ML20214V704

From kanterella
Jump to navigation Jump to search
Forwards Cygna Energy Svc 870522,28 & 0601 Ltrs Re Snow Loads That Should Be Combined W/Nrc Spectra Seismic Loads, Load Data Necessary for Evaluation of Vapor Container & VC column-to-shell Connection,Per SEP Topic III-7.B
ML20214V704
Person / Time
Site: Yankee Rowe
Issue date: 06/04/1987
From: Papanic G
YANKEE ATOMIC ELECTRIC CO.
To: Mckenna E
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM), Office of Nuclear Reactor Regulation
References
TASK-03-07.B, TASK-3-7.B, TASK-RR FYR-87-58, NUDOCS 8706120252
Download: ML20214V704 (19)


Text

.

Telephone (617) 872-8100 TWX 710380u1619 YANKEE ATOMIC ELECTRIC COMPANY

' c-

. At N 1671 Worcester Road, Framingham, Massachusetts 01701

  • Yauxsu w

June 4, 1987 FYR 87-58 United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555 Attention:

Ms. Eileen McKenna, Project Manager Project Directorate I-3 Division of Reactor Projects I/II

References:

(a) License No. DPR-3 (Docket 50-29)

(b) Letter, NRC to YAEC (NYR 87-80), dated April 30, 1987 (c) Letter, YAEC to USNRC (FYR 87-057), dated June 7, 1987

Subject:

SEP Tcpic III - 7.B, Technical Information

Dear Ms. McKenna:

Enclosed are three (3) letters from Cygna Energy Services. These letters contain information requested by the staff and your technical consultants during their review of Topic III-7.B.

Your staff have already received this material informally.

The Cygna letter (86064.031) dated May 28, 1987 responds to your concern that snow loads should be combined with NRC spectra seismic loads.

This Cygna letter is the basis for our response to that issue which the staff raised via Reference (b), Item II.2.B.

The Yankee response, and our commitment to perform a plant upgrade, is presented in Reference (c).

The Cygna letter (86064.032), dated June 1, 1987 presents load data necessary for the evaluation of the Vapor Container (VC) column anchor bolts. The staff has stated that the information provided in this Cygna letter is sufficient to resolve their concern.

The third letter (86064.030), dated May 22, 1987 contains information regarding the VC column-to-shell connection.

As we explained during our meeting of May 18-20, 1987 this connection was evaluated by Cygna during the original SEP Topic III-6 analysis of the VC (c. 1980). At that time it was concluded that this column-to-shell connection was not critically stressed and need not be analyzed in detail. Cygna's VC finite element model is relatively unrefined for this part of the structure; consequently, comprehensive stress data is presently unavailable.

\\

\\

{go\\

8706120252 870604

\\'\\

PDR ADOCK 05000029 P

PDR

United States Nuclear Regulatory Commission FYR 87-58 Page 2 We remain of the opinion that this shell-to-column connection is adequate for all VC load cases.

Very truly yours, YANKEE ATOMIC ELECTRIC COMPANY cL..

ar+-

C. Pap nic, Jr.

/

Senior Project Engineer Licensing CP/gbc Attachments cc USNRC Region 1 USNRC Resident Inspector, YNPS

\\.

=,_

2121 N. Cahfornia Blvd.. Suite 390. Walnut Creek. CA 94596 415/934-5733 May 28,1987 86064.031 Mr. Bruce W. Holmgren Yankee Atomic Electric Company 1671 Worcester Road Framingham, MA 01701

Subject:

Effect of 40 psf Snow Load to the PAB Yankee Rowe SEP Job No. 86064

Dear Bruce:

Cygna has cornpleted a seismic analysis of the PAB with the addition of a 40 psi snow load. This snow load was considered as an additional mass lumped at the PAB roof.

When the building was subjected to NRC spectrum loading, the following effects were observed:

1.

The fundamental frequency of the PAB is shifted from 4.55 Hz to 3.90 Hz (a reduction of 14%). This reduction in frequency is actually less because the in-plane stiffness of the steel roof deck was not considered in the original and new analyses. Consequently, the frequencies of the peaks in the ARS at the steel deck roof locations will be reduced by ! css than 14 Since this percentage is less than the 15% broadening of the spectral peaks, the qualification of the piping systems and equipment will not be affected, in addition, for the systems with fundamental frequencies greater than 5 Hz, the shif t in ARS peaks may reduce their seismic input.

The ARS at the locations of concrete slab roof, radioactive pipe tunnel, and concrete floor slab are not expected to be significantly affected by the additional snow mass (see item 3).

2.

The seismic inertia forces developed in the steel elements and their connections are increased by 38% Consequently, the new vertical diagonal brace along Column Line 8, the brace-to-stab connection at Column Lines G San Francisco Boston Chicago Parstpany

i

=-

Mr. Bruce W. Holmgren Yankee Atomic Electric Comapny Job No. 86064 Page 2

& 8, and the beam-to-shear wall connections at Column Lines G & 5.5, Fb &

6, and Ec & 6 must be upgraded.

All other steel elements and their connections have sufficient capacity to take a 38% load increase.

The upgrade of the brace and connections will be designed in accordance to the "Scismic Reevaluation and Retrofit Criteria for YNPS", Doc. No. DC-1, Rev. 5, May 1987. The preliminary design will be forwarded to you soon.

3.

The additional snow mass is approximately equal to 8.2% and 1.1% of the total tributary mass lumped at the PAB roof and the total mass of the PAB, respectively. Therefore, the effect of the snow mass to the overall dynamic response of the PAB is insignificant.

If you have any questions or require further information, please call Nancy Williams or T.Y. Wang.

Very truly yours, M.N. Shulman Project Manager MNS/jst

1 P

s s

2121 N. Cahfornia Blvd. Suite 390, Walnut Creek, CA 94596 415/934-5733 June 1,1987 86064.032 Mr. Bruce W. Holmgren Yankee Atomic Electric Company 1671 Worcester Road Framingham, MA 01701

Subject:

VC Element Forces for the Evaluation of Column Anchor Bolts Yankee Rowe SEP Job No. 86064

Dear Bruce:

The purpose of this letter is to formally transmit the element forces for the evaluation of the VC column anchor bolts. The same information (with minor modifications as marked) was telecopied to you on May 19, 1987.

The enclosed tables of column forces under different load cases were obtained using the old VC model (as shown in "VC Structural Analysis Report", Rev. 3,4/84) and the new VC model just generated for the evaluation of the soll. Also enclosed is a figure showing the Normal Force - Moment Interaction Diagram of the VC column base connection, with the column forces under different load combinations marked on it.

The results obtained using the old model are superseded by those using the new model.

However, since the new model was not used to perform the analyses for LOCA loads, the results from the old model are tabulated for reference.

If you have any questions, please contact T. Y. Wang.

Very truly yours,

. lh OL M. N. Shulman Project Manager MNS:]st Enclosures San rtancisco noston Chicago Parsippany

Calculation 4L ci Sheet 19111111111111111lll111lllll11 a

Project Prepared By-7yp g;fg/g/

Date Subject g

Checked By STAd1 089h(M System Job No File No.

Analysis No y/p Rev. No Sheet No FORCES AT CDLUMA E5ASE M4lt%

  • OLD " VC MO%L

( "Old Model ' cu. Vc feport, 28. 5, gal tqs4-)

Ele"' 25

( d o'lt 1 9 0 )

Elt"' 24 i % en )

LoaA Cacc or y("M\\M("k)

Lead Combina Non Fx (k)

My (n k)

M (un Fx (k)

M 3

3 I,c.Lo DraA losA 17 5. o

- 0.1

-2.4 210.9

'b. s

-en LC,(1) LOCH 4T= +l94'F

- 0.2-

- 075.2

-l19

~ 0'l Ib-1I44 b L,c,t3) Ambient NT=-70'f o

2Igo.o

-0.]

o t4,p

-Iy24,q L.C. (4) h,blertt AT l7p*F o

-z 130,0 0.7 o

-te,o t 72+. 9 L.C. (5) wa P = 31.C P n

-o.s s25.s

-co. s

-s.\\

t.s

-10 5.9 L C. (D 3-D YCS S 'A 4*05

' A'#

' '6 5 ' '

  • b4 '4 (fesponse Qectrue., AMIySis)

L't (7) 34 W6 f.

1 54.6 t 5957. I I 4794,4 i 65.5 13474 7 d32l2.4 (14sjkw Stet fram AMI id) to +l2) + (4)

I14,s

- 3 00 5.+

- 13. b 2Io. 9 10.G 20h4.6 (0 4 (2) + (4) + (s) 174.3

-2674.6

- 54.1 205.b 22.0 2600,9

,~ m (04 be (4) + (5) + (7) 4 11 4. 7

-90317 -4934.o (t,40.3, H46.7 7043,3 l

4 NRC lads are for reference.

These loads should be replated by those Obioined teing the nta VC ntodel (sa. N. 0-3).

  1. (61 A (0 + N + (4)

Antle, liolf sheft.

0.30 F.g.

( cfr.n. n )

(0 40 + (4) +(F) *(7), hchor Bolt Ghess

  • l.M fy

( Elten. *s )

(NE Git)rt conveMiort (or cl(picest [orce is didtrkt in 6)ds 0 7 eW( 0-3,

Calculation Sheet g(

11111111111111111lllllll111lll Project Prepared By Date Subject Checked By gggq Date g y

Job No File No System gg Analysis No g/4 Rev No g

Sheet No FORCES AT CoutMsl BA% U6inift "HEnl" Vc HODEL

( Alea VC. modd ser Cdt. 96064-/I/F, Set L )

[ng [gge gy Elem. 59 Lkledt '5tb )

EI6m-bl (A! Chi 318 )

LcQ (nbinA b'on 5 (k)

Hyb'V) M 6D Fx (k)

Hy( k)

H; ("Ic) 3 L.C. (i)

P/A/ l.oAd

- 104.7 I b.3

- 17,0

-!4 3.2

-07 L.C. (2) L0th AT* +l49 f C

620,5

-b227 0,I

- Ib. 2

-Il46,6 0

L l. O) b b5Crtt bT * -10 V C. U-94A,\\

- 2 5b.5

-j,I b3.1

- 625,o l'l- (4) 8> bu'6 t1 AT = + 70*F

-0D

-24A,I 25b.5' I. I

- 6 3.I C2xo L. ls l* 0 3 - D A A l.

g 16 j. o

fjfgh, tiq70, t 125.

' 2526.

21094

('he -Hislory kA@de) of ll _ ff= @ -)

( ma.

A

_ N~ s (0 *(2) 1(3)

-104.3 00SA

- g46.2

- t 44,2.

46.2,-Ib%o i

(0 +(z) +(3) +L3)

- 20 3 nl2.

-20&V.

-31,2 2574.'

3570 l

L%_

4 Tkt Loth %md losds niitg "nw " VC model dre net uadable.

6tceae cf col'fer soil Spriog s}iffnesses uwA in Mtt. nssr rnodil, k.

LDIA thermal loads wng nier no/el are upected k k small'a thM tirose obtained using old mo/el.

Thre(cre, the results obWned using old moilef are tensewalively vud here.

Glte. Sq, AcAl Sib $ h'Ck) LeCoch =

Elm,43, Nede sco c$' CLD MCCEL El(#.bl, Aldt TI& Of NEN MODEL =

Glem. AS, 00de 502 cf Cl.O MCOEL (Elen. 60 M undtv (0 + P) Hv,

Anekor Egit %ess - 0.21 Rp hk (O' (2) -H7) + lJ) kdor Bolt Sire.

I S.

2.

(4) Leth f w SI.s pyt Ib.0

-0. l

-zyp. 4

-25.

~7766,

- 6.

b t

un (5) 3-D AlgC 1139 4/A N/A N /A N/A N/4 (f)

OfAd Odd

- b.*1

- 0, I 50.5

-0. 6

-l200,

-2.

(S) 10(4 e 7 s + 14 4

  • F II.9 f.1-10.6
0. I

- 023 24.

I I5)Misnt BTc-N'F 21.0 5.'L l9 0 05

-404.

b5.

(4) LotA P = st.s pl

-Ib.6

p. I z70.4 23.

202.

e.

y N

(O 7-D #Rc t 13.9 W/A N/A 4/4 4/4

  1. /A i

4 fx is caltalated asing 1he

,qm (wmenon node at, sheII) elongaHon cf gleost // 7.

s 4(Eu)

\\/j

()-4xis is 0.l*

Tit 7:6 24 %

to Vertical)

\\(shell neds.)

toA til ti7 2$4

Calculation Sheet g(

ummammes I

L Prepared By:

gg Date y Protect

,g Vc & M Brm 6 M A %

S A i / Q subjeci Job NJ File No.

system g

Analysis No. gg Rev. No. p Sheet No VC REME47 FORCE 6 FOR CDUlHN ~ SHRA- @MMEuft04 GVhllkATION

( From 01053/tl.l F MA II.2.F 5 also sa. VC ftport, bs5, SW)

Elem/

Mf Fx Fg y,

  • Mx My g3 L%d OSe (gy gay

(,,

(;g.g3

(;,.e

(;,,,gy Wode (e) ped toA4 05.1 0

6.I 0.l

-20,

-o, I f

(1) locA AT= 4l44'F

- 10. G 0

-20. 3

-a 0

- 0.

o, (5) Ambient AT= -70'F

-l4.1 p.

-Il. b - S.

0.1 7

(4) Loth f w gl.S tC

'270.5 0.3 22 l 2.

-4657, 5.

f 5

M LS) 3-D k%'C 5 55.0 tt4.1 t 7.~1 dl2I.

4 ~1.

69, h

(t)

Md l004

-%b 0,

- 6. 6

- 0. 8

-lodt.

7.

(3) 14(4 47s + Iff'F 10.5 0-20.3 0.0 3554.

6.

(b)Mitnt Ms-p*F 1A.%

0 II.)

2.

IqpA.

O.

(4) loth P=*I.cPA 210.6

- o. s

-n. \\

-2 r,b.

41.

y 4W IS) 3-D NRC 4 ss.o tr4.1 t13 t\\zl.

t \\147.

t 14s t, x (vert.)

A Yp is the radial force M-$)5 y 4 (e-m (ncymal 10 the shell surface ).

" l9+ (shcIl node )

142 (shell nah j

' Tit 22h Ah!, lli ll/

Sb M4

.=

Calcul tion Sheet (L

W111111111111111111111111111 w.

Project Prepared By g

Date gg Checked By Date Subsect g

l System Job No Fde No.

p Analysie No g Rev. No. p Sheet No.

VC EEMf47 Ff#4E6 FOR 60u/Md - 5Hfit. GNNE4fl04 EVAuAATION

( Froin 61053/tl.l.F kA //.2.F 5 ttbo sa. VC ftP*rt, Ek 3,4/M)

Eleow/

Mal Fu Fg f,

Mg My gg L0ad M C (gy gn

(,,

(;4,gy

(;n.gy

(;,_gy Wode h

(s) feed ira 4 I49.3 0

o. 5

- 2,,

-Ib7.

- e, j

(2) tota AT= fl(f'F

-0. I v.

13 7 23,

-4377

- 7.

(5) Arbient AT= ~70'F

- 0.*L 0.

Il 2 62.

-2399

- 0.

(4) Loth f w gl.5 $e

-01

- 0.1

-23 lo.

I40b.

-l b.

t j

s.

m W) 3-D WRC t 14.0 i9.9 L Is.S t 794 g, i nksb.

124sb.

f (1)

SVAd lead

-l70,0 0,

- 0. b L

-30

- il.

(S) LHA eT* + M4 *F

'l 0-

- l 3.7

-25

-4500.

(5)knbient bTc ')l9'F 02 0

~'l'2

'b2

~4062.

14-(4) LMA P = *I.s pi 01

.I 23

-to.

-40 y

Aw (O

FD #44 4 M.6 d 4.9 in3.G steug

17072, f 3950, X ( s t.)

(N-N 3

/g(E 4 "It14 (shell rioe(,)

747. (Aril riode )

Tit 2b fod lil I17 f

56 214 ie= =

C lation

**' yuh 6,4 ser

*'" 'r -r y NM o* s1>o/e9 yg pfg g g,47 %

om gg,g ca.cneo er sa ci g

g, y r..

,jp so so.

s,.

m, u. py

w. u.,

sn s ua.

pg yc EEMe47 wets 6 PP4 /A.1/MAI-SHRI @NNEvnog EV4u147sp4 (Froon 01093//l*/.F M II.2.F $ Aho SA VC ftfw't, tw.5,4M)

Eleon/

%l F, Fy y,

Mg My Hg Y

(K)

(w)

{g)

(in-k)

(in k)

(in-S.)

Woje h

(s) bted leAA 17

0. *

-Tl Z

~I.

~4.

-0. 2 (1) LDCA AT= Al44*F

-31 9 0.b

- 17 7 p.

2b.

-0&

B) Arbitnt 47e ~M*F

~ 22.**)

I.7

-l1.4 0.2 15.

~1.

@ (4) Leth y = 98.5 pn.

10 l

~ 4. 6

- 272.b I4.

-024I.

57

((5) 3-D ##C l

b W

its.F 4/A N /A N /A N/A N/4 w

g (e) kJ load

-1.1

-as 71,1 I.

- tab 1

- c.

?

(s) talk eTs + /44*F 11.9

- 0. b

  • bT.1 C.

-007.

- IZ.

IS) h d ie d B T s

')> ' F

12.

-l 1 l14

-0.%

~316

-34.

(4)toth P=SIsta

- 10.s As 212.6

-14 2590 37 y

.ht t

W (F) 7-D #RC d15,r 4/A

  1. 4/A 4/4 4/4
  1. /A Y fx IS caltaleted using the 2us (common node with shell) clongals'e.u. AC Clemed 140, 4

$)

td g

h \\/

S-dxis is o.l*

1,,

e usim,,

tok '05 14 0

%eII nes.t I

45 so

~

=

Calculation Sheet

(

I s

Prepared By g

Date 5'MM Pro,eci gg g _ g Subject Checked By y

g Date a

System Joe No.

File No p

Analysis No gf4 Mov.No p Sheet No.

VC REME47 WRCES FOR CoulHAl-SHRL. wMMEDfroa EVAuaATION

( Froon esoas/tt./ F MA // 2 2 5 also sa. VC ftput, hv.5,4/M)

Elm /

Mal F, Fg

  • y, My My g3 b

(K)

(w)

(k) lin k) lin M (irs-L.)

Wode y

(i)

Dred lp44 40,5

-7. 0

0. 3 1.

-0,3

-Jo, h

(1) LDCA AT= 4l44'F

- 31 7

20. l 0.

0.0 e'1

- G.

(B) Ambient AT* *70'F

-I T. *I 10.0

- p. I I.

0. 2-

-5 (4) LA M P= 9I.5 pra

-111.9

-2I.6

-o. G

-s I.

30.

-45t.4.

m w) 3-0 cc us.,

su

+s.1 slog.

1 io.

2, t

(f)

Pred lead

-103.9 10

- o.5

- I.

- 54.

-l205.

t N

r (3) 10(4 eTs + /44'F 51 7

-20 l 0-

- 0. 0 1.

3S25 (b)MitnC bT*-N'F l11

- 10. 6 0l

-l.

10 1997 (4) LCM P = *l.s ed 1,1 9 2I.0 o.C si.

14 o.

y ht W

(F) 7-D #Rd t 45. l "I.14-1 11,4-

t104, t 2350,
t (3cg, X(Vert)
  • fy is Oc radiol [crce (g.3) 3 g (g 9)

{ r1stmAl fo the Ghtil 4W(ale ).

ggs (c,hell node) o 2hb (Gliell ncde) rie 1st A'od 103 I40 tbb

.=

Calculation Sheet g

,i ammmmmum 1

aa*a av y,g g _ ap Wun o coM

,,o,ec, so*ci yc g,a s,w 6.ATAh1

6/11/'37 System Job No.

Feie No.

gp Analysis No gf4 Rev. No. p Sheet No.

VC REME47 FCRLES we ca.t/MM-SHEu-WNMG4 Tron EVALUATION

( Frorn 950as/tl.I.F MA II.2.F 5 also ss VC ft/wt, EW.5,4/M)

Elm /

Mal Fx Fg y,

My gy Hg Ub (x)

(w)

(k)

(in-k) lin k)

(in-6 )

Wode f

(e) feed lpA4 175.I

- 0. 5

-0. 2

-4 54

-2b2.

(1) LDc4 AT= 4l44'F

-0. 8

-Is.b o.

-I2,

~5

-4sso, (5) Arbient AT= -70'F

-0. +

-to, s 0.

-55

-10.

-2172.

(4) (# 4 f = 71.5 pf6'

- 5.%

3,I o.I 6

-42.

/850 1

m W) 3-D AIRC i S~l. +

t\\\\.6 te,q tre14.

4230+,

1:44 5, f

(t)

Dead 1904

-\\95.9 o.5 0.2 4.

55

-7I.

V g

(s) loth

'T* +144*F 0.I I5.6 o.

l 2, I S.

~4450.

(5)Misnt kTc-YF 0.4 10 3 o.

33 II.

- 44Ib.

(4) LCM P = *I.s pi S.1

-3 1

-o. I

-b.

- 2 5.

In.

y

.atw i5) 3-D WRC 3 57.V tII, e ts,q t2624.

t147b, tbt01.

% (vert.

u 5>1 w pr.w)3 110 (shell node)

menat, toA 103

- #4o

'Is 9s08 N

Culation 1

Project Prepared By' g

Date g g y ; D.ie g g g enecusa sy:

sue,eci gc p System Job No.

File No.

l Sheet No.

Anolytes No. Q/4 Rev. No.

g

,q j

VC GLEMEdr TDRCES 702 GLUMN-SHELL MAlblECTIchi EVALUATION

( From 65033//l.l.F and ll 2. F ; aICO Ge VC fffort, ley.5 )

To'e fod Axial Force (kips)

Load cme Etern.&Elem.& Gen @ Glem.&

b)

M) Load

- 2. 0

-2, \\

- 2. b

- 2. s U) t.DCA bT= +I99'F

- 5. 6

-4.s

-4.1

-4. I W) Arnbiers t AT = ~ 70'F

-I. 0 25

2. 0 s0 H)

Leif P= 5I.5 psi 20.tl-20.6 20.9 1b.9 (S) 3-D hlRC i R A.0 1A. 5 t 12.1 ito2. s 4 Element letalion Ne ShMh Al-510 N-6 I

i

)

t906 00

.