level was then calculated as:

8 2.48 x 10' lb,- ((41.4ft x 36.89 ft) x (32.5 ft - 35.5 ft))/0.01602 ft /lb, =

2.77 x10'lb, J a

lhVC-Zosy gzge 17 ~

TABLE 5.3.2-1 Time to . Boil vs Time, Initial Temperature, Level bhYh hl WhdOWS Ytf.f9^ h*O ind OlMl41 Heat Load initialTemperature Pool Water Water Mass Time to Boil Date Corresponding (BTU /hr) (Degrees F) Level (ft) (ibm) (hrs) to Heat Load 5.84E+06/ 80 32.5 2.48E+06/ 56.05 / Oct 301997 5.84E+06 . 100 32.5 2.48E+06 47.56 Oct 301997 5.84E+06 120 32.5 2.48E+06 39.07 Oct 301997 5.84E+06 140 32.5 2.48E+06 30.58 Oct 301997 5.84E+06 154 32.5 2.48E+06 24.63/ Oct 301997 5.84E+06 80 23.5 1.62E+06 / 36.66 / Oct 301997 5.84E+06 100 23.5 1.62E+06 31.11 Oct 301997 SJ4E+06 120 23.5 1.62E+06 25.55 Oct 301997 5.84E+06 140 23.5 1.62E+06 20.00 Oct 301997 5.84E+06 154 '23.5 1.62E+06 16.11 / Oct 301997 5.84E46 80 35.5 2.77E+06 62.52 Oct 301997 5.84E+06 100 35.5 2.77E+06 53.05 Oct 301997 5.84E+06 120 35.5 2.77E+06 43.57 Oct 301997 5.84E+06 140 35.5 2.77E+06 34.10 Oct 301997 5.84E+06 154 35.5 2.77E+06 27.47 Oct 301997 5.42E+06 / 80 32.5 2.48E+06 / 60.40 / Dec 291997 5.42E+06 100 32.5 2.48E+06 51.25 Dec 291997 5.42E+06 120 32.5 2.48E+06 42.10 Dec 291997 5.42E+06 140 32.5 2.48E+06 32.94 Dec 291997 5.42E+06 - 154 32.5 2.48E+06 26.54 Dec 291997 5.42E+06 80 23.5 1.62E+06/ 39.50' Dec 291997 5.42E+06 100 23.5 1.62E+06 33.52 Dec 291997 5.42E+06 120 23.5 1.62E+06 27.53 / Dec 291997 5.42E+06 140 23.5 1.62E+06 21.55 Dec 291997 5.42E+06 154 23.5 1.62E+06 17.36 Dec 291997 5.42E+06 80 35.5 2.77E+06 67.36 Dec 291997 .

5.42E+06 100 35.5 2.77E+06 57.16 Dec 291997 5.42E+06 120 35.5 2.77E+06 46.95 Dec 291997 142E+06 140 35.5 2.77E+06 36.74 Dec 291997 5.42E+06 154 35.5 2.77E+06 29.60 Dec 291997 4.99E+06 / 80 32.5 2.48E+06/ 65.60 Mar 291998 4.99E46 100 32.5 2.48E+06 55.66 Mar 291998 4.99E+06 120 32.5 2.48E+06 45.72 Mar 291998 4.99E+06 140 32.5 2.48E+06 35.78 / Mar 291998 4.99E+06 154 32.5 2.48E+06 28.83 Mar 291998 .

4.99E+06 80 23.5 1.62E+06/ 42.91 Mar 291998 4.99E+06 100 23.5 1.62E+06 36.41 Mar 291998 4.99E+06 120 23.5 1.62E+06 29.90 Mar 291998 4.99E+06 140 23.5 1.62E+06 23.40 Mar 291998 4.99E+06 154 - 23.5 1.62E+06 18.85/ Mar 291998 4.90E+06 80 35.5 2.77E+06 73.17 Mar 291998

TABLE 5.3.21 Time to Boil vs Time, Initial Temperature, Level i fd & V^$0*> W$i% h*O &ldlM]

Heat Load initialTemperature Pool Water Water Mass Time to Boil Date Corresponding (BTU /hr) (Degrees F) Level (ft) (Ibm) (hrs) to Heat Load 4.99E+06 100 35.5 2.77E+06 62.08 Mar 291998

~ 4.99E+06 120 35.5 2.77E+06 51.00 Mar 291998 4.99E+06 140 35.5 2.77E+06 39.91 Mar 291998 4.99E+06 154 35.5 2.77E+06 32.15 Mar 291998 4.69E+06/ ' 80 32.5 2.48E+06 / 69.80 Jun 271998 4.69E+06 100 32.5 2.48E+06 59.22 / Jun 271998

' 4.69E+06 ' 120 32.5 2.48E+06 48.65 Jun 271998

4.69E+06 140 32.5 2.48E+06 38.07 Jun 271998 4.69E+06 154 ' 32.5 2.48E+06 30.67 Jun 271998 4.69E+06 80 23.5 1.62E+06 / 45.65 Jun 271998 4.69E+06 100 23.5 1.62E+06 38.73 Jun 271998 4.69E+06 120 23.5 1.62E+06 31.82 Jun 271998 4.69E+06 140 23.5 1.62E+06 24.90 / Jun 271998 4.69E+06 154 23.5 1.62E+06 20.06 Jun 271998

~ 4.69E+06 80 35.5 2.77E+06 77.85 Jun 271998 4.69E+06 100 35.5 2.77E+06' 66.05 Jun 271998 4.69E+06 .120 35.5 2.77E+06 54.26 Jun 271998 4.69E+06 140 35.5 2.77E+06 42.46 Jun 271998 4.69E+06 - 154 35.5 2.77E+06 34.21 Jun 271998 4.47E+06/ 00 32.5 2.48E+06 / 73.23 Sep 251998 4.47E+06 - 100 32.5 2.48E+06 62.14 Sep 251998 4.47E+06 120 32.5 2.48E+06 51.04 / Sep 251998 4.47E+06 140 32.5 . 2.48E+06 39.95 Sep 251998 4.47E+06 '154 32.5 2.48E+06 32.18 Sep 251998 4.47E+06 80 23.5 1.62E+06/ 47.90 Sep 251998 4.47E+06 - 100 23.5 1.62E+06 40.64 Sep 251998 4.47E+06 120 23.5 1.62E+06 33.38 Sep 251998 4.47E+06 140 23.5 1.62E+06 . 26.13 Sep 251998 4.47E+06 154 23.5 1.62E+06 21.05 / Sep 251998 4.47E+06 80 35.5 2.77E+06 81.68 Sep 251998 4.47E+06 - 100 35.5 2.77E+06 60.30 Sep 251998 4.47E+00 120 35.5 2.77E+06 56.93 Sep 251998

~4.47E+06 140 35.5 2.77E+06 44.55 Sep 251998 4.47E+06 - 154 35.5 2.77E+06 35.89 Sep 251998

' 4.30E+06 / 80 32.5 2.48E+06 / 76.13 Dec 241998 4.30E+06 100 32.5 2.48E+06 64.60 Dec 241998 4.30E+06 - 120 - 32.5 2.48E+06 53.06 Dec 241998 4.30E+06 140 32.5 2.48E+06 41.53 Dec 241998 4.30E+06 154 32.5 2.48E+06 33.45 Dec 241998 4.30E+06 80 23.5 1.62E+06 / 49.79 Dec 241998 4.30E+06 100 23.5 1.62E+06 42.25 Dec 241998 4.30E+06 120 23.5 1.62E46 34.70 Dec 241998

l TABLE 5.3.2-1 Time to Boil vs Time, Initial Temperature, Level M)T *808 E / h6 N k gra fri f~r Wt h W 5 % hiD f lIN

  • V '

Heat Load initialTemperature Pool Water Water Mass Time to Boll Date Corresponding (BTU /hr) (Dogrees F) Level (ft) (Ibm) (hrs) to Heat Load 4.30E+06 140 23.5 1.62E+06 27.16 Dec 241998 4.30E+06 154 23.5 1.62E+06 21.88- Dec 241998 4.30E+06 80 35.5 2.77E+06 84.91 Dec 241998 4.30E+06 100 35.5 2.77E+06 72.04 Dec 241998 4.30E+06 120- 35.5 2.77E+06 59.18 Dec 241998 4.30E+06 140 35.5 2.77E+06 46.31 Dec 241998 I 4.30E+06 154 35.5 2.77E+06 37.31 Dec 241998 4.05E+06/ 80 32.5 2.48E+06/ 80.83 Jun 221999 4.05E+06 100 32.5 2.48E+06 68.58 Jun 221999 4.05E+06 120 32.5 2.48E+06 56.34 Jun 221999 4.05E+06 140 32.5 2.48E+06 44.09 Jun 221999 4.05E+06 154 12.5 2.48E+06 35.52 Jun 221999 4.05E+06 80 23.5 1.62E+06 / 52.87 Jun 221999 4.05E+06 100 23.5 1.62E+06 44.86 Jun 221999 4.05E+06 120 23.5 1.62E+06 36.85 Jun 221999 4.05E+06 140 23.5 1.62E+06 28.84 Jun 221999 4.05E+06 154 23.5 1.62E+06 23.23 Jun 221999 4.05E+06 80 35.5 2.77E+06 90.15 Jun 221999' 4.05E+06 100 35.5 2.77E+06 76.49 Jun 221999 i 4.05E+06 120 35.5 2.77E+06 62.83 Jun 221999 I 4.05E+06 140 35.5 2.77E+06 49.17 Jun 221999 4.05E+06 154 35.5 2.77E+06 39.61 Jun 221999 3.89E+06 / 80 32.5 2.48E+06 / 84.15 Dec 191999 3.89E+06 100 32.5 2.48E+06 71.40 Dec 191999 3.89E+06 120 32.5 2.48E+06 58.65 Dec 191999 )

3.89E+06 140 32.5 2.48E+06 45.90 Dec 191999 3.89E+06 154 32.5 2.48E+06 36.98 Dec 191999 3.89E+06 80 23.5 1.62E+06 / 55.04 Dec 191999 3.89E+06 100 23.5 1.62E+06 46.70 Dec 191999 3.89E+06 120 23.5 1.62E+06 38.36 Dec 191999 3.89E+06 140 23.5 1.62E+06 30.02 Dec 191999 3.89E+06 154 23.5 1.62E+06 24.18 Dec 191999 3.89E+06 80 35.5 2.77E+06 93.86 Dec 191999 3.89E+06 100 35.5 2.77E+06 79.64 Dec 191999

- 3.89Ed6 120 35.5 2.77E+06 65.42 Dec 191999 3.89E+06 140 35.5 2.77E+06 51.20 Dec 191999 3.89E+06 154 35.5 2.77E+06 41.24 Dec 191999 3.77E+06 # 80 32.5 2.48E+06 # 86.83 Jun 16 2000 3.77E+06 100 32.5 2.48E+06 73.68 Jun 16 2000 3.77E+06 120 32.5 2.48E+06 60.52 Jun 16 2000 3.77E+06 140 32.5 2.48E+06 47.36 Jun 16 2000 3.77E+06 154 32.5 2.48E+06 38.15 Jun 16 2000 i

e TABLE 5.3.2-1 Time to Boit vs Time, Initial Temperature, Level NC-M h N kph1fm h Mod'W (p 0 ^ he0 lifl4f41 h Heat Load InitialTemperature Pool Water Water Mass Time to Boil Date Corresponding (BTU /hr) (Degrees F) Level (ft) (Ibm) (hrs) to Heat Load 3.77E+06 80 23.5 1.62E+06 / 56.79 / Jun 16 2000 3.77E+06 100 23.5 1.62E+06 48.19 Jun 16 2000 3.77E+06 120 23.5 1.62E+06 39.58 Jun 16 2000 3.77E+06 140 23.5 1.62E+06 30.98 Jun 16 2000 3.77E+C6 154 23.5 1.62E+06 24.95 Jun 16 2000 3.77E+06 80 35.5 2.77E+06 96.85 Jun 16 2000 3.77E+06 100 35.5 2.77E+06 82.17 Jun 16 2000 ,

3.77E+06 120 35.5 2.77E+06 67.50 Jun 16 2000 3.77E+06 140 35.5 2.77E+06 52.83 Jun 16 2000 3.77E+06 154 35.5 2.77E+06 42.55 Jun 16 2000 3.68E+06 / 80 32.5 2.48E+06 / 88.96 Dec 13 2000 3.68E+06 100 32.5 2.48E+06 75.48 / Dec 13 2000 l 3.68E+06 120 32.5 2.48E+06 62.00 Dec 13 2000 i 3.68E+06 140 32.5 2.48E+06 48.52 Dec 13 2000 3.68E+06 154 32.5 2.48E+06 39.09 Dec 13 2000 3.68E+06 80 23.5 1.62E+06/ 58.18 Dec 13 2000 l

3.68E+06 100 23.5 1.62E+06 49.37 Dec 13 2000 3.68E+06 120 23.5 1.62E+06 40.55/ Dec 13 2000 3.68E+C3 140 23.5 1.62E+06 31.73 Dec 13 2000 l 3.68E+06 154 23.5 1.62E+06 25.56 Dec 13 2000 3.68E+06 80 35.5 2.77E+06 99.22 Dec 13 2000 3.68E+06 100 35.5 2.77E+06 84.18 Dec 13 2000 3.68E+06 120 35.5 2.77E+06 69.15 Dec 13 2000 3.68E+06 140 35.5 2.77E+06 54.12 Dec 13 2000 3.68E+06 154 35.5 2.77E+06 43.59 Dec 13 2000 3.54E+06 / 80 32.5 2.48E+06 / 92.47 Dec 13 2001 3.54E+06 100 32.5 2.48E+06 78.46 Dec 13 2001 3.54E+06 120 32.5 2.48E+06 64.45 Dec 13 2001 3.54E+06 140 32.5 2.48E+06 50.4 / Dec 13 2001 3.54E+06 154 32.5 2.48E+06 40.63 Dec 13 2001 3.54E+v6 80 23.5 1.62E+06 # 60.48 Dec 13 2001 3.54E+06 100 23.5 1.62E+06 51.32 Dec 13 2001 3.54E+06 120 23.5 1.62E+06 42.15 Dec 13 2001 3.54E+06 140 23.5 1.62E+06 32.99 Dec 13 2001 .

3.54E+06 154 23.5 1.62E+06 26.58 / Dec 13 2001 3.54E+06 80 35.5 2.77E+06 103.14 Dec 13 2001 I 3.54E+06 100 35.5 2.77E+06 87.51 Dec 13 2001 I 3.54E+06 120 35.5 2.77E+06 71.88 Dec 13 2001 1 3.54E+06 140 35.5 2.77E+06 56.26 Dec 13 2001 l 3.54E+06 154 35.5 2.77E+06 45.32 Dec 13 2001 l l

3.44E+06 # 80 32.5 2.48E+06 y 95.16 Dec 13 2002 l 9

I. .

TABLE 5.3.2-1 Time to Boit vs Time, Initial Tem rature, Level l

gg gj ph h %odWJ V@b. 6 0 Ifl4h1 g Heat Load . InitialTemperature Pool Water Water Mass Time to Boil Date Corresponding

(BTU /hr) (Degrees F) Level (ft) (Ibm) (hrs) to Heat Load

!-. . 3.44E+06 100 32.5 2.48E+06 80.74 Dec 13 2002 3.44E+06 120 32.5 2.48E+06 66.33 Dec 13 2002 3.44E+06 140 32.5 2.48E+06 51.91 / Dec 13 2002 3.44E+06 154 32.5 2.48E+06 41.81 Dec 13 2002 3.44E+06 80 23.5 1.62E+06 / 62.24 Dec 13 2002 3.44E+06 100' 23.5 1.62E+06 52.81 Dec 13 2002 3.44E+06 120 23.5 1.62E+06 43.38 / De:: 13 2002 3.44E+06 140 23.5 1.62E+06 33.95 Dec 13 2002 l 3.44E+06 154 23.5 1.62E+06 27.35 Dec 13 2002 1 1

1 3.44E+06 80 35.5 2.77E+06 106.14 Dec 13 2002 3.44E+06 100 35.5 2.77E+06 90.06 Dec 13 2002 3.44E+06 120 35.5 2.77E+06 73.97 Dec 13 2002 3.44E+06 140 35.5 2.77E+06 57.89 Dec 13 2002 3.44E+06 154 35.5 2.77E+06 46.64 Dec 13 2002 i

3.04E+06 / 80 32.5 2.48E+06 / 107.68/ Dec 13 2007 3.04E+06 100 32.5 2.48E+06 91.37 Dec 13 2007 3.04E+06 120 32.5 2.48E+06 75.05 Dec 13 2007 3.04E+06 140 32.5 2.48E+06 58.74 Dec 13 2007 3.04E+06 154 32.5 2.48E+06 47.32 Dec 13 2007 3.04E+06 80 23.5 1.62E+06 / 70.43 Dec 13 2007 3.04E+06 100 23.5 1.62E+06 59.76 /. Dec 13 2007 3.04E+06 120 23.5 1.62E+06 49.09 Dec 13 2007 3.04E+06 140 23.5 1.62E+06 38.42 Dec 13 2007 3.04E+06 154 23.5 1.62E+06 30.95 Dec 13 2007 3.04E+06 :80 35.5 2.77E+06 120.10 Dec 13 2007 3.04E+06 100 35.5 2.77E+06 101.91 Dec 13 2007 '

3.04E+06 120 35.5 2.77E+06 83.71 Dec 13 2007 3.04E+06 140 ' 35.5 2.77E+06 65.51 Dec 13 2007 3.04E+06 154 35.5 2.77E+06 52.77 Dec 13 2007

3g k

4 @* M 0 i 0

0 5

" a ,

' n i

0 0

0

- 4 u 4

~

Y ' 0 2

O N

M 5

1 l

i i

t a

n y X 1 I e

- M- T l

a 0 i t

)

i m t 0

1 i

I n 0 s Te e l 0 y T

i a 0 a 3

nF t n D w5 I

(

o T e J

A he dt 32 ul 0

8 l

a 7i i T

m n

Sve i y r t

7 i n w

/4 sL

  1. o I

H vr T dt

/ it el 0 0 u U oa

~

0h

- - 2 BW W S

  1. _ g f 0c -- --

S ol t o Mf> e mP o F -

i i

'B'- T a- g

['

O sy "r 0

0 0

d " m i,

1 h ,

41 -

(o r f F-f p

o

)F. m.d m- _-

~

h ro 1 t 0

- s e 0 0 0 0 0 2.

3 5

k 2 1

8 6 4 2 E

R m$o6 6O 9 @p U

G I

F

l ,

!1lll ll1lllIl l il 1

D g I*

R 0

0

_ 0 5

" - ' a m 0 0

a 0 a

4 0

8 0 _4 l 4 5 0

i i

t a

2 1

1 l

a

- 1 l

a ,

n W -

i i l t I

" a i t i n

T i

t n e i I I

/,

n T m

i t f" . Te e I

T T

- 0 0 y

)

s

" nF - 0 a 3

D

/

4 w5 o _ (

e W dtul23 - " i T

m

/'/

l he Sve n

/

o. l it BW sL vr oa e

f '

~~~ e -

0 t 0 u 0h 2

d S

w o

ol d-r

/e i

t o i

T eo mP A

82 ,

r y" -

y M- '

k Y_ m 0

0 0

[Me, n P 1 W, - _-

f, e l" wF _P p w g.

e e y=, 'd o

Pr  :

n 2- o 0 2 g 0 8

0 0 0 0 0 0 3

u 7 6 5 4 2 1 5

EG R

o6 2 o~ mE- i U

G I

F I 1l l

{lI \l Il!l ll

i. h @e M%

0 0

0 5 _

8 . e n 0 0

A 0

4 w

4 5

0 3-1 0

8 0 0

4 1

- al l 1 i a l a i t

- Tn i l i

t a i t

n I j'

i i I i t

n e T n I i

m t I

T ~ - T 0

0

)

y s

? Te e 0 a 3

lf nF

- - D

/" dw5 f (

/

o e f# tul3 5 m

~ i T

  1. he n Sve o sL 6

l vr e A e+ 0 t 0 u d

w o

w- Aj it oa 0h 2

n S n BW u t o Y e e

ol o #

mP - -'

[wf &

i T

s

- w 0

W 0 f

0

_- # _ 1 M

h r / f n p P m

s #"" an n

g $-r a fro r 0 3- f 2 e 0 0 0 , 0 0 3 4 2 0 , 6 2 5

E 0 1 1 1 25,gn cS eEp R

U G

I F

lll \l

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 l Prepared by MWS Reviewed by M Page _25_ of _

1 5.3.3 Boll Off Rate A QuatroPro spreadsheet was also used to calculate boil off rate as a function of heat load (time) and time to reach various levels in the pool as a function of heat load (time). The boil off rate for a total loss of cooling is given by:

boil off rate = q/hg @ 212*F for example from the spreadsheet on October 30,1997 the decay heat level was 5.84 x 108 BTU /hr , this yields a boil off rate of (5.84 x 10' BTU /hr)/9703 BTU /lb, = 6.02 x 10' lb./hr y The spreadsheet calculates boil off rate in gpm:

(6.02 x 10' lb./hr) x (1 hr/60 min) x (0.0167 ft'/lb ) x (7.481 gal /ft') = 12.53 gpmy The spreadsheet calculates level drop due to boil off in inches per hour:

(12.53 gal / min) x (1 ft'/7.481 gal) x (60 min /hr) + (41.4 ft x 36.89 ft) x (12 in/ft)

= 0.79 in/hr y The spreadsheet calculates level drop due to boil off in feet per day:

(12.53 gal / min) x (1 ft8 /7.481 gal) x (60 min /hr) ^ (41.4 ft x 36.89 ft) x (24 hr/ day)

= 1.58 ft/ day j The msults for these calculations are provided in Table 53.3-1. Figure 5.3.3-1 provides a plot of boil off rate in gpm versus shutdown time in days.

'Ihe spreadsheet also calculates for a given boil off rate; time to boil off from several initial levels to several finallevels. All of these calculations are performed in the same fashion as follows:

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by f Page _26_ of _.

For time to drop from 35.5 ft to 20 ft, the level change is calculated:

35.5 ft - 20 ft = 15.5 ft The level change is then divided by the level drop due to boil off in feet per day:

15.5 ft/(1.58 ft/ day) = 9.81 days j This is the time to boil off from 35.5 feet to 20 feet for the heat load on October 30,1997. All of the other calculations are done in the same fashion. The results of these calculations are presented in Table 5.3.3-2.

i 9

" =

..i... . . . . . , . .. ..c..., .

..g ..f ,r

l -

gg' gM 3N -

e l

v L

e # / / -

/ / # -

l o 1 8 2 7 2 8 5 2 9 7 5 3 1 9 8 6 0 5 2 0 6 3 2 o 6 5 5 4 4 3 3 3 2 2 2 2 2 1 1 1 1 0 0 0 9 9 8 P )

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 ny ia sd s/ t of L(

l e

v L

e # # # #

/ /

lo 1 9 6 3 1 9 8 6 5 3 2 1 0 0 9 8 5 3 1 0 8 7 1 o 8 7 7 7 7 6 6 6 6 6 8 6 6 6 5 5 5 5 5 5 4 4 4 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ir n) sh s/n oi L(

e < /

' t a 4 e 3 <

R 8 5 Q 6 2 9 71 A2 7 5 0 6 8 9 7 3 5 9 4 63 4 2 2 7 0 3 4 0 8 8 9 6 03 85 2 0 3 S 4 8 8

' f f

2 2 2 1 1 0 0 0 0 0 9 9 9 9 9 9 8 8 8 7 7 7 8 O

ip l

)m 1 1 1 1 1 1 1 1 1 1 og B(

  1. # e e # # 4 t

e 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 O a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ 0 0 +0 +0 + + + + +

R) + + + + + + + + + + + + + +

EE E EEEEEE EEEE E E E+ E E E E E E E 6 f r f h O/m 5 2 8 9 2 7 4 3 2 3 5 7 1 4 8 3 8 1 8 9 5 4 3 l

1 0 7 5 4 2 1 0 9 8 7 6 6 5 4 4 1 0 8 7 6 5 1 n

ib oI 6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 e B(

j f )r h < e / # / # / # # # # # / # # # / 3 # ' / # # -

W/ rU

/

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

+ + + + + + + + + + + + + + + + + + + + E+E +EE+

d eT -

s a wB o( E E E EE EEEEEE EEE E EE E 4 7 1 t

- w o 6 4 1 2 6 1 9 8 8 9 1 5 0 5 9 i 8 4 4 4 L PP 9 6 6 4 2 1 9 8 7 6 6 5 4 4 3 3 0 8 i. 6 5 4 0 aF 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 l

t 3, a e oS t

Ti n y

/e;D

eH a
  1. / / / / / / / / / / / / # / / # # / / / /

fs 3 4 1 5 2 7 6 7 5 5 1 2 6 3 5 51 18 2 31 33 13 9 4 8 7 7 rW) e 9 6 9 0 94 03 42 06 92 96 16 5 9 8 9 4 7 7 7 0 p neu 7 6 1 1 wM 7 0 5 9 4 1 4 8 0

4 2 9 6 2 0 7 5 2 0 9 7 5 8 3 0 7 3 0 9 o(

T PP 7 7 6 5 15 14 1 A4 4 3 3 3 3 2 2 2 1 1 1 0 0 0 8 r sv l F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 ta S fo t e

Ti o n a

R .

of r enw hf O i

l o

t f

Aod st 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 2 5 8 1 4 7 0 3 6 9 2 5 8 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 9 1 4 2 8 8 8 3 8 4 0 8 6 3 9 2 1 2 4 8 1 0 1 2 4 gB yu ah 1 1 1 f13 - DS 7 7 7 7 6 8 8 8 8 8 8 8 8 8 8 8 9 9 0 0 1 2 7

&3 5 E

L e 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0

/ / / / / / / / / / / / / / / / / / / / / / /

5 0 9 9 8 7 9 8 8 7 7 6 5 5 4 4 2 9 6 3 3 3 31 1

/ /3/ 2 / /2 /2/ 2

/ /2 / 2/ /

2 /2/ 2/ /2 / 2/ 2 / /2/ 2/ /2 1 1 1 1 1 B t a 0 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 6 2 6 2 2 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 A D T

i .

ft 3

5 6 9 1 3 5 7 9 1 2 4 5 6 8 9 2 7 8 0 5 9 0 5 5 8 6 3 bmC%\~%h k s%

0 050 9 1 22 7 1 ~ 0 4 1 5 8 8 7 5 2 7 2 5 8 0 1 to )s 6 6 6 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 1 1 1 5 er 1 1 3d 2(

5 # # # ' #

3 1

7 2 8 3 0 5 9 7 7 9 4 1 9 2 44 75 07 1 8 29 3 0 2 1 22 0 3 4 7 8 0 3 3 4 5 7 8 3 1 3

t o )s 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 0

  • 5 3d w 1 2(

lI t

f 0

2 7 1 12 03 83 64 35 05 561 76 71 85 89 83 9 7 9 0 91 333 42 55 6 65 7 2 1

to )s v 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 5

3d e

2(

R 3

1 8 0 4 3 3 8 82 0 7 6 0 4 4 77 70 63 3 6 8 8 21 4 3 6 5 6 7 7 7 3 5 2 1 9 5 4 3 5 9 0 7 to )s r 2 2 2 3 3 4 4 4 5 5 5 5 161 6 6 16 1 71 18 1 92 29 2 0 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 5 e 2d 3(

A 5 5 7 7 6 4 5 3 6 8 5 0 7 1 4 6 7 0 25 29 92 46 69 52 35 97 '3 0 2 4 6 8 0 9 6 1 5 2 8 2 o )s 0 1 1 1 1 11 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 1 41 4 1 4 1 5 1 5 1 6 1 7 1 7 1 8 1 8 1 1 t

w 1 2 5 o 2d 3(

ll t

f 0 # / #

2 # 2 8 3 8 1 4 9 8 6 6 4 3 9 4 1 3 2 8 3 6 7 6 5 to )s 7 9 2 5 7 0 2 4 6 8 0 1 3 4 6 7 3 8 2 5 0 4 1 5 e v 7 7 8 8 8 9 9 9 9 9 10 101 10 1 01 10 1 01 11 1 11 12 2 3 3 5 2d 3( '

R # # #

? #

1 4 4 1 3 1 5 6 4 9 2 3 3 0 6 0 3 0 8 6 1 7 7 4 o )a 9 2 8 3 8 26 0 3 7 0 3 6 8 1 3 5 3 0 6 4 1 3 t

3 1 1 4 14 15 15 161 61 71 71 71 1 8 18 18 18 192 92 02 12 22 2 2 2 3 4 7 5 ev 5d 3(

1l R # / # # #

5 1 0 7 7 9 9 4 79 0 4 1 8 8 1 3 5 5 8 5 1 3 4 0 7 59 8 1 0 4 2 6 8 6 8 4 0 1 0 0 8 3 2 0 1 9 to )s 2 2 1 3 13 14 14 15 15 15 16 16 16 16 17 17 17 18192 02 02 12 22 4 5 ow 1 1 5d 3(

R # < / # '# #'

0-2 0 1 0 6 0 9 8 4 8 1 2 2 1 9 6 2 2 3 0 7 7 5 4 o )s 6 8 2 5 8 1 4 7 9 2 4, 6 8 9 1 3 1 7 2 5 1 6 8 t

5 o w 9 9 10 101 01 11 111 11 11 1 21 2 1 121 21 1 2 131 31 14 14 5 5 6 6 8 5d 3(

l u # #

lo o1 o 3 # # # # # # ### # # #/ # * # # # #

2' 7 2 8 5 2 9 7 5 3 1 9 8 6 0 5 2 0 3 2 P4 1 hfl ( 6 1 8 5 5 4 4 3 3 3 2 2 2 22 1 1 11 11101 01 000 M9 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 0 8

se s v oe d LL a

e , J # # 8 # # a 8 J # # I # #

L # # * # # # # #

4 3 6 4 8 8 1 7 5 8 8 5 0 6 2 9 7 4 2 0 8 97 350 46 34 22 7 0 4 8 9 0 8 2 t

a e t 3 0 8 0 3 5 H l d r On se 2

1 12 1 121 11 11 1 101 0 0 0 0 9 9 9 9 9 9 8 8 8 7 7 7 6 e o e B (e .

D. * # # # # # # # # '< # * # # # # # # #

e 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 n )

00

+ + +

0 0+ 0+ 0 0+ 0+ +0 +0 0 0+ +00+ +00 0 +0 +0+ 0+ 0 0 +0 +

x k

T f f w t EE 5 2 E ee2E 7E 4E+ 3 2EEEEE+

3 5 7 1 4EEEEE+ 0 3 8 1 0 E 9E6E4E3 E+ EE s On 1 0 7 5 4 2 1 0 9, 4 7 6 8 5 4 4 1 0 8 7 0 5 1 he t o eR 6 6 6 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 v BI e -

L l

  • # 3 / # # # #' # # ## # I # # / # 8 * # #

e r 8 8 8 8 6 8 6 S 5 S 6 8 6 6 S 8 6 6 6 6 6 6 6 h

F e 00

+ + 0+ 0+ 0 + 0 0 + 0 0 0 + 0+ 0 + 0 0 0 +0+ 0+ 0+ 0 + 0 0 +0+ 0+

t e wB o( EEEEEE+ E E+ E+ E E E E+ E+ EEEEEE+ EEE 0 4 1 2 0 1 0 0 8 0 1 4 7 1 5 0 5 0 7 0 4 4 4 .

la PP 9 8 6 4 2 1 9 0 7 0 6 5 4 4 3 3 0 8 7 6 5 4 0 F

h n

laS t

o 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 I

Th m

e r A 4 # / ## # / # # # # # # / # # # # # # # # #

h eN 3 6 41 11 5 2 7 6 7 5 6 1 2 8 3 5 5 1 2 3 3 3 9 0 0 0 00 0 602 24 90 3 07 624 20 0 0299 0 07 501 81 538 00 1 87 330 0140 47 8 7 7 7 7 w 7 e oS 7 0 6 4 0 im PP 4 1 4 0 7 7 6 5 5 4 4 4 4 3 3 3 3 2 2 2 1 1 1 0 0 0 8 T F 2- laS t

o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3 Th -

3 7 7 7 7 8 98 8 8 8 8 8 8 8 6 8 8 0 0 0 0 1 2 7 0 0 0 0 5 9 9 9 9 9 7

9 9 9 9 9 79 9 0 9 9 9 9 0 f f f f f f f / f f f f f f E

L e 5 0 9 0 0 7 9 0 0 7 7 0 5 544 2 9 6 3 3 3 3 f

1 f f f f 7 3f 2 1 2 f2 / 2 2 2 f2 2/ 2 2 f2 2/ 2 f 2 f2 1f 1/ 1 f1 1 1/ / / / / /

f f f f B l a 0 0 1 2 1 2 3 4 5 8 7 8 0 0 1 2 8 2 8 2 2 2 2 A D 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 T

.: I

RE&s o n4 I 0

3  !,:.i!..I' i' i!l. ' I; . 0

- 0

- - 5 l3I!!

0 I t j, ll,- l li I l- . . 0 0

4

- e - -

/ -

e m ' .

]1! -

)n i .

T -

f n - _

)

s -

w w 0 y 00 a h o -

dt u

3D(

e Nu d^ S h _

_- i m _

=

.- T Wn

- s - -

k v w

O f t e o e a -- 0 td R 0u 0

o 2 h S

f

\

f O

l o

i

x. - -

B h

di 0 b

0 0

t

\, _ -

1 b _

v

- t l^r. _

b -

1 3

u -

t'j. .

_ - _ - ^ _.

1 0 t . -

3 5

h 3 1

2 1

3 1

0 1

9 8 7 6 E .

R mEo8.~3& G 4O

,m U

G I

F

r Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewedby N Page 3Q.of_

s..

5.3.4 Operation with One SFP Cooling Pump The purpose of this calculation was to determine if spent fuel poci cooling with one pump, as a normal operating mode, was acceptable. Normal operation with one pump would be considered acceptable if the pool water does not increase significantly in temperature when going from two to one pump operation.

The calculation was performed by first determining the heat exchanger conditions for the present situation for two pumps running. Then the conditions for one pump operation were determined. So that one and two pump operation can be compared under the present conditions. 'Ihe present conditions are the most limiting since decay heat load will continue to decrease with time. Decay heat load for the present condition was taken from Section 53.1 for October 30,1997. The decay heat load at that point was calculated to be 5.84 x 10' BTU /lu.

5.3.4.1 cmiculation of Heat Exchanger Conditions for the Present Decay Heat Load with Two Pumps Running Heat exchanger conditions will be determined based on calculations performed in MYC-1562 (Reference 4, page 56). As discussed above in Section 53.4, the heat load used herein was the present heat load of 5.84 x 10' BTU /hr.

The overall heat transfer coefficient for this condition was assumed the same as Condition 1 in MYC-1562, or 264. BTU /lbjft 2.*F (a reasonable assumption considering U only varies slightly under the condition evaluated here).

The other inputs that are known (taken from MYC-1562) for this condition include:

Shell side inlet temperature which is fixed at 85'F ,

5 Primary Component Cooling (PCC) mass flow rate 4.237 x 10 lb./hr (850 gpm at 85'F, atmospheric pressure) j Spent Fuel Pool Cooling Pump flow rate 1500 gpm j a' - -

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 j November 25,1997 ]

Prepared by MWS Reviewed by M Page _31. of _ 1 The values to be determined are shell side outlet temperature, and tube side inlet and outlet temperatures.

Calculation of Shell Side Temperatures l

For the shellside of the tubes:

i q =& c,AT, l

l solving for AT, yields:

4 l AT, =  ;

1 M c, l S.84x10'BTUlhr AT* = 5 (4.237x10 tbjhr)(IBTU/lbg*F)

AT, = 13.8'F j 1

To the shell inlet temperature is fixed at 85'F so:

To = 85'F + 13.8*F = 98.8'F j On the tube side:

i q = $ CpAT,

~ ATs = 4 m c,

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997

. Prepared by MWS Reviewed by M Page _.32. of __.

The mass flow rate for the spent fuel pool cooling pumps is not known, since the inlet temperature is not known for this condition. However, the mass flow rate does not vary greatly for the temperature range under consideration. To maximize the value of AT3 and thus the pool temperature for this condition the lower mass flow rate for conditions calculated in MYC-1562, was used. From Condition 2 in MYC-1562 (Reference 4):

rh =7.354x10'Ib,,lhr @l54F, atmospheric pressure ,

and solving for AT3 :

AT, = ,4 m c, 5.84x106 BTUlhr AT,=

(7.354x105 lbjhr)(1 BTU /lbg*F)

AT3 = 7.9'F j and ATy = Tg , - Tu ,

= T ,y = T ,y + ATg ,

T,=Tg+7.9*F g

I I

L Now we can use the LMTD form of the heat transfer equation to solve for the tube side temperatures: 4 i

t L

r. '

l Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by N Page _33_ of __

q = U, A,aT,

  • 7 AT"= U A, a

i 5.84 x 10 8BTU /hr ,

(Tg- 85 F) - (T +g7. 9 *F - 9 8. 8 F)

In[(T - 85*F) / (Tg + 7.9'F - 98.8 F) ]

( 264. BTU ) (2980 ft2) hef t .*F 2

/ /

7. 4 *F =

l In[(T g- 85 *F) / ( T - 90. 9 F) ]

Iterating yields:

l Tg

/

= 95. 7'F Tg= 95.7*F + 7.9*F = 103. 6*F / i Now summarizing for operation with two spent fuel pool cooling pumps and a heat load of 5.84 x 10' BTU /hr:

l l

, I I

i 1

l I I

1 l

l l

l l

l Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 l

November 10,1997 l l

Prepared by MWS Reviewed by $d._ Page _.31. of _

Shell Side (cooling water) Tube Side (pool water)

Inlet Outlet Inlet Outlet 85'F (To ) 98.8 F (To ) 103.6*F (Tai ) 95.7 F (Th2 )

5.84 x 10' BTU /hr heat transfer 5.3.4.2 Calculation of Heat Exchanger Conditions for the Present Decay Heat Load with One Pump Running This calculation is done in three steps:

1. With U already calculated for two pump flow, calculate the individual heat transfer coefficients, ih and ho for two pump flow.
2. Determine the effect on h,in going from 2 pump flow to 1 pump flow and the effect on the overall heat transfer coefficient as a result of the change in h i.
3. Calculate the new tube side temperatures, T31 and hTz , that result from reducing the flow from 2 pumps to 1 pump.

Step 1: Calculation of h,and h.

For flow inside the heat exchanger tubes the Nusselt number can be defined in the conventional manner as:

l

)

u_____

l-. .

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by N Page _35.of _

yy ,

h, d, k

k

  • h j

Nu7 i Nu

k k

  • h, = Nu 3 i To determine the flow regime for this situation the Reynolds number was determined from mean fluid properties as follows:

Re =

Mr where: p, = mean fluid density p, = mean fluid viscosity v = fluid velocity The average fluid temperatureis:

L

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed byjd Page _afi. of __

T,, =

Tz+T 2

7av , 103. 6*F + 95.7"F , 99,7 7 j 2

Theinside tube diameter di is:

1 fc dj = 0.527 in x .

1 2 .i n

= 0.0439 ft /

i i

l t

e e

)

1 Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewedby Sk Page.lZ.of_

l l

' At T., = 99.7*F :

c, = 1. 0 BTU /lb; *F l

lb;ft p, = 14 3 .1 x 10-71bjsec/ft2 x 32.174 lb sec, f

pf = 4. 60 x 10-'lb,/ f t sec /

k = 0. 3 615 BTU /hr f t *F /

.?r = 4 . 57 (Prandtl Number) /

p= = 6 2 . 0 l b ,/ f t 3 J 0.01613 fe /lb, 3

The spent fuel pool cooling pump flow rate is 750 gpm/ pump or a total of 1500 gpm for two pumps. The flow velocity for this flow rate is:

A ## 1 in , 1 ,

1 x x v = 1500m **in

7. 481 gal 60sec n (0,0439fe)2 950 cubes v = 2.32 ft/sec y The Reynolds Numberis then:

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed byk Page _33 of _

(62.0lb,/ ft )3 (2.32 ft/sec) (0.0439 f t)

Re =

4. 60 x 10-4lb,/ f t sec Re = 1.37 x 10' y For a Reynolds number of this magnitude the flow is turbulent and the heat transfer coefficient can be calculated with the following empirical equation (from Principles ofHeat Transfer, Ref 8, p. 445) :

Nu = 0.023 Re0 8 Pr 0'33

/

i l

i l

a

E. .

I i

l -

)

. Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 l November 10,1997 Prepared by MWS Reviewed byM Page _31 of 1

l Substituting for Nu we get:

hd i i = 0.023Re o.sPr 033 k

~ hj = (0.023Reo .sPr0 33) I d,

h, = 0.023 (1.37 x 10')0 8 (4.57)o 33 0. 3 615 BTU /hrf t F 0.0439 f t h, = 638. BTU /hr ft3 *F J Now that we've solved for h iand the overall heat transfer coefficient, U, we can calculate housing the overall heat transfer equation. From Holman (Reference 9, p. 388) the overall heat transfer coefficient based on the outside area of the tubes is given by:

U* = /

A, 1 A,1n ( r,/ r,) 1 A, h, 2rikL K i

l l

l L

L

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by M Page ._40_ of _

Solving for ho: ,

1_ Ao 1 A o ln(r,/r g) i U, A, h, 2nkL h, 1 1 Ao 1 Aol n ( r ,/ r ,)

h, U, A, h, 2nkL h* = A, A,1n ( r,/ r,)

1 1 U, A, h, 2nkL All parameters in this equation are known including k which is the thermal conductivity of stainless steel = 10. BTU /hr.ft2 .*F (Reference 10). As in the previous calculation, the overall heat transfer coefficient for this condition was assumed the same as Condition 1 in MYC-1562 (Reference 4), or 264. BTU /lbsft2 .*F (a reasonable assumption considering U only varies slightly under the condition evaluated here). Solving for ho :

r l Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 l

November 25,1997 Prepared by MWS Reviewedby N Page _11. of __

l 1

h, =

1 2980 ft 8 1 2980 ft 2.1n(0.6251n/0.5271n). I

~

264.BW 2516 f t s ' 63 8. BM - 10BW #U 2 20 x 950 cubes hrft**F hrf t ***F r hrf t'*F, g tube ,

1 h =

O # ### # hrft 8 *F #

3.79 x 10-3 - 1. 8 6 x 10-3 - 4. 2 6 x 10 4 l BW BW BW 1

h =

  1. U * #

1.50 x 10-3 BW h, = 665. BW/hrf t' 'F ,

where: A, , andA and other values (except h , calculated earlier)are taken from MYC-1562, Reference 4 Now that h, and i thave been calculated for flow with two pumps, the calculation can proceed to step 2.

Step 2: Determine the effect on hi and U in going from 2 pump flow to 1 pump flow.

Operation with I pump will conservatively half the flow velocity (actually the remaining pump will provide additional flow). To determine the effect on hi of halving the flow velocity we return to the h, equation developed earlier:

h, = (0.023Reo .s Pr0 *33)I d,

l

I Spent Fuel Fool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewedby O Page _42.of _

and with:

Re = * 'O -

M l h,can be written as:

h, m 0.023 ovd' 0 8 p ,o,33 y

\ V i d

. h, = v*0 W
I l

l Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by[ Page __43_ of _.

Thus if the velocity is halved:

h, ( v,, = 0 . 5 v) _  !

o . sy> o.s

~

h, ( v) r v ,

hj ( v,, = 0 . 5 v) = 0.574 h3 (v) h (v, ,= 0.5v) = 0.574 x 638BW/lbgft .op j

2 ll h, ( v,, = 0. 5 v) = 366. BW/hrft 3 F j The effect on the overall heat transfer coefficient based on this reduction in hi is then:

1 u* . 2980 fc8 '

1 1

+ 4. 2 6 x 10.. hr f t' *F .

2516 ft8 366. 8" 8" 8" 665.

g heit' 'F i heit ** *F U, = 194. BW/hrit * *F J The fraction that U, is reduced in going from 2 pump flow to 1 pump flow is:

U,(1 pump) , 194. BW/hrf t F 3 U,(2 pump) 264. BW/hrft3 *F U, (1 pump) = 0.73 U, (2 pump) j l

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 i

November 10,1997 Prepared by MWS Reviewed by N Page ._41. o f __

i l

Step 3: Calculate the new tube side temperatures Ta3 and T 32 Heat transfer on the tube side is given by:

q = h c, ( T,, - T,,)

Assuming the same heat transfer and of 1 pump operation:

h c, ( T - T,, ) ,,, , ,,,, = c, W,g - T,, ) ,,, , ,, ,,

~

2 ( T,, - T,) ,,,, ,,,, = ( T,, - T,) ,,,, ,,,,

Therefore, for heat load of 5.84 x 10' BTU /hr and operation with 1 spent fuel pool cooling Pump:

/

(Tg -T)g= 2 (103. 6*F - 95.7'F) = 15. 8 F

~T =T + 15 . 8 *F ,

1 Now reiterating the LMTD heat transfer equation: ,

q _

(T,,- Tc ,) - (T,,- T c,) ,

U,A, in[(Tg- T,,/ ( Th - T)I i

c l

l I

l l

l Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by d__ Page _45. of __

l I

Substituting for Tai gives:

q (Tg - T ,,) - (Tg + 15 . 8 *F - T,,)

U, A, in((Tg - T,,)/(Tg + 15 . 8 'F - T,t)]

5.84 x 10 8BTU /h ,

(Tg- 85 *F) - (T + 15. 8'F - 9 8. 8 F) y in[T g- 85 F) / (T + 15. 8*F - 9 8. 8*F) ]

194. BTU (2980 ft2) hrft *F ,

j s

~ ~

10 .1

  • F =

In((Tg - 85*F) / (Tg - 83. 0 *F) ]

Iterating yields:

Tg = 94.1*F and:

Tg = 94.1*F + 15. 8 *F T

= 109.9*F

/

,' I Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by & Page __4fi of __

l l

Now summarizing for operation with one spent fuel pool cooling pump with heat load equal to 5.84 x 10' BTU /hr:

Shell Side (cooling water) Tube Side (pool water)

I Inlet Outlet Inlet Outlet l 4 /

4 85*F (To ) 98.8 F (To ) 109.9 F (Tai ) 94.1 F (Th2 )

5.84 x 10 BTU /hr heat transfer I

Thus operation with one spent fuel pool cooling pump versus two results in the pool temperature on the inlet side increasing from 103.6 'F to 109.9 'F or an increase of 6.3 *F for the conditions analyzed. This change in temperature is not significant. Operation with ,

one spent fuel cooling pump, as a normal mode of operation is acceptable from a pool temperature standpoint.

l l

l

1 I

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by 4k Page _4Z. of._

1 l

6.0 Results/ Conclusions 1

1 6.1 VS Obiectives 4 The objectives of this calculation were:

1. To determine the heat load as a function of time in the SFP.

1

2. To determine time to boil for a loss of two SFP pumps as a function of time, initial temperature, and initial level.
3. To determine boil off rate as a function of heat load (time) and time to reach various levels in the pool as a function of heat load (time). I
4. To determine if normal operation with one spent fuel pool cooling pump is acceptable from a pool temperature standpoint.

All the objectives of this calculation wem met as follows:

1. The heat load in the SFP as a function of time was determined. The results are presented in Section 53.1.
2. The time to boil for a loss of two SFP pumps as a function of time, initial temperature, and initial level was determined. The results are presented in Section 53.2.
3. The boil off rate as a function of heat load (time) and time to reach various levels in the pool as a function of heat load (time) were determined. The results are presented in Section 533.
4. Normal operation with one spent fuel pool cooling pump was determined to be acceptable from a pool temperature standpoint. The results are presented in Section 53.4.

. , I l

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed by bt Page iS_of_

\

l l

1 7.0 References

1. MY Service Request M-97-27, " Post - Shutdown Safety Analysis," dated September 4,1997.
2. MYC-481, Revs 0 - 6, " POOL Computer Code," date of most recent revision January 15,1993.
3. MYC-1755, "End of Cycle 14 Allowable Fuel Removal Rate," dated February 2,1995.
4. MYC-1562, Revs. O,1,2, " Spent Fuel Pool Rerack Analysis," dated January 1993, June 1993, and February 1995 respectively.
5. MYC-1253, Revs 0,1,"End of Cycle 11 Allowable Fuel Removal Rate," dated April 19,1990.
6. MYC-1463,"End of Cycle 12 Allowable Fuel Removal Rate," dated February 7,1992.
7. RP-MY-97-33, " Maine Yankee Fuel Cycle Information for End of Cycle 15," dated September 19,1997.
8. Principles of Heat Transfer. Kreith, p.445, Harper 6c Row, Publishers, Third Edition
9. Heat Transfer. J. P. Holman, McGraw-Hill, Fourth Edition, Copyright 1976.
10. Introduction to Nuclear Engineering. J. R. Lamarsh, Addison - Wesley Publishing Co., First Edition, Copyright 1975.

a f

l i Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 l

November 10,1997 Prepared by MWS Reviewed by N Page _49_ of _

8.0 Attachments The attachments are as follows:

8.1 Results TransmittalMemo I 8.2 Evaluation of Computer Code Use Form 8.3 Calculation / Analysis Review Form 8.4 NED WE-103 Review Checklist 8.5 NED Analysis Process Checklist l

l l

l s

l

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by @ Page _iQ, of _

8.1 Results Transmittal Memo

MVG 200 4 PSI

/ MEMORANDUM YANKEE ATOMIC - BOLTON To P. L. Anderson Date December 1.1997 Group # TAG MY 97-05l From - M. W. Scott W.O.# 5377 Subject. SFP Thermal-Hydraulic Calculation Results LM.S.#

File #

REFERENCES

1. Maine Yankee Service Request M-97-27, " Post-Shutdown Safety Analysis," dated September 4,1997.

- 2. MYC-2004, " Spent Fuel Pool Thermal-Hydraulic Calculations," dated November 1997.

DISCUSSION The Transient Analysis Group has performed calculations that provide a portion of the response to Maine Yankee Service Request M-97-27 (Reference 1). The first, second, and fourth TAG items in this service request asked the following:

e " Spent Fuel Pool Heat Load: Calculate the heat load in the SFP as a function of time."

e " Loss of Two Spent Fuel Pool Cooling Pumps - Time to Boil: Calculate the time to boil in the spent fuel pool as a function of time and initial temperature."

e " Operation with One Spent Fuel Pool Pump: Calculate the temperature in the SFP as a function of time with one spent fuel pool pump in operation."

This memo provides the results of these calculations (Reference 2) as follows:

1. The heat load in the spent fuel pool as a function of time was calculated. The results,are presented in Table 1 and . Figure 1.
2. Time to boil for a loss of two spent fuel pool cooling pumps was calculated. Ti$is calculation was done as a function of time, initial spent fuel pool temperature and, as requested by W. Henries, an additional parametric was added on initial level.

The results are presented in Table 2 and Figures 2,3, And 4. As requested by D.

Boynton boil off rate as a function of heat load (time) and time to reach various t

R YG 2004 9SIA

~

P. L. Anderson December 1,1997 Page 2 levels in the pool as a function of heat load (time) were also calculated. The I l

results are presented in Tables 3 and 4 and Figure 5.

3. Operation with one spent fuel pool cooling pump was assessed. Normal operation with one pump rather than two resulted in an increase of 6.3*F in the pool temperature. The change in temperature is not significant. As a result normal operation with one spent fuel pool cooling pump is acceptable from a pool temperature standpoint.

SAFETY EVALUATION This calculation is safety related. It provides information to be used in the Defueled Safety Analysis Report.

Date: IlkM7 '

M. W. Scott,5enior Nuclear Engineer Transient Analysis Group -

Reviewed by: h 9^t mm. Date: \7 I\ M1 S. Palmer, Nuclear Engineer Transient Analysis Group Approved by: .

W Date: 77 i P. A.Bergero , Manager Transient An ysis Group 1

c: .

J. R. Chapman W. E. Henries R. P. Jordan (Maine Yankee)

a myc-2mV P si B

~

TABLE 1 Decay Heat Load vs Time Date Days After Total Power Total Power Shutdown in SFP (MW) in SFP (BTU /hr) 10/15/97 313 1.74773 5.96E+06 i 10/30/97 328 1.71064 5.84E+06 11/29/97 358 1.64511 5.61E+06 l 12/29/97 388 1.58915 5.42E+06 01/28/98 418 1.5409 5.26E+06 02/27/98 448 1.49892 5.11 E+06 03/29/98 478 1.46207 4.99E+06 04/28/98 508 1.42946 4.88E+06 l

05/28/98 C38 1.40037 4.78E+06 06/27/98 568 1.37425 4.69E+06 07/27/98 598 1.35065 4.61 E+06 l 08/26/98 628 1.32921 4.54E+06 1 09/25/98 658 1.30962 4.47E+06 10/25/98 688 1.29166 4.41 E+06 11/24/98 718 1.27513 4.35E+06 l 12/24/98 748 1.25985 4.30E+06 l 06/22/99 928 1.18815 4.05E+06 12/19/99 1108 1.13931 3.89E+06 08/16/00 1288 1.10412 3.77E+06 12/13/00 1488 1.07743 3.68E+06 12/13/01 1833 1.03783 3.54E+06 12/13/02 2198 1.00773 3.44E+06 12/13/07 4024- 0.89079 3.04E+06 i

e

myG-2004 P O 6 TABLE 2 Time to Boil vs Time, Initial Temperature, Level Heat Load _ initialTemperature Pool Water Water Mass Time to Boil Date Corresponding (BTU /hr) (Degrees F) Level (ft) (ibm) (hrs) to Heat Load 5.84E+06 80 32.5 2.48E+06 56.05 Oct 301997 5.84E+06 100 32.5 2.48E+06 47.56 Oct 301997 5.84E+06 120 32.5 2.48E+06 39.07 Oct 301997 5.84E+06 140 32.5 2.48E+06 30.58 Oct 301997 5.84E+06 154 32.5 2.48E+06 24.63 Oct 301997 5.84E+06 80 23.5 1.62E+06 36.66 Oct 301997 5.84E+06 100 23.5 1.62E+06 31.11 Oct 301997 5.84E+06 120 23.5 1.62E+06 25.55 Oct 301997 5.84E+06 140 23.5 1.62E+06 20.00 Oct 301997 5.84E+06 154 23.5 1.62E+06 16.11 Oct 301997 5.84E+06 80 35.5 2.77E+06 62.52 Oct 301997 5.84E+06 100 35.5 2.77E+06 53.05 Oct 301997 5.84E+06 120 35.5 2.77E+06 43.57 Oct 301997 5.84E+06 140 35.5 2.77E+06 34.10 Oct 301997 5.84E+06 154 35.5 2.77E+06 27.47 Oct 301997 5.42E+06 80 32.5 2.48E+06 60.40 Dec 291997 5.42E+06 100 32.5 2.48E+06 51.25 Dec 291997 5.42E+06 120 32.5 2.48E+06 42.10 Dec 291997 5.42E+06 140 32.5 2.48E+06 32.94 Dec 291997 5.42E+06 154 32.5 2.48E+06 26.54 Dec 291997 5.42E+06 80 23.5 1.62E+06 39.50 Dec 291997 5.42E+06 100 23.5 1.62E+06 33.52 Dec 291997 5.42E+06 120 23.5 1.62E+06 27.53 Dec 291997 5.42E+06 140 23.5 1.62E+06 21.55 Dec 291997 5.42E+06 154 23.5 1.62E+06 17.36 Dec 291997 5.42E+06 80 35.5 2.77E+06 67.36 Dec 291997 5.42E+06 100 35.5 2.77E+06 57.16 Dec 291997 5.42E+06 120 35.5 2.77E+06 46.95 Dec 291997 5.42E+06 140 35.5 2.77E+06 36.74 Dec 291997 5.42E+06 154 35.5 2.77E+06 29.60 Dec 291997 4.99E+06 80 32.5 2.48E+06 65.60 Mar 291998 4.99E+06 100 32.5 2.48E+06 55.66 Mar 291998 4.99E+06 120. 32.5 2.48E+06 45.72 Mar 291998 4.99E+06 140 32.5 2.48E+06 35.78 Mar 291998 4.99E+06 154 32.5 2.48E+06 28.83 Mar 291998 '

4.99E+06 80 23.5 1.62E+06 42.91 Mar 291998 4.99E+06 100 23.5 1.62E+06 36.41 Mar 291998 4.99E+06 120 23.5 1.62E+06 29.90 Mar 291998 4.99E+06 140 23.5 1.62E+06 23.40 Mar 291998 4.99E+06 154 23.5 1.62E+06 18.85 Mar 291998 4.99E+06 80 35.5 2.77E+06 73.17 Mar 291998

(NZ-Zoo 4 P5t D TABLE 2 Time to Boil vs Time, Initial Temperature, Level HIat Load Initial Temperature Pool Water Water Mass Time to Boil Date Corresponding (BTU /hr) (Degrees F) Level (ft) (Ibm) (hrs) to Heat Load 4.99E+06 100 35.5 2.77E+06 62.08 Mar 291998 4.99E+06 120 35.5 2.77E+06 51.00 Mar 291998 4.99E+06 140 35.5 2.77E+06 39.91 Mar 291998 4.99E+06 154 35.5 2.77E+06 32.15 Mar 291998 4.69E+06 80 32.5 2.48E+06 69.80 Jun 271998 4.69E+06 100 32.5 2.48E+06 59.22 Jun 271998 )

4.69E+06 120 32.5 2.48E+06 48.65 Jun 271998 4.69E+06 140 32.5 2.48E+06 38.07 Jun 271998 4.69E+06 154 32.5 2.48E+06 30.67 Jun 271998 -

4.69E+06 80 23.5 1.62E+06 45.65 Jun 271998 4.69E+06 100 23.5 1.62E+06 38.73 Jun 271998 4.69E+06 120 23.5 1.62E+06 31.82 Jun 271998 4.69E+06 140 23.5 1.62E+06 24.90 Jun 271998 4.69E+06 154 23.5 1.62E+06 20.06 Jun 271998 j 4.69E+06 80 35.5 2.77E+06 77.85 Jun 271998 4.69E+06 100 35.5 2.77E+06 66.05 Jun 271998 4.69E+06 120 35.5 2.77E+06 54.26 Jun 271998 4.69E+06 140 35.5 2.77E+06 42.46 Jun 271998 4.69E+06 154 35.5 2.77E+06 34.21 Jun 271998 4.47E+06 80 32.5 2.48E+06 73.23 Sep 251998 4.47E+06 100 32.5 2.48E+06 62.14 Sep 251998 4.47E+06 120 32.5 2.48E+06 51.04 Sep 251998 4.47E+46 140 32.5 2.48E+06 39.95 Sep 251998 4.47E+06 154 32.5 2.48E+06 32.18 Sep 251998 4.47E+06 80 23.5 1.62E+06 47.90 Sep 251998 4.47E+06 100 23.5 1.62E+06 40.64 Sep 251998 4.47E446 120 23.5 1.62E+06 33.38 Sep 251998 4.47E+06 140 23.5 1.62E+06 26.13 Sep 251998 4.47E+06 154 23.5 1.62E+06 21.05 Sep 251998 4.47E+06 80 05.5 2.77E+06 81.68 Sep 251998 4.47E+06 100 35.5 2.77E+06 69.30 Sep 251998 4.47E+06 120 35.5 2.77E+06 56.93 Sep 251996  !

4.47E+06 140 35.5 2.77E+06 44.55 Sep 251998

. 4.47E+06 154 35.5 2.77E+06 35.89 Sep 251998 4.30E+06 80 32.5 2.48E+06 76.13 Dec 241998

  • 4.30E+06 100 32.5 2.48E+06 64.60 Dec 241998 4.30E+06 120 32.5 2.48E+06 53.06 Dec 241998

' 4.30E+06 140 32.5 2.48E+06 41.53 Dec 241998 4.30E+06 154 32.5 2.48E+06 33.45 Dec 241998 A30Ei+06 80 23.5 1.62E+06 49.79 Dec 241998 4.30E+06 100 23.5 1.62E+06 42.25 Dec 241998 4.30E+06 120 23.5 1.62E+06 34.70 Dec 241998

]

l myc-2M PSl6 _

TABLE 2 Time to Boit vs Time, initial Temperature, Level Heat Load initial Temperature Pool Water Water Mass Time to Boil Date Corresponding (Degrees F) Level (ft) (ibm) (hrs) to Heat 1.oad (BTU /hr) 4.30E+06 140 23.5 1.62E+06 27.16 Dec 241998 4.30E+06 154 23.5 1.62E+06 21.88 Dec 241998 4.30E+06 80 35.5 2.77E+06 84.91 Dec 241998 4.30E+06 100 35.5 2.77E+06 72.04 Dec 241998 4.30E+06 120 35.5 2.77E+06 59.18 Dec 241998 4.30E+06 140 35.5 2.77E+06 46.31 Dec 241998 4.30E+06 154 35.5 2.77E+06 37.31 Dec 241998 4.05E+06 80 32.5 2.48E+06 80.83 Jun 221999-4.05E+06 100 32.5 2.48E+06 68.58 Jun 221999 4.05E+06 120 32.5 2.48E+06 56.34 Jun 221999 4.05E+06 140 32.5 2.48E+06 44.09 Jun 221999 4.05E+06 154 32.5 2.48E+06 35.52 Jun 221999 4.05E+06 80 23.5 1.62E+06 52.87 Jun 221999 4.05E+06 100 23.5 1.62E+06 44.86 Jun 221999 4.05E+06 120 23.5 1.62E+06 36.85 Jun 221999 4.05E+06 140 23.5 1.62E+06 28.84 Jun 221999 4.05E+06 154 23.5 1.62E+06 23.23 Jun 221999 4.05E+06 80 35.5 2.77E+06 90.15 Jun 221999 4.05E+06 100 35.5 2.77E+06 76.49 Jun 221999 4.05 E @ 6 120 35.5 2.77E+06 62.83 Jun 221099 4.05E+06 140 35.5 2.77E+06 49.17 Jun 221999 4.05E+06 154 35.5 2.77E+06 39.61 Jun 221999 3.89E+06 80 32.5 2.48E+06 84.15 Dec 191999 3.89E+06 100 32.5 2.48E+06 71.40 Dec 191999 3.89E+06 120 32.5 2.48E+06 58.65 Dec 191999 3.89E+06 140 32.5 2.48E+06 45.90 Dec 191999 3.89E+06 154 32.5 2.48E+06 36.98 Dec 191999 3.89E+06 80 23.5 1.62E+06 55.04 Dec 191999 3.89E+06 100 23.5 1.82E+06 46.70 Dec 191999 3.89E+06 120 23.5 1.62E46 38.36 Dec 191999 3.89E+06 140 23.5 1.62E46 30.02 Dec 191999 3.89E46 154 23.5 1.62E+06 24.18 Dec 191999 3.89E46 80 35.5 2.77E+06 93.86 Dec 191999 3.89E+06 100 35.5 2.77E+06 79.64 Dec 191999 3.89E+06 120 35.5 2.77E406 65.42 Dec 191999 e 3.89E46 140 35.5 2.77E+06 51.20 Dec 191999 3.89E+06 154 35.5 2.77E+06 41.24 Dec 191999 3.77E+06 80 32.5 2.48E+06 86.83 Jun 16 2000 3.77E+06 100 32.5 2.48E+06 73.68 Jun 16 2000 3.77E+06 120 32.5 2.48E+06 60.52 Jun 16 2000 3.77E+06 140 32.5 2.48E+06 47.36 Jun 16 2000 3.77E+06 154 32.5 2.48E+06 38.15 Jun 16 2000 1

1

1 MC-7aw P. 6l F ._ ,

TABLE 2 Time to Boil vs Time, initial Temperature, Level l

I l

Heat Load initialTemperature Pool Water Water Mass Time to Boil Date Corresponding '

(BTU /hr) (Degrees F) Level (ft) (Ibm) (hrs) to Heat Load 3.77E+06 80 23.5 1.62E+06 56.79 Jun 16 2000 3.77E+06 100 23.5 1.62E+06 48.19 Jun 16 2000 3.77E+06 120 23.5 1.62E+06 39.58 Jun 16 2000  ;

3.77E+06 140 23.5 1.62E+06 30.98 Jun 16 2000 3.77E+06 154 23.5 1.62E+06 24.95 Jun 16 2000 l

3.77E+06 80 35.5 2.77E+06 96.85 Jun 16 2000 l 3.77E+06 100 35.5 2.77E+06 82.17 Jun 16 2000  ;

3.77E+06 120 35.5 2.77E+06 67.50 Jun 16 2000 I 3.77E+06 140 35.5 2.77E+06 52.83 Jun 16 2000 l 3.77E+06 154 35.5 2.77E+06 42.55 Jun 16 2000 ,

3.68E+06 80 32.5 2.48E+06 88.96 Dec 13 2000 3.68E+06 100 32.5 2.48E+06 75.48 Dec 13 2000

,3.68E+06 120 32.5 2.48E+06 62.00 Dec 13 2000 3.68E+06 140 32.5 2.48E+06 48.52 Dec 13 2000 3.68E+06 154 32.5 2.48E+06 39.09 Dec 13 2000 ,

l 3.68E+06 80 23.5 1.62E+06 58.18 Dec 13 2000 3.68E+06 100 23.5 1.62E+06 49.37 Dec 13 2000 I 3.68E+06 120 23.5 1.62E+06 40.55 Dec 13 2000 3.68E+06 140 23.5 1.62E+06 31.73 Dec 13 2000 3.68E+06 154 23.5 1.62E+06 25.56 Dec 13 2000 3.68E+06 80 35.5 2.77E+06 99.22 Dec 13 2000 3.68E+06 100 35.5 2.77E+06 84.18 Dec 13 2000 3.68E+06 120 35.5 2.77E+06 69.15 Dec 13 2000 3.68E+06 140 35.5 2.77E+06 54.12 Dec 13 2000 3.68E+06 154 35.5 2.77E+06 43.59 Dec 13 2000 3.54E+06 80 32.5 2.48E+06 92.47 Dec 13 2001 3.54E+06 100 32.5 2.48E+C6 78.46 Dec 13 2001 3.54E+06 120 32.5 2.48E+06 64.45 Dec 13 2001 3.54E+06 140 32.5 2.48E446 50.44 Dec 13 2001 3.54E+06 , 154 32.5 2.48E+06 40.63 Dec 13 2001

~

3.54E+06 80 23.5 1.62E+06 60.48 Dec 13 2001 3.54E+06 100 23.5 1.62E+06 51.32 Dec 13 2001 3.54E+06 120 23.5 1.62E+06 42.15 Dec 13 2001 3.54E+06 140 23.5 1.62E+06 32.99 Dec 13 2001 3.54E+06 154 23.5 1.62E+06 26.58 > Dec 13 2001 3.54E+06 80 35.5 2.77E406 103.14 Dec 13 2001 3.54E406 100 35.5 2.77E446 87.51 Dec 13 2001 3.54E+06 120 35.5 2.77E+06 71.88 Dec 13 2001 -

3.54E+06 140 35.5 2.77E+06 56.26 Dec 13 2001 3.54E+06 154 35.5 2.77E+06 45.32 Dec 13 2001 3.44E+06 . 80 32.5 E.48E406 95.16 Dec 13 2002

rny(,-2004 P. El G TABLE 2 Time to Boil vs Time, initial Temperature, Level Heat Load initial Temperature Pool Water Water Mass Time to Boll Date Corresponding (BTU /hr) (Degrees F) Level (ft) (Ibm) (hrs) to Heat Load 3.44E+06 100 32.5 2.48E+06 80.74 Dec 13 2002 3.44E+06 120 32.5 2.48E+06 66.33 Dec 13 2002 3.44E+06 140 32.5 2.48E+06 51.91 Dec 13 2002 3.44E+06 154 32.5 2.48E+06 41.81 Dec 13 2002 3.44E+06 80 23.5 1.62E+06 62.24 Dec 13 2002 3.44E+06 100 23.5 1.62E+06 52.81 Dec 13 2002 3.44E+06 120 23.5 1.62E+06 43.38 Dec 13 2002 3.44E+06 140 23.5 1.62E+06 33.95 Dec 13 2002 3.44E+06 154 23.5 1.62E+06 27.35 Dec 13 2002 3.44E+06 80 35.5 2.77E+06 106.14 Dec 13 2002 3.44E+06 100 35.5 2.77E+06 90.06 Dec 13 2002 3.44E+06 120 35.5 2.77E+06 73.97 Dec 13 2002 3.44E+06 140 35.5 2.77E+06 57.89 Dec 13 2002 3.44E+06 154 35.5 2.77E+06 46.64 Dec 13 2002 3.04E+06 80 32.5 2.48E+06 107.68 Dec 13 2007 3.04E+06 100 32.5 2.48E+06 91.37 Dec 13 2007 3.04E+06 120 32.5 2.48E+06 75.05 Dec 13 2007 3.04E+06 140 32.5 2.48E+06 58.74 Dec 13 2007 3.04E+06 154 32.5 2.48E+06 47.32 Dec 13 2007 3.04E+06 80 23.5 1.62E+06 70.43 Dec 13 2007 3.04E+06 100 23.5 1.62E+06 59.76 Dec 13 2007 3.04E+06 120 23.5 1.62E+06 49.09 Dec 13 2007 3.04E+06 140 23.5 1.62E+06 38.42 Dec 13 2007 3.04E+06 154 23.5 1.62E+06 30.95 Dec 13 2007 3.04E+06 80 35.5 2.77E+06 120.10 Dec 13 2007 3.04E+06 100 35.5 2.77E+06 101.91 Dec 13 2007 3.04E+06 120 35.5 2.77E+06 83.71 Dec 13 2007 3.04E+06 140 35.5 2.77E+06 65.51 Dec 13 2007 3.04E+06 154 35.5 2.77E+06 52.77 Dec 13 2007 L

d$ -

h-l e

v e

L l

o 1 0 2 7 2 8 5 2 9 7 5 3 1 9 8 6 0 5 2 0 6 3 2 o 6 5 5 41 1 41 3 3 3 1 222 22 1 1 1 1 0 0 0 9 9 8 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 iyn) a sd s/ t of L(

l e _

v _

e _

L l

o 9 6 3 1 9 8 6 5 3 2 1 0 0 9 8 5 3 1 0 8 7 1 o 1 8 7 7 7 7 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 P

0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i

n sh

)r st oi n _

L( -

t e

a R 0 3 5 '4 8 8 1 7 5 6 8 5 0 6 29 7 4 2 0 8 97 359 4 6 4 2 0 4 8 9 0 8 2 _

f f 3 2 7 3 0 8 6 3 5 2 2 O )m 121 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 9 9 9 9 9 9 8 8 8 7 7 7 6 .

l l p _

Bo (g

=

'e t

a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0+ 0+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _

fR f )rh E EE EEE E E E EEE E E E E E E E E EE E

+ + + + + + + + + 4 + + + + + + + + + + +

d Otn1 5 2 8 9 5 4 3 a 0 8 7 95 24 72 41 30 29 38 57 76 16 45 84 34 81 10 8 7 6 11 o

l l

ot w6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 L B (I

)r H

r t.

rW h

6 6 6 6 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6 6 _

y .

eT 0 + 0+ 0+ 0+ 0+ 0 wB EEE EEEE EEEEE E EE EEEE E E EE+ 0+ 0

+ 0

+ 0+ 0

+ 0

+ +0 +0 0

+ +0 0

+ +0 +0 + 0 0

+ +0 +0 .

a o(

P FP 694 8 6 4 2 1 9 8 7 6 6 457 41 54 0 35 93 708 8 1 2 6 1 9 8 8 9 4 4 4 1

c l 7 6 5 4 0 e t aS 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 D o Ti n e ,

m i

T r) eW 37 46 11 51 9 2 7 3 7 5 5 1 2 6 3 5 5 1 2 3 13 33 9 1 4 8 7 7 9 0 4 3 2 6 2 6 6 1 8 0

s wM7 o( 4 01 5 4 89 4 8 2 9 0 4 0 3 9 9 8 2 0 7 5 2 0 9 7 5 8 3 0 7 3 0 9 1 5 9 8 9 4 7 7 7 0 v P FP1 71 171 6 5 1 5 1 41 1 4 4 4 3 3 3 3 2 2 21 1 1 0 10 1 00 8 t

s l ta S 1 1 1 1 1 1 1 1 1 1 1 1 o .

h Ti n R

f f r e n O t w

l Ao3 f

d 1 82 85 8 88 18 48 st 3 3 3 3 4 4 4 5 5 5 5 8 6 6 7 7 9 78 08 38 68 98 28 58 88 18 4 82 81 28 0 84 886 33 8 1 04 9 2 o

i yu 1 1 1 1 2 4 B DS ah 3 -

7 7 7 7 8 8 8 6 8 8 8 8 8 8 8 8 9 9 0 0 1 2 7 E 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0

/ / / / / / / / / / / / / / / / / /

L 5 0 9 9 8 7 9 8 8 7 7 6 5 5 4 4 2 9 /

1 /3 / 2/ 2/ /2 /2 / 2/ 2/ /2 /2 / 2/ 2/ /2 /2 / 2/ 2/ /2 /1 /

6 3/3 3/3/ /

1 1 B. e /

0 0 1 1 2 3 4 5 6 7 8 9 0 1

1 2 6 2 6 2 2 2 2 1 1 A D t

a 1 1 2

1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 T

h 3<n1 C- t un.

3 1

0 4 1 5 8 8 7 5 2 F 31 3 8 0 1 2 7 8 0 5 5 0 6 to )s y 5 6 9 1 3 5 7 9 2 4 5 6 8 9 0 5 2 30 050 9 2 7 1 2 6 6 6 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 1 1 1 5 a 1 1 i 3d 2(

ql 5

1 3 7 8 9 9 7 4 9 4 7 0 1 2 3 2 2 0 4 81 32 43 77 30 3 5 8 3 o )s t

y 2 3 5 7 9 1 2 4 5 7 8 9 0 1 0

5 a 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 1 3d -

2(

(I f ,

0 2 7 1 0 8 6 3 9 5 1 6 1 5 9 3 7 1 9 3 3 2 5 8 5 to )s 1 2 3 3 4 5 5 6 7 7 8 8 8 9 9 0 1 3 4 5 6 7 2 y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 5 a 3d 2(

t f

3 1 8 4 3 8 0 8 4 7 7 6 3 8 2 4 6 6 7 3 2 9 4 5 10 5 3 9 7 0 3 8 2 7 0 4 7 0 3 6 8 1 3 5 7 7 5 to )s y 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 7 8 9 1 91 0 01 31 a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5.

2 d 3(

5 1 4 7 2 2 9 4 6 5 3 9 3 5 7 7 6 4 5 3 6 8 5 0 75 2 8 2 2 )sy 8 10 151 92 2262 39 323 54 47 404 24 54 5 66 8 0

0 9 6 7 7 8 8 1 1

1 1 1 2 5.

2d a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3( '

0 2 4 1 3 2 8 3 6 7 6 5 2 8 3 8 1 4 9 8 6 6 4 3 9 2 )s y 7 9 2 5 7 0 2 4 6 8 00 0 10 03 040 6 7 3 8 1 1 222 5 3 305 4 1 5 a 7 7 8 8 8 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 2d 3(

n _

3 1 7 7 4 1 4 4 1 3 1 5 6 4 9 2 3 3 0 6 0 3 0 8 6 o )s 9 2 8 3 8 2 6 0 3 7 0 3 6 8 1 3 5 3 0 6 4 1 3 t

3 4 4 5 5 6 6 7 7 7 8 8 8 8 9 9 0 1 2 2 3 4 7 5 ev 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 5d 3(

A 5

1 0 7 9 7 0 41 88 135 58 51 43 70 95 8 0 2 18 8 0 0 8 2 1 6 3 0 9 7 9 4 9, 4 6 6 4 1 to )s v 2 2 3 3 4 4 5 5 5 6 6 6 6 7 7 7 8 9 0 0 11 2 14 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5.

5(

3 de R

0 2 0 1 0 6 9 9 8 4 8 1 2 2 1 9 6 2 2 3 0 7 7 5 4 -

to )s 6 8 2 5 8 1 4 7 9 2 4 6 8 9 1 3 1 7 2 5 1 6 8

5. ev 9 9 10 1 01 1 01 111 111 11 1 1 1 121 121 121 1 21 21 3 3 4 4 5 5 6 6 8 -

5d 3I d

a )y oa l

o o L PM 1 8 2 7 2 8 5 2 9 7 5 3 1 9 8 6 0 5 2 0 6 3 2 t

a i n (R l

6 5 5 4 4 3 3 3 22 2 2 2 1 1 1 1 0 0 0 9 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 e se ov H ae L L e

i m f 0 3 5 4 8 8 1 7 5 6 9 3 9 6 4 2 0 4 6 9 0 6 2 T f 8 2 2 5 0 18 1290 70 40 20 00 89 79 59 49 39 27 9 83 808877 6 7 3 65 s O )m l

l n 1 1 1 12 1 1 1 1 1 1 -

v o l

S (a e

v 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 e ) 0+ 400+ 00 + + 0+ 0 + +0 +04 00 + +04 0+ 0 + +0 40+ 0+ 0 + +0 +0 + 0 0 0 t r L l h EEEEEEEEEEfEEEE E EE E E EEE O W 5 2 8 9 2 7 4 3 2 3 5 7 1 4 8 3 8 1 8 9 5 4 3 a

l 5 u 1 0 7 J4 2 1 0 9 8 7 6 6 5 4 4 1 0 8 7 6 5 1 i

n 81 08 6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 F

t o r 6 6 8 6 6 6 6 6 6 8 6 6 8 6 6 6 6 6 6 6 6 6 6 l e 00 00 00 0 04 00 0 0 0 0 0 0 0 0 0 0 0 0 -

i a w o

4 + + + + +

EEE EEEEEE

+ +

EE

+ 4 + + + + + + + + + + + + +

EEEEEEE EE EEE t

PP 6 4 1 2 6 1 9 8 8 9 1 4 7 1 5 0 5 9 7 8 4 4 4 n

i l

F 9 8 6 4 2 1 9 8 7 8 6 5 4 4 3 3 0 8 7 6 5 4 0 i

ta 8 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 33 o n m l1T1 o

r rW 1

f e 3 4 1 5 2 7 6 7 5 5 1 2 6 3 5 6 1 2 3 3 3 9 w 0 e o (M 7 6 1 1 7 0 5 0 04 8 9 0 4 3 2 6 2 6 8 2 29 00 745 02 90 9 1 8 1 3 1 74 78 7/ 7 0 m PP 4 1 4 8 9 6 9 71 55 893 80 97 4 3 C9 l

F 7 7 6 5 15 4 4 4 4 3 3 3 3 2 2 2 1 1 1 0 0 0 1 ta S i

T o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 4 Ti n E 7 7 7 7 8 8 8 8 8 8 8 0 6 8 8 8 9 9 0 0 1 2 7 9 9 9 9 9 9 / f9 9 9/ 9/ /9 0 9 9 9 9 0 0 0 0 L f't M////f9 0 / /

/ f f f f f f f f 5 0 9 9 8 7 8 8 8 7 7 5 5 4 4 2 9 6 3 3 3 3 B e f 1

02 / 2/ /2/ f2r 2 / /2/ 2 2 2 2 2 2f 2 2 / 2 / /1 / /1/ / / /

1 1 1 1 A

l f e 0 0 1 2 1 2 3 4 5 8 7 f8 8 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 2 6 2 6 2 2 2 2 T I D 1 1 1 0 1 0 1 1 1 1

  • 9 4

<7 M N% %

0 0

0 4

du n

o

% 0 0y 0a

)s 3D(

h x

S n r w e o n d A t u

e h m S r

e .

s A

t f

A _

s r

e w _

o

\

P ' _

P _

F S .

g _

s t

o T

0 0

N 0

3

\

gA o

-. . *+ 6 0

+

6 0

+

6 0

+

6 0

+

e E E E E a.

. m.

s 0

5 4

0 0

4 0

5 3

0 0

3 y#ga$g We

. ~

I k

,s{g y _

0 0

0 5

0 m " ' . 0 0

4

- 4 5

1 e 0 0 0 0 l a

m 8 0 2 4 i 1 1 1 t i l i T a .

l a

l a l n i/

i t a I d

n i i i I

n i n

i t

n t

n T

wt )

/

I I I oe T T T s T 0 y de 0 a tu F - 0 3D(

h5 S2 l

s 3 vl e v

- / ' i T

e m

n

' y i

oe B L oe t t r

a 0d 0t 0 u 2h w

o

  1. p #

il eW m S To o 2 P j

fs E

R U

G I

  1. 0 0

0 F # 1 f - c-'-

7.r P

/[l s ! - // -

- 0 O 0 0 0 0 0 2 0 8 4 2

_ 1 1 m 6 5nc 9 g- j l) i ll 1 1

~

)k ,, n o _

o o

s -

a * -

4 * .

9 5 j

0 4 1 1

o g,f 0

e g 0 1

2 1 l a

l i

a m l a l a I, i

t i t

i i a i i

n n T t t I i

i i I n I n i t

n I n T T -

wg T I T T )

s og d e a t p h5 u - - - ' (

D e

S3 s2 vl e i

T m -

i l v - n oe B L oe t l e

r B

-- =

e 0d 0t 0 u 2h w

o .

mw m

- S il To o -

3 P -

f W, E -

R U

GI F c w 0 0

0

/

f 1

/y f

/

f f [f y'=

0 0 0 0 0 0 0 8 7 6 4 2 1 Euoc ;. D 2 g P

}QNc. ,h k 0

0 0

5 0

= = " n . 0 0

4 4

5 0 0 1 e 0 m

8 l

a 0

1 0

2 1

4 1

l

_al i

t i l a i n

i T i t

n i t

a l i

a - i t I I i i t

n T n n n I de wt oe tu F T I T

I T

Ti' 0 0

0 a 3D(

)

y s

m h5 e S5 s 3 vl e

/ i T

m iv l n .

oe w

B L

  1. o .

r d ._

oe

0t t t 0 0

u e a 2 h S

  1. p "

mW il To o 4 P E

- -e _

/' -

R U _

G I

s 0 0 _

F

, 0 1

f# f Y [' /

[g I

/ / [_ "3' .

0 0 0 0 0 0 0 4 2 8 6 4 2 1 1 mo c

r5W 3 eE-

' i

37N8 c N - R 0

0 0

5 0

. - 0 0

4 N

e i

m )

s T 0y n 0 0 a w

o 3D(

d e 5 t u

E h m R S i T

U s n G v I

F ea w A o t

R 0 td f

f 0u 0 h O 2 l

S o

i B

3 0

0 0

\ 1 g K N

k iT

_ 11 .

0 3 2 9 8 7 6 1 1 1

'vo.8 g[ :o 4

~

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0  :

November 10,1997 Prepared by MWS Reviewedby h Page _52. of __

8.2 Evaluation of Computer Code Use Form i

i

e EVALUATION OF COMPUTER CODE USE P. 53 CALCULATION NO. W C_- 2004 REVISION NO. O List the computer codes used, and complete the following:

Approved Appropri-per WE-108 1 ateness Outstanding 3

Verified 2 SPRs

/l

, Code Name/ Version and/or Script File Yes No Yes No Yes Nd t f'00L- / / /

buAh $1 kf W/h/Dws

\/c T 'en C. o V V /

I Refer to Section 4.1.4.4, Bullet 3, of this procedure.

2

. Refer to Section 4.1.4.4, Bullet 2, of this procedure.

3 Refer to W$-108, Section' 4.4.

If a computer code was not verified per WE-108, or if there are outstanding SPRs state below why it is appropriate.

Code Name/ Script File Appropriateness Quirko10<Widas

~

Spaal.rha t.r vented 4 alslakM, W(J$0h &*O FORM WE-103-2 j [. Revision 3 WE-103-24

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997 Prepared by MWS Reviewed by Page_31.of_

8.3 Calculation / Analysis Review Form

l j

CALCULATION / ANALYSIS REVIEW FORM k _

CALCULATION NO. f M G.- G O O 4 REVISION NO. O COMMENTS RESOLUTION w en 4.6 - W < sw't Meer s'n Ws seckn M dddd SY d t w i- l I

hai Brf Ase9-2 w/ toin wwcer+innu, b & 1 1

OS&Af 6 On s'n M e. b t t' M E..

Seckon S.'s.\ ten b 3 - orav'sde. \utMheaMon b /ded IMt+C A U b usum \.00N \LinceAtkin!rg k%oner h burw 4 emdes on otd b.

St.cMon G.s. s (y G - 83 uans kenme.nhMe s for(ftted MDCatwtNtt1N8^

Soc Card 2. q*- g\* entnes , doesn't we.hch f(ee fmed 2, t m o uJr M \e. oe, ~ ~ 1 Atse h e_ ama 17 ve$a oe. C.oIr[2. wets \.

es-s wen aa.n men w Akuhed fdene 7 h wua\ be. (OAnrhec4 -hts an.a QE-%'5 CAheinaMcm M u.se.sh 'd9ercoaMem

't h Otmb.inA . 7\ case. aHtic.h .

Sec* ion 5.L\ -

i.uu.wu d % add. Mdd mMw cw/ doU mShsthow ow \ sus % vu.n h foot Aad / M N b NICf e ce6e ( cp m vna.m.d h Soc em m,uo\eS .

Sechn G.'s.1 -

14 Res sw o San Srem A9e.reance 9 ax.n vnedWe.d m ogder b '

Identify method (s) of review: -

N Calculation / analysis review O Alternative calculational method O Qualification testing Resolution By: u r // I kl7 freharer/Date Comments Continued on Page: 55 A Concurrence with Resolution

  • h k h \\ l%l9'1 4 v Reviewer /Date WE-103-25 FORM WE-103-3 Revision 4

CALCULATION / ANALYSIS REVIEW FORM ,

CALCULATION N0. Wto.- occ 4 REVISION No. O COMMENTS _

RESOLUTION Tun 906L eMe.. sace' tnt. Mte(reikons AMf/ r1ANI haAct %e. Sc. aakoA "Th h y nh on saan 4-it cw t e gehence_ , _ ]

N e w n s.'s.t -

N.a.we li% soteod - /sa/- fu, h N .

5W ^ ou3Ogk abowtd\ae.taineleA d e ,

. i Kovert A mk$.h wnme. #t*A Q.P. 9ernon W .

Ae tS- \ don'k V.nce %8% usu ods. tnLeE he ShaYsu blt l$ O/R$tf ut AC4es htt4dman". % [on't Qti [A do .kyt, N WAf <E/T4//o

%e'heunMt nmwr 60 daism Mau$nnuna '

I2/Ir/ O skuAdotaw on it Itt.1 % .'

Sechn s.'s.2 Con \M - sit A es Aarer Ar 7a/r 4/4/

wkes is %t wd naturn s^rsktr (tMt.1 _br DM ,

umb verwAL ocutAthens oes mye-Ifsr z.

M ease. n A A 4 A a s M Nasta b enAncy WMelt .

M on 5.'5S -

9motda 'tus%%caHan Op : /,8 fsr all cafdf. [fs/os Ear ant sm Go a i.60 6 Not n$ eaun . Vhfsi In Uc ifo'rd l kCnlplMd.

J = v .

Se.cKon 5.15.'2, - he co,ttiangon e4 gar se, r,'(br. ge/ #t /ffeum /4 vvnAa oi. 35. 5 9+. unish h specific. onesil frips f a f J f, N e< f Identify method (s) of review:

M Calculation / analysis review '

O Alternative calculational method .

O Qualification testing .

Resolution By: mb 11 7 7

' Preparer /Date d Comments Continued on Page: 56Q g

y -

' Concurrence with Resolution h uReviewer/Date i

b %l%F1 WE-103-25 FORM WE 103-3 Revision 4

y ..

. CALCULATION / ANALYSIS REVIEW FORM

  • CALCULATION NO. W C.- 3004 REVISION N0. O l COMMENTS RESOLUTION 90\ume ai. 32*F is ven- conservaMve b- ,d5 A rGa/I d dl #-# f#ah/c $/WNc i

\exe \n > s 2. s, C+ . ' @r~e, is M % du/an b< uddll.

v '

l Sndw S.s.1 s-A s.s.s 'We o\eh fl4<. fk wr ec anarul kid rr h.- d L k u n u/r.

wood be unto avPut t wwk . ww  ;

am v- se nia e9 'dake_"vakker 4wm wat a@rcu skuMeum .

wcMon s . s .4 -'the. mbean. fer re a d e l t h v3 h e n +ak u A Svm s wac-\ % z s o c A l:n k rkUka %n k mave 6eMt,A - acetWathn . n2 1, ,1 44 hef, I a, v

,u khuM4uh ovmuta.'. Ve.mo eat..

b he hn an' 4 Acta mkes. ' '

& coar 46 uns sw u: sq. %%%%

ll unt ex/co/Atcl $w wiral.

) \s s emuAantu \L s nn sMen's n a diNfMNY' emAlh*9n( in lW6'!5bi s altoAAku du h ocwMNews eMh ud aA . oliol'(aeyro%erded#m/ml-

\ so't<edo una su A wm A.w s & Ai,,iwtd t&vlerntte w4(jd9tm) o<w r %. w aan.s. Il1:d nstk= L*unk

~

0 ~ () f Pace 4\ - eueru ONDu.i 4c,% ^a ItA/

" ' '~

b ce houi.d be cbc.u.rmahed Y4M = o d outa% m ey._saiarusa d

% GJurMAa.h CAA.outnhCAA .

Identify method (s) of review:

% Calculation / analysis review O Alternative calculational method O Qualification testing Resolution By: I ll k'l Pr' epa re r/Date' Comments Continued on Page: Nk Concurrence with Resolution h u wt N h Ml'dL \O

- ) '

l' Reviewer /Date WE-103-25 FORM WE 103-3 Revision 4 l

l

1 i\

Spent Fuel Fool Thermal-Hydraulic Calculations MYC-2004 Rev.0 j 1

November 10,1997

{

l

. Prepared by MWS Reviewed by Page.ji6 of _ '

3dfJ50 WE 103 Review Checklist i

f j

4 1

a

f I **

NED Procedure No. 3 l Rev. 0_ Date 8/22/96 l Page 3 of S fetc 5 7 1 M'ic.- GooA R.ea o -

NED WE-103 REVIEW CHF,QKI,.lST l

Reviewer Compliance Reviewer l

Name Name (please print) $agp,nne, %qng (please print) $W6f(:y y y nl Organization YAEC Organization fgg Signature Signature ,[_j 7 Q l Date u l 3V 197 Date ' /2,[//7 f _

Compliance Reauirement Reviewer Reviewer Ensure the title page is appropriately filled out.

  • Correct number of pages./

e QA Record filled out. /

e IMS number filled out. 44 e Record number filled out (13.C09.001 included if microfiche or hard copy of computer runs are attached to the

. calculation). /

!

  • Descriptive title. /

e Plant, cycle number and calculation number included. "N/A"/

l can be used for plant and cycle number.

  • S@atures and dates are included, and are in conect ct..onological order. Print the name and individuals' organization (if other than YAEC) below the signature. The title page reviewer and approver dates do not pre-date any date in the calculation except for changes containing that individual's initials and date.
  • All WE-108 computer codes and other keywords not in the title which can be used to retrieve the calculation are listed in the keyword field. 49 8Ieit@

Ensure the Form WE-103-2 is included and properly completed when a M t.b computer code is used.

Ensure Form WE-103-3 is included, and has cignatures/ dates from both the preparer and the reviewer and that all comments have been addressed. If no comments, use the following statement:" Reviewed in accordance with WE-103 with no comments". M wen- _

Ensure review of the calculation can be done without recourse to the originator. M N/A .

kh

Ensure computer codes are used in accordance with WE-103 f Steps 4.1.4.4 through 4.1.4.6. N Nnt yet Aped. SMt. Itl819't Form NED 3.1

$g, mi yeteinN&le $/ck nllfit Rev.1 (effective 9/1/96)

NED Procedure No. 3 Rev. .D. Date /22/96 Page 4 of 5 _

NED-WE-103 REVIEW CHECKLIST M4c.- s2co4 % 0) '

(continued)

Compliance Beouirement Reviewer Reviewer Ensure the calculation includes a title page, objective, method, inputs, assumptions, calculations, results, conclusions and references.

N $[df.,

Ensure the inputs are referenced to formal documents, e.g., WE-103.

The reference can not be a YAEC report unless formal QA records are checked and also referenced. 09 N/A Ensure design input internal and extemal correspondence is prepared and reviewed, and is, therefore, a QA record, if there is only one signature on the correspondence, verify that it is a QA record. M N/A Ensure that if design specifications were used as input to the calculation, the performance characteristics are verified in writing by the provider of 3 the component / product or by cognizant YAEC/ plant personnel. M N/A Ensure that input and modeling uncertainties are explicitly addressed in the calculation. hR N/A Ensure that the applicable input considerations from WE-100, Table 1 '

.m have been incorporated and are explicitly addressed within the M N/A i calculation.

Ensure individuals responsible for'each portion of the calculation are identified when multiple preparers and/or reviewers are utilized. Page initialing is optional, even in the cases where initial boxes are provided on the pages. Al? Ic b Ensure each page has a page number and the calculation number and revision number if applicable. Dates on each page are optional. M Yeb Ensure that every page of every attachment (or Appendix) contains its attachment (or Appendix) number. M *b Ensure a conclusion is stated in a supplemental Revision. -bR Ye Y *-

Ensure corrections are addressed in one of the following approaches:

  • Retyped and identified by a vertical line with revision number, if applicable, in the right margin: OR
  • Lined out, initialed and dated by preparer; OR e Photocopy of original to eliminate any previous correction tape, whiteout, or erasures. N C Ensure enhancements and clouding are initialed and dated. N' MfN

.I Fomi NED 3.1 Rev.1 (effective 9/1/96)

g .

NED Procedure No. 3 Rev. _Q_ Date 8/22/98 Page 5 of 5 gpg -

NED-WE-103 REVIEW CHECKLIST (continued)

MMC.- W 6 o Compliance i Egouirement Reviewer _ Reviewer _

1 Confirm legibility meets WE-103, Attachment A. Specific pages can be '

exempt if they are: (1) documents received from another organization who is the original QA custodian, or (2) supplemental pages included for information only. In these two cases, make sure a memo was issued to RMS per WE-002 Section 3.4.3.

If Yd l Review of 10CFR50.46 reporting requirements has been documented for analyses which assess conformance with 10CFR50.46. d, N/A Ensure computer codes are validated for the computing environment. &R N/A Ensure script files are included in the calculation or referenced to another calculation. Also, ensure the pre-rer identifies how the code / script was run.

M N/A Ensure applicable outstanding Engineer;, . ficiency Reports (EDRs) have been reviewed for influence on the t ' '.ation and note review in calculation.

.hD N/A Ensure relevant SER conditions / limitations have been reviewed for their effect on this calculation and the review is noted in the calculation. d I

i t

a g -, (- , .

i i

Fonn NED 3.1 1

Rev.1 (effective 9/1/96)

Spent Fuel Pool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 10,1997  !

Prepared by MWS Reviewed byd Page_6D.of_

8.5 NED Analysis Process Checklist I

l f

l l

e l

l l

L

t WC-3%A gg o l NED Procedure No 6e g fl j Rev. 2 Date 5/7/97 e

Page 7 of 9 . l 1  !

Table 1 's.

, NED ANALYSIS PROCESS CHECKLIST Preparer Reviewer (p e se print) f( M6f e 0 (p e se print) SuXanWC 901htY Organization %8)((, ,

Organization %EC.

Signature Q[ Signature @ Qh "

Date l'E /// f '7 Date u 194. M 1 Reauirement Precarer Reviewer Ensure that the method described in the MOM, if applicable, and YhtW N the base calculation, if one exists, has been followed if not, ensure lead engineer / manager is consulted and W b9 documentvariation in calculation Ensure that other applicable NED Procedures are implemented M - M ,-

Ensure inputs / assumptions are obtained from appropriate sources M AP e Ensure any change to an input / assumption is consistent with b d operating pracbce at the plant Ensure that the safety analysis conforms to appreable requirements W A9 Ensure that intermediate results that would require a change to Yfh8 _

N/A l7aA plant operating practice are dispositioned and documented Ensure, if reporting preliminary results, that the standard M N/A l"P.to.J.

memorandum clearly states the results are preftminary and provides the status of the final analysis Ensure that issues found when performing an analysis are M N/A l12eo.7-dispah and documented Ensure a standard memorandum is written describing the Knalysis b N performed and containing the fellowing elements:

- Any documents affected by the analysis are W hQ updated

- Recommend updates be incorporated in the M _JM affected documents and include an action taken feedback block )

+**We e mem e S Ge me e em

W%C-3 COA NED Procedure No. 6 e(pl, Rev. 2. Date Sr//97 -

c Page 8 of 9 "b

NED ANALYSIS PROCESS CHECKLIST (continued)

Reauirement EIgp31gg Reviewer

- If the memorandum recommends updates to N LA b#

affected documents, copy the NED Administrative Assistant

- Provide a list of personnel for distribution at YNSD M M and the sponsor

- Notify project and sponsor Scensing groups of any M IE known NRC reporting requirements

- Include a safety evaluation,if a plant cperating M M practice is known to be affected Ensure that this checklist has been filled out and is attached to both IhMd E the memorandum, placed in department chronological files, and the NUl calculation. [ NOTE: The checidist does not need to be attached to distnbuted copies of the memorandum.] ,

~.,

\

l

. l i

1 1

- , . _ _ l J

l Spent Fuel Fool Thermal-Hydraulic Calculations MYC-2004 Rev.0 November 25,1997 Prepared by MWS Reviewed byM Page _fi3_ of _

8.6 Selected References

'l Myc-twy AH M N .-

f6Y r r .

PTInCI OieS OT l

/

HEAT TRANSFER r. r r.

tatro ecitr.on 4 <

frank Kreith University of Colorado I

Thomas Y. Crowell HARPER & ROW, PUBUSHERS New York Hagerstown San Francisco London ,

y .

i- $lfl 440*/

IT \ **

l AN S'h '

-i y heat transfer " [sothermal l

!'.c

'l (8f33)W l

h. '

i% I 8-5. Forced convection in transition How l 3 1

! The mechanisms of heat transfer and fluid flow in the transition  ; i region (g between 2l00 and 10,000) vary considerably from system to system 4 in this region the flow may be unstable and fluctuations in pres- [ l

.l sure drop and heat transfer have been observed.JThere exists a large un- j' certainty in the basic heat-transfer and flow-friction performance, and consequently the designer is advised to design equipment, if possible, to l operate outside this region. For the purpose of estimating the Nusselt sumoer m the transition region, the curves of Fig. 8-15 may be used, but ,

the actual performance may deviate considerably from that predicted on 7

. the basis of these curves.

, 8-6. Closure '

To aid in the rapid selection of an appropriate relation to obtain the heat-transfer coefficient for flow in a duct, some of the most commonly g.;

i '

Table 81. Summary of usefui equations for forced convection heat transfer inside tubes and ducts.

- system squation f.j.N Long Ducts, Liquids and 8-28*

, oases. Laminar Flow We, = 1.86(Rep,Pr Dy/L f (#6/,,

4 (Ree < 2,100. Pr > 0.7)

Short Ducts, Liquids and i asses Laminar Flow N*n " ReePrD,4g le 2.6 8 27' Pr * (Re,,PrD,/L)",

(r>0D Long Ducts. Turbulent 8 24*

pg ' Eej - 5.0 + 0.025(Re,,Pr)*'

(Pr < 0.8)

Long Ducts Turbulent I i Flow Liquid Metals.

' ,, - 44 + 0.025(Rea ,Pr)" 8 25' ]

- Constant WallTemper, ,

ature(Pr < 0.l) ,

I Long Ducts. Liquids and E , - 0 A23 Repy MPr2 M*

l ' oases in Turbulent Flow (Re, > 6.000 Pr > 0.7) ,

,e short Ducts. Liquids and Eo, = 0.023(I + (D,/L)"l ReDy r 8-23' [

oases in Turbulent Flow '

(2 < L/D, < 20. Pr > 0.7) 9" *** see Reference 26.

Laminar Flow

)

" All physical propernes should k evoluesed at ik mesa Alm semperature. (T, + Te1/2.

' 8-6. CLOSURE 445

ll}W~ZOOl/

MEMORANDUM 8M4#/ /'j YANKEE ATOMIC - BOLTON Date September 19.1997 To P. L. Anderson /J. T. McCumber From G. M. Solan Group # RP-MY-97-33 S.R. # Reload Task 04.01 Sublict Maine Yankee Fuel Cycle Information W.O. # 5366 1.M.S.# MY.K. l .1.1 for End-of-Cvele 15 FUELSC8.MEM

SUMMARY

Fuel cycle information for Maine Yankee operation through the End-of-Cycle 15 is provided in Attachment A. The information is updated from Reference 1 to reflect the early shutdown of Cycle 15 as the last operating cycle. This memorandum fulfills the reload task indicated above and is for transmittal to R. P. Jordan and D. B. Boynton at Maine Yankee.

DISCUSSION He fuel schedule in Figure A of Attachment A is contained in the filefsxm042. The batch infomtation lines from Figure A are contained in the filefsqm042. Rese files are available to the Fuel Management Department for economics evaluations.

Rese fuel schedule files have also been requested by the Transient Analysis Group for spent fuel pool heat load calculations which may be safety-related. The recent cycle sub-batch burnups from Cycles 14

')l and 15 have been checked to assure that they match the cycle bumups from the final plant INCA bumup blocks (95-14-58 for Cycle 14 and 96-15-41 for Cycle 15). Dese bumups are the significant inputs to the heat load calculations and the fuel schedule files are therefom considered acceptable for use in such calculations. If this data is incorporated in safety-related WE-103 calculations, this memorandum and the relevant parts of Attachment A should be included as an attachment to the calculationsfor documentation as a QA record b7k./uC_ timIe7

. M. folan, principal Engineer Date eactor Physics Group b Y _- 9k1N Reviewed by: P. A. Heliault, Senior Engineer Date Reactor Ph ics Group i

YN ff Watl Approved by: R.%iapot3tijfdanager Reactor PhysiWGroup '

c: J. R. Chapman R. M. Grube R. T. Yee P. S. Littlefield P. A. Bergeron R. P. Barna E. E. Pilat J. DiStefano M. W. Scott F. X. Quinn J. E. Rivera J.Hamawi K. E. St. John J. M. Buchheit J. A. Mayer S. Van Volkinburg m

- REFERENCE

1. YAEC Memorandum RP-MY-96-24, " Maine Yankee Fuel Cycle Infonnation for Cycles 15 and 16," G. M. Solan/M. C. Beganski to P. L. Anderson /W. J. Metevia, May 30,1996 i

a s

nyc-zeoq yy f. 47 .

~

Attachment to RP-MY-97-33 Attachment A MAINE YANKEE FUEL CYCLE INFORMATION FOR END-OF-CYCLE 15 Summary l Fuel cycle information for Maine Yankee operation through the end-of-Cycle 15 is provided in this i attachment. The information is updated from Reference 1 to reflect the early shutdown of Cycle 15 as l

the last ooerating cycle. The fuel cycle information is contained in the following tables and figures: 1 Table Description 1.1 Operating History Summary 1.2 Core Loading History Summary l 1.3 Thermal Generation Histoy Comparison 1.4 Cycle Bumup History Summary 1.5 Thermal Generation in Effective Full Power Years l

2.1 Fuel Assembly Types by Cycle 2.2 2.3 Fuel Assembly Types by Cycle and Total Fuel Assembly Types by Cycle - Sut> Batch Detail

(]

2.4 Design and As-Built Enrichments and Loadings by Assembly Type 2.5 Type UX and V Enrichment and Uranium Loadings 2.6.1 Number of Assembiles, Spent Fuel Pool Storage Capacity and Requirements

.2.6.2 Discharged Assemblies on Site with Storage Restricted to Region i Only 3.1 Cycles 1-15 Fuel Cycle Information 1 l

3.2 Cycles 1415 Discharge Bumup History vs. Industry Average I

Figure De5MA;00 1.1 Cydes 1-15 Length of Outages, Full Power Operation and Coastdowns in Days 1.2 Cydes 1-15 Length of Full Power Operation and Coastdown in EFPDs 1.3 Cydes 1-15 Thermal Capacity Factor, Excluding and induding Prior Outage, ,

1.4 Cycles 1-15 Fresh Fuel and Core Average Enrichment 1.5 Cycles 1-15 Average and Maximum Discierv ed Assembly Bumups 1.6 Cycles 1-15 Discharged Assembly Average Bumups vs. U.S. Industry Average for PWRs e:.

A Fuel Schedule for EOC 15 (FSXM042) 1 -

gwy '

W BM4 P4 --

Attachment to RP-MY-97-33 Operating, Core Loading and Thermal Generation Histories The operating history of Maine Yankee Cycles 1 through 15 is contained in Table 1.1, providing dates of startup and shutdown, licensed and operated powerlevels and cycle bumups. The core loading history is presented in Table 1.2. The core loadings are based on the assembly design weights from the fuel vendor, the as-modeled weights used in the current physics methods analysis, or the as-built assembly weights. Two as-built core loc % > are provided in the table. One uses the individual assembly as-built

]

data, while the other uses the average as-builts of all fabricated assemblies of that sub-batch.

The gross thermal generation history is contained in Table 1.3, comparing the gross thermal generation f from the monthly statistical reports to the gross thermal generation used in the incore analysis, which determines the incremental and final assembly bumups for the cycle. Cycle bumups are shown in Table '

1.4, illustrating the differences resulting from the use of different cources of gross thermal generation and core loadings. The gross thennal energy generation from the monthly statistical reports is converted to effective full-power years (EFPYs) in Table 1.5.

Fuel Assembly Types The number of fuel assembly types by cyde through Cycle 15 is provided in Table 2.1. The number of

]a fuel assembly types by cycle is provided in Table 2.2, including the cumulative number of irradiated ,

assemblies by cvcle. The number of fuel assembly types by cycle with sut>. batch details is provided in Teble 2.3. "' wmation includes assembly types, fuel vendors (Combustion Engineering (CE), Exxon {

Nuclear Come cny (ENC) and Westinghouse (W)), fuel designs, as-modeled assembly average enrichments and weights, and number of assemblies by cycle.

Additional enrichment and loading information by sub-batch is provided in Table 2.4. Assembly enrichment zoning was introduced in Type T fuel for Cycle 14. Axial blankets were introduced in the Type U fuel for Cycle 15. The assembly design enrichments for the low enrichment regions, the high j enrichment regions and the blanket regions are specified for each sub-batch. The average assembly design and as-built U-235 enrichments are indicated for each sub batch. The assembly average d'esign, as-modeled and as-built uranium loadings are also provided for each sub-batch.

Cycle 15 was the first cycle for insertion of Westinghouse fuel, designated Type U. Cycle 15's earty shutdown required a redesign of Cycle 16 without reinsertion of the failed Type U fuel. The redesigned Cycle 16 fresh fuel consisted of 8 Type UX assemblies from Siemens Power CGTuietion (SPC, formeriy Exxon Nuclear Company) and 84 Type V assemblies from Combustion Engineering (CE). The fresh Type UX assemblies are currently at the plant in the new fuel vault and the fresh Type V assemblies remain

- at CE. The redesigned Cycle 16 and the fresh fuel types were described in Reference 2. Table 2.5 g,l provides the design and as-built enrichments and loadings for these fuel types.

2

Ig ,

$9Y '

R%ld A4 b$ ~

Attachment to RP-MY-97-33 Spent Fuel Pool Storage l

A summary of the number of fabricated and irradiated assemblies and the spent fuel pool storage requirements are provided in Table 2.6.1. There have been 1530 assemblies fabricated for Maine l Yankee, with the detailed assembly information contained in a library file which was provided to the plant in Reference 3. Of these ~ assemblies,1434 have been irradiated. Of these irradiated assemblies,144

- require storage in Region 1 of the spent fuel pool based on criticality criteria, as detailed in Table 2.6.2, taken from Reference 4.' The unirradiated assemblies are comprised of 4 spare assemblies no longer on-site (Types A, B, C and D),8 Type UX assemblies currently in the new fuel vault and 84 Type V assemblies currently at Combustion Engineering.

The spent fuel pool capacity after reracking is 2019 locations when all the new racks are inserted. There tre a total of 228 assembly locations in Region I and 1791 assembly locations in Region 11.

Fuel Schedule An updated fuel schedule for Cycles 1 through 15 is provided in Figure A. The fuel schedule in Figure A is contained in the file Isxm042. The batch lines from Figure A are contained in the file fsqm042.

These files are available to the Fuel Management Department for economics and the Transient Analysis Group for spent fuel pool evaluat'ons. Table 3.1 provides a summary of fuel schedule information.

The fuel schedules include cycle information for days of outage, days of total operation, days of coastdown, rated power levels, cycle exposures to end-of-full-power-life (EOFPt.) and end-of-cycle (EOC),

and capacity factors. The core loadings, sub-batch loadings and enrichments in the fuel schedule are based on individual assembly as-built loadings and enrichments by cycle. The cycle bumups in the fuel 1 schedules are based on an individual assembly sut> batch average weighting of the assembly bumups.

The fuel schedule contains the following major changes since the last fuel schedule provided in Reference 1:

o Cycle 15 actual startup and shutdown on 1/16/96 and 12/6/96, with as-built loadings and enrichments for Type U fuel, a measured cycle bumup of 7859 mwd /Mt and measured sub-batch average burnups. ,

-o Elimination of cycle projections beyond Cycle 15.

O 3

ShWY f" etkt k ~

Attachment to RP-MY-97-33 i

' As a result of these major changes, the sub-batch numbering and designations have changed as follows:

Sub-Batch Change 0800090 The number of Type M-8 assemblies, discharged after Cycles 8 and 9 with no planned reinsertions, has been increased from 2 to 3 assemblies. Assembly M860 had been planned for Cycle 16. Two of these assemblies were not reinserted fon mechanical reasons. Assembly M839 was damaged during the Cycle 9-10 refueling and Assembly M850 had metallic debris in its lower grid.

0900100 The 8 Type N-8 assemblies discharged after Cycles 9 and 10 have no planned reinsertion (Assemblies N836, N838, N839, N842, N845, N859, N862, N872).

1100120 The 4 Type Q-4 assemblies discharged after Cycles 11 and 12 have no planned reinsertion (Assemblies Q442, Q457, Q459, Q463).

1300140 The 4 Type S-0 assemblies discharged after Cycles 13 and 14 have no planned reinsertion (Assemblies S008, S009, S011, S012).

R, 1300150 1he 16 Type S-0 assemblies discharged after Cycles 13,14 and 15 have no planned 8 reinsertion.

1301150 The 28 Type S-4 assemblies discharged after Cycles 13,14 and 15 have no planned reinsertion and are condensed into a single sub-batch.

1302150 The 20 Type S-8 assembly sub-batch is renumbered due to the above changes.

1400150 - The Type T-0, T-4 and T-8 assemblies are condensed into single sub-batches which are 1402150 renumbered for no planned reinsertion. .

1500150 - The Type U-0, U-24 and U-48 assemblies are condensed into single sub-batches which 1502150 are renumbered for no planned reinsertion.

Core Performance and Fuel Management Trends Core performance and fuel management trends from Cycles 1 through 15 are shown in Figures 1.1 through 1.6. The lengths of outages, full-power operation and coastdown in days are shown in Figure 1.1. The length of full-power opoieten and coastdown in effective full-power days (EFPDs) are shown 3, in Figure 1.2. Recent cycles are in the range of 400 EFPDs, which is effecwsly 18-month operating cycles. Thermal capacity factors, both excluding and including the refueling outage, are shown in Figure 4

g o kh-dG0f .

mAi, f

~

Attachment to RP-MY-97-33 1.3. The trends towards higher assembly enrichments and higher discharged assembly burnups in recent cycles are shown in Figures 1.4 and 1.5, respectively.

l A comparison of the average discharge bumup at Maine Yankee to the industry average is shown in l Figure 1.6, based on the data in Table 3.2. Since Cycle 5, Maine Yankee's average discharge burnup has been consistently above the U. S. PWR industry average. For fully completed cycles since 1987, Maine Yankee's discharged bumups have averaged greater than 10% above the industry average.

References

1. YAEC Memorandum RP-MY-96-24," Maine Yankee Fuel Cycle Information for Cycles 15 and 16 "

G. M. Solan/M. C. Beganski to P. L Anderson /W. J. Met 2via, May 30,1996

2. YAEC Memorandum RP-MY-97-13," Maine Yankee Cycle 16 Redesign Depletion, Power, Bumup, Census and Kinetics Data - Case R," M. C. Beganski/G. M. Solan to S. Palmer /K. E. St. John /P.

S. Uttlefield, May 16,1997

3. YAEC Memorandum RP-MY-97-32, " Maine Yankee Assembly Library File," G. M. Solan to P. L Anderson /J. T. McCumber, September 12,1997

(]

4. YAEC Memorandum RP-MY-97-25, " Maine Yankee Cycle 15-16 Spent Fuel Pool and New Fuel Storage Vault Criticality Evaluation," G. M. Solan to P. L Anderson /J. T. McCumber, June 13, 1997 i

a i

i l

f O

5

/

/?iyc-zon TABLE 1.1 d/, ~

Maine Yankee Operating History Summary Dates -- - - Core Power Level-Maximum Cycle Licensed Operated Bumup Cycle Startup0) Shutdown (MWt) (%) (mwd /Mt) 1 11/8/72 6/29/74 2440 50-80(2) 10,367 1A 10/12/74 5/2/75 2440 80(2) 4,492 2 6/29/75 4/9/77 2440 100 17,365 3 6/11/77 7/14/78 26300) 93 11,105 4 8/28/78 1/11/80 2630 9 7 (41 10,500 5 3/17/80 5/8/81 2630 97(d) 10,799 6 7/20/81 9/24/82 2630 97(4) 11,585 7 12/12/82 3/31/84 2630 100 12,483 8 6/20/84 8/17/85 2630 100 12,504 9 10/25/85 3/28/87 2630 100 14,424 10 6/18/87 10/15/88 2630 100 12,675 11 12/16/88 4/7/90 27008) 97-98(d) 13,786 12 6/30/90 2/14/92 2700 100 15,364 13 4/19/92 7/30/93 2700 100 13,668 14 10/14/93 1/14/95 2700 100 13,075 15 1/16/96 12/6/96 24408) 100 7,859

1) Date of power escalation with initial phasing onto power grid
2) Power restrictions due to leaking fuel and rodded operation for moderator temperature coefficient control Primary system pressure decrease to 1800-2000 psia for leaking fuel
3) Licensed power increase on 6/20/78 from 2440 MWt/2100 psia to 2630 MWt/2250 psia' operation during Cycle 3 i 4) Power restriction due to secondary plant limitations
5) Licensed power increase on 7/10/89 frorn 2630 to 2700 MWt operation during Cycle 11
6) Licensed power restricted to 2440 MWt due to small-break LOCA and containment analysis ,

lasues. Operation terminated near mid-cycle due to cable separation and fuel failure issues.

1

n l .

4 MC-tooY '

TABLE 1.2 ABYA hb f 7) ~

l Maine Yankee Core Loading History Summary h

with with with with Assembly Assembly Assembly Sub-Batch Design As-Modeled As-Built As-Built .

WeightsW Weights A Weights W Weights W Cycle (ka U) (ka U) (ka U) (ka U) 1 81,544 Si,549 81,434 81,434 1A 83,113 83,119 83,084 83,086 2 80,885 80,953 81,027 81,027 3 83,065 83,118 83,130 83,128 l 4 81,843 81,908 81,822 81,817 5 83,034 83,076 83,006 83,008 6 82,248 82,264 82,220 82,222

! 7 81,013 80,872 80,905 80,905 8 80,528 80,257 80,231 80,232 9 80,467 80,221 80,120 80,119 10 81,450 81,362 81,227 81,231 i 11 82,354 82,554 82,389 82,385 12 82,910 83,135 83,051 83,050 13 82,863 83,075 83,028 83,024 14 82,627 82,700 82,819 82,813 j 15 82,801 83,044 83,062 83,064 l 16* 82,601 82,648 82,887 82,891

1 l
1) with assembly design weights from the fuel vendor, prior to fabrication i
2) with assembly as-modeled weights from the current physics methods analyses
3) with assembly as-built weights for each individual assembly in the core
4) with assembly as-built weights for each sub-batch, taken as the average of all assembly as-built weights fabricated in the sub-batch Cycle 16 never loaded into the core

a 4

[.~Y$9Y TABLE 1.3 h -

l j

i Maine Yankee  !

Thermal Generation History Comparison Cycle Cumulative Gross Thermal Energy Generation Gross Thermal Energy Generation incore Monthly incore Monthly Analysis Reports Diff. Analysis Reports Diff.

Cycle (MWt-hours) ( */o ) (MWt-hours) (MWt-hours) ( */o )

(MWt-hours) 1 20,262,525 20,262,525 0.00 20,262,525 20,262,525 .0.00 1A 3,957,090 8,938,891 -0.20 29,219,615 29,201,416 -0.06 2 33.768,971 33,768,963 0.00 62,988,586 62,970,379 -0.03 3 22,*,'55,743 22,079,033 -0.35 85,144,329 85,049,412 -0.11 4 20,617,175 20,635,170 0.09 105,761,504 105,684,582 -0.07 5 21,512,949 21,494,940 -0.08 127,274,453 127,179,522 -0.07 6 22,860,352 22,860,355 0.00 150,134,805 150,039,877 -0.06 7 24,238,404 24,238,449 0.00 174,373,209 174,278,326 -0.05 24,076,380 0.00 198,449,590 198,354,706 -0.05 m 8 24,076,381 9 27,734,848 27,734,847 0.00 226,184,438 226,089,553 -0.04 10 24,710,464 24,759,471 0.20 250,894,902 250,849,024 -0.02 l 11 27,258,678 27,258,678 0.00 278,153,580 278,107,702 -0.02 12 30,623,741 30,624,238 0.00 308,777,321 308,731,940 -0.01 13 27,234,376 27,231,970 -0.01 336,011,697 335,963.910 -0.01 14 25,987,464 25,980,181 0.03 361,999,161 361,944,091 -0.02 15 15,667,857 15,667,061 -0.01 377,667,018 377,611,152 -0.01 l

f l

\ -

D

TABLE 1.4 M[/,'  %

Maine Yankee Cycle Bumup History Summary Q

Information

- i Cycle Energy: Incore Analysis Monthly Reports - -

Core Loading: Sub-Batch Individual - -

Average Assembly As-Builts As-Builts Sub-Batch Bumups: - - - Incore Analysis -

Sub-Batch Loadings: - - - Individual -

Assembly As-Builts Cycle Cycle Cycle Bumup Bumup Difference Bumup Difference (mwd /Mti GMNd/Mt) Old (mwd /Mt) 0 61

_Qysl.g.

-0.30 0

1 10,387 10,367 0.00 10,336 4,492 4,483 -0.20 4,509 0.38 1A 17,365 17,365 0.00 17,396 0.18 2

3 11,105 11,067 -0.34 11,076 -0.26 10,500 10,508 0.08 10,495 -0.05 4

10,799 10,790- -0.08 10,795 -0.04 5

I 6 11,585 11,585 0.00 11,582 .C.03 7 12,483 12,483 0.00 12,465 -0.14

~ 12,504 12,504 0.00 12,455 -0.39 8

9 14,424 14,424 0.00 14,361 -0.44 12,675 12,701 0.21 12,647 -0.22 10 15,423 0.38 13 13,668 13,666 -0.01 13,668 0.00 )

i 13,075 13,071 -0.03 13,075 0.00 14 15 7,859 7,859 0.00 7,859 0.00

l hf~$N#Y f TABLE 1.5 h((hp -

Maine Yankee

)

' Thermal Generation in Effective Full Pov'er Years Gross Thermal Energy Generation Effective Full-Power Years ,

from Monthly Statistical Reports f>

at 2630 MWt at 2700 MWt Cycle Cumulative Cycle Total Cycle Total Cycle (MWt-hours) (MWt-hours) (EFPY) (EFPY) (EFPY) (EFPY) 20,262,525 20,262,525 0.879 0.879 0.856 0.856 1

8,938,891 29,201,416 0.388 1.267 0.378 1.234 1A 33,768,963 62,970,379 1.465 2.731 1.427 2.661 2

22,079,033 85,049,412 0.958 3.689 0.933 3.593 3

4 20,635,170 105,684,582 0.895 4.584 0.872 4.465 ,

21,494,940 127,179,522 0.932 5.516 0.908 5.373 5

6 22,860,355 150,039,877 0.992 6.508 0.966 6.339 7 24,238,449 174,278,326 1.051 7.559 1.024 7.363

) 8 24,076,380 198,354,706 1.044 8.604 1.017 1.172 8.381 9.552 9 27,734,847 226,089,553 1.203 9.807 10 24,759,471 250,849,024 1.074 10.881 1.046 10.599 11 27,258,678 278,107,702 1.182 12.063 1.152 11.750 12 30,624,238 308,731,940 1.328 13.391 1.294 13.044 13 27,231,970 335,963,910 1.181 14.572 1.151 14.195 14 25,980,181 361,944,091 1.127 15.699 1.098 15.292 15 15,667,061 377,611,152 0.680 16.379 0.662 15.954

_ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _s

bDgw Ng 3 W-i 5

1 - - - - - - - - - - - - - - - 4 46 72 6 8 O 4 - - - - - - - - - - - - - - 1 8 8 2 -

1 6 6 7 3 - - - - - - - - - - - - - - 1 - 8 8 2 8 -

1 6 7 6 _

2 - - - - - - - - - - - - - - 1 - 2 2 2 - -

1 7 7 7 1 - - - - - - - - - - - - - 8 1 4 2 2 - - -

e 1 6 7 7 l

c y

0 - - - - - - - - - - '- - 8 647 27 2 - - - - -

C 1 1

y _

b 2 2 2 i

s e 1 - - - - - - 1 - - - - - - 7 7 7 - - - - - -

l _

b 2 2 2 m 8 - - - - - - 1 - - - - - 7 7 7 - - - - - - -

e s 2 2 2 s 7 - - - - - - 1 - - - - - - - - - - - -

A 7 7 7 _

l e

u 2 2 2 l

e F 6 - - - - - - 1 - - - 7 7 7 - - - - - - - - -

c y f o

C r 5 - - - - - - 1 - 2 0 22 - - - - - - - - - -

y e 3 4 7 7 b b e m 1 es ke u 4 - - - - - - 1 2 2 0 2 6 1 3 4 7 - - - - - - - - - - -

2 np N ay E

L B

Y Ty el nb J - - - - 5 6 -

2 8 2 0 1 6 3 4 - - - - - - - - - - - -

O A im a

T 9 0 8 Mes 1 - - - - - 6 8 6 - - - - - - - - - - - - - -

s A A 7 l j 5 246 4 2 07 - - - - - - - - - - - - - - - - -

e u

F 9 0 8 - - - - - - - - - - - - - - - - - - -

1_ 6 8 6

~

l y

rb o e dml a o ii1 222 222 2 2 22 2 2 n

e sn ecTv i

eeo r r r eeeeee r r r r r r er re r rer re e e VsAha an oooFF oooo oo ooo ooo l

edcs i

CCCRRCCCCCC

- - - - - - - - - CCCC CCCCCC un FaMD ee EEEEEEEEEEENNNNEEEEEE CCCCCCCCCCCEEEECCCCCCW t

n e 1 0 5 3 3 5 2033 3 00000 0 0 0 0 0 4 a e ")

gl m 04 93 99 5 97 0 000333 5 7 7 7 9 7 aihU rt 2222 1 1 22 23 33 3 3 33 3 3 3 3 33 eic vI nior A Ens 6 e

ue F F O

l Fv o ABCRRDEFGHl J KLMNPQRSTU T

  • I

/rWGzow AMpc05-TABLE 2.2 MAINE YANKEE FUEL ASSEMBLY TYPES BY CYCLE AND TOTAL Fuel Average Vendor initial Number of Assemblies Assemblies in Core by Cycle Assembly and Enrichment Type Design (w/o U-235) by Type Total

  • 11A 23 4 5 6 7 8 9101112131415 A CE-1 2.01 69 69 69 57 --------------

B CE-1 2.40 80 149 80 24 ---------- ---

63 217 68 64 - -------------

C CE-1 2.95 RF CE-RF 1.93 69 286 65 - - - - - -------

267 - 1 - -------------

RF CE-RF 2.01 1 RF CE-RF 2.33 2 289 - 2 - -------------

D CE-2 1.95 69 Y2 - ------------ ,

E CE-2 152 80 433 - - 80 12 61 1 1 1 1 1 1 - - - - -

F CE-2 2.90 68 506 - - 68 68 12 -- - - - - - - - - - -

G CE-2 2.73 32 538 - - -32 32 32 - - - - - - - - - -

- - - 40 40 40 - - - - - - - - - -

H CE-2 3.03 40 578 1 CE-2 3.03 72 650 - - - - 72 72 72 - - - - - - - - -

. J ENC 3.00 72 722 - - - - - 72 72 72 - - - - - - - -

i K ENC 3.00 72 794 - - - - - - 72 72 72 - - - - - - -

L ENC 3.30 72 866 - - - - - - - 72 72 72 8 8 - - - -

M ENC 3.30 72 938 - - - - - - - - 72 72 64 1 1 1 1 9 N CE-2 3.30 72 1010 - - - - - - - - - 72 72 64 - - - -

P CE-2 3.50 72 1082 - - - - - - - - - - 72 72 72 8 8 -

Q CE-2 3.70 72 # lj f tf - - - - - - - - - - - 72 72 68 - -

R CE-2 , 3.70 72 1226 hd - - - - - - - - - - - - 72 72 68 4 S CE-2 3.70 68 1294 g - - - - - - - - - - - - - 68 68 64 T CE-2 3.90 72 1366 - - - - - - - - - - - - - - 72 72 W 68 1434 - - - - - - - - - - - - - - - 68 U 3.74

-((((

Wy vs&,"'g vv ,.MV;y c +#

  • Total spent fuel poollocations: 2019 cc[ I
  1. 18 Y" stl, l4 4R 4sN 1

.~.

t

  • h NO $ _

TABLE 2.3 h%Aff (Q'}' l MAINE YANKEE 0 i FUEL ASSEMBLY WPES BY CYCLE - SUB-BATCH DETAtt Assembly Fuel Assembly Assembly Type and Vendor As-Modeled As-Modeled Number Assembres in Core by Cycle Number of and Ennchment Weights of Poison Rods Design (w/o U-235) (kg U) Assemblies 1 J.A A 2 3 4 5 6 7 8 9101112131415 A-0 CE-1 2.03 394.82 69 69 57 - - - - - - - - - - - - - -

B-16 CE-1 2.40 358.93 80 80 24 - - - - - - - - - - - - - -

C-0 CE1 2.95 394.82 24 24 22 - - - - - - - - - - - - - -

C-12 CE-1 2.95 367.90 36 36 35 - - - - - - - - - - - - - -

C-16 CE1 2.95 358.93 8 8 7 - - - - - - - - - - - - - -

RF4 CE-RF 1.95 394.82 14 12 - - - - - - - - - - - -

RF-4 CE-RF 1.95 385.85 55 53 - - - - - - - - - - - -

RF-0 CE-RF 2.33 394.82 2 - 2 - - - - - - - - - - - - - -

RF-5 CE-RF 2.01 383.60 1 - 1 - - - - - - - - - - - - - -

D0 CE-2 1.95 389.03 69 - - 69 - - - - - - - - - - - - -

E-16 CE2 2.52 353.66 80 - - 80 12 61 1 1 1 1 1 1 - - - - -

F-0 CE-2 2.90 389.03 40 - - 40 40 12 - - - - - - - - - - -

F-8 CE-2 2.90 371.34 12 - - 12 12 - .- - - - - - - - - -

F-12 CE-2 2.90 362.50 16 - - 16 16 - - - - - - - - - - - -

G-0 CE-2 2.74 389.03 16 - - -1S 16 16 - - - - - - - - - -

G-4 CE-2 2.74 380.19 16 - - -16 16 16 - - - - - - - - - -

H4 CE-2 3.03 389.03 40 - - -40 40 40 - - - - - - - - - -

I-0 CE-2 3.03 389.03 48 - - - - 48 48 48 - - - - - - - - -

l-4 CE-2 3.03 380.19 24 - - - - 24 24 24 - - - - - - - - -

40 ENC 3.00 381.07 48 - - - - - 48 48 48 - - - - - - - -

J-4 ENC 3.00 372.41 4 - - - - - 4 4 4 - - - - - - - -

J-8 ENC 3.00 363.75 20 - - - - - 20 20 20 - - - - - - - -

K.0 ENC 3.00 381.07 48 - - - - - - 48 48 48 - - - - - - -

K-4 ENC 3.00 372.41 4 - - - - - - 4 4 4 - - - - - '-

K-8 ENC 3.00 363.75 20 - - - - - - 20 20 20 - - - - - - -

o e

b k TABLE 2.3 0%AM (CONTWUED)

' MAINE YANKEE FUEL ASSEMBLY TYPES BY CYCLE - SUS-BATCH DETAIL Assembly. Fuel Assembly Assembly Assemblies in Core by Cyde Type end Vendor As-Modeled As4Aodeled Number Number of and Enrichment Weights of Assemblies 11A 2 3 4 5 6 7 8 9,_.1.9 11 12 13 14 15 Poison Rods Design (w/o U-235) (k9 U)

ENC 3.30 379.21 16 - - - - - - - 16 16 16 8 8 ----

L-0 ENC 3.30 370.59 12 - - - - - - - 12 12 12 - - .- - -

L-4 3.30 361.97 40 - - - - - - - 40 40 40 - - ----

i.4 ENC 3.30 353.35 4 - - - - - - - 4 4 4 - - ----

L-12 ENC

- - - - - - - - 8 8 8 - - - - 8 M4 ENC 3.30 379.21 8 ENC 3.30 370.59 28 - - - - - - - - 28 28 28 - - - - -

M-4 M4 ENC 3.30 361.97 36 - - - - - - - - 36 36 28 1 1 1 1 1 CE-2 3.30 389.03 4 . . - - - - - - - 4 4 4 - - - -

N-0 3.30 380.19 24 - - - - ,- - - - 24 24 24 - - - -

N4 CE-2 3.30 371.35 44 - - - - - - - - - 44 44 36 - - - -

N4 CE-2

- - - - - - - - - - 28 28 28 - 8 -

7; P-0 CE-2 3.50 389.03 28 M CE-2 3.50 380.19 20 - ' - - - - - - - - - 20 20 20 - - -

P-4 3.50 371.35 24 - - - - - - - - - - 24 24 24 8 - -

P4 CE-2 CE-2 3.70 391.14 28 - - - - - - - - - - - 28 28 28 - -

Q-0 CE-2 3.70 382.25 36 - - - - - - - - - - - 36 36 32 - -

Q-4 3.70 373.36 8 - - - - - - - - - - - 8 8 8 - -

Q4 CE-2 3.70 36 - - - - - - - - - - - - 36 36 36 -

R4 CE-2 ~391.14 CE-2 3.70 382.25 16 - - - - - - - - - - - 16 16 12 4 R-4 3.70 373.36 20 - - - - - - . - - - - - 20 20 20 -

R4 CE-2 3.70 389.85 20 - - - - . - - - - - - - - 20 20 16 S4 CE-2 ~

3.70 380.99 28 - - - - - - - - - - - - - 28 28 28 S.4 CE-2 3.70 372.13 20 - - - - - - - - - - - - - 20 20 20 S4 CE-2

- . - - - - - - - - - - - - 8, 8 T-0 CE-2 3.91 389.95 8 3.91 380.99 28 - - - - - - - - - - - - - - 28 28 T4 CE-2 372.13 36 - - - - - - - - - - - - - - 36 36 T4 CE-2 3.90

- - - - - - - - - - - - - - - 8 U-0 W 3.74 391.00 8 391.00 32 - - - - - - - - - - - - - - - 32 U-24 W 3.74

- - - - - - - - - - - - - - - 28 LM8 W 3.74 391.00 28 E].

I i

NQgb*N o Y )%YN h x6 O

lt 5761 0 0650 93281 465 22 1 21 1 97 g iu 76096 8255 69457 9076 n 1 86 1 8 859 395 8647 _

i B- 9.2.7 9.4 2. A A 0 661 1 2 827 88 A89 8. A 1 A 0. A 1 _

d s 38478 5650 93923 807 88 1 23 01 3 a 91 24 o A 95965 9898 85876 888 87 876 876 7785 -

L 33333 3333 33333 333 33 333 333 3333 e d g) le aU r d e 23203 2520 36340 393 39 71 5 715 1 975 e

vg o 8.9. 8. 9.9 888.6 0.6.0 3.5 0.1.0 01 0. A 7 0.A 7 2593 M- 48478 4543 9391 2 909 90 123 1 23 901 3 A(k s 95965 9898 85876 888 88 876 876 7765 33333 3333 33333 333 33 333 333 3333 t

A m

e s

ng s 89899 8886 7.47.02 797 79 158 1 5.8 1 5.8.1 E is 48478 4543 8381 2 P A e 95965 9898 85876 898 878 89 87 1 23 876 1 23 876 1 235 8765 Y D 33333 3333 33333 333 33 333 333 3333 _

T Y

L B -

M E _

S _

S _

htau t -

A n e t 38603 8516 07844 1 06 52 333 242 8888 _

Y 20455 3340 51888 443 33 000 000 8888 B m) mB h 5 s s-a 0.4.9 9 9 9 9. 3 0 95888 770 0. 0 0.0 0 0.0.0 22.22 _

22222 1122 12222 223 33 333 333 3333 S i c3sA r

2A G n -

N EU eo#n I

D A gt rae (w e t

msi g 30555 5531 52000 443 33 0 0 '0 000 0000 O 04999 9.930 9 5 9.9.9 7.7 0 0. 0 0 0.0 0.0.0 3.3.3 3 EL E v se sD 22222 1122 12222 223 33 333 333 3333 4 KD A A 2 NN AA E

L B

A T

YS E T NN E t s

n O

e n 30555 I t AM e ko 5531 52000 443 33 000 000 0000 MH m i ng 04999 9930 9 5.9.0 9 7.7.0 0. 0 0.0.0 0.0.0 3.3.3.3 C hc ae 22222 1122 12222 223 33 333 333 3333 n5)B R I l i _

R r N E 3 E n -

T n2 g

hogi 30555 5531 52000 443 33 000 000 0000 _

L iUig 0.A999 993.0 9.5 9 9 9 7. 7.0 00 0.0.0 0.0.0 3 3.3.3 I s He 22222 1122 12222 223 33 333 333 3333 _

U e /o R _

8- Dw n S

A #( wio t

og 0.0555 3

4.9.9.9 5531 9.9. 3.0 52000 9.5.9 9 9 443 770 33 00 000 0 0.0 000 0.0.0 0000 33.33 D m Le e R 22222 1122 12222 223 33 333 333 3333 N s s

A A '

N GI s

S E r e _

e l i

D b t mom u

f e

90468 6823 4521 15 90026 68411 660 114 84 42 840 4 2 840 4 2 6204 114 N s s

A r FFFF n RRRR l o eddg 11111 EEEEE- EEEE 22222 EEEEE- -

222 -

E E E- EE 22- CCC CCC NNN CCCC NNNN unns i NNN Feae CCCCC CCCC CCCCC CCC CC EEE EEE EE$E V D f

s

  1. dod t n o 6 26 0406 6 2 2 m

eebn aerR 41411 ABCCC

- - - FFFF- 41041 RRRR DEFFF GGH

- - 444 -

04 444 JJJ

- 44 KK4K 4441 LLLL-spmo l syuis AT NoP O

] N N  %%N i e

21 9 731 525 970 238 g ilt 1 1 2 358 206 1 88 726 398 1 45 449 n u 357 867 351 7,5 7 520 622 395 3.6.4 i B- 9.0.5 1 3. 0 3.8 2 024 012 1 1 3 099 d s 801 880 991 002 987 987 987 988 a A 776 877 877 987 333 333 333 o 333 333 333 333 333 _

L e d g) e 593 000 aU le 197 395 395 456 456 123 593 891 0.0 0 r d 0.1 3 0.1,3 123 8. 9 1 e o 2.5 9 123 1 23 902 902 1 1 1 vg A(k M -

901 776 901 887 901 887 987 987 887 333 887 333 999 333 s 333 333 333 333 333 y

lb A m

e n 890 5 6.8 5.6.8 9. 9 9 s

s g 158 7.9 0 7.9 0 7.9.0 01 3 901 901 777 E i s 123 891 891 891 887 887 888 P A e 876 877 877 877 333 987 333 333 333 333 Y D 333 333 333 T

YL B

M E

S S t y

865 290 A n lbi t l

132 732 21 9 035 421 202 434 e u 000 009 999 888 000 109 000 Y

B

c. mB e 3 3.3 3.3. 3 5.5 4 6. 6. 6 6. 6. 6 7.7.7 9.9.8 333 7.7.7 333 _

)5 s s- 333 333 333 333 333 333 S

G d3sA t2A n ,

N I

EU y D e g /o lbn g 000 000 000 000 000 000 11 0 444 A a 7. 7.7 9. 9. 9 7.7.7 r (w e msi O 3.3.3 3.3.3 5.5.5 7.7.7 7 7.7 333 333

)E EL e v ssDe 333 333 333 333 333 333 DK D A A

4. E N N

.. 2 EN A A U

LT I YS 000 _

\

BNE AO TN s 2.2.2 t 444 T C( N E I n t en // /

000 000 AM e kio 000 000 333 000 555 000 7.7.7 000 7 7.7 000 7.7.7 5 5.5 6.66 MH h m ng ae 3.3 3 333 333 333 333 333 222 C c l 333 333 I

R N

i r)BR n5 E E3 n 000 000 000 000 n2hogi 000 000 000 000 T g iUig 3.3 3 3 3.3 555 7.7 7 7 7.7 7.7 7 2.2.2 0.0.0 L 333 333 333 333 333 333 444 444 I s oHe R e

U l 4 Dw n S ly( wio 000 000 000 000 000 000 000 000 _

A b og 333 3.3 3 555 7.7 7 7.7.7 7.7.7 5.5.5 4.4 4 .

m 333 333 333 e Le 333 333 333 333 333 D R N s s

A A N _

G I

s S r e E e d D b i 868 680 080 886 828 mom u

f e

886 23 444 24 804 222 23 31 2 222 23 32 N s s

A r

o n CCC 222 222 222 - 222- 222 -

222 l

edd19 NNN EEE E E E- EEE EEE EEE E E E-unns Feae EEE CCC CCC CCC CCC CCC CCC WWW -

V D s

yd of do 48 dn 024 t

m e erR 444 - 444 - 444 - 444 - 444 - 044

- - 044 UUU eebn MMM NNN PPP QQQ RRR SSS TTT spmo syuis AT NoP

? .

i - '

I s *

\

TABLE 2.5 Maine Yankee o

Type UX and V Enrichment and Uranium Loadings Fresh Fuel Fabricated for Cycle 16 Type Type Type Type Parameter UX-0 V-0 V-4 V-8 Total Fuel Vendor SPC CE CE CE -

Number of Assemblies 8 36 4 44 92 Number of Rods in Assembly 2.40 w/o U-235 fuelW 176 0 0 0 -

3.50 w/o U-235 fuelW 0 72 72 72 -

4.20 w/o U-235 fuelW 0 104 100 96 -

31.4 mg B-10 per inch shimsM 0 0 4 8 -

j Total 176 176 176 176 -

1 Number of Rods in Batches 2.40 w/o U-235 fuel 1408 0 0 0 1408 3.50 w/o U-235 fuel 0 2592 288 3168 6048 4.20 w/o U-235 fuel 0 3744 400 4224 8368 31.4 mg B-10 per inch shims 0 0 16 352 368 <

Total 1408 6336 704 7744 16192 ,

Assembly Average Enrichment (w/o U-235)

Design 2.400 3.914 3.907 3.900 -

As-Built 2.416 3.928 3.929 3.919 -

Assembly Average Uranium Loading (kg U)

DesignM 380.406 389.488 380.636 371.784 -

As-Built 380.2866 391.0953 382.2826 373.6973 -

1

1) Uniform fuel rod enrichments in 136.7 inch active fuel height for Type UX
2) Uniform fuel rod enrichments in 136.25 inch active fuel height for Type V .
3) Uniform shim loading in central 122.7 inches of active fuel height for Type V
4) Design uranium loading of 2.1614 kg U per rod for Type UX Design uranium loading of 2.213 kg U per rod for Type V

(.)

d *

  • t . -.

. 1

,(~~f00Y ,

l th TABLE 2.6.1 Maine Yankee Number of Assemblies, Spent Fuel Pool Storage Capacity and Requirements Total Number of 1530 Assemblies Fabricated Number of Type A. Serial Number A003 (not on-site) 1 Unirradiated Assemblies Type B, Serial Number B068 (not on-site) 1 Type C, Serial Number C210 (not on-site) 1 Type D, Serial Number EF004B (not on-site) 1 Type UX (currently in new fuel vault) 8 Type V (currently at Combustion Engineering) 84 Total Number of 1434 Assemblies Irradiated Storage Requirements I for Criticality Required in Region i Type C 46 Type RF 2

~ Type T 28 Type U 68 Total Region i 144 Total Number of R'egion i 228 Storage Locations Region 11 1791 l Total 2019

-_h____

%C-too4 '

h% t<v yS TABLE 2.6.2 o

Maine Tankee l

Discharged Assemblies on Site with Storage Restricted to Region 1 Only l

Type C Type RF Type T Type U l (46) (2) (28) (68) 1 (24) (21) (1) (2) (8) (16) (4) (8) (32) (5) l d $*)i3 d RF'O M M M M M M l C101 C202 C301 EF0041 Toot T409 7868 U01 U09 U41 C102 C203 EF0043 T002 T411 T869 UO2 U10 042 C103 C205 T003 T412 T870 UO3 U11 U43 C104 C209 T004 T414 T871 004 U12 U44 C105 C213 T005 T415 005 U13 U45 C106 C216 T006 T419 U06 U14 U46 C108 C217 T007 T420 007 U15 047 C109 C218 T008 T421 UO8 U16 U48 C110 C219 T422 U17 U49 C111 C221 T424 U18 USO C112 C222 T426 U19 U51 C223 ' T427 U20 U52 C113 C114 C224 T428 U21 U53 C115 C230 T429 li22 U54 /

C116 C231 T431 U23 USS I C117 C232 T432 U24 U56 C118 C233 U25 U57 C119 C234 U26 U58 C120 C235 U27 U59 l C121 C236 U28 U60 C122 C237 U29 U61 C123 U30 U62 C124 U31 063 C125 U32 U64 U33 U65 U34 U66 U35 U67 U36 U68 I U37 l us8 U39 1

040 1

O

g

<b1 k *C  % l 5 ss 7 505 1 77 0 29 2 46 - 09 792 1 es 6 2 2 4 83 6 77 5 1 07 r /

202 0 8 223

'._ as t

i t

t 2

3 3 3 1 12 4

2 3 33 7 41 24 1 8 4 2s 6 707 505 0 85 9 1 5 05 1 21 1 ss 7 5 5 0 87 1 97 7 81 4

/ /

44 4 4 257 7 8 0 93 it 1 1 2 33 3 1 8 r i et 2 1 44 t 8 3 23 5 527 1 3. 5 0 09 8 08 088 791 1 s9

//

s0 6 1 56 4 4 257 0 7

97 2 0 7. 6 066 246 794 82 t 3 1 1 2 33 21 3 39 s t 3 1 1 44 47 8 2 o2 4 774 853 0 00 1 82 033 1 89 1 tss 8 359 0 87 5 6. 6 022 677 o4/ 5 5 292 7 0 954 00 1 2 2 33 315 27 s/

l a2 1

3 , 1 1 44 8

1 s0 2 257 0 7.7 0 10 9 90 088 31 5 1 as 6 527 3 98 8 65 549 764 s /

a7 4 4 257 6 3 257 1 0 t t 11 2 33 3 3 06 i 2 44 2

1 4 8 1 1 0 7a 2 325 796 0 19 7 06 077 562 1 aa 8 268 3 86 2 53 044 682 t t ss 4 4 258 6 2 426 32 t t 11 2 33 1 12 84 r r 1 aot 8 1 1 34 9 s7 9 369 313 0 44 0 09 01 1 862 see se s 6 561 4 5 279 3 6

87 2 1

3. 2 066 763 608 58 2z 11 2 33 21 4 72 rt oa 0 1 1 34 t 8 _

8 4s 1 583 796 0 05 1 00 055 321 sa 8 652 3 97 3 32 055 764

//

07 3 4 236 6 2 044 63 2t 11 2 33 1 12 58 5 /i ss 0 1 1 33 1 8 1- n st io 7 24 9 055 6 6.2 0 19 5 90 055 365 e an sa s i 2t 7 437 4 4 258 3 6

86 0 9 2. 1 066 684 763 52 cy n 33 l

s 11 2 38

_1 t / 2 0 1

33 Cf o 23 1 1 3 1 8 eI n

022 3'3 6 UELBA klee nc ay 6 t2 aa t t 04 22 3

7 651 933 3 4 A26 246 11 0

6 5

2 64 87 0

2 2

01 00 33 088 785 0 1 702 01 36 T YC

/s 7e 2

8 1 1 33 l _

ee 31 2 nu 5 ot 6 617 7. 9 0 42 6 08 055 iaF M

se s t 7s t i 6 011 4 4 M35 11 6

5 2

87 0 0 0. 9 32 099 527 0 0 778 98 1 3 i

s s 3 1 1 33 8

4 ao 5 741 559 0 71 2 34 055 398 ro rs 4 540 6 66 2 0. 8 099 71 0 at 4 5 167 5 8 864 34 2t 11 2 32 9 0 03 ri 1 as 8 1 33 3 7a 3 358 111 0 52 0 09 066 353 rr 6 639 4 98 3 95 077 369 tt s4 3 3 235 4 1 550 1 64 ntt 11 2 22 0 1 1 0 a7 3 1 1 23 8

2 s7 8 550 9.A 3 0 92 6 55 066 034 tr t r 5 045 1 13 4 88 2 4. A 099 773 ee 6 6 22 4 0 22 303 04 tt s 2 1 617 80 e4 8 1 1 12 A

1 4s rt t r 5

0 202 0 0 A 6.0 0 4

60 75

'4 8

40 93 09 0

249 560 22 1 2 2 360 4 0 5 152 t

r t 1

2 12 4 37 _

os 3 11 t 8

- 256 1 24 rr 808 9 9 6. 6 0 4

88 55 4

3 44 44 06 3 776 rt ee ir t

2 5 5 99 11 4 2 A 1

22 3 0

44 12 _

t e 8 1 11 no r%)

t c

)

o(% (

)

U T

d f e

e s

g n

i t

g n ag QU ) iL R i a r d

)

I Fng I n Mt (uUl o T r b W u e SuB /o (w M t

s e s yeR m en p en Mi u eu t

t D w e To i O To i . ( acfef pre G u s NB A (w e g W Po s s

n ra rner dt dt T n ar N l Oea R DsAt ,lera I

Mh

( t R n A n

aeeww g pwoo ael pt a TevC I g g A ,nueFv e guw SnFo d

er e um SgOo %in O gegm RnOodP P e f- d HI n r T ALl Lmmh uhs eA w au E S po ud e rPtsl Rr d u U Lot - sl a rba L Ett Su eR aa t Te uee r c Ei c nie o r Nledatahmrix e Yf wuoo Nf wlc Nwe E

Eohe mMl Rar U CyE C Tocuv Rc no a s

C Y

TaAthu AeoFCT Oeoy i n

Or nFC r

iDsN A M C DSS D RP M RPC G PT C UE B

i .

UB/c-leet (

} & A b le  %' _

I TABLE 3.2 Maine Yankee Cycles 1-15 Discharge Bumup History vs. Industry Average Discharge Average Bumup ,

(mwd /Mt) Maine Yankee Industry Discharge Year of Average

  • Maine Difference after i for PWRs _Ypnkee i (E Cycle l Discharae i 1974 18,900 11,475 -39.3 1 1975 18,100 13,564 -25.1 1A ,

1 1976 22,200 - - -

1977 25,100 18,073 -28.0 2 1978 26,400 21,665 -17.9 3 1979 27,000 - - -

1980 30,700 30,319 -1.2 4 1981 30,900 31,971 3.5 5 1982 32,300 33,003 2.2 6 1983 '31,600 - - -

[]

1984 32,100 33,566 4.6 7 1985 33,200 35,662 -

7.4 8 1986 33,900 - -

1987 34,400 37,506 9.0 9 1988 35,400 38,386 8.4 10 1989 36,800 - - -

1990 36,000 40,161 11.6 11 1991- 37,400 - -

1992 38,700 42,078 8.7 12 1993 38,900 43,899 12.9 13 1994 40,80'0 - - -

1995 - 41,912 - 14 1996 - -

1997 - 24,209 - 15 ,

  • Indusby average data from SR/CNEAF/9601 Spenf Ntdear fuel Docharges hem U.S. Reactors 1994 Eneqw Informa6on Admmistrabon, U. S. Department of Energy, February 1996. TaHe 5.

1974 1979 industy average data from A# Discharged Assemb5es -PWR 1980 1994 industy aveage data from Equebrium cgse Discharpm,'-TWR(exduding discharge data from Cydes 1 and 2 of each reactor) f

,NO<

3@"4D&

h

)

o Q (f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 7 6 5 4 3 2 1

. - . . . - . - [ . - . - - . - ~ :

i 5 1

s y

- ,4 1

a D Rs ,3 i

n 1 s

5 n qt ,2 1 w 1

- o 1 dt s s ) ,1 e a 1 c o l

yC kb 0 C d , 1 r n f o a , \ ) ,9 n

o n o

i i

1 t t

a a ,(N 8 E rmr 1

e L e

r o p C Y

i ufnOr g I

's' 7 C F e e l

u w sh , 6 F oP e l el C k u ,5 nF a ,

Y se qb ,4 e g i

n a t a u sN ,3 MO f o \ ,2 ht g

n e grn e a ew

- ,A 1

L t uwo Ood t rPs on iuo r

a - 1 ~

PFC

- m33 CES

.  : .~:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 7 6 5 4 3 2 1 mkQ f ,' f m

3gp) Nm 0D

%_ 4D 4PL 0 i mao 0

0 7

0 0

6 0

0 5

0 0

4 0

0 3

0 0

2 0

0 1

0 O 5

- i 1

4

- i 1

s 3 D

i 1

P F 2 5 E 1

i 1

1 i

- n s n 1 e w i

1 l

c yd o

0 Ct s E i 1

r a o o n C f

i9 i

od n 2 t a a g ar mn 1 i8 E L

o C i

r oi uf g n i t

ar e

a i7C Y

O F l e p FuOr y i6 e e ew k o D i5 nP a l Yl u i4 eF nf i

a o Mh g t s i3 n

e e 2 L

r A

- i 1

w eh o

P N a uo FC - i 1 ,

Om .

0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 7 6 5 4 3 2 1 agW

. ~

bxQIwgb%

%,D ^y* %D D

yIm0gyc

- o>m>0 m>O4o%- $-

0 0 0 0 0 0 0 0 0 0 0

1 w 8 7 6 5 4 3 2 1 _

. ..: : - - - - - - ~ ~ ~- '- : "~

,ssslsssssssssssssN 5 1

RsssssssssslsssssssslsssssssssssNNs 4 1

e g

t a ,s s s ssss s s s sls s s ss s ssls s s N ss s ss s s N N s 3 1

u -

O 2 5 r ssssssssslsssssssslsNsNsssssssssN 1 i o -

1

- r 1 P s g gs sssssssssslsssssssslsNsssssssssNss 1 1

l e n i cd y u ,sssssssslsssssssslsssssssssssNss 0 Cl c -

1 r

oi n

f sssssssssss)ssNssssslssssssssssssNs 9 n dn -

i o a .

3 a g t ssssssssssslsssssssslssssssssssssNs 8 E 1 L e r d min -

C r

uf ou ,sssss sss)ss ssss ssls sssss ss sssss N 7 C Y

O i g n c I

l x -

Flee u ,

sssssssssss'sssssssssl ssssss ssssN 6 r

F o t e

e c a s sssss sss sls s N ss s s sls s s s ss s s ss s s s s 5 kn F -

a yt Yi c ,ssss sssssssslsNssssssssssss 4 e

n pa i

a C a 5ss sssssNsssslsssssssslsssssssssssssN 3 M l a

m r . {s sssssNssssl sssssssslsssssssssssssN 2 e ge g h mm T oo g g sssNssssslsss 3sssss s ssss A 1

    • kanx .

sssls sss ss ss ssss s sss ss s s ssss

=nc EI -

1 o3sE - *- f -

:  : . ~ ~

[-

0 0- 0 0 0 0 0 0 0 _

0 0

1 n 8 7 6 5 4 3 2 1 b g0g9C1<L -M OC< c.C<O <JCsEwIF

?j t

II1Ill l,l;l j( iil>llllf -

L

i ,

1 l lIl\ ' l j

m#M0tNgD4 A

~3D

  • V* %N 0

5 J.

4 0

4 5

3 m23gIEm2g C.o@-

0 3

5 2

0 2

t 5

1 0

1 5

0 0

0 O

.~......: '- - - " ,,

, lsssssssssssssssssssssNsssssssssss 5

- 1

l sssssssssssssssssssssssssssssssssN 4

. 1

,lssNsssssssssssssssssNNssssNsNsssNN 3

- 1 5 _

_[ssssssssssssssssssssNNssssNssssssN 2 1

1

- t 1 n s e em sss s sss sssss ss s s ss s s s s s s s s s s s N s s N s[ 1

_ 1 l

ch y ci C n r -

,sssssssssssssssssssssssssssNssssN 0 1

r oE n ge f

ssssssssssssssssssssNsssssssssssN 9

4 i

t o a r 1

a e v 5sssssssssssssssssssssssssNsssNN 8 E e

r o mA r

L C

T uf g ne o I

r ssssssssssssssssssssssssssssNsN 7C Y

O F e Cl ud ssssssssssssssssssssssssssssNN 6

F na -

e e e k u l

,ssssssssssssssssNsssssssss3sN 5

nF a

Yh s _ssssssssssssssssssssssNssssN 4

e n r e _

a F i

's+ - ++ ++++++++++++++TssssN M _

3

_sssssssssssssssssssssss5 2 e

g l

era A ue FvA 5sss_ssssssNsssssssssssN 1 h -

ser er o

_sssssssssssNsssssssssNsN 1

FC 3

Cm fk '

0 5 0 5 O. 5 0 5 0 5 0 5 4 4 3 3 2 2 ,. 1 0 0 g43-- FZmgIO ~0Zw J

\ ll'

,i 'll Illl l l ll1 j >

37TNgNggC-

, @b i Dc2ZCy_g5QEc %s"

)

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1 5 -

,N ssNss)ssss_ssssssNssssNsssssNs* 1 _

=

.ssssssN ssN ss)s s s s s s ss ss s ss ss N s sN s ss s' 4 1

9ssssssN ssNss ) ssssssssssNssssNsssssss* 3 1

s p

u sssss sssssssssssssssNssNssss* 2 5 mu 1

sssssN 1

1 B s y sssss sssss )sssssssssssssssNssNssss* 1 1

l el b cm y sssN ss s s s s) s s s s s sss ss s s s s sN smsss ss

  • 0 C es -

1 r s f oA 1sN sssssssssssssssNsssssss* 9 nd _sssss i

o e g 5 a ra t

5sssss ssssssssssNssssNsssssN%* 8 E 1

ar mh cs

- L C

ruf o i 5sssss sssssssssssssssNssssssN* 7 C Y

g nDI t i Fl e u u m Esss sssssNsssssssssNsssssss* 6 Fei m -

x k

e a ss sssssssssssssssNsssssss* 5 nM -

Yadn ss sssssssssssssssNsssssss* 4 e a -

i n

a g e

qss ssss ss sss ss ssNss N ss ss

  • 3 Mrae -

v A hte t m 5ssssss sN s sss s ss*

2 me es ss sA ,sssssNsssssssN A Aa e

gm

- 1 a

- ed r

vn -sNsssssssN 1 -

Au -

3m E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1

^ 32 ADzgOD s C illtl,)ll'

a. .

MD1WteN K*

g'%W i mhE 25 O "W'D '

0 0 0 0 0 0 O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 2 1 6

s s-t '9 R 5 W

P 4-1 '

9 4

r . 9' -

f o

3 e

g 3~

3 9

a r 2-1 2

E 5 e 1 v 1 1

A 9 s yr -

0 9

et '

l s .

c yd u 9

8 Cr n I 8

o . o-i '

8 f

S. 7 i

nU o .

  • _ 8 eg r .

6 t .

1 a s v 6 a

'8 h c

e m s s r ro p e, 5

E i

D O

uf u -

g n 4 f

o i I m 8 r _

Fl eu 7 '

a .

uB 3 e -

F e d

t e 8 Y a

e g c -

e ar k e dn I

a

. 2

'8 e

n v l c s 1 8

YaA y ie ,- '

c l r b y e m 0 el b f t

a e s

. '8 n e s a m a i

g ss[ ssssssssssss 9 r

e a le 7 Ms s hsy c a s! c c

( ssssssssssss 8

A idbm hmu l

s, s_ [ 7 -

d iei t

r

, ss[ ssssN sssssss 7 e wsb su ,- 7 g e,aiu eI q r kn a, e, , [ ssssssssssss 8 a ass 7 h YRR c eWW ssN sssssssss 5 i

s n iPP A' 1

7 -

aRI D MAA sssssssss% ss 4 JD y - 7 -

CEM

- . - - ~ __ _ ~

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 2 o.

4 1 cn g7g30

=

=

. s1

. r FIGURE A PAGE 1 0F 3 MAINE YANKEE FUEL SCHEDULE FOR E0C 15 (FSXM042)

CYCLES 1 THROUGH 15 (REVISED 08/11/97) 1 CYCLE PARAMETERS POWER CYCLE LENGTH CAPACITY FACTOR DAYS LEVEL ED/MT TO EFP0s TO TO TO CATES PRIOR CYCLE COAST- CYCLE LOADING (KGU)

(MWt) EOFPL EOC EOFPL EOC EOFPL EOC VCLE IN CUT CUTAGE TOTAL DOWN AS-MODELED AS-8UILT 81434 2440 - 10336 - 345 -

.5 77 1 11/08/72 06/29/74 0 598 0 81549 83084 2440 - 4509 - 154 -

.762 1A 10/12/74 05/02/75 105 202 0 83119 81026 2440 16300 17396 541 578 .894 .889 2 06/29/75 04/09/77 58 650 45 80953 35 83118 83130 2440 10500 11076 358 377, .986 .948 3 06/11/77 07/14/78 63 398 44 81908 81822 2560 9800 10495 313 335 .685 .669 4 08/28/78 01/11/80 45 501 83076 83006 2560 10500 10795 340 350 .837 .839 5 03/17/80 05/08/81 66 417 11 82264 82220 2560 10700 11582 344 3 72 .869 .863 6 07/20/81 09/24/82 73 431 35 80872 80905 2630 11600 12465 357 383 .811 .807 7 12/12/82 03/31/84 79 475 35 80257 80231 2630 11000 12455 336 380 .921 .899 8 06/20/84 08/17/85 81 423 58 66 80221 80120 2630 12700 14361 387 438 .854 .844 9 10/25/85 03/28/87 69 519 81362 81227 2630 11400 12647 352 391 832 .806 to 06/18/87 10/15/88 82 485 62 82554 82389 2630 13250 13798 415 432 .918 .906 11 12/16/88 . 04/07/90 62 47T 25 57 83135 83051 2700 13900 15423 428 474 .797 .798 12 06/30/90 02/14/92 84 594 83075 83028 2700 12200 13668 375 420 904 .900 13 04/19/92 07/30/93 65 467 52 0 82700 82819 2700 - 13075 - 401 - .877 14 10/14/93 01/14/95 76 457 0 83044 83062 2440 - 7859 - 268 -

.825 15 01/16/96 12/06/96 367 325 s

)

'sATCH FUEL NO. OF WT./ASSY ENRICHMEdf (%) RATIO TO U.lMITIAL ---- CYCLES -- ----------- SURNUPS (MWD /MT) --- --------

U-0UT FISS.PU(X) 1 23 4 5 1 2 3 4 5 TOTAL No, TYPE ASSYS KGU 1M OUT

- - - - 10611 - - - - 10611 3100010 A0 12 393.887

  • 2.027
  • 1.117 .984 .378 1

- - - - 11912 . - - - 11912 3101010 816 56 358.295

  • 2.407
  • 1.346 .982 .397 1

- - - - 6522 - - - - 6522 3102010 C0 2 395.219

  • 2.944
  • 2.271 .990 .261 1

- - - - 10470 - . - - 10470 3103010 C12 1 368.196

  • 2.957
  • 1.934 .985 .365 1

- . - - 10359 . - - - 10359 3104010 C16 1 358.808

  • 2.957
  • 1.945 .985 .364 1 11059 4636 - - - 15695 3100011 A0 57 393.993
  • 2.023 * .830 .977 456 11A - - -

- - - 10846 5148 - - - 15994 3101011 816 24 358.201

  • 2.410
  • 1.089 .977 450 1 1A 1 1A - - - 6056 2509 - - - 8565 3102011 CO 22 394.659
  • 2.947
  • 2.090 .987 .317 11A - - - 9289 4041 - - - 13330 3103011 C12 35 367.985
  • 2.950
  • 1.716 .981 .417 440 1 1A - - - 10359 4525 - - - 14884 3104011 C16 7 358.410
  • 2.953
  • 1.602 .979

- - - - 2769 - - - - 2769 3110011 RF0 2 395.455

  • 2.341
  • 1.735 .995 .145 1A

- - - - 4316 - - - - 4316 3111011 RF0 2 395.323

  • 1.938
  • 1.511 .993 .210 1A

- - - - 5058 - - - - 5058 3112011 RF4 2 386.173

  • 1.930
  • 1.449 .992 .241 1A

- - - - 5150 0113011 RF5 1 380.050

  • 2.006
  • 1.442 .992 .244- 1A - - - - 5150 1A 3 - - - 5387 10463 - - - 15850 0110030 RF0 12 395.273
  • 1.938 * .789 .978 .451 1A 3 - - - 5079 11144 - - - 16223 3111030 RF4 53 386.436
  • 1.935 * .776 .977 454
  • 2 - - - - 18042 - - - - 18042 3200020 00 69 389.669
  • 1.950 * .715 .976 466 2 .- 20434 - - - - 20434 0201020 E14 1 354.183
  • 2.515
  • 1.013 .973 .494 - -

2 3 --- 18697 10726 - - - 29423 3200030 E16 12 353.782

  • 2.517 * .582 .962 .530 2 3 --- 12368 12041 - - - 24409 3201030 F0 28 389.028
  • 2.887
  • 1.026 .968 .540 23 - - - 17689 11153 - - - 28842 0202030 F8 12 372.158
  • 2.884 * .810 .962 .554 2 3 --- 18124 11136 - - - 29262 m u y rt27 16 363.271
  • 2.884 * .787 .962 .548 2 4 --- 19758 9938 - - - 29696 0100040 E16 61 353.710
  • 2.517 * .575 .961 .530 2 3 4 -- 11134 12226. 9833 - - 33193 12 389.409
  • 2.888 * .647 .957 .585 2)040F0 - - -

28070 U2000$0 E16 1 351.636

  • 2.506 * .623 .963 .528 2 5 --- 17697 10373 eQtI

\Qd1MW N

3 01C% A h k.b e V$

FIGURE A PAGE 2 0F e

MAINE YANKEE FUEL SCHEDULE FOR EOC 15 (FSxM042)

CYCLES 1 THROUGH 15 (REVISED 08/11/97) \~{ 9 M

No. OF WT./ASSY ENRICHMENT (1) RATIO To U INITIAL - -- CYCLES - " " " -+-* SURNUPS (MWD /MT) - " ~ ~ ~.-

ATCH FUEL 2 3 4 5 TOTAL NO. TYPE AS$YS KGU IN OUT U 0UT FISS PU(%) 1 2 3 4 5 1

.528 2 6 --- 17697 11115 - - - 28812

'00060 E16' 1 352.289

  • 2.524 * .617 .963 2 7- - - 17697 12779 - - - 30476 00070 E % 1 354.361
  • 2.517 * .554. .961 .531

.532 28 - - - 20434 11431 - - - 31865 00000 E16 1 353.373

  • 2.530 * .522 .960

.533 29 - - - 20404 13415 - - - 33819 00090 E16 1 354.368

  • 2.517 * .469 .958

.533 2 10 - - - 20434 13242 - - - 33676 N 00100 Eid 1 353.5 %

  • 2.518
  • 466 .958

.576 34 5 - - 11956 10726 9262 - - 31944 f,,

00050 80 16 388.814

  • 2.741 * .595 .958

.568 34 5 - - 13294 10953 8788 - - 33035 ;$

01050 041 4 379.997

  • 2.744 * .552 .957 380.382
  • 2.738 * .533 .956 .570 34 5 - - 13361 10492 9834 - - 33687 7 02050 042 12 43050 N0 40 387.765
  • 3.036 * .770 .959 .586 3 4 5 - - 8959 11901 10601 -

31461[

48 388.812

  • 3.035 * .775 .959 .586 4 5 6 -- 8887 11782 11243 - -

31912 t.

00060 10

.585 4 5 6 -- 12823 11802 10780 - - 35405.g 01060 14 24 375.882

  • 3.032 * .633 .955

.577 5 6 7 -- 9178 12752 10796 - - 32726 ,

00070 Jo -48 381.481
  • 3.003 * .713 .958 101070 J4 4 372.852
  • 3.003 * .520 .952 .579 5 6 7 - r 13293 12998 11944 - -

38235 j 102070 J8 20 363.991

  • 3.003 * .619 .955 .566 567 - - 13325 12926 8622 - - 34873 #

9536 14039 11934 35509 i00000 KO 48 380.831

  • 3.002 * .631 .955 .582 678 6 78 - -

13449 13845 11047 38341

{

501000 K4 4 371.499

  • 3.004 * .531 .952 .578 g

.567 678 - - 13658 13615 8412 - - 35685 102000 K8 20 363.157

  • 3.002 * .603 .955 ,,

610 78 9 - - 11253 13808 14623 - - 39684

'D0090 LO 8 379.564

  • 3.288 * .651 .951 91090 L4 12 371.060
  • 3.288 * .573 .944 .606 78 9 - - 14123 13473 14121 - -

41717f f 12090 LS 40 362.447

  • 3.288 * .764 .955 .585 78 9 - - 13769 12718 9317 - -

4 354.176

  • 3.288 * .552 .948 .587 78 9 - - 15236 13924 12828 *- - 1e~*  !

'05090 L12 '

'00110 LO 8 379.415

  • 3.288 * .712 .953 .606 7 8 9 10 11 10315 7276 7831 5101 6013 100090 MS 3 362.029
  • 3.303 * .960 .960 .577 89 - - - 15703 16515 -

8 9 10 - - 12935 14282 11935 - - 39152 C1100 M4 28 370.051

  • 3.303 * .648 .951 .601 {

.594 8 9 10 - - 15406 16215 7922 - - 39543  !

102100 MS 28 361.453

  • 3.302 * .616 .950 8 9 11 - - 16373 16296 13376 - - 44045 100110 MB 1 362.537
  • 3.299 * .411 .942 .593 8 912 - - 16373 16296 14410 - - 47079 100120 MB 1 362.544
  • 3.300
  • 408 .942 .593 8 9 13 - - 15234 15499 13324 - - 44257 300130 MS 1 361.651
  • 3.306 * .487 .945 .594 8 9 14 - - 15234 15699 12273 - - 43206 100140 MS 1 361.722
  • 3.299
  • 476 .945 .594

.607 8 9 10 15 - 11899 16843 5772 2204 - 36718 100150 NO 8 378.931

  • 3.301 * .696 .952 361.382
  • 3.302 * .638 .951 .592 8 9 15 - - 15234 15699 7204 - - 38137 c I C1150 MS 1 300100 MB 4 369.564
  • 3.301 * .963 .959 .588 9 10 - - - 18420 13885 -

32305$

14478 13079 12225 - - 40182 e.

M10110 N0 4 388.183

  • 3.307 * .602 .949 .627 9 10 11 - -

378.365

  • 3.303 * .550 .M7 .618 9 10 11 - - 14956 14026 12799 - - 41781 d 301110 N4 24 34 370.192
  • 3.302 * .603 .M9 .607 9 10 11 - - 17500 14035 7806 - - 39721 '

M12110 NS

.633 to 11 12 - - 12754 15445 11393 - - 39592 300120 P0 to 309.140

  • 3.502 * .748 .950 to 11 12 15558 15360 14366 - - 45284 301120 P4 20 379.850
  • 3.501 * .559 .M4 .629 - -

16 370.90T

  • 3.500 * .621 .946 .619 10 11 12 - - 16819 15453 10667 - - 42939 b 102120 PS 10 11 12 13 16790 15364 4496 4951 - 43601 200130 P8 8 371.854
  • 3.496 * .582 .M5 .619 -

to 11 1214 13718 15348 5626 4709 - 39401 300140 PO 8 309.811

  • 3.502 * .711 .M9 .636 -

.617 11 12 - - - 16172 18078 - - - 34250 100120 e4 4 380.873

  • 3.6 M
  • 1.131 .957 14347 17011 10997 - e - 42355 y 100130 eg 28 - 390.712
  • 3.690 * .751 .M7 .650 11 12 13 - -

32 -380.545

  • 3.693 * .681 .M5 .441 11 12 13 - - 17785 17139 9114 - - 44040 &,

101130 e6 8 372.789

  • 3.695 * .524 .959 .632 11 12 13 - - 18150 17861 13230 - - 49241 g 102130 et 36 390.577
  • 3.684 * .826 .949 .647 12 13 14 - - 16223 15309 7680 - - 39212 ~

200140 no 12 13 14 - - 20215 14829 10984 - - 46028 201140 a4 12 382.465

  • 3.682 * .581 .M1 .642

.632 12 13 14 - - 20098 15369 12456 - - 4 202140 a8 to 374.061

  • 3.681 * .520 939 200150 a6 4 381.497
  • 3.681 * .782 .948 .441 12 13 15 - - 20180 12661 7399 - -

300140 30 4 390.455

  • 3.702
  • 1.252 .960 .613 13 14 - - - 15341 14711 - - - 407'^)

30i ~

300150 so 16 390.600

  • 3.702
  • 1.118 .957 .624 13 14 15 - - 14239 14992 3508 - -

e (h\ C-20W .

/ f FIGJRE A PAGE 3 0F 3 MAINE YANKEE FUEL SCHEDULE FOR EOC 15 (FsxM042)

CYCLES 1 THROUGH 15 (REVISED 08/11/97)

.... .---.. BURNUPS (NWD/MT) ............

ATCH FUEL No. Of UT./ASSY ENRICHMENT (%) RAfl0 TO U.lWITIAL ---- CYCLES .-- 3 4 5 TOTAL 2

No. TYPE ASSYS KGU IN OUT U.0UT fiss-PU(%) 1 2 3 4 5 1

.632 13 14 15 - - 16568 14618 5678 - . 36864 28 381.292

  • 3.701 * .925 .952 01150 54 - - 18404 14830 7301 . . s.0535

.769 .948 .632 13 14 15 02150 s8 20 372.285

  • 3.702
  • 12446 8776 . . . 21222

.971 .535 14 15 - - .

00150 to 8 391.319

  • 3.918
  • 1.969 - . 24838

.966 .573 14 15 . - - 15780 9058 -

01150 T4

  • 28 381.947
  • 3.906
  • 1.719 16453 i 190 . - - 25643

.965 .578 14 15 - - -

02150 T8 34 373.550

  • 3.895
  • 1.666 - - - - 7340 - - . . 7340

.989 .275 15 00150 UO 8 390.342

  • 3.742
  • 2.956 - - - - 934U - - - . 9340 389.643
  • 3.739
  • 2.771 .986 .333 15 01150 U24 32 - - - . 9905

.985 .354 15 - - - - 9905 02150 U48 28 389.498

  • 3.740
  • 2.723
  • AS. BUILT KQJ AND ENRICNNENT v

9 h

f 97 r5 4 (h yC - 200 y' ..

'I ~ . .. ...

tL 11/12/97 MY Y T iCALCS _ ** *

.:4

.s . !!

  • k.

il u .

G & ;h

.c 4 4 i .

F 4 9 e .

e , .

i O 4 fy 0 9 9 Q. e as e 4- 9 9 '

A., t C

  • 4
  1. I !,dj-t'. W 1 ,,e a FT