ML20211A641

From kanterella
Jump to navigation Jump to search
Provides Info for plant-specific site-specific Application of Safety Goals & Definition of Subsidiary Criteria
ML20211A641
Person / Time
Issue date: 06/27/1997
From: Sherry R
Advisory Committee on Reactor Safeguards
To:
Advisory Committee on Reactor Safeguards
Shared Package
ML20211A627 List:
References
ACRS-R-1723, NUDOCS 9709240319
Download: ML20211A641 (30)


Text

[T UNITED STATES P

g$

NUCLEAR REGULATORY COMMISSION y

i ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

[

rAsHINIToN, D. C. 20656 4

4 June 27,1997 MEMORANDUM TO:

ACRS Members FROM:

Rick Sherry, Senior ACRS Fellow (d

SUBJECT:

CONSIDERATIONS FOR PLANT SPECIFIC, SITE SPECIFIC APPLICATION OF SAFETY GOALS AND DEFINITION OF SUBSIDIARY CRITERIA Backcround in its November 18,1996 report (ACRS-1996), the ACRS stated that "the safety goals and subsidiary objectives can and should be used to derive guidelines for plant specific applications." In its April 11,1997 report (ACRS-1997), the ACRS stated further that "Quantification of the LERF [large, early release frequency) at each site is needed to ensure the appropriateness of the choice of the LERF acceptance criterion proposed in draft Regulatory Guide DG-1061 and draft Standard Review Plan sections that support risk-informed, performance-based regulation."

In a Staff Requirements Memorandum dated April 15,1997 (SRM 1997a), the Commission stated (referring to Direction Setting Issue 12), "The staff should develop objective standard (s) for the application of risk-informed, performance-based and risk-informed less prescriptive approaches to regulations on an expedited basis. Such standard (s) could be in the form of individual plant safety goals and subsidiary objective performance criteria as discussed in the 4

issue paper."

In a staff requirements memorandum dated May 27,1997 (SRM 1997b), the Commission

" requested that the ACRS determine the change in the CDF and LERF from site to site, when these lower-tier criteria are derived from the prompt fatality quantitative health objectives."

This memorandum addresses this request from the Commission.

halts To respond to this request, the following issues need to be addressed:

Is there sufficient site-to-site variability to warrant site specific determination of lower-level acceptance criteria - e.g., LERF criteria?

ATTACHMENT 1 9709240319 970919 PDR ACRS R-1723 PDR

D s

Can this range of variability be evaluated and can an appropriate bound be established on this variability?

Can generic criteria or site specific criteria (if required) be determined using simplified approximate methods?

This memorandum will address these issues.

Parameters Imoortant to Early Fatality Risk This section discusses those parameters that are (potentially) important to early fatality risk.

These will be discussed in two categories. The first category includes those parameters that are determined by plant design / plant operations and that should be captured in a proper definition of the LERF. The second category includes those prameters that are determined by site characteristics.

The plant design / plant operations related parameters potentially important to early fatality risk:

Source Term Characteristics magnitude of the fission product release from containment (particularly the volatile I and Te groups) release thermal energy and release height Timing Characteristics i

timing of release (relative to the start of protective actions)- effective evacuation begins before the start of radionuclide release.

absolute time of release relative to reactor shutdown (for radionuclide decay considerations)

The site related parameters potentially important to the early fatality risk are:

sector population distribution wind direction frequency distribution

=

variability due to site to site variations in local meteorology size of exclusion boundary

3 This memorandum focuses on this second category of parameters.

Simolified Model for Individual Early Fatality Risk A simple relationship between the individual early fatality frequency (IEFF) and the LERF has been defined (Sherry-1997) as:

IEFF = LERF x El Equation I 16

[ P, x F, El = Exposure Index = "',,

Equatior. ',

[ P, del l

where: F, = the relative frequency wind blows toward sector i P, = population in sector I within one mile of the plant For site-specific analyses, it has been our practice to consider the El as a site-specific 4

constant. In this analysis, the El is treated as a random variable, which represents the variability (across the spectrum of sites) of the site related parameters important to early fatality risk. The El can be represented as:

El a fp,w,r,m) where:

p = population distribution w = the wind direction frequency distribution r = minimum radius of the exclusion zone boundary m = the local meteorology i

In the following analyses, we will construct the distribution for the EI. This will involve a three step process. First, we will determine the distribution resulting from site-to-site population and wind direction frequency variations. In the second step, we will add the variability from differences in exclusion zone boundary distances. Finally, we will add the variability from differences in the local meteorology.

Step 1: Variability in Population Distribution and Wind Direction Frequency The exposure index for each nuclear plant site has been evaluated using the relationship shown in Equation 2. The. wind direction frequencies for each plant site were taken from Appendix A of the Sandia Siting Study (NRC-1982) and are shown in Attachment 2. The

v 4

population distribution around each plant was calculated using the SECPOP90 computer code.' The SECPOP90 code contains a database of 1990/1992 U.S. Census data. The SECPOP90 code requires the map coordinates of each plant; these were cbtained from the -

geospatial data available on the NRC Wide World Web server. These coordinates are shown in Attachment 1.

The safety goal policy statement notes that the QHO for individaal early fatalities should be evaluated for the " average individual... locationally who resides within a mile of the plant site boundary." In NUREG 1150, " Severe Accident Risks: An Assessment for Five U.S.

Nuclear Power Plants," the IEFF safety goal QHO was evaluated in the 1 mile annular ring with interior radius equal to the minimum distance to the (irregularly) shaped exclusion zone 2

boundary. This interpretation of the evaluation region has been accepted for use in this study.

j shows the minimum exclusion distances for each plant site (NRC-1982).'

l To simplify the analyses, the SECPOP90 code was set up to give the population distribution for three fixed radial rings (0-1 mile,1-1.5 miles and 1.5-2 miles). Since the minimum

[

exclusion radius of all but three plants is less than 1 mile, this range bracketed the evaluation

{

distance (exclusion zone boundary + 1 mile) for most plants. For those plants with exclusion zones less than 1 mile, Els were calculated for distances of 1,1.5, and 2 miles from the plant i

and the El at the exclusion zone boundary plus 1 mile was determined by interpolation. For the plants with exclusion zones greater than 1 mile, the Els were calculated directly using the SECPOP90 code.

]

Table I shows the calculated Els following step 1 for each plant, Figure 1 shows a histogram i

of the results. The statistics of the distribution are shown in Table 2. The mean and median values of the distribution are both approximately 0.61 and the 95th percentile value is 0.85, l

resulting in a ratio of the 95th percentile value to the mean value equal to 1.4.

i Step 2: Variability Resulting From Differences in Site Boundary Radius i

The radii of the minimum exclusion zone boundary range from a low of 0.17 mile to 1.33 miles, with a median value of 0.51 mile and a mean value of 0.56 miles. This range of differences potentially could have a significant effect on the site-to-site variability in individual early fatality frequency. In the Sandia siting study, a factor of r " was used to represent the approximate decrease in risk with distance from the plant. Hcnce, for the range in exclusion zone boundary distances given above the potential site-to site variation expressed as a risk ratio could be as much as:

In the above calculation the ratio is evaluated at the midpoint of the radial ring bounded on i

i The potential for significant error in the population distribution close to the site exists due to the procedure for assigning population from the Census Block Data to the compass sectors and radial rings surrounding a plant. This potential uncertainty was l

not evaluated in this study.

i p

5 i

1 j~

g g,,,,(0.17+0.5)'3 = 4.5 1

(1.33 +0.5)

I l

the inside by the exclusion zone minimum radius and on the outside by the exclusion zone i

minimum radius plus 1 mile. The potential variability due to differences in the exclusion i

sone boundary was evaluated by modifying the El so that:

l q

16

[ P, F,

Ei, = " '

x Equation 3

[l +(r-r,,,))'d el where:

r = the site-specyle exclusion tone minimum radius ta

  • the median mlue of exclusion zone minimum rodil

- The formn' "on of the second terra in this equation is such that s' the median value for the exclusion this term is equal to 1. For values of r less than the median value the term is greater tha.

and for values of r greater than the median radius, the value is less than 1.

The calculated values for the exposure index shown in equation 3 for each site are provided in Table 1 and a histogram of the results is shown in Figure 2. The statistics of the distribution are shown in Table 2. The distribution has a mean value of 0.062, a median value of 0.058, and a 95th percentile value of 0.114. The ratio of the 95th percentile value to the mean value is1.8.

Step 3: Variability Resulting From Differences in Local Site Meteorology In addition to the variability in early fatality risk resulting from differences in site population distribution, wind direction frequency, and size of the exclusion zone, the local meteorology also contributes to site to site vedability. In the Sandia siting study a sensitivity analysis was performed to determine the site-to site variability potentially arising from differences in the local meteorology. This analysis found that there was leu than a factor of two difference in the mean number of early fatalities over a set of 29 weather records selected to represent the spectrum of meteorological conditions found within the continental United States. The analysis results were derived from CRAC code calculations using a dermed source terni, the population distribution, and wind direction frequency tu s high population density site, li.

these calculations, only the, weather record was modified from calculation to calculation.

A distribution ofindividual early fatalities was constructed to represent the potential

~.

1

.. u.-.

i i

I 6

?

variability in local meteorology and this distribution was then combined with the El distribution determined from equation 2. The modified exposure index is shown in Equation 4.

i B, = 5, x e, kuation 4 where:

e, = a random nariaNe with unit nedian-i Random variable (RV) c, represents the variability resulting from site to site differences in the local meteorology. The distribution of c, was constructed so the RV has a median value of 1.0 and the shape of the distribution was selected to approximate the results from the Sandia siting study. The distribution was selected to be lognormal with a 90 percentile probability interval (95th/5th) equal to s. factor of 2 (Error Factor = 1.41). The distribution 1

on Et, was then determined by Monte Carlo simulation, assuming El, and c, are independent, j

The distribution for the exposure index in Equation 4 is shown in Figure 3. The statistics of the distribution are shown in Table 2. The distribution has a mean value of 0.063, a median value of 0.057 and a 95th percentile value of 0.126. The ratio of the 95th percentile value to the mean value is 2.0, Procedure for Fatimatino Subairliary LERF Criteria An approach to deriving subsidiary LERF criteria from the safety goal QHO for individual early fatality risk is discussed below. We start with Equation 1 and recognize that this is

_ generally not an enct equality. More accurately stated:--

IEFF =LERF x B or-IEFF=

x LERF x 5 Equation 5 where: - C = proportionality constant To determine tl.e value of C we must first of all have a precise physical dermition of LERF in terms of the characteristics described earlier in the section entitled " Parameters Important to Early Fatality Risk.'? With this definition in hand, the value of the constant C can be ;

L estimated using the (mean values for) LERF and IEFF from existing Level 3 probabilistic risk assessmems (PRAs) such as NUREO 1150 and site. specific exposure index values from this study (or calculated using the same population distribution and wind direction frequency input information used in the PRAs for the consequence analyses),

i

4 7

i i

l Rearranging Equation 5 and substituting the value of the safety goal QHO for individual early J

fatality risk (QHoun) for the IEFF yields the following relationship for deriving the 4

subsidiary LERP criteria (LERFJ:

l LERF,= C x Equation 6 El 1

To account for variability in the site parameters important to individual early fatality risk, the constant C can be adjusted to bound the results for the population of sites. For example, on 1

the basis of the results from this study indicating that the 95th percentile value of the El was j

two times the mean value, the value of C could be reduced by a factor of 2 to bound this variability (at the 95th percentile level). This would result in a reduction in the LERF criteria by a factor of 2.

Conclusions and Recommeml=elons The range of variability due to site to site populatloa distribution, wind direction frequency j

distribution, exclusion zone size, and meteorology record hai, been evaluated. The ratio of the j

95th percentile value to the mean value of the exposure hdex (%) is approximately 2.

i j

Since this variability is much less than the magnitude of the other uncenalnties associated with the (Level I and Level 2 PRA) calculation of the LERF, it is judged that there is insufficient site to site variability in individual early fatality risk to warrant development of l

site specific subsidiary LERF criteria. Hence, a single lower level (LERF) criterion can be determined on a generic basis, i

l The information provided on the variability of the individual early fatality risk resulting from site related parameters can be used to develop an appropriate factor to bound the variability.

f Derivation of a subsidiary LERF criterion, however, cannot proceed until a physical definition of the LERF is developed in terms of the parameters, important to early fatality risk, which i

have been identified above.

3 References (ACRS 1996)

- Plant Specific Application of Safety Goals," Repon to Shirley A.

Jackson, Chairman, U.S. Nuclear Regulatory Commission from T. S.

Kress, Chairman, Advisory Committee on Reactor Safeguards, November Ig,1996.

(ACRS 1997)

"RishBased Regulatory Acceptance Criteria for Plant Specific Application of Safety Goals," Report to Shirley A. Jackson, Chairman,

- - _ _ _ ~. _.., _ _. _.. - - _ _.... _. _ _. _ _ _ _ _. _ _. _ _ _ _. _.. _ _ _. _ _ _ - - - - - -

8 U.S. Nuclear Regulatory Commission from R. L. Seale, Chairman, Addiwry Committee on Reactor Safeguards, April 11,1997.

(NRC 1982)

Aldrich, D.C., et al, " Technical Guidance for Siting Criteria Development," NURE0/CR 2239, December,1982.

(Sherry 1997)

" Methodology for Estimating Offsite Early Fatality Risk in the Absence of a Level 3 PRA," Attachment 2 to (ACRS,1997)

(SRM 1997a)

" Staff Requirement - COMSECY 96 01 Risk Informed, Performance.

Based Regulation (DSI 12)," Memorandum to L. Joseph Callan, L,xecutive Director for Operations, and Karen D. Cyr, General Counsel, from Annette L. Vietti Cook, Acting Secretary, U.S. Nuclear Regulatory Commission, dated April 15,1997.

(SRM 1997b)

" Staff Requirement Meeting with the Advisory Committee on Reactor Safeguards," Memorandum to John T. Larkins, Executive Director ACRS, from John Hoyle, Secretary, U.S. Nuclear Regulatory Commission, dated May 27,1997.

k t

5

_e m g

,,m,.

-== ~ v

-"v**'*'"

' " " " * * ~ ~

l 1

i 9

Table 1 - Site Specific Exposure Indices (Step 1 and Step 2) l l

Site Step 1 Step 2 El Et, Arkansas 1,2 0.077 0.063 Beaver Valley 1,2 0.066 0.082 l

Big Rock Point 0.051 0.051 L

Browns Feny 1,2,3 0.081 0.058 Braidwood 1,2 0.077 0.114 Brunswick 1,2 0.%0 0.055 Byron 1,2 0.059 0.086 Callaway 0.098 0.078 Calvert Cli!Ts 1,2 0.040 0.030 Catawba 1,2 0.052 0.055 Clinton 0.086 0.075 Comanche Peak 1,2 0.043 0,027 D.C. Cook 1,2 0.061 0.075 Cooper 0.033 0.036 Crystal River 3 0.045 0.029 Davis Besse 0.045 0.055 Diablo Canyon 1,2 0.063 0.063 Dresden 2,3 0.079 0.091 Duane Arnold 0.056 0.085 Farley 1,2 0.061 0.043 Fermi 2 0.035 0.032 Fitzpatrick 0.053 0.046 Fprt Calhoun 0.079 0.130

10 Oinna 0.045 0.066 Grand Gulf 0.077 0.082 Hatch 1,2 0.062 0.043 Indian Point 2,3 0.078 0.134 Kewaunee 0.040 0.029 LaSalle 1,2 0.045 0.062 Limerick 1,2 0.071 0.076 Maine Yankee 0.056 0.%9 McQuite 1,2 0.052 0.055 Millstone 1,2,3 0.081 0.113 Monticello 0.066 0.093 Nine Mile Point 1,2 0.055 0.031 North Anna 1,2 0.076 0.049 Oconee 1,2,3 0.072 0.040 Oyster Creek 0.082 0.129 Palisades 0.058 0.066 Palo Verde 1,2,3 0.052 0.048 Peach Bottom 2,3 0.047 0.047 Perry 0.055 0.050 Pilgrim 0.046 0.069 Point Beach 1,2 0.052 0.038 Praire Island 1,2 0.094 0.105 Quad Cities 1,2 0.068 0.109 Riverbend 0.065 0.060 H. B. Robinson 0,062 0.095 St. Lucie 1,2 0.042 0.024

II Salem 1,2/ Hope 0.063 0.047 Creek San Onofre 2,3 0.070 0.071 Seabrook 0.052 0.048 Sequoyah 1,2 0.022 0.028 Shearon Harris 0.062 0.025 South Texas 1,2 0.115 0.071 Summer 0.064 0.035 Surry 1,2 0.056 0.073 Susquehanna 1,2 0.062 0.081 Three Mile Island 0.066 0.081 Turkey Point 3,4 0.077 0.053 Vermont Yankee 0.040 0.075 Vogtle 1,2 0.063 0.049 Waterford 3 0.071 0.065 Watts Bar 0.042 0.030 WNP 2 0.063 0.028 Wolf Creek 0.055 0.040 Zion 1,2

- 0.039 0.036

12 Table 2 - Summary of Exposure Index Distribution Statistics Step 1 Step 2 Step 3 Statistic El Ei, El, mean

.%09

.0623

.0633 median

.0611

.0582

.0570 5th percentile-

.0394

.0282

.0249 95th percentile

.0849

.1136

.1260 97.5 percentile

.1423 standard deviation

.0166

.0273

.0314 t

Figure 1 - Exposure indices -Step 1 12 l

l 8

l i

i*

I m

i i

4 l

2 o

l 0.03 c.035 0.045 0.05 e.055 0.os o.oss o.07 e.075 c.os o.oss o.os 0.o95 o.1 0.1os o.11 0.115 j

Site-Specific Exposure Indices i

i

Figure 2 - Exposure Indices - Step 2 12 10 i

8 2

5' E

4 s

i 2

0 0.03 0.035 0.045 0.05 0.055 9.M 8.065 0.97 0.975 S.08 8.005 8.99 9.995 0.1 0.195 0.11 S.115 Site-Specific Exposure hulices a

Figure 3 - Exposure index - Step 3 Cell D7 Frequency Chart 10,000 Trials Shown

.026-263 i

.020 197.2 h

"f1

=

131.5 m; 3

013' l

i 4

I C

A 0

i 3

C l

I g

.007 65.75

)!

lil Amut i..-

0

.000 i

4 0.0000 0.0625 0.1250 0.1875 0.2500 G

1

- _ _. _._. _ =.. _ -

4 cc:

J. Larkins R. Savio S. Duralswamy A. Cronenberg ACRS Senior Engineers J

4 9

. - Site Coordinates Site Location State Latitude Longitude ARKANSAS NUCLEAR RUSSELLVILLE AR 361336361336931361 BEAVER VALLEY SHIPPINGPORT PA 403719 802602 BIO ROCK POINT CHARLEVOlX MI 462133 861141 BRAIDWOOD BRACEVILLE IL 411437 881344 BROWNS FERRY DECATUR AL 344216 870707 BRUNSWICK SOUTHPORT NC 336730 780038 BYRON BYRON IL 420430 891666 CALLAWAY FULTON MO 384630 914664 CALVERT CUFFS LU68Y MD 382606 762631 CATAWBA YORK SC 360306 810410 CUNTON CUNTON IL 401019 886003 COMANCHE PEAK OLEN ROSE TX 321762 974706 COOK BRIDOMAN MI 416834 863369 COOPER STATION BROWNSVILLE NE 402143 963828 CRYSTAL RIVER CRYSTAL RIVER FL 286726 824166 DAVIS 8 ESSE OAK HARBOR OH 413660 830611 DIABLO CANYON AVILA BEACH CA 361242 1206116 DRESDEN MORRIS IL 412323 881616 DUANE ARNOLD PALO IA 420602 014638 FARLEY ASHFORD AL 311322 860646 FERMI NEWPORT MI 415748 831631 FITZPATRICK LYCOMING NY 433126 762364 FORT CALHOUN FORT CALHOUN NE 413116 960436 OlNNA ONTARIO NY 431690 771632 GRAND OULF PORTOlBSON MS 320027 910263 HADDAM NECK HARTFORD CT 412866 722967 HARRIS RALEIGH NC 363800 786722 HATCH BAXLEY OA 316603 822040 HOPE CREEK,

HANCOCK$

NJ 392804 763217 BRIDGE HUMBOLDT BAY SAN FRANCISCO CA 404431 12412 0

s' a

INDIAN POINT SUCHANAN NY 411617 735709 KEWAUNEE KEWAUNEE WI 442036 873210 LASALLE MARSEILLES IL 411438 884016 LIMERICK PHILADELPHIA PA 401312 753624 MAINE YANKEE WISCASSET ME 436702 694146 MCOUIRE CORNELIUS NC 352666 806664 MILLSTONE WATERFORD CT 411831 721006 MONTICELLO MONTICELLO MN 462000 936064 NINE MILE POINT LYCOMINO NY 433120 762436 NORTH ANNA RICHMOND VA 380339 774726 OCONEE SENECA SC 344730 825356 OYSTER CREEK FORKED RIVER NJ 394851 741223 PAllSADES COVERT MI 421920 871866 PALO VERDE WINTER & BURO AZ 332323 1126143 PEACH BOTTOM PHILADELPHIA PA 394532 761609 PERRY PERRY OH 414804 810836 PILORIM PLYMOUTH MA 416640 703446 POINT BEACH TWO RIVERS WI 441661 873210 PRAIRIE ISLAND WELCH MN 443710 923569 STATION OUAD CITIES CORDOVA IL 414334 901836 RANCHO SECO HERALD CA 382046 1210708 RIVER SEND STATION ST FRANCISVILLE LA 304526 911954 ROSINSON HARTSVILLE SC 342419 800831 SALEM HANCOCKS NJ 392746 753209

  1. RIDGE SAN ONOFRE SAN CLEMENTE CA 332213 1173325 SEABROOK MANCHESTER NH 425353 705106 SEQUOYAH SODDY DAISY TN 351324 860616 SOUTH TEXAS WADSWORTH TX 284742 960253 PROJECT ST LUCIE JENSEN SEACH FL 272055 801447

$UMMER JENKINSVILLE.

SC 341745 811913 SURRY SURRY VA 370956 764164 SUSOUEHANNA ALLENTOWN PA 410630 760365

e THREE MILE CLAND MIDDLETOWN PA 400011 764330 TURKEY PolNT MtAMI FL 262606 801963 VERMONT YANKEE VERN0h VT 424649 723067 V0GTLE WAYNEst0R0 OA 330831 814663 WATERFORD KILLONA LA 295942 902010 WATTS SAM SPRING CITY TN 363410 844726 WNP RICHLAND WA 442817 1191969 WOLF CREEK STATION DURUNGTON K5 301420 964120 ZION ZION IL 422644 874808 4

e

4 Site Wind Rose Data - from NUREG/CR-2239 e

O

______m m_-.__m__.

__m.______...

i 6

O 8

e J

table &.4*! Site 96af Amme este i

-m.

..H.,e..

- e He

.=.x

_i_

9 0

0 I

&asons tween g,3 annen. ini/ints

.48

.et8

.646

.H4

.sta

.484

.elt

.H9

.441

.ett

.H8

.e6s

.Ses

. ell

.40s

.H artenses 8. 4 kgLj}

t/af

  • the

.$08 ette

.064

.994

.lH

.H1

.988

.644

.088

.949

.981

.066

.994

.011

.Hf

.648 De L387 1&L11 12/1/11.*_12/1Af 644

.ntt

.HS

.H4

.H9

.964

.H4

.9H

.Det

.He

, pet

.H8

.4H

.089

.688

.6H Seevet tallet le 8 ML11 p/11/40 * $ MMS

.609

.8 99

.0 84

.641

.908

.381

.148

.9 60

. ell

.088

.984

.484

.He

.999

.H1

.M4 l

64Aletente &

M gtj

.He

.999

.698

.008

.018

.H1

.660

.9 94

.H9

.H4

.481

.644

.481

.468

.D64

.088 Dig took Penet ML11 1/a1 tral

.384

.999

.9tl

.684

.D99

.9 64

.999

.De$

.Dne

.689

.084

.Det

.904

.489

.481

.6ts St6el tes M

11M1*11M8

.itt

.998

.684

.684

.Sta

.0le etti

.999

.641

.944

.0H

.648

.9H

.H4

.t?9

.860 Deelevoed 8 M

11/1/11. ta/11M4

.195

.Ill

.9 71

.648

.644

.9 99

.644

. Del

.4 64

.940

.640

.646

.648

.H4

.464

.688 somme Petry 4. 8. 8 M

A/11/81

  • 11/11/as

.0 98

.664

.464

.064 668

.641

.tli

.464

.988

.081

.0H

.0H

.088

.ett elt!

.999 Desmoviet 8. 8

)&Ljj t/2the

  • 1/l_f t

.996

.991

.448

.660

.958

.981

.tle

.641

.est

.648

.604

.990

.ela

.H4

.641

.6 M tyeen 8

,1L13 1/11ML?.1/31Mi

.ett

.Det

.tet

.est

.ett

.648 414

.elt

.068

.est

.640

.0H

.649

.644

.989

.e49 taane y

,,1Lg, 1/4M2

  • 1/aM4

.lH

.H4

.014

.648

.664

.998

.440

.669

.ela

.Det

.0H

.0 80

.084

.oet

.H8

.444 Calvert taiff 8. 4

.1L13

.388

.949

.tte

.H6

.M4

.HI

.)t3

.ete

.D64

. 064

.0H

.644

.0$$

.0 84

.vH

.Sta toneste 1 M

8/11M1

  • t/1&M2

.638

.064

. Set

.649

.448

.084

.6H 684

.9?S

.8?9

.Itp

.M6

.088

.048

.HG

.441 chero6ee M

tal M S

  • R/11M4

.0H

.644

.1 94

.lH

.DH

.M1 elle

.999

/

.He

.999

.ett

.666

. 9 99

.648

.0H

.H9 C14 stoa

,1LL 1M2 * &M8

.404

.999

.664

.664

.H3

.H3

.Det

.Det

.e te

.M4

.9 14

.9H

.DH

.0H

.649

.949 gunmenene pean M

$ntol

  • 1/1the

.884

.DH

.HI

.095

.tH

.S to

.649

.0 H

.He

.M9

.489

.089

.988

.M6

.408

.440

~ _. - -_-..

a o

table O 4.) sito 91ed bene toto eaumei teste64ttop et slee Neelag gamesse tester 9

Imt W

D4 8

tot et tot L atL

.A.

.mL L..mL

.m

.ga, emas ac 3. a M.h W.!

.ees

.ses

.ost

.N$

.tH

.640

.699

.Hg

.ete

.He

.64 eH

.64e

.64:

.ita

.e u emmene gL,u Ana.Am

.H4

.40

.ete

.est

.e>\\

.64:

.He

.iH

.*H

.eu

.686

.eaa

.6

.6H

.oM

.4H tevesaa ha*+t

.,AL,u uinn*1am ns

.64 :

.ses

.ns

.see

.H

.est

.NE

.ene

.ut

.oet

.oot

.lu

.Hn

.He

.HI

.6H erele-et 3

.,n,,u nunn. nnns

.644

.tu

.lH

.nu

.Hn

.He

.eH

.sH

.est

.eH

.6H

.pt

.ett

.Hi

.6H

.6H Hate es ree a. a mLu gg, y_,g

.Hi

.es

.H4

.Hl

.H4 HS

.es

.}ss

.its

.H

.*H

.ese

.eH

.H6

.H4 H6 He een s. s nLu

.6ee

.o5

.He

.ut

.ies

.6!\\

.oM

.eH

.64:

.e

.one

.ea

.6 4

.e

.Dee

.ess tesee &#eeld gLig gjt

.196

.998

.468

.6H

.998

.668

.4H

.tet

.918

.Det

.H4

.0H

.689

.640

. 641 ette toetet 8 4'

n.n

.913

.9 94

.944

.H4

.644

.645

.649

.696

.699

.*H

.604

.668

.644

.6H

.H4

.664 Fevel 8 1/1M1. A/11/t,4 e644

.Det

.669

.387

.643

.664

.H3

.441

.464

.93%

.969

.64)

.669

.960

.9 64

.9 60 Patepetstet gL,y 16a1 e 1644

.Det

.469

.itt

.nu

.314

.H4

.tli

. ell

.648

.H1

.083

.444

. Gat

. tit

.4 04

. 94 4 feeted eseet gLD 1/a4

  • f /81

.998

.694

.991

.646

.999

.D93

.Stl

.648

.644

.9li

.683

.986

.036

.646

.Ht

.444 feet Celhoun M

18/se

  • tMe

.998

.H9

.6H

.684

.048

.ete

.389

.664

.994

.664

. tit

.433

.tM

.0H

.jal

.4 H teet ene viele gLig itet. 16aa

.D43

.649

.4 94

.981

.640

. tit

.439

.tle

.464

.HS

.994

.0H

.960

.H8

.D 64

.949 Siete S.I.

M 1648

  • 1981

.998

. Del

.lel

.999

.348

.894

.9 99

.644

.9H

.438

.H3

.0H

.H6

.9H

.938

.888 Geene eelt 3 1gA1*1he

.30)

.994

.644

.H8

.0H

.H3

.Ste

.444

.He

.He

.H4

.H0

.646

.He

.000

. Alt heHee meen M

QM

. 640

.444

.H3

.9H

.916

.340

.988

.tli

.034

.Det

.DH

.648

.988

.H3

.968

.998 torteellae

,,,&Lu 1/1M1 1/11Ma

.648

.664

.Det

. 0 64

.95)

.0H

. 644

, tat

.H6

.448

.I?l

. Del

.064

.ete

.Det

. 9 64

,n-w-

m 1

1 O

I

)

Seele A.eal Site Dead Amee tota leanti prote6488tp of Dani Diertag 9 mosses teseer 9

Wat ut tot t

het et tot sta tim

,,,j,,,3gt

,,,gL,

.EL L. X E.

A asset, t.1. Ie 3 A&L[3 t/sna. a/11/1a

.985

. De t

. Del

.998

.995

. tit

. 4 74

.tes

.Det

.934

. 6 64

.ett

.603

.See

. ell

.644 lasase petal 3e 8

&g,Lgj 1/1/11 12M1/91

. 9 94

.996

.6 94 9 79

. ell

.999

.9??

. 9 94

.484

.484

.Det

.est

.Das

.410

.648

.64) tooeemse jig gj g/as.1/2sne

.003

.990

.644

.999

. 6 64

.)lt

.648

.644

.664

.tll etet etle

.til

.pll

.470

.tle Lete!)e 4, 8 kgg,1)

.949

. 9 69

.994

. Set 168

.6

.Det

.464

.6et

.taa

.est

.ess 644

.e!i4

.ete

.est Le troene

}&f,1)

Absa. lett

.194

.))9

.964

.619

.964

.984

. ell

.648 enti

.all

.Det

.tla

.e43

. tie

.084

.484 kneetlob &

J2L1}

1/?1 12/94

.994

.660

.9li

.$ll

.900 elle

.1 9

.tle

.664

.639

.486

.Det

. De tt

.649

.6 1

.646 marble till

,jj jj 1/1d.11/14

.460

.jel

.384

.994

.948

. Sol

.See

.481

.6el

.see

.66)

.664

.Det

. ele

.086

.Soi me tentee

((3,{}

9/st. 4 /60

.380

.384

.948

.041

. Del

.966

.644

.440

.ets

.6+e

.e64

.e 6

.634

.ett

.es:

.6es te6e6te 8. #{ [3 18/19/96 13/18791 .996 .990 .)ll .93 {v tf .668 .964 .94 .448 .644 .64$ .ttt .a .994 .9 64 .9 90 .039 Difland $ 1689. Rest .969 .003 .il$ .466 elle .640 .Det . ell .tel .646 .est .e48 .ess .084 .e ae .tal malaesene 4. 3 }}}.13 a/as. erst .9 96 .e46 .ete . ate .ete .ete .ete .ets .ess .e66 .est .eas .e6e .e:6 .ess .6el meniseelse Lig_t1 t/n/st. n/1s/as .6es .ess . sos .eis .tse .see .464 .ane .ste .ses .eae .es) .es .e 6 .es .ets name m. et. a. s 331,11 , teen. nose .es .eos .344 .sii .nse .9te .e64 .ost .6ea .ees .eae . ell .e s .est .eet .ees mett6 &ana 4. 3. 3 133.13 t/is/91. e/strts .3s8 .6tl .966 . 641 .e58 . 64 1 .ete .eee . loo .Det .644 .tst .644 .ess .443 . e 64 er ne, 3. 3. 3 a/1 eras. a/is/se .984 .tle .ett . ell .e4: .643 . Den .644 .nte .664 .466 .D6e .Det .6 64 .e36 . eat Drotet f.et; jgg,,1g 1/88 2/81 .916 .664 .Det 664 .tet .993 .918 . 64 ) .644 .431 .953 . ell .439 .644 .641 . 644 Pe346ede M alat. a ras . 4 64 .4)8 .8 ) .631 .486 .tle .646 .ett .Det .0e0 3 .648 .044 .964 . 4 64 .649 .6el n .,-_.n,-- -n

e s e 8 9eele A.4*4 646e 96ae base este loosti Dromeellit8 of Wied Wesset 9mmette teetos o me as as e ese es He e tu

  • 4.88L R.

.mL .mL JL .am, sete Hee 8 3ttig snam. anim . ell .atl .344 .eu .He .641 . ell .e:S .eet .669 .640 .640 .e ta .est .eH .Ha Dece4 tottem 8. 8 14L11 1/tt. T/tt .H6 .Det .644 .9 68 .He .H4 ellt .itt .He .648 .484 .tal .984 .644 .vH .644 po4614 apt 6mpo .jL13 1/ta. inns .619 .999 .915 .tel 18) etH .988 .609 .448 .439 . 6 60 .DS9 .585 .9H .080 .444 pettine .}Lig 18/11/?1 e innind .994 .Det ellt .H4 .6 64 .649 .964 .9li .H9 .604 .8H .Hf .648 .tli .644 .434 Petty 4 3tt,11 1/1Ma. A/1A/11 ellt . Del .6 68 .See .608 .4 64 .999 .648 .HS .080 .98: .646 .644 .939 .DH .018 Steppe tone ,M,8 1/1/94

  • 1/11/16

.081 994 .itt .364 .659 .414 .06) 386 .064 . sat .388 .646 .046 .ent .488 tit 9630t40 3 .,1Lil .684 .l69 elle .Det 994 .Det .tH .646 .4 D .eH .944 .486 . set .444 .588 .636 point beech 3 9 M1,11 4/a9 4/4e .000 .{ll .601 .644 .004 .999 .018 .664 .994 es?8 . ell .033 .0le .630 .tli .9H p 4136, 8. 8 MLB 4/1/t1 1/11m .646 . ell .889 .4 4 .693 30) 316 .94$ .644 .088 .619 .6 0 .6ll .360 elle .666 twed (staet le 4 111,11 4/48 a 4/49 .9 93 .484 .994 .049 .949 .Det .003 .441 .640 .081 .948 .440 .489 .638 .998 .468 heathe tet* . ALLS 1H 1 184' .944 .618 .640 .lt9 .l14 .414 .300 . 14 .649 .9H .639 .s84 .980 .tH .441 .4 48 6teettend 4 M1,[3 is/ Int a t/lang .951 .664 .646 .646 .664 .944 .968 .644 .Det .Det .644 .666 .914 .943 .618 .641 S. 8. Dm64he6e $ MLig 4/14 /49 4/10 / 4 B .948 .914 .998 .Sel .9 91 .431 .0H . Del .843 elle .D96 .964 .646 .638 . 4 64 .080 to4*t See8e 8 ,jt,11 M/Mt.1i/11/9a .948 .964 .H4 .tH .648 .663 .089 .Det .9H .990 .Det .434 .993 .990 .641 Seles 3. 8 gLg 814 0

  • l 'il

.Det .H8 .H4 .964 .019 .HS .438 .694 .648 .644 .649 .999 . tat .688 .648 .414 ese Het** .ALA. unnm. n/ sone .Det . Del .964 .tel .H4 .$99 .Det .99) .6H .444 .4H . tit .444 .638 .649 .Ste gesteest ) ,jLg 11/91 e 10/92 .084 .Det .Det .999 .340 .let .348 .649 . 0 89 .6H .6M .H4 .tH .641 .64 .031

4 e soste 6.4 4 68te esas anse sole se e4 Svame6644tl el Weef 6aevlag Sweetde testet D tot 98 DB tot et He LA411st. L. .AAL .Jt. JtL .EE. R. .RK. e,* ret 1. $ ,,y 13 a/anM1. inim n .e4 .eu .en .on .ett .644 .lli . ol .Ist .oM .H4 .He .e48 .eu .e6s .44e se. toe metese ,11.3. 1Ma. inns .64 .6l*l .H4 .eal .eH . eve 191 .oea .e.I . ell .eu .eal 6st .HI .e .688 stetsS .11.,a. .414 .044 .681 .tli .1 94 199 . Del .668 .481 .683 .641 .e86 .499 .v64 .689 .084 Shorehee ggL[g it/1/91. s/ne/ts .H4 .489 .696 .964 .999 ellt .DH .H4 .tne .648 .649 .648 .988 .4H .4 He .448 Goeth tosee ,1),13 t/teMS. 9/10/ts .let .H6 .689 .480 .486 .444 .0H .9)1 .016 .910 .Det .H1 .988 966 ellt ell! Wattle t. 6sumet jgL11 11)) .He .6H .884 .649 .H4 .D46 .988 .948 .980 .648 .660 .ete .469 .644 .968 .964 Setti St le $ 1)LJJ 11/41 11/at .664 .448 .648 .048 .619 .668 .601 .tel .018 .488 .684 .44 8 .669 .468 .966 .643 6esevekenne 3 Atta. Isas .999 .999 .itt .884 .He .9H .400 .9H .444 .989 .649 .664 .646 .648 .484 .489 t*,.. en a sene AgLg3 em.iMs .464 .644 .6 64 .969 .698 .998 .991 .Ste .649 .881 .686 .451 .646 .648 .668 .991 Treien ,,gL11 t/1/91 A/11/93 .408 .Ste .484 .848 .488 .999 .990 .388 .418 .0H .444 .664 .691 .669 .644 .486 tveter Penst 4. # .11.11 1114 .0H .644 .441 .981 .481 .641 .688 .991 .489 .684 .Det .466 .484 .488 .464 .948 vemooi teasee 8 Aggjg a/a,. 9/ae .998 .931 .086 .688 .Ht .He .8lt .466 .999 .484 .441 . tit .484 .644 .H4 .604 votine .21.11 18Mn InMe .644 .648 .914 .999 .644 .918 . 9 64 .0la .648 .448 .018 .448 .H9 .He .948 .664 Detetteed 8 ,jg,,gg 1/12 ana .648 .968 .648 .441 .449 .964 .He .998 .644 .998 .0H .0H .ett .464 .908 .991 telle het 4. $ ggl(( t/1M1

  • R/AA/TA

.635 .$69 .)48 .Det .644 .&#8 .486 .tli .968 .464 .all .949 .448 .949 .444 .449 WPP6 8. 4 M aMe

  • BMS

.ite .448 .H8 .968 .Det .ett .301 .406 .464 .648 .6H .083 .488 .0H .H6 .416 eMa

  • 1/95 WPPS $

M .)D9 .668 .649 .9 68 .641 .H9 .lti .ett .364 .H6 .0H .484 .688 .6H .640 offs

~. -.. - _..-....--. ~ _...~ ~ ~- - - ~. - - - -... ~.. -. _ _... - -. ~ ~. - - _... e 4 e e I ta6le 6.4*$ 086. Wied Amee As6e 49enti w.m.u u 9,.: w w n=s.,,=e e se.. o me w me e me es ut aun" .J JAL St. .Ett. L. 3t. .R. .3L met s. s .g.L ann. ana 614 .pe .34 .ite .s p .H3 .ns .e86 H4 .He .6u .ete .Hi .ns .n6 out m u eeeen ,Ag,o unn. n/uns .Mo .sw .see .6H .en .e48 .we .so .864 .no .no .6ss .6so .e44 .est .In toehet hoes M 1&M1 9/92 ellt etH 95) .999 .0H .641 .9 93 .664 .Det .664 94 .643 .641 .486 .968 .644 De!)w teeek ,,g.jj 1/ind. a/asnt .[48 .Dit .64 .9 99 .646 .He 0* . elf .999 .949 .089 .tll .646 941 .991 Det .4H tienes 3 M MMA. afas/te l elH .Det .HO .964 .681 .999 .641 .648 .948 .931 .431 .948 .430 . 9 64 .381 .480 %6en 1L.1,1 111l .914 .910 .99) .38 .Det .9 14 .646 .9 11 .6))- .486 .0al .660 .994 .646 .469 .437 4 I i 1 i 1 2

0 Site Minimum Exclusion Zone Distances - from NUREG/CR-2239 9

- = -- 4 a e . +. t e TABLE D.2-1 EXCLUSION DISTANCES (MILE 8) POR 91 REACTOR SITES 1 2 SITE EX l DIST. 1 ALLERS CREEK 0.82 } 2 ARKANSAS 1 + 2 0.65 3 BAILLY s 0.12 4 BEAVER VALLEY 1 + 2 0.38 5 BELLEPONTE 1 0.57 6 BIG ROCK POINT 0.51 7 BLACK P0X 0.53 l 8 BRAI DWOOD 1 0.28 9 BROWNS FERRY 1, 2, + 3 0.76 j 10 BRUNSWICK 1 + 2 0.57 i 11 BYRON 1 0.29 12 CALLAWAY 0.68 13 CALVERT C1IFF 1 + 2 0.71 { 14 CATAWBA 1 0.47 1 15 CNEROKEE

0. 3 ',

i 16 CLINTON 0.61 l 17 00MMANCHE PEAK 0.87 l 18 000K DC 1+2 0.38 19 OOOPER 8 0.46 20 CRYSTAL RIVER 0.83 21 DAVIS-BE 1 0.39 1 22 DI ABLO CANYON 1 + S 0.50 l 23 DRESDER 2 + 3 0.42 24 DUANE AMROLD 0.27 25 FARLEY 1 + 2 0.78 26 FERMI 2 0.57 27 FITEPATRICK 0.61 l 28 PORKED RIVER 1 0.38 29 PORT CALMOUN 0.23 30 PORT ST VRAIN 0.37 31 R. E. GINNA 0.28 32 GRAND GULF 1 0.47 33 MAD,EM NECK 0.33 D 34 NARTSVILLE 0.76 35 MATCH, E.I. 1+2 0.78 36 INDI AN PT 2 + 3 0.21 I 37 KEWAUNEE 0.75 l 36 LASALLE 1 + 2 0.32 39 LA CROSSE 0.21 40 LIMERICK 1 0.47 i 41 MARBLE HILL 0.42 42 ME YANKEE 0.38 43 MCGUIRE 1 + 2 0.47 44 MIDLNRD 2 0.31 r 45 MILLSTONE 1 + 2 0.31

TABLE D.2-1 (cont'd) i SITE EX. DIS 1. eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 46 MONTICELLO 0.30 2 47 NINE M. PT. 1+2 0.97 48 NORTH ANNA 1, 2, + 3 0.84 49 OOONEE 1, 2 + 3 1.00 ) 50 OYSTER CREEK 0.35 i 51 PALISADE 0.42 I i 52 PALO VERDE 1 0.56 53 PEACH DOTTOM 2 + 3 0.51 4 54 PEBBLE SPRINOS 0.49 ~ 55 PERKINS 0.37 56 PERRY 1 0.57 1 57 PHIPPS BDRD 0.47 58 PILGRIM 1 0.27 } 59 POINT BEACH 1 + 2 0.75 60 PRAIRIE 1 + 2 0.44 j 61 QUAD CITIES 1 + 2 0.24 62 RANCHO SECO 0.40 3 63 RIVERBE4D 1 0.57 64 H. B. ROBINSON 2 0.26 65 SAINT LUCIE 1 0.97 66 SALEM 1 + 2 0.72 67 SAN ONOFRE 0.50 68 SEABROOK 1 0.57 69 SEOD0YAH 1 + 2 0.36 i 70 SHEAROM HARRIS 1.33 71 SHOREHAM 0.19 72 SKAGIT 0.38 73 SOUTH TEXAS 0.89 l 74 VIRGIL C. SUMMER 1.01 75 SURRY ST 1 + 2 0.35 76 SUSQUERANNA 1 0.35-77 THREE MILE ISLN4D 0.38 78 TROJ AN 0.41 79 TURKEY POINT 1 + 2 0.79 i 80 VERMONT YN4KEE 1 0.17 81 VGGTLE 0.68 l 82 WATERPORD 3 0.57 83 WATTS BAR 1 + 2 0.75 84 WPPSSl+4 1.21 85 WPPSS 3 + 5 0.81 86 WPPSS 2 1.21 87 WOLF CREEK 0.75 88 YANKEE ROWE 0.59 89 YELLOW CREEK 0.43 90 EIMMER 1 0.24 91 EION 0.57 a 4 -.,_m.--._.. y-c. ,c-- - - - - - < - -}}