ML20211C911
| ML20211C911 | |
| Person / Time | |
|---|---|
| Site: | 07201024 |
| Issue date: | 06/02/1999 |
| From: | TRANSNUCLEAR, INC. |
| To: | |
| Shared Package | |
| ML20211C843 | List: |
| References | |
| 1051-35, 1051-35-R00, NUDOCS 9908260131 | |
| Download: ML20211C911 (8) | |
Text
p TRANSNUCLEAR,INC.
4#
1-14-99 Modal Analysis-DTS Roof I
8 5
m m
MuMED 8V Plate System 1051-35 3C f
~d 8J O
m ciecuso ev I-Objective The objective of this calculation is to document the modal analysis of Dry Transfer System roof and provide mode shapes and participation factors in frequency range of 0 to 50 Hz.
H - References j
~
- 1. TN Calc. No. 1051-29, Rev.0, " Dead Weight, Live 1.oads and Section Properties".
- 2. TN DWG. No. 1051-27, Rev.1, " Dry Transfer System Roof Plate, Protective Cover and Mezzanine Details".
- 3. AISC, Manual of Steel Construction", Eighth Edition.
- 4. ANSYS Users Manual, Rev. 5.2, Volumes 1 to 4,1995, executed on HP UNIX Workstation HAL, see test report E-14715 for verification.
- 5. Ansys Output Files:
roofvib.db roofvib.rst III-Assumptions
- 1. The roof plate and beams are assumed simply supported at the periphery.
- 2. Vibration modes are extracted and expanded to cover 0 to 50 Hz. frequency range.
IV - Calculations, Discussion and Results A modal analysis was performed using the ANSYS Finite Element Program (Ref. 4). A three-dimensional finite element model of the roof plate system was constructed using SHELL63 element (for 7-inch thick plate), BEAM 4 element (for five W14x550 beams) and MASS 21 (for concentrated weight of 13,629 lbs. at two locations). The plate and beams were coupled in all degrees of freedom since common nodes were used for beam and plate elements. The plate was assumed simply suppoited at its periphery. The plate and beam dimensions were taken from Ref.2. The equipment weight wastaken from Ref.l. Figures 1 and 2 show the finite element model, load and displacement boundary conditions. Program selected 500 master degrees-of-freedom were used in the analysis. Enough modes were expanded to obtain mode shape plots to cover 0 to 50 Hz. frequency range.
i The following material properties were used for beam and plate (A-36 carbon steel) in the analysis:
9908260131 990818 PDR ADOCK 07201024 PDR t
J
TRANSNUCLEAR,INC.
4;fp 1 14-99 Modal Analysis - DTS Roof 2
a m
wn y
ensemmosv Plate 5ystem 1051-35 a c-c/z/w calc.wo o
cuscusosy 8
6 Modulus of Elasticity, E = 29.5 x 10 psi 2
Density = 0.289/386.4 =0.000748 lb.sec /in 1
Poisson's ratio, p = 0.3 The resulting four modes, participation factors and effective mass (in Z - direction) are summarized in Table 1. The first three modes cover the O to 50 Hz. frequency range. The mode shape plots for these modes are shown in Figures 3,4 and 5.
1
TRANSNUCLEAR,INC.
4 sp 1-14-99 Modal Analysis-DTS Roof 3
8 me e
y PREP aiDSy Plate System 1051-35 M
$ I!N cate No 0
oan nov CHECNEDSY Table 1 DTS Roof' Plate - Modal Analysis Results Summarv Mode Number Frequency Participation Factor Effective Mass 2
(Hz)
Z (transverse)
(ib.sec /in)
Direction i
17.4 20.5 419.1 2
34.6
-0.05 0.003 3
54.2 0.46 0.21
~
4 65.0
-6.54 42.8 i
1
TRANSNUCLEAR,INC.
45b 1-14-99 Modal Analysis - DTS Roof 4
8 o,1, wt, an y
PREP W D8v Plate System 1051-35 ac DATE REV CHECKED BY Figure 1 Finite Element Model - DTS Roof Plate 3
ANSYS 5.2 JAN 14 1999 11:24:43 ELEMENTS TYPE NUM XV
-1 YV
-2 2V
-3 DIST-178.969 XF
-171.5 YF
-122 DTS Roof Plate - Modal Analysis
TRANSNUCLEAR, INC.
1 45) 1-14 99 Modal Analysis - DTS Roof 5
8 oars y,7t,
,,y y
NARED 8Y Pl8tc S Stem 1051-35 Y
9 0
OATE CHECKED BY Figure 2 Finite Element Model Boundary Conditic,ns - DTS Roof Plate i
1 ANSYS 5.2 JAN 14 1999 11:33:47 ELEMENTS TYPE NUM U
MV 1
YV
-2 2V
-3
- DIST-227.886
- MF
-171.5
- VF
-122 2-BUFFER I
i DTS Roof Plate - Modal Analysis 1
T gy H
d 4 tb NOON b
Q ag" "'g s
kk3>eg"g?,'As,,
N Q
<w"s%_
l O
N A
4 O.
4
~.
]/f//
////
xyM/M/,
{llll//
1 f//
- HJ
- H/)
f///f/
- ////NH//
fpfff/JH//M/H///f/HH////////////fy flyr/HHH/HH//HJHI///HHH/ru/77 nrr/NH/HHH/HJJHHJ/HHH/HU//
/
prp sssh Ww$$#E4/, gC,sNk E
NNs vs
~
- r m
gs*k
$4 e
a
- s s' a a '.t ~
~. ~
s s % " a 4; C
+
b Q % d, ;r s
e s
0
.' h e. s N 4
~
sA%
N 4
$s*
~N k
s k g s g.A s
4 s
- 8
%g u
- e wDf:e s~
~
a cv a
4 eD
~
N A
+
s
r N
OH
., p e.
y 00%
1 w
D&
D E
E f$
E.
O w
1 39 sa::
wH!
n
/I)T/HIH 71HUNIf/HHHf
+
NH/UHffHH nrunst/HrHHHfI/HHHHH/HHf77
/IIN/HH/HH/H/11/H/HfH/HHHfH
/HHH/HHHfffHfUHHHHH/NHHH 1/H/H//HHHHHIIflHNIH/"###'
"UHH/HUfHf/HHHf
/HHH/H/Hf
/HH E
g$$
N<XON4XU CNmMMcWL>
mmmHCC<M EMMCHHe>E p g M
EM 9
X < m cu m to e.
m 5
g me i,w s e aa e e a a e a e e a r-a w M
,g D
W W N W ) se W WWN.
H.
N a
C w s N g m.
mo o
a om m
g mMHe W
WNW@HMWD CO W
=
- NNN.
m m
E WN M
g
=
--.w..
w N
m
.S 7
m WN N CD N
N E
W N
d CD NN NN e
Hq k[:
7 4
LR o e m
@O-%
?
2 h
. t:s w
-4 En
- g 3 flillilllHHil!IH HHilHH/HHHHil O
IHillilHilif f HIH RHHHHHHHHIH O
Lil(H HIIH niHHIIHUHHH/H/lHH in !I HI ITTlHI IIHf EH////H/H// /HilJ Illlif fyylgulEllHHHHU////III g
innytrutilHHHHH/HHUI
.n D
linty ant s!!H/HHHilflill
\\
suRHHHlf,il
{
r+
33 fillff fHH jjyff, 7 O
1111111111 fj 1lllllllll nu n !I 2
O EL
_ fllff EM U
lilllH llilHil 3
s /Hilli 8
- fill 7
- st en yy,,_:HiliI yy",;_'n/HII sn IHII UlliI/
I HIH&fjj" lHHI
>H1HI yy:- ilHHil m
j yfje
/ HHn=tllllIII/
j m IHIIIIi mrtIIHii
/HHH/J ""itHHI1 W ' ' ' ' '
/ //ll,H, Ulf "T
~2 111
///////
/ /////
HlHUN tuHH1111i Hi HHilllt[
IHI gjjjy y I(HHHIH gyyyg yy l'
111111111 1I ffj; 7p D HluHHlH/UlHUHHHIHHif HilTI UllHHJH/HHHHIHIHl0fHHIHIIl IHHlHH/HilUIH KHH1Hf f H HIIHTl UlHHHHHH/lIH UlHHHiHIHHHIf HHHHHHHHHHRHHHHHH HiHIl h
N<XQN<Xc c llO"t1to M C H L >
n -n,s H < < < th 2 th l10 C - I H e > Z m
Ch O
X < m cu m th se Z th R 0 e
-4 th e 11 C4 4
g$
s e a e a e e e e a a e ar@HM 5
o m W H ) es (d HHHHWe N A
5*
.NNm..mN o
a nW m
=
s D
D NNHAmWhm N
mmh +
& N 40 *
(#1 N
2 to N C
H e
4 F9p la U163 La W N Em H
m La
{
M N
H mm m
N Z
m h
p%9
-4 o
W C
E Zu t
4*
h m
1 mLS W
f.
m 7
.