ML20207Q212
| ML20207Q212 | |
| Person / Time | |
|---|---|
| Site: | Fort Calhoun |
| Issue date: | 01/16/1987 |
| From: | Andrews R OMAHA PUBLIC POWER DISTRICT |
| To: | NRC OFFICE OF ADMINISTRATION (ADM) |
| References | |
| LIC-87-003, LIC-87-3, NUDOCS 8701270020 | |
| Download: ML20207Q212 (39) | |
Text
t m.
i Omaha Public Power District 1623 Harney Omaha Nebra%a 68102 2247 402/516 4000 January 16, 1987 LIC-87 003 U. S. fluclear Regulatory Commission Document Control Desk Washington, DC 20555
Reference:
Docket flo. 50-285
Subject:
Thermal Shield inspection Deferral Presentation Dated December 17, 1986 Gentlemen:
On December 17, 1986, OPPD met with members of the flRC staff to discuss our submittal to defer the commitment to inspect the fort Calhoun Statton Thermal Shield fron the 1987 refueling outage until the 1993 ISI inspection.
At that meeting, f tr. D. L. Sells re<piested a copy of the transparencies used for the presentation.
Please find attached a copy of the requested transparencies.
Combustion inqina ring proprietary transparencies are not included, but were provided to the flRC in the florida Power & l.lyht submittal report CEfi-272(l)-P, Iinal Report on the St. lucle Unit 1 Post Cycle 5 Plant Recovery Program, dated february, 1984.
OPPD used the following figures of that report in one presentation, flg.
7.2 12 l
fig.
7.2 - 13 l
l19 7.2 44 fig.
7.2 - 45 f 1.
7.2 46 9
flg.
7.2 - 47 1able 7.2 20 Since ly, R,!, Amhir, 1)lv i s ion flan.ep r fim lear Pr odat ion 0701270020 070716 PDH ADOCK 0D000200 p t A a.,,
G PDH cc : l clineuf, I ath, t eiby ?, fla( Rae 1333 fiew Ha pthire Ave., fl W.
Washington, DC 20036 A. C.
Ihadani, flRC Projet t Dire ('or
/h' T ' l l
W. A. l'aulson, flRC Projer t flanager j
P.11 llarroll, flRC senior Re.ident In'peitar rj
, ~,
Vi le s.
t 4
O December 17, 1986 Fort Calhoun Thermal Shield Introduction J. J. Fisicaro Opening Remarks J. J. Fisicaro Design T. L. Patterson Results of 1983 Inspection T. J. Mcivor Internal Vibrations Monitoring B. Longo Closing Statements J. J. Fisicaro
COMPARISON OF REACTOR DESIGN PARAMETERS PHYSICAL CHARACTERISTICS St. Lucie Millstone Maine Yankee Ft Calhoun Thermal shield Outside Diameter 162-3/4 162-3/4 162-3/4 133 Inside Diameter 156-3/4 156-3/4 156-3/4 127 Overall Length 137-3/4 137-3/4 152 164 Dry Weight 59,000 59,000 65,000 57,000 C"re Support Harrel Outside Diameter 151-1/2 151-1/2 151-1/2 123-5/8 Overall Length 328-1/2 328-1/2 328-1/2 311-1/4 Th7rmal Shield Support Lugs Quantity 9 Lugs 9 Lugs 9 Lugs 8 Lugs I
Width 2 in 2 in 2 in 2 in i
H]!ght 10 in 10 lit 10 in 10 in Politioning Pins Upper Pin, Quantity 9 Pins 9 Pins 9 Pins 8 Pins Lower Pin, Quantity 17 Pins 17 Pins 17 Pins 16 Pins L:ngth 5-5/8 5-5/8 5-5/8 4-7/16 Diameter 2 in 2 in 2 in 2 in Thread Size 2-1/4-16UN 2-1/4-160N 2-1/4-16UN 2-1/4-120N Proload Torque 250 Ft-Lbs 250 Ft-Lbs 250 Ft-Lbn 250 Ft-Lbs Locking Device Type 1.ock Har 1,0ck Har Lock liar
!,0cking Collar I,ocking Device Torque None None None 50 Ft-lbs l
COMPARISON OF REACTOR DESIGN PARAMETERS THERMAL-HYDRAULIC CIIARACTERISTICS St. Lucie Millstone Maine Yankee Ft Calhoun DeJign Flow Mate, GPM 324,800 324,800 324,000 190,000 Avnrage Flow Velocities Downconer, FPS 30.3 29.9 30.1 27.5 Icner Annulus, FPS 25.2 24.9 24.6 22.7 Outer Annulus, FPS 32.5 32.1 32.3 29.4 Av7 rage Radial Delta-P Across Thermal Shield, PS!
2.1 2.0 2.2 1.8 Across Core Harrel at Upper Pin Elevation, PSI 19.6 19.1 23.9 17.1 Across Core Harrel at Lower Pin Elevation, PSI 18.5 18.1 19.1 13.7 Av3 rage Metal Delta-T Hetween TS and CSH at Upper Pin Elevation, F 40 40 39 39
- Iletween TS and CSH at Lower Pin Elevation, F 25 25 5
5*
0 Ft. Calhoun values are extrapolated from Maine Yanken Valuun.
l
SIGNIFICANT DESIGN DIFFERENCES
- LOCATION OF THE LOWER POSITIOfilNG PINS
- Reduced Radiation Induced Stress Relaxation
- Lower Thermal Stresses At Full Power
-Initial Preload Maintained For A Longer Interval
- USE OF A LOCKING COLLAR INSTEAD OF A LOCK BAR
- Important in Event Initial Preload is Lost
- Prevents Wear Between Threads Of Pin And Shield l
- Circumferentially Welded Collar Will Retain Pin j
Place, Regardless Of Loading
- LOWER FLOW VELOCITIES IN THERMAL SHIELD ANNULUS REGION
- Reduced Buffeting Loads On The Thermal Shield That j
Result From Occliatory Pressure Differences In The Inner And Outer Annulus Regions l
l l
l i
i
sp t-
-CEDM N0ZZLE
- ?
lNSTRUMENTATION H;
s "Q
N0ZZLE g/[_%(
.sa
\\
ALIGNMENT CONTROL L,-~My n=syf PIN ELEMENT "M
':U "
ASSEMBLY N) h r
- UPPER FULLY
'i l
GulDE
~
WITHDRAWN h
I STRUCTURE i
/'
y
)
f
/
1 1
24"ID 32" 10 ' N e i
A INLET i
N0ZZLE OUTLET
\\
N0ZZLE
,.i00.$0100.,%
g' "
I CORE g
SUPPORT
~
~
,.. l BARREL r,"-
Ji
,.~.m._
128" 1
CORE
"*"""~~
ACTIVE "l
~ SHROUD CORE
,.;,..~
y LENGTH l,: e'N FUEL
,p
~._
ASSEMBLY
^
j
,a yz y.7.v..,,y c.
CORE
,=i=<,<
is 1
N SUPPORT SNUBBER]/}'
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! {/
=_
ASSEMBLY FLOW CORE STOP
~
j SKlRT l
I'9
- Reactor Internal Arrangement 1
i
Sh$eId Rn*'t
(
3 Thermal Core i
Bafr$1
~
5 5
/
h Sh$Yd 5
Support Sh m b
UPPER POSITIONING P!N
\\
h OWER POSIT!0fl!NG P!N locking Collar
\\
/
Thermal Shield Connection
,-n._
.--_-_,,_,_____-_.n-__
=
X
==
SUPPORT PIN N
i
\\
== 3 i
S ORT N
THERMAL ORT LUG V%l l
\\
THERMAL SHIEl.D
/
SUPPORT SHIM
/
HARDFACE UPPER POSITIONING PIN LOCK BAR g $ hlb.D MCI @
/
/f% _
/LD
/
/
/
TN gl C
A N
N x
J
\\
x
\\
\\
\\ \\
1 I
L-__
x x
s s
I
~\\
\\
\\
y N
\\[
x x
x x
J
-g N
'\\
$\\
\\
~
/I
~
\\
\\
\\
\\
\\
x N A x
x x
x x
x x
x sl l l l l / / / / //
/ /,
- b coAE SUPfaermre
\\
sotrou sa7,,ce o, l
CC ?E.50PPDRJ myg l
t l
B Thermal Shield I
==
l 1
1 W) d'ls' n
?
L
/
Lock Weld )
( Lock Weld l
Figure Thermal Shield Positioning Pin 40
4 S
e I
\\
1-I s a. <,
+
E Ti i7.1 o
--~
g p
t 9
Posmowms 4
Psu 4
]
.i'li v
I ',I j
12 8 I [e,'
. h.
i l
A cTive Cone it l l i
[3.
l i :
.' 'g' -;(,'
i ',
I-
- p fj j;.
PoscrioniNo Pm 4 1
- v!
l 9 y 10.4 10.o g
a O M AHA HERMAL bHIELD
_ LEVATION 1
l
i g
l!
I i
I PROGRAM PLAN - THERMAL SHIELD FAILURE ECHANISM ANALYSIS
- l IlYDRAULIC LOADS TEST O
PERIODIC, RAND 0M ECHANISMSj
+
R INTEGRATE '
QUANTITATIVELY STR'{RgRgIRIgSPgSE (PERFORM C
C I
O a
C RESP E
SUPPORT OfS N hDITIONS EVAlllATE DESIGN, FABRICATION SELECT PREPARE t
O O
CANDIDATE cnecx aeroar r
e ins 13tt3110n D313 r
FAILURE COMPLIANCE PVMP & DAMAGE VISUAL l
O O
INITIATION wiTii iNSeECTiON DATA SUPPORTING DATA j
LPM & IVM O
O PROGRESSION SELECT DATA mCiiANiSMS catoiste i
METALLURGICAL EXAM.
O' mCnANiSM
- l.
DATA 1
1 i
f
YJza r-m E I.
=
a w-W55 as
-m<w
$"Eg m'
h
- ="
mW"w g
=
M
~
g M *' -
5 E-5 a
g, "y=
d*$n S
,=,
-=
~
I 5
s s a,'
55c
=*
as
-=
W~
E *N G5 =." 5 5E 21 JE ej g
C
-G w
sw
~ ~. = =
D Eawom ess
=e.
mgb w
=
a.
M==
see
,,, M.
== Y_ -
p E-mm-ens -
mm
,a W=
=
a, w
-w N
MM E
D$w g
w
-o
<g g
= e.= w m
!~
c5 tw t
m
< S wEC 0 55
_ "= 'e lQ "E
M "h w
xwc w-Ng d
n== =
- y m *o.
- d
- G Eg e-g m-WE a
5=w-E u
a
<=
w
<=
Eg eg3 5
w-
==mu m
s
.mmmmmmm.
8 m
>=
09
=
A w
g 3w W
C 7
kb e
W 5
E 5*I W
35 85w.5,! _
e a
y heh a 5== =
=
b 2
i =e c
a o
C W
I e
ewW JGM
.f=
W C had a==.= nmJ W
La N
m e-c aC aC =
- aC g
e.g S
- nshJ e.de i
C3Cw e
c b.C.#
J
= m
.-d g.
sc sf -
W
==
ei.
8 a
k 4-s o
b E. ~*
~
l g
Q e. sam U
a======.
Y
.mi = = =
l 5"
=>
Emg I
o ac v
n,,,,
=E
22 =
- .=W<
wbg= ~.."p**
N 3D
~
vtG*
gma e
.z
=M w
W ""
- b. -
=
m o
O W.
S F
ze E
E
==
-E -
m
-=
=
s
>==
3o
.C.
cc w >-
z 8'"
mum esl7.
4,O z
nI C.
3 wQ W
m w
C Z.
W
==d
=
=
8
=
.=
w x
hh
{$
$y[
N ise OUTLET
< f,,
,a ",l'?-
B i
NOZZLE
~
$ --.j -
CORE SUPPORT g<
BARREL s
HOLDDOWN
,g
' [% 'l, INLET
(
}
RING NOZZLE NOZZLE
}
us D
5 REACTOR
(
~
VESSEL go
[_
x
\\
t g
s i
FUEL e
- OUTLET INLET ~
2700
.f REACTOR NOZZLE NOZZLE ASSisIBLY l
~
1ll#"l"""'"""""'!""l' nU Ag.
/ ' VESSEL Ih L
l i
e
-lNLET INLET
%,..<i NOZZLE FUEL NOZZLE 4
k g,,
EXCORE
{
ASSEMBLY DETECTORS DOWNCOMER CORE SUPPORT
~
2 ANNULUS l
BARREL OUTLET s
s o
NOZZLE
{ l lT [
AN U US EXCORE DETECTOR LOCATIONS
~
h..1. _k i
V,3gy /
u
DETECTION OF MOTION VARIATION IN E$ CORE SIGNAL DEPENDS ON CHANGES IN NEUTRON i
ATTENUATION PATH LENGTH.
BEAM MODES:
CHANGE IN WATER PATH LENGTH.
o o
+
V SHELL MODES:
CHANGE IN NEUTRON ENERGY SPECTRUM.
~
I O
O
~
e
---w-
--,-v
-ww,,,.
_----wmA-.-4---,,-,
-y,------------.----
,-----,m-w
--.. --=--
IN-SERVICE MONITORING:
INTERNALS VIBRATION MONITORING SYSTEM (IVM)
USE OF RANDOM VARIATIONS IN TIME OF EXCORE NEUTRON DETECTOR SIGNALS TO IDENTIFY SOURCES OF THOSE VARIATIONS WITHIN THE REACTOR.
DATA ACQUISITION:
RECORD TIME HISTORY OF EXCORE SIGNALS DATA REDUCTION:
STANDARD METHODS ASSOCIATED WITH ANALYSES 0F RANDOM DATA.
TIME HISTORIES CONVERTED i
TO FREQUENCY DOMAIN (FFT).
DATA EXPRESSED AS POWER SPECTRAL DENSITIES (PSD).
2
(% /HZ)
~
r
- 7. = u / 1 JMe\\hhd.MM E
r
,y ; y e nY 2d l
sI.
TIME FREQUENCY DETECTION OF CORE BARREL MOTION I
9 INTERNALS VIBRATION ITNITORING EXCORE NEUTRON NOISE DETECTOR SIGNALS DATA ACQUISITION DATA REDUCTICN '
DETERMINE REACTOR INTERNALS DYNAMIC STRUCTURAL CHARACTERISTICS FREQUENCIES MODE SHA RS IDENTIFY STRUCTURAL FREQUENCIES IN NEUTRON NOISE SPECTRA EVALUATE REACTOR INTERNALS MOTION FREQUENCY /FFLITUDE SHIFTS WITH OPERATING TIE N M e
y m--
(
l 1
. NEllTRON NOISE DATA REDUCTION NEUTRON NOISE DATA SPECTRAL ANALYSIS
- PSD's
)
- XPSD's
- PHASE SEPARATED XPSD's
- C0HERENCE
- PHASE NEUTRON NOISE RESCNANCES
- EUTRONIC EFECTS
- FUEL ASSEFELY VIEPATION
- CORE SUPPORT BARREL BEAM AND SHELL MODES
- PUMP SPEED
REPRESENTATIVE SPECTRA 10-2 j
2 G /HZ) l i
C0HERENCE
. 80-;
M)
\\
l dj' i
\\lrI\\ hf* 1,.h l
~
~
j
- tPHASE O 3
)*'
4 I
l
),P a
.i t
180 -MN /5f s
l t
0
~3 6
9 e
15 18 21 23 25 FREQUENCY (H7)
REPRESENTATIVE SPECTRA 10-2
[\\,.v}
CPSD NEUTRONIC EFFECTS N(h(,
lO p
2 c
HE t
1
[')
(
i COHERENCE y
!M r (t
)
i 1
i l..hg l
i
.k I V'
..(
h*/
1 k
t 4L n!
1 w'
.uss iPHASE hd
%'s'h k
hpf ['
f iAp L
l I
li '
N )
k,'
jh'<
~
i l
a j
^
180 b ~ ~
v 0
3 6
9 12 15 18 21 23 25 I
REPRESENTATIVE SPECTRA 10-2
[)
=a; CPST
/
/
SSEMLY MOTION
.i L
4i2 r
/%
H2 A
l C0HERENCE
.8&j,q Ap 4(
t) i
}.. l b
k\\
Yl kfi f q
~
3 fPHASE
.,\\
O x
%.J h
. bl# z:
!5.l k
)/,<
fi
?
f
,bi
(
iY 180 - M Asfk l
l 0
3 12 15 13 22 23
.25-
~
9
REPRESENTATIVE SPECTRA 10-2
\\
i l
%:2
,f CORE HZ N"
BARREL -
BEAM MODE
\\
COHERENCE
.8&;,
)
.bf\\
hl 1
l f,
1 h
b
,i t
I i
h,
~
- t. ;,.
v)yj
- ijd/,
,1 (PHASE N' 0 i'./}!t l.g[y' l$.f
~
0 -
~
r-F f
I Il
~
'*%., ' Q ll l
0 180 -
r l
REPRESENTATIVE SPECTRA 10-2
~ [\\ #
CPSD 2
CORE L
'l BARREL -
N2 SHELL
- ~ ~.
' MODES
~
I l
~
C0HERENCE
. 80-;, I h
Lj I
l.
'\\Y
,) '
1,. g L k
jPHASE jd\\0
.,,y <
00 1 r
r l
i j
r 180 '- M dNfy 0
s 0
3 6
9 12 15 13 21 23 25
C0HERENCE:
MEASURE T0. DETERMINE IF A SIGNAL RESULTS FROM A COMMON SOURCE LOW C0HERENCE:
o DIFFERENT SOURCES o
IN-AND OUT-0F-PHASE CANCELLATION PHASE SEPARATION TECHNIQUE o
PHASE EITHER 0 OR 180 o
ALGORITHM BASED ON SIGN OF CPSD AND AB0VE ASSUMPTION
..a*
i
-2 1X10 l
l l
180 PHASE PSD l
l lXto j.....,......;...
...p....
- 8x86,
..l....,......l....,l.....j......l.....[.....l......j.....j u
irt _y l
l l
..,l.....,l.... 4....,l.
l....'..... [................, j IXio ;
I O
O I,
l l
4 e
s
-c-l l
l l
l l
l l
l l
l l
p..... g....
.....p.....g...,,
4 i
I 1
1 1
0 1
4
-7 0 PHASE PSD IX10
.i
.e
.i
.i
.i 1
-t l
l l
l l
l l
l IX10 0.
5.
10.
15.
20.
25.
FREflUENCY INZ) i i
EXAMPLE ON PHASE SEPARATION l
l
FIGURE 5-1 onsna esairs canne,rn Pt.at 9
jS P
/'
N %
,/
/
\\
e/
s sf
/
y/
s v
J N T
r [
>$~
d
(- y,'
~. ~
l e
a h
/
?
k/
A rN(
,r q f
,/'V,..
j l/
~
' P'"
\\
'g l r-
/,r s
.h i
f r' I
i y(
i D
(
r.
g
,,, gM F
-a o
6 k
t g
g i
d j, r
g l
N' M
.d_,5
,s p p a,
1,
-g p
- 4 y g b
,i $
L W i
i h.
- Q
'J jlh l
H E5 i
N e
.i 5
1
./
= q. '(' 4
> ia i
u i
3 u
i i
e j
j l (
%*h=gg i
r 1,
/
i,
,l s
, I 1l
" 'I-U 4 lt-
'y
/Jg p
1' y
i e-A ol s
.i n.
8
+
f 1.' :
\\
1
'j c. g;; w. n.
y q_ w, ua g mg
<.r.
m
. f,'i, ' i> s g-l e,i:g g
y
',,,x> M.
A' M
. # %. ~ 1 ~
s y;
u
~-
N
,t
,N I
l
's.
s_
5-9
1 FIGURE STABILITY MODEL AND MAP o
l WM
+W
+--
k) s t
N -
N k),k = Radial Stiffness Per A
y 2
'N Circumference
\\
W
= Channel Half Width Vo Yo L
= Shield Length N Vo
= Velocity N
g N
V
\\M
= Mass Per Circumference
\\
N N
N
'N
\\
k
'\\
2 g
N N
\\
Unstable l g
-Divergenge i
I N,
I I
l
-\\
Stable k2 (ML )
W 3
s M/(pl /W)
\\\\
h Unstable-Flutter 2
kqoVo L)
I
f blN*h u
p-e
,~=
i==
5A i
ICcco-
> STABLE INSTABLE e W
E 1000-k kNkk U ) 2 E
MAINE YMKEE 1h) y
~
100-z, E
I e
W i
10-
@a i
W#
s I
Point A All Positioning Pins & Support Lugs Functioning y
Point S Support Lugs Intact, Upper Positioning Pins Not Effective f FIGURE 8-3 ST. LUCIE UNIT l, MILLSTCNE UNIT 2 & MAINE YANKEE STABILITf DIAGRAM 8-7 6
_.,.n--
k hN*)
I 10 too loco receo
& (-A,
N\\
k\\
10000 <-
STABLE UNSTABLE N
\\
\\
N-
'N 1080 -
k k,,
p m
,\\\\
N
~
10 0- -
$ \\
k h E N N
i
\\\\
so
\\
\\
E NN l
N
\\\\
t
\\
Point A All Positioning Pins & Support Lugs Functioning
\\\\
N Support Lugs Intact, Upper Positioning Pins Not Effective Point B i.
FIGURE 8-2 FORT C.1LHOUN THEMAL SHIELO STABILITY Of Ar;uy r
i 8-6
,a a4m m
J
,.A e
=_-
-J O
PRELOAb CohhtDERAT\\ OMS.-
96 6.i>
^86 4MCWNON966 e.en. Wae w.m pe.mW.wg b h6 Meme
-.r e
N9..
496-esg g g
-*.mg-D-
w.e.
.e
--m ee. e eg
+
ea
.e w
-.apg
.e.
.m
. - -==
P o s m o m _._._-_._.....
g*p+e m
3 4
.e
>..i m
..we.s pm.
m ess.. _.._...
g e-.e
.e-o...
..w.-w a a
. e e g>.
m s e a
.ee
-. e e e..- * - - e. *.. ". * * ~
9
..aum
..e, e-
.e
.-e-.-.
e
-e..e.
Me.cwncn. PattOAb.-
../..
l.
i _. -
G 6
$W 4.p.e e
4 M
g OMk.
MM -
e.
=.9
$ e.a.P e.
emM e.> e
.M*
.N
.N-=
- h.
pm
-m-
- M66.'4._-en'.S
-=.6
..... -...-= -
.. ~.
... - - _. _..... g
-- s
. /
T S...
N I
g g
l_.
q E
\\
- l..
z I
4,
_% M._.
a l
I
.L I
{
I j
k I
6 i
t i
I s
s i-...- -
j e
l f
I g
i e-....
..e e
9 a..
+
e 4
...sp...
e..iu.mau.
e.
- e. y e.
as..-
ame. e.= e >
..ee 0
PRE.SSORE.. EFFE.cT... -. -.........
f.."".'.%.
4 I
.. _)
% N+
\\
apph
..e
-eg-me.
- MN 6 6-e
_W-4
+.
4,we -e.
g -
--q.e 8
.er I
m--- - -,..,. - _ - - - - -
---m._.-.,
TABLE 5-3 RELATIVE DEFLECTIONS (MILS) FOR FACTORS THAT INCREASE (+) AND RE' DUCE (-) POSITIONING PIN PRELOAD Mechanical AP Static Thermal Isothermal Preload Due to Shield Operating 10,300 lbs.
Steady State Weight Deflection 1
8.304
-1.233
.353 6.718 2
8.305
-2.496 412
'5.397 6.893 UPPER 3
8.302
-1.077
.332 POSITIONING 4
8.315
-1.602
.404 6.309 PINS 5
8.303
-2.217
.372 5.714 6
8.304
-0.956
.359 6.989 7
8.305
-2.094
.374 5.837 8
8.313
-1.566
.400 6.347 1
2.646
+0.275
.014 '
2.935
+0.137
.012 2.795 2
2.646
~ -0.503
.020 2.161 3
2.644
'4 2.644
-1.156
.039 1.527 5
2.646
-1.419
.060 1.287 6
2.644
-1.238
.078 1.484 LOWER 7
2.644
-0.826
.081 1.899 POSITIONING 8
2.646
-0.375
.075 2.346 PINS 9
2.646
-0.018
.068 2.696 10 2.646
+0.077
.066 2.789 11 2.644
-0.214
.068 2.498 12 2.644
-0.829
.067 1.882 i
13 2.646
-1.418
.056 1.284 14 2.644
-1.536
.041 1.149 15 2.644
-1.038
.027 1.633 16 2.646
-0.242
.018 2.422 I
e 5-8
9 e
e*
9 mi*
f0 4, d.
g o
n m$,f A.,
Js#3
- q. -
y i
J
_. a d
\\
u-a i
O g
y
$s \\ T
(
- 9 'r fl.
ni n
n LP 6 ;
1 y
y
+
(
y g
e MhW %
M d
S A=s J
,w
\\f g)
\\.
a
=
{'3 v~
4 s
r og o~
=
d P
=
n NN o $ s so i
- 33. G GI M'7
-=
m t~ gpl 2
49 e.) 2 5-c, Q
(
N I
N
~
J
~$ '
=
BA
.mjf g
u g'
m
=
P M
"7 i J r'-
). Mk g
4 g,,.
=
w e
w
=
f 1
NN
.t e
t y
ap
>F h
C "*
6 6
Nd
=
+l
$g=w,!
E.d J
o
$ f E C
5 p YM
$.5 i
1"
]
b y
I
-7 a
e.
=
e; u=.,=w L_
4
- -,- ~ m r iy (
.e-
.-v--
g cen e. --,
+
a "h.
(L c l
5' kM
=!
hv 4
r
~,
O M
=
m
=
\\
0 p
_=.u
=. -... ~,
1 4F
% =*
Gp
TABLE 5-1 Predictions of In-Water Medal Frecuencies (Hertz)
,i Mode Nominal All Pins Removed i
1.
Beam 7
7 2.
cos 29 12.5 7.9 3.
cos 30 16.3 14.9 22 4.
cos 40 22.8 a
i Note:
When the core support barrel and thermal shield are uncoupled I
by removing the positioning pins, a thermal shield beam mcde
)
i appears at 9.4 Hz.
i 4
1 l
l i
i t
5-6
. ~. _ _
I w
O ' P n e s E x P s. D A e = 8.
1 to l
~
(cycle 9)
- 79e5
-3
- / '1113 Ccycc2f) go
}
- t ? 2 7(CYCL.E 3) 1
\\'
-n L, i to g*,
d L
1 s
l '
~/
Ha
-5
- /
i 10 t
i t
i
/
i l
i v
, f,i i
~
10
/' '.
1
,,4 -
m it-I i a
=
10 m
5 to
/5 2.0 2r FREQUENCY (ifs)
FIGURE 6-8 7
=
leo - PH ASE XPSD
&xBc 1
io 1985 (cyctg y) 16'
/98 3 (cycts e) 1
^a
=
I' L :,.
l'
- iP7?(c>ctr3)
.cy
,.s I
i /
-s to t
sp 10
- 'r n
s lQ
'\\
I L
[6 i
i i
i s
to 15 20 25' v areasacy (HD
FIO M 6-13 6
O' PHRSE
- PSD Ac
- Se
.t
)
_t 10
/
1926 (CYCLE /O
-3 i 125 (cycle 7) 10 5
6 g
lt 10 L
~
.y
/
10 j
i
{
-i h
10 o
>,r
,e d
8
~
5 10 15 10 15 EnEQoEr4W C W*)
n 7
g l
120*- PH AS'iE XPED Acx 8e
-s io 198f (CyctE /0) 16 "
\\
- e-1986 (Cyc LE 9)
\\
l}I 1
'l 5
-s
\\h 10 6
,,e u
4 l
t, l
gf 9
j4
-8 10 i
i i
5 10 15 1.0 i
en e,o.i r r0 W (. N9.)
w s9 9 tu O
to o
e W
.O e
W 3
e e
e e
e 2
e e
e 4
e.
.e
..e
.e.
.e.
. ggi G*
9 e
e e
e
," W e
N e
e e
e e
g gg
_e t
.e.
.e.
U e
0 e
O g
Yi e
e es O
O e.
e.
.e.
.e.
Lil S.
N g
e O
E e
e e
0 0
E
%)
3 e
e e
e m
p g
3 z
4 a
Q m
o e
e e
e e
e e
e e
3 a.
a $II U g
yg W
e e
e e
e W3 m
g" g.A C
i Z
e e
e e
e 3
E3 e
e i.,
g Og
,O i
l e
e e
e a
Wg e
e e
e 3
e e
e e
e
. < til e.
a e
e e
W e
e e
g b
e e
e 0
e N
e I
e.
_a L
.e.
.O
%, ~
=
a e
e S
e E
N
.S W
W O
s e
e e
N 3
4 O'
C W
sg==
a
.m m
.e.
s... u..
e.
"O u M M E
w e
e e
8 e
MM e
_w O
at 2 L...
C e
e s
e 6
W e US M
C CN G
& 3 M **
.e
.m
.is..
t-
==
s*
as,
to i
e O
- O O
O O
O ee ame u.e ee ese ame X G8 lN X X
X X.
X
.=
ggZ l.
O b
b b
k h
k I
k k
k k
k k
k I.
k k
he h.
SI-[CIR RCV 11 B-MAV-85 16 855 t!,0 tI-J,it-ee O'-PHASE P5p Be 04 POWER (uPPap)
)
-2 IX10
)
)
-3 IX10 t
i.
.i s..t
.. i...i....
p p
_y i.
IX10 2
o y
HZ o
-5.
1.........
IX10 o
-6 IX10 a
.e t.
g
_,7 IX10 0.
3.
5.
B.
10.
13.
15.
18.
E0.
E3.
25.
FREQUENCY IHZI e
Fraune IG 9
OHAllA LOW POW [R NCUIRDH NOIS[ llP LP 7/2 Du =
0.11 OMA4 fit.0SD e
1Ar[ = 7/2 RilN = 4 CH = NI-104 NI-10 Utf[R U = r[R((HI IU=
1 110[-01.41 Ril3 a 3.34[-02 e
til-9 A X NI-10A e
N e
0 l
FA\\ LORE MEcWAMishl\\
i IO\\T\\A7tMG b EMT 0
1 ERD DR,~ l.010 Pot 0ER OPERA 7\\okS Less 05 PREt.oAb besmo THREAb MEAR
( NybRAutx lOAbSD Loss ce CSvec,wecess os P.osmocica bs o
MEAR OF SOPPORT Loss o
TaERuat_ %Et.D InsTAbuTy o
i l)ETEcTAste By MoortoRtM
-