ML20215B269
| ML20215B269 | |
| Person / Time | |
|---|---|
| Site: | Arkansas Nuclear |
| Issue date: | 06/12/1987 |
| From: | Enos J ARKANSAS POWER & LIGHT CO. |
| To: | NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM) |
| Shared Package | |
| ML20215B273 | List: |
| References | |
| RTR-NUREG-0737, RTR-NUREG-737, TASK-2.B.1, TASK-2.B.2, TASK-2.D.1, TASK-2.D.3, TASK-2.F.1, TASK-2.F.2, TASK-TM 1CANO68702, IEB-79-01B, IEB-79-1B, IEB-85-003, IEB-85-3, NUDOCS 8706170276 | |
| Download: ML20215B269 (17) | |
Text
{{#Wiki_filter:y ..n, ARKANSAS POWER & LIGHT COMPANY POST OFFICE BOX 551 LITTLE ROCK. ARXANSAS 72203 (501) 371-400C June 12, 1987 l 1 l 1CAN068702 U. S. Nuclear Regulatory Commission { Document Control Desk Washington, D.C. 20555
SUBJECT:
Arkansas Nuclear One - Unit 1 Docket No. 50-313 License No. DPR-51 NUREG-0737, Item II.D.1, Performance Testing of Relief and Safety i Valves, Request for Additional Information Gentlemen: Your request, dated January 8, 1987 (ICNA018702), for additional information j concerning NUREG-0737, Item II.D.1, Performance Testing of Relief and Safety i Valves, is responded to in the attachment to this letter. I Very truly yours, y$ f ,/ ' J. Tedlno, Manager g e f Nucl6ar E gineering and Licensing e JTE:lw Attachment Enclosures 1 cc: Mr. Robert D. Martin Regional Administrator U. S. Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive, Suite 1000 Arlington, TX 76011 l i Mr. Robert Johnson y Resident Inspector Arkansas Nuclear One 0jI Russellville, AR 72801 t 8706170276 870612 ) PDR ADOCK 05000313 P PDR MEMBEA MCOLE SOUTH UTiUTIES SYSTEM
ARKANSAS POWER & LIGHT COMPANY RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION DATED JANUARY 7, 1987 (1CNA018702) NUREG-0737, ITEM II.D.1 k PERFORMANCE TESTING OF RELIEF AND SAFETY VALVES FOR ARKANSAS Ntl CLEAR ONE UNIT 1 i i l 1 i i ATTACHMENT LETTER NUMBER 1CAN068702 JUNE 5, 1987
RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION QUESTION 1 Dresser Ind., in March 1976, recommended to Metropolitan Edison Co. that the PORV block valve be closed at pressures below 1000 psig to prevent steam wirecutting of the PORV seat and disk. Testing by Dresser later showed.the 1000 psig pressure limit to be overly conservative and that the PORV asi designed was. qualified to system pressures of 100 psig. Below 100 psig the deadweight of. the lever on the pilot valve was sufficient to keep the ' pilot valve open. Dresser recommends, if the plant is to operate at pressures below 100 psig, that heavier springs be used under the main and pilot disks to ensure closure. Without the heavier springs recommended by Dresser, the PORV should not be used at system pressures below 100 psig. Since the minimum operating pressure at ANO-1 is below 100 psig, verify that AP&L has installed the heavier springs in its PORV consistent with Dresser recommendations.
RESPONSE
Discussions with Dresser engineering personnel indicated that the heavier springs are now supplied as standard replacement parts. Efforts are currently underway to procure the new springs for both pilot and main disks for installation during the next Unit I refueling outage. QUESTION 2 Provide the torque setting for the PORV block valve operator at ANO-1 and the torque produced at this setting. If the torque is less than 82 ft-lbs (the minimum torque tested by EPRI), it is the staff position that it is not adequate to conclude proper operation solely on manufacturer's calculations. The problems encountered with Westinghouse gate valves on closing, which were traced to the calculations used to size the valve operator torque requirements, indicate the need to experimentally verify the adequacy of the block valve / operator combination. AP&L should provide test data to demonstrate the SMB-00-10 operator at ANO-1 is-capable of providing adequate torque to close the block valve. 1 h
l
RESPONSE
i I i The ANO-1 PORV block valve is a Velan Engineering 2 " gate valve. Required opening and closing thrusts / torques were calculated for this valve and tested with M0 VATS equipment consistent with I.E. Bulletin 85-03 requirements. Testing indicated torques and thrusts were more than adequate to perform the intended function. 1 During the most recent refueling outage the torque switches on the limitorque SMB-00-10 operator for the block valve (CV-1000) were set as follows: Torque Switch Torque Switch Setpoint Trip (ft-lbs) Open Torque Switch 2.75 181 Close Torque Switch 1.50 141 This test data demonstrates that the PORV block valve operator is capable of providing adequate torque to close the block valve. QUESTION 3 Provide results of RELAP5-FORCE verification calculations for EPRI/CE tests for our review now and the complete verification document, discussed in your response to our request for information, when finished by UCCEL.
RESPONSE
The recently released RELAP5-FORCE verification document prepared by Gilbert Associates, Inc. for UCCEL is being provided as an enclosure. QUESTION 4 Insufficient detail was received on the key parameters used in the RELAPS-FORCE thermal-hydraulic analysis. Provide information on the node size, time step size, and choked flow location used in the RELAP5-FORCE analysis.
RESPONSE
The node size used was l'. The time step was 0.0002 seconds. l The valve opening time was 0.015 seconds for the PSVs and 0.06 seconds for the PORV. j Choked flow was assumed to occur in the relief val'.es. 2
[ i L l i -It is standard procedure with a program such as RELAP to perform a nodalization study to determine the number of control volumes required to obtain an accurate solution. This study usually takes the form of rerunning ] the model with more and more control volumes until the answers no longer-l change significantly. This type of analysis was performed by EPRI and the conclusion was that a minimum of five (5) control volumes per straight segment of pipe was required to obtain proper force resolution. Using the EPRI criteria, the number of control volumes required to model the ANO-1. ) safety / relief valve discharge piping system would greatly exceed the capacity of the available RELAPS program. This required: 1. Modeling the ANO-1 Safety Relief Valve discharge as three separate systems. One for each valve (two Safety Valves and one PORV). 2. A nodalization study to develop force intensification factors, accounting for the coarse nodalization. 1 Even when the ANO-1 discharge system was divided into three (3) separate .q systems, there still was not sufficient control volume available'in the q RELAP program. This required the application of force intensification j factors on those pipe segments with less than five (5) control volumes. The intensification factors were applied as. multipliers to the tabulated force time history when these force time histories were input to the structural program. QUESTION 5 The information supplied by AP&L in response to our request for additional information indicated a number of NUTECH and CDC programs were used to analyze the piping and supports. Provide information on the verification of PISTAR, GENSAP, BASEPLATE II, and STARDYNE and comparisons of calculated results to EPRI/CE data. RESPON>E i This response addresses computer programs used for the structural analysis j of ANO-1 piping and pipe supports. To simplify review, portions of our May 7, 1985 report (OCAN058505) are repeated here. The ANO-1 Pressurizer Safety and Relief Valve discharge piping was analyzed for the loads resulting from actuation of the PORV and the Safety Valves using the PISTAR computer program. PISTAR is a proprietary piping analysis computer program owned and maintained by NUTECH, Inc. (NUTECH). PISTAR performs the analysis and evaluation of ASME Section III and ANSI B31.1 piping systems for static and dynamic loads. The analytical solvers used in PISTAR are based on the well known public domain program SAPIV, developed by the University of California at Berkeley. 3 i
i .I PISTAR has been verified in accordance with a quality assurance program which conforms to the requirements of 10CFR50, Appendix B, ANSI N45.2.11 as amended by the USNRC Regulatory Guide 1.64, and Section III of the ASME Code. The verification report for PISTAR is provided as an enclosure. The verification was performed by comparing the important portions of the PISTAR solution for a series of benchmark problems to that obtained from manual calculations or from other computer programs such as ANSYS and EPIPE. Results of these comparisons showed good agreement between PISTAR and the manual calculations and other computer programs. The analysis of the piping for the SRV discharge loads was performed using ) the direct integration time-history solution technique. This solution technique is commonly used in determining response of structural systems to impulsive type loads such as SRV discharge loads. The validity of using this technique for this application has been previously demonstrated by comparison to actual test results. The solution technique in PISTAR was verified as described above. J The piping supports were analyzed for the support reactions obtained from j the piping analysis. The supports were analyzed statically using manual techniques and using computer programs. The computer programs used in ) performing the analysis of the supports are public domain programs which are ] used extensively in the nuclear industry by a variety of utilities, A/E's j and consultants for safety-and non-safety related applications. These { 1 computer programs are described below: 1) GENSAP Computer Program -- GENSAP performs the static analysis of elastic structures. This computer program is available through Control Data Corporation (CDC) and has been verified in accordance with NUTECH'S Quality Assurance Program. The NUTECH verification documents are enclosed. 2) BASEPL. ATE II and STARDYNE Computer Programs -- BASEPLATE II is a preprocessor to the STARDYNE Computer Program and is used to generate the required input data for the STARDYNE subprograms STAR and SPRINGS. This combination of programs performs the non-linear flexible analysis of baseplates. BASEPLATE II and STARDYNE are available through CDC and are on the CDC nuclear safety related list of computer programs which are currently subject to COMS0VRCE/CYBERNET Quality Assurance Policies. This list is attached, and provides documentation and verification of these codes. The question being addressed by this response also requests comparison of calculated results of these structural analysis computer prograns to EPRI/CE data. We believe this question arises from a stated secondary ibjective of the EPRI/CE program, which was to "obtain-sufficient nioing thermal l hydraulic load data to permit confirmation of models wnich may be utilized in plant unique analysis of safety and relief valve discharge piping i systems." It was the intent of the EPRI/CE program that the utilities be able to use the thermal hydraulic code (RELAPS/ MOD 1) confirmed by EPRI on EPRI/CE test data or to be able to verify other thermal hydraulic analysis i' computer programs with EPRI test data. The EPRI report NP-2479, Final 4
?: Report, dated December, 1982, provides the EPRI verification for RELAPS/MODl. It is entitled " Application of RELAPS/ MOD 1 for calculation of Safety.ard Relief Valve Discharge Piping for Hydrodynamic Loads." AP&L provided thermal hydraulic transient analysis for ANO-1 using the RELAP5/M001 computer program as modified by Gilbert Associates, which is called RELAPS-FORCE. Verification of this thermal hydraulic computer program is provided as an enclosure, and includes comparison of the calculated results of the RELAPS-FORCE code to EPRI/CE test data. We have provided comparison of calculated results of the thermal hydraulic computer program to EPRI/CE data. We do not have plans to perform the qualification tests needed in order to compare the structural computer programs to EPRI/CE data and cannot determine an appropriate function for any such comparison of structural code results. As described in the EPRI Report " Application of RELAP5/ MOD 1 for calculation of Safety and Relief Valve Discharge Piping for Hydrodynamic Loads" EPRI NP-2479, Final Report, December 1982, the EPRI reports did not intend that utilities carry out plant-specific verification of structural analysis codes against EPRI data. Structural analysis was qualified during the EPRI/CE test program for the limited purpose of supporting verification of the RELAPS/M001 thermal hydraulic analysis computer code. If the EPRI/CE test facility and its support system could have been infinitely rigid, the measured test data would have consisted only of the hydrodynamic loadings. If this were the case, the hydrodynamic loads calculated using RELAP5/ MOD 1 analyses could have been compared directly with the recorded test data. The design approach established for the EPRI/CE test loop piping supports 1 was to provide supports which would facilitate experimental measurement of piping loads. Based on this design goal, extremely rigid dynamic support structures were designed for the test valve discharge piping, The test facility structure was not sufficiently rigid, however, to prevent the structural dynamic response characteristics of the facility to cause the recorded data to deviate somewhat from the hydrodynamic loading. J l The RELAPS/ MOD 1 predicted hydraulic loads, in ' he form of time history forcing functions, were used in the EPRI program as inputs to the structural I computer programs. The results of the structural analyses were then compared to the test data. Because this comparison was a primary method of evaluation of the RELAP5/ MOD 1 thermal hydraulic code results, the dynamic response characteristics of the test facility had to be shown to have been accurately reproduced analytically. The method of qualifying the dynamic structural model was to compare the natural frequencies of the test facility with those predicted by the dynamic structural analysis. Two types of test were performed. The first was a snap-back test which consisted of lifting the first discharge elbow with a crane. The second was an actual valve actuation test. 5
t Plant specific qualification testing of this nature.is'not re' commended by ~ i ~ EPRI. The-test facility piping support configuration was not designed to'- simulate operating plant structural dynamics, so a comparisonito the'EPRI/CE-test facility.has no appropriate function. The reason for the EPRI/CE; structural qualification of the test facility was limited to validation of i the thermal hydraulic code RELAP5/M001. There.is no recommendation for validation'of structural codes by EPRI..In fact, the EPRI. report states, at' page 1-5: There are many dynamic structural analysis computer codes whn.h 1 are available to perform this type'of dynamic analysis, The mathematical equations-and-techniques utilized by these. programs.are well established. These programs have been )erified. M by comparison with well-documented theoretical'and. experimental: 'j problems. There is,.therefore, a high level of confidence that' the computer codes correctly solve the problems to which.they are. applied. In light of the recommendations of the' EPRI/CE. test reports, the documents provided should fully and satisfactorily resolve NRC concerns with. respect-j to the verification of the structural analysis computer codes used for . 1 plant-specific analyses of ANO-1. 1 QUESTION 6 The lumped mass spacing used in the structural model was not discussed 'in the AP&L response to our request for information. Provide this information. Also, it appears that the damping values in the structural analysis of piping are related to the PORV and safety valve discharge. loads. If these l values are to be consistent with the requirements of the Regulatory Guide 1.61, they should be related to the intensity of earthquake rather than discharge loads. Please clarify,the above. O
RESPONSE
j The lumped mass spacing used in the structural model.was that required to s obtain accurate dynamic responses of the piping system up'to a 50-Hz cut-off frequency. To achieve this accuracy, the maximum spacing between lumped masses was conservatively limited to one-half the length of an equivalent-simply-supported pipe whose natural frequency is 50 Hz. i 1 ) I 6 i ' (. a
The damping'v'alues used in'the structural analysis were determined for each dynamic loading condition. considered. For the earthquake loading conditions ~ the damping values used were those defined in the FSAR, i.e., "3, O.5%' damping for both the design earthquake and the max,imum earthquake loadings. 1As the PORV and Safety Valve discharge loads were not previously considered for these' systems, damping values for.these loading conditions are not specified in the.FSAR. For these loading conditions, the damping
- values:used were.obtained from NRC Regulatory Guide-1.61 and were based on the. diameter of the piping and'the anticipated stress levels for the loading-
'l conditions. Although AP&L is not committed to Reg. Guide 1.61 for ANO-1,-it was utilized for guidance. Therefore, 1% damping was used for the PORV -loading conditions and 2% damping was used for the Safety Valve discharge '? 'lcading condition, consistent with Reg.' Guide'1.61. QUESTION 7 The submittal stated the discharge ' loads due to valve actuation (PORV or SRV) were applied independently to.each discharge piping system. The. piping responses were then combined absolutely to obtain the total ~ system response. j Provide a more detailed description of how this was done. How was.the response of the common header upstream of the relief tank handled with this j method? Discuss how the effect of simultaneous (or nearly simultaneous) actuation of the valves was considered. Also a concern has been raised that combining the individual line responses absolutely could result in missing ) the critical frequency response of the total system. Address this concern in your response. Finally the submittal did not indicate which of the 1 transients analyzed was the limiting transient for the piping and support J stresses. Provide this information.
RESPONSE
I In the dynamic analysis of the piping system, the thrust loads on'the i discharge line from each valve are applied independently. Loads on the common header are considered, and analytically are included with one line. Responses from these three independent analyses are conservatively combined absolutely. This ensures that the responses obtained would bound any sequence of valve actuation, including the simultaneous actuation of all valves. As this is a linear, elastic analysis of the entire piping system using a conservative method of superposition of independent loads, the concern relative to missing critical frequency response of the system is not j valid. The limiting. transients were, for saturated steam, the rod ejection accident at hot zero power and, for subcooled water at 400 F, the steam line break q i accident. Additionally, the saturated water case was run on PSV 1001 for comparison but the force magnitudes proved to be less than those for-saturated steam and subcooled water, and therefore this case was not further considered as relates to limiting transients. 7 L
QUESTION 8 The load combinations used for piping support' analysis require explanation. l The staff position is that one of the'following alternatives should be used: (a) The load combinations contained in.the.FSAR with appropriate code allowable stresses or (b) The load comb %ations contained in the Standard Review Plan (SRP),. NUREG-0800, Section 3.8.4 "Other Seismic Category I Structures" with the appropriate. code allowable stresses. In any case, the load combination equations contained in the response to the Request for Additional Information, dated April 1984 do not address all of .l the conditions which should be considered [for example, a combination which l involves DE (design earthquake) is not included]. Indicate the manner in which you will ccmply with the above. l
RESPONSE
The load combinations contained in the response to the Request for ] Additional Information, dated April 1984, were only those combinations 1 including the new dis, charge loads. The load combinations considered in the 'nsidered in this analysis unless ] original qualifying analysis were they were bounded by a combinat: ' 3c.c 'g the new discharge loads. The j load combinations considered are J l DW + TE + DE < 1.0 times . bles DW + TE + RV < 1.0 times AISC allowables DW + TE + [(RV + SV)2 + ME2] g*.< 1.5 times AISC allowables
- As the ME earthquake bounds the DE earthquake, the combination of discharge loads with the DE earthquake is bounded by this combination.
] DW = Deadweight of the piping components and contained fluid (either saturated steam or subcooled water.) j TE = Thermal expansion of the piping and movement of the pipe anchors due to the expansion of the pressurizer and quench tank. DE = Design Earthquake ME = Maximum Earthquake RV = Discharge loads resulting from actuation of the PORV for either the saturated steam condition or subcooled water condition. 8
SV = Discharge loads resulting from actuation of-the safety valve for either the saturated steam cordition or subcooled water condition. These combinations meet the NUREG-0800, Section 3.8.4 standard. QUESTION 9 AP&L's response to our request for information stated that it was not clear what was meant by the qualification of the PORV coritrol circuitry. It was also stated that it was AP&L's understanding that it did not mean environmental qualification. Environmental. qualification, however, is exactly what was meant by the qualification of the PORV control circuitry in NUREG-0737, Item II.D.1. It is the staff position that in order to demonstrate the ANO-1 control circuitry is qualified to the requirements of NUREG-0737, the design qualificatior.s must be compared to the environment the control circuits will be exposed u. Provide documentation to show the PORV control circuitry has been qualified under 10 CFR 50.49, or to allow a complete review of the qualification of the control circuitry-for the PORV under NUREG-0737, provide the following: A. Provide a list of all PURV control circuitry needed to mitigate NUREG-0737 transients. Your list should include, as a minimum, the following: 1. Switchgear 2. Motor control centers 3. Valve operators and solenoid valves 4. Motors 5. Logic equipment 6. Cable 7. Connectors 3. Sensors (pressure, pressure differential, temperature, flow and level, neutron, and other radiation) 9. Limit switches 10. Heaters 11. Fans 12. Control boards 9 ) i
13. Instrument racks and panels 14. Electric penetrations 15. Splices ) 16. Terminal blocks B. For each item of equipment identified in A, 1. Type (functional designation) 2. Manufacturer 3. Manufacturer's type number and model number 4. Plant ID/ tag and number and location C. For each item of equipment listed above, provide the environmental envelope, as a function of time, that includes all extreme parameters, j both maximum and minimum values, expected to occur during NUREG-0737 transients, including post-accident conditions. D. For each item of equipment identified above, state the actual l qualification envelope simulated during testing (defining the duration of the environment and the margin in excess of the design l requirements). If any method other than type testing was used for qualification, identify the method and define the equivalent ) " qualification envelope":so derived. 1 l E. Provide a summary of test results that demonstrates the adequacy of the j qualification program. If any analysis is used for qualification, justification of all analysis assumptions must be provided. F. Identify the qualification documents that contain detailed supporting information, including test data, for items D and E. q
RESPONSE
The issue of environmental qualification has been thoroughly addressed by the NRC under 10CFR50.49. The determination was made that environmental qualification of PORV control circuitry was more than adequate considering a PORV system configuration which includes an environmentally qualified PORV block valve and environmentally qualified indication of PORV position. Such a configuration ensures the capability to detect and isolate a stuck open PORV. The mechanical safety valves provide the capability to protect the RCS from overpressurization, therefore the' capability to open the PORV is not essential. 10
i I In addition to this, our review of the licensing concern raised by this question shows.that the position we took on this issue (i.e., that "qualificatien" as used in NUREG-0737, Item II.D.1 does not imply " environmental qualification") in our May 7,1985 submittal (0CAN058505) is justified on several grounds. The express language of NUREG-0737, Item II.D.1 is: Reactor coolant system relief and safety valve qualification shall include qualification of associated control circuitry, piping and supports, as well as the valves themselves. The justifications for the position that " qualification" as used here does not imply " environmental qualification" include: NUREG-0737 clearly indicates when " environmental qualification" is required either by direct reference.to Appendix B environmental qualification criteria (c.f.: II.F.1-3, II.F.1-4, II.F.1-5, II.F.1-6, j and II.F.2) or by direct reference to the environmental qualification q Memorandum and Order CLI-80-21 (c.f.: II.B.1, 11.8.2, and II.D.3). However, these references and terminology were not used relative to PORV control circuitry. The terminology " environmental qualification" refers to a requirement of testing and documentation relating to certain electrical equipment exposed to potentially harsh environments. The word " qualification" here was used to describe the Item II.D.1 requirements relating to strictly mechanical components (e.g.: safety valves, piping, and supports) as well. This raises the presumption that " environmental qualification" was not intended. The NRC staff has not interpreted " qualification" as meaning " environmental qualification" in NUREG-0737 over the past seven years: 3 ) In 1980, the NRC staff issued to AP&L a satisfactory preimplementation review of the TMI Action Plan on this issue. (March 10, 1980, BCNA038051). The NRC staff accepted participation in the EPRI functional testing as completely and j satisfactorily addressing the requirements of this Item. The acceptance was conditional only on subsequent approval of the EPRI test program, which was satisfactorily given af ter its completion 3 (SECY-83-270, July 5, 1983). Environmental qualification of i control circuitry was not raised as a requirement. In October 1980, the NRC issued the Bulletin 79-01B. It requested a list of plant equipment which was to be environmentally j qualified under the requirements of the TMI Action Plan. (0CNA198083). AP&L responded, and its list did not include PORV control circuitry as equipment required to'be environmentally qualified (ICAN018110, January 14, 1981). AP&L's submittal remained unquestioned in this respect after review by the NRC. 11
The NRC staff has taken the position that'" qualification" does not imply " environmental qualification" of PORV control circuitry. Tae staff issued this position as NRC policy in SECY-83-270 (July 5, 1983). This policy statement specifically addressed NUREG-0737, Item II.D.1, the EPRI testing program, as well as concerns which had arisen subsequent to the TMI Action Plan relating to instrumentation and control of pressurizer relief and safety valves. The policy statement said that post-TMI valve instrumentation and control concerns would be addressed under the then newly issued 10CFR50.49. The policy statement concluded that the EPRI tests confirmed basic valve capa"i"ty. This position has authority because it was the interpretatlo: C o contemporaries of the NUREG who were in a position to know me intended scope of the TMI Action Plan, because it was maintained for a period of years, and because it was issued as NRC policy. The requirements of I the NUREG were met by the confirmation, through the EPRI testing, of basic valve capability. The issue of environmental qualification at ANO-1 has been thoroughly addressed by the NRC under 10CFR50.49 in their review of several submittals of lists of environmentally qualified electrical equipment and in an NRC audit conducted at the plant. Notwithstanding the above, we have re-reviewed the function of the PORV control circuitry with respect to environmental qualification. The PORV at ANO-1 is a pilot operated valve in which the pilot is actuated by an electrical push-action solenoid. When the solenoid is energized, the PORV is actuated open. When the solenoid is deenergized, the PORV closes. The closed position of the PORV is its safety position. The following analysis demonstrates that the solenoid will not be energized as the result of electrical failure caused by a harsh environment. The solenoid is controlled by signals which originate from pressure transmitters located in the reactor building. These signals are processed through a signal converter in the control room and the converted signals are fed to a bistable switch, also in the control room. The signal across the contacts of the bistable switch actuates the solenoid. The three potential failure modes which could be caused by a harsh environment are addressed as fellows: 1 (1) The failure of a pressure transmitter or associated circuit (including cable connectors and splices) is precluded by the fact that the pressure transmitters in question are environmentally qualified for long term post-accident conditions. (These pressure transmitters are associated with the Reactor Protection. System). (2) The failure of the solenoid would result in its deenergization. Deenergization of the solenoid results in the PORV closing, which is its safety position. (3) The failure of the solenoid-associated power circuit could occur by a short to ground, cable failure, or cable breakage. In any of these events the solenoid would deenergize. Deenergization of the solenoid results in the PORV closing, which is its safety position. i 12
It is, therefore, concluded that the PORV will not inadvertently open or remain open as a result of an electrical failure caused by a harsh environment. The harsh environments which are addressed by 10CFR50.49 will not affect the ANO-1 plant-specific control circuitry for the PORV in its ability to ensure that the PORV achieves and remains in its safety position. Therefore, we have demonstrated, in specific response to this question, that we are able to document an appropriate resolution of the issue of PORV control circuitry and its environmental qualification under 10CFR50.49, i i J l 13 ]
v. e ENCLOSURE 1 RELAPS-FORCE VERIFICATION REPORT i
-9 f,. _ ) y 8;,, ;, w - .. ;,. <..c ra- . by,;%. :),- i l }.',[ 5,$f,,'- ~ \\' 4. . ~'.. am}..., ; s r. ,p'
- y. * * !
i t a' nfa , c.,'.ppy;h g.',
- p.
r +. g 3;gygig I. 3 oak.,,s, - w ' Verification of the RELAP5-FORCE.CM ! [ x e.r Hydraulic FoESICalculation CoOff!kh ~ ' ~ h(bN -{ ?, 1 s .. T*,. . rY th;p:,- i ,s. 'o ; , t '/ j'. ' ' 1, g n
- 'Y
<s' 14 ,,) u s l
- c. 7
- I
.;,).'. r 4 3 ' \\. . < = g: ; f '. a( ,a b. b ..,+,. ,,, g,'; 4,'s', y i 4 s ,v,. t . gi t -)e ..p l 1. T UCGL o30F00 9 i 4 - - - a
. o VERIFICATION OF THE RELAPS-FORCE l [ I E HYDRAULIC FORCE i l-CALCULATION CODE \\ I BY l J. M. CAJIGAS d GILBERT ASSOCIATES, INC. 4 8 READING, PA 19603 ) May 1984 e L l_ M M 3680 i J
.,i;..- 1.0-INTRODUCTION' RELAPS-FORCE (1) is a modified version of RELAP5/ MOD 1(2) which includes.a hydrodynamic forcing function calculation option. This version generates r time-dependent force functions for piping segments defined by the user. g.. RELAP5/ MOD 1 has been modified to solve the hydrodynamic force' equation for the requested RELAP5 volumes, at each time step, and write the resultant force to the RELAPS output print and plot' files. I This report documents and verifies the accuracy and validity of the changes to RELAP5/ MOD 1. The verification process will include: i
- 1) RELAPS/ MOD 1 Changes verification. This verification will show that the
.RELAPS-FORCE. modifications have not adversely altered the precision of the.RELAP5/ MOD 1 calculation.
- 2) Hydraulic Force Calculation Verification - EPRI/C-E PWR SRV Tests. This a
verification will show the adequacy and accuracy of the RELAP5-FORCE' { force calculation methodology by comparison to test data from the EPRI/C-i E PWR SRV Test Program (3).
- 3) Hydrualic Force Calculation Verification - Edwards' ~& Hanson's Pipe Experiments. This verification will show the adequacy and accuracy of the RELAPS-FORCE force calculation methodology.by comparison to test data I
reported by A. R. Edards(4) adn G. H. Hanson(5). This data is I particularly significant because it allows a better. verification of the' blowdown force option of RELAPS-FORCE than the one permitted 'from the. ~ l EPRI/C-E PWR SRV Test configuration and data. 4 w ~,' _b
2.0 RELAP5/ MOD 1 CHANGES VERIFICATION The RELAPS-FORCE code was developed by programming the hydraulic force equation into the RELAPS/ MOD 1 code. This required the addition and modification of subroutines to the program. 4l To rnow that these modifications did not alter the basic RELAP5/ MOD 1 Li calculations, a sample problem was run for the following two cases. I*
- 1) RELAPS-FORCE USER'S GUIDE (1) sample problem run without the force option cards using RELAPS/ MOD 1, Cycle 14 AW. RELAPS/ MOD 1, Cycle 14 AW, is the L
base code for RELAPS-FORCE, Version 14.
- 2) RELAP5-FORCE USER'S GUIDE sample problem run with the force option cards i
using RELAPS-FORCE, Version 14. m Figure 2-1 shows a schematic of the RELAPS-FORCE USER'S GUIDE sample problem. The RELAP5/M001, Cycle 14 AW and RELAPS-FORCE, Version 14 input i i listings are shown in Appendix B. {t t For comparison purposes, a portion of the output listing for the period between 0.04 sec and 0.0449 sec of each sample run is presented in Figures e i 2-2 and 2-3. Note that the listed results agree exactly. Therefore, it can h be concluded that the RELAPS-FORCE modifications to RELAPS/ MOD 1 have not i altered the internal thermal-hydraulic code calculations. i L a
- s s
.x r 200 400 1 301 501- [ k 301 501 "g 100 g P, X n i 502 j 302 F, n E n 8 o 1 303 P\\PE SOA 1 n 503 30 505 n I 600 { \\ v F' I 504 700 / B00 0 8 w l c_. c. 4 1001 o F. 1200 / 1003 l 1004 P, X, 1002 1003 NOTES: 1100
- 1. The length of pipe component v<>lumes = 1 ft.
~
- 2. Tee branch component volume length = 1 ft.
- 3. P1 = 1000 PSIA: P2 - 14.7 PSIA
- 5. Steam Quality = XI = X2 - 1.0
- 6. All piping 6" nomir.nl
~ (, F@EE. 2-1 ; RELAP6-FORE.E SA%4%. PtoBLE A u
l' e g 9 I f f T T ...../...t,.t. w/CTidaw g,M,C.Ji$.... 3. agLeeS*FotC$ Sempt$ pegg.gp I ffmf $ GSF/lett 39/o3/84 0 p e e metowJ ustewJ metowJ La5&n 1e10e99 JO40 COO 5959000 5050000 40e0000 7900000 See90ec 149F/lW3) (&BP/Inti lhe#/lett itsp/IN3) 168/SSCl {LS/828) 148/4843 e 04eeet*03 030.94 ' vie TT 999 81 000 to 199 34 153.94 33e TE I4 eteoog*et ese 33 99e et 993 et see se 999 19 999 ft Ste 49 M Des .74.53 TTe 94 775.06 540,33 357 13 553.07 JJO 47 e e3eeee e3a.s3 set.as Tea.es see.oe te9 to tes.ot 33e 33 e eseett*et 433 et 909 39 994 to ett se 989 et 999 48 19e 98 4 050005*e3 SJ1 79 765.55 771.44 565 J5 544.5J 15i se 33E G5 a.Stese8*03 431.39 168.89 199.88 968.08 188.86 185.44 3t9 99 4 49eettoet 838 04 4 080045*03 434.47 ' 994 It 999 et 054 93 988 94 tGt 99 309 99 TET.46 Tll. e+ Eht.en 156.56 351. 73 385 43 4.etecogees s3s.eT Te1.80 998.36 450.e9 ISS.Se 151 et Ste.ag a tee #0teet ett at 909 ts 995 99 4g9 93 15e et tit 61 set 34 4.116005*G3 e35 36 756.74 714.57 867.46 356 43 151.54 334.30 4.98000f*#3 834 48 986.41 195.tB 889.94 150,34 189.5e 390 .5 e 1990et*ef $34 de 944 e5 994 69 446 SS t44 29 514 44 158 93 4.4400eE*01 534.9J T55.5s 7Ta et 556.5i B55 le Ill 35 Jle 74 e.980e0S*e3
- 79 9 995.33 T14.e3 OSS 19 186.90 181.33 394.54 4 00etef*e?
423 93 968 99 993 89 959 e4 tel et 984 99 See le 4.I7009t*03 5I3.51 754.5e Tl3.36-4th la tan 34 its.2: Jie.36 4 8.980000*e3 833.41 908.34 T91.48 854.25 198.46 951 18 31a.33 is. t 0968ef*02 GET #e 963.44 991 99 464 93 545 90 998 et See es DIM i4 2 AJI.&s 753.53 rT3 i i 554 e,I 155 19 14I 44 JIT 84 4.Stooeteet 831.95 101 1J 79i T3 $$e.30 198.03 tse.se 3tt.se 4 11oGet*e9 ~ ISO 99 9tt 94 991 st etS as sat le too et 199 es 4.23000E*<3 630 34 Tsa.4J T70.31 ss3 si t eI4 e lle se Js1.53 l 4.34600f*e3 4'4.88 983.09 T96 85 853.35 158.3. tes.ee 3t9.30 4 l 4 34000f*e1 690.58 999 99 999 ft 953 64 409 Se USO is St9 Se i M I0 91 E*e4 435,i7 1st.Je 753.43 543.73 145,;3 158,64 337.le 4.390e 438.99 100.04 Tet el 853.46 185.04 950 es 318.98 4.fSe## fact 094 39 944 41 999 #9 451 et tes og 950 Se 314 at 4.350095-93 437.5s 750.35 TII.55 g56 74 164.5e ite;50 Jis.58 a.30ee#8**1 439.58 Tle.as 164.33 esI,ee tes.se tse.a4 313 se e s tooee se J a19 te ese es 939 se ett to tse as tse se sta et DnMD J 43a.Ts Tip.is 757.5e anO.5e 154.74 160 aa Jia.31 L a. 3 3.e e s.s.e.e t e3.a.3s ,t e s, s e 9.e.t. t s .s.e e, s 3 t e.a.. s e. t e. s. 3 8 9 310 13 e 34 6. 4 44 5 e it t r nmt. e 3 .35... 7 4..J 7.. 43 .45... t... Ji.... Se it 4.fSeeG**e3 838.It 901.99 Itt es 84e.53 104 43 tee.e4 314.19 . i. e 39etet*99 S2e 94 949 St 95% 34 tag te see 34 040 et $tt 99 5.450005*94 634.J4 754.54 755.39 546.83 164.25 143.B5 Jia.e4 4.39e00too3 833.04 955.83 984.04 643 64 164.t3 tag.ge St5.39 4 4te## feet 413 94 966 30 944 46 444 St its se top se 399 og e.41000d*D3 533.5e 755.45 744. 54 544.9i i5e 93 585.74 Jit.9L 4.43eetEs#3 433.18 188.83 953.4e esi 9e is3.se 149.93 394.e? 8 43900f*et 829 Se 999 09 941 43 649 39 153 to 949 08 fee 99 6.44900E=9J 431.54 754.49 153 GD 547,07 15J.Tg 143,50 J54.35 4.48800f*e3 839.44 194.44 143.44 44s.9s 643.99 pe0.85 304 el 4 460009*e1 999 to 998 48 999 30 Set 45 983 4t set og See 30 D 7000E*03 9( 43e.7s TBJ Ts 'Es.93 see is l43 54 ses sa 314.si b' 4.440048 430.34 983.35 104.58 tot as ta3.as tas.31 394 es e de00ef*e3 809 to 953 99 999 19 set to 963 33 tot 39 393 se L .I w L Y
..q i
- z 4
'0 e e. e r f f f 1 I, - g iss6 8thage? 45SeCIATES teC. eet. 1943 SAGE ' 39 left8elopettE W99910e le
- i 94bastepeegt Sament peeghtm J.m.8AJie45 ate /t*to 31/03/84 l
j wetDwJ etagge etettw j weteeJ...e i 9 tug o e o e metowJ ice seessee Tei Tea isioees as.eepe .. eeee seistee seceoee Itep/ests (tes/ses (6er/inti itser:68 Itsitses (6s/sss 16s/sssi-esacset esesse j Sum sum j ,,. 49 ..G... 9. 3. ISS.t. Ste.,. .t. 9e. .. e0,000..e9 .3...., ,,0. 9.,9 30.,e,. 09 ,9 99 t, 3,e .9 30. 3. to. e e tee..et ... 3 ,,e ,,, 9 .. e.. a.. a i.>.is ina.ei aa...i .ao .a .a. sea ..easses.e. >>e.o. 1>..e. 4.030eet*e3 838.83 989.se 193,33 ese.ee tet.se IS3 et 33e.33 +364.39 +38.894 e eseeet et e34 to 939 st 990 te est se 109 et est og sto to atos et 33 ees 4.emotos.ea sa7.To Tsa.ss 7TT.sa saa.as ist.sa Is1.pe Jae.en ae7 TB .at eia 4.48994Esea 439.39 Tee.Se 999.40 889.04 198.06 168.68 3t0,99
- 209.58 a39.989 i
e 990eetaet est ss 948 ft 999 et ess 93 19e 90 tst 99 Ste 99
- 999 95 34 #43 P
< I A 4.csseOE.ea sas.si 737.e4 Tis.Ta ass..t 556 54 351.1 atB,42 307 ne .al.eaa 4.000948*e3 836.07 109.99 196.34 654.99 906 48 .199.81 319.40 8306.43
- St.ees 1
i a spaces.et est 50 9e9 to 99g es 359 93 tes to tge et 313 3e 30s 94 3e ses ! A rseest.ea san.33 isa.la 173.s7 557.4s isa sa 151.3a als ae . Jet la Ja.ase I 9006 834.88 188.49 144 38 159.99 350 g33 1.4. ' s.o.4. *.01 ,918.14 0 01.. f 4 O. S +344. 34 + 3. a m r m s..t ,.8 .....s 9, 9 a,..,1 a 3. 9 94 e .. e t. tot St .t 11 .e 1 a...a ...s n. ,.ca, .ae. o. .J....a 4.the#GSeet 883.03 10S 33 994.e3 858.10 tes to 146.33 Sts.es
- 396 et 34.869 e 900045*et 01, 21 994 99 993 SS ett es 944 et 969 19 110 te
- 198 94
- se 879 4.iTeces.e.
472.44 15a.se 77a.a5 455.56 155.54 155 3, 315.20
- >et.65 24.405 S tteeOS*e3 833.49 994.3e 913.88 898.39 149 at 136.90 313 33 386 4e
- 34.982 i
e 9900ef.01 533 ee 993 80 999 Se Sta 99 Ogg 93 itt se 11e et 904 33 .Se 958
- a. gooses.o.
aan.se T s a. 6 a.~ 773.14 ans.si ism.ie 153.03 457.B* 305 3e .Je 7J4 4.3tecogees 439.10 183.18 919.73 ess.Se 186.43 tee.es 399.80 afet.98 +34 113 4 999995 99 630 99 993 99 999 ft SSS.9e 166 to ISS St 199 Se 308 98
- se 899 s.aJoees ea sae.as 7s3 sa 77e sT esa.si iss.es ine.ss Ji7.sa
.a54 at .aa.sTa 4 teese5*e3 890.04 983.09 TTS.Se 883.38 185.34 tee.se 319.34 +2e4.98 +3a.00s 8.Tleesteet 490.30 969 90 998.19 993 ee les se 900 94 199 to 3e4 as 34 est
- 4.aseces ca sas.11 751.J4 755.Sa Bla.Ta 655.3a lle.55 aIT.le
- ase.53
.al.435 4.91000s.e3 e.ts.99 989. 48 S S. 3. e t
- 194. 43
+34.6es 908.94 105.le lle.43 398.98 19
- ..aise.e tece..et 3.
3 ,ee, 9 49 es toe is ste e 99 33 .s. ea .37. 1.o.a. i..... . 177. te 9.. ai...s i.... i.e... .ae. aa .a. g 4.Seteegnet ett.80 199.49 144.33 999.48 464.08 18e.44 Stl.Se ages 33 3a,333 t, e 31e009 01 899 ts 999.83 909 Se BSD #9 990 69 tSe SS fle et +944 GS
- 14 SS5 e.aaeocu.sa 4a5.75 TDB 16 757.46 558.54 ite.74 ile.a.
415.31 30. il 44 549 . 4.338006 03 838.34 980.00 989.18 050.83 154 se 190.35 - 398 13
- 194.13
- 34 584 I
4.Seeeeeeet 938 et 933 ee 9se et ese to les es ese to 399 go ages 4e 2e 349 e.ateess*sa sau.sa Tes.ei Ten..a eas.ss use.se use<ss ain.at .me 33 .a4,53 3 4.38940 test 83S.06 951.99 968.06 048.54 144.43 160.06 Stt 19 e393 se ese. Set 4.99eettoG3 ere 94 999 39 999 tot te tes 34 fSe et 399 19 ,..08 9 4. a 3 et 34 009 t .a c ...o a.... ,1..... e t.... 3 ...a a .i 7 .....o
- O' 9
.3.... 3 33..e S.. 3 4.93 4.... ...t. 3. 303.. 34. 3. 4 Steetteet ett le 959 ft 994 ts est 39 164 te
- 49 Se
- stb tt 103 Se +34 643 s..ieces.ea saa.is 7sa.as ise.as ses.en use.sa iss.7s aus.es asa sa .as.ans 4.439900=e9 333,94 168.83 183.60 841.99 183.04 tes.T3 394.39 3e3,33 +33.318 p .. 3e90f*49 893,.S.4 e 4 994 99 999 49 s.e t. 59 l e t...t 163 .4 e Ste 91
- Te3 tt 3s. ges -
...s..a .3 .e .e. a.,. i. e a,. .aea ia .J..,,a 4.48400t*e3 438.94 154.44 993.84 446.78 - 903.10 145.85 318.46 tes,te e34,933 L e a *eefact ett to 984 #8 901 39 444 e5 tes et tes as Ste 3e etet og .Se 9g3 MO. 3 sJs.74 7ta.7i 145.53 est,la isa.34 isa..a ass.iT .aga.es .as.773 8.480000*e3 429.34 953.38 189.8,8 646.43
- 0. 3 ages e.s 3 4, t, e t 653.45 los.3T Sie
...*ef t. ,.1 ,.9.1 ed. 9 tes te 98. 31 3t9 999.. 38 ,e 4m e 9 ap g s a L. 6. w
.V 9.. 1 3.0 HYDRAULIC FORCE CALCULATION VERIFICATION - EPRT/C-E PWR SRV TESTS ~ -3.1 The'EPRI/C-E PWR SRV Tests: E Under the management of the Electric Power Research Institute (EPRI)', a full scale PWR pressuri::er safety relief valve test program was I_. q carried out at'the' Combustion Engineering (C-E) test facilities in j Windsor, CT(3). The C-E test' facility was designed for full-flow-l tests of selected safety valves under a wide range of inlet fluid-conditions and inlet: piping configurations. Figure 3-1 shows an isometric of.the test facility piping. I Ons of the objectives of this program was to obtain sufficient piping load data to~ permit confirmation of analytical mode's. Thus,'the. test. I facility was equipped with instrumentation to record transient b parameters such as valve discharge line. pressures Land fluid induced loads. The EPRI/C-E PWR SRV Tests chosen for this verification are:
- 1. Test No. 1411: Steam Discharge
- 2. Test No. 908:
Cold Water Loop Seal. Discharge
- 3. Test No. 917:
Hot Water Loop Seal Discharge ( These particular tests were selected because they all used the same valve model (Crosby 6M6) and piping configuration. In addition, good 6 quality test data for these tests is readily available. The test data , I ~ L 1.- .)
,3 r i n is sunmari::ed in Reference 4, " Measurements of Piping Forces in a Safety Valve Discharge Line' included herein as Appendix A. j q d i I F 1 j l' 'l L E .. j s - ) I i-l t i I L4 c
{ e. p i i I f TEST VALVE a Sch. X1 i 1 8"Sch.16
- SchAO f
_ f(% VENTURI g e ^ rg ~ TANK l 'i 12" Sch. 80 { t ^ 1. f~ RUPTbRE DISC. ASSEMBLY g Y* i 4 4 %)6u2f 5-t*. EPET./C.-E pwR ScV
- E5'i~ T-ACLtTy PLP46. I5bME"Eic.
L .)
i;. 1 . p.. 1 3.2' RELAPS-FORCE.MODEL OF'THE EPRI/C-E CROSBY 6M6 TEST FACILITY-Appendix A, Figure 3 shows a detailed drawing of the test _ facility-including the location of the. process instrumentation. Force' ' measurements were made by summing the output of a pair of. load cell. strain gage ' transducers per pipe ' segment (WE 28 throu'gh WE 35). [ a The RELAPS-FORCE model of the test configuration is shown on Figure 3-L 2. Note that the-nodal points for the pressure transducers used for-i' .the verification have'been' labeled in add'ition to the location and' direction of. the hydrodynamic piping loads ' calculated. A11 the' Crosby. 6M6 tests were performed with a loop-seal inlet. piping configuration. The verification approach will be to compare _the analytical results with the tests pressure and load measurements. Pressure comparisons j are used to verify the accuracy of the RELAP5/ MOD 1 code -and model in reproducing the test configuration physical geome'ry and transient t } thermal-hydraulic phenomena and thus adds further support to the force calculation validation. L s a-t L
,a m> %c Ds - f p T b I. s s s 9 ? } 1 e a V, a s' ~ 1 a g ~ t ~ viamsto.Joto "rs o.e n g E W.4 e, ~~ 4*.(*%.3. t t ~ uo..e T; v ? T 7 q { t Q ~u e L v y i .s u g != j u W
- t 4
s = 8 3 5 ], 4 l-E w o a 7 T 6
- s. '
L 4 i A e. s q 5 E a G e f b = d s 1. 5 4 W O ~j-k m 1 i (.Th i.g, o i u p 3 3 .,.auo mn l ti qi Al I( bawa g,w..) "r a i 7 Y S i J-5.. u o { p I-y g } w s-o h* \\ Pd at S l = ., o w Q { 6 -{- o h a Q C T .? E 7 Y. e-o t. 4 9 Q wt 1 12 9 Q 5 P D g 4 _ "a 4 k o .L. 5 a +- O (,oss)LSb 0 e. 0 3 .. T*V y V [ N rauswg poe*) O _ y,, / s 'O O [
- h
- -2., 5 c. ..d Q N. I. w m O g = ) W 0-Q .~, a 10
- w a
g. g na b N JL-e8 34 P-q L-*g g Q = E 4 . a. p q t g l y 'm E ~ q s#3 h i h. S N i e n z r 3 a g ~, ? 3 6 C Q--
- c6*f e s"~o T
,o6'acEO 3: 2 T S, 't ,es'sw o 9_.. seco ' Y F - - " a -- g = ,,L ap
- ' k a
M L
f 3.3 COMPARISON BETWEEN RELAPS-FORCE CALCULATIONS AND TEST DATA e 3.3.1 Test No. 1411, Steam Discharge Tests No. 1411 simulates a continuous steam discharge through a PWR pressurizer safety valve. The valve inlet pressure was regulated by modeling the reservoir pressure to ramp from 2410 psia to 2540 psia in 0.5 see as indicated by Appendix A, Figure 6. The Crosby 6M6 valve j j 1 used for these tests had a full-open area of 0.0253 ft. However, an 2 d area of 0.0204 ft2 was used in the RELAPS model to achieve the test i measured steady-state steam flow rate. As indicated in Reference 4, 1 r this valve leaked slightly prior to the test and thus the initial a { downstream air was replaced with steam. Assuming constant enthalpy j thrcctling, a quality of approximately 0.90 is calculated for the l i downstream piping steam environment. Therefore, the RELAPS model k i downstream conditions for this case correspond to 0.90 quality steam j at atmospheric pressure and the pipe wall temperature initialized at 2120F. The valve opening characteristic model used for this test is depicted against test data on Figure 3-3. The full-opening time used was 15 msec. See Appendix B for a listing of the RELAPS-FORCE input for this transient. Figures 3-4 through 3-6 compare the RELAP5 calculated pressures with test measured data for three discharge piping pressure transducers, PT 9, PT 10, and PT 11 as shown on Figure 3, Appendix A. Considering the possible differences discussed below, the calculated pressure histories are in good agreement with the test data. hum Y
if The hydrodynamic piping forces calculated by RELAP5-FORCE for test No. 1411 are compared with the test data on Figures 3-7.through 3-10.-- It can'- be observed that the magnitude and timing of the RELAPS-FORCE calculated forces agree reasonably well Sith the' test data'. .A notable discrepancy, occurs near the 200 msee point where test' data for Forces 3 and 4 .f' indicates force peaks not reproduced.by the' code. -This difference is apparently due to the accumuletion of condensate:in the lower horizontal discharge piping leg prior to the valve opening. Althot.gh, as ' discussed above, an attempt was made to model the downstream steam environment, information on the accumulation of ' condensation in the discharge piping was not available to allow reasonable modeling of this condition. During. the test, the accumulated condensate was apparently collected. into a slug by the steam discharge producing the 0.2 see force peaks-in pipe. segments 3 ana 4 as the slug of water accelerated out of these pipe sections. An important aspect to be considered when the RELAPS-FORCE calculated loads are compared with test data is.that the test facility pipe supports stiffness was not high enough at some supports to allow a rea'sonable one-on-one comparison. Appendix A, Figure 5 indicates that measured loads on~ pipe segments 3 and 4 should be expected to be somewhat below the actual L support applied load due to low supports stiffness. In this regard,.It. i should be indicated that the force comparisons herein are intended to 'l verify the adequacy of RELAPS-FORCE for hydrodynamic force. calculations. I They are not to be considered as a substitute for the piping structural analysis required to better reproduce test load data for pipe segments with low supports stiffness. s 'b m
a i f i .~ 5-g .x La .RI ge % q C 9' QI e m y1 a o w = 2 i s m =. ,a w w Z ( -L i T, L t.j ~ 1 (.n (' m$ ik! U ^ e ~; O m n C c i g m s U k mc - s p C O o e u y W a R f! ~ J u = ~ 2 e .C. i i-- i -e m. v d ? o,. l Z .sf C g
- c m
4 U hI i$ M ~ l S G e Iu y Z S, O != a Q' !,_d U o d a if Y u4 m ja c_ m. c -U J m 'M 3 ( g s e e, ~ i ,- e l,. ,g G*1 9'O S*G i'0 t'C cc ..-...e=, .wi. 6.* ?. M44Wd /v3.sf ff>sr4 MMrWJ9p !s.: ~ L 8 7,. i.:. i:s l% .I
== ]
1 i .~ ~ .i 1 ~l 1 .) i t n l c3 I C7 y g ~l c: s t 4 fl s N i -l C l 5 2:
- u.
N i l s i e N O i e i g (? i g i e Z., kA i j tj h( m{ I i J l b II 7 ui i i i i g. i i j +: i-c,- l V i I i t i i @s: I : t s lm i i-t (l 1 = t-1 1 E-' c. I i e u, l O k: e U, u' f I ei s-i cr i L ; j I =; .J I r 4; O t -i C: -i i i ( c-v. p -\\ y, v. 1- 'l zl li (i = Z.. i .W Ql 5 t; in, l
- e s
? Du i. i 3 cq j: I t k'
- g.
u l ( .i t y-. w i i e y:. % i i e. ~- 1 2 Cl O 1 g,: ,t N is m: (,: 'h CC -r l' w n. i E' C. . _ _ fi " ' ~ = __) : U:
- s. % --
y '~
- .L--
2== q f u-
- L ~.
= _. __ ~- - - _- _ _ __, -=. = = = -. - - - - - - - I ~~_ La e.- 9 m j-I g in i mi .a. 4 I'"s O*057 0'0C2 C'Off 0'001 0 '0~. C 'C (EN! / JE~ll 000050S e ne I-.s ld 15It L
I m'_ m';. m i. ~ f 0 m^ 3 8 ~ 9 4-1 0 / V 2 O 0 / N 5 i 4 1 4 0 C gi N un 1 ~ [ ,s A / D 1 p S y, t / E s T F an ~ z 5 l ~ f R I C S O S A ~ S G 3 I A J 0 T 0 ) R C N C E D M E .S L [ J I G E \\ l 1 M e 1 T" I 4 '/ 1 I 4 2 1 O N N 0 s O T t I S S t, ef R E I t E T _,
- sI 8,
i V s, o V i Y' E R r F '\\ S l i I : s ' a i l, g 1 1 1 g CRO E 'l i I f i 1 F C g / I I l t i' 0 g / 5 I l t F I s 1 l l \\ l l I l i l l g l l* R g f6 P 8 l l \\ L E .' s a8 s g : I I f 1 I E I
- y I I s e*
R / l .} 0 F o o o" a o* o an oi 0 c J n3 Cz ~ N uI.- oaoLin n' G t( r 1 r
- !i i I
[. { )
- 1 ea a
o % ) 9 t 1 3, = i-,: i =1 e ' .m i i 5 COi ' l c' i s e i t. N^. i 1 .u C i -t o. s e s = m \\ g< C 9 e i e& si a 4 i ey t1 r i 5 e ~ ,q N i w w u u w F ) p-m i i e e i a4 1 N E {,, m e _a u. m i i i a '- c i a i e u y O .r 3 a f J d I c., =.: s e a u e b.s
- s. '
.1, I. e e 2; _~ g
- s..i c
~~ q: lw a p ie m H 'O s p u lE u e.~, _ _. _ - _ _ - - _ _ _. ' c, a >e i' y= y m t a I,s. 5 8 ~ N.> i = -l e u N e, . L, 0 -x .g c_ __a c _y a_ 3 u i:: e t,2 =
- 1 l.a
=. M '- s, ,= c os o os c ci c ce co f (ENI/.M11 0000F45 a b~ t
- s Ys t
1. sca 6 O ' bu. _J
i ~ ~ t J i 2 1 f.S = i. j m: i e Cl l e 1.'- { CD N l j l .S! N ? Q l-s, i w Nt i a W a. 4 .u y v1 s (' A i D s ui ~. -s i ii h i c. t' i s c s n m, s s >.. i ) i 4 t i m ,m, .r i -. t . 4 a -c t a ~ u $ ;. s c u u - 1. ~ m s. i Q 4 A i ] 4 f-- -- - %' u'j C.D e 'c='~__ r ~ \\ i e H q g 1-. y. e N t; j 2t z: t e ui W Cl t-i - ~.- .t, 5 3 u,! O ~ _h~ h> ~ w, p l5 u A. i ) ' ~,~~ T <a d. x is 6 / w i _____.__ i..--- -9g 1l L' e u, c o s; = L.i si ~ ~, :.g M, i
- i I*
e, le / = --r c ,-l a c_. C. Q ' ' ' *- -... ) u E-c:: t _3..___'s 3 A e 4 'g 1 -m-n ~ a 0*0052 0*000? O*0051 0*0001 0*005 C'O O'005-u .n IC Jbt 3 , C, c, M.:,.,, C.3 i d (e se s 1e 9 I h l C. o E l6 b.
p. u, Il t ; ml 1L C": t C*) r t T l i = N i g N r g a 1 N z j es. ^ N, iw e = .l n x u.
- v. s
~ i .r T f b{ $h l. ? i iN ( m d L! ($ .l J mi c::. i tI 8 l / oi 4 .m: s i .G.i ,m : = ( /l <..,,, 1 *. m. 1 s, C! -[w ,,1, 'c m O y Cp c: ,I- ._._,- - _ _.1 _ _ - _ _ __ _ T __~_._ v - e ?a f.;'*, . (' r, ~.
- i.
,.,t I_ e, - i _ J~ ~~~ =s .c. p. 4 8 ~,* -?. l p *
- N.I -
4- .-= r 3 a n. w_ .e g ol .a. ,, 1 _ _ _ r 4 l z = j:."- c. r- __ _ ._._._ = - 5 as i 1 =" - a m t' ~ ~ - s' s e ~ rj s .4 R I-- s e. \\- y. i a t i 's .t a u m = a ,___s s e i o H1 i ~ ~ ~j7 c -y' q,
_j-----,
m _ _ G C _. _.- -- s _ - _,, e u., 2 c:: c. c c -l s y g-g u ~ R
.-I
- - - -.- ~ ~ s x g x 7 = s v k L ,3 -w i ~
- e..
j I -m 'm i e g 0*0009 0 0009 0*C002 0'O O'0005- ' '.^ ': 20 DEC.i E02 M:-080.:! /wr0 !s. g Ia Q .e / 4
{... f s T 2 V. g' = W t" m W et 5 N 1 w 5 2w ( vl t h I ~ C1 s i i N N! s., C C: s. a, i N m. = m ~ e ci ~. u ~; t k ~! m g m._.__- a .s l .u, ~~ s, e , u, ~ ~; e ,~ -J~~, ~ I q Cl g mr i o x 1 s w. ~t : a .s ~ - - T J - s-1 gj g l Ml &C.~. e
- v-
-.-~~l.-~~~- u u -. ~ I mW a r g aj ~ ~s a s I ) Q,h. 3 ~, -. - -l gT g. ~, l
- ~ >
4 y I-- s 'I--.,~ ,l
- =
4 as 4 Ef, ) e> = t 2 ,r - ' a j 3. ~. s ~ y mi m 5; u y er o 1.- l u: s-------,-- E e > >: >I l. y g c:> i S u.: m. y j-e ~1 u; ~ a ) ,c : C. N c----.. u, \\ ~.' w t~~ ~ I = c. e: y, ~~.s, c! c .s a! u-y E ? ~ -__._-.- s_ a ~. f q ~ S C ~ c O 0 coor o., c*obot. c~ccci. ,,.occi. a e .1 -- E033pg., pD=, M33yg; w E ssv A 'O" s C u.e. s e e gy. euhm ]
A. e . l f-5 5, t S l r' m i .c, c7 Yf COI l r i l, 5 si i >i C$ I 'I E - s-i 3 \\ 'l lo Z' l ,;i gg i 4r". 1-
- 6
.w s g TT. l 8 e! t c =A-I .I l 4 . =, l ! D. t. i 1 '~j i j ,r i a%w s tu -Q H 4 de r a l ll f=' ' m""" ! .N I j // a -i c::'- s. !,t i 1 i o' s w ci k,. i /' Dl 'l M wt C.D = t ~ C i 1--.j I. C E-i C x e c::t y x ___-4 --__.:-4 L' s gd i e, 3 I_ 1 J____ U q L, -t .n - g l l _r _../ '- -M I-= ~ v .N v. __m. .f C
- _}
- t g.
.5 I, z Z6 s ,5 c: ,,[,. i -b-u l l e, gu., t w s 1 i_ i s U >1 a u, ,C,,, i ,.,,-.>i u i u u i q = c. 7! l ,e , e' i 1 C Q. .= or "e i o o - ' ' ~ s y w -~ y e_ 6 'u 3 c-J ,.... - - ~ u! y R g; -m ~ l l e. t s m' O N 4 3 0'000E 0'O O'000E-C '000b 0'0009-0 00C2-
- n /~1.7 ().*
{ n,O 2_ tin. 1 I ": ^ 7~ ? (y2T) S i O C 1
a-t..- - ) 3.3.2 Test No. 908: Cold Water Loop Seal Discharge I Test No. 908 was performed with.the loop seal piping-filled with cold water. The valve inlet' pressure was regulated by modeling the reservoir-to de-pressurice from 2690 psia to 2670 psia in 0.5 see as indicated by Appendix A., Figure 16.. For this test, a. 0.0834 ft2 ' orifice in::talled at the exit of' the 12" discharge pipe was modeled as a RELAPS. abrupt-area-change junction ef the same area. As in test No. i 1411,.a 0.0204 ft2 full-open area was used-in the RELAPS model to achieve the test measured steady state steam flow rate.. Appendix A, i Figure 15 shows the loop seal temperature distribution prior to valve. opening. During the initial. opening phase, this valve chattered appreciably for about 0.9 sec. before opening fully in about 15 msec. Therefore, the loop seal water was discharged into the outlet. piping prior to the valve's full opening. For this reason, tre RELAPS model includes the lcop seal water volume distribution.in P - outlet pipe and a 15 maec linear valve opening characteristic as shown on Figure 3-11. In accordance with Reference 4, the downstream piping initial conditions were set for 80cF r.ir at atmospheric pr' essure and an assumed relative humidity of 907.. See Appendix B for a listing of the RELAP5-FORCE input for this transient. Figures 3-12 through 3-14 compare the RELAPS calculated pressure histories with test data at the location of pressure tranducers PT.9, PT 10, and PT 11. The calculated pressures agree reasonably with the test. data with two exceptions. First, the PT 9 pressure test data ~ exhibits an off scale peak on or about 25 msee believed to be of d i mee e
11 0 gl t I spurious nature. However the calculated ' peak pressure at this location occurred much earlier.into the transient than the seemingly-valid test data indicates. This difference'is probably due'to.the. ~ initial discharge piping. loop seal distribution discussed above. q l Second, the RELAP5 pressure histories'at the locations of PT 10 and PT -11 agree well with test-data in the early and. latter parts of the 3 transient but exhibit aepressurization between 0.10~and 0.2'5' secs.- Close scrutiny of the' RELAP5 results indicatei that this is duelto al depressurization downstream of the vertical discharge pipe's area ~ 4 . change due to supersonic phasic velocities. This. behavior is produced-by the absence of choking at.this area' change during obvious choking ^ conditions, i.e., fluid velocities larger than propogation velocities. As discussed below, a choking model was not applied to this area change junction to prevent underestimating pipe segment 2 loads'during. l the discharge of this cold loop seal slug. As the loop seal water.is discharged out of the piping system, steady.' state steam choked flow at the discharge orifice plate recovers the PT 10 and PT 11 pressure to the test meast cad levels. The hydrodynamic piping forces ' calculated by RELAP5-FORCE-for ' test No. 908 are compared with test data on Figures-3-15 through 3-17 The magnitude and timing of the calculated loads for segments 1'and 2 compare reasonably with the test data considering the-loop seal location modeling assumptions required by the initial valve chatter. s The higher calculated segment 3' loads can be attributed to the' ~ relatively low stiffness of this segment's supports which decrease the test measured loads. The' segment 3 calculated loads, however, seem j ~l 1 j
1 o 1 I reasonable since the resulting forcing function is expected when compared to the calculated and measured loads on the stiffly supported set; ment 2. It should be noted that the choking model was not applied i to the expansion Junctions on pipe seEment 2 to prevent i underestimating the loads on this segment due to the lower acceleration of the loop seal slug as choking occurs at these f junctions. I 1 m L L W h M
,I } 5 0 m q 3 e 09 u 4 1 0 e, / w 2 V 0 ON 1 / s 7 0 r 2 C t e m 4 A N 1 a I . p w s e w 1 S s r / u r-a E F T S i R R r. I C S O 3 h S 0 v G S v I O i I Jh C o N w T C C R S E ( M D s L J E a M
- I G
8 I 0 T :.a 9 2 e 4 c, r. P 2 1 O e s N N e n a O T e v a S n I N i E o n S E i R c v T i V V u -6 f R s E FT i s S e U C 1 s R E 0 e i O n i C i F o h / s c i I F s S R u P P H n C L E s s F UE il l l l t I o. w o R s n T .o n D "O .O O :_ ma ea o ni . mI! N e5 $a?% ,tI: I ,Ec.R v h -dT 7 o s i 2 4TFi I
1 o 1 s i f. q< 9 E T 1 a1 q 3! c "4 i W El 1.._ ~l O C! g ~Q1 N =I C e w [ Z e's, S 4s'j l N C 1 a 41 l A. i v q, s 2 4
- t.
y_ i w ~h ] ~ m d L 5t 'c i 1 C m s o a ~ c i R m U ~e C D q. C e< ' l C s C w u-$, O s S 5 's $ E; I d d y [ e i E o ( O g f-= 1 i O q ;' s N e d A s % a s C \\.J c Z y z ') s C g I E O C1 ~ e L g c:: H _.i u m s a k c u y x x ..J. t D = a n, ~ a 5 U f m u J / a L N 3 w y 7 C m g ~ ~ ~ ~,. g Q i f _,3 U 18 c: i i I ~~~~~~~-ML._,,_,_,,__, } (
- )
0'000 0*003 0 '00'r O*007 0'O i i~ (?NI/JE1) 0000909 d x.
- d l
13 .$ O + l
1 TI O ' s
- c..I
.}1 u. = a 1 ei M / c:: cn v s
- t. i D
N 1 N s, O 1 o_. s . g= c< 4. g N 5 i
- g $.
,\\ i }4 il v ~ ~ I UI I b =1 m 4 t w:: m e = c:: .i - t A i O 1 m C i m C, 1 e L, l \\ O I c [, ' '. - e <i s u ;j C c:: L' 'I r i j a. 9 / ug' E )- G i, e -ti c s* t-- 7 ,i m g. - 3 v d j Q ( I I :i Z i z- =s C 's s; p 5 m c t' ~~ 5 d [ O~ s u t'.- V - p C u s a c 'e - f,, {;: u r m e a e h R1'r y m o. a c_ g =4 m c;- ~ U g ~= c::1 i c- ~ li s' .l e ci l% ' i ll 0*0F? 0*002 0'091 0'dtt 0*b2 0*bv 0*d (ENI/ JET 00000S9'd i: lg .2 !E 't me w
[- \\ i j e i .) ) .cc f L ] M I ( e e C. t-o s 4 a d N z N i, m s 4 c' d f,. 3 ) e s-ea i s-s I 2~ D- ~ m t L. N S ( 5 E l 3 C { = i i m C C d ~ b, k. s C i Ht, &U 'l ~ r \\ 61 5 i 4l y = C 1 e i 7 { c L H t G N l v. e 1 ] di is rL Z1 Q !a O l L* s pl ~ ,e m I~ ui !E O H s '. 11 e y Cf N ) = 0 .M g; { J U \\ d . C, !s! Y \\ w a C'. ,0 r. Cl
- =
U 3 Im' u , g. i c:: u 6 c m 4 i e a Q 0*06? 0'002 0*091 0'021 0'02 -0*0) 0*O E (ENI/J9 D 0000~749 e k L E l' G t 4 Ruun o
4 son re s. e s 0 "i su 30 e. 9 a, 4 a 1 0 c, 9 / r 2 V e O 0/ r, e N 1 r 72 0. r a i r C e e, av, 4 a N r a s-c 1 I wr t a 1 S s a / e E t r r or T S i A R r I C a, S o O 3 u O SS G s 0 n I O 1 J t ) R e g C T E w l I R C u E S a M 's r B ( \\.'. ,a L J E I G N o 0 c 0 'e IT a 9 o L 2 r ,{ t 4 F / 0 2 n 1 { O , u 6 I i N N al, y y R O s\\, n E T V t1 i f I l S t S c r F li R ET c ;,. a, o S' E I O V .l g s V 8l' w-C R C E 1 i ' s. s8 l S w U C E 'r i e ,,- I I s R o o. c D O C I 'i 8 f M F i / .,i 9 i 1 I s S i,\\, 5 ( R 1 1 P
- n 0
1 A. O P 3 E s L 1,I l E g a 8 R 9 hl t u )- 8 \\ s. l f \\ 2 o. s' [ g f 7 1 I I o M o4 od Ra u t 'o q ~8omo1 ) R gaum? 1 5 I 0 n 4%0 3 90 1 8 I 00 6 to lF I I
' n e C. y\\ G - 5. .s i a . f M 3l c i, C t d< v ~ ce I w N (N (
- 1. -
C C N g z ? N k} .fl N r l f e a x y Q\\ d~ =k l ~ m g' N .i y w L i I m I }. e Y l 8 t O M c '8 C e o d $,) m m l C ~ C s d n a *l I o u4! eu y m E ,E O r J K ,i uY i C i C.g1 I~ ea ~t s .F ei cn N k' s., Y &k O <[-." q- ~ e 2 3 z bi y o H e W i 4 s m W 5-
- 3 e
u rd u <1 j' o e _____l--- el o y m a 9- _______.______.d y _ _ _ I, i C 5 t, s a y g n- - c:: .? ' e p~ ~ "..,? v: Q C w a U k: 8 C: 5 ~ ~ s. i. L; e ,= 4 0.9-0 gt-o et-o'r oo O..e-5 >O I x .. ~. o 203080J E0Z M3080J ~ Gn> g
- i
~ k a i f
y. 2 s+ -e '.S e! C i g .g w.vi n c3 -1 O dj e l- ~ c3 N g N 3 i C o, .t l r 6 N g s m k. O, v w 1, w 2 4 15 t r 8 3.I W m s e d L t 4A 4 6 m i j t -l l 0 \\ n
- i G,
'! I i c I d c 41 H g 4,- u 5' c:: m d C s = J i 's, u4 C =i c.D e j ( o H ll 1 ,.fl cn m L "i E ' ' - %.(7 5 1 z 3 c a 3, m m e S 't 9 c::
- s u
s \\ t .o 2-4 U
- =
a c:: y o 2 o (' a }$ I N w er m ~ i -e .a e ~ c c i l U J i I u
- s c::
t-i {I I .o i g 0*01 0'S 0*O O's-C'01-0'51-t. i ,01
- E E03080J C0Z M3080J
~; (sn> l$ i m. ic Issus
5 f 3.3.3 Tests No. 917: Hot Water Loop Seal Discharge I Test No. 917 was designed to simulate a hot water loop seal discharSe. I Similar to test no. 908, this valve chattered for about 0.65 secs before opening at 2650 psia in about 90 msec. Therefore, the RELAP5 model includes a 90 msec linear valve opening characteristic, Figure 3-18, and 0.5 see inlet pressure ramp from 2650 psia to 2720 psia corresponding to the reservoir history shown on Appendix A, Figure 26. A RELAP5 model valve full-open area of 0.0194 f t2 as required to match the steady state steam flow rate measured during the test. Per L Reference 4, downstream initial conditions were set for 80o F air at atmospheric pressure and an assumed relative humidity of 90'/,. See Appendix B for a listing of the RELAPS-FORCE input for this transient. Figures 3-19 through 3-21 compare the RELAP5 calculated pressure L histories with test data at the location of pressure transducers PT 9 and PT 10. The calculated pressure histories are in reasonable agreement with the test measurements. Although the peak pressure measured at PT 9 was higher than the RELAP5 peak, this maximum occured at the time the loop seal slug was passing this point which resulted 1 in oscillatory pressure measurements. However, the average of the PT 9 peak pressure oscillations is in good agreement with the RELAPS calculations. Agreement between PT 10 test data and RELAPS is good except for the period between 0.2 see and 0.5 see where a supersonic ~ velocity depressurization phenomenon similar to the one discussed in section 3.3.2 occurs. consistent pressure recovery starts at about 0.35 secs with steady state choked steam flow at the exit no::le. m e
? e I u The RELAPS-FORCE piping force histories for test No. 917 are compared with test data on Figures 3-22 through 3-25. The magnitude and timing of the calculated loads are in good agreement with the test data with some exceptions. The segment 1 force function behavior indicates an oscillatory period in the early part of the transient. These l oscillations, also shown in the PT 09 pressure data (Figure 3-21) are the result of the valve chattering observed during this test. This resulted in an oscillatory opening and closing pattern during the valve opening period. These oscillations were not modeled into the RELAPS valve opening model and thus the pressure and force 1 oscillations induced by this condition were not reproduced by the code. Slightly lower segment 3 measured loads are attributed to low ( l supports stiffness (see Section 3.3.1). A wave contribution positive peak at about 0.22 see was calculated for the segment 4 force history f but was not measured by the test instrumentation. A review of the RELAP5 results indicates that this behavior was expected since the wave force peak corresponds to the time of loop seal slug acceleration p out of the segment 4 section. The segment 3 force test data indicates that the slug was still intact as it left this segment and thus a segment 4 wave force behavior like the one calculated by RELAPS-FORCE is expected. 5 i I 1 l 1
7 i ~ m 1 l l ~ ~ l i w i I-Oi ) O vt CO! t1 1 .t m} c1 N wi !~ --l i Cl C; I l ~ Z' bi Ng .m, I e> ci i g l = z-Tl x < sl 3 r-5! ~~' t Yd 't. ml C m x .y. 5 l w s a b hh C .O l R i i -i M! m 'g 1 [ i vi I- - IS; c, I i i w 3, ,I ~ {w c' H c C ' e"- e uw a @l O t = t J -i e k.; O' E s' t s l qs i l l + i a
- 0. d v.
.m , si C: I u i e 2 z-N IN C,' j t' ~. .= p, -i ml ,e y 15 c::: _ '6.I i g ~~ s U' s, >l 7 (, :
- o y,
el e != O! Wi i w 3 5' e. 1 3*D y 's L_f o I = y t i w s -l cn. ,i4 .Q.. i.i 5; ei s 4: c. U,. g; l. U g z' g s-s .a p: m O'1 E *O 9'O v 'C E *C . G 'O in ,,e Q G d s.r n, \\ i8I w. fe'9C,A r$9d fvM ~j/Wyt d"] f !W/YJFi?M ) fS .l .f . i, J lt 4 3 c l l 1 i
a t ..F <t .e <v t,6 t l '?r. me a l e 0 v I .i c:: 4 N l j. z: s N i H C i c '. s I -l I T.<. e z i Q ,r ] p-= C. O I s9 ?. ~ u, t w wm o. i
- h W.
_.g d s i I 4 e l 2 O C I g C ,o A Y th>l l c 6 m C l c< c O r_.: g U W l C y c, l v= c ue 9 e i E* N u.'o l,[ m' g O / d T le C u-L. zl Z u 'si Ci O g 'f 1'2E e s / o a / l'u <. - V h. N e I E hj u y s L u x s ~ a 1 C L._ i e-N e i s e I t F m ~ ~ c Ui ~ ] l N g) s ul s es E e'
- 4 s
s 8. k s e. s ' o 4 l g O*05) O'Ost O*04? 0'091 C'06 0'O j, L (ENI/dE U C00020S d 15 ~ t$ \\- 'E IC W W
e_ '8... 1 1 w. ~
- q..
Ci 2, i, 1 -l 0 t-< .m lj-s.j MI O! l' 3 i Ci ci 1 1 I ""* l g; .l ! T N',I NI 1 O i- -No r i l o J j -l Ci Q-1 si l l z! 4-x i w i Ni i 4 4 d 7l Ek D i z- ", A t' Ol l i w i I T i C l b, Li I 1 c. \\ \\ l l -t e t C! l l 0 pr 3 ]' O. i i I b'i O. W O 1 y g- .c - C l 1 ) a --s-8 - { -t C; l l .C. 2 w, k, Ci h: ll' U! 3 L 3 L c, g Ji 4 u3 Ci l g I 6 N -4 -i i 1 m. l l -= I u a vi i o C l: 6 a* ,,. ' Z e'!!
- x
{ E G, 4 5' _ _ _ _ / i si 2$ 5 E E le C E Ui MM 3 Z "~ e 4 l m,'; '~ i s C >!? %,N 3 5 E5 5 $g '__ E l-w U. ,= e< f l d -i e m L 5 E- @ 's \\ 5 i~ a s = U \\ } 3hl N 4 \\ 5 IC \\ \\ g. i - is i = p ig O '00'r O*Ott O *OR C'C91 C *CE C:C i..~ (ENI/ JET CC00'705 e l '3 !s ~ ?: f3 .c
1 ? i a ' f~ - t- .l-e :j 1
- v.. '
g E e -1 M:. d" ci CDi g .e G ~ c 5 s. N ) ~ ~ O E' O. N. \\ J ~': N w= n m. o w c ) { i u g-1 ~~
- z.. y! -
Ci 8,< 4-I w i. t i ~~ g } p c g O U. L. 3 3-l- w g p ..i - 1 W C c:: i 1 C, - ;: ( C, N y1 4 m N J C 4 ci s 8 9 e.i I c' s .c.; N = O i C \\ 3.l m l c; \\ c< up C N U N O C i rd r 1 4 .2 1 J 9' f 'd' U i-b bf N f I t l cn C ' N. .w i w; = z Zl '"_,,),.> D. i ~ e i ci 4 i O C. ;! i-I / d. 5 b! 7 I! >i y ll yl x \\ $~> k j s c
- =
c t ul w 6, 6 31 U i 3
- r C
3 1 gi W
- 7 N.
i ~ V t.nl l
- E C-
'\\ c \\ d c, gi Ul j. L U; .i
- E x
T 's
- ~
e ,ii G, U ~ L
- 4 s
O'C01 0"Oc C'CS O 'C r O'OR C*O (ENI/.:!G 11 00000E5 d h
- li 2
M ~ 't L l u.P m
o. ..f-e I e. I i l A i e 5 mi d+ Col 4 cn .I N 1 cc g s t W. NC l ci z:. s ', I Nt w e e I y 4 el 'i c1 w r zi. l -a .m 9 1 m 14 e \\ e [$r ry w \\ t. H i.. m El 1., .It e t, l 1 a l -1 m _s i-sr -5 2-m = m s mi ci m, e. o u s
- g, c
,3 a a s. z l c.o s$_ i. s i N_ si cnl i s s1 .I L,-____I___ v ~ R. c s, _ _ ~ _-- ~ u l, g zi z .x i i a H _ _ _ _ _ 2 _ _ __ -. =. - O m I t i J in ,e cc, I-- i __ _ i t i .=
- w c
T CdI - _ ~ -~" ~ h ~- __ _ l - 3 ~ u = c.nl t ul ul 5 i,. ~ s: _-(_ _ _ __.i 5 a: = si .l. -%___ _. ; i c. f I i 6 it to _,_! _ _% ~w,,,; e ': i i b, c. j k-D! Ul ~ ~~ d ~ ~ ~1 ,, { -. 3 ui g cci ( ? _.::. _- l _- t' . - ' ~ __--_=~_w-_- --- C _._ C r _ _ T__- i e. e 0'CbC) C'CbCE C'O O'06Ct. C'06Ci. O'0UC9-C'OCCE-5 IeV M.mw ^2 I ^,. ^ u a,J w L.,,, L U c ? i i g L .. _.... -- - ~ ~ ~ i i i_
{... u .s 1 P I 5i a :i i [ i ~.cl Ti -o ve 'o .I s. n2 I .>i l l 3, C Cl n 2 :, N N, 3 w = oss Y %.s ei vj i. s. 2 e,i -,1 ~l t sa 9 I l L ~ Ql ! A s o, i c.n: -i y' j I3 H. nj F N. n y n; r w C+ t.n 'a 5'; %l x ? 4' -l' q c / i ct m 8 l C t; -ln, O 4 l (As c. \\, t 7-l -=s I u! c. rs e C; Ci. u! ~ . m, r f (,n L I u: a; e c: u, \\ se Si c s, - a s. y c r Oh, O ) N h 4 l 1 l x, e ~ s g% I vi j 3, le """ } c_,,' / z I. l tv s O h
- ?
s-- 4 iG ' LnI f.n / ~- l D ,e ~~ u a-e Q iE u '3 H s i , l ~ ~ k = Z ,.--- - :I l y i c LO i o i m 6 C 6 n' a u m- - - v w o ? t., s I3 !g\\ Q m o 3 C. m u"
- '~--
c 1-a w i y, l ~ ~- \\ q ~ \\ e. N n o 5 0U c gi cs oc cs. c et-c*et-h[ CI* -k:CI-?O2 ;8CJ ?C4 MICE 0J t (#27) m S i k I h lC f e D'S
~ ) t =a l ni C.O., ,c i <1 c:t i sa I-N, ..1 c i cd i 4 N I ,I x 4 c: . 8, s. e i v. 2' l C Ii m i N st\\ C r. t_ s, 5 s a t-s 4 m [_- e p W W l = r I I ,c,l T l' c s .y C , s = c,, -., .i i ,;l a c = a x = t. t u j r-a 's s i e_ s I e ~ es. t, s u < j' c, i i V = 1 c__ s, s 1 t. z c. i m _ _ ~ ~ ' " ~ \\\\ u,, e r.- ~-
- u.,,,.
~ .;z u g ?
- o y
e / >. a m ,r
- i.
e
- E c
u. l 8 g [F l f "' N , "ml =, - us i c_ -. l L u. .m e!
- s-e.
L l 2 t{' r c-
- ~,
d 5-c> cre co c :- c5 y ~ 0!* W.'" E03080J E64 M30BO: d. pso F' y ? M g 1 .me
1 ) i % l h ! l 1 = l q II M! COI l i 1 m,* 4, y i c o N t f! N i l' o g s e N s -a N 9 gG i p' .c l I v. Z. l y
- ~l l
i f 4 't OI N i y :: t t t i w 6 ,. d Eg
- 4 I.
u! t,, C! '} l l s m, et C ,l t'.\\ n ~ \\ s n u C \\ t l' r., \\ L. r C /(' \\ 1 s m Q (l l U E c' i. i O! s i l u - i L c i i w. N i., i ) c' N, I ~' i Z z. t .s ~~' l+r Ds in, } s v s s. 'c r t im la s u. le yl D = at t l ) K' y = u .d C! eg l !) y N. c .n 'I F._ ; l 't-i C; nl i i i y-t i_ xs ? \\d = g 3 C*S O'O C*2-0*ct-C 'H-C'?t-C '3-0l*
- G 90fl101 ICE 120bO.:
c 127) s i a'3 g i tr" i 1. l s
p. ( 4.0 HYDRAULIC FORCE CALCULATION VERIFICATION, EDWARDS'AND HANSONS' PIPE r-l L EXPERIMENTS l" 4.1 EDWARDS' PIPE FXPERIMENT 1 The pipe blowdown experimental data reported by Edwards (5) in 1970 provides an excellent experimental data base to benchmark the blowdown force option of RELAP5-FORCE. A schematic of the experimental facility is shown on Figure 4-1. Note the pressure of gauge stations (GS1 to GS7) used to measure the transient pressure, temperature, and u void fraction in addition to the load cell used to measure the hydrodynamic pipe axial load. e ( The experimental tests consisted of pressurizing the pipe with water i i i to the required test pressure and rupturing a glass disc at the end of l the pipe with a pellet gun to initiate the blowdown. It was observed that some of the glass dise was retained around the circumference of the disc support assembly reducing the discharge area by.as much as i 15%. The test used for this verification was initiated with water conditions of 1000 psig and 4670 F (saturation pressure : 285 psig) 4.1.1 RELAPS-FORCE MODEL OF THE EDWARDS' PIPE EXPERIMENT i 1 i The RELAPS-FORCE model of the test configuration is shown on Figure 4 4-2. RELAP5 output data requests (minor edits) were selected for } those volumes corresonding to the gauge station locations and for the pipe wave, blowdown, and total force calculated. i._ s J
1 i I The verification will consist of pressure, temperature, void fraction, f and load comparisons between RELAPS-FORCE and the test data. As d, indicated in Section 3.2, thermal-hydraulic parameters such as II ' d< pressure will allow verification of the RELAPS code and model accuracy d in reproducing the test configuration physical geometry and I thermofluid transient phenomena in support of the force calculation validation. i Note that to simulate the test observations, the RELAPS model t f, discharge junction area has been set at 0.03845 ft2 or 15% smaller than the pipe area. The RELAPS-FORCE input listing for this problem is included in Appendix B. 4.1.2 COMPARISONS BETWEEN RELAPS-FORCE CALCULATIONS AND TEST DATA, EDWARDS' PIPE EXPERIMENT Comparisons between the RELAPS calculated thermal-hydraulle parameters t f t-and test data, Figure 4-3 through 4-5, indicates good agreement .k between the experimental and calculated results. Excellent agreement C is also indicated by Figure 4-6, where the measured end thrust load is compared to the RELAPS-FORCE calculated load. I 1 i it ', l \\ l !l m
1 i g... . 1 f f i f f iI Diment.ea l Feet j mm A l 0 26 4 79 8 1 2 74 6 815 aM Henal diameur C e 82 i 555 2 88 h @ mm) l,.
- U I III Addstional thermecewpies y off)
I 2 " ! 8 $ I. ,4 opersted se measter metaal-star 7 1 2 74 815 j Cenerete l'*P888's p, gi,, g,, Elecers hening bands G l 0 52 l 15 8 H l 0 55 1 164 / (4096 mm) C D g p om les, i / Icsa less les4 i g,,.f cs 3 'c3,lc3,1. " i l Tp'{.}. } 'IIf }!I)Ej',!IIII*3_l!_f !!8e llJ EU!!J!!__6!!!! 6o.!!!!i si!)}f !!ilEi _.. = ~. a, w. j 1, ,,T ..x I l" theck CarM sevgeie..a o l Prenwrong coepimgs gun diss gg,,g d" Dermal laselassen I. I
- "***
- P'*P '#
Prmeen :t eich gavge " ~r" ' -> Aediosnel faciiLs . tat-,Cs savor "-~s~'~>~ at C5 i .. e,,s, ae, c ..e ,re...re... r ri rai-a-o- ...u me reme, temperseves meuvremenu i m. b. L. f/6WLL 4-t, EZ WAUS' PW6 AWPGtts/CAfr Jet,es/scatr47-w up-a N d
1 3... i f b [ i a O 4-(~ T h 0 o 2 > '? a o C W e [ Z O r0 n 1-Z ZD &*~I 0 4 f w, ey6 n >n g ZO I a a OZ O gj>
- c. m U
( a w O "c 1 c s y w 3 s ,b x e 8 4 s a. a + ,k L n W4 z .4 M w ,N O e Zr g o .f. 3 5 m+6 p =. w o, y-Z s ko3 Z 3
- z D
01-g asz -- o <t o .t O O W d'3'd o. ) a ><0 ( w"z Ita a g )- O " # "w Oct J 0 = U U ~ a eR E e- ~ J cm -T <_eg> g 4% w h a 4 h me
f i v, i f l m= .a i_ t e ,i C ] s a ,f O m 's) z = 5-r .s, i q yy i i <1 Cl Ci I' ' zl t s t a e ri W L t< m i sa ei u s s a s. sl i. C L, d L I c = . t. c L e m m m c i t =. 2-1 i i t; s i e-i e c r, u e a,., c .J l E i I. i ri e E I s mli d E E ( m, m vi -i es i = a i-z e i i i =5 C L g { m_l u i g j s L != 5i '_1 $i c; I 9 .= u m ) 1 s) e i 4 3, e = s -;i c e, f i t._ c_. i s i 4 d, ei .= c_l u: T' i_ = 3< i s l i A' t. u i i .s e i c, !s ,a e. c g c ccer c cos. o cos c cat co l_ (?NI/JEl) 000090E d i: .s l5' L l4 'E le I ~.. e Imum .) i
l I I og d I s i / l g / le, vi c / Ti CD / ~ 1I' T' g f C N / C m z 7 I w Q N L9 f 4: i C. C ~i / !E { Zl ! !r. r v-i ./ ia 5 f l / ~ c, a i <r-s C , l m; y / g ^ i-N c L. / nL I' i 1 L9 i-g C,i cc i / l 4 1 Cl l e s c.i c9 f-4 c7: c f i t1 C' C. 1 A. i s 1 1i 'm 9 I r
- C
/ F t u o f 2 c V _J E I y $l 1 c.c 7 z-s l w' I C f k. E' '_jl y i 5
- y..
r. i t< i im T.l I w Z c' cc I I g s C I 3 P c9; u i I s. x. s t (- 'E U c i D, 3' 1 u U (,n l p = c 4 M C-d I n c x 7 I k I i f r L7: at m u; I 4.., = c: u 1:. I \\ V. U' l %I u i 't i Q i .5 i, o q 8 W' a i x 0 '09'r O 'OZ~r O'OSE C'CCE 0'0F? C'C6t e LO30) C00090E JcW21 i 2 ~ R !f e f W
- p.
I d- ? I t Mt. [ s 001 O \\ \\ .L v i c \\ C M 2 C \\' \\ N 9 l_ T \\ H = a Cl Of s- \\ p Z, vi \\ A 5 i m i r- \\ U H N \\ E d C t,_ m: H LO \\ I .r C ej 4 I I t C s C Of l -l 9 f O Cl 'g '~ I .O Cs g -f s j h 98 g r e C y 1 U C O, s g ~6 r., 3 g. q. cl L i i. n < r ' '. _ - e!, L.;; .4 v___ s. a, E< O 1
==6 C+ 7 g e, z ~, i t is c El .i a c m m ei s t e c_ P s .s u, >i c, i o ul' i = T i I i '2 Ql g a ci e t, e e s s a t_i c l s e s' 21 a c t f Ti O! i C_ l' Ui g =: 1 ui i ..Fl. c::: i s s = s in e. t i 'g c's e'c ec sc e.o a.{ ~ 00C090c. *-.0A i 't ~ is i..= e NW
.3 4 7. d { na CO E
- n x
4 - cc 4, N ii C M Z C 5 h' s Ln 5:i-j Qj C' C 3 <: l / (k z' w i-
- a. 2
/ W va j
== C / m i 5 h~ N, t y /. ,$ i g a .H N cc t- / C L al Ln l I g 1 O
- i..
/ oi C j' e vi Ln m gl Cn C
- /
~- +. C C / _.&i l~ U C .p g j e. ~. H e C /- y $; / g' C s i .J E / r.3 E W (j c o i f s ' <W O I T i h ,i. .ac I o
- =
o i I )f 'm Z i V s C C l' 5 e u l i' a c:: r g y t v L L ~ I c g U; O l h, g-C l = C .n 4 C / ~ L Cl t' i= i 2 /
- 4' s
4 tn C 1 \\c c_ u l C x a s = = _ - _ _ _._ _ _._ ;: t ;, U a x i.______. - ,r - + _ _ i_ i __.________~__I_~.-_-._
- =._ ~. _.
=. 4; t g sr Et r 5 co oo cc. WnS I0Z'1101 I09 IIEC.:! a i ) ~ i 1 4 I.B
~ 4.2 HANSON'S PIPE EXPERIMENT Another excellent sout'ce of test data of blowdown fluid thrust forces is contained in a 1970 report by Hanson(6) The experimental configuration of this pipe experiment is sf " on Figure 4-7. Although experimental pressure measuremem - f, PS1 to PS4, this data was not available in Reference 6. 1' i This " pipe break" e::periment was initiated by over-r ressurizing a rupture disc at the exit a 1.1" ID pipe with a positive displacement pump. Tests were conducted with and without exit oril' ice plates of 30% and 10% of the exit pipe area. 4.2.1 RELAPS-FORCE MODEL OF THE HANSON's PIPE EXPERIMENT The RELAPS-FORCE model of the e:<perimental arrangement is shown on Figure 4-8. The initial water temperature was assumed as 800 F vs. the test's 600 F to avoid early abortion of the RELAP5 calculation due t: a " water-property-error." This assumption should not alter the alts significantly since both the density and sonic speed for both mediums are essentially the same. The reported rupture dise opening time of 0.35 msee was modeled with a linear characteristic opening of a RELAP5 " motor valve" (MTRVLV). Similar to the Edward's experiment, the verification approach will consist of a comparison between the test data and the RELAPS-FORCE calculations. However, only load cell data was available for these I me
3 r comparisons. Thb RELAPS-FORCE input listing for this problem is (' t included in Appendix B. I 4.2.2 COMPARISON BETWEEN RELAPS-FORCE CALCULATIONS AND TEST DATA, HANSON'S PIPE EXPERIMENT Figures 4-9 through 4-11 show the RELAP5-FORCE calculated forces and ) the test measured data for the 3 different pipe exit area experiments. The agreement between the experimental and calculated transient forces is very good with respect to magnitude with small deviations in timing i due to slightly high RELAPS calculated sonic velocities. ( N l t i h L l=i tL m L
7--- 7... ) ~ f q f 1 I l i 40 0 X I_. Vertical and Load N f M Laterol Support cell 1 Orlflee Plate i " 1 1 Pt 3 .l P(l A P4 P2 O h l' - ID 2.323" 1D 1.10 0" ,' f ' m x. LcNoTH Or SM ALL PIPc, NCwc8 WITH NO CXTENS80N 31 $NCHES I_ WsTH EXTENSION A 24=l/1 1 N C H E S WlTM CMTENStDN 9-Se $NCHCS Pe PRESSURC TRANSOUCER ] P2 IS l= 3/ d INCHES FROM RUPTURC DISC Pd 181p=t/ 4 lNCHES FROM AREA CHANGC WHCH NO PIPC EXTCNS6DN WAS PRESENT, THERC WAS NO PRCPSURE TRANSOUCCR Pd. ORIF8CE Dt AMETEMS OF 39/ 6A AND 19/ 31 INCH ARE USED3 AREAS ARE 30 AND 10* OF SM ALL PlPE. THICMNCSS OF ORIFICC PL.ATC (S 2/16 lNCH. ] L Onor:Cc PLATc is RcMovco rOR STuoicS wiTH rULL-CPcN B R e4.c. L
- /4ucE 4 7 /
Idr.ho Nuclear Corporation inpe experiment. 4 m
h I O O i 9 4 i k. s% J :- k y / 3 O. 4 98 ', A
- G. OZ_'T4 2., f1", OIC N
K-N s t i h 1 h Y $O 00 ~ f l, lh ik $%F 05 ll ff $O l $ $ k PIPS Q r i j_...p_ reer a. 2v (wop,) : p} - aie9.7 esiA ; vi - so's
- d
) & - is., ps<s ; T, - rovfseuao) l A 0 coMo pr' .l 2 l j l i TSSi~ ill0. 28 f3Ob).' hc 22&4.7 /5/A ) ~(= 60'f A,o.co2o3 fr' 2 or,ac raacus,sLas As rest Wo. 9 rur-so. sopop) g a a, ps,s ; z - s o ; l_ au.uy.,e,rarwe.:y A - o.oooH6 cr' 2 c,.a rav 6 G d mese fMuts. 4-6 ' d4Nse#6 P/fE. EkPEb<AC47~ 26Mff N0M
y, -g n..,. 1._ m e l 1 i 1 l 0 x a, 3 8 9 e,. 4 1 0 / 2 V O 0/ N 7 2 __ C 1 4 N 1 1 I 1 S t 1 / E a P A T o M S 0 R
- s, P
l C a t S O e s / A r i S r G _. S I H J a n N I C T C s
- 0. S n _.
C R C N O I 1 L J C I 1 G C I u I P T 00 N 4 1 N r. 1 s r N \\ ~. O P._ Te t s l I I : I g I is X_ / .~ I w m S E R r E s E i V P_ l c I_ t. i E P_ 2 o C S i R O t i. N F s r O. t S s S N.. e A P A l L I. f I. C i e R n c r u l t. t a I I r oh8 985 a =8o4 oa 1 osN? e i d f .)y 4 ~ i i OIs 1_IQ t 4OG <l 1 tfOg - i g u gv% i J:u i ias i, is ~ i y I f I i .i i
a u y, 0 1 0 0 e a n mes 3 es + 8 m_ 9 1 4 y 0 's / V 2 O 0 a. 0 N / 0 i, n 7 0 y 2 a 0 a, m C aA es e F N 4 a A r D n I 1 m1 m_ e s l s S a e E / 9 m T F m1 ,c m r s A S s s u R I \\ C O S \\ G c \\ S O 0 p 0 3_ S G i' H i 0 I g J ) ,r T R E s R C E w E s S s s D M u ( L a_
- e J
f I E g E I . G M c e I C P I v g T a 4 t 0 0 r_ 4 3 0 \\ 2 J 3 0 n 1 a N P K.t O X / e v E l I f S r 'I C P i i \\ t n t i g, I t g I 1 t 1 o JY R E I E P w I D V I n t C E e, r U C S 2 e-0 R e O N 0 r, I. o f J F O 0 v r t S s l S N e e P 0 [ O 1 i J r 1 8 I L l i l E t s J3 R e 4 w 0 D. t 00 n l f 7 { n, i .0 2 i
- 88 8y a goN g
O O8? r C F1
- OIN_*Og-1 4
eO
- 1.O't Ok s
l M. tug I I[ i 2 s 3 4 l O J3' 8 0 1 1 i I
- 1 i = I = ,==. il s i I ' en 1. I c i Q j v I I-cc s .e N 'e Ol C i ~, i d z. R \\ ~ 1 ts e f .. l N hL f {' wi t ~ a Z 4 4R l B en i N e ui n s L_ i t1 C ', Ln ._ = 3, cc s' d . i a: I i a wl i (n c' ,J Cl, m c; l I eI !g c' I .s a .m.- cr; o t' U e 'n y C C =- .a. e C ~~) u Cl ~ ~. t i o I! c_ H ,1 a j / %"" l
==I t N -t, i. .r ' s = ( z' c_i e C.' xl = g 1 ug p tnn l[. = ? c! U: ~- s u; c_i g e .' 4 c., e yj /% i Ci T: a g ( i cr, -, i u. ~ t s o; = s ? L,. z' = - si i a e_. c_.,. b. t ~ J: s, U-c t i 2; vl 3 s s. s u ~ if 5 R. 's. d sI i'
- n O*ObOS O'Ob06 0*0002 0*O C*CCO$-
= i' c.._ 10_4_0_7 1 0 9 _ m_ _':0 _J e 'R (:19*)) .N ...= 6[ e .m
I. 1
5.0 CONCLUSION
~ The comparisons beween RELAPS-FORCE calculated loads and test data discussed in Sections 3 and 4. indicate that RELAPS-FORCE can previde I-good engineering estimates of hydrodynamic piping forces produced by fluid transients. It should be indicated that RELAPS-FORCE simply performs the required computations to calculate the hydrodynamic force 1 histories from RELAPS output parameters and thus the accuracy of the e resulting forcing functions is greatly dependent on the RELAP5 modeling experience of the analyst. = i L l A. L s L s s I e e W ]
\\ l
6.0 REFERENCES
- 1. RELAP-FORCE User's Guide, November 1983, University Computing Co.
- 2. Ransom, V. H. et. al., RELAPS/ MOD 1 Code Manual, Vols. 1 and 2, EG&G Idaho, NUREG/CR-1826, March 1981.
1
- 3. EPRI/C-E PWR Safety and Relief' Valve Test Program, Summary Program Description, EPRI, 1980.
I
- 4. A. J. Wheeler,and E. A. Siegel, " Measurements of Piping Forces in a l
) Safety Valve Discharge Line", ASME Paper No. 82-WA/NE-8. ] i
- 5. A. R. Edwards and T.
P'. O'Brien, " Studies of Phenomena Connected i with the Depressurization of Water Reactors," Journal of the British f I Energy Society, April 1970, vol. 9, pp. 125-135. Lj j F, l~i
- 6. G. H. Hanson, "Subcooled. Blowdown Forces on Reactor-System j
Components: Calculational Method and Experimental Confirmation," IN-1354, June 1970. 1 i:. ~ me l k
n s. i I, I v 1 b, \\' l 4FPE>J Vm A 1 g usun,ME4Tf, OF E l? t4f, FOccEt IN A SATI.Ty VAL /t. St$c\\ACat M Lt Q 1. i ~ L' 1 1 6 L I % d k w
.v ur s THE AMERICAN COCIETY OF MECHANICAL ENilNEERs 82-WA/NE-8 346 EA7 St., New York. N.Y.10017 El + V .3. ne ssee.v en.n,mi.e. -. e.emems., - a ene .n.ees.o.,m u f c.
- -- er mentmos ei sne sec.eev er et no oweene er sectone, or onmaa m no i
I g - 2. Discussen,a onnteo enry it tne peser a oueinereo m an AsMs soumes.. Roosened for penefet DuclacetaOn upon pressfuetMm. Full Creelt ermutd De green to ASME. ene Tecnnicas omeen, ena one autnenn passes are evennem hem AsME ter nme emnene 4ttertne msetsng. j Pnneed m USA, MEASUREMENTS OF PIPING FORCES IN A SAFETY VALVE DISCHARGE LINE A.J. Wheeler Project Manager Electric Power Research Institute Palo Alto, California ) l E.A. Siegel-. Principal Nuclear Engineer i. Combustion Engineering. Inc. Windsor, Connecticut I 1 ABSTRACT nected to the pressurizer such that the
- inlet to the valve is' exposed only to steam. In another comon Measurements were made of support reactions to design, the portion of the pipe inmediately upstream I
transient hydrodynamic forces on the discharge line of of the valve contains liquid water. This design, ) a nuclear reactor safety valve test facility. Data commonly called a loop seal design (Figure 2), is used i is presented for three different test conditions - to minimize leakage through the valve seat. When the two with upstream loop seals and one with only steam. valve on a loop seal design opens, the water is pro-Sufficient information is provided to permit verifi-pelled down the discharge line ahead of the steam. i I cation / development of hydrodynamic force predictive t-
- models, Due to its high density, the water produces signifi-cantly higher loans than steam alone. The EPRI pro-INTRODUCTION gram obtained piping load data from configurations both with and without loop seals. This paper prasents 1
For worker safety and operational reasons, the data for three tests - an all steam test and two loop seal tests, steam discharge of nuclear reactor safety or relief valves is normally routed througe pipes. to a tank of C water which quenches the steam. When the valves ~ open, SQ )$ ,m the acceleration of the fluid in the discharge pipe causes substantial transient loadings which must be restrained with suitable piping supports. Estimates fg of the transient loadings are required in order to design these supports. me L Although analytical me'thods to predict these loads have been available for some time, the data a base to benctanark the methods has not been extensive, 1 I and significant uncertainty has existed in predicted [ loads. As part of a recent safety and relief valve test program for pressurized water reactors (PWR's) managed by the Electric Power Research Institute (EPRI) and sponsored by the utility owners of pres. i .( I surized water reactors, an experimental discharge- \\/ i' line was instrumented with load cells at the supports {8 8WW to extend the data base. This paper cocuments key tests performed with the Crosby 6M6 safety valve, the most common valve used on PWR's. FIGURE 1 - SKETCH OF PWR In the pressurized water reactors design, the PRES $URIZER AND SAFETY VALVE reactor safety and relief valves are connected to the pressurizer, a pressure vessel containing both water and steam which is used to control system pressure (Figure 1). In certain transients, steam is released ~ through the safety or relief valves to limit the sys- ' tem pressures. In some oesigns, the valves are con-
s ,s y l t; t ri f four segments is supported at one end of that segment in the axial direction. A design goal for the test facility was to Ininimize or eliminate load path re-dundancy for all discharge piping loads. This goal has been attained by providing axial pipe suoports whien are very stiff compared to alternate load paths. msms The elimination of load path redundundancy has been 6 "g confirmed by dynamic analyses as part of the overall s 8" -g design effort. [hV Each segment of the pipe was supported with two load cells, arranged in parallel. The net axial load { l on each segment is the sum of two load cell measure-j ments. Data was recorded with a digital data acquisi-tion system which sampled the load cells at a rate of Z 1000 samples /second to allow resolution of up to 200 a HZ. The measurements are accurate to 12200 N. Static pressures were measured at several down. stream locations threr of which are presented here - PT09. PTIO and PT11. These instruments were also { FIGURE 2 - PWR LOOP SEAL DESIGN sampled at 1000 samples /second to allow resolution of g frecuencies up to 200 HZ. The accuracy of these mea-The primary objective of this paper is to make surements is 3 28 kPa; however, the sensing 1.iaes, data available to individuals developing or verify. which are about one meter long and filled with cold 3 ing mocels to predtet piping loads. water, might tend to reduce the accuracy at high fre-r
- quencies, g
TEST FACILITY Three other important measurements are valve flow-The test facility (Figure 3) consists of a four rate, valve stem position and upstream reservoir tank p segment discharge line attached to a spring-loaded pressure. The valve flowrate was measured with a g safet valve In all cases presented here, the venturi which is only accurate under steady or close piping upstream of the valve was a loop-seal design; to steady conditions. In the test facility these con-the loop seal water was drained for the all-ditions occur a few seconds after the valve has open. however'sts. ed. This measurement is accurate to about + 6t of steam te reading. The valve stem position was measured direct-ly with a linear velocity and displacement transducer,
- men, This instrument, accurate to + 0.13 mm, was also sampl-m'r i
ed at 1000 samples /second. tee upstream vessel pres-sea. Ex N sure presented here is PTS 2 an instrument sampled at 3 I h/, 100 samples /second to allow resolution of frecuencies "'"'"d If 5" *. up to 20 HZ with an accuracy of 6 1 9 kPa. nmas e -y' a es ur For loop seal tests, the temperature of the loop 1 % seal water is significant. If the loop-seal tempera-l T ture is high enough the water will flash as it pas. i '= 'r ses through the valve, reducing the measured down-tr stream loads appreciably. Two thermocouples were "7" utilized to measure loop-seal fluid temperature direct-ly. In addition, several thermocouples were attach. it in su me ed outside the pipe to measure wall temperature. It w a s p h" % is expected that these measurements can be used to de- .I 8 "l' "nU. duce the fluid temperature axial distribution. y wnan .am eru. STRUCTURAL EFFECTS IN THE MEASURED LOADS Allrasu / When any structure is subjected to dynamic loads. '; sr e' sen-it will respond in a manner that may either amplify g
- hmm, or diminish the applied dynamic loading. This aspect lE
.r 9n of dynamic response characteristics of a structural 4 - M support system is referred to as transmissibility. y,,"-Q'85 8' Transmissibility is defined as the ratio of the sup. ( port load to the applied load. The magnitude of this 4 ratio is dependent on the relationship of the cyclic h frecuency of the applied load and the natural frecuency of the structure. For an infinitely rigid structure, this ratio is unity. For structures with finite stiff-h FIGURE 3 - TEST FACILITY (1 f t.=0.3048m) nesses, however, this ratio can ce significantly above /* or below unity. The hydraulic loads act in the axial direction in each of the four discharge pipe segments. Each of the 2 L \\, l
>e I i Verification or evaluation of a fluid model for o, predicting hydrooynamic loads uses a process which is similar to the application of the same code for power g i plant design. First, the fluid code is used to predict h au'* ",/ the hydrodynamic loading on the inside of the pipe. Next, the hydrodynamic loadings are used as forcing. m function inputs to a transient structural model of the piping-support system. In the case of plant -) Lf. un i j' design, the resulting support loads are used to design a u]l dia the supports (probably with structural reanalysis). 1 r In a verification effort, the support loads are com-pared to the test data to evaluate model adequacy. g fluid loads directly but rather the response of the I / so.mo e The load cell instruments do not measure the j 6.* - ~/ j j piping-support system structure. Every attempt was = made to construct the facility 50 that the supports l i were very stiff so that the load cell measurements E I were as close as practical to the fluid forces. s Nevertheless, it is necessary to include a model of 9 l the structure to fully validate fluid loading computer [ ) I codes. g In order to design the test facility, a detailed structural model of the whole facility was developed. vm I = i 1 Based upon test data which gave infomation about the l IJ natural frequency characteristics of the facility, the structural moeal was adjusted to represent the as-built facility. However, not only is that model l]l-much more elaborate than is reouired to evaluate discharge piping loads, but a detailed description urnl 5 of the model is beyond the scope of the present paper, w n.ri su _ i As a result, a simplified structural model based on the more complex model has been developed. This FIGURE 4 - PRESSURE VESSEL. SUPPORT SK!RT l model consists of the reservoir pressure vessel, the AND VALVE INLET P! PING 1l valve, the discharge piping and the piping supports. (DIMENSIONS IN INCHES, [ The recuired dimensions for the tank and valve is (1 INCH =25.4 mm) {' shown in Figure 4 Each of the piping supports is tse eru uan s represented by a spring or springs as shown in Figure ca so. .o,c no. .i ) l 5. The second, third and fourth segment supports ur rs '{ L attach directly to the concrete basemat. The first 'y l segment supports are attached to a beam structure g i which in turn is attached to the reservoir pressure n i vessel. For structural mocel purposes, the beam u u d'" omens smus ris' wm l structure mass is approximately 9070.0 kg and located l
- go q'
at the top of the pressure vessel. The flexibility r llj s i e.res i @' aen j of the beam structure is incorporated in the stiff-i aae o.n n=sicum ness of springs 1 to 2 ard 3 to 4 in Figure 5. The ~we 8 i vessel in turn is cantilevered from the basemat. It \\L Ms'Q" j is considered necessary to model the pressure vessel 3 Ro emtsuon @,Msuoi, '~ and skirt stiffness ar.d mass in order to provide a 11 se samme j@gj minimum system model. jjgstt ' u u smio H* 14 to Es0La0 t TEST RESULTS a s The results of three representative tests are re- .6 - Y' .u f na / { ported here. These tests are distinguished primarily f f', by the inlet candition to the valve. The tests pre-
- [
1 is sented are: [ 4 i suo s3ss s s 3 Steen only - Test 1411 i FIGURE 5 - STIFFNESS OF P! PING SUPPORTS ? Sttam with a cold loop seal - Test 908 (1 lbf/in=0.175 N/m) 4-Sceam with a hot loop seal - Test 917 o 4 l ,i M1 of these tests were perfomed with a valve manufactured by Crosby Valve and Gage Company, model e HB.P9 86 It has six inch (152 m) inlet and discharge ~ m}s Mes. The valve has a nozzle area of 2.35 x 10'3 f '~ ano an ASME rated flow of 191,615 kg/hr with 17750 h>a saturated steam. ~ l 3 ~ l
L Test 1411 Figures 8 through.11 present the measured forces This test was performed with the loop seal por. on each of the four pipe segments. The peak forces h' tion of the inlet piping drained of all 11ould so the observed on segments 1 through 4 are 11565 N, 28912 N. valve was exposed to a steam only inlet condition. 53,376 N and 66,720 N respectively. The peak forces J Prior to the test, the valve was leaking slightly, on segments 3 and 4 are somewhat delayed. These t Thig appeared to heat the downstream pipe walls to peaks are thought to be caused by condensate (result. (l ing from pre test steam leakage) striking the elbow 100 C and replace the air with steam. The quality of the downstream steam is unknown, just upstream of the pipe discharge to atmosphere. The pressure history upstream of the safety valve is shown in Figure 6. The safety valve popped open gI .Z(..j!..~l. l. 1 when the tank pressure reached 2410 psia. The valve s- '-j.. stem position history is shown in Figure 7. After the 5 initial transient had subsided, the cuasi. steady flow l, g T-through the valve was 213,145 kg/hr wnen the tant gl } pressure was 18234 kPa. } l gg j j fl f. i fg ' n.- - W.,..-..w., ).. a.. g % q - %...a p E j.- g l b [ 5 j jj - 2 g. i . ~.]. g 'i o -j g l g; -+ ,B,, t y I t \\ 23.25 23.64 n.4 2L 92 g N j sfCoMos 'l~~~".~.~... 5 l FIGURE 8. TEST 1411 SEGMENT 1 FORCE HISTORY ~'..g. f j (I lbf=4.448 N) b jp.Q M,_.:7~ 20.o 23,3 3a.0 44.0 st:ms FIGURE 6. UPSTREAM RESERYOIR PRESSURE HISTORY ( (1 psia =6.894 kPa) { j l 's, .... _._ I.
- 5....
g s ___._...q... ,.3.. ,---- -4-~ {- ' '} ~ ( "5- "- N- [... I ,.yi.. _, _ = = i, 721-1.:. ;__..JI l -Ihr 1 j j t_=1 --d_ b f I j !s . _ __; _ ;.- - +-- l i j ) ._... r...._ 4 -(=1. : E !-J l N. !.Q.t.....,,,.i4I = o-s: g -~ ~= n. g 1 t i 9 -.: ( -.M * : l~. i f
- . rl.=__
-U;:'.l' - L. ; l. : : !_......'....._../. i] i l 0 Id I .~ s - ~: I e n.2s n.ss n.n n.n L n.ts n.22 . n.<a n.sa acuos neanos FIGURE 7 1TST 1411 VALVE STEM POSITION, ZE36 FIGURE 9. TEST 1411 SEGMENT 2 FORCE HISTORY (1 inch =25.4 m) (1 lbf=4.448 N) u 4 \\ !m k
s I I l i 1 i af,
- l
l l I i t 5 i l !A T-o J l [-
- g 4
~...;.... ...t. -. j i g 1.. ~ .i - -. l4 i. g, -~ {, f. g ~ f._ ';fl[ i 4 --1--. g l-I g i t Ji l y-1. .} .l = I, t ' v I' r 0 j g 3 I I 6 M I I i i g i j 23.28 23.44 23.60 23.76 l g steencs I 23.2s 23.aa 23.so 23.76 FIGURE 12 - TEST 1411 STATIC PRESSURE TAP i sican PT09 RESPONSE I FIGURE 10. TEST 1411 SEGMENT 3 FORCE HISTORY (1 lbf=4.448 N) .R. i I i -a. 1) = g 'l 2 8
- f.i i
= = l i s . _ -.' t,~_..r-h } i p - Q, d-- __, _.g 4 B= 4. _ j_ _._ i y i E* ( a
== ._.i-_; ._i_. ._4,_ y i l i g - -y }J.. = i j 3 - ~. y..- ! g ... -; -~. 4.. j... ;, g..., i j E* . _i _... i. ___ ; _.. ] ~ i ,} j.. 4. .f}, E 23.28 23.44 23.6o 23.92 3 g ... p._ p...- P - ' h 1 -t* stCCNos i 8 _ +. _ ! q .. ~ 9-.: -q._... .j-- r FIGURE 13 - TEST 1411 STATIC PRESSURE TAP j 0 - - - -*~ - - ' - - l' PT10 RESPONSE i i. 23.2s 23.44 23.60 23.7s (1 psia =6.894 kPa) j stCONDs 2 FIGURE 11 - TEST 1411 SEGMENT 4 FOR".E HISTORY i } l l l 1 i l' I (1 lbf=4.448 N) 5 i g f { [c Although not a measure of force, static pressure i I data is also useful to validate analytical models of i= pining hydrodynamics. Pressure data taker at taps PT09. PT10 and PT11 are presented in Figures 12 { hg j througn 14 Ten seconds after the valve popped open r 16994 kPa. and these three pressure taps gave read. Si f l{ {fr and the flow was ouasi. steady, the tank pressure was i 4 q ings of 1551, 733 and 738 kPa respectively (not shown g3 .q on the Figures). i r I Test 960 N: l Inis test was performed with the loop seal pip. E
- NI e
i i ing filled to the top with cold water. The tempera. j ture measurements are presented in Figure 15. For 23.2s 23.44 23.so 23.7s this test (but not for 917 or 1411) a 99.3 mm diameter s!conos orifice was installed in the 12" pipe just upstream y of the discharge *to atmosphere. Tka downstream pip. ing was at 15 38 C prior to the test. FIGURE 14. TEST 1411 STATIC PRESSURE TAP PT11 RESPONSE (1 psta=6.894 kPa) L. 5 J
.= 1 r m (i s i ~ ~ = " ' - - . J'" 4 { f_ n _.
- fl%
g i.
- r~m
- p, 1
m. m.- - g*. = e a e m m. m.- _. - y. :-. -g. m. m.m m; im .m. m.n 9 a: - =. ij i
- E:
' p.y_ t~""- 1 . m.n ,_ i / w e m an - +--- 1 m. m.n j )\\ j w s-~ i.e. - EF j ( p , z i-FIGURE 15 - TEST 908 TEMPERATURE FROFILE h ' * ~~ t ' ~ IN LOOP SEAL t-~~~ -~ j .4...."~. ... ~ ~i1;p! g (tc=(tf.32/1.8) Ej ____i The tank pressure history is presented in 32.00 12.so 33.so 9.4o Figure 16. The valve-stem position data (Figure 17) indicates that the valve did not simply pop open as in-sacanes. 7 test 1411 but instead oscillated for about 0.6 seconds. FIGURE 17.- TEST 908 VALVE STEM POSITION ZE17 i remained partially open for about 0.3 seconds and then (1 inch =25.4 mm) popped fully open. This type of behavior was observed .) on most of the spring-loaded safety valve loop seal tests run during the EPRI program. The flowrate was
- ).
observed to be 210,900 kg/hr wnen the tank pressure =2 i was 18545 kPa psia. In this and test 917, the flow. g . - p. \\ a i rate is the steam flow in the quast' steady condition 5 e. ~ t-( 0 i Ai 4 after the loop seal had cleared the valve. r ..N I \\) ) M. N. -e
- r
- N g -- . li *l
- i
\\* l n g i a g
- - A a
l l g I j . \\g [ SE g
- 4. -
u.t s u.23
- x. 31 m.3s j
stconos El I _,i FIGURE 18 TEST 908 $EGMENT 1 FORCE HISTORY = i i (1 lbf =4.448 ti) 1 I i 1 i l e i 30.0 3a.c 46.0 54.0 'e' -i'----+.. ^ * ~ ~"4 ~'~~ ".'~g -.f "' * ' l - *
- sM
'!I -- l - - FIGURE 16. TEST 908 UPSTREAM RESERVOIR k ./. f i ! ) -- -A--lV p! k @ PRESSURE HISTORY a u (1 psia =6.894 kPa) !2 il I The observed f"ces on each segment are shown y* hV... l. 1 ~.-.- l. ~.- i... j l ' in Ffgures 18 - 21. The observed peak forces on seg. - f - - i- ~ I-4 ments 1 through 4 are 97,856 N,800,640 N. 266,880 N h ..q. y f. 'l I and 88.960 N. The large 800.640 N load appears to be . + - -.. l. i -~ caused by a relatively intact water slug striking the S
- 4-~+'
i-i second elbow, ho such large load is observed at the
- g 4
j .9 ,a third elbow - the slug may have partially dispersed 1 i by the time it reaches that point. On the other hand, E i i a large load at elbow three may be masked by a combi- .i nation of the structural softness of the segment 3 .A --i -i -, i i supports and the discharge orifice and short length 3* t* 'i ~ i of segment 4 M.1s u.23 x.si
- u. 3s stconos FIGURE 19 - TEST 908 SEGMENT 2 FORGE HISTORY
~ (1 lbf =4.a48 N) 6 \\ i l 1 L
.v .s. a i ~. f 4" r i o j. r E p._ p___p 8 a ---i- - - - - _i i ~~ s -q= J, j : c e -+ I t = a., -.--... - f. ~, 8 1 --'--~f---- y*- Q, s l = y g. } x 1 g y / i A-1
- y. v;.:.
,. -.s V -l .a. - u _ 4, 8. g "', i 4.15 M.23 M. 31 34.39 5 steam l M.15 M.2' N. 31 M.39 ' FIGURE 22 - TEST 908 PRESSURE TAP PT09 RESPONSE. g stems (1 psia =6.894 kPa) I FIGURE 20 - TEST 908 SEGMENT 3 FORCE HISTORY (1 lbf=4.448 N) $g ._. i _. 1 P. r. 4 [ g p_. ...l._...ip. _. _. y.g __u o s 1-a- s
- }~-
= - - - + - ,3 E-
- 5. -
- p..._ }. $
... { . j.. _ t-s. _ 4_. _ _ _. c 8 - fi.. E p....ji. L 4., .- j s .. j., a.H u .5 L l ..[ _J .- @ -_l -1 (. ' g o, t g 'i -.i k' -M ~ ! "d E M.15 4 M.23 ' M. 31 M.39 l .'.".. h:'_ ~ T~~'I. . y.h g stems } E _.4 y i --4---- ---i- - E. FIGURE 23 - TEST 908 PRESSURE TAP PT10 RESPONSE E =.. _ l.- e --t (1 psia =6.894 kPa) =. j .. j . y... p. ._.._.~f.. j-M.16 M.23 M.31 M.39 E t acm= a 3 _1._.._. ~~~I"~~~ FIGURE 21 - TEST 908 SEGMENT 4 FORCE H* STORY t 'I (1 lbf =4.448 N) 3, The static pressure measurements for PT09. PT10 ha and PTil are shown in Figures 22 - 24 Not shown on g l s. i. the figures, wnen the system had been flowing for = 3 i about 10 seconds and the pressures are quasi-steady, w _wj j i y these pressures reached values of 4481., 4481. and l l . g g 4550. kPa wnen the tank pressure was 16,959 kPa. -l 4 2 i
- M.11 M.23 M.31 M.39
_ Test 917 ucum inis test was similar to test 908 except that the loop seal volume was filled with fairly hot (1770C) water prior to the test. It was expected that this FIGURE 24. TEST 908 PRESSURE TAP PTil RESPONSE wuld reduce discharge piping loads since flashing of (1 psia =6.89 kPa) the licuid would disperse the downstream water slug. q The temperature measurements on this slug are shown g in Figure 25. The discharge piping was at amotent Figure 26 shows the tank pressure history. temperature (10 380C) prior to this test. The valve Figure 27, showing the stem position, indicates that flowrate was observed to be 204,075 kg/hr when the the valve oscillated much the same as in test 908 tank pressure was 18,821 kPa. t I g A
- 1..
7 1
j I The segment loads for this test are presented in ,f, Figures 28 31 The observed peak loads are 31,136 N, 66.720 N. 77.840 and 65.386 N sn segments I through
- 4. respectively. These represent significant reouc.
tions in loading relative to test 908, particularly m e e e m' w. m.re on segment 2. l ,, I I, w. m.n L8' t w. ses.sg = m 9 w a san.n 2 w N.n ~ Iet
- *** h a
.l W, t I
- 8'"e d
,g e+ i. i tem. ar in. ' o! \\, [r. . i
- s y
,1 -- j 1 FIGURE 25 - TEST 917 LOOP SEAL TEMPERATURE PROFILE g f
- ' ; l'p, l) j.
(t - (t.32)/1.8) r = i
- f. k ' f I
k 3 l ad n E dg f' l ~ =
- 18.10 18.20 14.30 18.40 g
,1 stCONDs g' - ' f a 4 * 'i i FIGURE 28 - TEST 917 SEGMENT 1 LOAD HISTORY .. j ' ' ' ' ' l l' (1 lbf=4.448 N) xs . lii i I i i ) w ' _ ). i~ q,;.7;y ; ; 7. ja. g j j .f... p. _. y. r9 A i s-... + ...........i. S f - I 4 . 4 w. ._..j. p. = j'. __ g. .i_..... 18.0 22.0 32.0 42.0 ' h. g.._. y l
- p*-
~t.. \\ sim0s u. I at ._.t 4 jl FIGURE 26 - TEST 917 UPSTREAM RESERVOIR 5 [.. j._., g. PRESSURE HISTORY s A I-(1 psia =6.894 kPa) l- - i.. I W. i ._..3. il ..g.. .l. ... -. j... ;..,., i =7 ..... ~ ?b.~ ?. T. i .4 i g .~.7 _ a j,: 18.10 18.20 18.30 18.40 j Tj srconos p. i l.: .) d 2,,,,
- d P-FIGURE 29 - TEST 917 SEGMENT 2 LOAD HISTORY 2: *
(1 lbf=4.448 N) 9 7
- g
-- ! =e = The pressures at PT09 and PT10 are shown in 3 i Figures 32 and 33. Ten seconds after the start of ~ E J i the transient, these pressures had values of 1585 . ~ ii ! and 745 kPa when the tank pressure was 17.510 kPa. E.' "'"n=="'" These cuasi-steady pressure measurements are not shown d i j on the figures. 45j "--'~~~
- .b i[h g
16.a0 17.60 18.40 3 srcanos y 1 FIGURE 27 - TEST 917 VALVE STEM POSITION HISTORY l ( (1 in=25.4 m) 8 \\ \\ l I i
.j % 3 g ~ ~~ 4 ~. ^ s: MSpWua 2 II ~ r 'l ^i in L'~~ L. f. i V i. / s. i
- . j...
'l = i k 4 2 4-T U i .i. l 5 'J.Q. ' " J' $2 ' f' II F
- i j
j i y I i 18.10 18.20 18.30 14.40 i srcons '= l e i 18.1o 18.2o 18.30 18.40 FIGURE 30 - TEST 917 SEGMENT 3 FORCE HISTORY sitons (1 lbf=4.448 N) l FIGURE 33 - TEST 917 STATIC PRESSURE TAP PT10 RESPONSE 1 (1 psia =6.894 kPa) l E 9 CONCLUSIONS O e. WW1\\AA k The following conclusions were reached in this u t ef fort : i g y M .j-1. These test results provide a data base which 5 g s can be used to benenmark fluid codes to i I y g. predict piping hydraulic loads. _ p _ w. k H h. g 2. Cold loop seal designs can have substantially j, higher loads than steam only designs. Je V T ~-" 3. Heating
- loop-seal liquid into the range i
( 18.10 18.20 18.30 18.4o 300-350 F can substantially reduce peak srcam piping loads, f FIGURE 31 - TEST 917 SEGMENT 4 FORCE HISTORY 4 Accumulated condensate (from leaking valves) Ll. (1 lbf=4.448 R) in inadeguately downward sloping discharge lines may produce nigner loads than would be expected from a steam only discharge analysis. E" ACKNOWLEDGEMENTS 5 I E 3 t' The authors wuld like to thank the staff of J 3 Combustion Engineering. Windsor, Connecticut, who i l B ^ l designed and operated the test facility. Special thanks go to Mr. S. Austin for nis efforts to modify the system structural model. .~2 I l. The authors also thank members of the EPRI staff { who participated in the preparation of this paper. g i f " e' i 18.10 18.20 18.30 18.40 stconE FIGURE 32 - TEST 917 STATIC PRESSURE TAP PT09 RESPONSE (1 psia =6.894 kPa) 4 ( 9 6
I a e 5 i 1 l L 1 l f f i 2> A~PPE.4)t x 3 1' 1 'dtt Af 5'- %ccE. I.NPuT t.t 6 ri%5 l c!t 1 i i i i 1 I 1 I J I s s 1 l i s i j
j e e e f e e attaeg/mett/ete agastaa 6036 er gestant seabysts pepsaan pass t 68873h8 0F lepWT 5474 Pet CASE t i sugiars=rgaEE 3amekg rugskam e/ETus** 4 m.EAJ3EA5 utr/i'Be 3 4944100 eGW TeenSet 3 ottelet 999 fS 4 8990193 SR8113R BALTI5M Getetet.e6 t.e*T t.eed I t See See 6 0009300 p seteces 1 ee5o3o3 e aseeeen a esee3e3 e seseese t
- 4*e20e e 90'e90s IO 90G0305 MFh9eJ 404000e
+ 90 eeee396 MPbeWJ 1e90909 99 9600399 m*LewJ 4096404 53 090950s TIME e EE eubb e c. a te ettecee 185E SGAhCN 99 0090e00 e 16 003 Ole 1 6.74 4.9 49.55 8. 59. 5.0 9. 9. et 11 0010298 3 tGee. I te eeteeee feesteet $setJve is ee30tel poselooco ce30cceos.3pos e e. alse te eetetet e9 O O. 14 eeseete *f994 ottf g 33 se3ecei e a 33 Ge39tet.3948 4 te t a 1 es.se t.e t 3. . 30.. e... ..e... 95 0036006 1 B*4 9. 4 19 ee3eget 9 98.e 64,1 e ,0. 3 J 0021e05 OG 4 3.4 1 G.esinei,iote 3 se estset t.e. . t 6 e. 31 0eJ1305 O. e e. 3 23 9444046 T&effeet $58bdus . 31 +eedet#9 #99990000 999900000 feet # 4 ette J4 Ge 9 9. ( 40.4 4 3 G B 3,. et.0000 e, i.9.G, f ee 1 li g 37 eeteios.3ees 6 i se esse 3el 9, 8 i $9 estetet e .t ete .1
- ee
,9 es 905080s 1.3'4 9. 5 1 49 4064006 0.14.0.94.9 S.,0 3 4.ett.e.e?2.3 e.e .4 et eetteet et t 43 9051391 le90 4 44 telltet 3 tete.e 1. 9 9. S at 0e4 349 6 e o e 45 0950eee NATsTEE 3eshven 49 estetet 083000000 ette#9eet S. e 8. Stet se Gesetet ee e e 45 ee70ece p5TETEE 5eEhews te eefstel 9000100ee 000000e04 0, e. 9. Stee et ee9etet ee e e 33 e55000e IE5TDrE 4REbwWe 83 e640tet 640409994 410044044 8. e. G. flee _.Se eetetes 4 e e e su eessees TEs saaeEn te setteel e i l 1 % ASLAPS/Nett/ete 8845T94 LOSS et C00Last Amatts18 petsaaN Past 3 It Getetet 3004 9. S. e.
- 00.
- t.
1.6*4 e-ee se estetoe 1 teos e t su eioseos riets *ArE te 8806ee1 4 et eteetet 9000 e 43 01063e5 3. 4 33 0100049
- 00.
3 0. 4 se 9900409 9 See e e 1 55 OBOeBei G..G. 3 9 159.9.150.3 6. 9. e eteleef 64 0 39 etestet teet i es ele 130s 3 lose e i e e. 4 et 900t301 e. e. e 3 9e etseeee ecTeatmeg galog Ti eIIeBen c10010000 e53009009 0 3. g enge 99 elletet ee. S. 9 93 6996300 9etets la ellO3el 555 18 9130000 afmes fue#TSL 'm 9e ettetes te e to e e e e e e e 66 77 e13030s 3 10 ettelet 1. 14.9 l. ,e 6 'w nsuct_ $-1 ELA#6-;occ.E SWPLE NTUM IN9uT { MM[W14 CAL A tW L L
~~ Jea see7eles t..e. 5 e i c o e s. a c T e 00 e i. .8484eee.585eece (, See tee 193ee I 105 00e9e1ee
- 4 4 198e404 Se 0004 38 g
S e,4 e.ee.764 0.i.e.45 eese 555000e . 3..ee.et... e.. e e.e.ee.. eet see .t e ...e 9ee 35s L d f/6u2E B - 8, COM.,' L LAff-krL.r J N / u r foe. f#1/CL SL./ TLY Aloe 44 Il I t. k. $b l i
q n e A544p8 993t8 98R2303 to e 8148049 448e454138 IRC, 60s. 1983 PAIS 8 e 1.e,95 t.8.4e 9.834T.06 1.234.03 e. Set.es e. sal,68 ST' 4984343 0.80,88.se.TS.84 f to e 9,9 e 58 e e.49 eee e et eteeset as 905000 t.p.4,0.e.st Se a egSWC3a a sagfees gemelegg af svagtige eg.ta ee etteDet # # # # 6 e 1e e
- 8 9 0 ee 6 19 0 4e # 4a #8 4 ee # 48 na semesea e 13.9 it ta e e.e.e.a3 e Ice,e les.sa e e,0.e.s4 83 eetteet 66.95 Se Gettlet 5000 et stee 93 teee ce i~
sn Oo iiei a.i4.i.e.ne e e. .e,sn SS, Gett3Ge 1 89 4e91309 eee eee se te esteepe GI5En ses6,wn 89 esteget eeteletee,ettettees,e,s.t.o.e.e Otee 9e teletet 1 0 0.0 e e.e 71 celease ATmO5 Thosvob l T3 teletet 5.G*4.1. pee,0.e.e e,e.e.e.e.e.e.G e.lt 93 Ge1919e e 14 e470305 0,0.54.1.40.e.e.B75 18 teettete 18 le 3, I S.3831 I, 9e teenstee t te t e ses3 TT 19053o0e i 40 a b e.33a3 T8 toe 64ees 3 le 3 1 0.40e4 90 toetstee 18 to 1 1 e 49ee j~ se IOIREOee Je le 3 4 e.414e I
- a. 3 t o t s t ee.s e.49.ee t
le to 3 1 iessie e to to 9 e 49 e l, 43 5e455400 5 ie a i e.4140 SG 1948564e to se 3 1 e dies 45 19495000 3 le 1 4 4 4949 54 Ree&6499 i te 2 i e 4315 49 totSteet I to 3 i e 4399 ] 00 teet**ee e # 4 45 19e5210e e n a to lees 3 tee e i ee 56064000 0
- A3 1905Bi00 e i 93 leitstee e t j
es tetsstes e t 1 un refssiee e i 1 es seasstes e t 49 settstee # 9 sa 1e55510e e & 00 leeBStee e a tee lettette e t tot spelilol 5 e.375e tot 1945360s 9 6 3339 tes
- tStot
- # Ste1 ses seassion e e essi i
ses seesteet e e.4313 i' __194 settleet e e 1993 set seasaisi s e.saia tea 1e3684e8 0 e. Salt see teststet e e ests sie nosssisi a e.saia til testStet 9 9.53t3 i tti toetatot # # 93t? iia iettsisi e e.mana Its teett3et t 9 i ~ .m m gl6eget A65eClafBS let. a09. 1983 past 3 QEtasseesast vgastes 04. tes toes 33et t t tto toegstet t 9 is7 ieeseasi i e tle lesettet i e see 14884f99 9 e iae scansasi i e , las testiset i e ett teststet
- 9 133 1955E305 i e its toestset t 0 its teetetet t 9 ias seitaasi i a 13?
teettSet 4, e ett 40019309 e e nas seesaasi e a q' 13e seese3et e.- 9 est toestles e e 133 10:5520 e. 5 133 8839830t 4. S 934 9e3959 9 e e 133 1e455394 e 5 ISS 19988305 0. S 999 40081386 e e las leOE4Je6 e, a 139 19980301 8. O toe teettees e isi lo95249e e 143 1e943400 e 143 69e44400 e ice IOOT5dee e l' las toteseee e isa tessesee o I47 le7I54Go e tas teessees e see 19999400 e its letE6see e 184 te#848ee e 481 tetsseet e j 152 3005:401 Jia. se tea toesteet 3s3 se __ 644 90043408 ft1 te Ile leTI440i 333 le j '* 151 leotteet $13 te esa totsteet its to isa ieassees asa ie ese legstson sea. to not tesesett its to isa iosTITo asa. is las teesseet att to see seesseet ses to iss isissae. ata io aeseeee e i e t leece i t e asse 9 9 0 0. t s e,t o.99t,t9.oteeee l e. s sees.. 5 9 t .eeeeet tette I e 9tt 1. s.ecr m..r m.. m.e e ee i e i i. i .3 t. e00 O t I .. i 999 tee 94tet 640000e tegee 1
- e 1
S e t. e L, i,4 ieensiei sa icoes i i e ai e i solesses e3.iseOO 1,3 c60s totee i t e stee 3 pauts. 8-3, cod Rtw:r-Mac Zdur FW FPCElcE SN TTSf NO, /4 I l "M
i I' 1 1 esiveS.ees33 aatsles te
- 9E98054 999898T489 le3' sea
- tset 6998 6
its&les ed lese & stat ees 3793 6 t emmutisa tma itti us' tse *'w'1TPtset ned/t.se 8 tes eem anesses 5 tot eno e tot eufitiw sulittw 9 896 S S 4 es& s'ee9 ecets 69 lete tege 9 6e4 ae'ssam 6e0
<==
i rof demsgo ter 9 SSE des 38m eeS e $es d$e3em 6ee te ree meusne ese 54 689 4833S& 996 65 8#& e 6000004 te ees e esleeee 09 C99 e ECSeeeS 66 ste e settoee 1~ te fni a eceeese 66 tl$ e 95ee000 6e &6E e 56ecese te eno iema neieees 80 ESS a asse 88844e0 56 ses sene &&eeeee fi tta inam tercese SC 880 neteeP ts&4009 59 664 meleef feetsee ES ffe md,eoP edeeese I 80 C86 414553T 9 I 46 tes e.ot e sa eni,l eee1 8.e .e.o r..e.t. e&,e.on4.ee, r i n e e ,.e
- 46. 5 64 0040684 85 56 G e'tte s'e SO e 66 s09'6 9ot e G#
en eetsree r 88 e948804 e ' e' 8 0 G G ' g' 8 ' Os a B 1 r ne' 9 ' S O &S e 'l'e gs eeseete sm esesa ro sereiet esaeeeeee*eofeeesse'e e'e'se*t e' esse CS ee S#ese e t' G ' 'l e ' e' S ' G 0050844 t 0 CS e5 ne et esreset et 4e eotetes e'sase 69 e'seee'6e e sese'84 e'08eeG'86 89 8888684 e 8888*59 O 4884 69 O*68eB CS es&C# e tets'64 &'0446 58 ese's'ff'te e es eoreset e'e e'O'O'tE's're ese e'te.se 94 8889991 4 tet e 66 4 589'e 859 69 e s'4 4 89 e 443 e 555'&S # #'e e 66 95 00E0006 ot eartaet ee'9*t9 rE 4999'e e'e e88 59 lees 99 90E8408 444 e' %8 te eeStse6 &'5sse e'4 1i en enetrae i 96 ttELCSS 6 5' S ' 0
- S ' O ' 0
- 8 8 s
6ats ae143 ot sepeete es sesenot esreteeee eeeeeeeee'e*erete'o s'e'e'etse eet e s ee na' c a' 9 ' S ' O 0 * $ te 00selet l e se ta tet* tee *se'S ee1*e'e ef eerefeR eteltnA ela 85 eetseeG tf 0090006 eS .e. .e s e.8 8..e
- f e 8 '.t e...9..s.e ' t i t
etot te e ft e'fote'te s'efRe'fe e' tete'ff e'ttff'ee 49 ( I I ' % 1 I I I ,i r;;synag g - op : y37yg spe;y-rvwu. up yur/D 57A L33L NO' 609 ) t
[ ~ .. e e8kAe6*PetCB V888194 to a B14018? &$59CIAfts ist. 309. 1983 east t 3 St SeseSel e.TT1,9 e,8 8 9 0. t'eO.ftllett e.S 19 e.444418 e.3439.99 e.3090,39 Se estettf e 40 Se e 95 te o 99 9 8 40 t 9389 to e 199 93 e 309 ee e 643 95 35 estessi e.e.i .es e.nt e.e,se ese e,sn Se e966000 e.See,e 9.08 o efDUC E eeC9 eel Com9tett 49 JueC990e me 95 estete,ES Se p.e.e e.8 e 14,e i4.i s.6.e.e.l. e.ac.O ee.it e One e,te 43 83 esteses e.10.0.08.58 e e,e 0,83 e. tee,e los 48 e.e.e e,se j te oesteet ee et 53 estings isee.s3 ines,s3 eise.se 89 000139% 3,te.1,313.9,0.e e.e.1 3,14.1,139.S.e.e.e.e 3.14.9,000 e,s.e,0.9,6 89 0069969 e to 9 se e 998 e# SS 55 095630s 4 et 9999300 e 0,0.e.e.e.94 f'9
- etteet 995Cu ShSLJUs Ti essenei e15eleese,ee70seebe,e.e,s.e.e.e.eise 93 essetet 1,s.o.e e,0.0 93 ee9eece 49 met 9meeeet 7e egiones i. e.e. t. p e s, s. e, s. e. e. e. o. e, s. 5 e. e, s i TS 9919300 4 99 ee9etet e e,94 9,30 e e 698 77 icesspee is is 3 i s.3537 98 1e983098 9 le 3 1 8.3043 99 teostees 9 to 9 9 e 3399 30 soogeese a is 3 i s.eose el 90088000 ft te 3 9 e.4949 49 1996940e to to 9 e e 4940 43 ie3ntees is se 3 i e 47se et 90386006 te le 3 1 e.etto SS teettece e to t t e e946 as sonstece is is 3 i s.4740 GT teetteet 3 le 3 1 9.4940 GB 90068000 t to t t e atte Bs 5e156000 i to a n 9 8315 Se teeStlee e t 94 teetttee e t 53 1005310e e 5 i
OS 9995410e e 1 se 19999600 e t 5h 30i55500 e i SS te3$$1ee e t 99 993e994 e t se 19455:00 5 6 to 1e988868 eI l. tee testStee e t i l los ischance e I a let leisaise o t 16 999 toestiet 9 e 19 8 9 _. ies lectJtel B e 3331 tel 99e53101 0 0<3903 See teetatet e e 49e9 ici leottiel 5 e 3313 too 189696e1 0 0.8313 900 tettstet e e 9911 ise se3stles s e.s3:3 999 69489994 9 e.5313 149 tettstet e e sits 113 80555505 e 9.5313 100 toe 6Alet S e 8303 i L I 984&e0*Fotif 9598104 to e $1b6ft? ASSOCleTIS 188. etc. 1983 e45d 3 tts 99996189 0 e.8313 fee teetetet t e il7 ice 533ei i e 110 feetatel 1 e ett testates t e 13e 30055303 3 5 128 509493e9 t 9 191 tettstet t t 633 19JB53e1 1 5 934 settelei i. 4w St Settiv.I t 9 135 19655306 1 5 431 19068309 9 9 994 tett$1st t 9 135 icati30s o. a 13e 90083361 e. ? 116 toetstet e e 133 300543e1 e. 5 133 90064366 e.0 tie lettt194 e e 135 1935538n e, 5 13,8 10398,341 S.. 8 t, 6 e .9 00 l i3s icevazet 9. e 139 te896301 S. 9 toe teetelet e 9 iei 691603e1 e. s let 19059400 e 943 90ettese e les 3e053600 e tal 90054400 e tee teettece e m. se7 seistees a let te25940.s e 489 503494 0 e 159 19455600 e I tot leS8 sees e _. 499 tottlee.. IEJ 5005e400 e tSe 5096e400 e set teosteet se e to - 155 lee 53 eel ~50.e le IST tees $4el se e to 998 teeteset to e to 155 leellect se e to 99e lettleet se e le set tettseet se e to
- =
133 30335401 so.e 30 183 teelleet 40.9 to ese seesteet de e te sen ieTTTeen so.e se SOS lee 60eet 40.0 to e.9 9.t.seet se e to 1.. .99.Itei.sisees e i, o To, .030s.5 lease a i O ...e 7 => 180 letSteet 5 00006 lette 1 1 0.1999 to 99e teetteet et9eces e t e e See i 171 190535ei 515eIIe e i I e des i GT3 999944e1 Ste#eet lette $ e e.3eto 3 /~MUC4 8M,CMT 2Lu n-W M raPu7 fot MC?/1 Su rCT AID
- 408
~
e e e, ga j e s t ae s = P St.C4 visstem to a sitetet Assett.tes teg. see, less ease e 193 testseet etteeee 6e000 t t e 3000 ts +94 se asses esseeee teeee e o e seee to l 173 se3 M M 560900 i9000 i 5 9.7500 le its tesesses seseees les eo e e f.eeee to d 999 eesstset 594e000 56400 9 9 9 seee 9 ) 175 scUllen teleces loses i i 1.53e7 se 19e feassset sttetoe teete e i 1.32ee S ice +0esenes esseeee e e e e s isi iciseiei asTe.. e i... e9e ) aJe i tas teesseet veteeee e stee e e.99to e teseees e 4 oe t t.stee 1 i ses teeseeet 9eeeeee e see, e + 9 sis is 4i-l 154 l e e l 3 Ic i 7 50099 e sies i s.lege i tse seesseet vetee t e,asse e 9ette.es e stee __tes teosetti ee atoe
- e sete t To eses e s 'Ie i 9.315e it 347 39054591 9e'e.e.
ise leissee 9.t.oeee e etee i e.see. 3 i see esteseei .see. e 9eee to i Ise l e 3 MTe l 1cleece e mise i 4.000e le a tai teesseet seiseee e esee t i sees, i s tot eesesset 9eie.ee e stee 9 i ess to is3 iesTTTTT'"tTTTeee e asee a i.3 se J ) toe seesesos toteeee e esos e e.oLie # tes 'tisseet 9eee40e e elee e e safe t 5 leet 1794 e o e e e e.e it tot toes 21st e e.e e.e e.o i _Jee 9eess9e* ee e eeoe t isp 1905e105 e O.e ee e.e 3 q see teenstet e e.e e.e e.e is 4 tot estee9ee e e e e e e o to ,3 e,3 , e a..,7 91e e e..e e.e e..e { ,s e e. e e e. lo 0 ss se tes teenste, e oeeeee s 7 ee nel5570s e e.e e.e e.e le ses sessetet e e.e e.e e.e : __t69 100 e909 eeee e ee t 1 JOB is195 e e.e 0 8 G. i I t e,.s t.o.e.s t 1 e i.e .e...ee.,e,te i e e.e e o e....e 9 c e e e e.e e,iin to t t o. e see.. 311 ice 538ei e 0.9 o.o 0.4449 i sit loosasei o e.e e.e e.sese a 913 toetstet e e eeoe Stee 96 ate leitteel e o e e.e e.ncee 3e stb tetsseet e e.e e.9 e Tsee to 190 settseet e eeee i eeee to 311 1945560i e e e e e i.6ese B ~ Sie tetsseet # e.e e.e 1.4301 '9 fee 9etesset 0 ee e e 4 ffte 3 3 7J e 1995Best 0 0.0 0.0 0.5010 i 311 tetsseet G e.e e.e e.643e t set Seeseest e e este e o e 99te e ee este e o e asse 9 - e sete e e e 9913 is 333 lect?Bei e e.5e43 e.e O. Bees I 334 teesgsel e 0.9188 e.4 e e48e t its teeseest e e et$e e
- 9990 3 335 icel5Bei e I.5535 ee o.3350 is 231 tetosset e f.ests e.e 6.s400 se i
__9 t e eetssees e i esto e e e 9see to 33s seasasei e i.es36 c.e i.eece se ass tosseces e
- 1. osse e.e 1,seee a l;e..e..,0...
..esie. v... se.et.ss..tef.s te.. .e.. e... s s,e , e s. s s e e.t e.se,s e.
- 1. ass, 6 e
j9W- ~ tst ..... e este ee i Stee s c 60054eer e i.eeza e.e
- e. sele
~I tse laisseet e
- t. oste e.e e.ssse e fts teteesee 9et/et?N 5 t I.
23F 'lTIIITI U 3.e.4.sa.3 339 seseetet atta.e,s.31.zia.e,a.se.3 Js3.e.g.gi.3 673 0,6.35 3 753 s.t.43 3 3 138 seieeste se et 338 Je31eoe9 N T E
- T E sir toe gesteeos 9e.e,s.t1 4 toe.e,s.99=e j
toe Setenete sof9tse tibtsete 344 39300ies FeEEEm 105 143 3930e999 esatte 103 fee teSectee esatte__96s Jan 3 300see 7 3IUm 704 see seseesee peeces see __fe9 9996 800 *eett9 eee 344 3e30e19e r eelceos tse lesseseo e 1e10000 see Seteesee e stieese l t 2ni 3 e 31TT5T*7'"T e i c o e s i ses __tst
- sesettee o seseeee j
totestee e steesee Ise Je3TTTee { r s74+0ee ( ses sesetees teme l seten. otto..ee tse seseisee 9eme "!T M NTesaee is=P 33seETe IE i see sesettee teme seleese see setetsee metows to9eece 35e 393e1500 mp h e m.4 sete3Te set teseteos mekend se++ese tot tes fice stesets e as3 s3TT8Tia 1,s.TTTeoce.asisees tse sostetoe .i. e, s e s ec ee. s s e ssee tes see9etoe
- e sseeese teeoooo
""*5Tr7TTUte
- i..seisese,assecoe ist sesseeee et e,eeeeeee.eos
_tes cesseese e i e.eeeeeee 9es 355 i lm ff&UD: 24, COA n l'L(,.)M* WQ. ZA1PUT* f*0A LN!b t 72 7 A/0, 908 f \\ L i ~ a
- f s k ' e-Q,,
i .m i I i [ eesse..*.c easite l. . ensamt 43.es 4,s iss. e... ice 3 ) ease i 6:seios e seev,.... ete case i s sEru&/E5 &aT TE57 09. e17 d.M.6Ad3E45 53F/i*se 3 See age TeaeSo? 3 toe sue 4 Be3 BR4T33M esiTIBM Set eS 9 e*1 I ese steet le Sete 100. e let eeefew 909 7 303 FenEta 793 y e 393 eestsw 903 e See eestew 9ea no Joe FenEss See 91 See egeCET 800 99 3ee e seteeee 13 ass a Je7esce le 300 e 3390000 tg Ste e 50$9966 1 14 all F 504000e 1T 313 e $800940 10 999 e $946044 is als TEMF leles9W 30 219 TEu* 333eeee 19 Ste 9tmo $tteeee AJ JIT tim' 5030000 1 33 ,StG Mabewl 3e1 000 e to 999 matewJ 4eeeeee 35 age krkend.6e0000s 339 94. 88 4 ,3,8 1 set vt-e e se avts e e e t 35 603 T126 GE kW66 e I e 6 1 Se 454484 f.e ee fMeevet __. S e eetetet te 29,0 e 960 ee 99 6.99 08. t $as e to au pele30s 3 31 ettetet e.3088.,e eos $.S.Stae it.eGe 33 Seteeee testeetse smessue as seasip6 esteppece,8easoesee e.e.e os i.e. sees 38 '94395et f.e.,0..e te 0939400 elsete etet ai e 37Te s i Ji l 34 es s.e t e te 3533,98 e left,90 e 130s.3 e.ettae,33 l 1e e43 30* # 9990 te e 9eep te # 9ese.to e 01130 15 e ette 1911.13 l 4e eeJTe e n see e.is se e.as ese e,33 l-ei ee3. set i .s.a. e.. t s 3 .e O es essenet # e iss.. s us. t e.... e. s e e ses.c ,,e se e e.. .si 43 093100g es,33 de 439001 1960,14 ttee,tt tete.39 50
- 631994 1.1540 e 1 eeeee le
~~45 004.3:3e3 4.3460.s.e.es.o.s,e.e,33 et 3t3et 3,3889 ea, ele 0,9 e,e 0,34
- I 43 totstee 3 fele 99 gie e e e ee it
""*"I s es313ai 3.aste.es,dee p.e e.e e,3s to $e31304 3.38te.31.4 f.o.e.e,8.0.39 __es eettlee 3 fede SS att eee e e.18 .a 3 .e.s.a n z i e J,3.s s e,3.3. e 39,3.u.e.e.e......e.e...s.J.s si.J .3
- e.,1,3 i,t
.,3 t 8 . e6 ,te e e e e e e ""'TM5 3 i a i a 3,3 0 s s. e s,3:e e e,e.e e.33 se eastsee t 6 I w E'4u4 6-C: n'tutfr-roca. mott., c; gpz_7,(g yz,,,_c, g(,,, L I-l 1
- O
f' l ,? (i e m ReLees*Peeft efestem to a glLetsf asseClates ist. see. 1943 east 3 s 61 483t386 0.0.0 0,0.e.39 to 0640000 tStete ettes as seest 99403.ei es a c ic.ese, e e s peesc o, e dicee,o e,e e,oice se t f.e.e..e.e.e et sede90e W'eete BJ oeseaei tes. tea,II sil.e.e e3 eesteet elef0WT elet e4 605e0e9 el 55 estel ee.s.3 o te s e,i e.,3 e e t. i t e. e.3749 e es.. sees. ,.11 G. jet 4.le e. ae e.7els e.1553.sB t.e e.e. s. 9.,E 3 5 6.,4 4 i a e,,3 E ane.se e.s.ise.as (' .e s ...ti,9 e. e.sttat e 9 e. 1 e 9 t i ,. e e 3 .3 et.,. e ses se 5e estaten 9.0,1
- We.e.54 e.e.se *Be.e,54 es eege$et t,6*4,0.0.es 9e e agoggga e eagtets temstees av Just?tes et te eenFTei e e.e.e,a e.is.e ie i o e.e.v.ii D.se.e.se.is e e.e.e.se q
9, esteses e. t e.e. t s, e s e.e.e.e.e 3 e. tes.e toe. e 3 e.e.e e,es e.t.e l 03 99 GeSeset # ..e e.e4 N^ eenices os.53 j, 9e
- esitel teee,se 9e e'49tel 4,94 9,$e e.e 998.e e el 77
- AI300 i
to ei'13el e.e.e.e.e.e.04 9e esteese siete settJue se esseses essessees,0c790eces.O e,s.e.o.e,cise I 4,9 ' ess et e.s a,e e,e e e e j, f e, ee9e.e -es, ooe s sa ae7eTel 4.0** i.eas,0.e.e.e.o.e.J e.e.e,s.e.El 44 . 00fet 4096,oe 4 es 6.s o*s 99 ..' W.e e e... I sa seesice itsesee,o e an ..:.al ) si i se : i se toesseee 6 to et e sans il, as i c o s a fee a is a i e.sese se tosseese is to 3 e e.s9se et 19996 0e to te f f e e944 pa le255ese is le J i e.4 Tee es sessaeee to to a t o.etee {I i 04 feettees S to 9 6 9 4940 su 105Bs000 se is a i s.474e a s teesseee a to 3 9 a.stee (( E e,e teesseee e to s e o etie sa seisseee i is a i e,aais to teesttee e t tee feessi e e t 9 ici sessance e i s I 109 te.etelee e a
- _te, e.
. t io .t.. I ice .iee e i ses tosselee e e _..t e s tese tes e e l lei Isetties e i les tetsstee e e ~ 500 9004860s e 9 isc seensloo e i I; set selsstes e e l ett leestlet e e e986 sia se05 ales e e.23 e 8,38,3: 194 te#S3tet 3 i 1' ) eehaesseenSt veestes te e e3&esat AS8oClatts B.C. ett, les3 east 3 ite 944946e0 e e.det? \\ tee teenstet e e.sges ii7 1sil5soi B B.5JsJ tie setsseet e o.asta j ft. teseslot ee esos 1 sao issTsioi e e.saia 1 sts tesesset s e eats _ t ti testatet e e ages iaa lesse'ei a e saia 934 18954.81 5 9.9313 8 999 6 99'fai Tet e e seTTT e ia. 139 feel 33et i e ese teodates t e las seensasi i e tse 6etssses e e e 'St teT95tet t e iza ' TTTTies i e 133
- essenes t e
__ tse teggstet e e nas isesTaoi a e tse seesetet t e 039 tettstet t 9 i 128 seeliJei e. 3 tSe 58493301 e. e tae toes 330s e e iei ieeITlei e, a tes seess3et e. e 143 tetteSet e e las se255303 e. s tot 189s5399 e, e ses teesetet e e iei IeBITIei e. 5 see seassses e. e tee 50e4s300 e e its leilsasi e. p tot seessaee e let sees 9404 e ina ieer3 Tee e ese feesseee e i ___tes teessees e iss seisTsee e i 8" lettsete e 1 9. teSteeet e i inn ioettToe e j see gesessee e tot 19689464 e i isa iseTTTie o tes setteses e - les teosteet se e te iss ieETTi W Te e se see seesseet so.e se =l to9 te#64449 es e to las seTTises se o se Ise setteest se e te b l 19e sete$eet te e 44 iTI i e 3 IT s is 1 5e e ie I its teesseet se e to i s.y -- - up - e no. m 1
+4 t> h. l assase.eesta vens tee te e sI6eset assstlates lat. est. taas '488 8 193 405684e9 50.9 te 49e teetteet se e ** sit seesseen es.s le GTe 184484st Se e 18 999 toesteet geteeos e I t e 996 1 5090000 10000 t 1 e Sefe 9 17e 19051593 bessees tesee i 4 e 7153 le Its 19493801 81100e0 0 1 9 6.500 1 __18e teelStel 4980400 e i I e ses 9 183 5e968be1 515e000 besee B 3 c,3eJe 4 iS$ tee 645Gl S3tecte leese t t 4.3t80 le let 99995609 63Seepe leece t 9 4 seee te Ise teJ555ei 556000s 199e7 I I a.7 Bee le 145 te3Solet 54000ee 1996 I l I.eets le __te$ 90460409 196e000 tetoe t 9 9 9000 8 lea le4TIbe4 581e00e s e eee' i 6 5.eJ87 le ses seasssel asioeee leseo e i 1.33ee 3 toe toegeset geseese e e i e se99 e
- "T59 1815550I~5550000 e i
1 e.6830 t tei toestset seieeee e stee f e.stie i teletes e stee i e.asse 1 __ _ t 9 9 teetteet 9090000 e etoe I e 96t3 to 153 les&Jeei leieses e eles a e toes i les teet3eet 90lette e stes t e 448e e __tel 69044606 9090000 e etee 9 e Sete f 15e lee 55&el Telease G eLee n e.J350 ib 199 tellStet tettese e e'Se i e.Sete se toe leftleet 9eteees e atot 1 e teet to 155 191TBlei 1010000 e eBoo i I.peee le - See 19e855e9 TotteGe e else t 1.5600 S tot lettleet 9eteese e esse e t ess? to Jea se5556en 7eiegeo e eIce i 1 33se a te3 teetesel Telecos e atte t e.se9e. I I toe 99998800 90teeee e else 9 e Se3 I 306 leellfel e e.e 0,9 e.e in toe teGGliel e 4.0 9.4 e,e I __199 teetStet e eeeeeet Jet seeleles e e.e e.e e.9 a See teettfet e S.O 0.0 e.4 96 __tte tellt996 e eeeeee to als 19255194 e e.e e.e s.e se 313 lessetet e e.e e.e e e to Sf3 104969e9 0 eeeeee5 314 isslaies e p.e s.O e.e le 365 1e4689e9 e 0.0 0.0 e.e 3 Sto 6e098109 eeeeeee 1 a37 ieitele1 e 9.e e e e e i Sie feelleet O 4.0 e.e e 1999 t 9 9 0 0.0 e,88e4 9 e e e 0.0 e 9493 to Ste teetteet # ee e e e 4000 9 320 300BTeen e 0.6 e.e 0.848e i 331 toesseet e e.s e e e.3ere 3 fff teetteet eo e o e e Stee et 32J Bellteet e e e O.e e 500e 39 334 99395480 e 9,9 S.0 e flee le 126 18354849 eeeee 1 0000 to 225 leetBeet e e e e.s I.5000 t IST tettsael e 6.e e.e f.e341 se 978 teselset e eeee 9 1994 3 Jar iceTseca e e.e e e e 5970 t 33e 191548e5 e 0.9 e.e 0.5430 t I 886Ase*stata vensteg to
- 51688ef A8so81A?48 8ef. met. 1943 east
? 330 feettlel e e.5899 e.6 e.9950 t e e,$$30 e.*e.44's ? e 6.3630 e.S e.9993 18 e 333 teosteet ee eses e e e seee t j 33J 1e0E3500 e e TieB e.e e. eae i 338 letteset e S.e334 e.e e Se3e 3 __sst t een s t e t e I...sse. e e e s..O. e.a tee to t' aa. i iiise. O 9,8 e as att te3sstel e s.eg3s e.e e. toes to 33s lessesel e 9 esse e e i esee se ""l33 ledTile4 e n.e534 0.0 3 5e03 b i see sesssses e 9.esas e.e t.s3ns te sei testeset e 1 este e e i vste s "" lea icesesei e i.eeze e.e e soie i 343 tessees I I-t o i s e t e,t e t asta e.e e.ss3e e see setree*e i i Jet 30i0919n J3.e.5.58 J 3 3.0.6.54*3 353.e.e.67 J 47..e,4.35+3 733.. 3.e3aa See 34166993 is93.e.B.39*3 tot teleotto le e3 d i 348 3e360000 MTE* tee # 3ee felleest is.e,4 91*e 900 6,4 ties See 2019eete oefftte tiettete 231 JIJeoles reAEIe*Tel $st seSeesso esatso 9e3 l__ts3 sesessee seere= Ses ase aeze573T"7YITT ies 3ss testeseo poetes see - fee sesseece seatsv set asi aFTTTYee r asioeco tse Se30 esse e 3eteeee tee teseeese e ssteees ase aezeiece e seioas s e.e ee e e 3el 343eeieo e tes setettee e i eetce I l""Tla asaslJoe r 574TIee 3se 3eletese tems toteese see tesettee siteeee w """I4 5 3 FTTT13M'e me TW8*313eeee e set te3sttee teme sofeese sea teselsee metoes se9eeee ""YIT""""YTTTTlee es 60=4 esseees J 3Se fo3esese me60=a seeeeee s*t tesettee vivesse e 1,_ ,.,7 J .II.$T..e s e e .i e,50140 ..... e. 0 6.0 0. 5.e.7 0 0 0 9 3 e See ee 99e seetoies t e esseeee steesee a73 seeiosee a e.asloose.sinesse 316 e el.s.e l se 6 e.soceece.s,ee eeee = e. __t** 9 .e..e.. 04 ,,8 6 f/fyQ f.=f" C0We $dY Y Y S O v
e e ee $*w i e e past t estattergets v334tge la e glhttet ASSOCIAfts jag, see, 1933 6859056 SP laruf tota pea tast 9 i. ries......... 6.....was.. ,0 m.... a espeamp's rirs ragsbam s.m sasssas surfi is S e e e seestem evet sortsattattee a e eetente age feastaf l 9 e is . WaITA 3565GTlus si e it eeestet settfge Settfle 33
- Mice 5 EplY WEebE3T E4WD4 te e 3917 avne84 801T v4e14065, 99heng /dueCT f 95/F98CE mWatfB 09 Set e
Setoeee is asa r asseese IT 393 P 3t00000 te see e s esseee - is als e ausseee to 300 e 3100000 ft 909 ffspe 10 0000 aa ass veins geseees 33 See Festew tel to Ste scaffe 400 35 311 795551 Ses 20 T9 e etaf Sego ggeteel Caset 35 e
- tag, mia,
- asn, erT,
- minga, meses, RE5TARI
$9 e 71mf BT 99 8089 8981 Se J3 eseeJol e.Boe, 5 s*4, 1,e85, 3
- lee, lace, Iose St 33 e teme me come name.
teme evet as e 36 643e000 SDwast'S eget SS ai e abavam er rehumsa SS se ee3eest se se si e
- tes asas tresp, muusta er tesomes of 8
43 0e3e101 e 4esie ~, 44 e e ee6vme seer _ r
- q. gee se.stumes 49
- 630349 4.9TS le i
se e l a 7gu T 3 5 46 vs E UIE.) sWagga er TPhumE3 7.. e .I e*,0..t of 3 8 ....me... i,,e. e,. ..i,,i. e.me..., 6.m.. ee20.e. e.e ,e G t 1 I lw _e n-w ~~~~ Im 4 l I 1 )
er .r ee' y T f T I i............ ....l.. .l........................... 69 e yet egets, Palettes esegeUIL, somSEs GF TGLUM48 Se e as seaseos es, as 00 e et e Jun et480 geeas emeefe 3, tese esmese to Justftest s3 e SS te$ttet
- este, 10 64 e
en PJrs insi sons, ort, passatraia#,isurIrJ. 4aas, Jgne, vsbe se ' e 89 eesitet 3
- ete 9 e49 e ee e e to se e
es e sua tatt gges, yggggpf/3),vggplpffgl,3gsg, gym me 9e o 7 osaiasi e.e, e,e, o.e, is 93 e 91
- Guts tt meest te as a flectf due:ftee 7a a
99 e 80me es, ggme samt, gene Tveg 90 e 77 essoces ewIhsT sashJun is e 9e
- JueC9tes tesoffftee teef**lel8' fe sufLEf se s
raam In essagriap,ar as, Emong smeeTm 3: Tsaa .a t e et 60eeest 3eseece seeeeee e 038e9 ee ee 600 ~ ea e Se a duettles felt E9es. 4*T,
- 8&FIPf/SI,et&887T/51, Itas et e
es poesies e, e.e. e e, e.e at e se e svedevoetess mesette av a 9tmo eregeeret vetume se e se e 88me es, Esmo Namt. 80me Tvet se e sa esseoes miseT somv ruerve6 93 e te e asto gteste setvue, meet ytet erti, seven met eg38 B5 IF'al 4TT4 EFT 3A Ebb e56 IFTi LFTA lFT j es e 39 eetatet e sette to sees eeee ee ee ee ee se sa a se e ting 04*festet webums teseltlSMS sofles a sei estease a 6ot e tes e 'imi esf5Sveffettet euett9' les 9 aos setetet 9 e to 1 t,e see e tel e FDeEs Eeuentm M EE Testa ses eesteine a s3see 3 stones 3:eeeee set 44340400 e 120+4 eteeeet Get
- ""f i e Josa5T%e e naa a secesso sei
~ sti o eget teses til tesseete esr9tte gfotsete 112 3eJoeLee r JoEOsee 104 Seleette e 30s#994 L ethAelopeegg egallem to a Sphefe? ASSOCle?Il fet. Gef. 1983 eats 3 Ill fe30eSee e Steeese tes teseesee e 3stsees i11 303ecles a Jipseee les 34300400 e 33eesee 198 1930e999 f f esee 3eseset ias anaesses esioE aesTsos its teseesee peaces set att 1634tese eestte see j 52J 30301100 TsIU M el 194 h I Cskrs Ba-w ce LGA -C021 1NhT coa COCC'PM f VW&$ W I
( c, h l 1 I i l I 8 1 .rg.p.or.... .. e .34...f.....I.T.. 8... t..S l ..L.P.*#.... f.. 8.. I. .34...?.....l.v.. l... t. 3 l 1 . 9 s.......... 3 4 9....w fa....? s....e. v.... 1 9... 3 ...? i. 614a.. 4;&a 3 96
- 3. 4 0
t. ..... 9.. l.. f.. ......t 3.3...s.1 6 a n s. ..iTE3a .3......t 1..*...I t. t.. t.. 3.s.....,... 1 ....es..e 9 i,....., og. 1..
- ......g......
9.. i. .a..... a u.s.a...... 99 ft.. .I .. s. 66.... b 5. .r a....s. i ..e 93 sm.a 99 t 91.. . *. 4 gg ........tt f ..b.4 ... b v 6 s. .......se.t. 9.99 .e.e.e ...... 9. i. ......t 3. g. o.e.t. .9....t. i. .i.J ...a 61 ..s..a. 6.a.......t. 89 ..t...I .. 2 is .i.a i ...a .i .a. 9 4 t #.*.. ..f. 39 ..t I .. 3 I 4 ti..i s... f. .6 .9 0.*... 1. 3 194 e... a ..i... ...J. .ee41 0 1,299.l.9,.t...tf.1....l. 3 To ..f. .e98.. s 3.12... 9..t....T.8..a.8. t... f ..,2 go .eeft.e r. 2. et ) . 993.1 ...........e9. 23 1. .t .t..+..f. .2..L e 193 9................ 33 1 g 9 .f.. ..tp ...L ....................i.. 3. ..39t.3.. ef......... 3 9 ........>.a..... ....i.. t,_ 19 . t.3 9 9.......... .t. 39 3 3.. ..L. pr .a 3 3 s .s . 3 J. 7 i..... 3. .p 3 335 .... 3.. 7 .gg..t.. t.f.....f.e.. .L g 3. e ................... 98 . 3..e.. v.f..f8... 4 .p ,3. .g e ................... 99 Ji 3. sese.3 5.. rer T.T........ s.1.3. ..t..f.f........ ..t.
- . is e
33 .3. .,tv....s. s .t't.a tr....t. J 3 3 >..... 8....., ,s q N.3 .f 3 3.... F...., 1. ..2.es.......f 3.. 1.2 3.. 8........ I 3 .3.. ...f -,s ..t.9 . 2.......... IL 3. . 9 4.e f 19..... v.... ....80...... .s J.... ...g.......... 3. s.. e ...,et..... .s a..... 8...J.......... y -B' /007 E M A ff4 M.'.EW ME4 l;1
- v. 3.....,... v.,.,..,
1 i
- 1..rrrr.rrr...a....
1 t..
- i re,
.a.r n,.m.,.r, u... ....e. -- n.r-- i. i. v.. t... i __._.t.., ........... 6 _ r.... ........i o 1 i. . s.... 3 1 x l ............a... .. 9..,.............,....... s ,3. .e...........,...... 4 .....................s.. s. 1 .. rt 2......... It i
- ___3, a... 9.........
3. ............ a........ l l 1 3 4 __ s. ..e., L. .......,s. .......u 3 3. ....e.
- 1. r:. 1.............,..
q 9 6 /Of Eyi T' ASE4 k /duas 8. 7,' /*.W#5-CeAc;6.1M#Vf.Gt M.Q^D' P'N &MEW -~ ~-~ l I 6. l
.l l .i I l 1 l I l ENCLOSURE 2 P.ISTAR VERIFICATION REPORT l i i l i .}}